mm/slab_common: Improve error handling in kmem_cache_create
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4 89#include <linux/slab.h>
97d06609 90#include "slab.h"
1da177e4 91#include <linux/mm.h>
c9cf5528 92#include <linux/poison.h>
1da177e4
LT
93#include <linux/swap.h>
94#include <linux/cache.h>
95#include <linux/interrupt.h>
96#include <linux/init.h>
97#include <linux/compiler.h>
101a5001 98#include <linux/cpuset.h>
a0ec95a8 99#include <linux/proc_fs.h>
1da177e4
LT
100#include <linux/seq_file.h>
101#include <linux/notifier.h>
102#include <linux/kallsyms.h>
103#include <linux/cpu.h>
104#include <linux/sysctl.h>
105#include <linux/module.h>
106#include <linux/rcupdate.h>
543537bd 107#include <linux/string.h>
138ae663 108#include <linux/uaccess.h>
e498be7d 109#include <linux/nodemask.h>
d5cff635 110#include <linux/kmemleak.h>
dc85da15 111#include <linux/mempolicy.h>
fc0abb14 112#include <linux/mutex.h>
8a8b6502 113#include <linux/fault-inject.h>
e7eebaf6 114#include <linux/rtmutex.h>
6a2d7a95 115#include <linux/reciprocal_div.h>
3ac7fe5a 116#include <linux/debugobjects.h>
c175eea4 117#include <linux/kmemcheck.h>
8f9f8d9e 118#include <linux/memory.h>
268bb0ce 119#include <linux/prefetch.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
1da177e4 131/*
50953fe9 132 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
133 * 0 for faster, smaller code (especially in the critical paths).
134 *
135 * STATS - 1 to collect stats for /proc/slabinfo.
136 * 0 for faster, smaller code (especially in the critical paths).
137 *
138 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
139 */
140
141#ifdef CONFIG_DEBUG_SLAB
142#define DEBUG 1
143#define STATS 1
144#define FORCED_DEBUG 1
145#else
146#define DEBUG 0
147#define STATS 0
148#define FORCED_DEBUG 0
149#endif
150
1da177e4
LT
151/* Shouldn't this be in a header file somewhere? */
152#define BYTES_PER_WORD sizeof(void *)
87a927c7 153#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 154
1da177e4
LT
155#ifndef ARCH_KMALLOC_FLAGS
156#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
157#endif
158
072bb0aa
MG
159/*
160 * true if a page was allocated from pfmemalloc reserves for network-based
161 * swap
162 */
163static bool pfmemalloc_active __read_mostly;
164
1da177e4
LT
165/* Legal flag mask for kmem_cache_create(). */
166#if DEBUG
50953fe9 167# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 168 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 169 SLAB_CACHE_DMA | \
5af60839 170 SLAB_STORE_USER | \
1da177e4 171 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 172 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 173 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 174#else
ac2b898c 175# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 176 SLAB_CACHE_DMA | \
1da177e4 177 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 178 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 179 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
180#endif
181
182/*
183 * kmem_bufctl_t:
184 *
185 * Bufctl's are used for linking objs within a slab
186 * linked offsets.
187 *
188 * This implementation relies on "struct page" for locating the cache &
189 * slab an object belongs to.
190 * This allows the bufctl structure to be small (one int), but limits
191 * the number of objects a slab (not a cache) can contain when off-slab
192 * bufctls are used. The limit is the size of the largest general cache
193 * that does not use off-slab slabs.
194 * For 32bit archs with 4 kB pages, is this 56.
195 * This is not serious, as it is only for large objects, when it is unwise
196 * to have too many per slab.
197 * Note: This limit can be raised by introducing a general cache whose size
198 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
199 */
200
fa5b08d5 201typedef unsigned int kmem_bufctl_t;
1da177e4
LT
202#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
203#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
204#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
205#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 206
1da177e4
LT
207/*
208 * struct slab_rcu
209 *
210 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
211 * arrange for kmem_freepages to be called via RCU. This is useful if
212 * we need to approach a kernel structure obliquely, from its address
213 * obtained without the usual locking. We can lock the structure to
214 * stabilize it and check it's still at the given address, only if we
215 * can be sure that the memory has not been meanwhile reused for some
216 * other kind of object (which our subsystem's lock might corrupt).
217 *
218 * rcu_read_lock before reading the address, then rcu_read_unlock after
219 * taking the spinlock within the structure expected at that address.
1da177e4
LT
220 */
221struct slab_rcu {
b28a02de 222 struct rcu_head head;
343e0d7a 223 struct kmem_cache *cachep;
b28a02de 224 void *addr;
1da177e4
LT
225};
226
5bfe53a7
LJ
227/*
228 * struct slab
229 *
230 * Manages the objs in a slab. Placed either at the beginning of mem allocated
231 * for a slab, or allocated from an general cache.
232 * Slabs are chained into three list: fully used, partial, fully free slabs.
233 */
234struct slab {
235 union {
236 struct {
237 struct list_head list;
238 unsigned long colouroff;
239 void *s_mem; /* including colour offset */
240 unsigned int inuse; /* num of objs active in slab */
241 kmem_bufctl_t free;
242 unsigned short nodeid;
243 };
244 struct slab_rcu __slab_cover_slab_rcu;
245 };
246};
247
1da177e4
LT
248/*
249 * struct array_cache
250 *
1da177e4
LT
251 * Purpose:
252 * - LIFO ordering, to hand out cache-warm objects from _alloc
253 * - reduce the number of linked list operations
254 * - reduce spinlock operations
255 *
256 * The limit is stored in the per-cpu structure to reduce the data cache
257 * footprint.
258 *
259 */
260struct array_cache {
261 unsigned int avail;
262 unsigned int limit;
263 unsigned int batchcount;
264 unsigned int touched;
e498be7d 265 spinlock_t lock;
bda5b655 266 void *entry[]; /*
a737b3e2
AM
267 * Must have this definition in here for the proper
268 * alignment of array_cache. Also simplifies accessing
269 * the entries.
072bb0aa
MG
270 *
271 * Entries should not be directly dereferenced as
272 * entries belonging to slabs marked pfmemalloc will
273 * have the lower bits set SLAB_OBJ_PFMEMALLOC
a737b3e2 274 */
1da177e4
LT
275};
276
072bb0aa
MG
277#define SLAB_OBJ_PFMEMALLOC 1
278static inline bool is_obj_pfmemalloc(void *objp)
279{
280 return (unsigned long)objp & SLAB_OBJ_PFMEMALLOC;
281}
282
283static inline void set_obj_pfmemalloc(void **objp)
284{
285 *objp = (void *)((unsigned long)*objp | SLAB_OBJ_PFMEMALLOC);
286 return;
287}
288
289static inline void clear_obj_pfmemalloc(void **objp)
290{
291 *objp = (void *)((unsigned long)*objp & ~SLAB_OBJ_PFMEMALLOC);
292}
293
a737b3e2
AM
294/*
295 * bootstrap: The caches do not work without cpuarrays anymore, but the
296 * cpuarrays are allocated from the generic caches...
1da177e4
LT
297 */
298#define BOOT_CPUCACHE_ENTRIES 1
299struct arraycache_init {
300 struct array_cache cache;
b28a02de 301 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
302};
303
304/*
e498be7d 305 * The slab lists for all objects.
1da177e4
LT
306 */
307struct kmem_list3 {
b28a02de
PE
308 struct list_head slabs_partial; /* partial list first, better asm code */
309 struct list_head slabs_full;
310 struct list_head slabs_free;
311 unsigned long free_objects;
b28a02de 312 unsigned int free_limit;
2e1217cf 313 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
314 spinlock_t list_lock;
315 struct array_cache *shared; /* shared per node */
316 struct array_cache **alien; /* on other nodes */
35386e3b
CL
317 unsigned long next_reap; /* updated without locking */
318 int free_touched; /* updated without locking */
1da177e4
LT
319};
320
e498be7d
CL
321/*
322 * Need this for bootstrapping a per node allocator.
323 */
556a169d 324#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 325static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 326#define CACHE_CACHE 0
556a169d
PE
327#define SIZE_AC MAX_NUMNODES
328#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 329
ed11d9eb
CL
330static int drain_freelist(struct kmem_cache *cache,
331 struct kmem_list3 *l3, int tofree);
332static void free_block(struct kmem_cache *cachep, void **objpp, int len,
333 int node);
83b519e8 334static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 335static void cache_reap(struct work_struct *unused);
ed11d9eb 336
e498be7d 337/*
a737b3e2
AM
338 * This function must be completely optimized away if a constant is passed to
339 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 340 */
7243cc05 341static __always_inline int index_of(const size_t size)
e498be7d 342{
5ec8a847
SR
343 extern void __bad_size(void);
344
e498be7d
CL
345 if (__builtin_constant_p(size)) {
346 int i = 0;
347
348#define CACHE(x) \
349 if (size <=x) \
350 return i; \
351 else \
352 i++;
1c61fc40 353#include <linux/kmalloc_sizes.h>
e498be7d 354#undef CACHE
5ec8a847 355 __bad_size();
7243cc05 356 } else
5ec8a847 357 __bad_size();
e498be7d
CL
358 return 0;
359}
360
e0a42726
IM
361static int slab_early_init = 1;
362
e498be7d
CL
363#define INDEX_AC index_of(sizeof(struct arraycache_init))
364#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 365
5295a74c 366static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
367{
368 INIT_LIST_HEAD(&parent->slabs_full);
369 INIT_LIST_HEAD(&parent->slabs_partial);
370 INIT_LIST_HEAD(&parent->slabs_free);
371 parent->shared = NULL;
372 parent->alien = NULL;
2e1217cf 373 parent->colour_next = 0;
e498be7d
CL
374 spin_lock_init(&parent->list_lock);
375 parent->free_objects = 0;
376 parent->free_touched = 0;
377}
378
a737b3e2
AM
379#define MAKE_LIST(cachep, listp, slab, nodeid) \
380 do { \
381 INIT_LIST_HEAD(listp); \
382 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
383 } while (0)
384
a737b3e2
AM
385#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
386 do { \
e498be7d
CL
387 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
388 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
389 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
390 } while (0)
1da177e4 391
1da177e4
LT
392#define CFLGS_OFF_SLAB (0x80000000UL)
393#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
394
395#define BATCHREFILL_LIMIT 16
a737b3e2
AM
396/*
397 * Optimization question: fewer reaps means less probability for unnessary
398 * cpucache drain/refill cycles.
1da177e4 399 *
dc6f3f27 400 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
401 * which could lock up otherwise freeable slabs.
402 */
403#define REAPTIMEOUT_CPUC (2*HZ)
404#define REAPTIMEOUT_LIST3 (4*HZ)
405
406#if STATS
407#define STATS_INC_ACTIVE(x) ((x)->num_active++)
408#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
409#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
410#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 411#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
412#define STATS_SET_HIGH(x) \
413 do { \
414 if ((x)->num_active > (x)->high_mark) \
415 (x)->high_mark = (x)->num_active; \
416 } while (0)
1da177e4
LT
417#define STATS_INC_ERR(x) ((x)->errors++)
418#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 419#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 420#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
421#define STATS_SET_FREEABLE(x, i) \
422 do { \
423 if ((x)->max_freeable < i) \
424 (x)->max_freeable = i; \
425 } while (0)
1da177e4
LT
426#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
427#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
428#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
429#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
430#else
431#define STATS_INC_ACTIVE(x) do { } while (0)
432#define STATS_DEC_ACTIVE(x) do { } while (0)
433#define STATS_INC_ALLOCED(x) do { } while (0)
434#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 435#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
436#define STATS_SET_HIGH(x) do { } while (0)
437#define STATS_INC_ERR(x) do { } while (0)
438#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 439#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 440#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 441#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
442#define STATS_INC_ALLOCHIT(x) do { } while (0)
443#define STATS_INC_ALLOCMISS(x) do { } while (0)
444#define STATS_INC_FREEHIT(x) do { } while (0)
445#define STATS_INC_FREEMISS(x) do { } while (0)
446#endif
447
448#if DEBUG
1da177e4 449
a737b3e2
AM
450/*
451 * memory layout of objects:
1da177e4 452 * 0 : objp
3dafccf2 453 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
454 * the end of an object is aligned with the end of the real
455 * allocation. Catches writes behind the end of the allocation.
3dafccf2 456 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 457 * redzone word.
3dafccf2 458 * cachep->obj_offset: The real object.
3b0efdfa
CL
459 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
460 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 461 * [BYTES_PER_WORD long]
1da177e4 462 */
343e0d7a 463static int obj_offset(struct kmem_cache *cachep)
1da177e4 464{
3dafccf2 465 return cachep->obj_offset;
1da177e4
LT
466}
467
b46b8f19 468static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
469{
470 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
471 return (unsigned long long*) (objp + obj_offset(cachep) -
472 sizeof(unsigned long long));
1da177e4
LT
473}
474
b46b8f19 475static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
476{
477 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
478 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 479 return (unsigned long long *)(objp + cachep->size -
b46b8f19 480 sizeof(unsigned long long) -
87a927c7 481 REDZONE_ALIGN);
3b0efdfa 482 return (unsigned long long *) (objp + cachep->size -
b46b8f19 483 sizeof(unsigned long long));
1da177e4
LT
484}
485
343e0d7a 486static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
487{
488 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 489 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
490}
491
492#else
493
3dafccf2 494#define obj_offset(x) 0
b46b8f19
DW
495#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
496#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
497#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
498
499#endif
500
0f24f128 501#ifdef CONFIG_TRACING
36555751
EGM
502size_t slab_buffer_size(struct kmem_cache *cachep)
503{
3b0efdfa 504 return cachep->size;
36555751
EGM
505}
506EXPORT_SYMBOL(slab_buffer_size);
507#endif
508
1da177e4 509/*
3df1cccd
DR
510 * Do not go above this order unless 0 objects fit into the slab or
511 * overridden on the command line.
1da177e4 512 */
543585cc
DR
513#define SLAB_MAX_ORDER_HI 1
514#define SLAB_MAX_ORDER_LO 0
515static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 516static bool slab_max_order_set __initdata;
1da177e4 517
6ed5eb22
PE
518static inline struct kmem_cache *virt_to_cache(const void *obj)
519{
b49af68f 520 struct page *page = virt_to_head_page(obj);
35026088 521 return page->slab_cache;
6ed5eb22
PE
522}
523
524static inline struct slab *virt_to_slab(const void *obj)
525{
b49af68f 526 struct page *page = virt_to_head_page(obj);
35026088
CL
527
528 VM_BUG_ON(!PageSlab(page));
529 return page->slab_page;
6ed5eb22
PE
530}
531
8fea4e96
PE
532static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
533 unsigned int idx)
534{
3b0efdfa 535 return slab->s_mem + cache->size * idx;
8fea4e96
PE
536}
537
6a2d7a95 538/*
3b0efdfa
CL
539 * We want to avoid an expensive divide : (offset / cache->size)
540 * Using the fact that size is a constant for a particular cache,
541 * we can replace (offset / cache->size) by
6a2d7a95
ED
542 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
543 */
544static inline unsigned int obj_to_index(const struct kmem_cache *cache,
545 const struct slab *slab, void *obj)
8fea4e96 546{
6a2d7a95
ED
547 u32 offset = (obj - slab->s_mem);
548 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
549}
550
a737b3e2
AM
551/*
552 * These are the default caches for kmalloc. Custom caches can have other sizes.
553 */
1da177e4
LT
554struct cache_sizes malloc_sizes[] = {
555#define CACHE(x) { .cs_size = (x) },
556#include <linux/kmalloc_sizes.h>
557 CACHE(ULONG_MAX)
558#undef CACHE
559};
560EXPORT_SYMBOL(malloc_sizes);
561
562/* Must match cache_sizes above. Out of line to keep cache footprint low. */
563struct cache_names {
564 char *name;
565 char *name_dma;
566};
567
568static struct cache_names __initdata cache_names[] = {
569#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
570#include <linux/kmalloc_sizes.h>
b28a02de 571 {NULL,}
1da177e4
LT
572#undef CACHE
573};
574
575static struct arraycache_init initarray_cache __initdata =
b28a02de 576 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 577static struct arraycache_init initarray_generic =
b28a02de 578 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
579
580/* internal cache of cache description objs */
b56efcf0 581static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 582static struct kmem_cache cache_cache = {
b56efcf0 583 .nodelists = cache_cache_nodelists,
b28a02de
PE
584 .batchcount = 1,
585 .limit = BOOT_CPUCACHE_ENTRIES,
586 .shared = 1,
3b0efdfa 587 .size = sizeof(struct kmem_cache),
b28a02de 588 .name = "kmem_cache",
1da177e4
LT
589};
590
056c6241
RT
591#define BAD_ALIEN_MAGIC 0x01020304ul
592
f1aaee53
AV
593#ifdef CONFIG_LOCKDEP
594
595/*
596 * Slab sometimes uses the kmalloc slabs to store the slab headers
597 * for other slabs "off slab".
598 * The locking for this is tricky in that it nests within the locks
599 * of all other slabs in a few places; to deal with this special
600 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
601 *
602 * We set lock class for alien array caches which are up during init.
603 * The lock annotation will be lost if all cpus of a node goes down and
604 * then comes back up during hotplug
f1aaee53 605 */
056c6241
RT
606static struct lock_class_key on_slab_l3_key;
607static struct lock_class_key on_slab_alc_key;
608
83835b3d
PZ
609static struct lock_class_key debugobj_l3_key;
610static struct lock_class_key debugobj_alc_key;
611
612static void slab_set_lock_classes(struct kmem_cache *cachep,
613 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
614 int q)
615{
616 struct array_cache **alc;
617 struct kmem_list3 *l3;
618 int r;
619
620 l3 = cachep->nodelists[q];
621 if (!l3)
622 return;
623
624 lockdep_set_class(&l3->list_lock, l3_key);
625 alc = l3->alien;
626 /*
627 * FIXME: This check for BAD_ALIEN_MAGIC
628 * should go away when common slab code is taught to
629 * work even without alien caches.
630 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
631 * for alloc_alien_cache,
632 */
633 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
634 return;
635 for_each_node(r) {
636 if (alc[r])
637 lockdep_set_class(&alc[r]->lock, alc_key);
638 }
639}
640
641static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
642{
643 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
644}
645
646static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
647{
648 int node;
649
650 for_each_online_node(node)
651 slab_set_debugobj_lock_classes_node(cachep, node);
652}
653
ce79ddc8 654static void init_node_lock_keys(int q)
f1aaee53 655{
056c6241
RT
656 struct cache_sizes *s = malloc_sizes;
657
97d06609 658 if (slab_state < UP)
ce79ddc8
PE
659 return;
660
661 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 662 struct kmem_list3 *l3;
ce79ddc8
PE
663
664 l3 = s->cs_cachep->nodelists[q];
665 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 666 continue;
83835b3d
PZ
667
668 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
669 &on_slab_alc_key, q);
f1aaee53
AV
670 }
671}
ce79ddc8
PE
672
673static inline void init_lock_keys(void)
674{
675 int node;
676
677 for_each_node(node)
678 init_node_lock_keys(node);
679}
f1aaee53 680#else
ce79ddc8
PE
681static void init_node_lock_keys(int q)
682{
683}
684
056c6241 685static inline void init_lock_keys(void)
f1aaee53
AV
686{
687}
83835b3d
PZ
688
689static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
690{
691}
692
693static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
694{
695}
f1aaee53
AV
696#endif
697
1871e52c 698static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 699
343e0d7a 700static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
701{
702 return cachep->array[smp_processor_id()];
703}
704
a737b3e2
AM
705static inline struct kmem_cache *__find_general_cachep(size_t size,
706 gfp_t gfpflags)
1da177e4
LT
707{
708 struct cache_sizes *csizep = malloc_sizes;
709
710#if DEBUG
711 /* This happens if someone tries to call
b28a02de
PE
712 * kmem_cache_create(), or __kmalloc(), before
713 * the generic caches are initialized.
714 */
c7e43c78 715 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 716#endif
6cb8f913
CL
717 if (!size)
718 return ZERO_SIZE_PTR;
719
1da177e4
LT
720 while (size > csizep->cs_size)
721 csizep++;
722
723 /*
0abf40c1 724 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
725 * has cs_{dma,}cachep==NULL. Thus no special case
726 * for large kmalloc calls required.
727 */
4b51d669 728#ifdef CONFIG_ZONE_DMA
1da177e4
LT
729 if (unlikely(gfpflags & GFP_DMA))
730 return csizep->cs_dmacachep;
4b51d669 731#endif
1da177e4
LT
732 return csizep->cs_cachep;
733}
734
b221385b 735static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
736{
737 return __find_general_cachep(size, gfpflags);
738}
97e2bde4 739
fbaccacf 740static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 741{
fbaccacf
SR
742 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
743}
1da177e4 744
a737b3e2
AM
745/*
746 * Calculate the number of objects and left-over bytes for a given buffer size.
747 */
fbaccacf
SR
748static void cache_estimate(unsigned long gfporder, size_t buffer_size,
749 size_t align, int flags, size_t *left_over,
750 unsigned int *num)
751{
752 int nr_objs;
753 size_t mgmt_size;
754 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 755
fbaccacf
SR
756 /*
757 * The slab management structure can be either off the slab or
758 * on it. For the latter case, the memory allocated for a
759 * slab is used for:
760 *
761 * - The struct slab
762 * - One kmem_bufctl_t for each object
763 * - Padding to respect alignment of @align
764 * - @buffer_size bytes for each object
765 *
766 * If the slab management structure is off the slab, then the
767 * alignment will already be calculated into the size. Because
768 * the slabs are all pages aligned, the objects will be at the
769 * correct alignment when allocated.
770 */
771 if (flags & CFLGS_OFF_SLAB) {
772 mgmt_size = 0;
773 nr_objs = slab_size / buffer_size;
774
775 if (nr_objs > SLAB_LIMIT)
776 nr_objs = SLAB_LIMIT;
777 } else {
778 /*
779 * Ignore padding for the initial guess. The padding
780 * is at most @align-1 bytes, and @buffer_size is at
781 * least @align. In the worst case, this result will
782 * be one greater than the number of objects that fit
783 * into the memory allocation when taking the padding
784 * into account.
785 */
786 nr_objs = (slab_size - sizeof(struct slab)) /
787 (buffer_size + sizeof(kmem_bufctl_t));
788
789 /*
790 * This calculated number will be either the right
791 * amount, or one greater than what we want.
792 */
793 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
794 > slab_size)
795 nr_objs--;
796
797 if (nr_objs > SLAB_LIMIT)
798 nr_objs = SLAB_LIMIT;
799
800 mgmt_size = slab_mgmt_size(nr_objs, align);
801 }
802 *num = nr_objs;
803 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
804}
805
d40cee24 806#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 807
a737b3e2
AM
808static void __slab_error(const char *function, struct kmem_cache *cachep,
809 char *msg)
1da177e4
LT
810{
811 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 812 function, cachep->name, msg);
1da177e4
LT
813 dump_stack();
814}
815
3395ee05
PM
816/*
817 * By default on NUMA we use alien caches to stage the freeing of
818 * objects allocated from other nodes. This causes massive memory
819 * inefficiencies when using fake NUMA setup to split memory into a
820 * large number of small nodes, so it can be disabled on the command
821 * line
822 */
823
824static int use_alien_caches __read_mostly = 1;
825static int __init noaliencache_setup(char *s)
826{
827 use_alien_caches = 0;
828 return 1;
829}
830__setup("noaliencache", noaliencache_setup);
831
3df1cccd
DR
832static int __init slab_max_order_setup(char *str)
833{
834 get_option(&str, &slab_max_order);
835 slab_max_order = slab_max_order < 0 ? 0 :
836 min(slab_max_order, MAX_ORDER - 1);
837 slab_max_order_set = true;
838
839 return 1;
840}
841__setup("slab_max_order=", slab_max_order_setup);
842
8fce4d8e
CL
843#ifdef CONFIG_NUMA
844/*
845 * Special reaping functions for NUMA systems called from cache_reap().
846 * These take care of doing round robin flushing of alien caches (containing
847 * objects freed on different nodes from which they were allocated) and the
848 * flushing of remote pcps by calling drain_node_pages.
849 */
1871e52c 850static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
851
852static void init_reap_node(int cpu)
853{
854 int node;
855
7d6e6d09 856 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 857 if (node == MAX_NUMNODES)
442295c9 858 node = first_node(node_online_map);
8fce4d8e 859
1871e52c 860 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
861}
862
863static void next_reap_node(void)
864{
909ea964 865 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 866
8fce4d8e
CL
867 node = next_node(node, node_online_map);
868 if (unlikely(node >= MAX_NUMNODES))
869 node = first_node(node_online_map);
909ea964 870 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
871}
872
873#else
874#define init_reap_node(cpu) do { } while (0)
875#define next_reap_node(void) do { } while (0)
876#endif
877
1da177e4
LT
878/*
879 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
880 * via the workqueue/eventd.
881 * Add the CPU number into the expiration time to minimize the possibility of
882 * the CPUs getting into lockstep and contending for the global cache chain
883 * lock.
884 */
897e679b 885static void __cpuinit start_cpu_timer(int cpu)
1da177e4 886{
1871e52c 887 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
888
889 /*
890 * When this gets called from do_initcalls via cpucache_init(),
891 * init_workqueues() has already run, so keventd will be setup
892 * at that time.
893 */
52bad64d 894 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 895 init_reap_node(cpu);
78b43536 896 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
897 schedule_delayed_work_on(cpu, reap_work,
898 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
899 }
900}
901
e498be7d 902static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 903 int batchcount, gfp_t gfp)
1da177e4 904{
b28a02de 905 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
906 struct array_cache *nc = NULL;
907
83b519e8 908 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
909 /*
910 * The array_cache structures contain pointers to free object.
25985edc 911 * However, when such objects are allocated or transferred to another
d5cff635
CM
912 * cache the pointers are not cleared and they could be counted as
913 * valid references during a kmemleak scan. Therefore, kmemleak must
914 * not scan such objects.
915 */
916 kmemleak_no_scan(nc);
1da177e4
LT
917 if (nc) {
918 nc->avail = 0;
919 nc->limit = entries;
920 nc->batchcount = batchcount;
921 nc->touched = 0;
e498be7d 922 spin_lock_init(&nc->lock);
1da177e4
LT
923 }
924 return nc;
925}
926
072bb0aa
MG
927static inline bool is_slab_pfmemalloc(struct slab *slabp)
928{
929 struct page *page = virt_to_page(slabp->s_mem);
930
931 return PageSlabPfmemalloc(page);
932}
933
934/* Clears pfmemalloc_active if no slabs have pfmalloc set */
935static void recheck_pfmemalloc_active(struct kmem_cache *cachep,
936 struct array_cache *ac)
937{
938 struct kmem_list3 *l3 = cachep->nodelists[numa_mem_id()];
939 struct slab *slabp;
940 unsigned long flags;
941
942 if (!pfmemalloc_active)
943 return;
944
945 spin_lock_irqsave(&l3->list_lock, flags);
946 list_for_each_entry(slabp, &l3->slabs_full, list)
947 if (is_slab_pfmemalloc(slabp))
948 goto out;
949
950 list_for_each_entry(slabp, &l3->slabs_partial, list)
951 if (is_slab_pfmemalloc(slabp))
952 goto out;
953
954 list_for_each_entry(slabp, &l3->slabs_free, list)
955 if (is_slab_pfmemalloc(slabp))
956 goto out;
957
958 pfmemalloc_active = false;
959out:
960 spin_unlock_irqrestore(&l3->list_lock, flags);
961}
962
381760ea 963static void *__ac_get_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
964 gfp_t flags, bool force_refill)
965{
966 int i;
967 void *objp = ac->entry[--ac->avail];
968
969 /* Ensure the caller is allowed to use objects from PFMEMALLOC slab */
970 if (unlikely(is_obj_pfmemalloc(objp))) {
971 struct kmem_list3 *l3;
972
973 if (gfp_pfmemalloc_allowed(flags)) {
974 clear_obj_pfmemalloc(&objp);
975 return objp;
976 }
977
978 /* The caller cannot use PFMEMALLOC objects, find another one */
979 for (i = 1; i < ac->avail; i++) {
980 /* If a !PFMEMALLOC object is found, swap them */
981 if (!is_obj_pfmemalloc(ac->entry[i])) {
982 objp = ac->entry[i];
983 ac->entry[i] = ac->entry[ac->avail];
984 ac->entry[ac->avail] = objp;
985 return objp;
986 }
987 }
988
989 /*
990 * If there are empty slabs on the slabs_free list and we are
991 * being forced to refill the cache, mark this one !pfmemalloc.
992 */
993 l3 = cachep->nodelists[numa_mem_id()];
994 if (!list_empty(&l3->slabs_free) && force_refill) {
995 struct slab *slabp = virt_to_slab(objp);
996 ClearPageSlabPfmemalloc(virt_to_page(slabp->s_mem));
997 clear_obj_pfmemalloc(&objp);
998 recheck_pfmemalloc_active(cachep, ac);
999 return objp;
1000 }
1001
1002 /* No !PFMEMALLOC objects available */
1003 ac->avail++;
1004 objp = NULL;
1005 }
1006
1007 return objp;
1008}
1009
381760ea
MG
1010static inline void *ac_get_obj(struct kmem_cache *cachep,
1011 struct array_cache *ac, gfp_t flags, bool force_refill)
1012{
1013 void *objp;
1014
1015 if (unlikely(sk_memalloc_socks()))
1016 objp = __ac_get_obj(cachep, ac, flags, force_refill);
1017 else
1018 objp = ac->entry[--ac->avail];
1019
1020 return objp;
1021}
1022
1023static void *__ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
072bb0aa
MG
1024 void *objp)
1025{
1026 if (unlikely(pfmemalloc_active)) {
1027 /* Some pfmemalloc slabs exist, check if this is one */
1028 struct page *page = virt_to_page(objp);
1029 if (PageSlabPfmemalloc(page))
1030 set_obj_pfmemalloc(&objp);
1031 }
1032
381760ea
MG
1033 return objp;
1034}
1035
1036static inline void ac_put_obj(struct kmem_cache *cachep, struct array_cache *ac,
1037 void *objp)
1038{
1039 if (unlikely(sk_memalloc_socks()))
1040 objp = __ac_put_obj(cachep, ac, objp);
1041
072bb0aa
MG
1042 ac->entry[ac->avail++] = objp;
1043}
1044
3ded175a
CL
1045/*
1046 * Transfer objects in one arraycache to another.
1047 * Locking must be handled by the caller.
1048 *
1049 * Return the number of entries transferred.
1050 */
1051static int transfer_objects(struct array_cache *to,
1052 struct array_cache *from, unsigned int max)
1053{
1054 /* Figure out how many entries to transfer */
732eacc0 1055 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
1056
1057 if (!nr)
1058 return 0;
1059
1060 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1061 sizeof(void *) *nr);
1062
1063 from->avail -= nr;
1064 to->avail += nr;
3ded175a
CL
1065 return nr;
1066}
1067
765c4507
CL
1068#ifndef CONFIG_NUMA
1069
1070#define drain_alien_cache(cachep, alien) do { } while (0)
1071#define reap_alien(cachep, l3) do { } while (0)
1072
83b519e8 1073static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
1074{
1075 return (struct array_cache **)BAD_ALIEN_MAGIC;
1076}
1077
1078static inline void free_alien_cache(struct array_cache **ac_ptr)
1079{
1080}
1081
1082static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1083{
1084 return 0;
1085}
1086
1087static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1088 gfp_t flags)
1089{
1090 return NULL;
1091}
1092
8b98c169 1093static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1094 gfp_t flags, int nodeid)
1095{
1096 return NULL;
1097}
1098
1099#else /* CONFIG_NUMA */
1100
8b98c169 1101static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1102static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1103
83b519e8 1104static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
1105{
1106 struct array_cache **ac_ptr;
8ef82866 1107 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1108 int i;
1109
1110 if (limit > 1)
1111 limit = 12;
f3186a9c 1112 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1113 if (ac_ptr) {
1114 for_each_node(i) {
f3186a9c 1115 if (i == node || !node_online(i))
e498be7d 1116 continue;
83b519e8 1117 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1118 if (!ac_ptr[i]) {
cc550def 1119 for (i--; i >= 0; i--)
e498be7d
CL
1120 kfree(ac_ptr[i]);
1121 kfree(ac_ptr);
1122 return NULL;
1123 }
1124 }
1125 }
1126 return ac_ptr;
1127}
1128
5295a74c 1129static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1130{
1131 int i;
1132
1133 if (!ac_ptr)
1134 return;
e498be7d 1135 for_each_node(i)
b28a02de 1136 kfree(ac_ptr[i]);
e498be7d
CL
1137 kfree(ac_ptr);
1138}
1139
343e0d7a 1140static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1141 struct array_cache *ac, int node)
e498be7d
CL
1142{
1143 struct kmem_list3 *rl3 = cachep->nodelists[node];
1144
1145 if (ac->avail) {
1146 spin_lock(&rl3->list_lock);
e00946fe
CL
1147 /*
1148 * Stuff objects into the remote nodes shared array first.
1149 * That way we could avoid the overhead of putting the objects
1150 * into the free lists and getting them back later.
1151 */
693f7d36 1152 if (rl3->shared)
1153 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1154
ff69416e 1155 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1156 ac->avail = 0;
1157 spin_unlock(&rl3->list_lock);
1158 }
1159}
1160
8fce4d8e
CL
1161/*
1162 * Called from cache_reap() to regularly drain alien caches round robin.
1163 */
1164static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1165{
909ea964 1166 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1167
1168 if (l3->alien) {
1169 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1170
1171 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1172 __drain_alien_cache(cachep, ac, node);
1173 spin_unlock_irq(&ac->lock);
1174 }
1175 }
1176}
1177
a737b3e2
AM
1178static void drain_alien_cache(struct kmem_cache *cachep,
1179 struct array_cache **alien)
e498be7d 1180{
b28a02de 1181 int i = 0;
e498be7d
CL
1182 struct array_cache *ac;
1183 unsigned long flags;
1184
1185 for_each_online_node(i) {
4484ebf1 1186 ac = alien[i];
e498be7d
CL
1187 if (ac) {
1188 spin_lock_irqsave(&ac->lock, flags);
1189 __drain_alien_cache(cachep, ac, i);
1190 spin_unlock_irqrestore(&ac->lock, flags);
1191 }
1192 }
1193}
729bd0b7 1194
873623df 1195static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1196{
1197 struct slab *slabp = virt_to_slab(objp);
1198 int nodeid = slabp->nodeid;
1199 struct kmem_list3 *l3;
1200 struct array_cache *alien = NULL;
1ca4cb24
PE
1201 int node;
1202
7d6e6d09 1203 node = numa_mem_id();
729bd0b7
PE
1204
1205 /*
1206 * Make sure we are not freeing a object from another node to the array
1207 * cache on this cpu.
1208 */
62918a03 1209 if (likely(slabp->nodeid == node))
729bd0b7
PE
1210 return 0;
1211
1ca4cb24 1212 l3 = cachep->nodelists[node];
729bd0b7
PE
1213 STATS_INC_NODEFREES(cachep);
1214 if (l3->alien && l3->alien[nodeid]) {
1215 alien = l3->alien[nodeid];
873623df 1216 spin_lock(&alien->lock);
729bd0b7
PE
1217 if (unlikely(alien->avail == alien->limit)) {
1218 STATS_INC_ACOVERFLOW(cachep);
1219 __drain_alien_cache(cachep, alien, nodeid);
1220 }
072bb0aa 1221 ac_put_obj(cachep, alien, objp);
729bd0b7
PE
1222 spin_unlock(&alien->lock);
1223 } else {
1224 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1225 free_block(cachep, &objp, 1, nodeid);
1226 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1227 }
1228 return 1;
1229}
e498be7d
CL
1230#endif
1231
8f9f8d9e
DR
1232/*
1233 * Allocates and initializes nodelists for a node on each slab cache, used for
1234 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1235 * will be allocated off-node since memory is not yet online for the new node.
1236 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1237 * already in use.
1238 *
18004c5d 1239 * Must hold slab_mutex.
8f9f8d9e
DR
1240 */
1241static int init_cache_nodelists_node(int node)
1242{
1243 struct kmem_cache *cachep;
1244 struct kmem_list3 *l3;
1245 const int memsize = sizeof(struct kmem_list3);
1246
18004c5d 1247 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1248 /*
1249 * Set up the size64 kmemlist for cpu before we can
1250 * begin anything. Make sure some other cpu on this
1251 * node has not already allocated this
1252 */
1253 if (!cachep->nodelists[node]) {
1254 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1255 if (!l3)
1256 return -ENOMEM;
1257 kmem_list3_init(l3);
1258 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1259 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1260
1261 /*
1262 * The l3s don't come and go as CPUs come and
18004c5d 1263 * go. slab_mutex is sufficient
8f9f8d9e
DR
1264 * protection here.
1265 */
1266 cachep->nodelists[node] = l3;
1267 }
1268
1269 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1270 cachep->nodelists[node]->free_limit =
1271 (1 + nr_cpus_node(node)) *
1272 cachep->batchcount + cachep->num;
1273 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1274 }
1275 return 0;
1276}
1277
fbf1e473
AM
1278static void __cpuinit cpuup_canceled(long cpu)
1279{
1280 struct kmem_cache *cachep;
1281 struct kmem_list3 *l3 = NULL;
7d6e6d09 1282 int node = cpu_to_mem(cpu);
a70f7302 1283 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1284
18004c5d 1285 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1286 struct array_cache *nc;
1287 struct array_cache *shared;
1288 struct array_cache **alien;
fbf1e473 1289
fbf1e473
AM
1290 /* cpu is dead; no one can alloc from it. */
1291 nc = cachep->array[cpu];
1292 cachep->array[cpu] = NULL;
1293 l3 = cachep->nodelists[node];
1294
1295 if (!l3)
1296 goto free_array_cache;
1297
1298 spin_lock_irq(&l3->list_lock);
1299
1300 /* Free limit for this kmem_list3 */
1301 l3->free_limit -= cachep->batchcount;
1302 if (nc)
1303 free_block(cachep, nc->entry, nc->avail, node);
1304
58463c1f 1305 if (!cpumask_empty(mask)) {
fbf1e473
AM
1306 spin_unlock_irq(&l3->list_lock);
1307 goto free_array_cache;
1308 }
1309
1310 shared = l3->shared;
1311 if (shared) {
1312 free_block(cachep, shared->entry,
1313 shared->avail, node);
1314 l3->shared = NULL;
1315 }
1316
1317 alien = l3->alien;
1318 l3->alien = NULL;
1319
1320 spin_unlock_irq(&l3->list_lock);
1321
1322 kfree(shared);
1323 if (alien) {
1324 drain_alien_cache(cachep, alien);
1325 free_alien_cache(alien);
1326 }
1327free_array_cache:
1328 kfree(nc);
1329 }
1330 /*
1331 * In the previous loop, all the objects were freed to
1332 * the respective cache's slabs, now we can go ahead and
1333 * shrink each nodelist to its limit.
1334 */
18004c5d 1335 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1336 l3 = cachep->nodelists[node];
1337 if (!l3)
1338 continue;
1339 drain_freelist(cachep, l3, l3->free_objects);
1340 }
1341}
1342
1343static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1344{
343e0d7a 1345 struct kmem_cache *cachep;
e498be7d 1346 struct kmem_list3 *l3 = NULL;
7d6e6d09 1347 int node = cpu_to_mem(cpu);
8f9f8d9e 1348 int err;
1da177e4 1349
fbf1e473
AM
1350 /*
1351 * We need to do this right in the beginning since
1352 * alloc_arraycache's are going to use this list.
1353 * kmalloc_node allows us to add the slab to the right
1354 * kmem_list3 and not this cpu's kmem_list3
1355 */
8f9f8d9e
DR
1356 err = init_cache_nodelists_node(node);
1357 if (err < 0)
1358 goto bad;
fbf1e473
AM
1359
1360 /*
1361 * Now we can go ahead with allocating the shared arrays and
1362 * array caches
1363 */
18004c5d 1364 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
1365 struct array_cache *nc;
1366 struct array_cache *shared = NULL;
1367 struct array_cache **alien = NULL;
1368
1369 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1370 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1371 if (!nc)
1372 goto bad;
1373 if (cachep->shared) {
1374 shared = alloc_arraycache(node,
1375 cachep->shared * cachep->batchcount,
83b519e8 1376 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1377 if (!shared) {
1378 kfree(nc);
1da177e4 1379 goto bad;
12d00f6a 1380 }
fbf1e473
AM
1381 }
1382 if (use_alien_caches) {
83b519e8 1383 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1384 if (!alien) {
1385 kfree(shared);
1386 kfree(nc);
fbf1e473 1387 goto bad;
12d00f6a 1388 }
fbf1e473
AM
1389 }
1390 cachep->array[cpu] = nc;
1391 l3 = cachep->nodelists[node];
1392 BUG_ON(!l3);
1393
1394 spin_lock_irq(&l3->list_lock);
1395 if (!l3->shared) {
1396 /*
1397 * We are serialised from CPU_DEAD or
1398 * CPU_UP_CANCELLED by the cpucontrol lock
1399 */
1400 l3->shared = shared;
1401 shared = NULL;
1402 }
4484ebf1 1403#ifdef CONFIG_NUMA
fbf1e473
AM
1404 if (!l3->alien) {
1405 l3->alien = alien;
1406 alien = NULL;
1da177e4 1407 }
fbf1e473
AM
1408#endif
1409 spin_unlock_irq(&l3->list_lock);
1410 kfree(shared);
1411 free_alien_cache(alien);
83835b3d
PZ
1412 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1413 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1414 }
ce79ddc8
PE
1415 init_node_lock_keys(node);
1416
fbf1e473
AM
1417 return 0;
1418bad:
12d00f6a 1419 cpuup_canceled(cpu);
fbf1e473
AM
1420 return -ENOMEM;
1421}
1422
1423static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1424 unsigned long action, void *hcpu)
1425{
1426 long cpu = (long)hcpu;
1427 int err = 0;
1428
1429 switch (action) {
fbf1e473
AM
1430 case CPU_UP_PREPARE:
1431 case CPU_UP_PREPARE_FROZEN:
18004c5d 1432 mutex_lock(&slab_mutex);
fbf1e473 1433 err = cpuup_prepare(cpu);
18004c5d 1434 mutex_unlock(&slab_mutex);
1da177e4
LT
1435 break;
1436 case CPU_ONLINE:
8bb78442 1437 case CPU_ONLINE_FROZEN:
1da177e4
LT
1438 start_cpu_timer(cpu);
1439 break;
1440#ifdef CONFIG_HOTPLUG_CPU
5830c590 1441 case CPU_DOWN_PREPARE:
8bb78442 1442 case CPU_DOWN_PREPARE_FROZEN:
5830c590 1443 /*
18004c5d 1444 * Shutdown cache reaper. Note that the slab_mutex is
5830c590
CL
1445 * held so that if cache_reap() is invoked it cannot do
1446 * anything expensive but will only modify reap_work
1447 * and reschedule the timer.
1448 */
afe2c511 1449 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1450 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1451 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1452 break;
1453 case CPU_DOWN_FAILED:
8bb78442 1454 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1455 start_cpu_timer(cpu);
1456 break;
1da177e4 1457 case CPU_DEAD:
8bb78442 1458 case CPU_DEAD_FROZEN:
4484ebf1
RT
1459 /*
1460 * Even if all the cpus of a node are down, we don't free the
1461 * kmem_list3 of any cache. This to avoid a race between
1462 * cpu_down, and a kmalloc allocation from another cpu for
1463 * memory from the node of the cpu going down. The list3
1464 * structure is usually allocated from kmem_cache_create() and
1465 * gets destroyed at kmem_cache_destroy().
1466 */
183ff22b 1467 /* fall through */
8f5be20b 1468#endif
1da177e4 1469 case CPU_UP_CANCELED:
8bb78442 1470 case CPU_UP_CANCELED_FROZEN:
18004c5d 1471 mutex_lock(&slab_mutex);
fbf1e473 1472 cpuup_canceled(cpu);
18004c5d 1473 mutex_unlock(&slab_mutex);
1da177e4 1474 break;
1da177e4 1475 }
eac40680 1476 return notifier_from_errno(err);
1da177e4
LT
1477}
1478
74b85f37
CS
1479static struct notifier_block __cpuinitdata cpucache_notifier = {
1480 &cpuup_callback, NULL, 0
1481};
1da177e4 1482
8f9f8d9e
DR
1483#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1484/*
1485 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1486 * Returns -EBUSY if all objects cannot be drained so that the node is not
1487 * removed.
1488 *
18004c5d 1489 * Must hold slab_mutex.
8f9f8d9e
DR
1490 */
1491static int __meminit drain_cache_nodelists_node(int node)
1492{
1493 struct kmem_cache *cachep;
1494 int ret = 0;
1495
18004c5d 1496 list_for_each_entry(cachep, &slab_caches, list) {
8f9f8d9e
DR
1497 struct kmem_list3 *l3;
1498
1499 l3 = cachep->nodelists[node];
1500 if (!l3)
1501 continue;
1502
1503 drain_freelist(cachep, l3, l3->free_objects);
1504
1505 if (!list_empty(&l3->slabs_full) ||
1506 !list_empty(&l3->slabs_partial)) {
1507 ret = -EBUSY;
1508 break;
1509 }
1510 }
1511 return ret;
1512}
1513
1514static int __meminit slab_memory_callback(struct notifier_block *self,
1515 unsigned long action, void *arg)
1516{
1517 struct memory_notify *mnb = arg;
1518 int ret = 0;
1519 int nid;
1520
1521 nid = mnb->status_change_nid;
1522 if (nid < 0)
1523 goto out;
1524
1525 switch (action) {
1526 case MEM_GOING_ONLINE:
18004c5d 1527 mutex_lock(&slab_mutex);
8f9f8d9e 1528 ret = init_cache_nodelists_node(nid);
18004c5d 1529 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1530 break;
1531 case MEM_GOING_OFFLINE:
18004c5d 1532 mutex_lock(&slab_mutex);
8f9f8d9e 1533 ret = drain_cache_nodelists_node(nid);
18004c5d 1534 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1535 break;
1536 case MEM_ONLINE:
1537 case MEM_OFFLINE:
1538 case MEM_CANCEL_ONLINE:
1539 case MEM_CANCEL_OFFLINE:
1540 break;
1541 }
1542out:
5fda1bd5 1543 return notifier_from_errno(ret);
8f9f8d9e
DR
1544}
1545#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1546
e498be7d
CL
1547/*
1548 * swap the static kmem_list3 with kmalloced memory
1549 */
8f9f8d9e
DR
1550static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1551 int nodeid)
e498be7d
CL
1552{
1553 struct kmem_list3 *ptr;
1554
83b519e8 1555 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1556 BUG_ON(!ptr);
1557
e498be7d 1558 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1559 /*
1560 * Do not assume that spinlocks can be initialized via memcpy:
1561 */
1562 spin_lock_init(&ptr->list_lock);
1563
e498be7d
CL
1564 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1565 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1566}
1567
556a169d
PE
1568/*
1569 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1570 * size of kmem_list3.
1571 */
1572static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1573{
1574 int node;
1575
1576 for_each_online_node(node) {
1577 cachep->nodelists[node] = &initkmem_list3[index + node];
1578 cachep->nodelists[node]->next_reap = jiffies +
1579 REAPTIMEOUT_LIST3 +
1580 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1581 }
1582}
1583
a737b3e2
AM
1584/*
1585 * Initialisation. Called after the page allocator have been initialised and
1586 * before smp_init().
1da177e4
LT
1587 */
1588void __init kmem_cache_init(void)
1589{
1590 size_t left_over;
1591 struct cache_sizes *sizes;
1592 struct cache_names *names;
e498be7d 1593 int i;
07ed76b2 1594 int order;
1ca4cb24 1595 int node;
e498be7d 1596
b6e68bc1 1597 if (num_possible_nodes() == 1)
62918a03
SS
1598 use_alien_caches = 0;
1599
e498be7d
CL
1600 for (i = 0; i < NUM_INIT_LISTS; i++) {
1601 kmem_list3_init(&initkmem_list3[i]);
1602 if (i < MAX_NUMNODES)
1603 cache_cache.nodelists[i] = NULL;
1604 }
556a169d 1605 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1606
1607 /*
1608 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1609 * page orders on machines with more than 32MB of memory if
1610 * not overridden on the command line.
1da177e4 1611 */
3df1cccd 1612 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1613 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1614
1da177e4
LT
1615 /* Bootstrap is tricky, because several objects are allocated
1616 * from caches that do not exist yet:
a737b3e2
AM
1617 * 1) initialize the cache_cache cache: it contains the struct
1618 * kmem_cache structures of all caches, except cache_cache itself:
1619 * cache_cache is statically allocated.
e498be7d
CL
1620 * Initially an __init data area is used for the head array and the
1621 * kmem_list3 structures, it's replaced with a kmalloc allocated
1622 * array at the end of the bootstrap.
1da177e4 1623 * 2) Create the first kmalloc cache.
343e0d7a 1624 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1625 * An __init data area is used for the head array.
1626 * 3) Create the remaining kmalloc caches, with minimally sized
1627 * head arrays.
1da177e4
LT
1628 * 4) Replace the __init data head arrays for cache_cache and the first
1629 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1630 * 5) Replace the __init data for kmem_list3 for cache_cache and
1631 * the other cache's with kmalloc allocated memory.
1632 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1633 */
1634
7d6e6d09 1635 node = numa_mem_id();
1ca4cb24 1636
1da177e4 1637 /* 1) create the cache_cache */
18004c5d
CL
1638 INIT_LIST_HEAD(&slab_caches);
1639 list_add(&cache_cache.list, &slab_caches);
1da177e4
LT
1640 cache_cache.colour_off = cache_line_size();
1641 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1642 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1643
8da3430d 1644 /*
b56efcf0 1645 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1646 */
3b0efdfa 1647 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1648 nr_node_ids * sizeof(struct kmem_list3 *);
3b0efdfa
CL
1649 cache_cache.object_size = cache_cache.size;
1650 cache_cache.size = ALIGN(cache_cache.size,
a737b3e2 1651 cache_line_size());
6a2d7a95 1652 cache_cache.reciprocal_buffer_size =
3b0efdfa 1653 reciprocal_value(cache_cache.size);
1da177e4 1654
07ed76b2 1655 for (order = 0; order < MAX_ORDER; order++) {
3b0efdfa 1656 cache_estimate(order, cache_cache.size,
07ed76b2
JS
1657 cache_line_size(), 0, &left_over, &cache_cache.num);
1658 if (cache_cache.num)
1659 break;
1660 }
40094fa6 1661 BUG_ON(!cache_cache.num);
07ed76b2 1662 cache_cache.gfporder = order;
b28a02de 1663 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1664 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1665 sizeof(struct slab), cache_line_size());
1da177e4
LT
1666
1667 /* 2+3) create the kmalloc caches */
1668 sizes = malloc_sizes;
1669 names = cache_names;
1670
a737b3e2
AM
1671 /*
1672 * Initialize the caches that provide memory for the array cache and the
1673 * kmem_list3 structures first. Without this, further allocations will
1674 * bug.
e498be7d
CL
1675 */
1676
039363f3 1677 sizes[INDEX_AC].cs_cachep = __kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1678 sizes[INDEX_AC].cs_size,
1679 ARCH_KMALLOC_MINALIGN,
1680 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1681 NULL);
e498be7d 1682
a737b3e2 1683 if (INDEX_AC != INDEX_L3) {
e498be7d 1684 sizes[INDEX_L3].cs_cachep =
039363f3 1685 __kmem_cache_create(names[INDEX_L3].name,
a737b3e2
AM
1686 sizes[INDEX_L3].cs_size,
1687 ARCH_KMALLOC_MINALIGN,
1688 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1689 NULL);
a737b3e2 1690 }
e498be7d 1691
e0a42726
IM
1692 slab_early_init = 0;
1693
1da177e4 1694 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1695 /*
1696 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1697 * This should be particularly beneficial on SMP boxes, as it
1698 * eliminates "false sharing".
1699 * Note for systems short on memory removing the alignment will
e498be7d
CL
1700 * allow tighter packing of the smaller caches.
1701 */
a737b3e2 1702 if (!sizes->cs_cachep) {
039363f3 1703 sizes->cs_cachep = __kmem_cache_create(names->name,
a737b3e2
AM
1704 sizes->cs_size,
1705 ARCH_KMALLOC_MINALIGN,
1706 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1707 NULL);
a737b3e2 1708 }
4b51d669 1709#ifdef CONFIG_ZONE_DMA
039363f3 1710 sizes->cs_dmacachep = __kmem_cache_create(
4b51d669 1711 names->name_dma,
a737b3e2
AM
1712 sizes->cs_size,
1713 ARCH_KMALLOC_MINALIGN,
1714 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1715 SLAB_PANIC,
20c2df83 1716 NULL);
4b51d669 1717#endif
1da177e4
LT
1718 sizes++;
1719 names++;
1720 }
1721 /* 4) Replace the bootstrap head arrays */
1722 {
2b2d5493 1723 struct array_cache *ptr;
e498be7d 1724
83b519e8 1725 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1726
9a2dba4b
PE
1727 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1728 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1729 sizeof(struct arraycache_init));
2b2d5493
IM
1730 /*
1731 * Do not assume that spinlocks can be initialized via memcpy:
1732 */
1733 spin_lock_init(&ptr->lock);
1734
1da177e4 1735 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1736
83b519e8 1737 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1738
9a2dba4b 1739 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1740 != &initarray_generic.cache);
9a2dba4b 1741 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1742 sizeof(struct arraycache_init));
2b2d5493
IM
1743 /*
1744 * Do not assume that spinlocks can be initialized via memcpy:
1745 */
1746 spin_lock_init(&ptr->lock);
1747
e498be7d 1748 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1749 ptr;
1da177e4 1750 }
e498be7d
CL
1751 /* 5) Replace the bootstrap kmem_list3's */
1752 {
1ca4cb24
PE
1753 int nid;
1754
9c09a95c 1755 for_each_online_node(nid) {
ec1f5eee 1756 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1757
e498be7d 1758 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1759 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1760
1761 if (INDEX_AC != INDEX_L3) {
1762 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1763 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1764 }
1765 }
1766 }
1da177e4 1767
97d06609 1768 slab_state = UP;
8429db5c
PE
1769}
1770
1771void __init kmem_cache_init_late(void)
1772{
1773 struct kmem_cache *cachep;
1774
97d06609 1775 slab_state = UP;
52cef189 1776
30765b92
PZ
1777 /* Annotate slab for lockdep -- annotate the malloc caches */
1778 init_lock_keys();
1779
8429db5c 1780 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1781 mutex_lock(&slab_mutex);
1782 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1783 if (enable_cpucache(cachep, GFP_NOWAIT))
1784 BUG();
18004c5d 1785 mutex_unlock(&slab_mutex);
056c6241 1786
97d06609
CL
1787 /* Done! */
1788 slab_state = FULL;
1789
a737b3e2
AM
1790 /*
1791 * Register a cpu startup notifier callback that initializes
1792 * cpu_cache_get for all new cpus
1da177e4
LT
1793 */
1794 register_cpu_notifier(&cpucache_notifier);
1da177e4 1795
8f9f8d9e
DR
1796#ifdef CONFIG_NUMA
1797 /*
1798 * Register a memory hotplug callback that initializes and frees
1799 * nodelists.
1800 */
1801 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1802#endif
1803
a737b3e2
AM
1804 /*
1805 * The reap timers are started later, with a module init call: That part
1806 * of the kernel is not yet operational.
1da177e4
LT
1807 */
1808}
1809
1810static int __init cpucache_init(void)
1811{
1812 int cpu;
1813
a737b3e2
AM
1814 /*
1815 * Register the timers that return unneeded pages to the page allocator
1da177e4 1816 */
e498be7d 1817 for_each_online_cpu(cpu)
a737b3e2 1818 start_cpu_timer(cpu);
a164f896
GC
1819
1820 /* Done! */
97d06609 1821 slab_state = FULL;
1da177e4
LT
1822 return 0;
1823}
1da177e4
LT
1824__initcall(cpucache_init);
1825
8bdec192
RA
1826static noinline void
1827slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1828{
1829 struct kmem_list3 *l3;
1830 struct slab *slabp;
1831 unsigned long flags;
1832 int node;
1833
1834 printk(KERN_WARNING
1835 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1836 nodeid, gfpflags);
1837 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1838 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1839
1840 for_each_online_node(node) {
1841 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1842 unsigned long active_slabs = 0, num_slabs = 0;
1843
1844 l3 = cachep->nodelists[node];
1845 if (!l3)
1846 continue;
1847
1848 spin_lock_irqsave(&l3->list_lock, flags);
1849 list_for_each_entry(slabp, &l3->slabs_full, list) {
1850 active_objs += cachep->num;
1851 active_slabs++;
1852 }
1853 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1854 active_objs += slabp->inuse;
1855 active_slabs++;
1856 }
1857 list_for_each_entry(slabp, &l3->slabs_free, list)
1858 num_slabs++;
1859
1860 free_objects += l3->free_objects;
1861 spin_unlock_irqrestore(&l3->list_lock, flags);
1862
1863 num_slabs += active_slabs;
1864 num_objs = num_slabs * cachep->num;
1865 printk(KERN_WARNING
1866 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1867 node, active_slabs, num_slabs, active_objs, num_objs,
1868 free_objects);
1869 }
1870}
1871
1da177e4
LT
1872/*
1873 * Interface to system's page allocator. No need to hold the cache-lock.
1874 *
1875 * If we requested dmaable memory, we will get it. Even if we
1876 * did not request dmaable memory, we might get it, but that
1877 * would be relatively rare and ignorable.
1878 */
343e0d7a 1879static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1880{
1881 struct page *page;
e1b6aa6f 1882 int nr_pages;
1da177e4
LT
1883 int i;
1884
d6fef9da 1885#ifndef CONFIG_MMU
e1b6aa6f
CH
1886 /*
1887 * Nommu uses slab's for process anonymous memory allocations, and thus
1888 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1889 */
e1b6aa6f 1890 flags |= __GFP_COMP;
d6fef9da 1891#endif
765c4507 1892
a618e89f 1893 flags |= cachep->allocflags;
e12ba74d
MG
1894 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1895 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1896
517d0869 1897 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1898 if (!page) {
1899 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1900 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1901 return NULL;
8bdec192 1902 }
1da177e4 1903
b37f1dd0 1904 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
072bb0aa
MG
1905 if (unlikely(page->pfmemalloc))
1906 pfmemalloc_active = true;
1907
e1b6aa6f 1908 nr_pages = (1 << cachep->gfporder);
1da177e4 1909 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1910 add_zone_page_state(page_zone(page),
1911 NR_SLAB_RECLAIMABLE, nr_pages);
1912 else
1913 add_zone_page_state(page_zone(page),
1914 NR_SLAB_UNRECLAIMABLE, nr_pages);
072bb0aa 1915 for (i = 0; i < nr_pages; i++) {
e1b6aa6f 1916 __SetPageSlab(page + i);
c175eea4 1917
072bb0aa
MG
1918 if (page->pfmemalloc)
1919 SetPageSlabPfmemalloc(page + i);
1920 }
1921
b1eeab67
VN
1922 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1923 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1924
1925 if (cachep->ctor)
1926 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1927 else
1928 kmemcheck_mark_unallocated_pages(page, nr_pages);
1929 }
c175eea4 1930
e1b6aa6f 1931 return page_address(page);
1da177e4
LT
1932}
1933
1934/*
1935 * Interface to system's page release.
1936 */
343e0d7a 1937static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1938{
b28a02de 1939 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1940 struct page *page = virt_to_page(addr);
1941 const unsigned long nr_freed = i;
1942
b1eeab67 1943 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1944
972d1a7b
CL
1945 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1946 sub_zone_page_state(page_zone(page),
1947 NR_SLAB_RECLAIMABLE, nr_freed);
1948 else
1949 sub_zone_page_state(page_zone(page),
1950 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1951 while (i--) {
f205b2fe 1952 BUG_ON(!PageSlab(page));
072bb0aa 1953 __ClearPageSlabPfmemalloc(page);
f205b2fe 1954 __ClearPageSlab(page);
1da177e4
LT
1955 page++;
1956 }
1da177e4
LT
1957 if (current->reclaim_state)
1958 current->reclaim_state->reclaimed_slab += nr_freed;
1959 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1960}
1961
1962static void kmem_rcu_free(struct rcu_head *head)
1963{
b28a02de 1964 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1965 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1966
1967 kmem_freepages(cachep, slab_rcu->addr);
1968 if (OFF_SLAB(cachep))
1969 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1970}
1971
1972#if DEBUG
1973
1974#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1975static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1976 unsigned long caller)
1da177e4 1977{
8c138bc0 1978 int size = cachep->object_size;
1da177e4 1979
3dafccf2 1980 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1981
b28a02de 1982 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1983 return;
1984
b28a02de
PE
1985 *addr++ = 0x12345678;
1986 *addr++ = caller;
1987 *addr++ = smp_processor_id();
1988 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1989 {
1990 unsigned long *sptr = &caller;
1991 unsigned long svalue;
1992
1993 while (!kstack_end(sptr)) {
1994 svalue = *sptr++;
1995 if (kernel_text_address(svalue)) {
b28a02de 1996 *addr++ = svalue;
1da177e4
LT
1997 size -= sizeof(unsigned long);
1998 if (size <= sizeof(unsigned long))
1999 break;
2000 }
2001 }
2002
2003 }
b28a02de 2004 *addr++ = 0x87654321;
1da177e4
LT
2005}
2006#endif
2007
343e0d7a 2008static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 2009{
8c138bc0 2010 int size = cachep->object_size;
3dafccf2 2011 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
2012
2013 memset(addr, val, size);
b28a02de 2014 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
2015}
2016
2017static void dump_line(char *data, int offset, int limit)
2018{
2019 int i;
aa83aa40
DJ
2020 unsigned char error = 0;
2021 int bad_count = 0;
2022
fdde6abb 2023 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
2024 for (i = 0; i < limit; i++) {
2025 if (data[offset + i] != POISON_FREE) {
2026 error = data[offset + i];
2027 bad_count++;
2028 }
aa83aa40 2029 }
fdde6abb
SAS
2030 print_hex_dump(KERN_CONT, "", 0, 16, 1,
2031 &data[offset], limit, 1);
aa83aa40
DJ
2032
2033 if (bad_count == 1) {
2034 error ^= POISON_FREE;
2035 if (!(error & (error - 1))) {
2036 printk(KERN_ERR "Single bit error detected. Probably "
2037 "bad RAM.\n");
2038#ifdef CONFIG_X86
2039 printk(KERN_ERR "Run memtest86+ or a similar memory "
2040 "test tool.\n");
2041#else
2042 printk(KERN_ERR "Run a memory test tool.\n");
2043#endif
2044 }
2045 }
1da177e4
LT
2046}
2047#endif
2048
2049#if DEBUG
2050
343e0d7a 2051static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
2052{
2053 int i, size;
2054 char *realobj;
2055
2056 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 2057 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
2058 *dbg_redzone1(cachep, objp),
2059 *dbg_redzone2(cachep, objp));
1da177e4
LT
2060 }
2061
2062 if (cachep->flags & SLAB_STORE_USER) {
2063 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 2064 *dbg_userword(cachep, objp));
1da177e4 2065 print_symbol("(%s)",
a737b3e2 2066 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
2067 printk("\n");
2068 }
3dafccf2 2069 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2070 size = cachep->object_size;
b28a02de 2071 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
2072 int limit;
2073 limit = 16;
b28a02de
PE
2074 if (i + limit > size)
2075 limit = size - i;
1da177e4
LT
2076 dump_line(realobj, i, limit);
2077 }
2078}
2079
343e0d7a 2080static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
2081{
2082 char *realobj;
2083 int size, i;
2084 int lines = 0;
2085
3dafccf2 2086 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 2087 size = cachep->object_size;
1da177e4 2088
b28a02de 2089 for (i = 0; i < size; i++) {
1da177e4 2090 char exp = POISON_FREE;
b28a02de 2091 if (i == size - 1)
1da177e4
LT
2092 exp = POISON_END;
2093 if (realobj[i] != exp) {
2094 int limit;
2095 /* Mismatch ! */
2096 /* Print header */
2097 if (lines == 0) {
b28a02de 2098 printk(KERN_ERR
face37f5
DJ
2099 "Slab corruption (%s): %s start=%p, len=%d\n",
2100 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
2101 print_objinfo(cachep, objp, 0);
2102 }
2103 /* Hexdump the affected line */
b28a02de 2104 i = (i / 16) * 16;
1da177e4 2105 limit = 16;
b28a02de
PE
2106 if (i + limit > size)
2107 limit = size - i;
1da177e4
LT
2108 dump_line(realobj, i, limit);
2109 i += 16;
2110 lines++;
2111 /* Limit to 5 lines */
2112 if (lines > 5)
2113 break;
2114 }
2115 }
2116 if (lines != 0) {
2117 /* Print some data about the neighboring objects, if they
2118 * exist:
2119 */
6ed5eb22 2120 struct slab *slabp = virt_to_slab(objp);
8fea4e96 2121 unsigned int objnr;
1da177e4 2122
8fea4e96 2123 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2124 if (objnr) {
8fea4e96 2125 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2126 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2127 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2128 realobj, size);
1da177e4
LT
2129 print_objinfo(cachep, objp, 2);
2130 }
b28a02de 2131 if (objnr + 1 < cachep->num) {
8fea4e96 2132 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2133 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2134 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2135 realobj, size);
1da177e4
LT
2136 print_objinfo(cachep, objp, 2);
2137 }
2138 }
2139}
2140#endif
2141
12dd36fa 2142#if DEBUG
e79aec29 2143static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2144{
1da177e4
LT
2145 int i;
2146 for (i = 0; i < cachep->num; i++) {
8fea4e96 2147 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2148
2149 if (cachep->flags & SLAB_POISON) {
2150#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2151 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2152 OFF_SLAB(cachep))
b28a02de 2153 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2154 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2155 else
2156 check_poison_obj(cachep, objp);
2157#else
2158 check_poison_obj(cachep, objp);
2159#endif
2160 }
2161 if (cachep->flags & SLAB_RED_ZONE) {
2162 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2163 slab_error(cachep, "start of a freed object "
b28a02de 2164 "was overwritten");
1da177e4
LT
2165 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2166 slab_error(cachep, "end of a freed object "
b28a02de 2167 "was overwritten");
1da177e4 2168 }
1da177e4 2169 }
12dd36fa 2170}
1da177e4 2171#else
e79aec29 2172static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2173{
12dd36fa 2174}
1da177e4
LT
2175#endif
2176
911851e6
RD
2177/**
2178 * slab_destroy - destroy and release all objects in a slab
2179 * @cachep: cache pointer being destroyed
2180 * @slabp: slab pointer being destroyed
2181 *
12dd36fa 2182 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2183 * Before calling the slab must have been unlinked from the cache. The
2184 * cache-lock is not held/needed.
12dd36fa 2185 */
343e0d7a 2186static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2187{
2188 void *addr = slabp->s_mem - slabp->colouroff;
2189
e79aec29 2190 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2191 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2192 struct slab_rcu *slab_rcu;
2193
b28a02de 2194 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2195 slab_rcu->cachep = cachep;
2196 slab_rcu->addr = addr;
2197 call_rcu(&slab_rcu->head, kmem_rcu_free);
2198 } else {
2199 kmem_freepages(cachep, addr);
873623df
IM
2200 if (OFF_SLAB(cachep))
2201 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2202 }
2203}
2204
117f6eb1
CL
2205static void __kmem_cache_destroy(struct kmem_cache *cachep)
2206{
2207 int i;
2208 struct kmem_list3 *l3;
2209
2210 for_each_online_cpu(i)
2211 kfree(cachep->array[i]);
2212
2213 /* NUMA: free the list3 structures */
2214 for_each_online_node(i) {
2215 l3 = cachep->nodelists[i];
2216 if (l3) {
2217 kfree(l3->shared);
2218 free_alien_cache(l3->alien);
2219 kfree(l3);
2220 }
2221 }
2222 kmem_cache_free(&cache_cache, cachep);
2223}
2224
2225
4d268eba 2226/**
a70773dd
RD
2227 * calculate_slab_order - calculate size (page order) of slabs
2228 * @cachep: pointer to the cache that is being created
2229 * @size: size of objects to be created in this cache.
2230 * @align: required alignment for the objects.
2231 * @flags: slab allocation flags
2232 *
2233 * Also calculates the number of objects per slab.
4d268eba
PE
2234 *
2235 * This could be made much more intelligent. For now, try to avoid using
2236 * high order pages for slabs. When the gfp() functions are more friendly
2237 * towards high-order requests, this should be changed.
2238 */
a737b3e2 2239static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2240 size_t size, size_t align, unsigned long flags)
4d268eba 2241{
b1ab41c4 2242 unsigned long offslab_limit;
4d268eba 2243 size_t left_over = 0;
9888e6fa 2244 int gfporder;
4d268eba 2245
0aa817f0 2246 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2247 unsigned int num;
2248 size_t remainder;
2249
9888e6fa 2250 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2251 if (!num)
2252 continue;
9888e6fa 2253
b1ab41c4
IM
2254 if (flags & CFLGS_OFF_SLAB) {
2255 /*
2256 * Max number of objs-per-slab for caches which
2257 * use off-slab slabs. Needed to avoid a possible
2258 * looping condition in cache_grow().
2259 */
2260 offslab_limit = size - sizeof(struct slab);
2261 offslab_limit /= sizeof(kmem_bufctl_t);
2262
2263 if (num > offslab_limit)
2264 break;
2265 }
4d268eba 2266
9888e6fa 2267 /* Found something acceptable - save it away */
4d268eba 2268 cachep->num = num;
9888e6fa 2269 cachep->gfporder = gfporder;
4d268eba
PE
2270 left_over = remainder;
2271
f78bb8ad
LT
2272 /*
2273 * A VFS-reclaimable slab tends to have most allocations
2274 * as GFP_NOFS and we really don't want to have to be allocating
2275 * higher-order pages when we are unable to shrink dcache.
2276 */
2277 if (flags & SLAB_RECLAIM_ACCOUNT)
2278 break;
2279
4d268eba
PE
2280 /*
2281 * Large number of objects is good, but very large slabs are
2282 * currently bad for the gfp()s.
2283 */
543585cc 2284 if (gfporder >= slab_max_order)
4d268eba
PE
2285 break;
2286
9888e6fa
LT
2287 /*
2288 * Acceptable internal fragmentation?
2289 */
a737b3e2 2290 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2291 break;
2292 }
2293 return left_over;
2294}
2295
83b519e8 2296static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2297{
97d06609 2298 if (slab_state >= FULL)
83b519e8 2299 return enable_cpucache(cachep, gfp);
2ed3a4ef 2300
97d06609 2301 if (slab_state == DOWN) {
f30cf7d1
PE
2302 /*
2303 * Note: the first kmem_cache_create must create the cache
2304 * that's used by kmalloc(24), otherwise the creation of
2305 * further caches will BUG().
2306 */
2307 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2308
2309 /*
2310 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2311 * the first cache, then we need to set up all its list3s,
2312 * otherwise the creation of further caches will BUG().
2313 */
2314 set_up_list3s(cachep, SIZE_AC);
2315 if (INDEX_AC == INDEX_L3)
97d06609 2316 slab_state = PARTIAL_L3;
f30cf7d1 2317 else
97d06609 2318 slab_state = PARTIAL_ARRAYCACHE;
f30cf7d1
PE
2319 } else {
2320 cachep->array[smp_processor_id()] =
83b519e8 2321 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1 2322
97d06609 2323 if (slab_state == PARTIAL_ARRAYCACHE) {
f30cf7d1 2324 set_up_list3s(cachep, SIZE_L3);
97d06609 2325 slab_state = PARTIAL_L3;
f30cf7d1
PE
2326 } else {
2327 int node;
556a169d 2328 for_each_online_node(node) {
f30cf7d1
PE
2329 cachep->nodelists[node] =
2330 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2331 gfp, node);
f30cf7d1
PE
2332 BUG_ON(!cachep->nodelists[node]);
2333 kmem_list3_init(cachep->nodelists[node]);
2334 }
2335 }
2336 }
7d6e6d09 2337 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2338 jiffies + REAPTIMEOUT_LIST3 +
2339 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2340
2341 cpu_cache_get(cachep)->avail = 0;
2342 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2343 cpu_cache_get(cachep)->batchcount = 1;
2344 cpu_cache_get(cachep)->touched = 0;
2345 cachep->batchcount = 1;
2346 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2347 return 0;
f30cf7d1
PE
2348}
2349
1da177e4 2350/**
039363f3 2351 * __kmem_cache_create - Create a cache.
1da177e4
LT
2352 * @name: A string which is used in /proc/slabinfo to identify this cache.
2353 * @size: The size of objects to be created in this cache.
2354 * @align: The required alignment for the objects.
2355 * @flags: SLAB flags
2356 * @ctor: A constructor for the objects.
1da177e4
LT
2357 *
2358 * Returns a ptr to the cache on success, NULL on failure.
2359 * Cannot be called within a int, but can be interrupted.
20c2df83 2360 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2361 *
2362 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2363 * the module calling this has to destroy the cache before getting unloaded.
2364 *
1da177e4
LT
2365 * The flags are
2366 *
2367 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2368 * to catch references to uninitialised memory.
2369 *
2370 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2371 * for buffer overruns.
2372 *
1da177e4
LT
2373 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2374 * cacheline. This can be beneficial if you're counting cycles as closely
2375 * as davem.
2376 */
343e0d7a 2377struct kmem_cache *
039363f3 2378__kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2379 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2380{
2381 size_t left_over, slab_size, ralign;
20cea968 2382 struct kmem_cache *cachep = NULL;
83b519e8 2383 gfp_t gfp;
1da177e4 2384
1da177e4 2385#if DEBUG
1da177e4
LT
2386#if FORCED_DEBUG
2387 /*
2388 * Enable redzoning and last user accounting, except for caches with
2389 * large objects, if the increased size would increase the object size
2390 * above the next power of two: caches with object sizes just above a
2391 * power of two have a significant amount of internal fragmentation.
2392 */
87a927c7
DW
2393 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2394 2 * sizeof(unsigned long long)))
b28a02de 2395 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2396 if (!(flags & SLAB_DESTROY_BY_RCU))
2397 flags |= SLAB_POISON;
2398#endif
2399 if (flags & SLAB_DESTROY_BY_RCU)
2400 BUG_ON(flags & SLAB_POISON);
2401#endif
1da177e4 2402 /*
a737b3e2
AM
2403 * Always checks flags, a caller might be expecting debug support which
2404 * isn't available.
1da177e4 2405 */
40094fa6 2406 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2407
a737b3e2
AM
2408 /*
2409 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2410 * unaligned accesses for some archs when redzoning is used, and makes
2411 * sure any on-slab bufctl's are also correctly aligned.
2412 */
b28a02de
PE
2413 if (size & (BYTES_PER_WORD - 1)) {
2414 size += (BYTES_PER_WORD - 1);
2415 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2416 }
2417
a737b3e2
AM
2418 /* calculate the final buffer alignment: */
2419
1da177e4
LT
2420 /* 1) arch recommendation: can be overridden for debug */
2421 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2422 /*
2423 * Default alignment: as specified by the arch code. Except if
2424 * an object is really small, then squeeze multiple objects into
2425 * one cacheline.
1da177e4
LT
2426 */
2427 ralign = cache_line_size();
b28a02de 2428 while (size <= ralign / 2)
1da177e4
LT
2429 ralign /= 2;
2430 } else {
2431 ralign = BYTES_PER_WORD;
2432 }
ca5f9703
PE
2433
2434 /*
87a927c7
DW
2435 * Redzoning and user store require word alignment or possibly larger.
2436 * Note this will be overridden by architecture or caller mandated
2437 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2438 */
87a927c7
DW
2439 if (flags & SLAB_STORE_USER)
2440 ralign = BYTES_PER_WORD;
2441
2442 if (flags & SLAB_RED_ZONE) {
2443 ralign = REDZONE_ALIGN;
2444 /* If redzoning, ensure that the second redzone is suitably
2445 * aligned, by adjusting the object size accordingly. */
2446 size += REDZONE_ALIGN - 1;
2447 size &= ~(REDZONE_ALIGN - 1);
2448 }
ca5f9703 2449
a44b56d3 2450 /* 2) arch mandated alignment */
1da177e4
LT
2451 if (ralign < ARCH_SLAB_MINALIGN) {
2452 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2453 }
a44b56d3 2454 /* 3) caller mandated alignment */
1da177e4
LT
2455 if (ralign < align) {
2456 ralign = align;
1da177e4 2457 }
3ff84a7f
PE
2458 /* disable debug if necessary */
2459 if (ralign > __alignof__(unsigned long long))
a44b56d3 2460 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2461 /*
ca5f9703 2462 * 4) Store it.
1da177e4
LT
2463 */
2464 align = ralign;
2465
83b519e8
PE
2466 if (slab_is_available())
2467 gfp = GFP_KERNEL;
2468 else
2469 gfp = GFP_NOWAIT;
2470
1da177e4 2471 /* Get cache's description obj. */
83b519e8 2472 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2473 if (!cachep)
039363f3 2474 return NULL;
1da177e4 2475
b56efcf0 2476 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2477 cachep->object_size = size;
2478 cachep->align = align;
1da177e4 2479#if DEBUG
1da177e4 2480
ca5f9703
PE
2481 /*
2482 * Both debugging options require word-alignment which is calculated
2483 * into align above.
2484 */
1da177e4 2485 if (flags & SLAB_RED_ZONE) {
1da177e4 2486 /* add space for red zone words */
3ff84a7f
PE
2487 cachep->obj_offset += sizeof(unsigned long long);
2488 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2489 }
2490 if (flags & SLAB_STORE_USER) {
ca5f9703 2491 /* user store requires one word storage behind the end of
87a927c7
DW
2492 * the real object. But if the second red zone needs to be
2493 * aligned to 64 bits, we must allow that much space.
1da177e4 2494 */
87a927c7
DW
2495 if (flags & SLAB_RED_ZONE)
2496 size += REDZONE_ALIGN;
2497 else
2498 size += BYTES_PER_WORD;
1da177e4
LT
2499 }
2500#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2501 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2502 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2503 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2504 size = PAGE_SIZE;
2505 }
2506#endif
2507#endif
2508
e0a42726
IM
2509 /*
2510 * Determine if the slab management is 'on' or 'off' slab.
2511 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2512 * it too early on. Always use on-slab management when
2513 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2514 */
e7cb55b9
CM
2515 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2516 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2517 /*
2518 * Size is large, assume best to place the slab management obj
2519 * off-slab (should allow better packing of objs).
2520 */
2521 flags |= CFLGS_OFF_SLAB;
2522
2523 size = ALIGN(size, align);
2524
f78bb8ad 2525 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2526
2527 if (!cachep->num) {
b4169525 2528 printk(KERN_ERR
2529 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4 2530 kmem_cache_free(&cache_cache, cachep);
039363f3 2531 return NULL;
1da177e4 2532 }
b28a02de
PE
2533 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2534 + sizeof(struct slab), align);
1da177e4
LT
2535
2536 /*
2537 * If the slab has been placed off-slab, and we have enough space then
2538 * move it on-slab. This is at the expense of any extra colouring.
2539 */
2540 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2541 flags &= ~CFLGS_OFF_SLAB;
2542 left_over -= slab_size;
2543 }
2544
2545 if (flags & CFLGS_OFF_SLAB) {
2546 /* really off slab. No need for manual alignment */
b28a02de
PE
2547 slab_size =
2548 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2549
2550#ifdef CONFIG_PAGE_POISONING
2551 /* If we're going to use the generic kernel_map_pages()
2552 * poisoning, then it's going to smash the contents of
2553 * the redzone and userword anyhow, so switch them off.
2554 */
2555 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2556 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2557#endif
1da177e4
LT
2558 }
2559
2560 cachep->colour_off = cache_line_size();
2561 /* Offset must be a multiple of the alignment. */
2562 if (cachep->colour_off < align)
2563 cachep->colour_off = align;
b28a02de 2564 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2565 cachep->slab_size = slab_size;
2566 cachep->flags = flags;
a618e89f 2567 cachep->allocflags = 0;
4b51d669 2568 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
a618e89f 2569 cachep->allocflags |= GFP_DMA;
3b0efdfa 2570 cachep->size = size;
6a2d7a95 2571 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2572
e5ac9c5a 2573 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2574 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2575 /*
2576 * This is a possibility for one of the malloc_sizes caches.
2577 * But since we go off slab only for object size greater than
2578 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2579 * this should not happen at all.
2580 * But leave a BUG_ON for some lucky dude.
2581 */
6cb8f913 2582 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2583 }
1da177e4 2584 cachep->ctor = ctor;
1da177e4
LT
2585 cachep->name = name;
2586
83b519e8 2587 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef 2588 __kmem_cache_destroy(cachep);
039363f3 2589 return NULL;
2ed3a4ef 2590 }
1da177e4 2591
83835b3d
PZ
2592 if (flags & SLAB_DEBUG_OBJECTS) {
2593 /*
2594 * Would deadlock through slab_destroy()->call_rcu()->
2595 * debug_object_activate()->kmem_cache_alloc().
2596 */
2597 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2598
2599 slab_set_debugobj_lock_classes(cachep);
2600 }
2601
1da177e4 2602 /* cache setup completed, link it into the list */
18004c5d 2603 list_add(&cachep->list, &slab_caches);
1da177e4
LT
2604 return cachep;
2605}
1da177e4
LT
2606
2607#if DEBUG
2608static void check_irq_off(void)
2609{
2610 BUG_ON(!irqs_disabled());
2611}
2612
2613static void check_irq_on(void)
2614{
2615 BUG_ON(irqs_disabled());
2616}
2617
343e0d7a 2618static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2619{
2620#ifdef CONFIG_SMP
2621 check_irq_off();
7d6e6d09 2622 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2623#endif
2624}
e498be7d 2625
343e0d7a 2626static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2627{
2628#ifdef CONFIG_SMP
2629 check_irq_off();
2630 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2631#endif
2632}
2633
1da177e4
LT
2634#else
2635#define check_irq_off() do { } while(0)
2636#define check_irq_on() do { } while(0)
2637#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2638#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2639#endif
2640
aab2207c
CL
2641static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2642 struct array_cache *ac,
2643 int force, int node);
2644
1da177e4
LT
2645static void do_drain(void *arg)
2646{
a737b3e2 2647 struct kmem_cache *cachep = arg;
1da177e4 2648 struct array_cache *ac;
7d6e6d09 2649 int node = numa_mem_id();
1da177e4
LT
2650
2651 check_irq_off();
9a2dba4b 2652 ac = cpu_cache_get(cachep);
ff69416e
CL
2653 spin_lock(&cachep->nodelists[node]->list_lock);
2654 free_block(cachep, ac->entry, ac->avail, node);
2655 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2656 ac->avail = 0;
2657}
2658
343e0d7a 2659static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2660{
e498be7d
CL
2661 struct kmem_list3 *l3;
2662 int node;
2663
15c8b6c1 2664 on_each_cpu(do_drain, cachep, 1);
1da177e4 2665 check_irq_on();
b28a02de 2666 for_each_online_node(node) {
e498be7d 2667 l3 = cachep->nodelists[node];
a4523a8b
RD
2668 if (l3 && l3->alien)
2669 drain_alien_cache(cachep, l3->alien);
2670 }
2671
2672 for_each_online_node(node) {
2673 l3 = cachep->nodelists[node];
2674 if (l3)
aab2207c 2675 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2676 }
1da177e4
LT
2677}
2678
ed11d9eb
CL
2679/*
2680 * Remove slabs from the list of free slabs.
2681 * Specify the number of slabs to drain in tofree.
2682 *
2683 * Returns the actual number of slabs released.
2684 */
2685static int drain_freelist(struct kmem_cache *cache,
2686 struct kmem_list3 *l3, int tofree)
1da177e4 2687{
ed11d9eb
CL
2688 struct list_head *p;
2689 int nr_freed;
1da177e4 2690 struct slab *slabp;
1da177e4 2691
ed11d9eb
CL
2692 nr_freed = 0;
2693 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2694
ed11d9eb 2695 spin_lock_irq(&l3->list_lock);
e498be7d 2696 p = l3->slabs_free.prev;
ed11d9eb
CL
2697 if (p == &l3->slabs_free) {
2698 spin_unlock_irq(&l3->list_lock);
2699 goto out;
2700 }
1da177e4 2701
ed11d9eb 2702 slabp = list_entry(p, struct slab, list);
1da177e4 2703#if DEBUG
40094fa6 2704 BUG_ON(slabp->inuse);
1da177e4
LT
2705#endif
2706 list_del(&slabp->list);
ed11d9eb
CL
2707 /*
2708 * Safe to drop the lock. The slab is no longer linked
2709 * to the cache.
2710 */
2711 l3->free_objects -= cache->num;
e498be7d 2712 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2713 slab_destroy(cache, slabp);
2714 nr_freed++;
1da177e4 2715 }
ed11d9eb
CL
2716out:
2717 return nr_freed;
1da177e4
LT
2718}
2719
18004c5d 2720/* Called with slab_mutex held to protect against cpu hotplug */
343e0d7a 2721static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2722{
2723 int ret = 0, i = 0;
2724 struct kmem_list3 *l3;
2725
2726 drain_cpu_caches(cachep);
2727
2728 check_irq_on();
2729 for_each_online_node(i) {
2730 l3 = cachep->nodelists[i];
ed11d9eb
CL
2731 if (!l3)
2732 continue;
2733
2734 drain_freelist(cachep, l3, l3->free_objects);
2735
2736 ret += !list_empty(&l3->slabs_full) ||
2737 !list_empty(&l3->slabs_partial);
e498be7d
CL
2738 }
2739 return (ret ? 1 : 0);
2740}
2741
1da177e4
LT
2742/**
2743 * kmem_cache_shrink - Shrink a cache.
2744 * @cachep: The cache to shrink.
2745 *
2746 * Releases as many slabs as possible for a cache.
2747 * To help debugging, a zero exit status indicates all slabs were released.
2748 */
343e0d7a 2749int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2750{
8f5be20b 2751 int ret;
40094fa6 2752 BUG_ON(!cachep || in_interrupt());
1da177e4 2753
95402b38 2754 get_online_cpus();
18004c5d 2755 mutex_lock(&slab_mutex);
8f5be20b 2756 ret = __cache_shrink(cachep);
18004c5d 2757 mutex_unlock(&slab_mutex);
95402b38 2758 put_online_cpus();
8f5be20b 2759 return ret;
1da177e4
LT
2760}
2761EXPORT_SYMBOL(kmem_cache_shrink);
2762
2763/**
2764 * kmem_cache_destroy - delete a cache
2765 * @cachep: the cache to destroy
2766 *
72fd4a35 2767 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2768 *
2769 * It is expected this function will be called by a module when it is
2770 * unloaded. This will remove the cache completely, and avoid a duplicate
2771 * cache being allocated each time a module is loaded and unloaded, if the
2772 * module doesn't have persistent in-kernel storage across loads and unloads.
2773 *
2774 * The cache must be empty before calling this function.
2775 *
25985edc 2776 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2777 * during the kmem_cache_destroy().
2778 */
133d205a 2779void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2780{
40094fa6 2781 BUG_ON(!cachep || in_interrupt());
1da177e4 2782
1da177e4 2783 /* Find the cache in the chain of caches. */
95402b38 2784 get_online_cpus();
18004c5d 2785 mutex_lock(&slab_mutex);
1da177e4
LT
2786 /*
2787 * the chain is never empty, cache_cache is never destroyed
2788 */
3b0efdfa 2789 list_del(&cachep->list);
1da177e4
LT
2790 if (__cache_shrink(cachep)) {
2791 slab_error(cachep, "Can't free all objects");
18004c5d
CL
2792 list_add(&cachep->list, &slab_caches);
2793 mutex_unlock(&slab_mutex);
95402b38 2794 put_online_cpus();
133d205a 2795 return;
1da177e4
LT
2796 }
2797
2798 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2799 rcu_barrier();
1da177e4 2800
117f6eb1 2801 __kmem_cache_destroy(cachep);
18004c5d 2802 mutex_unlock(&slab_mutex);
95402b38 2803 put_online_cpus();
1da177e4
LT
2804}
2805EXPORT_SYMBOL(kmem_cache_destroy);
2806
e5ac9c5a
RT
2807/*
2808 * Get the memory for a slab management obj.
2809 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2810 * always come from malloc_sizes caches. The slab descriptor cannot
2811 * come from the same cache which is getting created because,
2812 * when we are searching for an appropriate cache for these
2813 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2814 * If we are creating a malloc_sizes cache here it would not be visible to
2815 * kmem_find_general_cachep till the initialization is complete.
2816 * Hence we cannot have slabp_cache same as the original cache.
2817 */
343e0d7a 2818static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2819 int colour_off, gfp_t local_flags,
2820 int nodeid)
1da177e4
LT
2821{
2822 struct slab *slabp;
b28a02de 2823
1da177e4
LT
2824 if (OFF_SLAB(cachep)) {
2825 /* Slab management obj is off-slab. */
5b74ada7 2826 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2827 local_flags, nodeid);
d5cff635
CM
2828 /*
2829 * If the first object in the slab is leaked (it's allocated
2830 * but no one has a reference to it), we want to make sure
2831 * kmemleak does not treat the ->s_mem pointer as a reference
2832 * to the object. Otherwise we will not report the leak.
2833 */
c017b4be
CM
2834 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2835 local_flags);
1da177e4
LT
2836 if (!slabp)
2837 return NULL;
2838 } else {
b28a02de 2839 slabp = objp + colour_off;
1da177e4
LT
2840 colour_off += cachep->slab_size;
2841 }
2842 slabp->inuse = 0;
2843 slabp->colouroff = colour_off;
b28a02de 2844 slabp->s_mem = objp + colour_off;
5b74ada7 2845 slabp->nodeid = nodeid;
e51bfd0a 2846 slabp->free = 0;
1da177e4
LT
2847 return slabp;
2848}
2849
2850static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2851{
b28a02de 2852 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2853}
2854
343e0d7a 2855static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2856 struct slab *slabp)
1da177e4
LT
2857{
2858 int i;
2859
2860 for (i = 0; i < cachep->num; i++) {
8fea4e96 2861 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2862#if DEBUG
2863 /* need to poison the objs? */
2864 if (cachep->flags & SLAB_POISON)
2865 poison_obj(cachep, objp, POISON_FREE);
2866 if (cachep->flags & SLAB_STORE_USER)
2867 *dbg_userword(cachep, objp) = NULL;
2868
2869 if (cachep->flags & SLAB_RED_ZONE) {
2870 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2871 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2872 }
2873 /*
a737b3e2
AM
2874 * Constructors are not allowed to allocate memory from the same
2875 * cache which they are a constructor for. Otherwise, deadlock.
2876 * They must also be threaded.
1da177e4
LT
2877 */
2878 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2879 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2880
2881 if (cachep->flags & SLAB_RED_ZONE) {
2882 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2883 slab_error(cachep, "constructor overwrote the"
b28a02de 2884 " end of an object");
1da177e4
LT
2885 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2886 slab_error(cachep, "constructor overwrote the"
b28a02de 2887 " start of an object");
1da177e4 2888 }
3b0efdfa 2889 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2890 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2891 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2892 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2893#else
2894 if (cachep->ctor)
51cc5068 2895 cachep->ctor(objp);
1da177e4 2896#endif
b28a02de 2897 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2898 }
b28a02de 2899 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2900}
2901
343e0d7a 2902static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2903{
4b51d669
CL
2904 if (CONFIG_ZONE_DMA_FLAG) {
2905 if (flags & GFP_DMA)
a618e89f 2906 BUG_ON(!(cachep->allocflags & GFP_DMA));
4b51d669 2907 else
a618e89f 2908 BUG_ON(cachep->allocflags & GFP_DMA);
4b51d669 2909 }
1da177e4
LT
2910}
2911
a737b3e2
AM
2912static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2913 int nodeid)
78d382d7 2914{
8fea4e96 2915 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2916 kmem_bufctl_t next;
2917
2918 slabp->inuse++;
2919 next = slab_bufctl(slabp)[slabp->free];
2920#if DEBUG
2921 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2922 WARN_ON(slabp->nodeid != nodeid);
2923#endif
2924 slabp->free = next;
2925
2926 return objp;
2927}
2928
a737b3e2
AM
2929static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2930 void *objp, int nodeid)
78d382d7 2931{
8fea4e96 2932 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2933
2934#if DEBUG
2935 /* Verify that the slab belongs to the intended node */
2936 WARN_ON(slabp->nodeid != nodeid);
2937
871751e2 2938 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2939 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2940 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2941 BUG();
2942 }
2943#endif
2944 slab_bufctl(slabp)[objnr] = slabp->free;
2945 slabp->free = objnr;
2946 slabp->inuse--;
2947}
2948
4776874f
PE
2949/*
2950 * Map pages beginning at addr to the given cache and slab. This is required
2951 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2952 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2953 */
2954static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2955 void *addr)
1da177e4 2956{
4776874f 2957 int nr_pages;
1da177e4
LT
2958 struct page *page;
2959
4776874f 2960 page = virt_to_page(addr);
84097518 2961
4776874f 2962 nr_pages = 1;
84097518 2963 if (likely(!PageCompound(page)))
4776874f
PE
2964 nr_pages <<= cache->gfporder;
2965
1da177e4 2966 do {
35026088
CL
2967 page->slab_cache = cache;
2968 page->slab_page = slab;
1da177e4 2969 page++;
4776874f 2970 } while (--nr_pages);
1da177e4
LT
2971}
2972
2973/*
2974 * Grow (by 1) the number of slabs within a cache. This is called by
2975 * kmem_cache_alloc() when there are no active objs left in a cache.
2976 */
3c517a61
CL
2977static int cache_grow(struct kmem_cache *cachep,
2978 gfp_t flags, int nodeid, void *objp)
1da177e4 2979{
b28a02de 2980 struct slab *slabp;
b28a02de
PE
2981 size_t offset;
2982 gfp_t local_flags;
e498be7d 2983 struct kmem_list3 *l3;
1da177e4 2984
a737b3e2
AM
2985 /*
2986 * Be lazy and only check for valid flags here, keeping it out of the
2987 * critical path in kmem_cache_alloc().
1da177e4 2988 */
6cb06229
CL
2989 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2990 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2991
2e1217cf 2992 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2993 check_irq_off();
2e1217cf
RT
2994 l3 = cachep->nodelists[nodeid];
2995 spin_lock(&l3->list_lock);
1da177e4
LT
2996
2997 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2998 offset = l3->colour_next;
2999 l3->colour_next++;
3000 if (l3->colour_next >= cachep->colour)
3001 l3->colour_next = 0;
3002 spin_unlock(&l3->list_lock);
1da177e4 3003
2e1217cf 3004 offset *= cachep->colour_off;
1da177e4
LT
3005
3006 if (local_flags & __GFP_WAIT)
3007 local_irq_enable();
3008
3009 /*
3010 * The test for missing atomic flag is performed here, rather than
3011 * the more obvious place, simply to reduce the critical path length
3012 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
3013 * will eventually be caught here (where it matters).
3014 */
3015 kmem_flagcheck(cachep, flags);
3016
a737b3e2
AM
3017 /*
3018 * Get mem for the objs. Attempt to allocate a physical page from
3019 * 'nodeid'.
e498be7d 3020 */
3c517a61 3021 if (!objp)
b8c1c5da 3022 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 3023 if (!objp)
1da177e4
LT
3024 goto failed;
3025
3026 /* Get slab management. */
3c517a61 3027 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 3028 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 3029 if (!slabp)
1da177e4
LT
3030 goto opps1;
3031
4776874f 3032 slab_map_pages(cachep, slabp, objp);
1da177e4 3033
a35afb83 3034 cache_init_objs(cachep, slabp);
1da177e4
LT
3035
3036 if (local_flags & __GFP_WAIT)
3037 local_irq_disable();
3038 check_irq_off();
e498be7d 3039 spin_lock(&l3->list_lock);
1da177e4
LT
3040
3041 /* Make slab active. */
e498be7d 3042 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 3043 STATS_INC_GROWN(cachep);
e498be7d
CL
3044 l3->free_objects += cachep->num;
3045 spin_unlock(&l3->list_lock);
1da177e4 3046 return 1;
a737b3e2 3047opps1:
1da177e4 3048 kmem_freepages(cachep, objp);
a737b3e2 3049failed:
1da177e4
LT
3050 if (local_flags & __GFP_WAIT)
3051 local_irq_disable();
3052 return 0;
3053}
3054
3055#if DEBUG
3056
3057/*
3058 * Perform extra freeing checks:
3059 * - detect bad pointers.
3060 * - POISON/RED_ZONE checking
1da177e4
LT
3061 */
3062static void kfree_debugcheck(const void *objp)
3063{
1da177e4
LT
3064 if (!virt_addr_valid(objp)) {
3065 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
3066 (unsigned long)objp);
3067 BUG();
1da177e4 3068 }
1da177e4
LT
3069}
3070
58ce1fd5
PE
3071static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3072{
b46b8f19 3073 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3074
3075 redzone1 = *dbg_redzone1(cache, obj);
3076 redzone2 = *dbg_redzone2(cache, obj);
3077
3078 /*
3079 * Redzone is ok.
3080 */
3081 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3082 return;
3083
3084 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3085 slab_error(cache, "double free detected");
3086 else
3087 slab_error(cache, "memory outside object was overwritten");
3088
b46b8f19 3089 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3090 obj, redzone1, redzone2);
3091}
3092
343e0d7a 3093static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 3094 void *caller)
1da177e4
LT
3095{
3096 struct page *page;
3097 unsigned int objnr;
3098 struct slab *slabp;
3099
80cbd911
MW
3100 BUG_ON(virt_to_cache(objp) != cachep);
3101
3dafccf2 3102 objp -= obj_offset(cachep);
1da177e4 3103 kfree_debugcheck(objp);
b49af68f 3104 page = virt_to_head_page(objp);
1da177e4 3105
35026088 3106 slabp = page->slab_page;
1da177e4
LT
3107
3108 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3109 verify_redzone_free(cachep, objp);
1da177e4
LT
3110 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3111 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3112 }
3113 if (cachep->flags & SLAB_STORE_USER)
3114 *dbg_userword(cachep, objp) = caller;
3115
8fea4e96 3116 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3117
3118 BUG_ON(objnr >= cachep->num);
8fea4e96 3119 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3120
871751e2
AV
3121#ifdef CONFIG_DEBUG_SLAB_LEAK
3122 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3123#endif
1da177e4
LT
3124 if (cachep->flags & SLAB_POISON) {
3125#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3126 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3127 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3128 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3129 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3130 } else {
3131 poison_obj(cachep, objp, POISON_FREE);
3132 }
3133#else
3134 poison_obj(cachep, objp, POISON_FREE);
3135#endif
3136 }
3137 return objp;
3138}
3139
343e0d7a 3140static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3141{
3142 kmem_bufctl_t i;
3143 int entries = 0;
b28a02de 3144
1da177e4
LT
3145 /* Check slab's freelist to see if this obj is there. */
3146 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3147 entries++;
3148 if (entries > cachep->num || i >= cachep->num)
3149 goto bad;
3150 }
3151 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3152bad:
3153 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3154 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3155 cachep->name, cachep->num, slabp, slabp->inuse,
3156 print_tainted());
fdde6abb
SAS
3157 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3158 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3159 1);
1da177e4
LT
3160 BUG();
3161 }
3162}
3163#else
3164#define kfree_debugcheck(x) do { } while(0)
3165#define cache_free_debugcheck(x,objp,z) (objp)
3166#define check_slabp(x,y) do { } while(0)
3167#endif
3168
072bb0aa
MG
3169static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags,
3170 bool force_refill)
1da177e4
LT
3171{
3172 int batchcount;
3173 struct kmem_list3 *l3;
3174 struct array_cache *ac;
1ca4cb24
PE
3175 int node;
3176
1da177e4 3177 check_irq_off();
7d6e6d09 3178 node = numa_mem_id();
072bb0aa
MG
3179 if (unlikely(force_refill))
3180 goto force_grow;
3181retry:
9a2dba4b 3182 ac = cpu_cache_get(cachep);
1da177e4
LT
3183 batchcount = ac->batchcount;
3184 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3185 /*
3186 * If there was little recent activity on this cache, then
3187 * perform only a partial refill. Otherwise we could generate
3188 * refill bouncing.
1da177e4
LT
3189 */
3190 batchcount = BATCHREFILL_LIMIT;
3191 }
1ca4cb24 3192 l3 = cachep->nodelists[node];
e498be7d
CL
3193
3194 BUG_ON(ac->avail > 0 || !l3);
3195 spin_lock(&l3->list_lock);
1da177e4 3196
3ded175a 3197 /* See if we can refill from the shared array */
44b57f1c
NP
3198 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3199 l3->shared->touched = 1;
3ded175a 3200 goto alloc_done;
44b57f1c 3201 }
3ded175a 3202
1da177e4
LT
3203 while (batchcount > 0) {
3204 struct list_head *entry;
3205 struct slab *slabp;
3206 /* Get slab alloc is to come from. */
3207 entry = l3->slabs_partial.next;
3208 if (entry == &l3->slabs_partial) {
3209 l3->free_touched = 1;
3210 entry = l3->slabs_free.next;
3211 if (entry == &l3->slabs_free)
3212 goto must_grow;
3213 }
3214
3215 slabp = list_entry(entry, struct slab, list);
3216 check_slabp(cachep, slabp);
3217 check_spinlock_acquired(cachep);
714b8171
PE
3218
3219 /*
3220 * The slab was either on partial or free list so
3221 * there must be at least one object available for
3222 * allocation.
3223 */
249b9f33 3224 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3225
1da177e4 3226 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3227 STATS_INC_ALLOCED(cachep);
3228 STATS_INC_ACTIVE(cachep);
3229 STATS_SET_HIGH(cachep);
3230
072bb0aa
MG
3231 ac_put_obj(cachep, ac, slab_get_obj(cachep, slabp,
3232 node));
1da177e4
LT
3233 }
3234 check_slabp(cachep, slabp);
3235
3236 /* move slabp to correct slabp list: */
3237 list_del(&slabp->list);
3238 if (slabp->free == BUFCTL_END)
3239 list_add(&slabp->list, &l3->slabs_full);
3240 else
3241 list_add(&slabp->list, &l3->slabs_partial);
3242 }
3243
a737b3e2 3244must_grow:
1da177e4 3245 l3->free_objects -= ac->avail;
a737b3e2 3246alloc_done:
e498be7d 3247 spin_unlock(&l3->list_lock);
1da177e4
LT
3248
3249 if (unlikely(!ac->avail)) {
3250 int x;
072bb0aa 3251force_grow:
3c517a61 3252 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3253
a737b3e2 3254 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3255 ac = cpu_cache_get(cachep);
072bb0aa
MG
3256
3257 /* no objects in sight? abort */
3258 if (!x && (ac->avail == 0 || force_refill))
1da177e4
LT
3259 return NULL;
3260
a737b3e2 3261 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3262 goto retry;
3263 }
3264 ac->touched = 1;
072bb0aa
MG
3265
3266 return ac_get_obj(cachep, ac, flags, force_refill);
1da177e4
LT
3267}
3268
a737b3e2
AM
3269static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3270 gfp_t flags)
1da177e4
LT
3271{
3272 might_sleep_if(flags & __GFP_WAIT);
3273#if DEBUG
3274 kmem_flagcheck(cachep, flags);
3275#endif
3276}
3277
3278#if DEBUG
a737b3e2
AM
3279static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3280 gfp_t flags, void *objp, void *caller)
1da177e4 3281{
b28a02de 3282 if (!objp)
1da177e4 3283 return objp;
b28a02de 3284 if (cachep->flags & SLAB_POISON) {
1da177e4 3285#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3286 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3287 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3288 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3289 else
3290 check_poison_obj(cachep, objp);
3291#else
3292 check_poison_obj(cachep, objp);
3293#endif
3294 poison_obj(cachep, objp, POISON_INUSE);
3295 }
3296 if (cachep->flags & SLAB_STORE_USER)
3297 *dbg_userword(cachep, objp) = caller;
3298
3299 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3300 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3301 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3302 slab_error(cachep, "double free, or memory outside"
3303 " object was overwritten");
b28a02de 3304 printk(KERN_ERR
b46b8f19 3305 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3306 objp, *dbg_redzone1(cachep, objp),
3307 *dbg_redzone2(cachep, objp));
1da177e4
LT
3308 }
3309 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3310 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3311 }
871751e2
AV
3312#ifdef CONFIG_DEBUG_SLAB_LEAK
3313 {
3314 struct slab *slabp;
3315 unsigned objnr;
3316
35026088 3317 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3318 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3319 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3320 }
3321#endif
3dafccf2 3322 objp += obj_offset(cachep);
4f104934 3323 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3324 cachep->ctor(objp);
7ea466f2
TH
3325 if (ARCH_SLAB_MINALIGN &&
3326 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3327 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3328 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3329 }
1da177e4
LT
3330 return objp;
3331}
3332#else
3333#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3334#endif
3335
773ff60e 3336static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3337{
3338 if (cachep == &cache_cache)
773ff60e 3339 return false;
8a8b6502 3340
8c138bc0 3341 return should_failslab(cachep->object_size, flags, cachep->flags);
8a8b6502
AM
3342}
3343
343e0d7a 3344static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3345{
b28a02de 3346 void *objp;
1da177e4 3347 struct array_cache *ac;
072bb0aa 3348 bool force_refill = false;
1da177e4 3349
5c382300 3350 check_irq_off();
8a8b6502 3351
9a2dba4b 3352 ac = cpu_cache_get(cachep);
1da177e4 3353 if (likely(ac->avail)) {
1da177e4 3354 ac->touched = 1;
072bb0aa
MG
3355 objp = ac_get_obj(cachep, ac, flags, false);
3356
ddbf2e83 3357 /*
072bb0aa
MG
3358 * Allow for the possibility all avail objects are not allowed
3359 * by the current flags
ddbf2e83 3360 */
072bb0aa
MG
3361 if (objp) {
3362 STATS_INC_ALLOCHIT(cachep);
3363 goto out;
3364 }
3365 force_refill = true;
1da177e4 3366 }
072bb0aa
MG
3367
3368 STATS_INC_ALLOCMISS(cachep);
3369 objp = cache_alloc_refill(cachep, flags, force_refill);
3370 /*
3371 * the 'ac' may be updated by cache_alloc_refill(),
3372 * and kmemleak_erase() requires its correct value.
3373 */
3374 ac = cpu_cache_get(cachep);
3375
3376out:
d5cff635
CM
3377 /*
3378 * To avoid a false negative, if an object that is in one of the
3379 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3380 * treat the array pointers as a reference to the object.
3381 */
f3d8b53a
O
3382 if (objp)
3383 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3384 return objp;
3385}
3386
e498be7d 3387#ifdef CONFIG_NUMA
c61afb18 3388/*
b2455396 3389 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3390 *
3391 * If we are in_interrupt, then process context, including cpusets and
3392 * mempolicy, may not apply and should not be used for allocation policy.
3393 */
3394static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3395{
3396 int nid_alloc, nid_here;
3397
765c4507 3398 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3399 return NULL;
7d6e6d09 3400 nid_alloc = nid_here = numa_mem_id();
c61afb18 3401 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3402 nid_alloc = cpuset_slab_spread_node();
c61afb18 3403 else if (current->mempolicy)
e7b691b0 3404 nid_alloc = slab_node();
c61afb18 3405 if (nid_alloc != nid_here)
8b98c169 3406 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3407 return NULL;
3408}
3409
765c4507
CL
3410/*
3411 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3412 * certain node and fall back is permitted. First we scan all the
3413 * available nodelists for available objects. If that fails then we
3414 * perform an allocation without specifying a node. This allows the page
3415 * allocator to do its reclaim / fallback magic. We then insert the
3416 * slab into the proper nodelist and then allocate from it.
765c4507 3417 */
8c8cc2c1 3418static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3419{
8c8cc2c1
PE
3420 struct zonelist *zonelist;
3421 gfp_t local_flags;
dd1a239f 3422 struct zoneref *z;
54a6eb5c
MG
3423 struct zone *zone;
3424 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3425 void *obj = NULL;
3c517a61 3426 int nid;
cc9a6c87 3427 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3428
3429 if (flags & __GFP_THISNODE)
3430 return NULL;
3431
6cb06229 3432 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3433
cc9a6c87
MG
3434retry_cpuset:
3435 cpuset_mems_cookie = get_mems_allowed();
e7b691b0 3436 zonelist = node_zonelist(slab_node(), flags);
cc9a6c87 3437
3c517a61
CL
3438retry:
3439 /*
3440 * Look through allowed nodes for objects available
3441 * from existing per node queues.
3442 */
54a6eb5c
MG
3443 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3444 nid = zone_to_nid(zone);
aedb0eb1 3445
54a6eb5c 3446 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3447 cache->nodelists[nid] &&
481c5346 3448 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3449 obj = ____cache_alloc_node(cache,
3450 flags | GFP_THISNODE, nid);
481c5346
CL
3451 if (obj)
3452 break;
3453 }
3c517a61
CL
3454 }
3455
cfce6604 3456 if (!obj) {
3c517a61
CL
3457 /*
3458 * This allocation will be performed within the constraints
3459 * of the current cpuset / memory policy requirements.
3460 * We may trigger various forms of reclaim on the allowed
3461 * set and go into memory reserves if necessary.
3462 */
dd47ea75
CL
3463 if (local_flags & __GFP_WAIT)
3464 local_irq_enable();
3465 kmem_flagcheck(cache, flags);
7d6e6d09 3466 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3467 if (local_flags & __GFP_WAIT)
3468 local_irq_disable();
3c517a61
CL
3469 if (obj) {
3470 /*
3471 * Insert into the appropriate per node queues
3472 */
3473 nid = page_to_nid(virt_to_page(obj));
3474 if (cache_grow(cache, flags, nid, obj)) {
3475 obj = ____cache_alloc_node(cache,
3476 flags | GFP_THISNODE, nid);
3477 if (!obj)
3478 /*
3479 * Another processor may allocate the
3480 * objects in the slab since we are
3481 * not holding any locks.
3482 */
3483 goto retry;
3484 } else {
b6a60451 3485 /* cache_grow already freed obj */
3c517a61
CL
3486 obj = NULL;
3487 }
3488 }
aedb0eb1 3489 }
cc9a6c87
MG
3490
3491 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3492 goto retry_cpuset;
765c4507
CL
3493 return obj;
3494}
3495
e498be7d
CL
3496/*
3497 * A interface to enable slab creation on nodeid
1da177e4 3498 */
8b98c169 3499static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3500 int nodeid)
e498be7d
CL
3501{
3502 struct list_head *entry;
b28a02de
PE
3503 struct slab *slabp;
3504 struct kmem_list3 *l3;
3505 void *obj;
b28a02de
PE
3506 int x;
3507
3508 l3 = cachep->nodelists[nodeid];
3509 BUG_ON(!l3);
3510
a737b3e2 3511retry:
ca3b9b91 3512 check_irq_off();
b28a02de
PE
3513 spin_lock(&l3->list_lock);
3514 entry = l3->slabs_partial.next;
3515 if (entry == &l3->slabs_partial) {
3516 l3->free_touched = 1;
3517 entry = l3->slabs_free.next;
3518 if (entry == &l3->slabs_free)
3519 goto must_grow;
3520 }
3521
3522 slabp = list_entry(entry, struct slab, list);
3523 check_spinlock_acquired_node(cachep, nodeid);
3524 check_slabp(cachep, slabp);
3525
3526 STATS_INC_NODEALLOCS(cachep);
3527 STATS_INC_ACTIVE(cachep);
3528 STATS_SET_HIGH(cachep);
3529
3530 BUG_ON(slabp->inuse == cachep->num);
3531
78d382d7 3532 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3533 check_slabp(cachep, slabp);
3534 l3->free_objects--;
3535 /* move slabp to correct slabp list: */
3536 list_del(&slabp->list);
3537
a737b3e2 3538 if (slabp->free == BUFCTL_END)
b28a02de 3539 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3540 else
b28a02de 3541 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3542
b28a02de
PE
3543 spin_unlock(&l3->list_lock);
3544 goto done;
e498be7d 3545
a737b3e2 3546must_grow:
b28a02de 3547 spin_unlock(&l3->list_lock);
3c517a61 3548 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3549 if (x)
3550 goto retry;
1da177e4 3551
8c8cc2c1 3552 return fallback_alloc(cachep, flags);
e498be7d 3553
a737b3e2 3554done:
b28a02de 3555 return obj;
e498be7d 3556}
8c8cc2c1
PE
3557
3558/**
3559 * kmem_cache_alloc_node - Allocate an object on the specified node
3560 * @cachep: The cache to allocate from.
3561 * @flags: See kmalloc().
3562 * @nodeid: node number of the target node.
3563 * @caller: return address of caller, used for debug information
3564 *
3565 * Identical to kmem_cache_alloc but it will allocate memory on the given
3566 * node, which can improve the performance for cpu bound structures.
3567 *
3568 * Fallback to other node is possible if __GFP_THISNODE is not set.
3569 */
3570static __always_inline void *
3571__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3572 void *caller)
3573{
3574 unsigned long save_flags;
3575 void *ptr;
7d6e6d09 3576 int slab_node = numa_mem_id();
8c8cc2c1 3577
dcce284a 3578 flags &= gfp_allowed_mask;
7e85ee0c 3579
cf40bd16
NP
3580 lockdep_trace_alloc(flags);
3581
773ff60e 3582 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3583 return NULL;
3584
8c8cc2c1
PE
3585 cache_alloc_debugcheck_before(cachep, flags);
3586 local_irq_save(save_flags);
3587
eacbbae3 3588 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3589 nodeid = slab_node;
8c8cc2c1
PE
3590
3591 if (unlikely(!cachep->nodelists[nodeid])) {
3592 /* Node not bootstrapped yet */
3593 ptr = fallback_alloc(cachep, flags);
3594 goto out;
3595 }
3596
7d6e6d09 3597 if (nodeid == slab_node) {
8c8cc2c1
PE
3598 /*
3599 * Use the locally cached objects if possible.
3600 * However ____cache_alloc does not allow fallback
3601 * to other nodes. It may fail while we still have
3602 * objects on other nodes available.
3603 */
3604 ptr = ____cache_alloc(cachep, flags);
3605 if (ptr)
3606 goto out;
3607 }
3608 /* ___cache_alloc_node can fall back to other nodes */
3609 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3610 out:
3611 local_irq_restore(save_flags);
3612 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
8c138bc0 3613 kmemleak_alloc_recursive(ptr, cachep->object_size, 1, cachep->flags,
d5cff635 3614 flags);
8c8cc2c1 3615
c175eea4 3616 if (likely(ptr))
8c138bc0 3617 kmemcheck_slab_alloc(cachep, flags, ptr, cachep->object_size);
c175eea4 3618
d07dbea4 3619 if (unlikely((flags & __GFP_ZERO) && ptr))
8c138bc0 3620 memset(ptr, 0, cachep->object_size);
d07dbea4 3621
8c8cc2c1
PE
3622 return ptr;
3623}
3624
3625static __always_inline void *
3626__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3627{
3628 void *objp;
3629
3630 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3631 objp = alternate_node_alloc(cache, flags);
3632 if (objp)
3633 goto out;
3634 }
3635 objp = ____cache_alloc(cache, flags);
3636
3637 /*
3638 * We may just have run out of memory on the local node.
3639 * ____cache_alloc_node() knows how to locate memory on other nodes
3640 */
7d6e6d09
LS
3641 if (!objp)
3642 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3643
3644 out:
3645 return objp;
3646}
3647#else
3648
3649static __always_inline void *
3650__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3651{
3652 return ____cache_alloc(cachep, flags);
3653}
3654
3655#endif /* CONFIG_NUMA */
3656
3657static __always_inline void *
3658__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3659{
3660 unsigned long save_flags;
3661 void *objp;
3662
dcce284a 3663 flags &= gfp_allowed_mask;
7e85ee0c 3664
cf40bd16
NP
3665 lockdep_trace_alloc(flags);
3666
773ff60e 3667 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3668 return NULL;
3669
8c8cc2c1
PE
3670 cache_alloc_debugcheck_before(cachep, flags);
3671 local_irq_save(save_flags);
3672 objp = __do_cache_alloc(cachep, flags);
3673 local_irq_restore(save_flags);
3674 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
8c138bc0 3675 kmemleak_alloc_recursive(objp, cachep->object_size, 1, cachep->flags,
d5cff635 3676 flags);
8c8cc2c1
PE
3677 prefetchw(objp);
3678
c175eea4 3679 if (likely(objp))
8c138bc0 3680 kmemcheck_slab_alloc(cachep, flags, objp, cachep->object_size);
c175eea4 3681
d07dbea4 3682 if (unlikely((flags & __GFP_ZERO) && objp))
8c138bc0 3683 memset(objp, 0, cachep->object_size);
d07dbea4 3684
8c8cc2c1
PE
3685 return objp;
3686}
e498be7d
CL
3687
3688/*
3689 * Caller needs to acquire correct kmem_list's list_lock
3690 */
343e0d7a 3691static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3692 int node)
1da177e4
LT
3693{
3694 int i;
e498be7d 3695 struct kmem_list3 *l3;
1da177e4
LT
3696
3697 for (i = 0; i < nr_objects; i++) {
072bb0aa 3698 void *objp;
1da177e4 3699 struct slab *slabp;
1da177e4 3700
072bb0aa
MG
3701 clear_obj_pfmemalloc(&objpp[i]);
3702 objp = objpp[i];
3703
6ed5eb22 3704 slabp = virt_to_slab(objp);
ff69416e 3705 l3 = cachep->nodelists[node];
1da177e4 3706 list_del(&slabp->list);
ff69416e 3707 check_spinlock_acquired_node(cachep, node);
1da177e4 3708 check_slabp(cachep, slabp);
78d382d7 3709 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3710 STATS_DEC_ACTIVE(cachep);
e498be7d 3711 l3->free_objects++;
1da177e4
LT
3712 check_slabp(cachep, slabp);
3713
3714 /* fixup slab chains */
3715 if (slabp->inuse == 0) {
e498be7d
CL
3716 if (l3->free_objects > l3->free_limit) {
3717 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3718 /* No need to drop any previously held
3719 * lock here, even if we have a off-slab slab
3720 * descriptor it is guaranteed to come from
3721 * a different cache, refer to comments before
3722 * alloc_slabmgmt.
3723 */
1da177e4
LT
3724 slab_destroy(cachep, slabp);
3725 } else {
e498be7d 3726 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3727 }
3728 } else {
3729 /* Unconditionally move a slab to the end of the
3730 * partial list on free - maximum time for the
3731 * other objects to be freed, too.
3732 */
e498be7d 3733 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3734 }
3735 }
3736}
3737
343e0d7a 3738static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3739{
3740 int batchcount;
e498be7d 3741 struct kmem_list3 *l3;
7d6e6d09 3742 int node = numa_mem_id();
1da177e4
LT
3743
3744 batchcount = ac->batchcount;
3745#if DEBUG
3746 BUG_ON(!batchcount || batchcount > ac->avail);
3747#endif
3748 check_irq_off();
ff69416e 3749 l3 = cachep->nodelists[node];
873623df 3750 spin_lock(&l3->list_lock);
e498be7d
CL
3751 if (l3->shared) {
3752 struct array_cache *shared_array = l3->shared;
b28a02de 3753 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3754 if (max) {
3755 if (batchcount > max)
3756 batchcount = max;
e498be7d 3757 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3758 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3759 shared_array->avail += batchcount;
3760 goto free_done;
3761 }
3762 }
3763
ff69416e 3764 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3765free_done:
1da177e4
LT
3766#if STATS
3767 {
3768 int i = 0;
3769 struct list_head *p;
3770
e498be7d
CL
3771 p = l3->slabs_free.next;
3772 while (p != &(l3->slabs_free)) {
1da177e4
LT
3773 struct slab *slabp;
3774
3775 slabp = list_entry(p, struct slab, list);
3776 BUG_ON(slabp->inuse);
3777
3778 i++;
3779 p = p->next;
3780 }
3781 STATS_SET_FREEABLE(cachep, i);
3782 }
3783#endif
e498be7d 3784 spin_unlock(&l3->list_lock);
1da177e4 3785 ac->avail -= batchcount;
a737b3e2 3786 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3787}
3788
3789/*
a737b3e2
AM
3790 * Release an obj back to its cache. If the obj has a constructed state, it must
3791 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3792 */
a947eb95
SS
3793static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3794 void *caller)
1da177e4 3795{
9a2dba4b 3796 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3797
3798 check_irq_off();
d5cff635 3799 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3800 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3801
8c138bc0 3802 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3803
1807a1aa
SS
3804 /*
3805 * Skip calling cache_free_alien() when the platform is not numa.
3806 * This will avoid cache misses that happen while accessing slabp (which
3807 * is per page memory reference) to get nodeid. Instead use a global
3808 * variable to skip the call, which is mostly likely to be present in
3809 * the cache.
3810 */
b6e68bc1 3811 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3812 return;
3813
1da177e4
LT
3814 if (likely(ac->avail < ac->limit)) {
3815 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3816 } else {
3817 STATS_INC_FREEMISS(cachep);
3818 cache_flusharray(cachep, ac);
1da177e4 3819 }
42c8c99c 3820
072bb0aa 3821 ac_put_obj(cachep, ac, objp);
1da177e4
LT
3822}
3823
3824/**
3825 * kmem_cache_alloc - Allocate an object
3826 * @cachep: The cache to allocate from.
3827 * @flags: See kmalloc().
3828 *
3829 * Allocate an object from this cache. The flags are only relevant
3830 * if the cache has no available objects.
3831 */
343e0d7a 3832void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3833{
36555751
EGM
3834 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3835
ca2b84cb 3836 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3837 cachep->object_size, cachep->size, flags);
36555751
EGM
3838
3839 return ret;
1da177e4
LT
3840}
3841EXPORT_SYMBOL(kmem_cache_alloc);
3842
0f24f128 3843#ifdef CONFIG_TRACING
85beb586
SR
3844void *
3845kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3846{
85beb586
SR
3847 void *ret;
3848
3849 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3850
3851 trace_kmalloc(_RET_IP_, ret,
3852 size, slab_buffer_size(cachep), flags);
3853 return ret;
36555751 3854}
85beb586 3855EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3856#endif
3857
1da177e4 3858#ifdef CONFIG_NUMA
8b98c169
CH
3859void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3860{
36555751
EGM
3861 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3862 __builtin_return_address(0));
3863
ca2b84cb 3864 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3865 cachep->object_size, cachep->size,
ca2b84cb 3866 flags, nodeid);
36555751
EGM
3867
3868 return ret;
8b98c169 3869}
1da177e4
LT
3870EXPORT_SYMBOL(kmem_cache_alloc_node);
3871
0f24f128 3872#ifdef CONFIG_TRACING
85beb586
SR
3873void *kmem_cache_alloc_node_trace(size_t size,
3874 struct kmem_cache *cachep,
3875 gfp_t flags,
3876 int nodeid)
36555751 3877{
85beb586
SR
3878 void *ret;
3879
3880 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3881 __builtin_return_address(0));
85beb586
SR
3882 trace_kmalloc_node(_RET_IP_, ret,
3883 size, slab_buffer_size(cachep),
3884 flags, nodeid);
3885 return ret;
36555751 3886}
85beb586 3887EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3888#endif
3889
8b98c169
CH
3890static __always_inline void *
3891__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3892{
343e0d7a 3893 struct kmem_cache *cachep;
97e2bde4
MS
3894
3895 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3896 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3897 return cachep;
85beb586 3898 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3899}
8b98c169 3900
0bb38a5c 3901#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3902void *__kmalloc_node(size_t size, gfp_t flags, int node)
3903{
3904 return __do_kmalloc_node(size, flags, node,
3905 __builtin_return_address(0));
3906}
dbe5e69d 3907EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3908
3909void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3910 int node, unsigned long caller)
8b98c169 3911{
ce71e27c 3912 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3913}
3914EXPORT_SYMBOL(__kmalloc_node_track_caller);
3915#else
3916void *__kmalloc_node(size_t size, gfp_t flags, int node)
3917{
3918 return __do_kmalloc_node(size, flags, node, NULL);
3919}
3920EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3921#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3922#endif /* CONFIG_NUMA */
1da177e4
LT
3923
3924/**
800590f5 3925 * __do_kmalloc - allocate memory
1da177e4 3926 * @size: how many bytes of memory are required.
800590f5 3927 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3928 * @caller: function caller for debug tracking of the caller
1da177e4 3929 */
7fd6b141
PE
3930static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3931 void *caller)
1da177e4 3932{
343e0d7a 3933 struct kmem_cache *cachep;
36555751 3934 void *ret;
1da177e4 3935
97e2bde4
MS
3936 /* If you want to save a few bytes .text space: replace
3937 * __ with kmem_.
3938 * Then kmalloc uses the uninlined functions instead of the inline
3939 * functions.
3940 */
3941 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3942 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3943 return cachep;
36555751
EGM
3944 ret = __cache_alloc(cachep, flags, caller);
3945
ca2b84cb 3946 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3947 size, cachep->size, flags);
36555751
EGM
3948
3949 return ret;
7fd6b141
PE
3950}
3951
7fd6b141 3952
0bb38a5c 3953#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3954void *__kmalloc(size_t size, gfp_t flags)
3955{
871751e2 3956 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3957}
3958EXPORT_SYMBOL(__kmalloc);
3959
ce71e27c 3960void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3961{
ce71e27c 3962 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3963}
3964EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3965
3966#else
3967void *__kmalloc(size_t size, gfp_t flags)
3968{
3969 return __do_kmalloc(size, flags, NULL);
3970}
3971EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3972#endif
3973
1da177e4
LT
3974/**
3975 * kmem_cache_free - Deallocate an object
3976 * @cachep: The cache the allocation was from.
3977 * @objp: The previously allocated object.
3978 *
3979 * Free an object which was previously allocated from this
3980 * cache.
3981 */
343e0d7a 3982void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3983{
3984 unsigned long flags;
3985
3986 local_irq_save(flags);
d97d476b 3987 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3988 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3989 debug_check_no_obj_freed(objp, cachep->object_size);
a947eb95 3990 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3991 local_irq_restore(flags);
36555751 3992
ca2b84cb 3993 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3994}
3995EXPORT_SYMBOL(kmem_cache_free);
3996
1da177e4
LT
3997/**
3998 * kfree - free previously allocated memory
3999 * @objp: pointer returned by kmalloc.
4000 *
80e93eff
PE
4001 * If @objp is NULL, no operation is performed.
4002 *
1da177e4
LT
4003 * Don't free memory not originally allocated by kmalloc()
4004 * or you will run into trouble.
4005 */
4006void kfree(const void *objp)
4007{
343e0d7a 4008 struct kmem_cache *c;
1da177e4
LT
4009 unsigned long flags;
4010
2121db74
PE
4011 trace_kfree(_RET_IP_, objp);
4012
6cb8f913 4013 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
4014 return;
4015 local_irq_save(flags);
4016 kfree_debugcheck(objp);
6ed5eb22 4017 c = virt_to_cache(objp);
8c138bc0
CL
4018 debug_check_no_locks_freed(objp, c->object_size);
4019
4020 debug_check_no_obj_freed(objp, c->object_size);
a947eb95 4021 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
4022 local_irq_restore(flags);
4023}
4024EXPORT_SYMBOL(kfree);
4025
343e0d7a 4026unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 4027{
8c138bc0 4028 return cachep->object_size;
1da177e4
LT
4029}
4030EXPORT_SYMBOL(kmem_cache_size);
4031
e498be7d 4032/*
183ff22b 4033 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 4034 */
83b519e8 4035static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
4036{
4037 int node;
4038 struct kmem_list3 *l3;
cafeb02e 4039 struct array_cache *new_shared;
3395ee05 4040 struct array_cache **new_alien = NULL;
e498be7d 4041
9c09a95c 4042 for_each_online_node(node) {
cafeb02e 4043
3395ee05 4044 if (use_alien_caches) {
83b519e8 4045 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
4046 if (!new_alien)
4047 goto fail;
4048 }
cafeb02e 4049
63109846
ED
4050 new_shared = NULL;
4051 if (cachep->shared) {
4052 new_shared = alloc_arraycache(node,
0718dc2a 4053 cachep->shared*cachep->batchcount,
83b519e8 4054 0xbaadf00d, gfp);
63109846
ED
4055 if (!new_shared) {
4056 free_alien_cache(new_alien);
4057 goto fail;
4058 }
0718dc2a 4059 }
cafeb02e 4060
a737b3e2
AM
4061 l3 = cachep->nodelists[node];
4062 if (l3) {
cafeb02e
CL
4063 struct array_cache *shared = l3->shared;
4064
e498be7d
CL
4065 spin_lock_irq(&l3->list_lock);
4066
cafeb02e 4067 if (shared)
0718dc2a
CL
4068 free_block(cachep, shared->entry,
4069 shared->avail, node);
e498be7d 4070
cafeb02e
CL
4071 l3->shared = new_shared;
4072 if (!l3->alien) {
e498be7d
CL
4073 l3->alien = new_alien;
4074 new_alien = NULL;
4075 }
b28a02de 4076 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4077 cachep->batchcount + cachep->num;
e498be7d 4078 spin_unlock_irq(&l3->list_lock);
cafeb02e 4079 kfree(shared);
e498be7d
CL
4080 free_alien_cache(new_alien);
4081 continue;
4082 }
83b519e8 4083 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
4084 if (!l3) {
4085 free_alien_cache(new_alien);
4086 kfree(new_shared);
e498be7d 4087 goto fail;
0718dc2a 4088 }
e498be7d
CL
4089
4090 kmem_list3_init(l3);
4091 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4092 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4093 l3->shared = new_shared;
e498be7d 4094 l3->alien = new_alien;
b28a02de 4095 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4096 cachep->batchcount + cachep->num;
e498be7d
CL
4097 cachep->nodelists[node] = l3;
4098 }
cafeb02e 4099 return 0;
0718dc2a 4100
a737b3e2 4101fail:
3b0efdfa 4102 if (!cachep->list.next) {
0718dc2a
CL
4103 /* Cache is not active yet. Roll back what we did */
4104 node--;
4105 while (node >= 0) {
4106 if (cachep->nodelists[node]) {
4107 l3 = cachep->nodelists[node];
4108
4109 kfree(l3->shared);
4110 free_alien_cache(l3->alien);
4111 kfree(l3);
4112 cachep->nodelists[node] = NULL;
4113 }
4114 node--;
4115 }
4116 }
cafeb02e 4117 return -ENOMEM;
e498be7d
CL
4118}
4119
1da177e4 4120struct ccupdate_struct {
343e0d7a 4121 struct kmem_cache *cachep;
acfe7d74 4122 struct array_cache *new[0];
1da177e4
LT
4123};
4124
4125static void do_ccupdate_local(void *info)
4126{
a737b3e2 4127 struct ccupdate_struct *new = info;
1da177e4
LT
4128 struct array_cache *old;
4129
4130 check_irq_off();
9a2dba4b 4131 old = cpu_cache_get(new->cachep);
e498be7d 4132
1da177e4
LT
4133 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4134 new->new[smp_processor_id()] = old;
4135}
4136
18004c5d 4137/* Always called with the slab_mutex held */
a737b3e2 4138static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4139 int batchcount, int shared, gfp_t gfp)
1da177e4 4140{
d2e7b7d0 4141 struct ccupdate_struct *new;
2ed3a4ef 4142 int i;
1da177e4 4143
acfe7d74
ED
4144 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4145 gfp);
d2e7b7d0
SS
4146 if (!new)
4147 return -ENOMEM;
4148
e498be7d 4149 for_each_online_cpu(i) {
7d6e6d09 4150 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4151 batchcount, gfp);
d2e7b7d0 4152 if (!new->new[i]) {
b28a02de 4153 for (i--; i >= 0; i--)
d2e7b7d0
SS
4154 kfree(new->new[i]);
4155 kfree(new);
e498be7d 4156 return -ENOMEM;
1da177e4
LT
4157 }
4158 }
d2e7b7d0 4159 new->cachep = cachep;
1da177e4 4160
15c8b6c1 4161 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4162
1da177e4 4163 check_irq_on();
1da177e4
LT
4164 cachep->batchcount = batchcount;
4165 cachep->limit = limit;
e498be7d 4166 cachep->shared = shared;
1da177e4 4167
e498be7d 4168 for_each_online_cpu(i) {
d2e7b7d0 4169 struct array_cache *ccold = new->new[i];
1da177e4
LT
4170 if (!ccold)
4171 continue;
7d6e6d09
LS
4172 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4173 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4174 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4175 kfree(ccold);
4176 }
d2e7b7d0 4177 kfree(new);
83b519e8 4178 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4179}
4180
18004c5d 4181/* Called with slab_mutex held always */
83b519e8 4182static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4183{
4184 int err;
4185 int limit, shared;
4186
a737b3e2
AM
4187 /*
4188 * The head array serves three purposes:
1da177e4
LT
4189 * - create a LIFO ordering, i.e. return objects that are cache-warm
4190 * - reduce the number of spinlock operations.
a737b3e2 4191 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4192 * bufctl chains: array operations are cheaper.
4193 * The numbers are guessed, we should auto-tune as described by
4194 * Bonwick.
4195 */
3b0efdfa 4196 if (cachep->size > 131072)
1da177e4 4197 limit = 1;
3b0efdfa 4198 else if (cachep->size > PAGE_SIZE)
1da177e4 4199 limit = 8;
3b0efdfa 4200 else if (cachep->size > 1024)
1da177e4 4201 limit = 24;
3b0efdfa 4202 else if (cachep->size > 256)
1da177e4
LT
4203 limit = 54;
4204 else
4205 limit = 120;
4206
a737b3e2
AM
4207 /*
4208 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4209 * allocation behaviour: Most allocs on one cpu, most free operations
4210 * on another cpu. For these cases, an efficient object passing between
4211 * cpus is necessary. This is provided by a shared array. The array
4212 * replaces Bonwick's magazine layer.
4213 * On uniprocessor, it's functionally equivalent (but less efficient)
4214 * to a larger limit. Thus disabled by default.
4215 */
4216 shared = 0;
3b0efdfa 4217 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4218 shared = 8;
1da177e4
LT
4219
4220#if DEBUG
a737b3e2
AM
4221 /*
4222 * With debugging enabled, large batchcount lead to excessively long
4223 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4224 */
4225 if (limit > 32)
4226 limit = 32;
4227#endif
83b519e8 4228 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4229 if (err)
4230 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4231 cachep->name, -err);
2ed3a4ef 4232 return err;
1da177e4
LT
4233}
4234
1b55253a
CL
4235/*
4236 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4237 * necessary. Note that the l3 listlock also protects the array_cache
4238 * if drain_array() is used on the shared array.
1b55253a 4239 */
68a1b195 4240static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4241 struct array_cache *ac, int force, int node)
1da177e4
LT
4242{
4243 int tofree;
4244
1b55253a
CL
4245 if (!ac || !ac->avail)
4246 return;
1da177e4
LT
4247 if (ac->touched && !force) {
4248 ac->touched = 0;
b18e7e65 4249 } else {
1b55253a 4250 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4251 if (ac->avail) {
4252 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4253 if (tofree > ac->avail)
4254 tofree = (ac->avail + 1) / 2;
4255 free_block(cachep, ac->entry, tofree, node);
4256 ac->avail -= tofree;
4257 memmove(ac->entry, &(ac->entry[tofree]),
4258 sizeof(void *) * ac->avail);
4259 }
1b55253a 4260 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4261 }
4262}
4263
4264/**
4265 * cache_reap - Reclaim memory from caches.
05fb6bf0 4266 * @w: work descriptor
1da177e4
LT
4267 *
4268 * Called from workqueue/eventd every few seconds.
4269 * Purpose:
4270 * - clear the per-cpu caches for this CPU.
4271 * - return freeable pages to the main free memory pool.
4272 *
a737b3e2
AM
4273 * If we cannot acquire the cache chain mutex then just give up - we'll try
4274 * again on the next iteration.
1da177e4 4275 */
7c5cae36 4276static void cache_reap(struct work_struct *w)
1da177e4 4277{
7a7c381d 4278 struct kmem_cache *searchp;
e498be7d 4279 struct kmem_list3 *l3;
7d6e6d09 4280 int node = numa_mem_id();
bf6aede7 4281 struct delayed_work *work = to_delayed_work(w);
1da177e4 4282
18004c5d 4283 if (!mutex_trylock(&slab_mutex))
1da177e4 4284 /* Give up. Setup the next iteration. */
7c5cae36 4285 goto out;
1da177e4 4286
18004c5d 4287 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4288 check_irq_on();
4289
35386e3b
CL
4290 /*
4291 * We only take the l3 lock if absolutely necessary and we
4292 * have established with reasonable certainty that
4293 * we can do some work if the lock was obtained.
4294 */
aab2207c 4295 l3 = searchp->nodelists[node];
35386e3b 4296
8fce4d8e 4297 reap_alien(searchp, l3);
1da177e4 4298
aab2207c 4299 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4300
35386e3b
CL
4301 /*
4302 * These are racy checks but it does not matter
4303 * if we skip one check or scan twice.
4304 */
e498be7d 4305 if (time_after(l3->next_reap, jiffies))
35386e3b 4306 goto next;
1da177e4 4307
e498be7d 4308 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4309
aab2207c 4310 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4311
ed11d9eb 4312 if (l3->free_touched)
e498be7d 4313 l3->free_touched = 0;
ed11d9eb
CL
4314 else {
4315 int freed;
1da177e4 4316
ed11d9eb
CL
4317 freed = drain_freelist(searchp, l3, (l3->free_limit +
4318 5 * searchp->num - 1) / (5 * searchp->num));
4319 STATS_ADD_REAPED(searchp, freed);
4320 }
35386e3b 4321next:
1da177e4
LT
4322 cond_resched();
4323 }
4324 check_irq_on();
18004c5d 4325 mutex_unlock(&slab_mutex);
8fce4d8e 4326 next_reap_node();
7c5cae36 4327out:
a737b3e2 4328 /* Set up the next iteration */
7c5cae36 4329 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4330}
4331
158a9624 4332#ifdef CONFIG_SLABINFO
1da177e4 4333
85289f98 4334static void print_slabinfo_header(struct seq_file *m)
1da177e4 4335{
85289f98
PE
4336 /*
4337 * Output format version, so at least we can change it
4338 * without _too_ many complaints.
4339 */
1da177e4 4340#if STATS
85289f98 4341 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4342#else
85289f98 4343 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4344#endif
85289f98
PE
4345 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4346 "<objperslab> <pagesperslab>");
4347 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4348 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4349#if STATS
85289f98 4350 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4351 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4352 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4353#endif
85289f98
PE
4354 seq_putc(m, '\n');
4355}
4356
4357static void *s_start(struct seq_file *m, loff_t *pos)
4358{
4359 loff_t n = *pos;
85289f98 4360
18004c5d 4361 mutex_lock(&slab_mutex);
85289f98
PE
4362 if (!n)
4363 print_slabinfo_header(m);
b92151ba 4364
18004c5d 4365 return seq_list_start(&slab_caches, *pos);
1da177e4
LT
4366}
4367
4368static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4369{
18004c5d 4370 return seq_list_next(p, &slab_caches, pos);
1da177e4
LT
4371}
4372
4373static void s_stop(struct seq_file *m, void *p)
4374{
18004c5d 4375 mutex_unlock(&slab_mutex);
1da177e4
LT
4376}
4377
4378static int s_show(struct seq_file *m, void *p)
4379{
3b0efdfa 4380 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4381 struct slab *slabp;
4382 unsigned long active_objs;
4383 unsigned long num_objs;
4384 unsigned long active_slabs = 0;
4385 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4386 const char *name;
1da177e4 4387 char *error = NULL;
e498be7d
CL
4388 int node;
4389 struct kmem_list3 *l3;
1da177e4 4390
1da177e4
LT
4391 active_objs = 0;
4392 num_slabs = 0;
e498be7d
CL
4393 for_each_online_node(node) {
4394 l3 = cachep->nodelists[node];
4395 if (!l3)
4396 continue;
4397
ca3b9b91
RT
4398 check_irq_on();
4399 spin_lock_irq(&l3->list_lock);
e498be7d 4400
7a7c381d 4401 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4402 if (slabp->inuse != cachep->num && !error)
4403 error = "slabs_full accounting error";
4404 active_objs += cachep->num;
4405 active_slabs++;
4406 }
7a7c381d 4407 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4408 if (slabp->inuse == cachep->num && !error)
4409 error = "slabs_partial inuse accounting error";
4410 if (!slabp->inuse && !error)
4411 error = "slabs_partial/inuse accounting error";
4412 active_objs += slabp->inuse;
4413 active_slabs++;
4414 }
7a7c381d 4415 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4416 if (slabp->inuse && !error)
4417 error = "slabs_free/inuse accounting error";
4418 num_slabs++;
4419 }
4420 free_objects += l3->free_objects;
4484ebf1
RT
4421 if (l3->shared)
4422 shared_avail += l3->shared->avail;
e498be7d 4423
ca3b9b91 4424 spin_unlock_irq(&l3->list_lock);
1da177e4 4425 }
b28a02de
PE
4426 num_slabs += active_slabs;
4427 num_objs = num_slabs * cachep->num;
e498be7d 4428 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4429 error = "free_objects accounting error";
4430
b28a02de 4431 name = cachep->name;
1da177e4
LT
4432 if (error)
4433 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4434
4435 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4436 name, active_objs, num_objs, cachep->size,
b28a02de 4437 cachep->num, (1 << cachep->gfporder));
1da177e4 4438 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4439 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4440 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4441 active_slabs, num_slabs, shared_avail);
1da177e4 4442#if STATS
b28a02de 4443 { /* list3 stats */
1da177e4
LT
4444 unsigned long high = cachep->high_mark;
4445 unsigned long allocs = cachep->num_allocations;
4446 unsigned long grown = cachep->grown;
4447 unsigned long reaped = cachep->reaped;
4448 unsigned long errors = cachep->errors;
4449 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4450 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4451 unsigned long node_frees = cachep->node_frees;
fb7faf33 4452 unsigned long overflows = cachep->node_overflow;
1da177e4 4453
e92dd4fd
JP
4454 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4455 "%4lu %4lu %4lu %4lu %4lu",
4456 allocs, high, grown,
4457 reaped, errors, max_freeable, node_allocs,
4458 node_frees, overflows);
1da177e4
LT
4459 }
4460 /* cpu stats */
4461 {
4462 unsigned long allochit = atomic_read(&cachep->allochit);
4463 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4464 unsigned long freehit = atomic_read(&cachep->freehit);
4465 unsigned long freemiss = atomic_read(&cachep->freemiss);
4466
4467 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4468 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4469 }
4470#endif
4471 seq_putc(m, '\n');
1da177e4
LT
4472 return 0;
4473}
4474
4475/*
4476 * slabinfo_op - iterator that generates /proc/slabinfo
4477 *
4478 * Output layout:
4479 * cache-name
4480 * num-active-objs
4481 * total-objs
4482 * object size
4483 * num-active-slabs
4484 * total-slabs
4485 * num-pages-per-slab
4486 * + further values on SMP and with statistics enabled
4487 */
4488
7b3c3a50 4489static const struct seq_operations slabinfo_op = {
b28a02de
PE
4490 .start = s_start,
4491 .next = s_next,
4492 .stop = s_stop,
4493 .show = s_show,
1da177e4
LT
4494};
4495
4496#define MAX_SLABINFO_WRITE 128
4497/**
4498 * slabinfo_write - Tuning for the slab allocator
4499 * @file: unused
4500 * @buffer: user buffer
4501 * @count: data length
4502 * @ppos: unused
4503 */
68a1b195 4504static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4505 size_t count, loff_t *ppos)
1da177e4 4506{
b28a02de 4507 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4508 int limit, batchcount, shared, res;
7a7c381d 4509 struct kmem_cache *cachep;
b28a02de 4510
1da177e4
LT
4511 if (count > MAX_SLABINFO_WRITE)
4512 return -EINVAL;
4513 if (copy_from_user(&kbuf, buffer, count))
4514 return -EFAULT;
b28a02de 4515 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4516
4517 tmp = strchr(kbuf, ' ');
4518 if (!tmp)
4519 return -EINVAL;
4520 *tmp = '\0';
4521 tmp++;
4522 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4523 return -EINVAL;
4524
4525 /* Find the cache in the chain of caches. */
18004c5d 4526 mutex_lock(&slab_mutex);
1da177e4 4527 res = -EINVAL;
18004c5d 4528 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4529 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4530 if (limit < 1 || batchcount < 1 ||
4531 batchcount > limit || shared < 0) {
e498be7d 4532 res = 0;
1da177e4 4533 } else {
e498be7d 4534 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4535 batchcount, shared,
4536 GFP_KERNEL);
1da177e4
LT
4537 }
4538 break;
4539 }
4540 }
18004c5d 4541 mutex_unlock(&slab_mutex);
1da177e4
LT
4542 if (res >= 0)
4543 res = count;
4544 return res;
4545}
871751e2 4546
7b3c3a50
AD
4547static int slabinfo_open(struct inode *inode, struct file *file)
4548{
4549 return seq_open(file, &slabinfo_op);
4550}
4551
4552static const struct file_operations proc_slabinfo_operations = {
4553 .open = slabinfo_open,
4554 .read = seq_read,
4555 .write = slabinfo_write,
4556 .llseek = seq_lseek,
4557 .release = seq_release,
4558};
4559
871751e2
AV
4560#ifdef CONFIG_DEBUG_SLAB_LEAK
4561
4562static void *leaks_start(struct seq_file *m, loff_t *pos)
4563{
18004c5d
CL
4564 mutex_lock(&slab_mutex);
4565 return seq_list_start(&slab_caches, *pos);
871751e2
AV
4566}
4567
4568static inline int add_caller(unsigned long *n, unsigned long v)
4569{
4570 unsigned long *p;
4571 int l;
4572 if (!v)
4573 return 1;
4574 l = n[1];
4575 p = n + 2;
4576 while (l) {
4577 int i = l/2;
4578 unsigned long *q = p + 2 * i;
4579 if (*q == v) {
4580 q[1]++;
4581 return 1;
4582 }
4583 if (*q > v) {
4584 l = i;
4585 } else {
4586 p = q + 2;
4587 l -= i + 1;
4588 }
4589 }
4590 if (++n[1] == n[0])
4591 return 0;
4592 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4593 p[0] = v;
4594 p[1] = 1;
4595 return 1;
4596}
4597
4598static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4599{
4600 void *p;
4601 int i;
4602 if (n[0] == n[1])
4603 return;
3b0efdfa 4604 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4605 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4606 continue;
4607 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4608 return;
4609 }
4610}
4611
4612static void show_symbol(struct seq_file *m, unsigned long address)
4613{
4614#ifdef CONFIG_KALLSYMS
871751e2 4615 unsigned long offset, size;
9281acea 4616 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4617
a5c43dae 4618 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4619 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4620 if (modname[0])
871751e2
AV
4621 seq_printf(m, " [%s]", modname);
4622 return;
4623 }
4624#endif
4625 seq_printf(m, "%p", (void *)address);
4626}
4627
4628static int leaks_show(struct seq_file *m, void *p)
4629{
0672aa7c 4630 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
871751e2
AV
4631 struct slab *slabp;
4632 struct kmem_list3 *l3;
4633 const char *name;
4634 unsigned long *n = m->private;
4635 int node;
4636 int i;
4637
4638 if (!(cachep->flags & SLAB_STORE_USER))
4639 return 0;
4640 if (!(cachep->flags & SLAB_RED_ZONE))
4641 return 0;
4642
4643 /* OK, we can do it */
4644
4645 n[1] = 0;
4646
4647 for_each_online_node(node) {
4648 l3 = cachep->nodelists[node];
4649 if (!l3)
4650 continue;
4651
4652 check_irq_on();
4653 spin_lock_irq(&l3->list_lock);
4654
7a7c381d 4655 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4656 handle_slab(n, cachep, slabp);
7a7c381d 4657 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4658 handle_slab(n, cachep, slabp);
871751e2
AV
4659 spin_unlock_irq(&l3->list_lock);
4660 }
4661 name = cachep->name;
4662 if (n[0] == n[1]) {
4663 /* Increase the buffer size */
18004c5d 4664 mutex_unlock(&slab_mutex);
871751e2
AV
4665 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4666 if (!m->private) {
4667 /* Too bad, we are really out */
4668 m->private = n;
18004c5d 4669 mutex_lock(&slab_mutex);
871751e2
AV
4670 return -ENOMEM;
4671 }
4672 *(unsigned long *)m->private = n[0] * 2;
4673 kfree(n);
18004c5d 4674 mutex_lock(&slab_mutex);
871751e2
AV
4675 /* Now make sure this entry will be retried */
4676 m->count = m->size;
4677 return 0;
4678 }
4679 for (i = 0; i < n[1]; i++) {
4680 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4681 show_symbol(m, n[2*i+2]);
4682 seq_putc(m, '\n');
4683 }
d2e7b7d0 4684
871751e2
AV
4685 return 0;
4686}
4687
a0ec95a8 4688static const struct seq_operations slabstats_op = {
871751e2
AV
4689 .start = leaks_start,
4690 .next = s_next,
4691 .stop = s_stop,
4692 .show = leaks_show,
4693};
a0ec95a8
AD
4694
4695static int slabstats_open(struct inode *inode, struct file *file)
4696{
4697 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4698 int ret = -ENOMEM;
4699 if (n) {
4700 ret = seq_open(file, &slabstats_op);
4701 if (!ret) {
4702 struct seq_file *m = file->private_data;
4703 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4704 m->private = n;
4705 n = NULL;
4706 }
4707 kfree(n);
4708 }
4709 return ret;
4710}
4711
4712static const struct file_operations proc_slabstats_operations = {
4713 .open = slabstats_open,
4714 .read = seq_read,
4715 .llseek = seq_lseek,
4716 .release = seq_release_private,
4717};
4718#endif
4719
4720static int __init slab_proc_init(void)
4721{
ab067e99 4722 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4723#ifdef CONFIG_DEBUG_SLAB_LEAK
4724 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4725#endif
a0ec95a8
AD
4726 return 0;
4727}
4728module_init(slab_proc_init);
1da177e4
LT
4729#endif
4730
00e145b6
MS
4731/**
4732 * ksize - get the actual amount of memory allocated for a given object
4733 * @objp: Pointer to the object
4734 *
4735 * kmalloc may internally round up allocations and return more memory
4736 * than requested. ksize() can be used to determine the actual amount of
4737 * memory allocated. The caller may use this additional memory, even though
4738 * a smaller amount of memory was initially specified with the kmalloc call.
4739 * The caller must guarantee that objp points to a valid object previously
4740 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4741 * must not be freed during the duration of the call.
4742 */
fd76bab2 4743size_t ksize(const void *objp)
1da177e4 4744{
ef8b4520
CL
4745 BUG_ON(!objp);
4746 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4747 return 0;
1da177e4 4748
8c138bc0 4749 return virt_to_cache(objp)->object_size;
1da177e4 4750}
b1aabecd 4751EXPORT_SYMBOL(ksize);