mm, sl[aou]b: Extract common fields from struct kmem_cache
[linux-2.6-block.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
1da177e4 119
1da177e4
LT
120#include <asm/cacheflush.h>
121#include <asm/tlbflush.h>
122#include <asm/page.h>
123
4dee6b64
SR
124#include <trace/events/kmem.h>
125
1da177e4 126/*
50953fe9 127 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
128 * 0 for faster, smaller code (especially in the critical paths).
129 *
130 * STATS - 1 to collect stats for /proc/slabinfo.
131 * 0 for faster, smaller code (especially in the critical paths).
132 *
133 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
134 */
135
136#ifdef CONFIG_DEBUG_SLAB
137#define DEBUG 1
138#define STATS 1
139#define FORCED_DEBUG 1
140#else
141#define DEBUG 0
142#define STATS 0
143#define FORCED_DEBUG 0
144#endif
145
1da177e4
LT
146/* Shouldn't this be in a header file somewhere? */
147#define BYTES_PER_WORD sizeof(void *)
87a927c7 148#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 149
1da177e4
LT
150#ifndef ARCH_KMALLOC_FLAGS
151#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
152#endif
153
154/* Legal flag mask for kmem_cache_create(). */
155#if DEBUG
50953fe9 156# define CREATE_MASK (SLAB_RED_ZONE | \
1da177e4 157 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 158 SLAB_CACHE_DMA | \
5af60839 159 SLAB_STORE_USER | \
1da177e4 160 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 161 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 162 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4 163#else
ac2b898c 164# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
5af60839 165 SLAB_CACHE_DMA | \
1da177e4 166 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
3ac7fe5a 167 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
c175eea4 168 SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
1da177e4
LT
169#endif
170
171/*
172 * kmem_bufctl_t:
173 *
174 * Bufctl's are used for linking objs within a slab
175 * linked offsets.
176 *
177 * This implementation relies on "struct page" for locating the cache &
178 * slab an object belongs to.
179 * This allows the bufctl structure to be small (one int), but limits
180 * the number of objects a slab (not a cache) can contain when off-slab
181 * bufctls are used. The limit is the size of the largest general cache
182 * that does not use off-slab slabs.
183 * For 32bit archs with 4 kB pages, is this 56.
184 * This is not serious, as it is only for large objects, when it is unwise
185 * to have too many per slab.
186 * Note: This limit can be raised by introducing a general cache whose size
187 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
188 */
189
fa5b08d5 190typedef unsigned int kmem_bufctl_t;
1da177e4
LT
191#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
192#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
193#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
194#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 195
1da177e4
LT
196/*
197 * struct slab_rcu
198 *
199 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
200 * arrange for kmem_freepages to be called via RCU. This is useful if
201 * we need to approach a kernel structure obliquely, from its address
202 * obtained without the usual locking. We can lock the structure to
203 * stabilize it and check it's still at the given address, only if we
204 * can be sure that the memory has not been meanwhile reused for some
205 * other kind of object (which our subsystem's lock might corrupt).
206 *
207 * rcu_read_lock before reading the address, then rcu_read_unlock after
208 * taking the spinlock within the structure expected at that address.
1da177e4
LT
209 */
210struct slab_rcu {
b28a02de 211 struct rcu_head head;
343e0d7a 212 struct kmem_cache *cachep;
b28a02de 213 void *addr;
1da177e4
LT
214};
215
5bfe53a7
LJ
216/*
217 * struct slab
218 *
219 * Manages the objs in a slab. Placed either at the beginning of mem allocated
220 * for a slab, or allocated from an general cache.
221 * Slabs are chained into three list: fully used, partial, fully free slabs.
222 */
223struct slab {
224 union {
225 struct {
226 struct list_head list;
227 unsigned long colouroff;
228 void *s_mem; /* including colour offset */
229 unsigned int inuse; /* num of objs active in slab */
230 kmem_bufctl_t free;
231 unsigned short nodeid;
232 };
233 struct slab_rcu __slab_cover_slab_rcu;
234 };
235};
236
1da177e4
LT
237/*
238 * struct array_cache
239 *
1da177e4
LT
240 * Purpose:
241 * - LIFO ordering, to hand out cache-warm objects from _alloc
242 * - reduce the number of linked list operations
243 * - reduce spinlock operations
244 *
245 * The limit is stored in the per-cpu structure to reduce the data cache
246 * footprint.
247 *
248 */
249struct array_cache {
250 unsigned int avail;
251 unsigned int limit;
252 unsigned int batchcount;
253 unsigned int touched;
e498be7d 254 spinlock_t lock;
bda5b655 255 void *entry[]; /*
a737b3e2
AM
256 * Must have this definition in here for the proper
257 * alignment of array_cache. Also simplifies accessing
258 * the entries.
a737b3e2 259 */
1da177e4
LT
260};
261
a737b3e2
AM
262/*
263 * bootstrap: The caches do not work without cpuarrays anymore, but the
264 * cpuarrays are allocated from the generic caches...
1da177e4
LT
265 */
266#define BOOT_CPUCACHE_ENTRIES 1
267struct arraycache_init {
268 struct array_cache cache;
b28a02de 269 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
270};
271
272/*
e498be7d 273 * The slab lists for all objects.
1da177e4
LT
274 */
275struct kmem_list3 {
b28a02de
PE
276 struct list_head slabs_partial; /* partial list first, better asm code */
277 struct list_head slabs_full;
278 struct list_head slabs_free;
279 unsigned long free_objects;
b28a02de 280 unsigned int free_limit;
2e1217cf 281 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
282 spinlock_t list_lock;
283 struct array_cache *shared; /* shared per node */
284 struct array_cache **alien; /* on other nodes */
35386e3b
CL
285 unsigned long next_reap; /* updated without locking */
286 int free_touched; /* updated without locking */
1da177e4
LT
287};
288
e498be7d
CL
289/*
290 * Need this for bootstrapping a per node allocator.
291 */
556a169d 292#define NUM_INIT_LISTS (3 * MAX_NUMNODES)
68a1b195 293static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
e498be7d 294#define CACHE_CACHE 0
556a169d
PE
295#define SIZE_AC MAX_NUMNODES
296#define SIZE_L3 (2 * MAX_NUMNODES)
e498be7d 297
ed11d9eb
CL
298static int drain_freelist(struct kmem_cache *cache,
299 struct kmem_list3 *l3, int tofree);
300static void free_block(struct kmem_cache *cachep, void **objpp, int len,
301 int node);
83b519e8 302static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 303static void cache_reap(struct work_struct *unused);
ed11d9eb 304
e498be7d 305/*
a737b3e2
AM
306 * This function must be completely optimized away if a constant is passed to
307 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 308 */
7243cc05 309static __always_inline int index_of(const size_t size)
e498be7d 310{
5ec8a847
SR
311 extern void __bad_size(void);
312
e498be7d
CL
313 if (__builtin_constant_p(size)) {
314 int i = 0;
315
316#define CACHE(x) \
317 if (size <=x) \
318 return i; \
319 else \
320 i++;
1c61fc40 321#include <linux/kmalloc_sizes.h>
e498be7d 322#undef CACHE
5ec8a847 323 __bad_size();
7243cc05 324 } else
5ec8a847 325 __bad_size();
e498be7d
CL
326 return 0;
327}
328
e0a42726
IM
329static int slab_early_init = 1;
330
e498be7d
CL
331#define INDEX_AC index_of(sizeof(struct arraycache_init))
332#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 333
5295a74c 334static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
335{
336 INIT_LIST_HEAD(&parent->slabs_full);
337 INIT_LIST_HEAD(&parent->slabs_partial);
338 INIT_LIST_HEAD(&parent->slabs_free);
339 parent->shared = NULL;
340 parent->alien = NULL;
2e1217cf 341 parent->colour_next = 0;
e498be7d
CL
342 spin_lock_init(&parent->list_lock);
343 parent->free_objects = 0;
344 parent->free_touched = 0;
345}
346
a737b3e2
AM
347#define MAKE_LIST(cachep, listp, slab, nodeid) \
348 do { \
349 INIT_LIST_HEAD(listp); \
350 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
351 } while (0)
352
a737b3e2
AM
353#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
354 do { \
e498be7d
CL
355 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
356 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
357 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
358 } while (0)
1da177e4 359
1da177e4
LT
360#define CFLGS_OFF_SLAB (0x80000000UL)
361#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
362
363#define BATCHREFILL_LIMIT 16
a737b3e2
AM
364/*
365 * Optimization question: fewer reaps means less probability for unnessary
366 * cpucache drain/refill cycles.
1da177e4 367 *
dc6f3f27 368 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
369 * which could lock up otherwise freeable slabs.
370 */
371#define REAPTIMEOUT_CPUC (2*HZ)
372#define REAPTIMEOUT_LIST3 (4*HZ)
373
374#if STATS
375#define STATS_INC_ACTIVE(x) ((x)->num_active++)
376#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
377#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
378#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 379#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
380#define STATS_SET_HIGH(x) \
381 do { \
382 if ((x)->num_active > (x)->high_mark) \
383 (x)->high_mark = (x)->num_active; \
384 } while (0)
1da177e4
LT
385#define STATS_INC_ERR(x) ((x)->errors++)
386#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 387#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 388#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
389#define STATS_SET_FREEABLE(x, i) \
390 do { \
391 if ((x)->max_freeable < i) \
392 (x)->max_freeable = i; \
393 } while (0)
1da177e4
LT
394#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
395#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
396#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
397#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
398#else
399#define STATS_INC_ACTIVE(x) do { } while (0)
400#define STATS_DEC_ACTIVE(x) do { } while (0)
401#define STATS_INC_ALLOCED(x) do { } while (0)
402#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 403#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
404#define STATS_SET_HIGH(x) do { } while (0)
405#define STATS_INC_ERR(x) do { } while (0)
406#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 407#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 408#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 409#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
410#define STATS_INC_ALLOCHIT(x) do { } while (0)
411#define STATS_INC_ALLOCMISS(x) do { } while (0)
412#define STATS_INC_FREEHIT(x) do { } while (0)
413#define STATS_INC_FREEMISS(x) do { } while (0)
414#endif
415
416#if DEBUG
1da177e4 417
a737b3e2
AM
418/*
419 * memory layout of objects:
1da177e4 420 * 0 : objp
3dafccf2 421 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
422 * the end of an object is aligned with the end of the real
423 * allocation. Catches writes behind the end of the allocation.
3dafccf2 424 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 425 * redzone word.
3dafccf2 426 * cachep->obj_offset: The real object.
3b0efdfa
CL
427 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
428 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 429 * [BYTES_PER_WORD long]
1da177e4 430 */
343e0d7a 431static int obj_offset(struct kmem_cache *cachep)
1da177e4 432{
3dafccf2 433 return cachep->obj_offset;
1da177e4
LT
434}
435
343e0d7a 436static int obj_size(struct kmem_cache *cachep)
1da177e4 437{
3b0efdfa 438 return cachep->object_size;
1da177e4
LT
439}
440
b46b8f19 441static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
442{
443 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
444 return (unsigned long long*) (objp + obj_offset(cachep) -
445 sizeof(unsigned long long));
1da177e4
LT
446}
447
b46b8f19 448static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
449{
450 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
451 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 452 return (unsigned long long *)(objp + cachep->size -
b46b8f19 453 sizeof(unsigned long long) -
87a927c7 454 REDZONE_ALIGN);
3b0efdfa 455 return (unsigned long long *) (objp + cachep->size -
b46b8f19 456 sizeof(unsigned long long));
1da177e4
LT
457}
458
343e0d7a 459static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
460{
461 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 462 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
463}
464
465#else
466
3dafccf2 467#define obj_offset(x) 0
3b0efdfa 468#define obj_size(cachep) (cachep->size)
b46b8f19
DW
469#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
470#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
471#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
472
473#endif
474
0f24f128 475#ifdef CONFIG_TRACING
36555751
EGM
476size_t slab_buffer_size(struct kmem_cache *cachep)
477{
3b0efdfa 478 return cachep->size;
36555751
EGM
479}
480EXPORT_SYMBOL(slab_buffer_size);
481#endif
482
1da177e4 483/*
3df1cccd
DR
484 * Do not go above this order unless 0 objects fit into the slab or
485 * overridden on the command line.
1da177e4 486 */
543585cc
DR
487#define SLAB_MAX_ORDER_HI 1
488#define SLAB_MAX_ORDER_LO 0
489static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 490static bool slab_max_order_set __initdata;
1da177e4 491
065d41cb
PE
492static inline struct kmem_cache *page_get_cache(struct page *page)
493{
d85f3385 494 page = compound_head(page);
ddc2e812 495 BUG_ON(!PageSlab(page));
e571b0ad 496 return page->slab_cache;
065d41cb
PE
497}
498
6ed5eb22
PE
499static inline struct kmem_cache *virt_to_cache(const void *obj)
500{
b49af68f 501 struct page *page = virt_to_head_page(obj);
35026088 502 return page->slab_cache;
6ed5eb22
PE
503}
504
505static inline struct slab *virt_to_slab(const void *obj)
506{
b49af68f 507 struct page *page = virt_to_head_page(obj);
35026088
CL
508
509 VM_BUG_ON(!PageSlab(page));
510 return page->slab_page;
6ed5eb22
PE
511}
512
8fea4e96
PE
513static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
514 unsigned int idx)
515{
3b0efdfa 516 return slab->s_mem + cache->size * idx;
8fea4e96
PE
517}
518
6a2d7a95 519/*
3b0efdfa
CL
520 * We want to avoid an expensive divide : (offset / cache->size)
521 * Using the fact that size is a constant for a particular cache,
522 * we can replace (offset / cache->size) by
6a2d7a95
ED
523 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
524 */
525static inline unsigned int obj_to_index(const struct kmem_cache *cache,
526 const struct slab *slab, void *obj)
8fea4e96 527{
6a2d7a95
ED
528 u32 offset = (obj - slab->s_mem);
529 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
530}
531
a737b3e2
AM
532/*
533 * These are the default caches for kmalloc. Custom caches can have other sizes.
534 */
1da177e4
LT
535struct cache_sizes malloc_sizes[] = {
536#define CACHE(x) { .cs_size = (x) },
537#include <linux/kmalloc_sizes.h>
538 CACHE(ULONG_MAX)
539#undef CACHE
540};
541EXPORT_SYMBOL(malloc_sizes);
542
543/* Must match cache_sizes above. Out of line to keep cache footprint low. */
544struct cache_names {
545 char *name;
546 char *name_dma;
547};
548
549static struct cache_names __initdata cache_names[] = {
550#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
551#include <linux/kmalloc_sizes.h>
b28a02de 552 {NULL,}
1da177e4
LT
553#undef CACHE
554};
555
556static struct arraycache_init initarray_cache __initdata =
b28a02de 557 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 558static struct arraycache_init initarray_generic =
b28a02de 559 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
560
561/* internal cache of cache description objs */
b56efcf0 562static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
343e0d7a 563static struct kmem_cache cache_cache = {
b56efcf0 564 .nodelists = cache_cache_nodelists,
b28a02de
PE
565 .batchcount = 1,
566 .limit = BOOT_CPUCACHE_ENTRIES,
567 .shared = 1,
3b0efdfa 568 .size = sizeof(struct kmem_cache),
b28a02de 569 .name = "kmem_cache",
1da177e4
LT
570};
571
056c6241
RT
572#define BAD_ALIEN_MAGIC 0x01020304ul
573
ce79ddc8
PE
574/*
575 * chicken and egg problem: delay the per-cpu array allocation
576 * until the general caches are up.
577 */
578static enum {
579 NONE,
580 PARTIAL_AC,
581 PARTIAL_L3,
582 EARLY,
52cef189 583 LATE,
ce79ddc8
PE
584 FULL
585} g_cpucache_up;
586
587/*
588 * used by boot code to determine if it can use slab based allocator
589 */
590int slab_is_available(void)
591{
592 return g_cpucache_up >= EARLY;
593}
594
f1aaee53
AV
595#ifdef CONFIG_LOCKDEP
596
597/*
598 * Slab sometimes uses the kmalloc slabs to store the slab headers
599 * for other slabs "off slab".
600 * The locking for this is tricky in that it nests within the locks
601 * of all other slabs in a few places; to deal with this special
602 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
603 *
604 * We set lock class for alien array caches which are up during init.
605 * The lock annotation will be lost if all cpus of a node goes down and
606 * then comes back up during hotplug
f1aaee53 607 */
056c6241
RT
608static struct lock_class_key on_slab_l3_key;
609static struct lock_class_key on_slab_alc_key;
610
83835b3d
PZ
611static struct lock_class_key debugobj_l3_key;
612static struct lock_class_key debugobj_alc_key;
613
614static void slab_set_lock_classes(struct kmem_cache *cachep,
615 struct lock_class_key *l3_key, struct lock_class_key *alc_key,
616 int q)
617{
618 struct array_cache **alc;
619 struct kmem_list3 *l3;
620 int r;
621
622 l3 = cachep->nodelists[q];
623 if (!l3)
624 return;
625
626 lockdep_set_class(&l3->list_lock, l3_key);
627 alc = l3->alien;
628 /*
629 * FIXME: This check for BAD_ALIEN_MAGIC
630 * should go away when common slab code is taught to
631 * work even without alien caches.
632 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
633 * for alloc_alien_cache,
634 */
635 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
636 return;
637 for_each_node(r) {
638 if (alc[r])
639 lockdep_set_class(&alc[r]->lock, alc_key);
640 }
641}
642
643static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
644{
645 slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
646}
647
648static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
649{
650 int node;
651
652 for_each_online_node(node)
653 slab_set_debugobj_lock_classes_node(cachep, node);
654}
655
ce79ddc8 656static void init_node_lock_keys(int q)
f1aaee53 657{
056c6241
RT
658 struct cache_sizes *s = malloc_sizes;
659
52cef189 660 if (g_cpucache_up < LATE)
ce79ddc8
PE
661 return;
662
663 for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
ce79ddc8 664 struct kmem_list3 *l3;
ce79ddc8
PE
665
666 l3 = s->cs_cachep->nodelists[q];
667 if (!l3 || OFF_SLAB(s->cs_cachep))
00afa758 668 continue;
83835b3d
PZ
669
670 slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
671 &on_slab_alc_key, q);
f1aaee53
AV
672 }
673}
ce79ddc8
PE
674
675static inline void init_lock_keys(void)
676{
677 int node;
678
679 for_each_node(node)
680 init_node_lock_keys(node);
681}
f1aaee53 682#else
ce79ddc8
PE
683static void init_node_lock_keys(int q)
684{
685}
686
056c6241 687static inline void init_lock_keys(void)
f1aaee53
AV
688{
689}
83835b3d
PZ
690
691static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
692{
693}
694
695static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
696{
697}
f1aaee53
AV
698#endif
699
8f5be20b 700/*
95402b38 701 * Guard access to the cache-chain.
8f5be20b 702 */
fc0abb14 703static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
704static struct list_head cache_chain;
705
1871e52c 706static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 707
343e0d7a 708static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
709{
710 return cachep->array[smp_processor_id()];
711}
712
a737b3e2
AM
713static inline struct kmem_cache *__find_general_cachep(size_t size,
714 gfp_t gfpflags)
1da177e4
LT
715{
716 struct cache_sizes *csizep = malloc_sizes;
717
718#if DEBUG
719 /* This happens if someone tries to call
b28a02de
PE
720 * kmem_cache_create(), or __kmalloc(), before
721 * the generic caches are initialized.
722 */
c7e43c78 723 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4 724#endif
6cb8f913
CL
725 if (!size)
726 return ZERO_SIZE_PTR;
727
1da177e4
LT
728 while (size > csizep->cs_size)
729 csizep++;
730
731 /*
0abf40c1 732 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
733 * has cs_{dma,}cachep==NULL. Thus no special case
734 * for large kmalloc calls required.
735 */
4b51d669 736#ifdef CONFIG_ZONE_DMA
1da177e4
LT
737 if (unlikely(gfpflags & GFP_DMA))
738 return csizep->cs_dmacachep;
4b51d669 739#endif
1da177e4
LT
740 return csizep->cs_cachep;
741}
742
b221385b 743static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
744{
745 return __find_general_cachep(size, gfpflags);
746}
97e2bde4 747
fbaccacf 748static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 749{
fbaccacf
SR
750 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
751}
1da177e4 752
a737b3e2
AM
753/*
754 * Calculate the number of objects and left-over bytes for a given buffer size.
755 */
fbaccacf
SR
756static void cache_estimate(unsigned long gfporder, size_t buffer_size,
757 size_t align, int flags, size_t *left_over,
758 unsigned int *num)
759{
760 int nr_objs;
761 size_t mgmt_size;
762 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 763
fbaccacf
SR
764 /*
765 * The slab management structure can be either off the slab or
766 * on it. For the latter case, the memory allocated for a
767 * slab is used for:
768 *
769 * - The struct slab
770 * - One kmem_bufctl_t for each object
771 * - Padding to respect alignment of @align
772 * - @buffer_size bytes for each object
773 *
774 * If the slab management structure is off the slab, then the
775 * alignment will already be calculated into the size. Because
776 * the slabs are all pages aligned, the objects will be at the
777 * correct alignment when allocated.
778 */
779 if (flags & CFLGS_OFF_SLAB) {
780 mgmt_size = 0;
781 nr_objs = slab_size / buffer_size;
782
783 if (nr_objs > SLAB_LIMIT)
784 nr_objs = SLAB_LIMIT;
785 } else {
786 /*
787 * Ignore padding for the initial guess. The padding
788 * is at most @align-1 bytes, and @buffer_size is at
789 * least @align. In the worst case, this result will
790 * be one greater than the number of objects that fit
791 * into the memory allocation when taking the padding
792 * into account.
793 */
794 nr_objs = (slab_size - sizeof(struct slab)) /
795 (buffer_size + sizeof(kmem_bufctl_t));
796
797 /*
798 * This calculated number will be either the right
799 * amount, or one greater than what we want.
800 */
801 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
802 > slab_size)
803 nr_objs--;
804
805 if (nr_objs > SLAB_LIMIT)
806 nr_objs = SLAB_LIMIT;
807
808 mgmt_size = slab_mgmt_size(nr_objs, align);
809 }
810 *num = nr_objs;
811 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
812}
813
d40cee24 814#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 815
a737b3e2
AM
816static void __slab_error(const char *function, struct kmem_cache *cachep,
817 char *msg)
1da177e4
LT
818{
819 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 820 function, cachep->name, msg);
1da177e4
LT
821 dump_stack();
822}
823
3395ee05
PM
824/*
825 * By default on NUMA we use alien caches to stage the freeing of
826 * objects allocated from other nodes. This causes massive memory
827 * inefficiencies when using fake NUMA setup to split memory into a
828 * large number of small nodes, so it can be disabled on the command
829 * line
830 */
831
832static int use_alien_caches __read_mostly = 1;
833static int __init noaliencache_setup(char *s)
834{
835 use_alien_caches = 0;
836 return 1;
837}
838__setup("noaliencache", noaliencache_setup);
839
3df1cccd
DR
840static int __init slab_max_order_setup(char *str)
841{
842 get_option(&str, &slab_max_order);
843 slab_max_order = slab_max_order < 0 ? 0 :
844 min(slab_max_order, MAX_ORDER - 1);
845 slab_max_order_set = true;
846
847 return 1;
848}
849__setup("slab_max_order=", slab_max_order_setup);
850
8fce4d8e
CL
851#ifdef CONFIG_NUMA
852/*
853 * Special reaping functions for NUMA systems called from cache_reap().
854 * These take care of doing round robin flushing of alien caches (containing
855 * objects freed on different nodes from which they were allocated) and the
856 * flushing of remote pcps by calling drain_node_pages.
857 */
1871e52c 858static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
859
860static void init_reap_node(int cpu)
861{
862 int node;
863
7d6e6d09 864 node = next_node(cpu_to_mem(cpu), node_online_map);
8fce4d8e 865 if (node == MAX_NUMNODES)
442295c9 866 node = first_node(node_online_map);
8fce4d8e 867
1871e52c 868 per_cpu(slab_reap_node, cpu) = node;
8fce4d8e
CL
869}
870
871static void next_reap_node(void)
872{
909ea964 873 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 874
8fce4d8e
CL
875 node = next_node(node, node_online_map);
876 if (unlikely(node >= MAX_NUMNODES))
877 node = first_node(node_online_map);
909ea964 878 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
879}
880
881#else
882#define init_reap_node(cpu) do { } while (0)
883#define next_reap_node(void) do { } while (0)
884#endif
885
1da177e4
LT
886/*
887 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
888 * via the workqueue/eventd.
889 * Add the CPU number into the expiration time to minimize the possibility of
890 * the CPUs getting into lockstep and contending for the global cache chain
891 * lock.
892 */
897e679b 893static void __cpuinit start_cpu_timer(int cpu)
1da177e4 894{
1871e52c 895 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4
LT
896
897 /*
898 * When this gets called from do_initcalls via cpucache_init(),
899 * init_workqueues() has already run, so keventd will be setup
900 * at that time.
901 */
52bad64d 902 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 903 init_reap_node(cpu);
78b43536 904 INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
2b284214
AV
905 schedule_delayed_work_on(cpu, reap_work,
906 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
907 }
908}
909
e498be7d 910static struct array_cache *alloc_arraycache(int node, int entries,
83b519e8 911 int batchcount, gfp_t gfp)
1da177e4 912{
b28a02de 913 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
914 struct array_cache *nc = NULL;
915
83b519e8 916 nc = kmalloc_node(memsize, gfp, node);
d5cff635
CM
917 /*
918 * The array_cache structures contain pointers to free object.
25985edc 919 * However, when such objects are allocated or transferred to another
d5cff635
CM
920 * cache the pointers are not cleared and they could be counted as
921 * valid references during a kmemleak scan. Therefore, kmemleak must
922 * not scan such objects.
923 */
924 kmemleak_no_scan(nc);
1da177e4
LT
925 if (nc) {
926 nc->avail = 0;
927 nc->limit = entries;
928 nc->batchcount = batchcount;
929 nc->touched = 0;
e498be7d 930 spin_lock_init(&nc->lock);
1da177e4
LT
931 }
932 return nc;
933}
934
3ded175a
CL
935/*
936 * Transfer objects in one arraycache to another.
937 * Locking must be handled by the caller.
938 *
939 * Return the number of entries transferred.
940 */
941static int transfer_objects(struct array_cache *to,
942 struct array_cache *from, unsigned int max)
943{
944 /* Figure out how many entries to transfer */
732eacc0 945 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
946
947 if (!nr)
948 return 0;
949
950 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
951 sizeof(void *) *nr);
952
953 from->avail -= nr;
954 to->avail += nr;
3ded175a
CL
955 return nr;
956}
957
765c4507
CL
958#ifndef CONFIG_NUMA
959
960#define drain_alien_cache(cachep, alien) do { } while (0)
961#define reap_alien(cachep, l3) do { } while (0)
962
83b519e8 963static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
765c4507
CL
964{
965 return (struct array_cache **)BAD_ALIEN_MAGIC;
966}
967
968static inline void free_alien_cache(struct array_cache **ac_ptr)
969{
970}
971
972static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
973{
974 return 0;
975}
976
977static inline void *alternate_node_alloc(struct kmem_cache *cachep,
978 gfp_t flags)
979{
980 return NULL;
981}
982
8b98c169 983static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
984 gfp_t flags, int nodeid)
985{
986 return NULL;
987}
988
989#else /* CONFIG_NUMA */
990
8b98c169 991static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 992static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 993
83b519e8 994static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d
CL
995{
996 struct array_cache **ac_ptr;
8ef82866 997 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
998 int i;
999
1000 if (limit > 1)
1001 limit = 12;
f3186a9c 1002 ac_ptr = kzalloc_node(memsize, gfp, node);
e498be7d
CL
1003 if (ac_ptr) {
1004 for_each_node(i) {
f3186a9c 1005 if (i == node || !node_online(i))
e498be7d 1006 continue;
83b519e8 1007 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
e498be7d 1008 if (!ac_ptr[i]) {
cc550def 1009 for (i--; i >= 0; i--)
e498be7d
CL
1010 kfree(ac_ptr[i]);
1011 kfree(ac_ptr);
1012 return NULL;
1013 }
1014 }
1015 }
1016 return ac_ptr;
1017}
1018
5295a74c 1019static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1020{
1021 int i;
1022
1023 if (!ac_ptr)
1024 return;
e498be7d 1025 for_each_node(i)
b28a02de 1026 kfree(ac_ptr[i]);
e498be7d
CL
1027 kfree(ac_ptr);
1028}
1029
343e0d7a 1030static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1031 struct array_cache *ac, int node)
e498be7d
CL
1032{
1033 struct kmem_list3 *rl3 = cachep->nodelists[node];
1034
1035 if (ac->avail) {
1036 spin_lock(&rl3->list_lock);
e00946fe
CL
1037 /*
1038 * Stuff objects into the remote nodes shared array first.
1039 * That way we could avoid the overhead of putting the objects
1040 * into the free lists and getting them back later.
1041 */
693f7d36 1042 if (rl3->shared)
1043 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1044
ff69416e 1045 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1046 ac->avail = 0;
1047 spin_unlock(&rl3->list_lock);
1048 }
1049}
1050
8fce4d8e
CL
1051/*
1052 * Called from cache_reap() to regularly drain alien caches round robin.
1053 */
1054static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1055{
909ea964 1056 int node = __this_cpu_read(slab_reap_node);
8fce4d8e
CL
1057
1058 if (l3->alien) {
1059 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1060
1061 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1062 __drain_alien_cache(cachep, ac, node);
1063 spin_unlock_irq(&ac->lock);
1064 }
1065 }
1066}
1067
a737b3e2
AM
1068static void drain_alien_cache(struct kmem_cache *cachep,
1069 struct array_cache **alien)
e498be7d 1070{
b28a02de 1071 int i = 0;
e498be7d
CL
1072 struct array_cache *ac;
1073 unsigned long flags;
1074
1075 for_each_online_node(i) {
4484ebf1 1076 ac = alien[i];
e498be7d
CL
1077 if (ac) {
1078 spin_lock_irqsave(&ac->lock, flags);
1079 __drain_alien_cache(cachep, ac, i);
1080 spin_unlock_irqrestore(&ac->lock, flags);
1081 }
1082 }
1083}
729bd0b7 1084
873623df 1085static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1086{
1087 struct slab *slabp = virt_to_slab(objp);
1088 int nodeid = slabp->nodeid;
1089 struct kmem_list3 *l3;
1090 struct array_cache *alien = NULL;
1ca4cb24
PE
1091 int node;
1092
7d6e6d09 1093 node = numa_mem_id();
729bd0b7
PE
1094
1095 /*
1096 * Make sure we are not freeing a object from another node to the array
1097 * cache on this cpu.
1098 */
62918a03 1099 if (likely(slabp->nodeid == node))
729bd0b7
PE
1100 return 0;
1101
1ca4cb24 1102 l3 = cachep->nodelists[node];
729bd0b7
PE
1103 STATS_INC_NODEFREES(cachep);
1104 if (l3->alien && l3->alien[nodeid]) {
1105 alien = l3->alien[nodeid];
873623df 1106 spin_lock(&alien->lock);
729bd0b7
PE
1107 if (unlikely(alien->avail == alien->limit)) {
1108 STATS_INC_ACOVERFLOW(cachep);
1109 __drain_alien_cache(cachep, alien, nodeid);
1110 }
1111 alien->entry[alien->avail++] = objp;
1112 spin_unlock(&alien->lock);
1113 } else {
1114 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1115 free_block(cachep, &objp, 1, nodeid);
1116 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1117 }
1118 return 1;
1119}
e498be7d
CL
1120#endif
1121
8f9f8d9e
DR
1122/*
1123 * Allocates and initializes nodelists for a node on each slab cache, used for
1124 * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
1125 * will be allocated off-node since memory is not yet online for the new node.
1126 * When hotplugging memory or a cpu, existing nodelists are not replaced if
1127 * already in use.
1128 *
1129 * Must hold cache_chain_mutex.
1130 */
1131static int init_cache_nodelists_node(int node)
1132{
1133 struct kmem_cache *cachep;
1134 struct kmem_list3 *l3;
1135 const int memsize = sizeof(struct kmem_list3);
1136
3b0efdfa 1137 list_for_each_entry(cachep, &cache_chain, list) {
8f9f8d9e
DR
1138 /*
1139 * Set up the size64 kmemlist for cpu before we can
1140 * begin anything. Make sure some other cpu on this
1141 * node has not already allocated this
1142 */
1143 if (!cachep->nodelists[node]) {
1144 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1145 if (!l3)
1146 return -ENOMEM;
1147 kmem_list3_init(l3);
1148 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
1149 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1150
1151 /*
1152 * The l3s don't come and go as CPUs come and
1153 * go. cache_chain_mutex is sufficient
1154 * protection here.
1155 */
1156 cachep->nodelists[node] = l3;
1157 }
1158
1159 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1160 cachep->nodelists[node]->free_limit =
1161 (1 + nr_cpus_node(node)) *
1162 cachep->batchcount + cachep->num;
1163 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1164 }
1165 return 0;
1166}
1167
fbf1e473
AM
1168static void __cpuinit cpuup_canceled(long cpu)
1169{
1170 struct kmem_cache *cachep;
1171 struct kmem_list3 *l3 = NULL;
7d6e6d09 1172 int node = cpu_to_mem(cpu);
a70f7302 1173 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 1174
3b0efdfa 1175 list_for_each_entry(cachep, &cache_chain, list) {
fbf1e473
AM
1176 struct array_cache *nc;
1177 struct array_cache *shared;
1178 struct array_cache **alien;
fbf1e473 1179
fbf1e473
AM
1180 /* cpu is dead; no one can alloc from it. */
1181 nc = cachep->array[cpu];
1182 cachep->array[cpu] = NULL;
1183 l3 = cachep->nodelists[node];
1184
1185 if (!l3)
1186 goto free_array_cache;
1187
1188 spin_lock_irq(&l3->list_lock);
1189
1190 /* Free limit for this kmem_list3 */
1191 l3->free_limit -= cachep->batchcount;
1192 if (nc)
1193 free_block(cachep, nc->entry, nc->avail, node);
1194
58463c1f 1195 if (!cpumask_empty(mask)) {
fbf1e473
AM
1196 spin_unlock_irq(&l3->list_lock);
1197 goto free_array_cache;
1198 }
1199
1200 shared = l3->shared;
1201 if (shared) {
1202 free_block(cachep, shared->entry,
1203 shared->avail, node);
1204 l3->shared = NULL;
1205 }
1206
1207 alien = l3->alien;
1208 l3->alien = NULL;
1209
1210 spin_unlock_irq(&l3->list_lock);
1211
1212 kfree(shared);
1213 if (alien) {
1214 drain_alien_cache(cachep, alien);
1215 free_alien_cache(alien);
1216 }
1217free_array_cache:
1218 kfree(nc);
1219 }
1220 /*
1221 * In the previous loop, all the objects were freed to
1222 * the respective cache's slabs, now we can go ahead and
1223 * shrink each nodelist to its limit.
1224 */
3b0efdfa 1225 list_for_each_entry(cachep, &cache_chain, list) {
fbf1e473
AM
1226 l3 = cachep->nodelists[node];
1227 if (!l3)
1228 continue;
1229 drain_freelist(cachep, l3, l3->free_objects);
1230 }
1231}
1232
1233static int __cpuinit cpuup_prepare(long cpu)
1da177e4 1234{
343e0d7a 1235 struct kmem_cache *cachep;
e498be7d 1236 struct kmem_list3 *l3 = NULL;
7d6e6d09 1237 int node = cpu_to_mem(cpu);
8f9f8d9e 1238 int err;
1da177e4 1239
fbf1e473
AM
1240 /*
1241 * We need to do this right in the beginning since
1242 * alloc_arraycache's are going to use this list.
1243 * kmalloc_node allows us to add the slab to the right
1244 * kmem_list3 and not this cpu's kmem_list3
1245 */
8f9f8d9e
DR
1246 err = init_cache_nodelists_node(node);
1247 if (err < 0)
1248 goto bad;
fbf1e473
AM
1249
1250 /*
1251 * Now we can go ahead with allocating the shared arrays and
1252 * array caches
1253 */
3b0efdfa 1254 list_for_each_entry(cachep, &cache_chain, list) {
fbf1e473
AM
1255 struct array_cache *nc;
1256 struct array_cache *shared = NULL;
1257 struct array_cache **alien = NULL;
1258
1259 nc = alloc_arraycache(node, cachep->limit,
83b519e8 1260 cachep->batchcount, GFP_KERNEL);
fbf1e473
AM
1261 if (!nc)
1262 goto bad;
1263 if (cachep->shared) {
1264 shared = alloc_arraycache(node,
1265 cachep->shared * cachep->batchcount,
83b519e8 1266 0xbaadf00d, GFP_KERNEL);
12d00f6a
AM
1267 if (!shared) {
1268 kfree(nc);
1da177e4 1269 goto bad;
12d00f6a 1270 }
fbf1e473
AM
1271 }
1272 if (use_alien_caches) {
83b519e8 1273 alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
12d00f6a
AM
1274 if (!alien) {
1275 kfree(shared);
1276 kfree(nc);
fbf1e473 1277 goto bad;
12d00f6a 1278 }
fbf1e473
AM
1279 }
1280 cachep->array[cpu] = nc;
1281 l3 = cachep->nodelists[node];
1282 BUG_ON(!l3);
1283
1284 spin_lock_irq(&l3->list_lock);
1285 if (!l3->shared) {
1286 /*
1287 * We are serialised from CPU_DEAD or
1288 * CPU_UP_CANCELLED by the cpucontrol lock
1289 */
1290 l3->shared = shared;
1291 shared = NULL;
1292 }
4484ebf1 1293#ifdef CONFIG_NUMA
fbf1e473
AM
1294 if (!l3->alien) {
1295 l3->alien = alien;
1296 alien = NULL;
1da177e4 1297 }
fbf1e473
AM
1298#endif
1299 spin_unlock_irq(&l3->list_lock);
1300 kfree(shared);
1301 free_alien_cache(alien);
83835b3d
PZ
1302 if (cachep->flags & SLAB_DEBUG_OBJECTS)
1303 slab_set_debugobj_lock_classes_node(cachep, node);
fbf1e473 1304 }
ce79ddc8
PE
1305 init_node_lock_keys(node);
1306
fbf1e473
AM
1307 return 0;
1308bad:
12d00f6a 1309 cpuup_canceled(cpu);
fbf1e473
AM
1310 return -ENOMEM;
1311}
1312
1313static int __cpuinit cpuup_callback(struct notifier_block *nfb,
1314 unsigned long action, void *hcpu)
1315{
1316 long cpu = (long)hcpu;
1317 int err = 0;
1318
1319 switch (action) {
fbf1e473
AM
1320 case CPU_UP_PREPARE:
1321 case CPU_UP_PREPARE_FROZEN:
95402b38 1322 mutex_lock(&cache_chain_mutex);
fbf1e473 1323 err = cpuup_prepare(cpu);
95402b38 1324 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1325 break;
1326 case CPU_ONLINE:
8bb78442 1327 case CPU_ONLINE_FROZEN:
1da177e4
LT
1328 start_cpu_timer(cpu);
1329 break;
1330#ifdef CONFIG_HOTPLUG_CPU
5830c590 1331 case CPU_DOWN_PREPARE:
8bb78442 1332 case CPU_DOWN_PREPARE_FROZEN:
5830c590
CL
1333 /*
1334 * Shutdown cache reaper. Note that the cache_chain_mutex is
1335 * held so that if cache_reap() is invoked it cannot do
1336 * anything expensive but will only modify reap_work
1337 * and reschedule the timer.
1338 */
afe2c511 1339 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
5830c590 1340 /* Now the cache_reaper is guaranteed to be not running. */
1871e52c 1341 per_cpu(slab_reap_work, cpu).work.func = NULL;
5830c590
CL
1342 break;
1343 case CPU_DOWN_FAILED:
8bb78442 1344 case CPU_DOWN_FAILED_FROZEN:
5830c590
CL
1345 start_cpu_timer(cpu);
1346 break;
1da177e4 1347 case CPU_DEAD:
8bb78442 1348 case CPU_DEAD_FROZEN:
4484ebf1
RT
1349 /*
1350 * Even if all the cpus of a node are down, we don't free the
1351 * kmem_list3 of any cache. This to avoid a race between
1352 * cpu_down, and a kmalloc allocation from another cpu for
1353 * memory from the node of the cpu going down. The list3
1354 * structure is usually allocated from kmem_cache_create() and
1355 * gets destroyed at kmem_cache_destroy().
1356 */
183ff22b 1357 /* fall through */
8f5be20b 1358#endif
1da177e4 1359 case CPU_UP_CANCELED:
8bb78442 1360 case CPU_UP_CANCELED_FROZEN:
95402b38 1361 mutex_lock(&cache_chain_mutex);
fbf1e473 1362 cpuup_canceled(cpu);
fc0abb14 1363 mutex_unlock(&cache_chain_mutex);
1da177e4 1364 break;
1da177e4 1365 }
eac40680 1366 return notifier_from_errno(err);
1da177e4
LT
1367}
1368
74b85f37
CS
1369static struct notifier_block __cpuinitdata cpucache_notifier = {
1370 &cpuup_callback, NULL, 0
1371};
1da177e4 1372
8f9f8d9e
DR
1373#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1374/*
1375 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1376 * Returns -EBUSY if all objects cannot be drained so that the node is not
1377 * removed.
1378 *
1379 * Must hold cache_chain_mutex.
1380 */
1381static int __meminit drain_cache_nodelists_node(int node)
1382{
1383 struct kmem_cache *cachep;
1384 int ret = 0;
1385
3b0efdfa 1386 list_for_each_entry(cachep, &cache_chain, list) {
8f9f8d9e
DR
1387 struct kmem_list3 *l3;
1388
1389 l3 = cachep->nodelists[node];
1390 if (!l3)
1391 continue;
1392
1393 drain_freelist(cachep, l3, l3->free_objects);
1394
1395 if (!list_empty(&l3->slabs_full) ||
1396 !list_empty(&l3->slabs_partial)) {
1397 ret = -EBUSY;
1398 break;
1399 }
1400 }
1401 return ret;
1402}
1403
1404static int __meminit slab_memory_callback(struct notifier_block *self,
1405 unsigned long action, void *arg)
1406{
1407 struct memory_notify *mnb = arg;
1408 int ret = 0;
1409 int nid;
1410
1411 nid = mnb->status_change_nid;
1412 if (nid < 0)
1413 goto out;
1414
1415 switch (action) {
1416 case MEM_GOING_ONLINE:
1417 mutex_lock(&cache_chain_mutex);
1418 ret = init_cache_nodelists_node(nid);
1419 mutex_unlock(&cache_chain_mutex);
1420 break;
1421 case MEM_GOING_OFFLINE:
1422 mutex_lock(&cache_chain_mutex);
1423 ret = drain_cache_nodelists_node(nid);
1424 mutex_unlock(&cache_chain_mutex);
1425 break;
1426 case MEM_ONLINE:
1427 case MEM_OFFLINE:
1428 case MEM_CANCEL_ONLINE:
1429 case MEM_CANCEL_OFFLINE:
1430 break;
1431 }
1432out:
5fda1bd5 1433 return notifier_from_errno(ret);
8f9f8d9e
DR
1434}
1435#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1436
e498be7d
CL
1437/*
1438 * swap the static kmem_list3 with kmalloced memory
1439 */
8f9f8d9e
DR
1440static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1441 int nodeid)
e498be7d
CL
1442{
1443 struct kmem_list3 *ptr;
1444
83b519e8 1445 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
e498be7d
CL
1446 BUG_ON(!ptr);
1447
e498be7d 1448 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1449 /*
1450 * Do not assume that spinlocks can be initialized via memcpy:
1451 */
1452 spin_lock_init(&ptr->list_lock);
1453
e498be7d
CL
1454 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1455 cachep->nodelists[nodeid] = ptr;
e498be7d
CL
1456}
1457
556a169d
PE
1458/*
1459 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1460 * size of kmem_list3.
1461 */
1462static void __init set_up_list3s(struct kmem_cache *cachep, int index)
1463{
1464 int node;
1465
1466 for_each_online_node(node) {
1467 cachep->nodelists[node] = &initkmem_list3[index + node];
1468 cachep->nodelists[node]->next_reap = jiffies +
1469 REAPTIMEOUT_LIST3 +
1470 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
1471 }
1472}
1473
a737b3e2
AM
1474/*
1475 * Initialisation. Called after the page allocator have been initialised and
1476 * before smp_init().
1da177e4
LT
1477 */
1478void __init kmem_cache_init(void)
1479{
1480 size_t left_over;
1481 struct cache_sizes *sizes;
1482 struct cache_names *names;
e498be7d 1483 int i;
07ed76b2 1484 int order;
1ca4cb24 1485 int node;
e498be7d 1486
b6e68bc1 1487 if (num_possible_nodes() == 1)
62918a03
SS
1488 use_alien_caches = 0;
1489
e498be7d
CL
1490 for (i = 0; i < NUM_INIT_LISTS; i++) {
1491 kmem_list3_init(&initkmem_list3[i]);
1492 if (i < MAX_NUMNODES)
1493 cache_cache.nodelists[i] = NULL;
1494 }
556a169d 1495 set_up_list3s(&cache_cache, CACHE_CACHE);
1da177e4
LT
1496
1497 /*
1498 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1499 * page orders on machines with more than 32MB of memory if
1500 * not overridden on the command line.
1da177e4 1501 */
3df1cccd 1502 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1503 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1504
1da177e4
LT
1505 /* Bootstrap is tricky, because several objects are allocated
1506 * from caches that do not exist yet:
a737b3e2
AM
1507 * 1) initialize the cache_cache cache: it contains the struct
1508 * kmem_cache structures of all caches, except cache_cache itself:
1509 * cache_cache is statically allocated.
e498be7d
CL
1510 * Initially an __init data area is used for the head array and the
1511 * kmem_list3 structures, it's replaced with a kmalloc allocated
1512 * array at the end of the bootstrap.
1da177e4 1513 * 2) Create the first kmalloc cache.
343e0d7a 1514 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1515 * An __init data area is used for the head array.
1516 * 3) Create the remaining kmalloc caches, with minimally sized
1517 * head arrays.
1da177e4
LT
1518 * 4) Replace the __init data head arrays for cache_cache and the first
1519 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1520 * 5) Replace the __init data for kmem_list3 for cache_cache and
1521 * the other cache's with kmalloc allocated memory.
1522 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1523 */
1524
7d6e6d09 1525 node = numa_mem_id();
1ca4cb24 1526
1da177e4 1527 /* 1) create the cache_cache */
1da177e4 1528 INIT_LIST_HEAD(&cache_chain);
3b0efdfa 1529 list_add(&cache_cache.list, &cache_chain);
1da177e4
LT
1530 cache_cache.colour_off = cache_line_size();
1531 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
ec1f5eee 1532 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
1da177e4 1533
8da3430d 1534 /*
b56efcf0 1535 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1536 */
3b0efdfa 1537 cache_cache.size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
b56efcf0 1538 nr_node_ids * sizeof(struct kmem_list3 *);
3b0efdfa
CL
1539 cache_cache.object_size = cache_cache.size;
1540 cache_cache.size = ALIGN(cache_cache.size,
a737b3e2 1541 cache_line_size());
6a2d7a95 1542 cache_cache.reciprocal_buffer_size =
3b0efdfa 1543 reciprocal_value(cache_cache.size);
1da177e4 1544
07ed76b2 1545 for (order = 0; order < MAX_ORDER; order++) {
3b0efdfa 1546 cache_estimate(order, cache_cache.size,
07ed76b2
JS
1547 cache_line_size(), 0, &left_over, &cache_cache.num);
1548 if (cache_cache.num)
1549 break;
1550 }
40094fa6 1551 BUG_ON(!cache_cache.num);
07ed76b2 1552 cache_cache.gfporder = order;
b28a02de 1553 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1554 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1555 sizeof(struct slab), cache_line_size());
1da177e4
LT
1556
1557 /* 2+3) create the kmalloc caches */
1558 sizes = malloc_sizes;
1559 names = cache_names;
1560
a737b3e2
AM
1561 /*
1562 * Initialize the caches that provide memory for the array cache and the
1563 * kmem_list3 structures first. Without this, further allocations will
1564 * bug.
e498be7d
CL
1565 */
1566
1567 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1568 sizes[INDEX_AC].cs_size,
1569 ARCH_KMALLOC_MINALIGN,
1570 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1571 NULL);
e498be7d 1572
a737b3e2 1573 if (INDEX_AC != INDEX_L3) {
e498be7d 1574 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1575 kmem_cache_create(names[INDEX_L3].name,
1576 sizes[INDEX_L3].cs_size,
1577 ARCH_KMALLOC_MINALIGN,
1578 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1579 NULL);
a737b3e2 1580 }
e498be7d 1581
e0a42726
IM
1582 slab_early_init = 0;
1583
1da177e4 1584 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1585 /*
1586 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1587 * This should be particularly beneficial on SMP boxes, as it
1588 * eliminates "false sharing".
1589 * Note for systems short on memory removing the alignment will
e498be7d
CL
1590 * allow tighter packing of the smaller caches.
1591 */
a737b3e2 1592 if (!sizes->cs_cachep) {
e498be7d 1593 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1594 sizes->cs_size,
1595 ARCH_KMALLOC_MINALIGN,
1596 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
20c2df83 1597 NULL);
a737b3e2 1598 }
4b51d669
CL
1599#ifdef CONFIG_ZONE_DMA
1600 sizes->cs_dmacachep = kmem_cache_create(
1601 names->name_dma,
a737b3e2
AM
1602 sizes->cs_size,
1603 ARCH_KMALLOC_MINALIGN,
1604 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1605 SLAB_PANIC,
20c2df83 1606 NULL);
4b51d669 1607#endif
1da177e4
LT
1608 sizes++;
1609 names++;
1610 }
1611 /* 4) Replace the bootstrap head arrays */
1612 {
2b2d5493 1613 struct array_cache *ptr;
e498be7d 1614
83b519e8 1615 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1616
9a2dba4b
PE
1617 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1618 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1619 sizeof(struct arraycache_init));
2b2d5493
IM
1620 /*
1621 * Do not assume that spinlocks can be initialized via memcpy:
1622 */
1623 spin_lock_init(&ptr->lock);
1624
1da177e4 1625 cache_cache.array[smp_processor_id()] = ptr;
e498be7d 1626
83b519e8 1627 ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
e498be7d 1628
9a2dba4b 1629 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1630 != &initarray_generic.cache);
9a2dba4b 1631 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1632 sizeof(struct arraycache_init));
2b2d5493
IM
1633 /*
1634 * Do not assume that spinlocks can be initialized via memcpy:
1635 */
1636 spin_lock_init(&ptr->lock);
1637
e498be7d 1638 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1639 ptr;
1da177e4 1640 }
e498be7d
CL
1641 /* 5) Replace the bootstrap kmem_list3's */
1642 {
1ca4cb24
PE
1643 int nid;
1644
9c09a95c 1645 for_each_online_node(nid) {
ec1f5eee 1646 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
556a169d 1647
e498be7d 1648 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1649 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1650
1651 if (INDEX_AC != INDEX_L3) {
1652 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1653 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1654 }
1655 }
1656 }
1da177e4 1657
8429db5c 1658 g_cpucache_up = EARLY;
8429db5c
PE
1659}
1660
1661void __init kmem_cache_init_late(void)
1662{
1663 struct kmem_cache *cachep;
1664
52cef189
PZ
1665 g_cpucache_up = LATE;
1666
30765b92
PZ
1667 /* Annotate slab for lockdep -- annotate the malloc caches */
1668 init_lock_keys();
1669
8429db5c
PE
1670 /* 6) resize the head arrays to their final sizes */
1671 mutex_lock(&cache_chain_mutex);
3b0efdfa 1672 list_for_each_entry(cachep, &cache_chain, list)
8429db5c
PE
1673 if (enable_cpucache(cachep, GFP_NOWAIT))
1674 BUG();
1675 mutex_unlock(&cache_chain_mutex);
056c6241 1676
1da177e4
LT
1677 /* Done! */
1678 g_cpucache_up = FULL;
1679
a737b3e2
AM
1680 /*
1681 * Register a cpu startup notifier callback that initializes
1682 * cpu_cache_get for all new cpus
1da177e4
LT
1683 */
1684 register_cpu_notifier(&cpucache_notifier);
1da177e4 1685
8f9f8d9e
DR
1686#ifdef CONFIG_NUMA
1687 /*
1688 * Register a memory hotplug callback that initializes and frees
1689 * nodelists.
1690 */
1691 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1692#endif
1693
a737b3e2
AM
1694 /*
1695 * The reap timers are started later, with a module init call: That part
1696 * of the kernel is not yet operational.
1da177e4
LT
1697 */
1698}
1699
1700static int __init cpucache_init(void)
1701{
1702 int cpu;
1703
a737b3e2
AM
1704 /*
1705 * Register the timers that return unneeded pages to the page allocator
1da177e4 1706 */
e498be7d 1707 for_each_online_cpu(cpu)
a737b3e2 1708 start_cpu_timer(cpu);
1da177e4
LT
1709 return 0;
1710}
1da177e4
LT
1711__initcall(cpucache_init);
1712
8bdec192
RA
1713static noinline void
1714slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1715{
1716 struct kmem_list3 *l3;
1717 struct slab *slabp;
1718 unsigned long flags;
1719 int node;
1720
1721 printk(KERN_WARNING
1722 "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1723 nodeid, gfpflags);
1724 printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
3b0efdfa 1725 cachep->name, cachep->size, cachep->gfporder);
8bdec192
RA
1726
1727 for_each_online_node(node) {
1728 unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
1729 unsigned long active_slabs = 0, num_slabs = 0;
1730
1731 l3 = cachep->nodelists[node];
1732 if (!l3)
1733 continue;
1734
1735 spin_lock_irqsave(&l3->list_lock, flags);
1736 list_for_each_entry(slabp, &l3->slabs_full, list) {
1737 active_objs += cachep->num;
1738 active_slabs++;
1739 }
1740 list_for_each_entry(slabp, &l3->slabs_partial, list) {
1741 active_objs += slabp->inuse;
1742 active_slabs++;
1743 }
1744 list_for_each_entry(slabp, &l3->slabs_free, list)
1745 num_slabs++;
1746
1747 free_objects += l3->free_objects;
1748 spin_unlock_irqrestore(&l3->list_lock, flags);
1749
1750 num_slabs += active_slabs;
1751 num_objs = num_slabs * cachep->num;
1752 printk(KERN_WARNING
1753 " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
1754 node, active_slabs, num_slabs, active_objs, num_objs,
1755 free_objects);
1756 }
1757}
1758
1da177e4
LT
1759/*
1760 * Interface to system's page allocator. No need to hold the cache-lock.
1761 *
1762 * If we requested dmaable memory, we will get it. Even if we
1763 * did not request dmaable memory, we might get it, but that
1764 * would be relatively rare and ignorable.
1765 */
343e0d7a 1766static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1767{
1768 struct page *page;
e1b6aa6f 1769 int nr_pages;
1da177e4
LT
1770 int i;
1771
d6fef9da 1772#ifndef CONFIG_MMU
e1b6aa6f
CH
1773 /*
1774 * Nommu uses slab's for process anonymous memory allocations, and thus
1775 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1776 */
e1b6aa6f 1777 flags |= __GFP_COMP;
d6fef9da 1778#endif
765c4507 1779
3c517a61 1780 flags |= cachep->gfpflags;
e12ba74d
MG
1781 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1782 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1783
517d0869 1784 page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192
RA
1785 if (!page) {
1786 if (!(flags & __GFP_NOWARN) && printk_ratelimit())
1787 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1788 return NULL;
8bdec192 1789 }
1da177e4 1790
e1b6aa6f 1791 nr_pages = (1 << cachep->gfporder);
1da177e4 1792 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1793 add_zone_page_state(page_zone(page),
1794 NR_SLAB_RECLAIMABLE, nr_pages);
1795 else
1796 add_zone_page_state(page_zone(page),
1797 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1798 for (i = 0; i < nr_pages; i++)
1799 __SetPageSlab(page + i);
c175eea4 1800
b1eeab67
VN
1801 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1802 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1803
1804 if (cachep->ctor)
1805 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1806 else
1807 kmemcheck_mark_unallocated_pages(page, nr_pages);
1808 }
c175eea4 1809
e1b6aa6f 1810 return page_address(page);
1da177e4
LT
1811}
1812
1813/*
1814 * Interface to system's page release.
1815 */
343e0d7a 1816static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1817{
b28a02de 1818 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1819 struct page *page = virt_to_page(addr);
1820 const unsigned long nr_freed = i;
1821
b1eeab67 1822 kmemcheck_free_shadow(page, cachep->gfporder);
c175eea4 1823
972d1a7b
CL
1824 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1825 sub_zone_page_state(page_zone(page),
1826 NR_SLAB_RECLAIMABLE, nr_freed);
1827 else
1828 sub_zone_page_state(page_zone(page),
1829 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1830 while (i--) {
f205b2fe
NP
1831 BUG_ON(!PageSlab(page));
1832 __ClearPageSlab(page);
1da177e4
LT
1833 page++;
1834 }
1da177e4
LT
1835 if (current->reclaim_state)
1836 current->reclaim_state->reclaimed_slab += nr_freed;
1837 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1838}
1839
1840static void kmem_rcu_free(struct rcu_head *head)
1841{
b28a02de 1842 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1843 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1844
1845 kmem_freepages(cachep, slab_rcu->addr);
1846 if (OFF_SLAB(cachep))
1847 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1848}
1849
1850#if DEBUG
1851
1852#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1853static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1854 unsigned long caller)
1da177e4 1855{
3dafccf2 1856 int size = obj_size(cachep);
1da177e4 1857
3dafccf2 1858 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1859
b28a02de 1860 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1861 return;
1862
b28a02de
PE
1863 *addr++ = 0x12345678;
1864 *addr++ = caller;
1865 *addr++ = smp_processor_id();
1866 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1867 {
1868 unsigned long *sptr = &caller;
1869 unsigned long svalue;
1870
1871 while (!kstack_end(sptr)) {
1872 svalue = *sptr++;
1873 if (kernel_text_address(svalue)) {
b28a02de 1874 *addr++ = svalue;
1da177e4
LT
1875 size -= sizeof(unsigned long);
1876 if (size <= sizeof(unsigned long))
1877 break;
1878 }
1879 }
1880
1881 }
b28a02de 1882 *addr++ = 0x87654321;
1da177e4
LT
1883}
1884#endif
1885
343e0d7a 1886static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1887{
3dafccf2
MS
1888 int size = obj_size(cachep);
1889 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1890
1891 memset(addr, val, size);
b28a02de 1892 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1893}
1894
1895static void dump_line(char *data, int offset, int limit)
1896{
1897 int i;
aa83aa40
DJ
1898 unsigned char error = 0;
1899 int bad_count = 0;
1900
fdde6abb 1901 printk(KERN_ERR "%03x: ", offset);
aa83aa40
DJ
1902 for (i = 0; i < limit; i++) {
1903 if (data[offset + i] != POISON_FREE) {
1904 error = data[offset + i];
1905 bad_count++;
1906 }
aa83aa40 1907 }
fdde6abb
SAS
1908 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1909 &data[offset], limit, 1);
aa83aa40
DJ
1910
1911 if (bad_count == 1) {
1912 error ^= POISON_FREE;
1913 if (!(error & (error - 1))) {
1914 printk(KERN_ERR "Single bit error detected. Probably "
1915 "bad RAM.\n");
1916#ifdef CONFIG_X86
1917 printk(KERN_ERR "Run memtest86+ or a similar memory "
1918 "test tool.\n");
1919#else
1920 printk(KERN_ERR "Run a memory test tool.\n");
1921#endif
1922 }
1923 }
1da177e4
LT
1924}
1925#endif
1926
1927#if DEBUG
1928
343e0d7a 1929static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1930{
1931 int i, size;
1932 char *realobj;
1933
1934 if (cachep->flags & SLAB_RED_ZONE) {
b46b8f19 1935 printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
a737b3e2
AM
1936 *dbg_redzone1(cachep, objp),
1937 *dbg_redzone2(cachep, objp));
1da177e4
LT
1938 }
1939
1940 if (cachep->flags & SLAB_STORE_USER) {
1941 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1942 *dbg_userword(cachep, objp));
1da177e4 1943 print_symbol("(%s)",
a737b3e2 1944 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1945 printk("\n");
1946 }
3dafccf2
MS
1947 realobj = (char *)objp + obj_offset(cachep);
1948 size = obj_size(cachep);
b28a02de 1949 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1950 int limit;
1951 limit = 16;
b28a02de
PE
1952 if (i + limit > size)
1953 limit = size - i;
1da177e4
LT
1954 dump_line(realobj, i, limit);
1955 }
1956}
1957
343e0d7a 1958static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1959{
1960 char *realobj;
1961 int size, i;
1962 int lines = 0;
1963
3dafccf2
MS
1964 realobj = (char *)objp + obj_offset(cachep);
1965 size = obj_size(cachep);
1da177e4 1966
b28a02de 1967 for (i = 0; i < size; i++) {
1da177e4 1968 char exp = POISON_FREE;
b28a02de 1969 if (i == size - 1)
1da177e4
LT
1970 exp = POISON_END;
1971 if (realobj[i] != exp) {
1972 int limit;
1973 /* Mismatch ! */
1974 /* Print header */
1975 if (lines == 0) {
b28a02de 1976 printk(KERN_ERR
face37f5
DJ
1977 "Slab corruption (%s): %s start=%p, len=%d\n",
1978 print_tainted(), cachep->name, realobj, size);
1da177e4
LT
1979 print_objinfo(cachep, objp, 0);
1980 }
1981 /* Hexdump the affected line */
b28a02de 1982 i = (i / 16) * 16;
1da177e4 1983 limit = 16;
b28a02de
PE
1984 if (i + limit > size)
1985 limit = size - i;
1da177e4
LT
1986 dump_line(realobj, i, limit);
1987 i += 16;
1988 lines++;
1989 /* Limit to 5 lines */
1990 if (lines > 5)
1991 break;
1992 }
1993 }
1994 if (lines != 0) {
1995 /* Print some data about the neighboring objects, if they
1996 * exist:
1997 */
6ed5eb22 1998 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1999 unsigned int objnr;
1da177e4 2000
8fea4e96 2001 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 2002 if (objnr) {
8fea4e96 2003 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 2004 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2005 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 2006 realobj, size);
1da177e4
LT
2007 print_objinfo(cachep, objp, 2);
2008 }
b28a02de 2009 if (objnr + 1 < cachep->num) {
8fea4e96 2010 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 2011 realobj = (char *)objp + obj_offset(cachep);
1da177e4 2012 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 2013 realobj, size);
1da177e4
LT
2014 print_objinfo(cachep, objp, 2);
2015 }
2016 }
2017}
2018#endif
2019
12dd36fa 2020#if DEBUG
e79aec29 2021static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 2022{
1da177e4
LT
2023 int i;
2024 for (i = 0; i < cachep->num; i++) {
8fea4e96 2025 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2026
2027 if (cachep->flags & SLAB_POISON) {
2028#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 2029 if (cachep->size % PAGE_SIZE == 0 &&
a737b3e2 2030 OFF_SLAB(cachep))
b28a02de 2031 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2032 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
2033 else
2034 check_poison_obj(cachep, objp);
2035#else
2036 check_poison_obj(cachep, objp);
2037#endif
2038 }
2039 if (cachep->flags & SLAB_RED_ZONE) {
2040 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2041 slab_error(cachep, "start of a freed object "
b28a02de 2042 "was overwritten");
1da177e4
LT
2043 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2044 slab_error(cachep, "end of a freed object "
b28a02de 2045 "was overwritten");
1da177e4 2046 }
1da177e4 2047 }
12dd36fa 2048}
1da177e4 2049#else
e79aec29 2050static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 2051{
12dd36fa 2052}
1da177e4
LT
2053#endif
2054
911851e6
RD
2055/**
2056 * slab_destroy - destroy and release all objects in a slab
2057 * @cachep: cache pointer being destroyed
2058 * @slabp: slab pointer being destroyed
2059 *
12dd36fa 2060 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
2061 * Before calling the slab must have been unlinked from the cache. The
2062 * cache-lock is not held/needed.
12dd36fa 2063 */
343e0d7a 2064static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
2065{
2066 void *addr = slabp->s_mem - slabp->colouroff;
2067
e79aec29 2068 slab_destroy_debugcheck(cachep, slabp);
1da177e4
LT
2069 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
2070 struct slab_rcu *slab_rcu;
2071
b28a02de 2072 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
2073 slab_rcu->cachep = cachep;
2074 slab_rcu->addr = addr;
2075 call_rcu(&slab_rcu->head, kmem_rcu_free);
2076 } else {
2077 kmem_freepages(cachep, addr);
873623df
IM
2078 if (OFF_SLAB(cachep))
2079 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
2080 }
2081}
2082
117f6eb1
CL
2083static void __kmem_cache_destroy(struct kmem_cache *cachep)
2084{
2085 int i;
2086 struct kmem_list3 *l3;
2087
2088 for_each_online_cpu(i)
2089 kfree(cachep->array[i]);
2090
2091 /* NUMA: free the list3 structures */
2092 for_each_online_node(i) {
2093 l3 = cachep->nodelists[i];
2094 if (l3) {
2095 kfree(l3->shared);
2096 free_alien_cache(l3->alien);
2097 kfree(l3);
2098 }
2099 }
2100 kmem_cache_free(&cache_cache, cachep);
2101}
2102
2103
4d268eba 2104/**
a70773dd
RD
2105 * calculate_slab_order - calculate size (page order) of slabs
2106 * @cachep: pointer to the cache that is being created
2107 * @size: size of objects to be created in this cache.
2108 * @align: required alignment for the objects.
2109 * @flags: slab allocation flags
2110 *
2111 * Also calculates the number of objects per slab.
4d268eba
PE
2112 *
2113 * This could be made much more intelligent. For now, try to avoid using
2114 * high order pages for slabs. When the gfp() functions are more friendly
2115 * towards high-order requests, this should be changed.
2116 */
a737b3e2 2117static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 2118 size_t size, size_t align, unsigned long flags)
4d268eba 2119{
b1ab41c4 2120 unsigned long offslab_limit;
4d268eba 2121 size_t left_over = 0;
9888e6fa 2122 int gfporder;
4d268eba 2123
0aa817f0 2124 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
2125 unsigned int num;
2126 size_t remainder;
2127
9888e6fa 2128 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2129 if (!num)
2130 continue;
9888e6fa 2131
b1ab41c4
IM
2132 if (flags & CFLGS_OFF_SLAB) {
2133 /*
2134 * Max number of objs-per-slab for caches which
2135 * use off-slab slabs. Needed to avoid a possible
2136 * looping condition in cache_grow().
2137 */
2138 offslab_limit = size - sizeof(struct slab);
2139 offslab_limit /= sizeof(kmem_bufctl_t);
2140
2141 if (num > offslab_limit)
2142 break;
2143 }
4d268eba 2144
9888e6fa 2145 /* Found something acceptable - save it away */
4d268eba 2146 cachep->num = num;
9888e6fa 2147 cachep->gfporder = gfporder;
4d268eba
PE
2148 left_over = remainder;
2149
f78bb8ad
LT
2150 /*
2151 * A VFS-reclaimable slab tends to have most allocations
2152 * as GFP_NOFS and we really don't want to have to be allocating
2153 * higher-order pages when we are unable to shrink dcache.
2154 */
2155 if (flags & SLAB_RECLAIM_ACCOUNT)
2156 break;
2157
4d268eba
PE
2158 /*
2159 * Large number of objects is good, but very large slabs are
2160 * currently bad for the gfp()s.
2161 */
543585cc 2162 if (gfporder >= slab_max_order)
4d268eba
PE
2163 break;
2164
9888e6fa
LT
2165 /*
2166 * Acceptable internal fragmentation?
2167 */
a737b3e2 2168 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2169 break;
2170 }
2171 return left_over;
2172}
2173
83b519e8 2174static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 2175{
2ed3a4ef 2176 if (g_cpucache_up == FULL)
83b519e8 2177 return enable_cpucache(cachep, gfp);
2ed3a4ef 2178
f30cf7d1
PE
2179 if (g_cpucache_up == NONE) {
2180 /*
2181 * Note: the first kmem_cache_create must create the cache
2182 * that's used by kmalloc(24), otherwise the creation of
2183 * further caches will BUG().
2184 */
2185 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2186
2187 /*
2188 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2189 * the first cache, then we need to set up all its list3s,
2190 * otherwise the creation of further caches will BUG().
2191 */
2192 set_up_list3s(cachep, SIZE_AC);
2193 if (INDEX_AC == INDEX_L3)
2194 g_cpucache_up = PARTIAL_L3;
2195 else
2196 g_cpucache_up = PARTIAL_AC;
2197 } else {
2198 cachep->array[smp_processor_id()] =
83b519e8 2199 kmalloc(sizeof(struct arraycache_init), gfp);
f30cf7d1
PE
2200
2201 if (g_cpucache_up == PARTIAL_AC) {
2202 set_up_list3s(cachep, SIZE_L3);
2203 g_cpucache_up = PARTIAL_L3;
2204 } else {
2205 int node;
556a169d 2206 for_each_online_node(node) {
f30cf7d1
PE
2207 cachep->nodelists[node] =
2208 kmalloc_node(sizeof(struct kmem_list3),
eb91f1d0 2209 gfp, node);
f30cf7d1
PE
2210 BUG_ON(!cachep->nodelists[node]);
2211 kmem_list3_init(cachep->nodelists[node]);
2212 }
2213 }
2214 }
7d6e6d09 2215 cachep->nodelists[numa_mem_id()]->next_reap =
f30cf7d1
PE
2216 jiffies + REAPTIMEOUT_LIST3 +
2217 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2218
2219 cpu_cache_get(cachep)->avail = 0;
2220 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2221 cpu_cache_get(cachep)->batchcount = 1;
2222 cpu_cache_get(cachep)->touched = 0;
2223 cachep->batchcount = 1;
2224 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2225 return 0;
f30cf7d1
PE
2226}
2227
1da177e4
LT
2228/**
2229 * kmem_cache_create - Create a cache.
2230 * @name: A string which is used in /proc/slabinfo to identify this cache.
2231 * @size: The size of objects to be created in this cache.
2232 * @align: The required alignment for the objects.
2233 * @flags: SLAB flags
2234 * @ctor: A constructor for the objects.
1da177e4
LT
2235 *
2236 * Returns a ptr to the cache on success, NULL on failure.
2237 * Cannot be called within a int, but can be interrupted.
20c2df83 2238 * The @ctor is run when new pages are allocated by the cache.
1da177e4
LT
2239 *
2240 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2241 * the module calling this has to destroy the cache before getting unloaded.
2242 *
1da177e4
LT
2243 * The flags are
2244 *
2245 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2246 * to catch references to uninitialised memory.
2247 *
2248 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2249 * for buffer overruns.
2250 *
1da177e4
LT
2251 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2252 * cacheline. This can be beneficial if you're counting cycles as closely
2253 * as davem.
2254 */
343e0d7a 2255struct kmem_cache *
1da177e4 2256kmem_cache_create (const char *name, size_t size, size_t align,
51cc5068 2257 unsigned long flags, void (*ctor)(void *))
1da177e4
LT
2258{
2259 size_t left_over, slab_size, ralign;
7a7c381d 2260 struct kmem_cache *cachep = NULL, *pc;
83b519e8 2261 gfp_t gfp;
1da177e4
LT
2262
2263 /*
2264 * Sanity checks... these are all serious usage bugs.
2265 */
a737b3e2 2266 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
20c2df83 2267 size > KMALLOC_MAX_SIZE) {
d40cee24 2268 printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
a737b3e2 2269 name);
b28a02de
PE
2270 BUG();
2271 }
1da177e4 2272
f0188f47 2273 /*
8f5be20b 2274 * We use cache_chain_mutex to ensure a consistent view of
174596a0 2275 * cpu_online_mask as well. Please see cpuup_callback
f0188f47 2276 */
83b519e8
PE
2277 if (slab_is_available()) {
2278 get_online_cpus();
2279 mutex_lock(&cache_chain_mutex);
2280 }
4f12bb4f 2281
3b0efdfa 2282 list_for_each_entry(pc, &cache_chain, list) {
4f12bb4f
AM
2283 char tmp;
2284 int res;
2285
2286 /*
2287 * This happens when the module gets unloaded and doesn't
2288 * destroy its slab cache and no-one else reuses the vmalloc
2289 * area of the module. Print a warning.
2290 */
138ae663 2291 res = probe_kernel_address(pc->name, tmp);
4f12bb4f 2292 if (res) {
b4169525 2293 printk(KERN_ERR
2294 "SLAB: cache with size %d has lost its name\n",
3b0efdfa 2295 pc->size);
4f12bb4f
AM
2296 continue;
2297 }
2298
b28a02de 2299 if (!strcmp(pc->name, name)) {
b4169525 2300 printk(KERN_ERR
2301 "kmem_cache_create: duplicate cache %s\n", name);
4f12bb4f
AM
2302 dump_stack();
2303 goto oops;
2304 }
2305 }
2306
1da177e4
LT
2307#if DEBUG
2308 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
1da177e4
LT
2309#if FORCED_DEBUG
2310 /*
2311 * Enable redzoning and last user accounting, except for caches with
2312 * large objects, if the increased size would increase the object size
2313 * above the next power of two: caches with object sizes just above a
2314 * power of two have a significant amount of internal fragmentation.
2315 */
87a927c7
DW
2316 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2317 2 * sizeof(unsigned long long)))
b28a02de 2318 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2319 if (!(flags & SLAB_DESTROY_BY_RCU))
2320 flags |= SLAB_POISON;
2321#endif
2322 if (flags & SLAB_DESTROY_BY_RCU)
2323 BUG_ON(flags & SLAB_POISON);
2324#endif
1da177e4 2325 /*
a737b3e2
AM
2326 * Always checks flags, a caller might be expecting debug support which
2327 * isn't available.
1da177e4 2328 */
40094fa6 2329 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2330
a737b3e2
AM
2331 /*
2332 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2333 * unaligned accesses for some archs when redzoning is used, and makes
2334 * sure any on-slab bufctl's are also correctly aligned.
2335 */
b28a02de
PE
2336 if (size & (BYTES_PER_WORD - 1)) {
2337 size += (BYTES_PER_WORD - 1);
2338 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2339 }
2340
a737b3e2
AM
2341 /* calculate the final buffer alignment: */
2342
1da177e4
LT
2343 /* 1) arch recommendation: can be overridden for debug */
2344 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2345 /*
2346 * Default alignment: as specified by the arch code. Except if
2347 * an object is really small, then squeeze multiple objects into
2348 * one cacheline.
1da177e4
LT
2349 */
2350 ralign = cache_line_size();
b28a02de 2351 while (size <= ralign / 2)
1da177e4
LT
2352 ralign /= 2;
2353 } else {
2354 ralign = BYTES_PER_WORD;
2355 }
ca5f9703
PE
2356
2357 /*
87a927c7
DW
2358 * Redzoning and user store require word alignment or possibly larger.
2359 * Note this will be overridden by architecture or caller mandated
2360 * alignment if either is greater than BYTES_PER_WORD.
ca5f9703 2361 */
87a927c7
DW
2362 if (flags & SLAB_STORE_USER)
2363 ralign = BYTES_PER_WORD;
2364
2365 if (flags & SLAB_RED_ZONE) {
2366 ralign = REDZONE_ALIGN;
2367 /* If redzoning, ensure that the second redzone is suitably
2368 * aligned, by adjusting the object size accordingly. */
2369 size += REDZONE_ALIGN - 1;
2370 size &= ~(REDZONE_ALIGN - 1);
2371 }
ca5f9703 2372
a44b56d3 2373 /* 2) arch mandated alignment */
1da177e4
LT
2374 if (ralign < ARCH_SLAB_MINALIGN) {
2375 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2376 }
a44b56d3 2377 /* 3) caller mandated alignment */
1da177e4
LT
2378 if (ralign < align) {
2379 ralign = align;
1da177e4 2380 }
3ff84a7f
PE
2381 /* disable debug if necessary */
2382 if (ralign > __alignof__(unsigned long long))
a44b56d3 2383 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2384 /*
ca5f9703 2385 * 4) Store it.
1da177e4
LT
2386 */
2387 align = ralign;
2388
83b519e8
PE
2389 if (slab_is_available())
2390 gfp = GFP_KERNEL;
2391 else
2392 gfp = GFP_NOWAIT;
2393
1da177e4 2394 /* Get cache's description obj. */
83b519e8 2395 cachep = kmem_cache_zalloc(&cache_cache, gfp);
1da177e4 2396 if (!cachep)
4f12bb4f 2397 goto oops;
1da177e4 2398
b56efcf0 2399 cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
3b0efdfa
CL
2400 cachep->object_size = size;
2401 cachep->align = align;
1da177e4 2402#if DEBUG
1da177e4 2403
ca5f9703
PE
2404 /*
2405 * Both debugging options require word-alignment which is calculated
2406 * into align above.
2407 */
1da177e4 2408 if (flags & SLAB_RED_ZONE) {
1da177e4 2409 /* add space for red zone words */
3ff84a7f
PE
2410 cachep->obj_offset += sizeof(unsigned long long);
2411 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2412 }
2413 if (flags & SLAB_STORE_USER) {
ca5f9703 2414 /* user store requires one word storage behind the end of
87a927c7
DW
2415 * the real object. But if the second red zone needs to be
2416 * aligned to 64 bits, we must allow that much space.
1da177e4 2417 */
87a927c7
DW
2418 if (flags & SLAB_RED_ZONE)
2419 size += REDZONE_ALIGN;
2420 else
2421 size += BYTES_PER_WORD;
1da177e4
LT
2422 }
2423#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2424 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3b0efdfa 2425 && cachep->object_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
1ab335d8 2426 cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
1da177e4
LT
2427 size = PAGE_SIZE;
2428 }
2429#endif
2430#endif
2431
e0a42726
IM
2432 /*
2433 * Determine if the slab management is 'on' or 'off' slab.
2434 * (bootstrapping cannot cope with offslab caches so don't do
e7cb55b9
CM
2435 * it too early on. Always use on-slab management when
2436 * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
e0a42726 2437 */
e7cb55b9
CM
2438 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
2439 !(flags & SLAB_NOLEAKTRACE))
1da177e4
LT
2440 /*
2441 * Size is large, assume best to place the slab management obj
2442 * off-slab (should allow better packing of objs).
2443 */
2444 flags |= CFLGS_OFF_SLAB;
2445
2446 size = ALIGN(size, align);
2447
f78bb8ad 2448 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2449
2450 if (!cachep->num) {
b4169525 2451 printk(KERN_ERR
2452 "kmem_cache_create: couldn't create cache %s.\n", name);
1da177e4
LT
2453 kmem_cache_free(&cache_cache, cachep);
2454 cachep = NULL;
4f12bb4f 2455 goto oops;
1da177e4 2456 }
b28a02de
PE
2457 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2458 + sizeof(struct slab), align);
1da177e4
LT
2459
2460 /*
2461 * If the slab has been placed off-slab, and we have enough space then
2462 * move it on-slab. This is at the expense of any extra colouring.
2463 */
2464 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2465 flags &= ~CFLGS_OFF_SLAB;
2466 left_over -= slab_size;
2467 }
2468
2469 if (flags & CFLGS_OFF_SLAB) {
2470 /* really off slab. No need for manual alignment */
b28a02de
PE
2471 slab_size =
2472 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
67461365
RL
2473
2474#ifdef CONFIG_PAGE_POISONING
2475 /* If we're going to use the generic kernel_map_pages()
2476 * poisoning, then it's going to smash the contents of
2477 * the redzone and userword anyhow, so switch them off.
2478 */
2479 if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
2480 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2481#endif
1da177e4
LT
2482 }
2483
2484 cachep->colour_off = cache_line_size();
2485 /* Offset must be a multiple of the alignment. */
2486 if (cachep->colour_off < align)
2487 cachep->colour_off = align;
b28a02de 2488 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2489 cachep->slab_size = slab_size;
2490 cachep->flags = flags;
2491 cachep->gfpflags = 0;
4b51d669 2492 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2493 cachep->gfpflags |= GFP_DMA;
3b0efdfa 2494 cachep->size = size;
6a2d7a95 2495 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2496
e5ac9c5a 2497 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2498 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2499 /*
2500 * This is a possibility for one of the malloc_sizes caches.
2501 * But since we go off slab only for object size greater than
2502 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2503 * this should not happen at all.
2504 * But leave a BUG_ON for some lucky dude.
2505 */
6cb8f913 2506 BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
e5ac9c5a 2507 }
1da177e4 2508 cachep->ctor = ctor;
1da177e4
LT
2509 cachep->name = name;
2510
83b519e8 2511 if (setup_cpu_cache(cachep, gfp)) {
2ed3a4ef
CL
2512 __kmem_cache_destroy(cachep);
2513 cachep = NULL;
2514 goto oops;
2515 }
1da177e4 2516
83835b3d
PZ
2517 if (flags & SLAB_DEBUG_OBJECTS) {
2518 /*
2519 * Would deadlock through slab_destroy()->call_rcu()->
2520 * debug_object_activate()->kmem_cache_alloc().
2521 */
2522 WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
2523
2524 slab_set_debugobj_lock_classes(cachep);
2525 }
2526
1da177e4 2527 /* cache setup completed, link it into the list */
3b0efdfa 2528 list_add(&cachep->list, &cache_chain);
a737b3e2 2529oops:
1da177e4
LT
2530 if (!cachep && (flags & SLAB_PANIC))
2531 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2532 name);
83b519e8
PE
2533 if (slab_is_available()) {
2534 mutex_unlock(&cache_chain_mutex);
2535 put_online_cpus();
2536 }
1da177e4
LT
2537 return cachep;
2538}
2539EXPORT_SYMBOL(kmem_cache_create);
2540
2541#if DEBUG
2542static void check_irq_off(void)
2543{
2544 BUG_ON(!irqs_disabled());
2545}
2546
2547static void check_irq_on(void)
2548{
2549 BUG_ON(irqs_disabled());
2550}
2551
343e0d7a 2552static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2553{
2554#ifdef CONFIG_SMP
2555 check_irq_off();
7d6e6d09 2556 assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
1da177e4
LT
2557#endif
2558}
e498be7d 2559
343e0d7a 2560static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2561{
2562#ifdef CONFIG_SMP
2563 check_irq_off();
2564 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2565#endif
2566}
2567
1da177e4
LT
2568#else
2569#define check_irq_off() do { } while(0)
2570#define check_irq_on() do { } while(0)
2571#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2572#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2573#endif
2574
aab2207c
CL
2575static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2576 struct array_cache *ac,
2577 int force, int node);
2578
1da177e4
LT
2579static void do_drain(void *arg)
2580{
a737b3e2 2581 struct kmem_cache *cachep = arg;
1da177e4 2582 struct array_cache *ac;
7d6e6d09 2583 int node = numa_mem_id();
1da177e4
LT
2584
2585 check_irq_off();
9a2dba4b 2586 ac = cpu_cache_get(cachep);
ff69416e
CL
2587 spin_lock(&cachep->nodelists[node]->list_lock);
2588 free_block(cachep, ac->entry, ac->avail, node);
2589 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2590 ac->avail = 0;
2591}
2592
343e0d7a 2593static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2594{
e498be7d
CL
2595 struct kmem_list3 *l3;
2596 int node;
2597
15c8b6c1 2598 on_each_cpu(do_drain, cachep, 1);
1da177e4 2599 check_irq_on();
b28a02de 2600 for_each_online_node(node) {
e498be7d 2601 l3 = cachep->nodelists[node];
a4523a8b
RD
2602 if (l3 && l3->alien)
2603 drain_alien_cache(cachep, l3->alien);
2604 }
2605
2606 for_each_online_node(node) {
2607 l3 = cachep->nodelists[node];
2608 if (l3)
aab2207c 2609 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2610 }
1da177e4
LT
2611}
2612
ed11d9eb
CL
2613/*
2614 * Remove slabs from the list of free slabs.
2615 * Specify the number of slabs to drain in tofree.
2616 *
2617 * Returns the actual number of slabs released.
2618 */
2619static int drain_freelist(struct kmem_cache *cache,
2620 struct kmem_list3 *l3, int tofree)
1da177e4 2621{
ed11d9eb
CL
2622 struct list_head *p;
2623 int nr_freed;
1da177e4 2624 struct slab *slabp;
1da177e4 2625
ed11d9eb
CL
2626 nr_freed = 0;
2627 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2628
ed11d9eb 2629 spin_lock_irq(&l3->list_lock);
e498be7d 2630 p = l3->slabs_free.prev;
ed11d9eb
CL
2631 if (p == &l3->slabs_free) {
2632 spin_unlock_irq(&l3->list_lock);
2633 goto out;
2634 }
1da177e4 2635
ed11d9eb 2636 slabp = list_entry(p, struct slab, list);
1da177e4 2637#if DEBUG
40094fa6 2638 BUG_ON(slabp->inuse);
1da177e4
LT
2639#endif
2640 list_del(&slabp->list);
ed11d9eb
CL
2641 /*
2642 * Safe to drop the lock. The slab is no longer linked
2643 * to the cache.
2644 */
2645 l3->free_objects -= cache->num;
e498be7d 2646 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2647 slab_destroy(cache, slabp);
2648 nr_freed++;
1da177e4 2649 }
ed11d9eb
CL
2650out:
2651 return nr_freed;
1da177e4
LT
2652}
2653
8f5be20b 2654/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2655static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2656{
2657 int ret = 0, i = 0;
2658 struct kmem_list3 *l3;
2659
2660 drain_cpu_caches(cachep);
2661
2662 check_irq_on();
2663 for_each_online_node(i) {
2664 l3 = cachep->nodelists[i];
ed11d9eb
CL
2665 if (!l3)
2666 continue;
2667
2668 drain_freelist(cachep, l3, l3->free_objects);
2669
2670 ret += !list_empty(&l3->slabs_full) ||
2671 !list_empty(&l3->slabs_partial);
e498be7d
CL
2672 }
2673 return (ret ? 1 : 0);
2674}
2675
1da177e4
LT
2676/**
2677 * kmem_cache_shrink - Shrink a cache.
2678 * @cachep: The cache to shrink.
2679 *
2680 * Releases as many slabs as possible for a cache.
2681 * To help debugging, a zero exit status indicates all slabs were released.
2682 */
343e0d7a 2683int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2684{
8f5be20b 2685 int ret;
40094fa6 2686 BUG_ON(!cachep || in_interrupt());
1da177e4 2687
95402b38 2688 get_online_cpus();
8f5be20b
RT
2689 mutex_lock(&cache_chain_mutex);
2690 ret = __cache_shrink(cachep);
2691 mutex_unlock(&cache_chain_mutex);
95402b38 2692 put_online_cpus();
8f5be20b 2693 return ret;
1da177e4
LT
2694}
2695EXPORT_SYMBOL(kmem_cache_shrink);
2696
2697/**
2698 * kmem_cache_destroy - delete a cache
2699 * @cachep: the cache to destroy
2700 *
72fd4a35 2701 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2702 *
2703 * It is expected this function will be called by a module when it is
2704 * unloaded. This will remove the cache completely, and avoid a duplicate
2705 * cache being allocated each time a module is loaded and unloaded, if the
2706 * module doesn't have persistent in-kernel storage across loads and unloads.
2707 *
2708 * The cache must be empty before calling this function.
2709 *
25985edc 2710 * The caller must guarantee that no one will allocate memory from the cache
1da177e4
LT
2711 * during the kmem_cache_destroy().
2712 */
133d205a 2713void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2714{
40094fa6 2715 BUG_ON(!cachep || in_interrupt());
1da177e4 2716
1da177e4 2717 /* Find the cache in the chain of caches. */
95402b38 2718 get_online_cpus();
fc0abb14 2719 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2720 /*
2721 * the chain is never empty, cache_cache is never destroyed
2722 */
3b0efdfa 2723 list_del(&cachep->list);
1da177e4
LT
2724 if (__cache_shrink(cachep)) {
2725 slab_error(cachep, "Can't free all objects");
3b0efdfa 2726 list_add(&cachep->list, &cache_chain);
fc0abb14 2727 mutex_unlock(&cache_chain_mutex);
95402b38 2728 put_online_cpus();
133d205a 2729 return;
1da177e4
LT
2730 }
2731
2732 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
7ed9f7e5 2733 rcu_barrier();
1da177e4 2734
117f6eb1 2735 __kmem_cache_destroy(cachep);
8f5be20b 2736 mutex_unlock(&cache_chain_mutex);
95402b38 2737 put_online_cpus();
1da177e4
LT
2738}
2739EXPORT_SYMBOL(kmem_cache_destroy);
2740
e5ac9c5a
RT
2741/*
2742 * Get the memory for a slab management obj.
2743 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2744 * always come from malloc_sizes caches. The slab descriptor cannot
2745 * come from the same cache which is getting created because,
2746 * when we are searching for an appropriate cache for these
2747 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2748 * If we are creating a malloc_sizes cache here it would not be visible to
2749 * kmem_find_general_cachep till the initialization is complete.
2750 * Hence we cannot have slabp_cache same as the original cache.
2751 */
343e0d7a 2752static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2753 int colour_off, gfp_t local_flags,
2754 int nodeid)
1da177e4
LT
2755{
2756 struct slab *slabp;
b28a02de 2757
1da177e4
LT
2758 if (OFF_SLAB(cachep)) {
2759 /* Slab management obj is off-slab. */
5b74ada7 2760 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
8759ec50 2761 local_flags, nodeid);
d5cff635
CM
2762 /*
2763 * If the first object in the slab is leaked (it's allocated
2764 * but no one has a reference to it), we want to make sure
2765 * kmemleak does not treat the ->s_mem pointer as a reference
2766 * to the object. Otherwise we will not report the leak.
2767 */
c017b4be
CM
2768 kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
2769 local_flags);
1da177e4
LT
2770 if (!slabp)
2771 return NULL;
2772 } else {
b28a02de 2773 slabp = objp + colour_off;
1da177e4
LT
2774 colour_off += cachep->slab_size;
2775 }
2776 slabp->inuse = 0;
2777 slabp->colouroff = colour_off;
b28a02de 2778 slabp->s_mem = objp + colour_off;
5b74ada7 2779 slabp->nodeid = nodeid;
e51bfd0a 2780 slabp->free = 0;
1da177e4
LT
2781 return slabp;
2782}
2783
2784static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2785{
b28a02de 2786 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2787}
2788
343e0d7a 2789static void cache_init_objs(struct kmem_cache *cachep,
a35afb83 2790 struct slab *slabp)
1da177e4
LT
2791{
2792 int i;
2793
2794 for (i = 0; i < cachep->num; i++) {
8fea4e96 2795 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2796#if DEBUG
2797 /* need to poison the objs? */
2798 if (cachep->flags & SLAB_POISON)
2799 poison_obj(cachep, objp, POISON_FREE);
2800 if (cachep->flags & SLAB_STORE_USER)
2801 *dbg_userword(cachep, objp) = NULL;
2802
2803 if (cachep->flags & SLAB_RED_ZONE) {
2804 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2805 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2806 }
2807 /*
a737b3e2
AM
2808 * Constructors are not allowed to allocate memory from the same
2809 * cache which they are a constructor for. Otherwise, deadlock.
2810 * They must also be threaded.
1da177e4
LT
2811 */
2812 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
51cc5068 2813 cachep->ctor(objp + obj_offset(cachep));
1da177e4
LT
2814
2815 if (cachep->flags & SLAB_RED_ZONE) {
2816 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2817 slab_error(cachep, "constructor overwrote the"
b28a02de 2818 " end of an object");
1da177e4
LT
2819 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2820 slab_error(cachep, "constructor overwrote the"
b28a02de 2821 " start of an object");
1da177e4 2822 }
3b0efdfa 2823 if ((cachep->size % PAGE_SIZE) == 0 &&
a737b3e2 2824 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2825 kernel_map_pages(virt_to_page(objp),
3b0efdfa 2826 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
2827#else
2828 if (cachep->ctor)
51cc5068 2829 cachep->ctor(objp);
1da177e4 2830#endif
b28a02de 2831 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2832 }
b28a02de 2833 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2834}
2835
343e0d7a 2836static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2837{
4b51d669
CL
2838 if (CONFIG_ZONE_DMA_FLAG) {
2839 if (flags & GFP_DMA)
2840 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2841 else
2842 BUG_ON(cachep->gfpflags & GFP_DMA);
2843 }
1da177e4
LT
2844}
2845
a737b3e2
AM
2846static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2847 int nodeid)
78d382d7 2848{
8fea4e96 2849 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2850 kmem_bufctl_t next;
2851
2852 slabp->inuse++;
2853 next = slab_bufctl(slabp)[slabp->free];
2854#if DEBUG
2855 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2856 WARN_ON(slabp->nodeid != nodeid);
2857#endif
2858 slabp->free = next;
2859
2860 return objp;
2861}
2862
a737b3e2
AM
2863static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2864 void *objp, int nodeid)
78d382d7 2865{
8fea4e96 2866 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2867
2868#if DEBUG
2869 /* Verify that the slab belongs to the intended node */
2870 WARN_ON(slabp->nodeid != nodeid);
2871
871751e2 2872 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2873 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2874 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2875 BUG();
2876 }
2877#endif
2878 slab_bufctl(slabp)[objnr] = slabp->free;
2879 slabp->free = objnr;
2880 slabp->inuse--;
2881}
2882
4776874f
PE
2883/*
2884 * Map pages beginning at addr to the given cache and slab. This is required
2885 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2886 * virtual address for kfree, ksize, and slab debugging.
4776874f
PE
2887 */
2888static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2889 void *addr)
1da177e4 2890{
4776874f 2891 int nr_pages;
1da177e4
LT
2892 struct page *page;
2893
4776874f 2894 page = virt_to_page(addr);
84097518 2895
4776874f 2896 nr_pages = 1;
84097518 2897 if (likely(!PageCompound(page)))
4776874f
PE
2898 nr_pages <<= cache->gfporder;
2899
1da177e4 2900 do {
35026088
CL
2901 page->slab_cache = cache;
2902 page->slab_page = slab;
1da177e4 2903 page++;
4776874f 2904 } while (--nr_pages);
1da177e4
LT
2905}
2906
2907/*
2908 * Grow (by 1) the number of slabs within a cache. This is called by
2909 * kmem_cache_alloc() when there are no active objs left in a cache.
2910 */
3c517a61
CL
2911static int cache_grow(struct kmem_cache *cachep,
2912 gfp_t flags, int nodeid, void *objp)
1da177e4 2913{
b28a02de 2914 struct slab *slabp;
b28a02de
PE
2915 size_t offset;
2916 gfp_t local_flags;
e498be7d 2917 struct kmem_list3 *l3;
1da177e4 2918
a737b3e2
AM
2919 /*
2920 * Be lazy and only check for valid flags here, keeping it out of the
2921 * critical path in kmem_cache_alloc().
1da177e4 2922 */
6cb06229
CL
2923 BUG_ON(flags & GFP_SLAB_BUG_MASK);
2924 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2925
2e1217cf 2926 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2927 check_irq_off();
2e1217cf
RT
2928 l3 = cachep->nodelists[nodeid];
2929 spin_lock(&l3->list_lock);
1da177e4
LT
2930
2931 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2932 offset = l3->colour_next;
2933 l3->colour_next++;
2934 if (l3->colour_next >= cachep->colour)
2935 l3->colour_next = 0;
2936 spin_unlock(&l3->list_lock);
1da177e4 2937
2e1217cf 2938 offset *= cachep->colour_off;
1da177e4
LT
2939
2940 if (local_flags & __GFP_WAIT)
2941 local_irq_enable();
2942
2943 /*
2944 * The test for missing atomic flag is performed here, rather than
2945 * the more obvious place, simply to reduce the critical path length
2946 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2947 * will eventually be caught here (where it matters).
2948 */
2949 kmem_flagcheck(cachep, flags);
2950
a737b3e2
AM
2951 /*
2952 * Get mem for the objs. Attempt to allocate a physical page from
2953 * 'nodeid'.
e498be7d 2954 */
3c517a61 2955 if (!objp)
b8c1c5da 2956 objp = kmem_getpages(cachep, local_flags, nodeid);
a737b3e2 2957 if (!objp)
1da177e4
LT
2958 goto failed;
2959
2960 /* Get slab management. */
3c517a61 2961 slabp = alloc_slabmgmt(cachep, objp, offset,
6cb06229 2962 local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
a737b3e2 2963 if (!slabp)
1da177e4
LT
2964 goto opps1;
2965
4776874f 2966 slab_map_pages(cachep, slabp, objp);
1da177e4 2967
a35afb83 2968 cache_init_objs(cachep, slabp);
1da177e4
LT
2969
2970 if (local_flags & __GFP_WAIT)
2971 local_irq_disable();
2972 check_irq_off();
e498be7d 2973 spin_lock(&l3->list_lock);
1da177e4
LT
2974
2975 /* Make slab active. */
e498be7d 2976 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2977 STATS_INC_GROWN(cachep);
e498be7d
CL
2978 l3->free_objects += cachep->num;
2979 spin_unlock(&l3->list_lock);
1da177e4 2980 return 1;
a737b3e2 2981opps1:
1da177e4 2982 kmem_freepages(cachep, objp);
a737b3e2 2983failed:
1da177e4
LT
2984 if (local_flags & __GFP_WAIT)
2985 local_irq_disable();
2986 return 0;
2987}
2988
2989#if DEBUG
2990
2991/*
2992 * Perform extra freeing checks:
2993 * - detect bad pointers.
2994 * - POISON/RED_ZONE checking
1da177e4
LT
2995 */
2996static void kfree_debugcheck(const void *objp)
2997{
1da177e4
LT
2998 if (!virt_addr_valid(objp)) {
2999 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
3000 (unsigned long)objp);
3001 BUG();
1da177e4 3002 }
1da177e4
LT
3003}
3004
58ce1fd5
PE
3005static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
3006{
b46b8f19 3007 unsigned long long redzone1, redzone2;
58ce1fd5
PE
3008
3009 redzone1 = *dbg_redzone1(cache, obj);
3010 redzone2 = *dbg_redzone2(cache, obj);
3011
3012 /*
3013 * Redzone is ok.
3014 */
3015 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
3016 return;
3017
3018 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
3019 slab_error(cache, "double free detected");
3020 else
3021 slab_error(cache, "memory outside object was overwritten");
3022
b46b8f19 3023 printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
58ce1fd5
PE
3024 obj, redzone1, redzone2);
3025}
3026
343e0d7a 3027static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 3028 void *caller)
1da177e4
LT
3029{
3030 struct page *page;
3031 unsigned int objnr;
3032 struct slab *slabp;
3033
80cbd911
MW
3034 BUG_ON(virt_to_cache(objp) != cachep);
3035
3dafccf2 3036 objp -= obj_offset(cachep);
1da177e4 3037 kfree_debugcheck(objp);
b49af68f 3038 page = virt_to_head_page(objp);
1da177e4 3039
35026088 3040 slabp = page->slab_page;
1da177e4
LT
3041
3042 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 3043 verify_redzone_free(cachep, objp);
1da177e4
LT
3044 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
3045 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
3046 }
3047 if (cachep->flags & SLAB_STORE_USER)
3048 *dbg_userword(cachep, objp) = caller;
3049
8fea4e96 3050 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
3051
3052 BUG_ON(objnr >= cachep->num);
8fea4e96 3053 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4 3054
871751e2
AV
3055#ifdef CONFIG_DEBUG_SLAB_LEAK
3056 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
3057#endif
1da177e4
LT
3058 if (cachep->flags & SLAB_POISON) {
3059#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3060 if ((cachep->size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 3061 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 3062 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3063 cachep->size / PAGE_SIZE, 0);
1da177e4
LT
3064 } else {
3065 poison_obj(cachep, objp, POISON_FREE);
3066 }
3067#else
3068 poison_obj(cachep, objp, POISON_FREE);
3069#endif
3070 }
3071 return objp;
3072}
3073
343e0d7a 3074static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
3075{
3076 kmem_bufctl_t i;
3077 int entries = 0;
b28a02de 3078
1da177e4
LT
3079 /* Check slab's freelist to see if this obj is there. */
3080 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
3081 entries++;
3082 if (entries > cachep->num || i >= cachep->num)
3083 goto bad;
3084 }
3085 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
3086bad:
3087 printk(KERN_ERR "slab: Internal list corruption detected in "
face37f5
DJ
3088 "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
3089 cachep->name, cachep->num, slabp, slabp->inuse,
3090 print_tainted());
fdde6abb
SAS
3091 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
3092 sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
3093 1);
1da177e4
LT
3094 BUG();
3095 }
3096}
3097#else
3098#define kfree_debugcheck(x) do { } while(0)
3099#define cache_free_debugcheck(x,objp,z) (objp)
3100#define check_slabp(x,y) do { } while(0)
3101#endif
3102
343e0d7a 3103static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
3104{
3105 int batchcount;
3106 struct kmem_list3 *l3;
3107 struct array_cache *ac;
1ca4cb24
PE
3108 int node;
3109
6d2144d3 3110retry:
1da177e4 3111 check_irq_off();
7d6e6d09 3112 node = numa_mem_id();
9a2dba4b 3113 ac = cpu_cache_get(cachep);
1da177e4
LT
3114 batchcount = ac->batchcount;
3115 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
3116 /*
3117 * If there was little recent activity on this cache, then
3118 * perform only a partial refill. Otherwise we could generate
3119 * refill bouncing.
1da177e4
LT
3120 */
3121 batchcount = BATCHREFILL_LIMIT;
3122 }
1ca4cb24 3123 l3 = cachep->nodelists[node];
e498be7d
CL
3124
3125 BUG_ON(ac->avail > 0 || !l3);
3126 spin_lock(&l3->list_lock);
1da177e4 3127
3ded175a 3128 /* See if we can refill from the shared array */
44b57f1c
NP
3129 if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
3130 l3->shared->touched = 1;
3ded175a 3131 goto alloc_done;
44b57f1c 3132 }
3ded175a 3133
1da177e4
LT
3134 while (batchcount > 0) {
3135 struct list_head *entry;
3136 struct slab *slabp;
3137 /* Get slab alloc is to come from. */
3138 entry = l3->slabs_partial.next;
3139 if (entry == &l3->slabs_partial) {
3140 l3->free_touched = 1;
3141 entry = l3->slabs_free.next;
3142 if (entry == &l3->slabs_free)
3143 goto must_grow;
3144 }
3145
3146 slabp = list_entry(entry, struct slab, list);
3147 check_slabp(cachep, slabp);
3148 check_spinlock_acquired(cachep);
714b8171
PE
3149
3150 /*
3151 * The slab was either on partial or free list so
3152 * there must be at least one object available for
3153 * allocation.
3154 */
249b9f33 3155 BUG_ON(slabp->inuse >= cachep->num);
714b8171 3156
1da177e4 3157 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3158 STATS_INC_ALLOCED(cachep);
3159 STATS_INC_ACTIVE(cachep);
3160 STATS_SET_HIGH(cachep);
3161
78d382d7 3162 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3163 node);
1da177e4
LT
3164 }
3165 check_slabp(cachep, slabp);
3166
3167 /* move slabp to correct slabp list: */
3168 list_del(&slabp->list);
3169 if (slabp->free == BUFCTL_END)
3170 list_add(&slabp->list, &l3->slabs_full);
3171 else
3172 list_add(&slabp->list, &l3->slabs_partial);
3173 }
3174
a737b3e2 3175must_grow:
1da177e4 3176 l3->free_objects -= ac->avail;
a737b3e2 3177alloc_done:
e498be7d 3178 spin_unlock(&l3->list_lock);
1da177e4
LT
3179
3180 if (unlikely(!ac->avail)) {
3181 int x;
3c517a61 3182 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3183
a737b3e2 3184 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3185 ac = cpu_cache_get(cachep);
a737b3e2 3186 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3187 return NULL;
3188
a737b3e2 3189 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3190 goto retry;
3191 }
3192 ac->touched = 1;
e498be7d 3193 return ac->entry[--ac->avail];
1da177e4
LT
3194}
3195
a737b3e2
AM
3196static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3197 gfp_t flags)
1da177e4
LT
3198{
3199 might_sleep_if(flags & __GFP_WAIT);
3200#if DEBUG
3201 kmem_flagcheck(cachep, flags);
3202#endif
3203}
3204
3205#if DEBUG
a737b3e2
AM
3206static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3207 gfp_t flags, void *objp, void *caller)
1da177e4 3208{
b28a02de 3209 if (!objp)
1da177e4 3210 return objp;
b28a02de 3211 if (cachep->flags & SLAB_POISON) {
1da177e4 3212#ifdef CONFIG_DEBUG_PAGEALLOC
3b0efdfa 3213 if ((cachep->size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3214 kernel_map_pages(virt_to_page(objp),
3b0efdfa 3215 cachep->size / PAGE_SIZE, 1);
1da177e4
LT
3216 else
3217 check_poison_obj(cachep, objp);
3218#else
3219 check_poison_obj(cachep, objp);
3220#endif
3221 poison_obj(cachep, objp, POISON_INUSE);
3222 }
3223 if (cachep->flags & SLAB_STORE_USER)
3224 *dbg_userword(cachep, objp) = caller;
3225
3226 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3227 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3228 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3229 slab_error(cachep, "double free, or memory outside"
3230 " object was overwritten");
b28a02de 3231 printk(KERN_ERR
b46b8f19 3232 "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
a737b3e2
AM
3233 objp, *dbg_redzone1(cachep, objp),
3234 *dbg_redzone2(cachep, objp));
1da177e4
LT
3235 }
3236 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3237 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3238 }
871751e2
AV
3239#ifdef CONFIG_DEBUG_SLAB_LEAK
3240 {
3241 struct slab *slabp;
3242 unsigned objnr;
3243
35026088 3244 slabp = virt_to_head_page(objp)->slab_page;
3b0efdfa 3245 objnr = (unsigned)(objp - slabp->s_mem) / cachep->size;
871751e2
AV
3246 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3247 }
3248#endif
3dafccf2 3249 objp += obj_offset(cachep);
4f104934 3250 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3251 cachep->ctor(objp);
7ea466f2
TH
3252 if (ARCH_SLAB_MINALIGN &&
3253 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
a44b56d3 3254 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3255 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3256 }
1da177e4
LT
3257 return objp;
3258}
3259#else
3260#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3261#endif
3262
773ff60e 3263static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
8a8b6502
AM
3264{
3265 if (cachep == &cache_cache)
773ff60e 3266 return false;
8a8b6502 3267
4c13dd3b 3268 return should_failslab(obj_size(cachep), flags, cachep->flags);
8a8b6502
AM
3269}
3270
343e0d7a 3271static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3272{
b28a02de 3273 void *objp;
1da177e4
LT
3274 struct array_cache *ac;
3275
5c382300 3276 check_irq_off();
8a8b6502 3277
9a2dba4b 3278 ac = cpu_cache_get(cachep);
1da177e4
LT
3279 if (likely(ac->avail)) {
3280 STATS_INC_ALLOCHIT(cachep);
3281 ac->touched = 1;
e498be7d 3282 objp = ac->entry[--ac->avail];
1da177e4
LT
3283 } else {
3284 STATS_INC_ALLOCMISS(cachep);
3285 objp = cache_alloc_refill(cachep, flags);
ddbf2e83
O
3286 /*
3287 * the 'ac' may be updated by cache_alloc_refill(),
3288 * and kmemleak_erase() requires its correct value.
3289 */
3290 ac = cpu_cache_get(cachep);
1da177e4 3291 }
d5cff635
CM
3292 /*
3293 * To avoid a false negative, if an object that is in one of the
3294 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3295 * treat the array pointers as a reference to the object.
3296 */
f3d8b53a
O
3297 if (objp)
3298 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3299 return objp;
3300}
3301
e498be7d 3302#ifdef CONFIG_NUMA
c61afb18 3303/*
b2455396 3304 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3305 *
3306 * If we are in_interrupt, then process context, including cpusets and
3307 * mempolicy, may not apply and should not be used for allocation policy.
3308 */
3309static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3310{
3311 int nid_alloc, nid_here;
3312
765c4507 3313 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3314 return NULL;
7d6e6d09 3315 nid_alloc = nid_here = numa_mem_id();
c61afb18 3316 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3317 nid_alloc = cpuset_slab_spread_node();
c61afb18
PJ
3318 else if (current->mempolicy)
3319 nid_alloc = slab_node(current->mempolicy);
3320 if (nid_alloc != nid_here)
8b98c169 3321 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3322 return NULL;
3323}
3324
765c4507
CL
3325/*
3326 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3327 * certain node and fall back is permitted. First we scan all the
3328 * available nodelists for available objects. If that fails then we
3329 * perform an allocation without specifying a node. This allows the page
3330 * allocator to do its reclaim / fallback magic. We then insert the
3331 * slab into the proper nodelist and then allocate from it.
765c4507 3332 */
8c8cc2c1 3333static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3334{
8c8cc2c1
PE
3335 struct zonelist *zonelist;
3336 gfp_t local_flags;
dd1a239f 3337 struct zoneref *z;
54a6eb5c
MG
3338 struct zone *zone;
3339 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3340 void *obj = NULL;
3c517a61 3341 int nid;
cc9a6c87 3342 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3343
3344 if (flags & __GFP_THISNODE)
3345 return NULL;
3346
6cb06229 3347 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
765c4507 3348
cc9a6c87
MG
3349retry_cpuset:
3350 cpuset_mems_cookie = get_mems_allowed();
3351 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
3352
3c517a61
CL
3353retry:
3354 /*
3355 * Look through allowed nodes for objects available
3356 * from existing per node queues.
3357 */
54a6eb5c
MG
3358 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3359 nid = zone_to_nid(zone);
aedb0eb1 3360
54a6eb5c 3361 if (cpuset_zone_allowed_hardwall(zone, flags) &&
3c517a61 3362 cache->nodelists[nid] &&
481c5346 3363 cache->nodelists[nid]->free_objects) {
3c517a61
CL
3364 obj = ____cache_alloc_node(cache,
3365 flags | GFP_THISNODE, nid);
481c5346
CL
3366 if (obj)
3367 break;
3368 }
3c517a61
CL
3369 }
3370
cfce6604 3371 if (!obj) {
3c517a61
CL
3372 /*
3373 * This allocation will be performed within the constraints
3374 * of the current cpuset / memory policy requirements.
3375 * We may trigger various forms of reclaim on the allowed
3376 * set and go into memory reserves if necessary.
3377 */
dd47ea75
CL
3378 if (local_flags & __GFP_WAIT)
3379 local_irq_enable();
3380 kmem_flagcheck(cache, flags);
7d6e6d09 3381 obj = kmem_getpages(cache, local_flags, numa_mem_id());
dd47ea75
CL
3382 if (local_flags & __GFP_WAIT)
3383 local_irq_disable();
3c517a61
CL
3384 if (obj) {
3385 /*
3386 * Insert into the appropriate per node queues
3387 */
3388 nid = page_to_nid(virt_to_page(obj));
3389 if (cache_grow(cache, flags, nid, obj)) {
3390 obj = ____cache_alloc_node(cache,
3391 flags | GFP_THISNODE, nid);
3392 if (!obj)
3393 /*
3394 * Another processor may allocate the
3395 * objects in the slab since we are
3396 * not holding any locks.
3397 */
3398 goto retry;
3399 } else {
b6a60451 3400 /* cache_grow already freed obj */
3c517a61
CL
3401 obj = NULL;
3402 }
3403 }
aedb0eb1 3404 }
cc9a6c87
MG
3405
3406 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
3407 goto retry_cpuset;
765c4507
CL
3408 return obj;
3409}
3410
e498be7d
CL
3411/*
3412 * A interface to enable slab creation on nodeid
1da177e4 3413 */
8b98c169 3414static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3415 int nodeid)
e498be7d
CL
3416{
3417 struct list_head *entry;
b28a02de
PE
3418 struct slab *slabp;
3419 struct kmem_list3 *l3;
3420 void *obj;
b28a02de
PE
3421 int x;
3422
3423 l3 = cachep->nodelists[nodeid];
3424 BUG_ON(!l3);
3425
a737b3e2 3426retry:
ca3b9b91 3427 check_irq_off();
b28a02de
PE
3428 spin_lock(&l3->list_lock);
3429 entry = l3->slabs_partial.next;
3430 if (entry == &l3->slabs_partial) {
3431 l3->free_touched = 1;
3432 entry = l3->slabs_free.next;
3433 if (entry == &l3->slabs_free)
3434 goto must_grow;
3435 }
3436
3437 slabp = list_entry(entry, struct slab, list);
3438 check_spinlock_acquired_node(cachep, nodeid);
3439 check_slabp(cachep, slabp);
3440
3441 STATS_INC_NODEALLOCS(cachep);
3442 STATS_INC_ACTIVE(cachep);
3443 STATS_SET_HIGH(cachep);
3444
3445 BUG_ON(slabp->inuse == cachep->num);
3446
78d382d7 3447 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3448 check_slabp(cachep, slabp);
3449 l3->free_objects--;
3450 /* move slabp to correct slabp list: */
3451 list_del(&slabp->list);
3452
a737b3e2 3453 if (slabp->free == BUFCTL_END)
b28a02de 3454 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3455 else
b28a02de 3456 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3457
b28a02de
PE
3458 spin_unlock(&l3->list_lock);
3459 goto done;
e498be7d 3460
a737b3e2 3461must_grow:
b28a02de 3462 spin_unlock(&l3->list_lock);
3c517a61 3463 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3464 if (x)
3465 goto retry;
1da177e4 3466
8c8cc2c1 3467 return fallback_alloc(cachep, flags);
e498be7d 3468
a737b3e2 3469done:
b28a02de 3470 return obj;
e498be7d 3471}
8c8cc2c1
PE
3472
3473/**
3474 * kmem_cache_alloc_node - Allocate an object on the specified node
3475 * @cachep: The cache to allocate from.
3476 * @flags: See kmalloc().
3477 * @nodeid: node number of the target node.
3478 * @caller: return address of caller, used for debug information
3479 *
3480 * Identical to kmem_cache_alloc but it will allocate memory on the given
3481 * node, which can improve the performance for cpu bound structures.
3482 *
3483 * Fallback to other node is possible if __GFP_THISNODE is not set.
3484 */
3485static __always_inline void *
3486__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3487 void *caller)
3488{
3489 unsigned long save_flags;
3490 void *ptr;
7d6e6d09 3491 int slab_node = numa_mem_id();
8c8cc2c1 3492
dcce284a 3493 flags &= gfp_allowed_mask;
7e85ee0c 3494
cf40bd16
NP
3495 lockdep_trace_alloc(flags);
3496
773ff60e 3497 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3498 return NULL;
3499
8c8cc2c1
PE
3500 cache_alloc_debugcheck_before(cachep, flags);
3501 local_irq_save(save_flags);
3502
eacbbae3 3503 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3504 nodeid = slab_node;
8c8cc2c1
PE
3505
3506 if (unlikely(!cachep->nodelists[nodeid])) {
3507 /* Node not bootstrapped yet */
3508 ptr = fallback_alloc(cachep, flags);
3509 goto out;
3510 }
3511
7d6e6d09 3512 if (nodeid == slab_node) {
8c8cc2c1
PE
3513 /*
3514 * Use the locally cached objects if possible.
3515 * However ____cache_alloc does not allow fallback
3516 * to other nodes. It may fail while we still have
3517 * objects on other nodes available.
3518 */
3519 ptr = ____cache_alloc(cachep, flags);
3520 if (ptr)
3521 goto out;
3522 }
3523 /* ___cache_alloc_node can fall back to other nodes */
3524 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3525 out:
3526 local_irq_restore(save_flags);
3527 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
d5cff635
CM
3528 kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
3529 flags);
8c8cc2c1 3530
c175eea4
PE
3531 if (likely(ptr))
3532 kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
3533
d07dbea4
CL
3534 if (unlikely((flags & __GFP_ZERO) && ptr))
3535 memset(ptr, 0, obj_size(cachep));
3536
8c8cc2c1
PE
3537 return ptr;
3538}
3539
3540static __always_inline void *
3541__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3542{
3543 void *objp;
3544
3545 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3546 objp = alternate_node_alloc(cache, flags);
3547 if (objp)
3548 goto out;
3549 }
3550 objp = ____cache_alloc(cache, flags);
3551
3552 /*
3553 * We may just have run out of memory on the local node.
3554 * ____cache_alloc_node() knows how to locate memory on other nodes
3555 */
7d6e6d09
LS
3556 if (!objp)
3557 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3558
3559 out:
3560 return objp;
3561}
3562#else
3563
3564static __always_inline void *
3565__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3566{
3567 return ____cache_alloc(cachep, flags);
3568}
3569
3570#endif /* CONFIG_NUMA */
3571
3572static __always_inline void *
3573__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3574{
3575 unsigned long save_flags;
3576 void *objp;
3577
dcce284a 3578 flags &= gfp_allowed_mask;
7e85ee0c 3579
cf40bd16
NP
3580 lockdep_trace_alloc(flags);
3581
773ff60e 3582 if (slab_should_failslab(cachep, flags))
824ebef1
AM
3583 return NULL;
3584
8c8cc2c1
PE
3585 cache_alloc_debugcheck_before(cachep, flags);
3586 local_irq_save(save_flags);
3587 objp = __do_cache_alloc(cachep, flags);
3588 local_irq_restore(save_flags);
3589 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
d5cff635
CM
3590 kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
3591 flags);
8c8cc2c1
PE
3592 prefetchw(objp);
3593
c175eea4
PE
3594 if (likely(objp))
3595 kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
3596
d07dbea4
CL
3597 if (unlikely((flags & __GFP_ZERO) && objp))
3598 memset(objp, 0, obj_size(cachep));
3599
8c8cc2c1
PE
3600 return objp;
3601}
e498be7d
CL
3602
3603/*
3604 * Caller needs to acquire correct kmem_list's list_lock
3605 */
343e0d7a 3606static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3607 int node)
1da177e4
LT
3608{
3609 int i;
e498be7d 3610 struct kmem_list3 *l3;
1da177e4
LT
3611
3612 for (i = 0; i < nr_objects; i++) {
3613 void *objp = objpp[i];
3614 struct slab *slabp;
1da177e4 3615
6ed5eb22 3616 slabp = virt_to_slab(objp);
ff69416e 3617 l3 = cachep->nodelists[node];
1da177e4 3618 list_del(&slabp->list);
ff69416e 3619 check_spinlock_acquired_node(cachep, node);
1da177e4 3620 check_slabp(cachep, slabp);
78d382d7 3621 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3622 STATS_DEC_ACTIVE(cachep);
e498be7d 3623 l3->free_objects++;
1da177e4
LT
3624 check_slabp(cachep, slabp);
3625
3626 /* fixup slab chains */
3627 if (slabp->inuse == 0) {
e498be7d
CL
3628 if (l3->free_objects > l3->free_limit) {
3629 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3630 /* No need to drop any previously held
3631 * lock here, even if we have a off-slab slab
3632 * descriptor it is guaranteed to come from
3633 * a different cache, refer to comments before
3634 * alloc_slabmgmt.
3635 */
1da177e4
LT
3636 slab_destroy(cachep, slabp);
3637 } else {
e498be7d 3638 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3639 }
3640 } else {
3641 /* Unconditionally move a slab to the end of the
3642 * partial list on free - maximum time for the
3643 * other objects to be freed, too.
3644 */
e498be7d 3645 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3646 }
3647 }
3648}
3649
343e0d7a 3650static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3651{
3652 int batchcount;
e498be7d 3653 struct kmem_list3 *l3;
7d6e6d09 3654 int node = numa_mem_id();
1da177e4
LT
3655
3656 batchcount = ac->batchcount;
3657#if DEBUG
3658 BUG_ON(!batchcount || batchcount > ac->avail);
3659#endif
3660 check_irq_off();
ff69416e 3661 l3 = cachep->nodelists[node];
873623df 3662 spin_lock(&l3->list_lock);
e498be7d
CL
3663 if (l3->shared) {
3664 struct array_cache *shared_array = l3->shared;
b28a02de 3665 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3666 if (max) {
3667 if (batchcount > max)
3668 batchcount = max;
e498be7d 3669 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3670 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3671 shared_array->avail += batchcount;
3672 goto free_done;
3673 }
3674 }
3675
ff69416e 3676 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3677free_done:
1da177e4
LT
3678#if STATS
3679 {
3680 int i = 0;
3681 struct list_head *p;
3682
e498be7d
CL
3683 p = l3->slabs_free.next;
3684 while (p != &(l3->slabs_free)) {
1da177e4
LT
3685 struct slab *slabp;
3686
3687 slabp = list_entry(p, struct slab, list);
3688 BUG_ON(slabp->inuse);
3689
3690 i++;
3691 p = p->next;
3692 }
3693 STATS_SET_FREEABLE(cachep, i);
3694 }
3695#endif
e498be7d 3696 spin_unlock(&l3->list_lock);
1da177e4 3697 ac->avail -= batchcount;
a737b3e2 3698 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3699}
3700
3701/*
a737b3e2
AM
3702 * Release an obj back to its cache. If the obj has a constructed state, it must
3703 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3704 */
a947eb95
SS
3705static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3706 void *caller)
1da177e4 3707{
9a2dba4b 3708 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3709
3710 check_irq_off();
d5cff635 3711 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3712 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3713
c175eea4
PE
3714 kmemcheck_slab_free(cachep, objp, obj_size(cachep));
3715
1807a1aa
SS
3716 /*
3717 * Skip calling cache_free_alien() when the platform is not numa.
3718 * This will avoid cache misses that happen while accessing slabp (which
3719 * is per page memory reference) to get nodeid. Instead use a global
3720 * variable to skip the call, which is mostly likely to be present in
3721 * the cache.
3722 */
b6e68bc1 3723 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3724 return;
3725
1da177e4
LT
3726 if (likely(ac->avail < ac->limit)) {
3727 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3728 } else {
3729 STATS_INC_FREEMISS(cachep);
3730 cache_flusharray(cachep, ac);
1da177e4 3731 }
42c8c99c
ZJ
3732
3733 ac->entry[ac->avail++] = objp;
1da177e4
LT
3734}
3735
3736/**
3737 * kmem_cache_alloc - Allocate an object
3738 * @cachep: The cache to allocate from.
3739 * @flags: See kmalloc().
3740 *
3741 * Allocate an object from this cache. The flags are only relevant
3742 * if the cache has no available objects.
3743 */
343e0d7a 3744void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3745{
36555751
EGM
3746 void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3747
ca2b84cb 3748 trace_kmem_cache_alloc(_RET_IP_, ret,
3b0efdfa 3749 obj_size(cachep), cachep->size, flags);
36555751
EGM
3750
3751 return ret;
1da177e4
LT
3752}
3753EXPORT_SYMBOL(kmem_cache_alloc);
3754
0f24f128 3755#ifdef CONFIG_TRACING
85beb586
SR
3756void *
3757kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
36555751 3758{
85beb586
SR
3759 void *ret;
3760
3761 ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
3762
3763 trace_kmalloc(_RET_IP_, ret,
3764 size, slab_buffer_size(cachep), flags);
3765 return ret;
36555751 3766}
85beb586 3767EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3768#endif
3769
1da177e4 3770#ifdef CONFIG_NUMA
8b98c169
CH
3771void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3772{
36555751
EGM
3773 void *ret = __cache_alloc_node(cachep, flags, nodeid,
3774 __builtin_return_address(0));
3775
ca2b84cb 3776 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 3777 obj_size(cachep), cachep->size,
ca2b84cb 3778 flags, nodeid);
36555751
EGM
3779
3780 return ret;
8b98c169 3781}
1da177e4
LT
3782EXPORT_SYMBOL(kmem_cache_alloc_node);
3783
0f24f128 3784#ifdef CONFIG_TRACING
85beb586
SR
3785void *kmem_cache_alloc_node_trace(size_t size,
3786 struct kmem_cache *cachep,
3787 gfp_t flags,
3788 int nodeid)
36555751 3789{
85beb586
SR
3790 void *ret;
3791
3792 ret = __cache_alloc_node(cachep, flags, nodeid,
36555751 3793 __builtin_return_address(0));
85beb586
SR
3794 trace_kmalloc_node(_RET_IP_, ret,
3795 size, slab_buffer_size(cachep),
3796 flags, nodeid);
3797 return ret;
36555751 3798}
85beb586 3799EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3800#endif
3801
8b98c169
CH
3802static __always_inline void *
3803__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3804{
343e0d7a 3805 struct kmem_cache *cachep;
97e2bde4
MS
3806
3807 cachep = kmem_find_general_cachep(size, flags);
6cb8f913
CL
3808 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3809 return cachep;
85beb586 3810 return kmem_cache_alloc_node_trace(size, cachep, flags, node);
97e2bde4 3811}
8b98c169 3812
0bb38a5c 3813#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
8b98c169
CH
3814void *__kmalloc_node(size_t size, gfp_t flags, int node)
3815{
3816 return __do_kmalloc_node(size, flags, node,
3817 __builtin_return_address(0));
3818}
dbe5e69d 3819EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3820
3821void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3822 int node, unsigned long caller)
8b98c169 3823{
ce71e27c 3824 return __do_kmalloc_node(size, flags, node, (void *)caller);
8b98c169
CH
3825}
3826EXPORT_SYMBOL(__kmalloc_node_track_caller);
3827#else
3828void *__kmalloc_node(size_t size, gfp_t flags, int node)
3829{
3830 return __do_kmalloc_node(size, flags, node, NULL);
3831}
3832EXPORT_SYMBOL(__kmalloc_node);
0bb38a5c 3833#endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
8b98c169 3834#endif /* CONFIG_NUMA */
1da177e4
LT
3835
3836/**
800590f5 3837 * __do_kmalloc - allocate memory
1da177e4 3838 * @size: how many bytes of memory are required.
800590f5 3839 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3840 * @caller: function caller for debug tracking of the caller
1da177e4 3841 */
7fd6b141
PE
3842static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3843 void *caller)
1da177e4 3844{
343e0d7a 3845 struct kmem_cache *cachep;
36555751 3846 void *ret;
1da177e4 3847
97e2bde4
MS
3848 /* If you want to save a few bytes .text space: replace
3849 * __ with kmem_.
3850 * Then kmalloc uses the uninlined functions instead of the inline
3851 * functions.
3852 */
3853 cachep = __find_general_cachep(size, flags);
a5c96d8a
LT
3854 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3855 return cachep;
36555751
EGM
3856 ret = __cache_alloc(cachep, flags, caller);
3857
ca2b84cb 3858 trace_kmalloc((unsigned long) caller, ret,
3b0efdfa 3859 size, cachep->size, flags);
36555751
EGM
3860
3861 return ret;
7fd6b141
PE
3862}
3863
7fd6b141 3864
0bb38a5c 3865#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
7fd6b141
PE
3866void *__kmalloc(size_t size, gfp_t flags)
3867{
871751e2 3868 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3869}
3870EXPORT_SYMBOL(__kmalloc);
3871
ce71e27c 3872void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3873{
ce71e27c 3874 return __do_kmalloc(size, flags, (void *)caller);
7fd6b141
PE
3875}
3876EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3877
3878#else
3879void *__kmalloc(size_t size, gfp_t flags)
3880{
3881 return __do_kmalloc(size, flags, NULL);
3882}
3883EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3884#endif
3885
1da177e4
LT
3886/**
3887 * kmem_cache_free - Deallocate an object
3888 * @cachep: The cache the allocation was from.
3889 * @objp: The previously allocated object.
3890 *
3891 * Free an object which was previously allocated from this
3892 * cache.
3893 */
343e0d7a 3894void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3895{
3896 unsigned long flags;
3897
3898 local_irq_save(flags);
898552c9 3899 debug_check_no_locks_freed(objp, obj_size(cachep));
3ac7fe5a
TG
3900 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3901 debug_check_no_obj_freed(objp, obj_size(cachep));
a947eb95 3902 __cache_free(cachep, objp, __builtin_return_address(0));
1da177e4 3903 local_irq_restore(flags);
36555751 3904
ca2b84cb 3905 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3906}
3907EXPORT_SYMBOL(kmem_cache_free);
3908
1da177e4
LT
3909/**
3910 * kfree - free previously allocated memory
3911 * @objp: pointer returned by kmalloc.
3912 *
80e93eff
PE
3913 * If @objp is NULL, no operation is performed.
3914 *
1da177e4
LT
3915 * Don't free memory not originally allocated by kmalloc()
3916 * or you will run into trouble.
3917 */
3918void kfree(const void *objp)
3919{
343e0d7a 3920 struct kmem_cache *c;
1da177e4
LT
3921 unsigned long flags;
3922
2121db74
PE
3923 trace_kfree(_RET_IP_, objp);
3924
6cb8f913 3925 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3926 return;
3927 local_irq_save(flags);
3928 kfree_debugcheck(objp);
6ed5eb22 3929 c = virt_to_cache(objp);
f9b8404c 3930 debug_check_no_locks_freed(objp, obj_size(c));
3ac7fe5a 3931 debug_check_no_obj_freed(objp, obj_size(c));
a947eb95 3932 __cache_free(c, (void *)objp, __builtin_return_address(0));
1da177e4
LT
3933 local_irq_restore(flags);
3934}
3935EXPORT_SYMBOL(kfree);
3936
343e0d7a 3937unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3938{
3dafccf2 3939 return obj_size(cachep);
1da177e4
LT
3940}
3941EXPORT_SYMBOL(kmem_cache_size);
3942
e498be7d 3943/*
183ff22b 3944 * This initializes kmem_list3 or resizes various caches for all nodes.
e498be7d 3945 */
83b519e8 3946static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
e498be7d
CL
3947{
3948 int node;
3949 struct kmem_list3 *l3;
cafeb02e 3950 struct array_cache *new_shared;
3395ee05 3951 struct array_cache **new_alien = NULL;
e498be7d 3952
9c09a95c 3953 for_each_online_node(node) {
cafeb02e 3954
3395ee05 3955 if (use_alien_caches) {
83b519e8 3956 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
3395ee05
PM
3957 if (!new_alien)
3958 goto fail;
3959 }
cafeb02e 3960
63109846
ED
3961 new_shared = NULL;
3962 if (cachep->shared) {
3963 new_shared = alloc_arraycache(node,
0718dc2a 3964 cachep->shared*cachep->batchcount,
83b519e8 3965 0xbaadf00d, gfp);
63109846
ED
3966 if (!new_shared) {
3967 free_alien_cache(new_alien);
3968 goto fail;
3969 }
0718dc2a 3970 }
cafeb02e 3971
a737b3e2
AM
3972 l3 = cachep->nodelists[node];
3973 if (l3) {
cafeb02e
CL
3974 struct array_cache *shared = l3->shared;
3975
e498be7d
CL
3976 spin_lock_irq(&l3->list_lock);
3977
cafeb02e 3978 if (shared)
0718dc2a
CL
3979 free_block(cachep, shared->entry,
3980 shared->avail, node);
e498be7d 3981
cafeb02e
CL
3982 l3->shared = new_shared;
3983 if (!l3->alien) {
e498be7d
CL
3984 l3->alien = new_alien;
3985 new_alien = NULL;
3986 }
b28a02de 3987 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3988 cachep->batchcount + cachep->num;
e498be7d 3989 spin_unlock_irq(&l3->list_lock);
cafeb02e 3990 kfree(shared);
e498be7d
CL
3991 free_alien_cache(new_alien);
3992 continue;
3993 }
83b519e8 3994 l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
0718dc2a
CL
3995 if (!l3) {
3996 free_alien_cache(new_alien);
3997 kfree(new_shared);
e498be7d 3998 goto fail;
0718dc2a 3999 }
e498be7d
CL
4000
4001 kmem_list3_init(l3);
4002 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 4003 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 4004 l3->shared = new_shared;
e498be7d 4005 l3->alien = new_alien;
b28a02de 4006 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 4007 cachep->batchcount + cachep->num;
e498be7d
CL
4008 cachep->nodelists[node] = l3;
4009 }
cafeb02e 4010 return 0;
0718dc2a 4011
a737b3e2 4012fail:
3b0efdfa 4013 if (!cachep->list.next) {
0718dc2a
CL
4014 /* Cache is not active yet. Roll back what we did */
4015 node--;
4016 while (node >= 0) {
4017 if (cachep->nodelists[node]) {
4018 l3 = cachep->nodelists[node];
4019
4020 kfree(l3->shared);
4021 free_alien_cache(l3->alien);
4022 kfree(l3);
4023 cachep->nodelists[node] = NULL;
4024 }
4025 node--;
4026 }
4027 }
cafeb02e 4028 return -ENOMEM;
e498be7d
CL
4029}
4030
1da177e4 4031struct ccupdate_struct {
343e0d7a 4032 struct kmem_cache *cachep;
acfe7d74 4033 struct array_cache *new[0];
1da177e4
LT
4034};
4035
4036static void do_ccupdate_local(void *info)
4037{
a737b3e2 4038 struct ccupdate_struct *new = info;
1da177e4
LT
4039 struct array_cache *old;
4040
4041 check_irq_off();
9a2dba4b 4042 old = cpu_cache_get(new->cachep);
e498be7d 4043
1da177e4
LT
4044 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
4045 new->new[smp_processor_id()] = old;
4046}
4047
b5d8ca7c 4048/* Always called with the cache_chain_mutex held */
a737b3e2 4049static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 4050 int batchcount, int shared, gfp_t gfp)
1da177e4 4051{
d2e7b7d0 4052 struct ccupdate_struct *new;
2ed3a4ef 4053 int i;
1da177e4 4054
acfe7d74
ED
4055 new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
4056 gfp);
d2e7b7d0
SS
4057 if (!new)
4058 return -ENOMEM;
4059
e498be7d 4060 for_each_online_cpu(i) {
7d6e6d09 4061 new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
83b519e8 4062 batchcount, gfp);
d2e7b7d0 4063 if (!new->new[i]) {
b28a02de 4064 for (i--; i >= 0; i--)
d2e7b7d0
SS
4065 kfree(new->new[i]);
4066 kfree(new);
e498be7d 4067 return -ENOMEM;
1da177e4
LT
4068 }
4069 }
d2e7b7d0 4070 new->cachep = cachep;
1da177e4 4071
15c8b6c1 4072 on_each_cpu(do_ccupdate_local, (void *)new, 1);
e498be7d 4073
1da177e4 4074 check_irq_on();
1da177e4
LT
4075 cachep->batchcount = batchcount;
4076 cachep->limit = limit;
e498be7d 4077 cachep->shared = shared;
1da177e4 4078
e498be7d 4079 for_each_online_cpu(i) {
d2e7b7d0 4080 struct array_cache *ccold = new->new[i];
1da177e4
LT
4081 if (!ccold)
4082 continue;
7d6e6d09
LS
4083 spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
4084 free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
4085 spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
1da177e4
LT
4086 kfree(ccold);
4087 }
d2e7b7d0 4088 kfree(new);
83b519e8 4089 return alloc_kmemlist(cachep, gfp);
1da177e4
LT
4090}
4091
b5d8ca7c 4092/* Called with cache_chain_mutex held always */
83b519e8 4093static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
4094{
4095 int err;
4096 int limit, shared;
4097
a737b3e2
AM
4098 /*
4099 * The head array serves three purposes:
1da177e4
LT
4100 * - create a LIFO ordering, i.e. return objects that are cache-warm
4101 * - reduce the number of spinlock operations.
a737b3e2 4102 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4103 * bufctl chains: array operations are cheaper.
4104 * The numbers are guessed, we should auto-tune as described by
4105 * Bonwick.
4106 */
3b0efdfa 4107 if (cachep->size > 131072)
1da177e4 4108 limit = 1;
3b0efdfa 4109 else if (cachep->size > PAGE_SIZE)
1da177e4 4110 limit = 8;
3b0efdfa 4111 else if (cachep->size > 1024)
1da177e4 4112 limit = 24;
3b0efdfa 4113 else if (cachep->size > 256)
1da177e4
LT
4114 limit = 54;
4115 else
4116 limit = 120;
4117
a737b3e2
AM
4118 /*
4119 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4120 * allocation behaviour: Most allocs on one cpu, most free operations
4121 * on another cpu. For these cases, an efficient object passing between
4122 * cpus is necessary. This is provided by a shared array. The array
4123 * replaces Bonwick's magazine layer.
4124 * On uniprocessor, it's functionally equivalent (but less efficient)
4125 * to a larger limit. Thus disabled by default.
4126 */
4127 shared = 0;
3b0efdfa 4128 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4129 shared = 8;
1da177e4
LT
4130
4131#if DEBUG
a737b3e2
AM
4132 /*
4133 * With debugging enabled, large batchcount lead to excessively long
4134 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4135 */
4136 if (limit > 32)
4137 limit = 32;
4138#endif
83b519e8 4139 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
1da177e4
LT
4140 if (err)
4141 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4142 cachep->name, -err);
2ed3a4ef 4143 return err;
1da177e4
LT
4144}
4145
1b55253a
CL
4146/*
4147 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4148 * necessary. Note that the l3 listlock also protects the array_cache
4149 * if drain_array() is used on the shared array.
1b55253a 4150 */
68a1b195 4151static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
1b55253a 4152 struct array_cache *ac, int force, int node)
1da177e4
LT
4153{
4154 int tofree;
4155
1b55253a
CL
4156 if (!ac || !ac->avail)
4157 return;
1da177e4
LT
4158 if (ac->touched && !force) {
4159 ac->touched = 0;
b18e7e65 4160 } else {
1b55253a 4161 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4162 if (ac->avail) {
4163 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4164 if (tofree > ac->avail)
4165 tofree = (ac->avail + 1) / 2;
4166 free_block(cachep, ac->entry, tofree, node);
4167 ac->avail -= tofree;
4168 memmove(ac->entry, &(ac->entry[tofree]),
4169 sizeof(void *) * ac->avail);
4170 }
1b55253a 4171 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4172 }
4173}
4174
4175/**
4176 * cache_reap - Reclaim memory from caches.
05fb6bf0 4177 * @w: work descriptor
1da177e4
LT
4178 *
4179 * Called from workqueue/eventd every few seconds.
4180 * Purpose:
4181 * - clear the per-cpu caches for this CPU.
4182 * - return freeable pages to the main free memory pool.
4183 *
a737b3e2
AM
4184 * If we cannot acquire the cache chain mutex then just give up - we'll try
4185 * again on the next iteration.
1da177e4 4186 */
7c5cae36 4187static void cache_reap(struct work_struct *w)
1da177e4 4188{
7a7c381d 4189 struct kmem_cache *searchp;
e498be7d 4190 struct kmem_list3 *l3;
7d6e6d09 4191 int node = numa_mem_id();
bf6aede7 4192 struct delayed_work *work = to_delayed_work(w);
1da177e4 4193
7c5cae36 4194 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4195 /* Give up. Setup the next iteration. */
7c5cae36 4196 goto out;
1da177e4 4197
3b0efdfa 4198 list_for_each_entry(searchp, &cache_chain, list) {
1da177e4
LT
4199 check_irq_on();
4200
35386e3b
CL
4201 /*
4202 * We only take the l3 lock if absolutely necessary and we
4203 * have established with reasonable certainty that
4204 * we can do some work if the lock was obtained.
4205 */
aab2207c 4206 l3 = searchp->nodelists[node];
35386e3b 4207
8fce4d8e 4208 reap_alien(searchp, l3);
1da177e4 4209
aab2207c 4210 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4211
35386e3b
CL
4212 /*
4213 * These are racy checks but it does not matter
4214 * if we skip one check or scan twice.
4215 */
e498be7d 4216 if (time_after(l3->next_reap, jiffies))
35386e3b 4217 goto next;
1da177e4 4218
e498be7d 4219 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4220
aab2207c 4221 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4222
ed11d9eb 4223 if (l3->free_touched)
e498be7d 4224 l3->free_touched = 0;
ed11d9eb
CL
4225 else {
4226 int freed;
1da177e4 4227
ed11d9eb
CL
4228 freed = drain_freelist(searchp, l3, (l3->free_limit +
4229 5 * searchp->num - 1) / (5 * searchp->num));
4230 STATS_ADD_REAPED(searchp, freed);
4231 }
35386e3b 4232next:
1da177e4
LT
4233 cond_resched();
4234 }
4235 check_irq_on();
fc0abb14 4236 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4237 next_reap_node();
7c5cae36 4238out:
a737b3e2 4239 /* Set up the next iteration */
7c5cae36 4240 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4241}
4242
158a9624 4243#ifdef CONFIG_SLABINFO
1da177e4 4244
85289f98 4245static void print_slabinfo_header(struct seq_file *m)
1da177e4 4246{
85289f98
PE
4247 /*
4248 * Output format version, so at least we can change it
4249 * without _too_ many complaints.
4250 */
1da177e4 4251#if STATS
85289f98 4252 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4253#else
85289f98 4254 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4255#endif
85289f98
PE
4256 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4257 "<objperslab> <pagesperslab>");
4258 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4259 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4260#if STATS
85289f98 4261 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4262 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4263 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4264#endif
85289f98
PE
4265 seq_putc(m, '\n');
4266}
4267
4268static void *s_start(struct seq_file *m, loff_t *pos)
4269{
4270 loff_t n = *pos;
85289f98 4271
fc0abb14 4272 mutex_lock(&cache_chain_mutex);
85289f98
PE
4273 if (!n)
4274 print_slabinfo_header(m);
b92151ba
PE
4275
4276 return seq_list_start(&cache_chain, *pos);
1da177e4
LT
4277}
4278
4279static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4280{
b92151ba 4281 return seq_list_next(p, &cache_chain, pos);
1da177e4
LT
4282}
4283
4284static void s_stop(struct seq_file *m, void *p)
4285{
fc0abb14 4286 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4287}
4288
4289static int s_show(struct seq_file *m, void *p)
4290{
3b0efdfa 4291 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
b28a02de
PE
4292 struct slab *slabp;
4293 unsigned long active_objs;
4294 unsigned long num_objs;
4295 unsigned long active_slabs = 0;
4296 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4297 const char *name;
1da177e4 4298 char *error = NULL;
e498be7d
CL
4299 int node;
4300 struct kmem_list3 *l3;
1da177e4 4301
1da177e4
LT
4302 active_objs = 0;
4303 num_slabs = 0;
e498be7d
CL
4304 for_each_online_node(node) {
4305 l3 = cachep->nodelists[node];
4306 if (!l3)
4307 continue;
4308
ca3b9b91
RT
4309 check_irq_on();
4310 spin_lock_irq(&l3->list_lock);
e498be7d 4311
7a7c381d 4312 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4313 if (slabp->inuse != cachep->num && !error)
4314 error = "slabs_full accounting error";
4315 active_objs += cachep->num;
4316 active_slabs++;
4317 }
7a7c381d 4318 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4319 if (slabp->inuse == cachep->num && !error)
4320 error = "slabs_partial inuse accounting error";
4321 if (!slabp->inuse && !error)
4322 error = "slabs_partial/inuse accounting error";
4323 active_objs += slabp->inuse;
4324 active_slabs++;
4325 }
7a7c381d 4326 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4327 if (slabp->inuse && !error)
4328 error = "slabs_free/inuse accounting error";
4329 num_slabs++;
4330 }
4331 free_objects += l3->free_objects;
4484ebf1
RT
4332 if (l3->shared)
4333 shared_avail += l3->shared->avail;
e498be7d 4334
ca3b9b91 4335 spin_unlock_irq(&l3->list_lock);
1da177e4 4336 }
b28a02de
PE
4337 num_slabs += active_slabs;
4338 num_objs = num_slabs * cachep->num;
e498be7d 4339 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4340 error = "free_objects accounting error";
4341
b28a02de 4342 name = cachep->name;
1da177e4
LT
4343 if (error)
4344 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4345
4346 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3b0efdfa 4347 name, active_objs, num_objs, cachep->size,
b28a02de 4348 cachep->num, (1 << cachep->gfporder));
1da177e4 4349 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4350 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4351 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4352 active_slabs, num_slabs, shared_avail);
1da177e4 4353#if STATS
b28a02de 4354 { /* list3 stats */
1da177e4
LT
4355 unsigned long high = cachep->high_mark;
4356 unsigned long allocs = cachep->num_allocations;
4357 unsigned long grown = cachep->grown;
4358 unsigned long reaped = cachep->reaped;
4359 unsigned long errors = cachep->errors;
4360 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4361 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4362 unsigned long node_frees = cachep->node_frees;
fb7faf33 4363 unsigned long overflows = cachep->node_overflow;
1da177e4 4364
e92dd4fd
JP
4365 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
4366 "%4lu %4lu %4lu %4lu %4lu",
4367 allocs, high, grown,
4368 reaped, errors, max_freeable, node_allocs,
4369 node_frees, overflows);
1da177e4
LT
4370 }
4371 /* cpu stats */
4372 {
4373 unsigned long allochit = atomic_read(&cachep->allochit);
4374 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4375 unsigned long freehit = atomic_read(&cachep->freehit);
4376 unsigned long freemiss = atomic_read(&cachep->freemiss);
4377
4378 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4379 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4380 }
4381#endif
4382 seq_putc(m, '\n');
1da177e4
LT
4383 return 0;
4384}
4385
4386/*
4387 * slabinfo_op - iterator that generates /proc/slabinfo
4388 *
4389 * Output layout:
4390 * cache-name
4391 * num-active-objs
4392 * total-objs
4393 * object size
4394 * num-active-slabs
4395 * total-slabs
4396 * num-pages-per-slab
4397 * + further values on SMP and with statistics enabled
4398 */
4399
7b3c3a50 4400static const struct seq_operations slabinfo_op = {
b28a02de
PE
4401 .start = s_start,
4402 .next = s_next,
4403 .stop = s_stop,
4404 .show = s_show,
1da177e4
LT
4405};
4406
4407#define MAX_SLABINFO_WRITE 128
4408/**
4409 * slabinfo_write - Tuning for the slab allocator
4410 * @file: unused
4411 * @buffer: user buffer
4412 * @count: data length
4413 * @ppos: unused
4414 */
68a1b195 4415static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4416 size_t count, loff_t *ppos)
1da177e4 4417{
b28a02de 4418 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4419 int limit, batchcount, shared, res;
7a7c381d 4420 struct kmem_cache *cachep;
b28a02de 4421
1da177e4
LT
4422 if (count > MAX_SLABINFO_WRITE)
4423 return -EINVAL;
4424 if (copy_from_user(&kbuf, buffer, count))
4425 return -EFAULT;
b28a02de 4426 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4427
4428 tmp = strchr(kbuf, ' ');
4429 if (!tmp)
4430 return -EINVAL;
4431 *tmp = '\0';
4432 tmp++;
4433 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4434 return -EINVAL;
4435
4436 /* Find the cache in the chain of caches. */
fc0abb14 4437 mutex_lock(&cache_chain_mutex);
1da177e4 4438 res = -EINVAL;
3b0efdfa 4439 list_for_each_entry(cachep, &cache_chain, list) {
1da177e4 4440 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4441 if (limit < 1 || batchcount < 1 ||
4442 batchcount > limit || shared < 0) {
e498be7d 4443 res = 0;
1da177e4 4444 } else {
e498be7d 4445 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4446 batchcount, shared,
4447 GFP_KERNEL);
1da177e4
LT
4448 }
4449 break;
4450 }
4451 }
fc0abb14 4452 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4453 if (res >= 0)
4454 res = count;
4455 return res;
4456}
871751e2 4457
7b3c3a50
AD
4458static int slabinfo_open(struct inode *inode, struct file *file)
4459{
4460 return seq_open(file, &slabinfo_op);
4461}
4462
4463static const struct file_operations proc_slabinfo_operations = {
4464 .open = slabinfo_open,
4465 .read = seq_read,
4466 .write = slabinfo_write,
4467 .llseek = seq_lseek,
4468 .release = seq_release,
4469};
4470
871751e2
AV
4471#ifdef CONFIG_DEBUG_SLAB_LEAK
4472
4473static void *leaks_start(struct seq_file *m, loff_t *pos)
4474{
871751e2 4475 mutex_lock(&cache_chain_mutex);
b92151ba 4476 return seq_list_start(&cache_chain, *pos);
871751e2
AV
4477}
4478
4479static inline int add_caller(unsigned long *n, unsigned long v)
4480{
4481 unsigned long *p;
4482 int l;
4483 if (!v)
4484 return 1;
4485 l = n[1];
4486 p = n + 2;
4487 while (l) {
4488 int i = l/2;
4489 unsigned long *q = p + 2 * i;
4490 if (*q == v) {
4491 q[1]++;
4492 return 1;
4493 }
4494 if (*q > v) {
4495 l = i;
4496 } else {
4497 p = q + 2;
4498 l -= i + 1;
4499 }
4500 }
4501 if (++n[1] == n[0])
4502 return 0;
4503 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4504 p[0] = v;
4505 p[1] = 1;
4506 return 1;
4507}
4508
4509static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4510{
4511 void *p;
4512 int i;
4513 if (n[0] == n[1])
4514 return;
3b0efdfa 4515 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->size) {
871751e2
AV
4516 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4517 continue;
4518 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4519 return;
4520 }
4521}
4522
4523static void show_symbol(struct seq_file *m, unsigned long address)
4524{
4525#ifdef CONFIG_KALLSYMS
871751e2 4526 unsigned long offset, size;
9281acea 4527 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4528
a5c43dae 4529 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4530 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4531 if (modname[0])
871751e2
AV
4532 seq_printf(m, " [%s]", modname);
4533 return;
4534 }
4535#endif
4536 seq_printf(m, "%p", (void *)address);
4537}
4538
4539static int leaks_show(struct seq_file *m, void *p)
4540{
b92151ba 4541 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
871751e2
AV
4542 struct slab *slabp;
4543 struct kmem_list3 *l3;
4544 const char *name;
4545 unsigned long *n = m->private;
4546 int node;
4547 int i;
4548
4549 if (!(cachep->flags & SLAB_STORE_USER))
4550 return 0;
4551 if (!(cachep->flags & SLAB_RED_ZONE))
4552 return 0;
4553
4554 /* OK, we can do it */
4555
4556 n[1] = 0;
4557
4558 for_each_online_node(node) {
4559 l3 = cachep->nodelists[node];
4560 if (!l3)
4561 continue;
4562
4563 check_irq_on();
4564 spin_lock_irq(&l3->list_lock);
4565
7a7c381d 4566 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4567 handle_slab(n, cachep, slabp);
7a7c381d 4568 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4569 handle_slab(n, cachep, slabp);
871751e2
AV
4570 spin_unlock_irq(&l3->list_lock);
4571 }
4572 name = cachep->name;
4573 if (n[0] == n[1]) {
4574 /* Increase the buffer size */
4575 mutex_unlock(&cache_chain_mutex);
4576 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4577 if (!m->private) {
4578 /* Too bad, we are really out */
4579 m->private = n;
4580 mutex_lock(&cache_chain_mutex);
4581 return -ENOMEM;
4582 }
4583 *(unsigned long *)m->private = n[0] * 2;
4584 kfree(n);
4585 mutex_lock(&cache_chain_mutex);
4586 /* Now make sure this entry will be retried */
4587 m->count = m->size;
4588 return 0;
4589 }
4590 for (i = 0; i < n[1]; i++) {
4591 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4592 show_symbol(m, n[2*i+2]);
4593 seq_putc(m, '\n');
4594 }
d2e7b7d0 4595
871751e2
AV
4596 return 0;
4597}
4598
a0ec95a8 4599static const struct seq_operations slabstats_op = {
871751e2
AV
4600 .start = leaks_start,
4601 .next = s_next,
4602 .stop = s_stop,
4603 .show = leaks_show,
4604};
a0ec95a8
AD
4605
4606static int slabstats_open(struct inode *inode, struct file *file)
4607{
4608 unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
4609 int ret = -ENOMEM;
4610 if (n) {
4611 ret = seq_open(file, &slabstats_op);
4612 if (!ret) {
4613 struct seq_file *m = file->private_data;
4614 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4615 m->private = n;
4616 n = NULL;
4617 }
4618 kfree(n);
4619 }
4620 return ret;
4621}
4622
4623static const struct file_operations proc_slabstats_operations = {
4624 .open = slabstats_open,
4625 .read = seq_read,
4626 .llseek = seq_lseek,
4627 .release = seq_release_private,
4628};
4629#endif
4630
4631static int __init slab_proc_init(void)
4632{
ab067e99 4633 proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
a0ec95a8
AD
4634#ifdef CONFIG_DEBUG_SLAB_LEAK
4635 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4636#endif
a0ec95a8
AD
4637 return 0;
4638}
4639module_init(slab_proc_init);
1da177e4
LT
4640#endif
4641
00e145b6
MS
4642/**
4643 * ksize - get the actual amount of memory allocated for a given object
4644 * @objp: Pointer to the object
4645 *
4646 * kmalloc may internally round up allocations and return more memory
4647 * than requested. ksize() can be used to determine the actual amount of
4648 * memory allocated. The caller may use this additional memory, even though
4649 * a smaller amount of memory was initially specified with the kmalloc call.
4650 * The caller must guarantee that objp points to a valid object previously
4651 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4652 * must not be freed during the duration of the call.
4653 */
fd76bab2 4654size_t ksize(const void *objp)
1da177e4 4655{
ef8b4520
CL
4656 BUG_ON(!objp);
4657 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4658 return 0;
1da177e4 4659
6ed5eb22 4660 return obj_size(virt_to_cache(objp));
1da177e4 4661}
b1aabecd 4662EXPORT_SYMBOL(ksize);