blk-mq: fix for flush deadlock
[linux-2.6-block.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
320ae51f 19#include <linux/blk-mq.h>
1da177e4
LT
20#include <linux/highmem.h>
21#include <linux/mm.h>
22#include <linux/kernel_stat.h>
23#include <linux/string.h>
24#include <linux/init.h>
1da177e4
LT
25#include <linux/completion.h>
26#include <linux/slab.h>
27#include <linux/swap.h>
28#include <linux/writeback.h>
faccbd4b 29#include <linux/task_io_accounting_ops.h>
c17bb495 30#include <linux/fault-inject.h>
73c10101 31#include <linux/list_sort.h>
e3c78ca5 32#include <linux/delay.h>
aaf7c680 33#include <linux/ratelimit.h>
6c954667 34#include <linux/pm_runtime.h>
55782138
LZ
35
36#define CREATE_TRACE_POINTS
37#include <trace/events/block.h>
1da177e4 38
8324aa91 39#include "blk.h"
5efd6113 40#include "blk-cgroup.h"
8324aa91 41
d07335e5 42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
b0da3f0d 43EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
0a82a8d1 44EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
cbae8d45 45EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug);
0bfc2455 46
a73f730d
TH
47DEFINE_IDA(blk_queue_ida);
48
1da177e4
LT
49/*
50 * For the allocated request tables
51 */
320ae51f 52struct kmem_cache *request_cachep = NULL;
1da177e4
LT
53
54/*
55 * For queue allocation
56 */
6728cb0e 57struct kmem_cache *blk_requestq_cachep;
1da177e4 58
1da177e4
LT
59/*
60 * Controlling structure to kblockd
61 */
ff856bad 62static struct workqueue_struct *kblockd_workqueue;
1da177e4 63
8324aa91 64void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
65{
66 int nr;
67
68 nr = q->nr_requests - (q->nr_requests / 8) + 1;
69 if (nr > q->nr_requests)
70 nr = q->nr_requests;
71 q->nr_congestion_on = nr;
72
73 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
74 if (nr < 1)
75 nr = 1;
76 q->nr_congestion_off = nr;
77}
78
1da177e4
LT
79/**
80 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
81 * @bdev: device
82 *
83 * Locates the passed device's request queue and returns the address of its
84 * backing_dev_info
85 *
86 * Will return NULL if the request queue cannot be located.
87 */
88struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
89{
90 struct backing_dev_info *ret = NULL;
165125e1 91 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
92
93 if (q)
94 ret = &q->backing_dev_info;
95 return ret;
96}
1da177e4
LT
97EXPORT_SYMBOL(blk_get_backing_dev_info);
98
2a4aa30c 99void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 100{
1afb20f3
FT
101 memset(rq, 0, sizeof(*rq));
102
1da177e4 103 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 104 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 105 rq->cpu = -1;
63a71386 106 rq->q = q;
a2dec7b3 107 rq->__sector = (sector_t) -1;
2e662b65
JA
108 INIT_HLIST_NODE(&rq->hash);
109 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 110 rq->cmd = rq->__cmd;
e2494e1b 111 rq->cmd_len = BLK_MAX_CDB;
63a71386 112 rq->tag = -1;
b243ddcb 113 rq->start_time = jiffies;
9195291e 114 set_start_time_ns(rq);
09e099d4 115 rq->part = NULL;
1da177e4 116}
2a4aa30c 117EXPORT_SYMBOL(blk_rq_init);
1da177e4 118
5bb23a68
N
119static void req_bio_endio(struct request *rq, struct bio *bio,
120 unsigned int nbytes, int error)
1da177e4 121{
143a87f4
TH
122 if (error)
123 clear_bit(BIO_UPTODATE, &bio->bi_flags);
124 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
125 error = -EIO;
797e7dbb 126
143a87f4
TH
127 if (unlikely(rq->cmd_flags & REQ_QUIET))
128 set_bit(BIO_QUIET, &bio->bi_flags);
08bafc03 129
f79ea416 130 bio_advance(bio, nbytes);
7ba1ba12 131
143a87f4
TH
132 /* don't actually finish bio if it's part of flush sequence */
133 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
134 bio_endio(bio, error);
1da177e4 135}
1da177e4 136
1da177e4
LT
137void blk_dump_rq_flags(struct request *rq, char *msg)
138{
139 int bit;
140
5953316d 141 printk(KERN_INFO "%s: dev %s: type=%x, flags=%llx\n", msg,
4aff5e23 142 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
5953316d 143 (unsigned long long) rq->cmd_flags);
1da177e4 144
83096ebf
TH
145 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
146 (unsigned long long)blk_rq_pos(rq),
147 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 148 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 149 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 150
33659ebb 151 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
6728cb0e 152 printk(KERN_INFO " cdb: ");
d34c87e4 153 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
154 printk("%02x ", rq->cmd[bit]);
155 printk("\n");
156 }
157}
1da177e4
LT
158EXPORT_SYMBOL(blk_dump_rq_flags);
159
3cca6dc1 160static void blk_delay_work(struct work_struct *work)
1da177e4 161{
3cca6dc1 162 struct request_queue *q;
1da177e4 163
3cca6dc1
JA
164 q = container_of(work, struct request_queue, delay_work.work);
165 spin_lock_irq(q->queue_lock);
24ecfbe2 166 __blk_run_queue(q);
3cca6dc1 167 spin_unlock_irq(q->queue_lock);
1da177e4 168}
1da177e4
LT
169
170/**
3cca6dc1
JA
171 * blk_delay_queue - restart queueing after defined interval
172 * @q: The &struct request_queue in question
173 * @msecs: Delay in msecs
1da177e4
LT
174 *
175 * Description:
3cca6dc1
JA
176 * Sometimes queueing needs to be postponed for a little while, to allow
177 * resources to come back. This function will make sure that queueing is
70460571 178 * restarted around the specified time. Queue lock must be held.
3cca6dc1
JA
179 */
180void blk_delay_queue(struct request_queue *q, unsigned long msecs)
2ad8b1ef 181{
70460571
BVA
182 if (likely(!blk_queue_dead(q)))
183 queue_delayed_work(kblockd_workqueue, &q->delay_work,
184 msecs_to_jiffies(msecs));
2ad8b1ef 185}
3cca6dc1 186EXPORT_SYMBOL(blk_delay_queue);
2ad8b1ef 187
1da177e4
LT
188/**
189 * blk_start_queue - restart a previously stopped queue
165125e1 190 * @q: The &struct request_queue in question
1da177e4
LT
191 *
192 * Description:
193 * blk_start_queue() will clear the stop flag on the queue, and call
194 * the request_fn for the queue if it was in a stopped state when
195 * entered. Also see blk_stop_queue(). Queue lock must be held.
196 **/
165125e1 197void blk_start_queue(struct request_queue *q)
1da177e4 198{
a038e253
PBG
199 WARN_ON(!irqs_disabled());
200
75ad23bc 201 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
24ecfbe2 202 __blk_run_queue(q);
1da177e4 203}
1da177e4
LT
204EXPORT_SYMBOL(blk_start_queue);
205
206/**
207 * blk_stop_queue - stop a queue
165125e1 208 * @q: The &struct request_queue in question
1da177e4
LT
209 *
210 * Description:
211 * The Linux block layer assumes that a block driver will consume all
212 * entries on the request queue when the request_fn strategy is called.
213 * Often this will not happen, because of hardware limitations (queue
214 * depth settings). If a device driver gets a 'queue full' response,
215 * or if it simply chooses not to queue more I/O at one point, it can
216 * call this function to prevent the request_fn from being called until
217 * the driver has signalled it's ready to go again. This happens by calling
218 * blk_start_queue() to restart queue operations. Queue lock must be held.
219 **/
165125e1 220void blk_stop_queue(struct request_queue *q)
1da177e4 221{
136b5721 222 cancel_delayed_work(&q->delay_work);
75ad23bc 223 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
224}
225EXPORT_SYMBOL(blk_stop_queue);
226
227/**
228 * blk_sync_queue - cancel any pending callbacks on a queue
229 * @q: the queue
230 *
231 * Description:
232 * The block layer may perform asynchronous callback activity
233 * on a queue, such as calling the unplug function after a timeout.
234 * A block device may call blk_sync_queue to ensure that any
235 * such activity is cancelled, thus allowing it to release resources
59c51591 236 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
237 * that its ->make_request_fn will not re-add plugging prior to calling
238 * this function.
239 *
da527770
VG
240 * This function does not cancel any asynchronous activity arising
241 * out of elevator or throttling code. That would require elevaotor_exit()
5efd6113 242 * and blkcg_exit_queue() to be called with queue lock initialized.
da527770 243 *
1da177e4
LT
244 */
245void blk_sync_queue(struct request_queue *q)
246{
70ed28b9 247 del_timer_sync(&q->timeout);
3cca6dc1 248 cancel_delayed_work_sync(&q->delay_work);
1da177e4
LT
249}
250EXPORT_SYMBOL(blk_sync_queue);
251
c246e80d
BVA
252/**
253 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
254 * @q: The queue to run
255 *
256 * Description:
257 * Invoke request handling on a queue if there are any pending requests.
258 * May be used to restart request handling after a request has completed.
259 * This variant runs the queue whether or not the queue has been
260 * stopped. Must be called with the queue lock held and interrupts
261 * disabled. See also @blk_run_queue.
262 */
263inline void __blk_run_queue_uncond(struct request_queue *q)
264{
265 if (unlikely(blk_queue_dead(q)))
266 return;
267
24faf6f6
BVA
268 /*
269 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
270 * the queue lock internally. As a result multiple threads may be
271 * running such a request function concurrently. Keep track of the
272 * number of active request_fn invocations such that blk_drain_queue()
273 * can wait until all these request_fn calls have finished.
274 */
275 q->request_fn_active++;
c246e80d 276 q->request_fn(q);
24faf6f6 277 q->request_fn_active--;
c246e80d
BVA
278}
279
1da177e4 280/**
80a4b58e 281 * __blk_run_queue - run a single device queue
1da177e4 282 * @q: The queue to run
80a4b58e
JA
283 *
284 * Description:
285 * See @blk_run_queue. This variant must be called with the queue lock
24ecfbe2 286 * held and interrupts disabled.
1da177e4 287 */
24ecfbe2 288void __blk_run_queue(struct request_queue *q)
1da177e4 289{
a538cd03
TH
290 if (unlikely(blk_queue_stopped(q)))
291 return;
292
c246e80d 293 __blk_run_queue_uncond(q);
75ad23bc
NP
294}
295EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 296
24ecfbe2
CH
297/**
298 * blk_run_queue_async - run a single device queue in workqueue context
299 * @q: The queue to run
300 *
301 * Description:
302 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
70460571 303 * of us. The caller must hold the queue lock.
24ecfbe2
CH
304 */
305void blk_run_queue_async(struct request_queue *q)
306{
70460571 307 if (likely(!blk_queue_stopped(q) && !blk_queue_dead(q)))
e7c2f967 308 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
24ecfbe2 309}
c21e6beb 310EXPORT_SYMBOL(blk_run_queue_async);
24ecfbe2 311
75ad23bc
NP
312/**
313 * blk_run_queue - run a single device queue
314 * @q: The queue to run
80a4b58e
JA
315 *
316 * Description:
317 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 318 * May be used to restart queueing when a request has completed.
75ad23bc
NP
319 */
320void blk_run_queue(struct request_queue *q)
321{
322 unsigned long flags;
323
324 spin_lock_irqsave(q->queue_lock, flags);
24ecfbe2 325 __blk_run_queue(q);
1da177e4
LT
326 spin_unlock_irqrestore(q->queue_lock, flags);
327}
328EXPORT_SYMBOL(blk_run_queue);
329
165125e1 330void blk_put_queue(struct request_queue *q)
483f4afc
AV
331{
332 kobject_put(&q->kobj);
333}
d86e0e83 334EXPORT_SYMBOL(blk_put_queue);
483f4afc 335
e3c78ca5 336/**
807592a4 337 * __blk_drain_queue - drain requests from request_queue
e3c78ca5 338 * @q: queue to drain
c9a929dd 339 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
e3c78ca5 340 *
c9a929dd
TH
341 * Drain requests from @q. If @drain_all is set, all requests are drained.
342 * If not, only ELVPRIV requests are drained. The caller is responsible
343 * for ensuring that no new requests which need to be drained are queued.
e3c78ca5 344 */
807592a4
BVA
345static void __blk_drain_queue(struct request_queue *q, bool drain_all)
346 __releases(q->queue_lock)
347 __acquires(q->queue_lock)
e3c78ca5 348{
458f27a9
AH
349 int i;
350
807592a4
BVA
351 lockdep_assert_held(q->queue_lock);
352
e3c78ca5 353 while (true) {
481a7d64 354 bool drain = false;
e3c78ca5 355
b855b04a
TH
356 /*
357 * The caller might be trying to drain @q before its
358 * elevator is initialized.
359 */
360 if (q->elevator)
361 elv_drain_elevator(q);
362
5efd6113 363 blkcg_drain_queue(q);
e3c78ca5 364
4eabc941
TH
365 /*
366 * This function might be called on a queue which failed
b855b04a
TH
367 * driver init after queue creation or is not yet fully
368 * active yet. Some drivers (e.g. fd and loop) get unhappy
369 * in such cases. Kick queue iff dispatch queue has
370 * something on it and @q has request_fn set.
4eabc941 371 */
b855b04a 372 if (!list_empty(&q->queue_head) && q->request_fn)
4eabc941 373 __blk_run_queue(q);
c9a929dd 374
8a5ecdd4 375 drain |= q->nr_rqs_elvpriv;
24faf6f6 376 drain |= q->request_fn_active;
481a7d64
TH
377
378 /*
379 * Unfortunately, requests are queued at and tracked from
380 * multiple places and there's no single counter which can
381 * be drained. Check all the queues and counters.
382 */
383 if (drain_all) {
384 drain |= !list_empty(&q->queue_head);
385 for (i = 0; i < 2; i++) {
8a5ecdd4 386 drain |= q->nr_rqs[i];
481a7d64
TH
387 drain |= q->in_flight[i];
388 drain |= !list_empty(&q->flush_queue[i]);
389 }
390 }
e3c78ca5 391
481a7d64 392 if (!drain)
e3c78ca5 393 break;
807592a4
BVA
394
395 spin_unlock_irq(q->queue_lock);
396
e3c78ca5 397 msleep(10);
807592a4
BVA
398
399 spin_lock_irq(q->queue_lock);
e3c78ca5 400 }
458f27a9
AH
401
402 /*
403 * With queue marked dead, any woken up waiter will fail the
404 * allocation path, so the wakeup chaining is lost and we're
405 * left with hung waiters. We need to wake up those waiters.
406 */
407 if (q->request_fn) {
a051661c
TH
408 struct request_list *rl;
409
a051661c
TH
410 blk_queue_for_each_rl(rl, q)
411 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
412 wake_up_all(&rl->wait[i]);
458f27a9 413 }
e3c78ca5
TH
414}
415
d732580b
TH
416/**
417 * blk_queue_bypass_start - enter queue bypass mode
418 * @q: queue of interest
419 *
420 * In bypass mode, only the dispatch FIFO queue of @q is used. This
421 * function makes @q enter bypass mode and drains all requests which were
6ecf23af 422 * throttled or issued before. On return, it's guaranteed that no request
80fd9979
TH
423 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
424 * inside queue or RCU read lock.
d732580b
TH
425 */
426void blk_queue_bypass_start(struct request_queue *q)
427{
b82d4b19
TH
428 bool drain;
429
d732580b 430 spin_lock_irq(q->queue_lock);
b82d4b19 431 drain = !q->bypass_depth++;
d732580b
TH
432 queue_flag_set(QUEUE_FLAG_BYPASS, q);
433 spin_unlock_irq(q->queue_lock);
434
b82d4b19 435 if (drain) {
807592a4
BVA
436 spin_lock_irq(q->queue_lock);
437 __blk_drain_queue(q, false);
438 spin_unlock_irq(q->queue_lock);
439
b82d4b19
TH
440 /* ensure blk_queue_bypass() is %true inside RCU read lock */
441 synchronize_rcu();
442 }
d732580b
TH
443}
444EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
445
446/**
447 * blk_queue_bypass_end - leave queue bypass mode
448 * @q: queue of interest
449 *
450 * Leave bypass mode and restore the normal queueing behavior.
451 */
452void blk_queue_bypass_end(struct request_queue *q)
453{
454 spin_lock_irq(q->queue_lock);
455 if (!--q->bypass_depth)
456 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
457 WARN_ON_ONCE(q->bypass_depth < 0);
458 spin_unlock_irq(q->queue_lock);
459}
460EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
461
c9a929dd
TH
462/**
463 * blk_cleanup_queue - shutdown a request queue
464 * @q: request queue to shutdown
465 *
c246e80d
BVA
466 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
467 * put it. All future requests will be failed immediately with -ENODEV.
c94a96ac 468 */
6728cb0e 469void blk_cleanup_queue(struct request_queue *q)
483f4afc 470{
c9a929dd 471 spinlock_t *lock = q->queue_lock;
e3335de9 472
3f3299d5 473 /* mark @q DYING, no new request or merges will be allowed afterwards */
483f4afc 474 mutex_lock(&q->sysfs_lock);
3f3299d5 475 queue_flag_set_unlocked(QUEUE_FLAG_DYING, q);
c9a929dd 476 spin_lock_irq(lock);
6ecf23af 477
80fd9979 478 /*
3f3299d5 479 * A dying queue is permanently in bypass mode till released. Note
80fd9979
TH
480 * that, unlike blk_queue_bypass_start(), we aren't performing
481 * synchronize_rcu() after entering bypass mode to avoid the delay
482 * as some drivers create and destroy a lot of queues while
483 * probing. This is still safe because blk_release_queue() will be
484 * called only after the queue refcnt drops to zero and nothing,
485 * RCU or not, would be traversing the queue by then.
486 */
6ecf23af
TH
487 q->bypass_depth++;
488 queue_flag_set(QUEUE_FLAG_BYPASS, q);
489
c9a929dd
TH
490 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
491 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
3f3299d5 492 queue_flag_set(QUEUE_FLAG_DYING, q);
c9a929dd
TH
493 spin_unlock_irq(lock);
494 mutex_unlock(&q->sysfs_lock);
495
c246e80d
BVA
496 /*
497 * Drain all requests queued before DYING marking. Set DEAD flag to
498 * prevent that q->request_fn() gets invoked after draining finished.
499 */
807592a4
BVA
500 spin_lock_irq(lock);
501 __blk_drain_queue(q, true);
c246e80d 502 queue_flag_set(QUEUE_FLAG_DEAD, q);
807592a4 503 spin_unlock_irq(lock);
c9a929dd
TH
504
505 /* @q won't process any more request, flush async actions */
506 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
507 blk_sync_queue(q);
508
5e5cfac0
AH
509 spin_lock_irq(lock);
510 if (q->queue_lock != &q->__queue_lock)
511 q->queue_lock = &q->__queue_lock;
512 spin_unlock_irq(lock);
513
c9a929dd 514 /* @q is and will stay empty, shutdown and put */
483f4afc
AV
515 blk_put_queue(q);
516}
1da177e4
LT
517EXPORT_SYMBOL(blk_cleanup_queue);
518
5b788ce3
TH
519int blk_init_rl(struct request_list *rl, struct request_queue *q,
520 gfp_t gfp_mask)
1da177e4 521{
1abec4fd
MS
522 if (unlikely(rl->rq_pool))
523 return 0;
524
5b788ce3 525 rl->q = q;
1faa16d2
JA
526 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
527 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
1faa16d2
JA
528 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
529 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 530
1946089a 531 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
a91a5ac6 532 mempool_free_slab, request_cachep,
5b788ce3 533 gfp_mask, q->node);
1da177e4
LT
534 if (!rl->rq_pool)
535 return -ENOMEM;
536
537 return 0;
538}
539
5b788ce3
TH
540void blk_exit_rl(struct request_list *rl)
541{
542 if (rl->rq_pool)
543 mempool_destroy(rl->rq_pool);
544}
545
165125e1 546struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 547{
c304a51b 548 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
1946089a
CL
549}
550EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 551
165125e1 552struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 553{
165125e1 554 struct request_queue *q;
e0bf68dd 555 int err;
1946089a 556
8324aa91 557 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 558 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
559 if (!q)
560 return NULL;
561
320ae51f
JA
562 if (percpu_counter_init(&q->mq_usage_counter, 0))
563 goto fail_q;
564
00380a40 565 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
a73f730d 566 if (q->id < 0)
320ae51f 567 goto fail_c;
a73f730d 568
0989a025
JA
569 q->backing_dev_info.ra_pages =
570 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
571 q->backing_dev_info.state = 0;
572 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 573 q->backing_dev_info.name = "block";
5151412d 574 q->node = node_id;
0989a025 575
e0bf68dd 576 err = bdi_init(&q->backing_dev_info);
a73f730d
TH
577 if (err)
578 goto fail_id;
e0bf68dd 579
31373d09
MG
580 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
581 laptop_mode_timer_fn, (unsigned long) q);
242f9dcb 582 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
b855b04a 583 INIT_LIST_HEAD(&q->queue_head);
242f9dcb 584 INIT_LIST_HEAD(&q->timeout_list);
a612fddf 585 INIT_LIST_HEAD(&q->icq_list);
4eef3049 586#ifdef CONFIG_BLK_CGROUP
e8989fae 587 INIT_LIST_HEAD(&q->blkg_list);
4eef3049 588#endif
ae1b1539
TH
589 INIT_LIST_HEAD(&q->flush_queue[0]);
590 INIT_LIST_HEAD(&q->flush_queue[1]);
591 INIT_LIST_HEAD(&q->flush_data_in_flight);
3cca6dc1 592 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
483f4afc 593
8324aa91 594 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 595
483f4afc 596 mutex_init(&q->sysfs_lock);
e7e72bf6 597 spin_lock_init(&q->__queue_lock);
483f4afc 598
c94a96ac
VG
599 /*
600 * By default initialize queue_lock to internal lock and driver can
601 * override it later if need be.
602 */
603 q->queue_lock = &q->__queue_lock;
604
b82d4b19
TH
605 /*
606 * A queue starts its life with bypass turned on to avoid
607 * unnecessary bypass on/off overhead and nasty surprises during
749fefe6
TH
608 * init. The initial bypass will be finished when the queue is
609 * registered by blk_register_queue().
b82d4b19
TH
610 */
611 q->bypass_depth = 1;
612 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
613
320ae51f
JA
614 init_waitqueue_head(&q->mq_freeze_wq);
615
5efd6113 616 if (blkcg_init_queue(q))
f51b802c
TH
617 goto fail_id;
618
1da177e4 619 return q;
a73f730d
TH
620
621fail_id:
622 ida_simple_remove(&blk_queue_ida, q->id);
320ae51f
JA
623fail_c:
624 percpu_counter_destroy(&q->mq_usage_counter);
a73f730d
TH
625fail_q:
626 kmem_cache_free(blk_requestq_cachep, q);
627 return NULL;
1da177e4 628}
1946089a 629EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
630
631/**
632 * blk_init_queue - prepare a request queue for use with a block device
633 * @rfn: The function to be called to process requests that have been
634 * placed on the queue.
635 * @lock: Request queue spin lock
636 *
637 * Description:
638 * If a block device wishes to use the standard request handling procedures,
639 * which sorts requests and coalesces adjacent requests, then it must
640 * call blk_init_queue(). The function @rfn will be called when there
641 * are requests on the queue that need to be processed. If the device
642 * supports plugging, then @rfn may not be called immediately when requests
643 * are available on the queue, but may be called at some time later instead.
644 * Plugged queues are generally unplugged when a buffer belonging to one
645 * of the requests on the queue is needed, or due to memory pressure.
646 *
647 * @rfn is not required, or even expected, to remove all requests off the
648 * queue, but only as many as it can handle at a time. If it does leave
649 * requests on the queue, it is responsible for arranging that the requests
650 * get dealt with eventually.
651 *
652 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
653 * request queue; this lock will be taken also from interrupt context, so irq
654 * disabling is needed for it.
1da177e4 655 *
710027a4 656 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
657 * it didn't succeed.
658 *
659 * Note:
660 * blk_init_queue() must be paired with a blk_cleanup_queue() call
661 * when the block device is deactivated (such as at module unload).
662 **/
1946089a 663
165125e1 664struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 665{
c304a51b 666 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
1946089a
CL
667}
668EXPORT_SYMBOL(blk_init_queue);
669
165125e1 670struct request_queue *
1946089a
CL
671blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
672{
c86d1b8a 673 struct request_queue *uninit_q, *q;
1da177e4 674
c86d1b8a
MS
675 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
676 if (!uninit_q)
677 return NULL;
678
5151412d 679 q = blk_init_allocated_queue(uninit_q, rfn, lock);
c86d1b8a
MS
680 if (!q)
681 blk_cleanup_queue(uninit_q);
682
683 return q;
01effb0d
MS
684}
685EXPORT_SYMBOL(blk_init_queue_node);
686
687struct request_queue *
688blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
689 spinlock_t *lock)
01effb0d 690{
1da177e4
LT
691 if (!q)
692 return NULL;
693
a051661c 694 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
8669aafd 695 return NULL;
1da177e4
LT
696
697 q->request_fn = rfn;
1da177e4 698 q->prep_rq_fn = NULL;
28018c24 699 q->unprep_rq_fn = NULL;
60ea8226 700 q->queue_flags |= QUEUE_FLAG_DEFAULT;
c94a96ac
VG
701
702 /* Override internal queue lock with supplied lock pointer */
703 if (lock)
704 q->queue_lock = lock;
1da177e4 705
f3b144aa
JA
706 /*
707 * This also sets hw/phys segments, boundary and size
708 */
c20e8de2 709 blk_queue_make_request(q, blk_queue_bio);
1da177e4 710
44ec9542
AS
711 q->sg_reserved_size = INT_MAX;
712
b82d4b19
TH
713 /* init elevator */
714 if (elevator_init(q, NULL))
715 return NULL;
b82d4b19 716 return q;
1da177e4 717}
5151412d 718EXPORT_SYMBOL(blk_init_allocated_queue);
1da177e4 719
09ac46c4 720bool blk_get_queue(struct request_queue *q)
1da177e4 721{
3f3299d5 722 if (likely(!blk_queue_dying(q))) {
09ac46c4
TH
723 __blk_get_queue(q);
724 return true;
1da177e4
LT
725 }
726
09ac46c4 727 return false;
1da177e4 728}
d86e0e83 729EXPORT_SYMBOL(blk_get_queue);
1da177e4 730
5b788ce3 731static inline void blk_free_request(struct request_list *rl, struct request *rq)
1da177e4 732{
f1f8cc94 733 if (rq->cmd_flags & REQ_ELVPRIV) {
5b788ce3 734 elv_put_request(rl->q, rq);
f1f8cc94 735 if (rq->elv.icq)
11a3122f 736 put_io_context(rq->elv.icq->ioc);
f1f8cc94
TH
737 }
738
5b788ce3 739 mempool_free(rq, rl->rq_pool);
1da177e4
LT
740}
741
1da177e4
LT
742/*
743 * ioc_batching returns true if the ioc is a valid batching request and
744 * should be given priority access to a request.
745 */
165125e1 746static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
747{
748 if (!ioc)
749 return 0;
750
751 /*
752 * Make sure the process is able to allocate at least 1 request
753 * even if the batch times out, otherwise we could theoretically
754 * lose wakeups.
755 */
756 return ioc->nr_batch_requests == q->nr_batching ||
757 (ioc->nr_batch_requests > 0
758 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
759}
760
761/*
762 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
763 * will cause the process to be a "batcher" on all queues in the system. This
764 * is the behaviour we want though - once it gets a wakeup it should be given
765 * a nice run.
766 */
165125e1 767static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
768{
769 if (!ioc || ioc_batching(q, ioc))
770 return;
771
772 ioc->nr_batch_requests = q->nr_batching;
773 ioc->last_waited = jiffies;
774}
775
5b788ce3 776static void __freed_request(struct request_list *rl, int sync)
1da177e4 777{
5b788ce3 778 struct request_queue *q = rl->q;
1da177e4 779
a051661c
TH
780 /*
781 * bdi isn't aware of blkcg yet. As all async IOs end up root
782 * blkcg anyway, just use root blkcg state.
783 */
784 if (rl == &q->root_rl &&
785 rl->count[sync] < queue_congestion_off_threshold(q))
1faa16d2 786 blk_clear_queue_congested(q, sync);
1da177e4 787
1faa16d2
JA
788 if (rl->count[sync] + 1 <= q->nr_requests) {
789 if (waitqueue_active(&rl->wait[sync]))
790 wake_up(&rl->wait[sync]);
1da177e4 791
5b788ce3 792 blk_clear_rl_full(rl, sync);
1da177e4
LT
793 }
794}
795
796/*
797 * A request has just been released. Account for it, update the full and
798 * congestion status, wake up any waiters. Called under q->queue_lock.
799 */
5b788ce3 800static void freed_request(struct request_list *rl, unsigned int flags)
1da177e4 801{
5b788ce3 802 struct request_queue *q = rl->q;
75eb6c37 803 int sync = rw_is_sync(flags);
1da177e4 804
8a5ecdd4 805 q->nr_rqs[sync]--;
1faa16d2 806 rl->count[sync]--;
75eb6c37 807 if (flags & REQ_ELVPRIV)
8a5ecdd4 808 q->nr_rqs_elvpriv--;
1da177e4 809
5b788ce3 810 __freed_request(rl, sync);
1da177e4 811
1faa16d2 812 if (unlikely(rl->starved[sync ^ 1]))
5b788ce3 813 __freed_request(rl, sync ^ 1);
1da177e4
LT
814}
815
9d5a4e94
MS
816/*
817 * Determine if elevator data should be initialized when allocating the
818 * request associated with @bio.
819 */
820static bool blk_rq_should_init_elevator(struct bio *bio)
821{
822 if (!bio)
823 return true;
824
825 /*
826 * Flush requests do not use the elevator so skip initialization.
827 * This allows a request to share the flush and elevator data.
828 */
829 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
830 return false;
831
832 return true;
833}
834
852c788f
TH
835/**
836 * rq_ioc - determine io_context for request allocation
837 * @bio: request being allocated is for this bio (can be %NULL)
838 *
839 * Determine io_context to use for request allocation for @bio. May return
840 * %NULL if %current->io_context doesn't exist.
841 */
842static struct io_context *rq_ioc(struct bio *bio)
843{
844#ifdef CONFIG_BLK_CGROUP
845 if (bio && bio->bi_ioc)
846 return bio->bi_ioc;
847#endif
848 return current->io_context;
849}
850
da8303c6 851/**
a06e05e6 852 * __get_request - get a free request
5b788ce3 853 * @rl: request list to allocate from
da8303c6
TH
854 * @rw_flags: RW and SYNC flags
855 * @bio: bio to allocate request for (can be %NULL)
856 * @gfp_mask: allocation mask
857 *
858 * Get a free request from @q. This function may fail under memory
859 * pressure or if @q is dead.
860 *
861 * Must be callled with @q->queue_lock held and,
862 * Returns %NULL on failure, with @q->queue_lock held.
863 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 864 */
5b788ce3 865static struct request *__get_request(struct request_list *rl, int rw_flags,
a06e05e6 866 struct bio *bio, gfp_t gfp_mask)
1da177e4 867{
5b788ce3 868 struct request_queue *q = rl->q;
b679281a 869 struct request *rq;
7f4b35d1
TH
870 struct elevator_type *et = q->elevator->type;
871 struct io_context *ioc = rq_ioc(bio);
f1f8cc94 872 struct io_cq *icq = NULL;
1faa16d2 873 const bool is_sync = rw_is_sync(rw_flags) != 0;
75eb6c37 874 int may_queue;
88ee5ef1 875
3f3299d5 876 if (unlikely(blk_queue_dying(q)))
da8303c6
TH
877 return NULL;
878
7749a8d4 879 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
880 if (may_queue == ELV_MQUEUE_NO)
881 goto rq_starved;
882
1faa16d2
JA
883 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
884 if (rl->count[is_sync]+1 >= q->nr_requests) {
88ee5ef1
JA
885 /*
886 * The queue will fill after this allocation, so set
887 * it as full, and mark this process as "batching".
888 * This process will be allowed to complete a batch of
889 * requests, others will be blocked.
890 */
5b788ce3 891 if (!blk_rl_full(rl, is_sync)) {
88ee5ef1 892 ioc_set_batching(q, ioc);
5b788ce3 893 blk_set_rl_full(rl, is_sync);
88ee5ef1
JA
894 } else {
895 if (may_queue != ELV_MQUEUE_MUST
896 && !ioc_batching(q, ioc)) {
897 /*
898 * The queue is full and the allocating
899 * process is not a "batcher", and not
900 * exempted by the IO scheduler
901 */
b679281a 902 return NULL;
88ee5ef1
JA
903 }
904 }
1da177e4 905 }
a051661c
TH
906 /*
907 * bdi isn't aware of blkcg yet. As all async IOs end up
908 * root blkcg anyway, just use root blkcg state.
909 */
910 if (rl == &q->root_rl)
911 blk_set_queue_congested(q, is_sync);
1da177e4
LT
912 }
913
082cf69e
JA
914 /*
915 * Only allow batching queuers to allocate up to 50% over the defined
916 * limit of requests, otherwise we could have thousands of requests
917 * allocated with any setting of ->nr_requests
918 */
1faa16d2 919 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
b679281a 920 return NULL;
fd782a4a 921
8a5ecdd4 922 q->nr_rqs[is_sync]++;
1faa16d2
JA
923 rl->count[is_sync]++;
924 rl->starved[is_sync] = 0;
cb98fc8b 925
f1f8cc94
TH
926 /*
927 * Decide whether the new request will be managed by elevator. If
928 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
929 * prevent the current elevator from being destroyed until the new
930 * request is freed. This guarantees icq's won't be destroyed and
931 * makes creating new ones safe.
932 *
933 * Also, lookup icq while holding queue_lock. If it doesn't exist,
934 * it will be created after releasing queue_lock.
935 */
d732580b 936 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
75eb6c37 937 rw_flags |= REQ_ELVPRIV;
8a5ecdd4 938 q->nr_rqs_elvpriv++;
f1f8cc94
TH
939 if (et->icq_cache && ioc)
940 icq = ioc_lookup_icq(ioc, q);
9d5a4e94 941 }
cb98fc8b 942
f253b86b
JA
943 if (blk_queue_io_stat(q))
944 rw_flags |= REQ_IO_STAT;
1da177e4
LT
945 spin_unlock_irq(q->queue_lock);
946
29e2b09a 947 /* allocate and init request */
5b788ce3 948 rq = mempool_alloc(rl->rq_pool, gfp_mask);
29e2b09a 949 if (!rq)
b679281a 950 goto fail_alloc;
1da177e4 951
29e2b09a 952 blk_rq_init(q, rq);
a051661c 953 blk_rq_set_rl(rq, rl);
29e2b09a
TH
954 rq->cmd_flags = rw_flags | REQ_ALLOCED;
955
aaf7c680 956 /* init elvpriv */
29e2b09a 957 if (rw_flags & REQ_ELVPRIV) {
aaf7c680 958 if (unlikely(et->icq_cache && !icq)) {
7f4b35d1
TH
959 if (ioc)
960 icq = ioc_create_icq(ioc, q, gfp_mask);
aaf7c680
TH
961 if (!icq)
962 goto fail_elvpriv;
29e2b09a 963 }
aaf7c680
TH
964
965 rq->elv.icq = icq;
966 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
967 goto fail_elvpriv;
968
969 /* @rq->elv.icq holds io_context until @rq is freed */
29e2b09a
TH
970 if (icq)
971 get_io_context(icq->ioc);
972 }
aaf7c680 973out:
88ee5ef1
JA
974 /*
975 * ioc may be NULL here, and ioc_batching will be false. That's
976 * OK, if the queue is under the request limit then requests need
977 * not count toward the nr_batch_requests limit. There will always
978 * be some limit enforced by BLK_BATCH_TIME.
979 */
1da177e4
LT
980 if (ioc_batching(q, ioc))
981 ioc->nr_batch_requests--;
6728cb0e 982
1faa16d2 983 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 984 return rq;
b679281a 985
aaf7c680
TH
986fail_elvpriv:
987 /*
988 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
989 * and may fail indefinitely under memory pressure and thus
990 * shouldn't stall IO. Treat this request as !elvpriv. This will
991 * disturb iosched and blkcg but weird is bettern than dead.
992 */
993 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
994 dev_name(q->backing_dev_info.dev));
995
996 rq->cmd_flags &= ~REQ_ELVPRIV;
997 rq->elv.icq = NULL;
998
999 spin_lock_irq(q->queue_lock);
8a5ecdd4 1000 q->nr_rqs_elvpriv--;
aaf7c680
TH
1001 spin_unlock_irq(q->queue_lock);
1002 goto out;
1003
b679281a
TH
1004fail_alloc:
1005 /*
1006 * Allocation failed presumably due to memory. Undo anything we
1007 * might have messed up.
1008 *
1009 * Allocating task should really be put onto the front of the wait
1010 * queue, but this is pretty rare.
1011 */
1012 spin_lock_irq(q->queue_lock);
5b788ce3 1013 freed_request(rl, rw_flags);
b679281a
TH
1014
1015 /*
1016 * in the very unlikely event that allocation failed and no
1017 * requests for this direction was pending, mark us starved so that
1018 * freeing of a request in the other direction will notice
1019 * us. another possible fix would be to split the rq mempool into
1020 * READ and WRITE
1021 */
1022rq_starved:
1023 if (unlikely(rl->count[is_sync] == 0))
1024 rl->starved[is_sync] = 1;
1025 return NULL;
1da177e4
LT
1026}
1027
da8303c6 1028/**
a06e05e6 1029 * get_request - get a free request
da8303c6
TH
1030 * @q: request_queue to allocate request from
1031 * @rw_flags: RW and SYNC flags
1032 * @bio: bio to allocate request for (can be %NULL)
a06e05e6 1033 * @gfp_mask: allocation mask
da8303c6 1034 *
a06e05e6
TH
1035 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1036 * function keeps retrying under memory pressure and fails iff @q is dead.
d6344532 1037 *
da8303c6
TH
1038 * Must be callled with @q->queue_lock held and,
1039 * Returns %NULL on failure, with @q->queue_lock held.
1040 * Returns !%NULL on success, with @q->queue_lock *not held*.
1da177e4 1041 */
a06e05e6
TH
1042static struct request *get_request(struct request_queue *q, int rw_flags,
1043 struct bio *bio, gfp_t gfp_mask)
1da177e4 1044{
1faa16d2 1045 const bool is_sync = rw_is_sync(rw_flags) != 0;
a06e05e6 1046 DEFINE_WAIT(wait);
a051661c 1047 struct request_list *rl;
1da177e4 1048 struct request *rq;
a051661c
TH
1049
1050 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
a06e05e6 1051retry:
a051661c 1052 rq = __get_request(rl, rw_flags, bio, gfp_mask);
a06e05e6
TH
1053 if (rq)
1054 return rq;
1da177e4 1055
3f3299d5 1056 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dying(q))) {
a051661c 1057 blk_put_rl(rl);
a06e05e6 1058 return NULL;
a051661c 1059 }
1da177e4 1060
a06e05e6
TH
1061 /* wait on @rl and retry */
1062 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1063 TASK_UNINTERRUPTIBLE);
1da177e4 1064
a06e05e6 1065 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 1066
a06e05e6
TH
1067 spin_unlock_irq(q->queue_lock);
1068 io_schedule();
d6344532 1069
a06e05e6
TH
1070 /*
1071 * After sleeping, we become a "batching" process and will be able
1072 * to allocate at least one request, and up to a big batch of them
1073 * for a small period time. See ioc_batching, ioc_set_batching
1074 */
a06e05e6 1075 ioc_set_batching(q, current->io_context);
05caf8db 1076
a06e05e6
TH
1077 spin_lock_irq(q->queue_lock);
1078 finish_wait(&rl->wait[is_sync], &wait);
1da177e4 1079
a06e05e6 1080 goto retry;
1da177e4
LT
1081}
1082
320ae51f
JA
1083static struct request *blk_old_get_request(struct request_queue *q, int rw,
1084 gfp_t gfp_mask)
1da177e4
LT
1085{
1086 struct request *rq;
1087
1088 BUG_ON(rw != READ && rw != WRITE);
1089
7f4b35d1
TH
1090 /* create ioc upfront */
1091 create_io_context(gfp_mask, q->node);
1092
d6344532 1093 spin_lock_irq(q->queue_lock);
a06e05e6 1094 rq = get_request(q, rw, NULL, gfp_mask);
da8303c6
TH
1095 if (!rq)
1096 spin_unlock_irq(q->queue_lock);
d6344532 1097 /* q->queue_lock is unlocked at this point */
1da177e4
LT
1098
1099 return rq;
1100}
320ae51f
JA
1101
1102struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1103{
1104 if (q->mq_ops)
3228f48b 1105 return blk_mq_alloc_request(q, rw, gfp_mask, false);
320ae51f
JA
1106 else
1107 return blk_old_get_request(q, rw, gfp_mask);
1108}
1da177e4
LT
1109EXPORT_SYMBOL(blk_get_request);
1110
dc72ef4a 1111/**
79eb63e9 1112 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 1113 * @q: target request queue
79eb63e9
BH
1114 * @bio: The bio describing the memory mappings that will be submitted for IO.
1115 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 1116 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 1117 *
79eb63e9
BH
1118 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1119 * type commands. Where the struct request needs to be farther initialized by
1120 * the caller. It is passed a &struct bio, which describes the memory info of
1121 * the I/O transfer.
dc72ef4a 1122 *
79eb63e9
BH
1123 * The caller of blk_make_request must make sure that bi_io_vec
1124 * are set to describe the memory buffers. That bio_data_dir() will return
1125 * the needed direction of the request. (And all bio's in the passed bio-chain
1126 * are properly set accordingly)
1127 *
1128 * If called under none-sleepable conditions, mapped bio buffers must not
1129 * need bouncing, by calling the appropriate masked or flagged allocator,
1130 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1131 * BUG.
53674ac5
JA
1132 *
1133 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1134 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1135 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1136 * completion of a bio that hasn't been submitted yet, thus resulting in a
1137 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1138 * of bio_alloc(), as that avoids the mempool deadlock.
1139 * If possible a big IO should be split into smaller parts when allocation
1140 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 1141 */
79eb63e9
BH
1142struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1143 gfp_t gfp_mask)
dc72ef4a 1144{
79eb63e9
BH
1145 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1146
1147 if (unlikely(!rq))
1148 return ERR_PTR(-ENOMEM);
1149
1150 for_each_bio(bio) {
1151 struct bio *bounce_bio = bio;
1152 int ret;
1153
1154 blk_queue_bounce(q, &bounce_bio);
1155 ret = blk_rq_append_bio(q, rq, bounce_bio);
1156 if (unlikely(ret)) {
1157 blk_put_request(rq);
1158 return ERR_PTR(ret);
1159 }
1160 }
1161
1162 return rq;
dc72ef4a 1163}
79eb63e9 1164EXPORT_SYMBOL(blk_make_request);
dc72ef4a 1165
1da177e4
LT
1166/**
1167 * blk_requeue_request - put a request back on queue
1168 * @q: request queue where request should be inserted
1169 * @rq: request to be inserted
1170 *
1171 * Description:
1172 * Drivers often keep queueing requests until the hardware cannot accept
1173 * more, when that condition happens we need to put the request back
1174 * on the queue. Must be called with queue lock held.
1175 */
165125e1 1176void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 1177{
242f9dcb
JA
1178 blk_delete_timer(rq);
1179 blk_clear_rq_complete(rq);
5f3ea37c 1180 trace_block_rq_requeue(q, rq);
2056a782 1181
1da177e4
LT
1182 if (blk_rq_tagged(rq))
1183 blk_queue_end_tag(q, rq);
1184
ba396a6c
JB
1185 BUG_ON(blk_queued_rq(rq));
1186
1da177e4
LT
1187 elv_requeue_request(q, rq);
1188}
1da177e4
LT
1189EXPORT_SYMBOL(blk_requeue_request);
1190
73c10101
JA
1191static void add_acct_request(struct request_queue *q, struct request *rq,
1192 int where)
1193{
320ae51f 1194 blk_account_io_start(rq, true);
7eaceacc 1195 __elv_add_request(q, rq, where);
73c10101
JA
1196}
1197
074a7aca
TH
1198static void part_round_stats_single(int cpu, struct hd_struct *part,
1199 unsigned long now)
1200{
1201 if (now == part->stamp)
1202 return;
1203
316d315b 1204 if (part_in_flight(part)) {
074a7aca 1205 __part_stat_add(cpu, part, time_in_queue,
316d315b 1206 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1207 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1208 }
1209 part->stamp = now;
1210}
1211
1212/**
496aa8a9
RD
1213 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1214 * @cpu: cpu number for stats access
1215 * @part: target partition
1da177e4
LT
1216 *
1217 * The average IO queue length and utilisation statistics are maintained
1218 * by observing the current state of the queue length and the amount of
1219 * time it has been in this state for.
1220 *
1221 * Normally, that accounting is done on IO completion, but that can result
1222 * in more than a second's worth of IO being accounted for within any one
1223 * second, leading to >100% utilisation. To deal with that, we call this
1224 * function to do a round-off before returning the results when reading
1225 * /proc/diskstats. This accounts immediately for all queue usage up to
1226 * the current jiffies and restarts the counters again.
1227 */
c9959059 1228void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1229{
1230 unsigned long now = jiffies;
1231
074a7aca
TH
1232 if (part->partno)
1233 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1234 part_round_stats_single(cpu, part, now);
6f2576af 1235}
074a7aca 1236EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1237
c8158819
LM
1238#ifdef CONFIG_PM_RUNTIME
1239static void blk_pm_put_request(struct request *rq)
1240{
1241 if (rq->q->dev && !(rq->cmd_flags & REQ_PM) && !--rq->q->nr_pending)
1242 pm_runtime_mark_last_busy(rq->q->dev);
1243}
1244#else
1245static inline void blk_pm_put_request(struct request *rq) {}
1246#endif
1247
1da177e4
LT
1248/*
1249 * queue lock must be held
1250 */
165125e1 1251void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1252{
1da177e4
LT
1253 if (unlikely(!q))
1254 return;
1da177e4 1255
c8158819
LM
1256 blk_pm_put_request(req);
1257
8922e16c
TH
1258 elv_completed_request(q, req);
1259
1cd96c24
BH
1260 /* this is a bio leak */
1261 WARN_ON(req->bio != NULL);
1262
1da177e4
LT
1263 /*
1264 * Request may not have originated from ll_rw_blk. if not,
1265 * it didn't come out of our reserved rq pools
1266 */
49171e5c 1267 if (req->cmd_flags & REQ_ALLOCED) {
75eb6c37 1268 unsigned int flags = req->cmd_flags;
a051661c 1269 struct request_list *rl = blk_rq_rl(req);
1da177e4 1270
1da177e4 1271 BUG_ON(!list_empty(&req->queuelist));
9817064b 1272 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4 1273
a051661c
TH
1274 blk_free_request(rl, req);
1275 freed_request(rl, flags);
1276 blk_put_rl(rl);
1da177e4
LT
1277 }
1278}
6e39b69e
MC
1279EXPORT_SYMBOL_GPL(__blk_put_request);
1280
1da177e4
LT
1281void blk_put_request(struct request *req)
1282{
165125e1 1283 struct request_queue *q = req->q;
8922e16c 1284
320ae51f
JA
1285 if (q->mq_ops)
1286 blk_mq_free_request(req);
1287 else {
1288 unsigned long flags;
1289
1290 spin_lock_irqsave(q->queue_lock, flags);
1291 __blk_put_request(q, req);
1292 spin_unlock_irqrestore(q->queue_lock, flags);
1293 }
1da177e4 1294}
1da177e4
LT
1295EXPORT_SYMBOL(blk_put_request);
1296
66ac0280
CH
1297/**
1298 * blk_add_request_payload - add a payload to a request
1299 * @rq: request to update
1300 * @page: page backing the payload
1301 * @len: length of the payload.
1302 *
1303 * This allows to later add a payload to an already submitted request by
1304 * a block driver. The driver needs to take care of freeing the payload
1305 * itself.
1306 *
1307 * Note that this is a quite horrible hack and nothing but handling of
1308 * discard requests should ever use it.
1309 */
1310void blk_add_request_payload(struct request *rq, struct page *page,
1311 unsigned int len)
1312{
1313 struct bio *bio = rq->bio;
1314
1315 bio->bi_io_vec->bv_page = page;
1316 bio->bi_io_vec->bv_offset = 0;
1317 bio->bi_io_vec->bv_len = len;
1318
1319 bio->bi_size = len;
1320 bio->bi_vcnt = 1;
1321 bio->bi_phys_segments = 1;
1322
1323 rq->__data_len = rq->resid_len = len;
1324 rq->nr_phys_segments = 1;
1325 rq->buffer = bio_data(bio);
1326}
1327EXPORT_SYMBOL_GPL(blk_add_request_payload);
1328
320ae51f
JA
1329bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1330 struct bio *bio)
73c10101
JA
1331{
1332 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1333
73c10101
JA
1334 if (!ll_back_merge_fn(q, req, bio))
1335 return false;
1336
8c1cf6bb 1337 trace_block_bio_backmerge(q, req, bio);
73c10101
JA
1338
1339 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1340 blk_rq_set_mixed_merge(req);
1341
1342 req->biotail->bi_next = bio;
1343 req->biotail = bio;
1344 req->__data_len += bio->bi_size;
1345 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1346
320ae51f 1347 blk_account_io_start(req, false);
73c10101
JA
1348 return true;
1349}
1350
320ae51f
JA
1351bool bio_attempt_front_merge(struct request_queue *q, struct request *req,
1352 struct bio *bio)
73c10101
JA
1353{
1354 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
73c10101 1355
73c10101
JA
1356 if (!ll_front_merge_fn(q, req, bio))
1357 return false;
1358
8c1cf6bb 1359 trace_block_bio_frontmerge(q, req, bio);
73c10101
JA
1360
1361 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1362 blk_rq_set_mixed_merge(req);
1363
73c10101
JA
1364 bio->bi_next = req->bio;
1365 req->bio = bio;
1366
1367 /*
1368 * may not be valid. if the low level driver said
1369 * it didn't need a bounce buffer then it better
1370 * not touch req->buffer either...
1371 */
1372 req->buffer = bio_data(bio);
1373 req->__sector = bio->bi_sector;
1374 req->__data_len += bio->bi_size;
1375 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1376
320ae51f 1377 blk_account_io_start(req, false);
73c10101
JA
1378 return true;
1379}
1380
bd87b589 1381/**
320ae51f 1382 * blk_attempt_plug_merge - try to merge with %current's plugged list
bd87b589
TH
1383 * @q: request_queue new bio is being queued at
1384 * @bio: new bio being queued
1385 * @request_count: out parameter for number of traversed plugged requests
1386 *
1387 * Determine whether @bio being queued on @q can be merged with a request
1388 * on %current's plugged list. Returns %true if merge was successful,
1389 * otherwise %false.
1390 *
07c2bd37
TH
1391 * Plugging coalesces IOs from the same issuer for the same purpose without
1392 * going through @q->queue_lock. As such it's more of an issuing mechanism
1393 * than scheduling, and the request, while may have elvpriv data, is not
1394 * added on the elevator at this point. In addition, we don't have
1395 * reliable access to the elevator outside queue lock. Only check basic
1396 * merging parameters without querying the elevator.
73c10101 1397 */
320ae51f
JA
1398bool blk_attempt_plug_merge(struct request_queue *q, struct bio *bio,
1399 unsigned int *request_count)
73c10101
JA
1400{
1401 struct blk_plug *plug;
1402 struct request *rq;
1403 bool ret = false;
1404
bd87b589 1405 plug = current->plug;
73c10101
JA
1406 if (!plug)
1407 goto out;
56ebdaf2 1408 *request_count = 0;
73c10101
JA
1409
1410 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1411 int el_ret;
1412
1b2e19f1
SL
1413 if (rq->q == q)
1414 (*request_count)++;
56ebdaf2 1415
07c2bd37 1416 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
73c10101
JA
1417 continue;
1418
050c8ea8 1419 el_ret = blk_try_merge(rq, bio);
73c10101
JA
1420 if (el_ret == ELEVATOR_BACK_MERGE) {
1421 ret = bio_attempt_back_merge(q, rq, bio);
1422 if (ret)
1423 break;
1424 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1425 ret = bio_attempt_front_merge(q, rq, bio);
1426 if (ret)
1427 break;
1428 }
1429 }
1430out:
1431 return ret;
1432}
1433
86db1e29 1434void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1435{
4aff5e23 1436 req->cmd_type = REQ_TYPE_FS;
52d9e675 1437
7b6d91da
CH
1438 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1439 if (bio->bi_rw & REQ_RAHEAD)
a82afdfc 1440 req->cmd_flags |= REQ_FAILFAST_MASK;
b31dc66a 1441
52d9e675 1442 req->errors = 0;
a2dec7b3 1443 req->__sector = bio->bi_sector;
52d9e675 1444 req->ioprio = bio_prio(bio);
bc1c56fd 1445 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1446}
1447
5a7bbad2 1448void blk_queue_bio(struct request_queue *q, struct bio *bio)
1da177e4 1449{
5e00d1b5 1450 const bool sync = !!(bio->bi_rw & REQ_SYNC);
73c10101
JA
1451 struct blk_plug *plug;
1452 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1453 struct request *req;
56ebdaf2 1454 unsigned int request_count = 0;
1da177e4 1455
1da177e4
LT
1456 /*
1457 * low level driver can indicate that it wants pages above a
1458 * certain limit bounced to low memory (ie for highmem, or even
1459 * ISA dma in theory)
1460 */
1461 blk_queue_bounce(q, &bio);
1462
ffecfd1a
DW
1463 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1464 bio_endio(bio, -EIO);
1465 return;
1466 }
1467
4fed947c 1468 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
73c10101 1469 spin_lock_irq(q->queue_lock);
ae1b1539 1470 where = ELEVATOR_INSERT_FLUSH;
28e7d184
TH
1471 goto get_rq;
1472 }
1473
73c10101
JA
1474 /*
1475 * Check if we can merge with the plugged list before grabbing
1476 * any locks.
1477 */
320ae51f 1478 if (blk_attempt_plug_merge(q, bio, &request_count))
5a7bbad2 1479 return;
1da177e4 1480
73c10101 1481 spin_lock_irq(q->queue_lock);
2056a782 1482
73c10101
JA
1483 el_ret = elv_merge(q, &req, bio);
1484 if (el_ret == ELEVATOR_BACK_MERGE) {
73c10101 1485 if (bio_attempt_back_merge(q, req, bio)) {
07c2bd37 1486 elv_bio_merged(q, req, bio);
73c10101
JA
1487 if (!attempt_back_merge(q, req))
1488 elv_merged_request(q, req, el_ret);
1489 goto out_unlock;
1490 }
1491 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
73c10101 1492 if (bio_attempt_front_merge(q, req, bio)) {
07c2bd37 1493 elv_bio_merged(q, req, bio);
73c10101
JA
1494 if (!attempt_front_merge(q, req))
1495 elv_merged_request(q, req, el_ret);
1496 goto out_unlock;
80a761fd 1497 }
1da177e4
LT
1498 }
1499
450991bc 1500get_rq:
7749a8d4
JA
1501 /*
1502 * This sync check and mask will be re-done in init_request_from_bio(),
1503 * but we need to set it earlier to expose the sync flag to the
1504 * rq allocator and io schedulers.
1505 */
1506 rw_flags = bio_data_dir(bio);
1507 if (sync)
7b6d91da 1508 rw_flags |= REQ_SYNC;
7749a8d4 1509
1da177e4 1510 /*
450991bc 1511 * Grab a free request. This is might sleep but can not fail.
d6344532 1512 * Returns with the queue unlocked.
450991bc 1513 */
a06e05e6 1514 req = get_request(q, rw_flags, bio, GFP_NOIO);
da8303c6
TH
1515 if (unlikely(!req)) {
1516 bio_endio(bio, -ENODEV); /* @q is dead */
1517 goto out_unlock;
1518 }
d6344532 1519
450991bc
NP
1520 /*
1521 * After dropping the lock and possibly sleeping here, our request
1522 * may now be mergeable after it had proven unmergeable (above).
1523 * We don't worry about that case for efficiency. It won't happen
1524 * often, and the elevators are able to handle it.
1da177e4 1525 */
52d9e675 1526 init_request_from_bio(req, bio);
1da177e4 1527
9562ad9a 1528 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
11ccf116 1529 req->cpu = raw_smp_processor_id();
73c10101
JA
1530
1531 plug = current->plug;
721a9602 1532 if (plug) {
dc6d36c9
JA
1533 /*
1534 * If this is the first request added after a plug, fire
7aef2e78 1535 * of a plug trace.
dc6d36c9 1536 */
7aef2e78 1537 if (!request_count)
dc6d36c9 1538 trace_block_plug(q);
3540d5e8 1539 else {
019ceb7d 1540 if (request_count >= BLK_MAX_REQUEST_COUNT) {
3540d5e8 1541 blk_flush_plug_list(plug, false);
019ceb7d
SL
1542 trace_block_plug(q);
1543 }
73c10101 1544 }
73c10101 1545 list_add_tail(&req->queuelist, &plug->list);
320ae51f 1546 blk_account_io_start(req, true);
73c10101
JA
1547 } else {
1548 spin_lock_irq(q->queue_lock);
1549 add_acct_request(q, req, where);
24ecfbe2 1550 __blk_run_queue(q);
73c10101
JA
1551out_unlock:
1552 spin_unlock_irq(q->queue_lock);
1553 }
1da177e4 1554}
c20e8de2 1555EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1da177e4
LT
1556
1557/*
1558 * If bio->bi_dev is a partition, remap the location
1559 */
1560static inline void blk_partition_remap(struct bio *bio)
1561{
1562 struct block_device *bdev = bio->bi_bdev;
1563
bf2de6f5 1564 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1565 struct hd_struct *p = bdev->bd_part;
1566
1da177e4
LT
1567 bio->bi_sector += p->start_sect;
1568 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1569
d07335e5
MS
1570 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1571 bdev->bd_dev,
1572 bio->bi_sector - p->start_sect);
1da177e4
LT
1573 }
1574}
1575
1da177e4
LT
1576static void handle_bad_sector(struct bio *bio)
1577{
1578 char b[BDEVNAME_SIZE];
1579
1580 printk(KERN_INFO "attempt to access beyond end of device\n");
1581 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1582 bdevname(bio->bi_bdev, b),
1583 bio->bi_rw,
f73a1c7d 1584 (unsigned long long)bio_end_sector(bio),
77304d2a 1585 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1da177e4
LT
1586
1587 set_bit(BIO_EOF, &bio->bi_flags);
1588}
1589
c17bb495
AM
1590#ifdef CONFIG_FAIL_MAKE_REQUEST
1591
1592static DECLARE_FAULT_ATTR(fail_make_request);
1593
1594static int __init setup_fail_make_request(char *str)
1595{
1596 return setup_fault_attr(&fail_make_request, str);
1597}
1598__setup("fail_make_request=", setup_fail_make_request);
1599
b2c9cd37 1600static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
c17bb495 1601{
b2c9cd37 1602 return part->make_it_fail && should_fail(&fail_make_request, bytes);
c17bb495
AM
1603}
1604
1605static int __init fail_make_request_debugfs(void)
1606{
dd48c085
AM
1607 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1608 NULL, &fail_make_request);
1609
1610 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
c17bb495
AM
1611}
1612
1613late_initcall(fail_make_request_debugfs);
1614
1615#else /* CONFIG_FAIL_MAKE_REQUEST */
1616
b2c9cd37
AM
1617static inline bool should_fail_request(struct hd_struct *part,
1618 unsigned int bytes)
c17bb495 1619{
b2c9cd37 1620 return false;
c17bb495
AM
1621}
1622
1623#endif /* CONFIG_FAIL_MAKE_REQUEST */
1624
c07e2b41
JA
1625/*
1626 * Check whether this bio extends beyond the end of the device.
1627 */
1628static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1629{
1630 sector_t maxsector;
1631
1632 if (!nr_sectors)
1633 return 0;
1634
1635 /* Test device or partition size, when known. */
77304d2a 1636 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
c07e2b41
JA
1637 if (maxsector) {
1638 sector_t sector = bio->bi_sector;
1639
1640 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1641 /*
1642 * This may well happen - the kernel calls bread()
1643 * without checking the size of the device, e.g., when
1644 * mounting a device.
1645 */
1646 handle_bad_sector(bio);
1647 return 1;
1648 }
1649 }
1650
1651 return 0;
1652}
1653
27a84d54
CH
1654static noinline_for_stack bool
1655generic_make_request_checks(struct bio *bio)
1da177e4 1656{
165125e1 1657 struct request_queue *q;
5a7bbad2 1658 int nr_sectors = bio_sectors(bio);
51fd77bd 1659 int err = -EIO;
5a7bbad2
CH
1660 char b[BDEVNAME_SIZE];
1661 struct hd_struct *part;
1da177e4
LT
1662
1663 might_sleep();
1da177e4 1664
c07e2b41
JA
1665 if (bio_check_eod(bio, nr_sectors))
1666 goto end_io;
1da177e4 1667
5a7bbad2
CH
1668 q = bdev_get_queue(bio->bi_bdev);
1669 if (unlikely(!q)) {
1670 printk(KERN_ERR
1671 "generic_make_request: Trying to access "
1672 "nonexistent block-device %s (%Lu)\n",
1673 bdevname(bio->bi_bdev, b),
1674 (long long) bio->bi_sector);
1675 goto end_io;
1676 }
c17bb495 1677
e2a60da7
MP
1678 if (likely(bio_is_rw(bio) &&
1679 nr_sectors > queue_max_hw_sectors(q))) {
5a7bbad2
CH
1680 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1681 bdevname(bio->bi_bdev, b),
1682 bio_sectors(bio),
1683 queue_max_hw_sectors(q));
1684 goto end_io;
1685 }
1da177e4 1686
5a7bbad2
CH
1687 part = bio->bi_bdev->bd_part;
1688 if (should_fail_request(part, bio->bi_size) ||
1689 should_fail_request(&part_to_disk(part)->part0,
1690 bio->bi_size))
1691 goto end_io;
2056a782 1692
5a7bbad2
CH
1693 /*
1694 * If this device has partitions, remap block n
1695 * of partition p to block n+start(p) of the disk.
1696 */
1697 blk_partition_remap(bio);
2056a782 1698
5a7bbad2
CH
1699 if (bio_check_eod(bio, nr_sectors))
1700 goto end_io;
1e87901e 1701
5a7bbad2
CH
1702 /*
1703 * Filter flush bio's early so that make_request based
1704 * drivers without flush support don't have to worry
1705 * about them.
1706 */
1707 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1708 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1709 if (!nr_sectors) {
1710 err = 0;
51fd77bd
JA
1711 goto end_io;
1712 }
5a7bbad2 1713 }
5ddfe969 1714
5a7bbad2
CH
1715 if ((bio->bi_rw & REQ_DISCARD) &&
1716 (!blk_queue_discard(q) ||
e2a60da7 1717 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
5a7bbad2
CH
1718 err = -EOPNOTSUPP;
1719 goto end_io;
1720 }
01edede4 1721
4363ac7c 1722 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
5a7bbad2
CH
1723 err = -EOPNOTSUPP;
1724 goto end_io;
1725 }
01edede4 1726
7f4b35d1
TH
1727 /*
1728 * Various block parts want %current->io_context and lazy ioc
1729 * allocation ends up trading a lot of pain for a small amount of
1730 * memory. Just allocate it upfront. This may fail and block
1731 * layer knows how to live with it.
1732 */
1733 create_io_context(GFP_ATOMIC, q->node);
1734
bc16a4f9
TH
1735 if (blk_throtl_bio(q, bio))
1736 return false; /* throttled, will be resubmitted later */
27a84d54 1737
5a7bbad2 1738 trace_block_bio_queue(q, bio);
27a84d54 1739 return true;
a7384677
TH
1740
1741end_io:
1742 bio_endio(bio, err);
27a84d54 1743 return false;
1da177e4
LT
1744}
1745
27a84d54
CH
1746/**
1747 * generic_make_request - hand a buffer to its device driver for I/O
1748 * @bio: The bio describing the location in memory and on the device.
1749 *
1750 * generic_make_request() is used to make I/O requests of block
1751 * devices. It is passed a &struct bio, which describes the I/O that needs
1752 * to be done.
1753 *
1754 * generic_make_request() does not return any status. The
1755 * success/failure status of the request, along with notification of
1756 * completion, is delivered asynchronously through the bio->bi_end_io
1757 * function described (one day) else where.
1758 *
1759 * The caller of generic_make_request must make sure that bi_io_vec
1760 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1761 * set to describe the device address, and the
1762 * bi_end_io and optionally bi_private are set to describe how
1763 * completion notification should be signaled.
1764 *
1765 * generic_make_request and the drivers it calls may use bi_next if this
1766 * bio happens to be merged with someone else, and may resubmit the bio to
1767 * a lower device by calling into generic_make_request recursively, which
1768 * means the bio should NOT be touched after the call to ->make_request_fn.
d89d8796
NB
1769 */
1770void generic_make_request(struct bio *bio)
1771{
bddd87c7
AM
1772 struct bio_list bio_list_on_stack;
1773
27a84d54
CH
1774 if (!generic_make_request_checks(bio))
1775 return;
1776
1777 /*
1778 * We only want one ->make_request_fn to be active at a time, else
1779 * stack usage with stacked devices could be a problem. So use
1780 * current->bio_list to keep a list of requests submited by a
1781 * make_request_fn function. current->bio_list is also used as a
1782 * flag to say if generic_make_request is currently active in this
1783 * task or not. If it is NULL, then no make_request is active. If
1784 * it is non-NULL, then a make_request is active, and new requests
1785 * should be added at the tail
1786 */
bddd87c7 1787 if (current->bio_list) {
bddd87c7 1788 bio_list_add(current->bio_list, bio);
d89d8796
NB
1789 return;
1790 }
27a84d54 1791
d89d8796
NB
1792 /* following loop may be a bit non-obvious, and so deserves some
1793 * explanation.
1794 * Before entering the loop, bio->bi_next is NULL (as all callers
1795 * ensure that) so we have a list with a single bio.
1796 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1797 * we assign bio_list to a pointer to the bio_list_on_stack,
1798 * thus initialising the bio_list of new bios to be
27a84d54 1799 * added. ->make_request() may indeed add some more bios
d89d8796
NB
1800 * through a recursive call to generic_make_request. If it
1801 * did, we find a non-NULL value in bio_list and re-enter the loop
1802 * from the top. In this case we really did just take the bio
bddd87c7 1803 * of the top of the list (no pretending) and so remove it from
27a84d54 1804 * bio_list, and call into ->make_request() again.
d89d8796
NB
1805 */
1806 BUG_ON(bio->bi_next);
bddd87c7
AM
1807 bio_list_init(&bio_list_on_stack);
1808 current->bio_list = &bio_list_on_stack;
d89d8796 1809 do {
27a84d54
CH
1810 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1811
1812 q->make_request_fn(q, bio);
1813
bddd87c7 1814 bio = bio_list_pop(current->bio_list);
d89d8796 1815 } while (bio);
bddd87c7 1816 current->bio_list = NULL; /* deactivate */
d89d8796 1817}
1da177e4
LT
1818EXPORT_SYMBOL(generic_make_request);
1819
1820/**
710027a4 1821 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1822 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1823 * @bio: The &struct bio which describes the I/O
1824 *
1825 * submit_bio() is very similar in purpose to generic_make_request(), and
1826 * uses that function to do most of the work. Both are fairly rough
710027a4 1827 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1828 *
1829 */
1830void submit_bio(int rw, struct bio *bio)
1831{
22e2c507 1832 bio->bi_rw |= rw;
1da177e4 1833
bf2de6f5
JA
1834 /*
1835 * If it's a regular read/write or a barrier with data attached,
1836 * go through the normal accounting stuff before submission.
1837 */
e2a60da7 1838 if (bio_has_data(bio)) {
4363ac7c
MP
1839 unsigned int count;
1840
1841 if (unlikely(rw & REQ_WRITE_SAME))
1842 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1843 else
1844 count = bio_sectors(bio);
1845
bf2de6f5
JA
1846 if (rw & WRITE) {
1847 count_vm_events(PGPGOUT, count);
1848 } else {
1849 task_io_account_read(bio->bi_size);
1850 count_vm_events(PGPGIN, count);
1851 }
1852
1853 if (unlikely(block_dump)) {
1854 char b[BDEVNAME_SIZE];
8dcbdc74 1855 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
ba25f9dc 1856 current->comm, task_pid_nr(current),
bf2de6f5
JA
1857 (rw & WRITE) ? "WRITE" : "READ",
1858 (unsigned long long)bio->bi_sector,
8dcbdc74
SM
1859 bdevname(bio->bi_bdev, b),
1860 count);
bf2de6f5 1861 }
1da177e4
LT
1862 }
1863
1864 generic_make_request(bio);
1865}
1da177e4
LT
1866EXPORT_SYMBOL(submit_bio);
1867
82124d60
KU
1868/**
1869 * blk_rq_check_limits - Helper function to check a request for the queue limit
1870 * @q: the queue
1871 * @rq: the request being checked
1872 *
1873 * Description:
1874 * @rq may have been made based on weaker limitations of upper-level queues
1875 * in request stacking drivers, and it may violate the limitation of @q.
1876 * Since the block layer and the underlying device driver trust @rq
1877 * after it is inserted to @q, it should be checked against @q before
1878 * the insertion using this generic function.
1879 *
1880 * This function should also be useful for request stacking drivers
eef35c2d 1881 * in some cases below, so export this function.
82124d60
KU
1882 * Request stacking drivers like request-based dm may change the queue
1883 * limits while requests are in the queue (e.g. dm's table swapping).
1884 * Such request stacking drivers should check those requests agaist
1885 * the new queue limits again when they dispatch those requests,
1886 * although such checkings are also done against the old queue limits
1887 * when submitting requests.
1888 */
1889int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1890{
e2a60da7 1891 if (!rq_mergeable(rq))
3383977f
S
1892 return 0;
1893
f31dc1cd 1894 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
82124d60
KU
1895 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1896 return -EIO;
1897 }
1898
1899 /*
1900 * queue's settings related to segment counting like q->bounce_pfn
1901 * may differ from that of other stacking queues.
1902 * Recalculate it to check the request correctly on this queue's
1903 * limitation.
1904 */
1905 blk_recalc_rq_segments(rq);
8a78362c 1906 if (rq->nr_phys_segments > queue_max_segments(q)) {
82124d60
KU
1907 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1908 return -EIO;
1909 }
1910
1911 return 0;
1912}
1913EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1914
1915/**
1916 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1917 * @q: the queue to submit the request
1918 * @rq: the request being queued
1919 */
1920int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1921{
1922 unsigned long flags;
4853abaa 1923 int where = ELEVATOR_INSERT_BACK;
82124d60
KU
1924
1925 if (blk_rq_check_limits(q, rq))
1926 return -EIO;
1927
b2c9cd37
AM
1928 if (rq->rq_disk &&
1929 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
82124d60 1930 return -EIO;
82124d60
KU
1931
1932 spin_lock_irqsave(q->queue_lock, flags);
3f3299d5 1933 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
1934 spin_unlock_irqrestore(q->queue_lock, flags);
1935 return -ENODEV;
1936 }
82124d60
KU
1937
1938 /*
1939 * Submitting request must be dequeued before calling this function
1940 * because it will be linked to another request_queue
1941 */
1942 BUG_ON(blk_queued_rq(rq));
1943
4853abaa
JM
1944 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1945 where = ELEVATOR_INSERT_FLUSH;
1946
1947 add_acct_request(q, rq, where);
e67b77c7
JM
1948 if (where == ELEVATOR_INSERT_FLUSH)
1949 __blk_run_queue(q);
82124d60
KU
1950 spin_unlock_irqrestore(q->queue_lock, flags);
1951
1952 return 0;
1953}
1954EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1955
80a761fd
TH
1956/**
1957 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1958 * @rq: request to examine
1959 *
1960 * Description:
1961 * A request could be merge of IOs which require different failure
1962 * handling. This function determines the number of bytes which
1963 * can be failed from the beginning of the request without
1964 * crossing into area which need to be retried further.
1965 *
1966 * Return:
1967 * The number of bytes to fail.
1968 *
1969 * Context:
1970 * queue_lock must be held.
1971 */
1972unsigned int blk_rq_err_bytes(const struct request *rq)
1973{
1974 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1975 unsigned int bytes = 0;
1976 struct bio *bio;
1977
1978 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1979 return blk_rq_bytes(rq);
1980
1981 /*
1982 * Currently the only 'mixing' which can happen is between
1983 * different fastfail types. We can safely fail portions
1984 * which have all the failfast bits that the first one has -
1985 * the ones which are at least as eager to fail as the first
1986 * one.
1987 */
1988 for (bio = rq->bio; bio; bio = bio->bi_next) {
1989 if ((bio->bi_rw & ff) != ff)
1990 break;
1991 bytes += bio->bi_size;
1992 }
1993
1994 /* this could lead to infinite loop */
1995 BUG_ON(blk_rq_bytes(rq) && !bytes);
1996 return bytes;
1997}
1998EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1999
320ae51f 2000void blk_account_io_completion(struct request *req, unsigned int bytes)
bc58ba94 2001{
c2553b58 2002 if (blk_do_io_stat(req)) {
bc58ba94
JA
2003 const int rw = rq_data_dir(req);
2004 struct hd_struct *part;
2005 int cpu;
2006
2007 cpu = part_stat_lock();
09e099d4 2008 part = req->part;
bc58ba94
JA
2009 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
2010 part_stat_unlock();
2011 }
2012}
2013
320ae51f 2014void blk_account_io_done(struct request *req)
bc58ba94 2015{
bc58ba94 2016 /*
dd4c133f
TH
2017 * Account IO completion. flush_rq isn't accounted as a
2018 * normal IO on queueing nor completion. Accounting the
2019 * containing request is enough.
bc58ba94 2020 */
414b4ff5 2021 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
bc58ba94
JA
2022 unsigned long duration = jiffies - req->start_time;
2023 const int rw = rq_data_dir(req);
2024 struct hd_struct *part;
2025 int cpu;
2026
2027 cpu = part_stat_lock();
09e099d4 2028 part = req->part;
bc58ba94
JA
2029
2030 part_stat_inc(cpu, part, ios[rw]);
2031 part_stat_add(cpu, part, ticks[rw], duration);
2032 part_round_stats(cpu, part);
316d315b 2033 part_dec_in_flight(part, rw);
bc58ba94 2034
6c23a968 2035 hd_struct_put(part);
bc58ba94
JA
2036 part_stat_unlock();
2037 }
2038}
2039
c8158819
LM
2040#ifdef CONFIG_PM_RUNTIME
2041/*
2042 * Don't process normal requests when queue is suspended
2043 * or in the process of suspending/resuming
2044 */
2045static struct request *blk_pm_peek_request(struct request_queue *q,
2046 struct request *rq)
2047{
2048 if (q->dev && (q->rpm_status == RPM_SUSPENDED ||
2049 (q->rpm_status != RPM_ACTIVE && !(rq->cmd_flags & REQ_PM))))
2050 return NULL;
2051 else
2052 return rq;
2053}
2054#else
2055static inline struct request *blk_pm_peek_request(struct request_queue *q,
2056 struct request *rq)
2057{
2058 return rq;
2059}
2060#endif
2061
320ae51f
JA
2062void blk_account_io_start(struct request *rq, bool new_io)
2063{
2064 struct hd_struct *part;
2065 int rw = rq_data_dir(rq);
2066 int cpu;
2067
2068 if (!blk_do_io_stat(rq))
2069 return;
2070
2071 cpu = part_stat_lock();
2072
2073 if (!new_io) {
2074 part = rq->part;
2075 part_stat_inc(cpu, part, merges[rw]);
2076 } else {
2077 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
2078 if (!hd_struct_try_get(part)) {
2079 /*
2080 * The partition is already being removed,
2081 * the request will be accounted on the disk only
2082 *
2083 * We take a reference on disk->part0 although that
2084 * partition will never be deleted, so we can treat
2085 * it as any other partition.
2086 */
2087 part = &rq->rq_disk->part0;
2088 hd_struct_get(part);
2089 }
2090 part_round_stats(cpu, part);
2091 part_inc_in_flight(part, rw);
2092 rq->part = part;
2093 }
2094
2095 part_stat_unlock();
2096}
2097
3bcddeac 2098/**
9934c8c0
TH
2099 * blk_peek_request - peek at the top of a request queue
2100 * @q: request queue to peek at
2101 *
2102 * Description:
2103 * Return the request at the top of @q. The returned request
2104 * should be started using blk_start_request() before LLD starts
2105 * processing it.
2106 *
2107 * Return:
2108 * Pointer to the request at the top of @q if available. Null
2109 * otherwise.
2110 *
2111 * Context:
2112 * queue_lock must be held.
2113 */
2114struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
2115{
2116 struct request *rq;
2117 int ret;
2118
2119 while ((rq = __elv_next_request(q)) != NULL) {
c8158819
LM
2120
2121 rq = blk_pm_peek_request(q, rq);
2122 if (!rq)
2123 break;
2124
158dbda0
TH
2125 if (!(rq->cmd_flags & REQ_STARTED)) {
2126 /*
2127 * This is the first time the device driver
2128 * sees this request (possibly after
2129 * requeueing). Notify IO scheduler.
2130 */
33659ebb 2131 if (rq->cmd_flags & REQ_SORTED)
158dbda0
TH
2132 elv_activate_rq(q, rq);
2133
2134 /*
2135 * just mark as started even if we don't start
2136 * it, a request that has been delayed should
2137 * not be passed by new incoming requests
2138 */
2139 rq->cmd_flags |= REQ_STARTED;
2140 trace_block_rq_issue(q, rq);
2141 }
2142
2143 if (!q->boundary_rq || q->boundary_rq == rq) {
2144 q->end_sector = rq_end_sector(rq);
2145 q->boundary_rq = NULL;
2146 }
2147
2148 if (rq->cmd_flags & REQ_DONTPREP)
2149 break;
2150
2e46e8b2 2151 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
2152 /*
2153 * make sure space for the drain appears we
2154 * know we can do this because max_hw_segments
2155 * has been adjusted to be one fewer than the
2156 * device can handle
2157 */
2158 rq->nr_phys_segments++;
2159 }
2160
2161 if (!q->prep_rq_fn)
2162 break;
2163
2164 ret = q->prep_rq_fn(q, rq);
2165 if (ret == BLKPREP_OK) {
2166 break;
2167 } else if (ret == BLKPREP_DEFER) {
2168 /*
2169 * the request may have been (partially) prepped.
2170 * we need to keep this request in the front to
2171 * avoid resource deadlock. REQ_STARTED will
2172 * prevent other fs requests from passing this one.
2173 */
2e46e8b2 2174 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
2175 !(rq->cmd_flags & REQ_DONTPREP)) {
2176 /*
2177 * remove the space for the drain we added
2178 * so that we don't add it again
2179 */
2180 --rq->nr_phys_segments;
2181 }
2182
2183 rq = NULL;
2184 break;
2185 } else if (ret == BLKPREP_KILL) {
2186 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
2187 /*
2188 * Mark this request as started so we don't trigger
2189 * any debug logic in the end I/O path.
2190 */
2191 blk_start_request(rq);
40cbbb78 2192 __blk_end_request_all(rq, -EIO);
158dbda0
TH
2193 } else {
2194 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2195 break;
2196 }
2197 }
2198
2199 return rq;
2200}
9934c8c0 2201EXPORT_SYMBOL(blk_peek_request);
158dbda0 2202
9934c8c0 2203void blk_dequeue_request(struct request *rq)
158dbda0 2204{
9934c8c0
TH
2205 struct request_queue *q = rq->q;
2206
158dbda0
TH
2207 BUG_ON(list_empty(&rq->queuelist));
2208 BUG_ON(ELV_ON_HASH(rq));
2209
2210 list_del_init(&rq->queuelist);
2211
2212 /*
2213 * the time frame between a request being removed from the lists
2214 * and to it is freed is accounted as io that is in progress at
2215 * the driver side.
2216 */
9195291e 2217 if (blk_account_rq(rq)) {
0a7ae2ff 2218 q->in_flight[rq_is_sync(rq)]++;
9195291e
DS
2219 set_io_start_time_ns(rq);
2220 }
158dbda0
TH
2221}
2222
9934c8c0
TH
2223/**
2224 * blk_start_request - start request processing on the driver
2225 * @req: request to dequeue
2226 *
2227 * Description:
2228 * Dequeue @req and start timeout timer on it. This hands off the
2229 * request to the driver.
2230 *
2231 * Block internal functions which don't want to start timer should
2232 * call blk_dequeue_request().
2233 *
2234 * Context:
2235 * queue_lock must be held.
2236 */
2237void blk_start_request(struct request *req)
2238{
2239 blk_dequeue_request(req);
2240
2241 /*
5f49f631
TH
2242 * We are now handing the request to the hardware, initialize
2243 * resid_len to full count and add the timeout handler.
9934c8c0 2244 */
5f49f631 2245 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
2246 if (unlikely(blk_bidi_rq(req)))
2247 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2248
9934c8c0
TH
2249 blk_add_timer(req);
2250}
2251EXPORT_SYMBOL(blk_start_request);
2252
2253/**
2254 * blk_fetch_request - fetch a request from a request queue
2255 * @q: request queue to fetch a request from
2256 *
2257 * Description:
2258 * Return the request at the top of @q. The request is started on
2259 * return and LLD can start processing it immediately.
2260 *
2261 * Return:
2262 * Pointer to the request at the top of @q if available. Null
2263 * otherwise.
2264 *
2265 * Context:
2266 * queue_lock must be held.
2267 */
2268struct request *blk_fetch_request(struct request_queue *q)
2269{
2270 struct request *rq;
2271
2272 rq = blk_peek_request(q);
2273 if (rq)
2274 blk_start_request(rq);
2275 return rq;
2276}
2277EXPORT_SYMBOL(blk_fetch_request);
2278
3bcddeac 2279/**
2e60e022 2280 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 2281 * @req: the request being processed
710027a4 2282 * @error: %0 for success, < %0 for error
8ebf9756 2283 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
2284 *
2285 * Description:
8ebf9756
RD
2286 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2287 * the request structure even if @req doesn't have leftover.
2288 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
2289 *
2290 * This special helper function is only for request stacking drivers
2291 * (e.g. request-based dm) so that they can handle partial completion.
2292 * Actual device drivers should use blk_end_request instead.
2293 *
2294 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2295 * %false return from this function.
3bcddeac
KU
2296 *
2297 * Return:
2e60e022
TH
2298 * %false - this request doesn't have any more data
2299 * %true - this request has more data
3bcddeac 2300 **/
2e60e022 2301bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 2302{
f79ea416 2303 int total_bytes;
1da177e4 2304
2e60e022
TH
2305 if (!req->bio)
2306 return false;
2307
5f3ea37c 2308 trace_block_rq_complete(req->q, req);
2056a782 2309
1da177e4 2310 /*
6f41469c
TH
2311 * For fs requests, rq is just carrier of independent bio's
2312 * and each partial completion should be handled separately.
2313 * Reset per-request error on each partial completion.
2314 *
2315 * TODO: tj: This is too subtle. It would be better to let
2316 * low level drivers do what they see fit.
1da177e4 2317 */
33659ebb 2318 if (req->cmd_type == REQ_TYPE_FS)
1da177e4
LT
2319 req->errors = 0;
2320
33659ebb
CH
2321 if (error && req->cmd_type == REQ_TYPE_FS &&
2322 !(req->cmd_flags & REQ_QUIET)) {
79775567
HR
2323 char *error_type;
2324
2325 switch (error) {
2326 case -ENOLINK:
2327 error_type = "recoverable transport";
2328 break;
2329 case -EREMOTEIO:
2330 error_type = "critical target";
2331 break;
2332 case -EBADE:
2333 error_type = "critical nexus";
2334 break;
d1ffc1f8
HR
2335 case -ETIMEDOUT:
2336 error_type = "timeout";
2337 break;
a9d6ceb8
HR
2338 case -ENOSPC:
2339 error_type = "critical space allocation";
2340 break;
7e782af5
HR
2341 case -ENODATA:
2342 error_type = "critical medium";
2343 break;
79775567
HR
2344 case -EIO:
2345 default:
2346 error_type = "I/O";
2347 break;
2348 }
37d7b34f
YZ
2349 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2350 error_type, req->rq_disk ?
2351 req->rq_disk->disk_name : "?",
2352 (unsigned long long)blk_rq_pos(req));
2353
1da177e4
LT
2354 }
2355
bc58ba94 2356 blk_account_io_completion(req, nr_bytes);
d72d904a 2357
f79ea416
KO
2358 total_bytes = 0;
2359 while (req->bio) {
2360 struct bio *bio = req->bio;
2361 unsigned bio_bytes = min(bio->bi_size, nr_bytes);
1da177e4 2362
f79ea416 2363 if (bio_bytes == bio->bi_size)
1da177e4 2364 req->bio = bio->bi_next;
1da177e4 2365
f79ea416 2366 req_bio_endio(req, bio, bio_bytes, error);
1da177e4 2367
f79ea416
KO
2368 total_bytes += bio_bytes;
2369 nr_bytes -= bio_bytes;
1da177e4 2370
f79ea416
KO
2371 if (!nr_bytes)
2372 break;
1da177e4
LT
2373 }
2374
2375 /*
2376 * completely done
2377 */
2e60e022
TH
2378 if (!req->bio) {
2379 /*
2380 * Reset counters so that the request stacking driver
2381 * can find how many bytes remain in the request
2382 * later.
2383 */
a2dec7b3 2384 req->__data_len = 0;
2e60e022
TH
2385 return false;
2386 }
1da177e4 2387
a2dec7b3 2388 req->__data_len -= total_bytes;
2e46e8b2
TH
2389 req->buffer = bio_data(req->bio);
2390
2391 /* update sector only for requests with clear definition of sector */
e2a60da7 2392 if (req->cmd_type == REQ_TYPE_FS)
a2dec7b3 2393 req->__sector += total_bytes >> 9;
2e46e8b2 2394
80a761fd
TH
2395 /* mixed attributes always follow the first bio */
2396 if (req->cmd_flags & REQ_MIXED_MERGE) {
2397 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2398 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2399 }
2400
2e46e8b2
TH
2401 /*
2402 * If total number of sectors is less than the first segment
2403 * size, something has gone terribly wrong.
2404 */
2405 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
8182924b 2406 blk_dump_rq_flags(req, "request botched");
a2dec7b3 2407 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2408 }
2409
2410 /* recalculate the number of segments */
1da177e4 2411 blk_recalc_rq_segments(req);
2e46e8b2 2412
2e60e022 2413 return true;
1da177e4 2414}
2e60e022 2415EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2416
2e60e022
TH
2417static bool blk_update_bidi_request(struct request *rq, int error,
2418 unsigned int nr_bytes,
2419 unsigned int bidi_bytes)
5efccd17 2420{
2e60e022
TH
2421 if (blk_update_request(rq, error, nr_bytes))
2422 return true;
5efccd17 2423
2e60e022
TH
2424 /* Bidi request must be completed as a whole */
2425 if (unlikely(blk_bidi_rq(rq)) &&
2426 blk_update_request(rq->next_rq, error, bidi_bytes))
2427 return true;
5efccd17 2428
e2e1a148
JA
2429 if (blk_queue_add_random(rq->q))
2430 add_disk_randomness(rq->rq_disk);
2e60e022
TH
2431
2432 return false;
1da177e4
LT
2433}
2434
28018c24
JB
2435/**
2436 * blk_unprep_request - unprepare a request
2437 * @req: the request
2438 *
2439 * This function makes a request ready for complete resubmission (or
2440 * completion). It happens only after all error handling is complete,
2441 * so represents the appropriate moment to deallocate any resources
2442 * that were allocated to the request in the prep_rq_fn. The queue
2443 * lock is held when calling this.
2444 */
2445void blk_unprep_request(struct request *req)
2446{
2447 struct request_queue *q = req->q;
2448
2449 req->cmd_flags &= ~REQ_DONTPREP;
2450 if (q->unprep_rq_fn)
2451 q->unprep_rq_fn(q, req);
2452}
2453EXPORT_SYMBOL_GPL(blk_unprep_request);
2454
1da177e4
LT
2455/*
2456 * queue lock must be held
2457 */
2e60e022 2458static void blk_finish_request(struct request *req, int error)
1da177e4 2459{
b8286239
KU
2460 if (blk_rq_tagged(req))
2461 blk_queue_end_tag(req->q, req);
2462
ba396a6c 2463 BUG_ON(blk_queued_rq(req));
1da177e4 2464
33659ebb 2465 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
31373d09 2466 laptop_io_completion(&req->q->backing_dev_info);
1da177e4 2467
e78042e5
MA
2468 blk_delete_timer(req);
2469
28018c24
JB
2470 if (req->cmd_flags & REQ_DONTPREP)
2471 blk_unprep_request(req);
2472
bc58ba94 2473 blk_account_io_done(req);
b8286239 2474
1da177e4 2475 if (req->end_io)
8ffdc655 2476 req->end_io(req, error);
b8286239
KU
2477 else {
2478 if (blk_bidi_rq(req))
2479 __blk_put_request(req->next_rq->q, req->next_rq);
2480
1da177e4 2481 __blk_put_request(req->q, req);
b8286239 2482 }
1da177e4
LT
2483}
2484
3b11313a 2485/**
2e60e022
TH
2486 * blk_end_bidi_request - Complete a bidi request
2487 * @rq: the request to complete
2488 * @error: %0 for success, < %0 for error
2489 * @nr_bytes: number of bytes to complete @rq
2490 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2491 *
2492 * Description:
e3a04fe3 2493 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2494 * Drivers that supports bidi can safely call this member for any
2495 * type of request, bidi or uni. In the later case @bidi_bytes is
2496 * just ignored.
336cdb40
KU
2497 *
2498 * Return:
2e60e022
TH
2499 * %false - we are done with this request
2500 * %true - still buffers pending for this request
a0cd1285 2501 **/
b1f74493 2502static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2503 unsigned int nr_bytes, unsigned int bidi_bytes)
2504{
336cdb40 2505 struct request_queue *q = rq->q;
2e60e022 2506 unsigned long flags;
32fab448 2507
2e60e022
TH
2508 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2509 return true;
32fab448 2510
336cdb40 2511 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2512 blk_finish_request(rq, error);
336cdb40
KU
2513 spin_unlock_irqrestore(q->queue_lock, flags);
2514
2e60e022 2515 return false;
32fab448
KU
2516}
2517
336cdb40 2518/**
2e60e022
TH
2519 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2520 * @rq: the request to complete
710027a4 2521 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2522 * @nr_bytes: number of bytes to complete @rq
2523 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2524 *
2525 * Description:
2e60e022
TH
2526 * Identical to blk_end_bidi_request() except that queue lock is
2527 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2528 *
2529 * Return:
2e60e022
TH
2530 * %false - we are done with this request
2531 * %true - still buffers pending for this request
336cdb40 2532 **/
4853abaa 2533bool __blk_end_bidi_request(struct request *rq, int error,
b1f74493 2534 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2535{
2e60e022
TH
2536 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2537 return true;
336cdb40 2538
2e60e022 2539 blk_finish_request(rq, error);
336cdb40 2540
2e60e022 2541 return false;
336cdb40 2542}
e19a3ab0
KU
2543
2544/**
2545 * blk_end_request - Helper function for drivers to complete the request.
2546 * @rq: the request being processed
710027a4 2547 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2548 * @nr_bytes: number of bytes to complete
2549 *
2550 * Description:
2551 * Ends I/O on a number of bytes attached to @rq.
2552 * If @rq has leftover, sets it up for the next range of segments.
2553 *
2554 * Return:
b1f74493
FT
2555 * %false - we are done with this request
2556 * %true - still buffers pending for this request
e19a3ab0 2557 **/
b1f74493 2558bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2559{
b1f74493 2560 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2561}
56ad1740 2562EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2563
2564/**
b1f74493
FT
2565 * blk_end_request_all - Helper function for drives to finish the request.
2566 * @rq: the request to finish
8ebf9756 2567 * @error: %0 for success, < %0 for error
336cdb40
KU
2568 *
2569 * Description:
b1f74493
FT
2570 * Completely finish @rq.
2571 */
2572void blk_end_request_all(struct request *rq, int error)
336cdb40 2573{
b1f74493
FT
2574 bool pending;
2575 unsigned int bidi_bytes = 0;
336cdb40 2576
b1f74493
FT
2577 if (unlikely(blk_bidi_rq(rq)))
2578 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2579
b1f74493
FT
2580 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2581 BUG_ON(pending);
2582}
56ad1740 2583EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2584
b1f74493
FT
2585/**
2586 * blk_end_request_cur - Helper function to finish the current request chunk.
2587 * @rq: the request to finish the current chunk for
8ebf9756 2588 * @error: %0 for success, < %0 for error
b1f74493
FT
2589 *
2590 * Description:
2591 * Complete the current consecutively mapped chunk from @rq.
2592 *
2593 * Return:
2594 * %false - we are done with this request
2595 * %true - still buffers pending for this request
2596 */
2597bool blk_end_request_cur(struct request *rq, int error)
2598{
2599 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2600}
56ad1740 2601EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2602
80a761fd
TH
2603/**
2604 * blk_end_request_err - Finish a request till the next failure boundary.
2605 * @rq: the request to finish till the next failure boundary for
2606 * @error: must be negative errno
2607 *
2608 * Description:
2609 * Complete @rq till the next failure boundary.
2610 *
2611 * Return:
2612 * %false - we are done with this request
2613 * %true - still buffers pending for this request
2614 */
2615bool blk_end_request_err(struct request *rq, int error)
2616{
2617 WARN_ON(error >= 0);
2618 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2619}
2620EXPORT_SYMBOL_GPL(blk_end_request_err);
2621
e3a04fe3 2622/**
b1f74493
FT
2623 * __blk_end_request - Helper function for drivers to complete the request.
2624 * @rq: the request being processed
2625 * @error: %0 for success, < %0 for error
2626 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2627 *
2628 * Description:
b1f74493 2629 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2630 *
2631 * Return:
b1f74493
FT
2632 * %false - we are done with this request
2633 * %true - still buffers pending for this request
e3a04fe3 2634 **/
b1f74493 2635bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2636{
b1f74493 2637 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2638}
56ad1740 2639EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2640
32fab448 2641/**
b1f74493
FT
2642 * __blk_end_request_all - Helper function for drives to finish the request.
2643 * @rq: the request to finish
8ebf9756 2644 * @error: %0 for success, < %0 for error
32fab448
KU
2645 *
2646 * Description:
b1f74493 2647 * Completely finish @rq. Must be called with queue lock held.
32fab448 2648 */
b1f74493 2649void __blk_end_request_all(struct request *rq, int error)
32fab448 2650{
b1f74493
FT
2651 bool pending;
2652 unsigned int bidi_bytes = 0;
2653
2654 if (unlikely(blk_bidi_rq(rq)))
2655 bidi_bytes = blk_rq_bytes(rq->next_rq);
2656
2657 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2658 BUG_ON(pending);
32fab448 2659}
56ad1740 2660EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2661
e19a3ab0 2662/**
b1f74493
FT
2663 * __blk_end_request_cur - Helper function to finish the current request chunk.
2664 * @rq: the request to finish the current chunk for
8ebf9756 2665 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2666 *
2667 * Description:
b1f74493
FT
2668 * Complete the current consecutively mapped chunk from @rq. Must
2669 * be called with queue lock held.
e19a3ab0
KU
2670 *
2671 * Return:
b1f74493
FT
2672 * %false - we are done with this request
2673 * %true - still buffers pending for this request
2674 */
2675bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2676{
b1f74493 2677 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2678}
56ad1740 2679EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2680
80a761fd
TH
2681/**
2682 * __blk_end_request_err - Finish a request till the next failure boundary.
2683 * @rq: the request to finish till the next failure boundary for
2684 * @error: must be negative errno
2685 *
2686 * Description:
2687 * Complete @rq till the next failure boundary. Must be called
2688 * with queue lock held.
2689 *
2690 * Return:
2691 * %false - we are done with this request
2692 * %true - still buffers pending for this request
2693 */
2694bool __blk_end_request_err(struct request *rq, int error)
2695{
2696 WARN_ON(error >= 0);
2697 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2698}
2699EXPORT_SYMBOL_GPL(__blk_end_request_err);
2700
86db1e29
JA
2701void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2702 struct bio *bio)
1da177e4 2703{
a82afdfc 2704 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
7b6d91da 2705 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
1da177e4 2706
fb2dce86
DW
2707 if (bio_has_data(bio)) {
2708 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2709 rq->buffer = bio_data(bio);
2710 }
a2dec7b3 2711 rq->__data_len = bio->bi_size;
1da177e4 2712 rq->bio = rq->biotail = bio;
1da177e4 2713
66846572
N
2714 if (bio->bi_bdev)
2715 rq->rq_disk = bio->bi_bdev->bd_disk;
2716}
1da177e4 2717
2d4dc890
IL
2718#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2719/**
2720 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2721 * @rq: the request to be flushed
2722 *
2723 * Description:
2724 * Flush all pages in @rq.
2725 */
2726void rq_flush_dcache_pages(struct request *rq)
2727{
2728 struct req_iterator iter;
2729 struct bio_vec *bvec;
2730
2731 rq_for_each_segment(bvec, rq, iter)
2732 flush_dcache_page(bvec->bv_page);
2733}
2734EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2735#endif
2736
ef9e3fac
KU
2737/**
2738 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2739 * @q : the queue of the device being checked
2740 *
2741 * Description:
2742 * Check if underlying low-level drivers of a device are busy.
2743 * If the drivers want to export their busy state, they must set own
2744 * exporting function using blk_queue_lld_busy() first.
2745 *
2746 * Basically, this function is used only by request stacking drivers
2747 * to stop dispatching requests to underlying devices when underlying
2748 * devices are busy. This behavior helps more I/O merging on the queue
2749 * of the request stacking driver and prevents I/O throughput regression
2750 * on burst I/O load.
2751 *
2752 * Return:
2753 * 0 - Not busy (The request stacking driver should dispatch request)
2754 * 1 - Busy (The request stacking driver should stop dispatching request)
2755 */
2756int blk_lld_busy(struct request_queue *q)
2757{
2758 if (q->lld_busy_fn)
2759 return q->lld_busy_fn(q);
2760
2761 return 0;
2762}
2763EXPORT_SYMBOL_GPL(blk_lld_busy);
2764
b0fd271d
KU
2765/**
2766 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2767 * @rq: the clone request to be cleaned up
2768 *
2769 * Description:
2770 * Free all bios in @rq for a cloned request.
2771 */
2772void blk_rq_unprep_clone(struct request *rq)
2773{
2774 struct bio *bio;
2775
2776 while ((bio = rq->bio) != NULL) {
2777 rq->bio = bio->bi_next;
2778
2779 bio_put(bio);
2780 }
2781}
2782EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2783
2784/*
2785 * Copy attributes of the original request to the clone request.
2786 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2787 */
2788static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2789{
2790 dst->cpu = src->cpu;
3a2edd0d 2791 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
b0fd271d
KU
2792 dst->cmd_type = src->cmd_type;
2793 dst->__sector = blk_rq_pos(src);
2794 dst->__data_len = blk_rq_bytes(src);
2795 dst->nr_phys_segments = src->nr_phys_segments;
2796 dst->ioprio = src->ioprio;
2797 dst->extra_len = src->extra_len;
2798}
2799
2800/**
2801 * blk_rq_prep_clone - Helper function to setup clone request
2802 * @rq: the request to be setup
2803 * @rq_src: original request to be cloned
2804 * @bs: bio_set that bios for clone are allocated from
2805 * @gfp_mask: memory allocation mask for bio
2806 * @bio_ctr: setup function to be called for each clone bio.
2807 * Returns %0 for success, non %0 for failure.
2808 * @data: private data to be passed to @bio_ctr
2809 *
2810 * Description:
2811 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2812 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2813 * are not copied, and copying such parts is the caller's responsibility.
2814 * Also, pages which the original bios are pointing to are not copied
2815 * and the cloned bios just point same pages.
2816 * So cloned bios must be completed before original bios, which means
2817 * the caller must complete @rq before @rq_src.
2818 */
2819int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2820 struct bio_set *bs, gfp_t gfp_mask,
2821 int (*bio_ctr)(struct bio *, struct bio *, void *),
2822 void *data)
2823{
2824 struct bio *bio, *bio_src;
2825
2826 if (!bs)
2827 bs = fs_bio_set;
2828
2829 blk_rq_init(NULL, rq);
2830
2831 __rq_for_each_bio(bio_src, rq_src) {
bf800ef1 2832 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
b0fd271d
KU
2833 if (!bio)
2834 goto free_and_out;
2835
b0fd271d
KU
2836 if (bio_ctr && bio_ctr(bio, bio_src, data))
2837 goto free_and_out;
2838
2839 if (rq->bio) {
2840 rq->biotail->bi_next = bio;
2841 rq->biotail = bio;
2842 } else
2843 rq->bio = rq->biotail = bio;
2844 }
2845
2846 __blk_rq_prep_clone(rq, rq_src);
2847
2848 return 0;
2849
2850free_and_out:
2851 if (bio)
4254bba1 2852 bio_put(bio);
b0fd271d
KU
2853 blk_rq_unprep_clone(rq);
2854
2855 return -ENOMEM;
2856}
2857EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2858
18887ad9 2859int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2860{
2861 return queue_work(kblockd_workqueue, work);
2862}
1da177e4
LT
2863EXPORT_SYMBOL(kblockd_schedule_work);
2864
e43473b7
VG
2865int kblockd_schedule_delayed_work(struct request_queue *q,
2866 struct delayed_work *dwork, unsigned long delay)
2867{
2868 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2869}
2870EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2871
73c10101
JA
2872#define PLUG_MAGIC 0x91827364
2873
75df7136
SJ
2874/**
2875 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2876 * @plug: The &struct blk_plug that needs to be initialized
2877 *
2878 * Description:
2879 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2880 * pending I/O should the task end up blocking between blk_start_plug() and
2881 * blk_finish_plug(). This is important from a performance perspective, but
2882 * also ensures that we don't deadlock. For instance, if the task is blocking
2883 * for a memory allocation, memory reclaim could end up wanting to free a
2884 * page belonging to that request that is currently residing in our private
2885 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2886 * this kind of deadlock.
2887 */
73c10101
JA
2888void blk_start_plug(struct blk_plug *plug)
2889{
2890 struct task_struct *tsk = current;
2891
2892 plug->magic = PLUG_MAGIC;
2893 INIT_LIST_HEAD(&plug->list);
320ae51f 2894 INIT_LIST_HEAD(&plug->mq_list);
048c9374 2895 INIT_LIST_HEAD(&plug->cb_list);
73c10101
JA
2896
2897 /*
2898 * If this is a nested plug, don't actually assign it. It will be
2899 * flushed on its own.
2900 */
2901 if (!tsk->plug) {
2902 /*
2903 * Store ordering should not be needed here, since a potential
2904 * preempt will imply a full memory barrier
2905 */
2906 tsk->plug = plug;
2907 }
2908}
2909EXPORT_SYMBOL(blk_start_plug);
2910
2911static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2912{
2913 struct request *rqa = container_of(a, struct request, queuelist);
2914 struct request *rqb = container_of(b, struct request, queuelist);
2915
975927b9
JM
2916 return !(rqa->q < rqb->q ||
2917 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
73c10101
JA
2918}
2919
49cac01e
JA
2920/*
2921 * If 'from_schedule' is true, then postpone the dispatch of requests
2922 * until a safe kblockd context. We due this to avoid accidental big
2923 * additional stack usage in driver dispatch, in places where the originally
2924 * plugger did not intend it.
2925 */
f6603783 2926static void queue_unplugged(struct request_queue *q, unsigned int depth,
49cac01e 2927 bool from_schedule)
99e22598 2928 __releases(q->queue_lock)
94b5eb28 2929{
49cac01e 2930 trace_block_unplug(q, depth, !from_schedule);
99e22598 2931
70460571 2932 if (from_schedule)
24ecfbe2 2933 blk_run_queue_async(q);
70460571 2934 else
24ecfbe2 2935 __blk_run_queue(q);
70460571 2936 spin_unlock(q->queue_lock);
94b5eb28
JA
2937}
2938
74018dc3 2939static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
048c9374
N
2940{
2941 LIST_HEAD(callbacks);
2942
2a7d5559
SL
2943 while (!list_empty(&plug->cb_list)) {
2944 list_splice_init(&plug->cb_list, &callbacks);
048c9374 2945
2a7d5559
SL
2946 while (!list_empty(&callbacks)) {
2947 struct blk_plug_cb *cb = list_first_entry(&callbacks,
048c9374
N
2948 struct blk_plug_cb,
2949 list);
2a7d5559 2950 list_del(&cb->list);
74018dc3 2951 cb->callback(cb, from_schedule);
2a7d5559 2952 }
048c9374
N
2953 }
2954}
2955
9cbb1750
N
2956struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2957 int size)
2958{
2959 struct blk_plug *plug = current->plug;
2960 struct blk_plug_cb *cb;
2961
2962 if (!plug)
2963 return NULL;
2964
2965 list_for_each_entry(cb, &plug->cb_list, list)
2966 if (cb->callback == unplug && cb->data == data)
2967 return cb;
2968
2969 /* Not currently on the callback list */
2970 BUG_ON(size < sizeof(*cb));
2971 cb = kzalloc(size, GFP_ATOMIC);
2972 if (cb) {
2973 cb->data = data;
2974 cb->callback = unplug;
2975 list_add(&cb->list, &plug->cb_list);
2976 }
2977 return cb;
2978}
2979EXPORT_SYMBOL(blk_check_plugged);
2980
49cac01e 2981void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
73c10101
JA
2982{
2983 struct request_queue *q;
2984 unsigned long flags;
2985 struct request *rq;
109b8129 2986 LIST_HEAD(list);
94b5eb28 2987 unsigned int depth;
73c10101
JA
2988
2989 BUG_ON(plug->magic != PLUG_MAGIC);
2990
74018dc3 2991 flush_plug_callbacks(plug, from_schedule);
320ae51f
JA
2992
2993 if (!list_empty(&plug->mq_list))
2994 blk_mq_flush_plug_list(plug, from_schedule);
2995
73c10101
JA
2996 if (list_empty(&plug->list))
2997 return;
2998
109b8129
N
2999 list_splice_init(&plug->list, &list);
3000
422765c2 3001 list_sort(NULL, &list, plug_rq_cmp);
73c10101
JA
3002
3003 q = NULL;
94b5eb28 3004 depth = 0;
18811272
JA
3005
3006 /*
3007 * Save and disable interrupts here, to avoid doing it for every
3008 * queue lock we have to take.
3009 */
73c10101 3010 local_irq_save(flags);
109b8129
N
3011 while (!list_empty(&list)) {
3012 rq = list_entry_rq(list.next);
73c10101 3013 list_del_init(&rq->queuelist);
73c10101
JA
3014 BUG_ON(!rq->q);
3015 if (rq->q != q) {
99e22598
JA
3016 /*
3017 * This drops the queue lock
3018 */
3019 if (q)
49cac01e 3020 queue_unplugged(q, depth, from_schedule);
73c10101 3021 q = rq->q;
94b5eb28 3022 depth = 0;
73c10101
JA
3023 spin_lock(q->queue_lock);
3024 }
8ba61435
TH
3025
3026 /*
3027 * Short-circuit if @q is dead
3028 */
3f3299d5 3029 if (unlikely(blk_queue_dying(q))) {
8ba61435
TH
3030 __blk_end_request_all(rq, -ENODEV);
3031 continue;
3032 }
3033
73c10101
JA
3034 /*
3035 * rq is already accounted, so use raw insert
3036 */
401a18e9
JA
3037 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3038 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3039 else
3040 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
94b5eb28
JA
3041
3042 depth++;
73c10101
JA
3043 }
3044
99e22598
JA
3045 /*
3046 * This drops the queue lock
3047 */
3048 if (q)
49cac01e 3049 queue_unplugged(q, depth, from_schedule);
73c10101 3050
73c10101
JA
3051 local_irq_restore(flags);
3052}
73c10101
JA
3053
3054void blk_finish_plug(struct blk_plug *plug)
3055{
f6603783 3056 blk_flush_plug_list(plug, false);
73c10101 3057
88b996cd
CH
3058 if (plug == current->plug)
3059 current->plug = NULL;
73c10101 3060}
88b996cd 3061EXPORT_SYMBOL(blk_finish_plug);
73c10101 3062
6c954667
LM
3063#ifdef CONFIG_PM_RUNTIME
3064/**
3065 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3066 * @q: the queue of the device
3067 * @dev: the device the queue belongs to
3068 *
3069 * Description:
3070 * Initialize runtime-PM-related fields for @q and start auto suspend for
3071 * @dev. Drivers that want to take advantage of request-based runtime PM
3072 * should call this function after @dev has been initialized, and its
3073 * request queue @q has been allocated, and runtime PM for it can not happen
3074 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3075 * cases, driver should call this function before any I/O has taken place.
3076 *
3077 * This function takes care of setting up using auto suspend for the device,
3078 * the autosuspend delay is set to -1 to make runtime suspend impossible
3079 * until an updated value is either set by user or by driver. Drivers do
3080 * not need to touch other autosuspend settings.
3081 *
3082 * The block layer runtime PM is request based, so only works for drivers
3083 * that use request as their IO unit instead of those directly use bio's.
3084 */
3085void blk_pm_runtime_init(struct request_queue *q, struct device *dev)
3086{
3087 q->dev = dev;
3088 q->rpm_status = RPM_ACTIVE;
3089 pm_runtime_set_autosuspend_delay(q->dev, -1);
3090 pm_runtime_use_autosuspend(q->dev);
3091}
3092EXPORT_SYMBOL(blk_pm_runtime_init);
3093
3094/**
3095 * blk_pre_runtime_suspend - Pre runtime suspend check
3096 * @q: the queue of the device
3097 *
3098 * Description:
3099 * This function will check if runtime suspend is allowed for the device
3100 * by examining if there are any requests pending in the queue. If there
3101 * are requests pending, the device can not be runtime suspended; otherwise,
3102 * the queue's status will be updated to SUSPENDING and the driver can
3103 * proceed to suspend the device.
3104 *
3105 * For the not allowed case, we mark last busy for the device so that
3106 * runtime PM core will try to autosuspend it some time later.
3107 *
3108 * This function should be called near the start of the device's
3109 * runtime_suspend callback.
3110 *
3111 * Return:
3112 * 0 - OK to runtime suspend the device
3113 * -EBUSY - Device should not be runtime suspended
3114 */
3115int blk_pre_runtime_suspend(struct request_queue *q)
3116{
3117 int ret = 0;
3118
3119 spin_lock_irq(q->queue_lock);
3120 if (q->nr_pending) {
3121 ret = -EBUSY;
3122 pm_runtime_mark_last_busy(q->dev);
3123 } else {
3124 q->rpm_status = RPM_SUSPENDING;
3125 }
3126 spin_unlock_irq(q->queue_lock);
3127 return ret;
3128}
3129EXPORT_SYMBOL(blk_pre_runtime_suspend);
3130
3131/**
3132 * blk_post_runtime_suspend - Post runtime suspend processing
3133 * @q: the queue of the device
3134 * @err: return value of the device's runtime_suspend function
3135 *
3136 * Description:
3137 * Update the queue's runtime status according to the return value of the
3138 * device's runtime suspend function and mark last busy for the device so
3139 * that PM core will try to auto suspend the device at a later time.
3140 *
3141 * This function should be called near the end of the device's
3142 * runtime_suspend callback.
3143 */
3144void blk_post_runtime_suspend(struct request_queue *q, int err)
3145{
3146 spin_lock_irq(q->queue_lock);
3147 if (!err) {
3148 q->rpm_status = RPM_SUSPENDED;
3149 } else {
3150 q->rpm_status = RPM_ACTIVE;
3151 pm_runtime_mark_last_busy(q->dev);
3152 }
3153 spin_unlock_irq(q->queue_lock);
3154}
3155EXPORT_SYMBOL(blk_post_runtime_suspend);
3156
3157/**
3158 * blk_pre_runtime_resume - Pre runtime resume processing
3159 * @q: the queue of the device
3160 *
3161 * Description:
3162 * Update the queue's runtime status to RESUMING in preparation for the
3163 * runtime resume of the device.
3164 *
3165 * This function should be called near the start of the device's
3166 * runtime_resume callback.
3167 */
3168void blk_pre_runtime_resume(struct request_queue *q)
3169{
3170 spin_lock_irq(q->queue_lock);
3171 q->rpm_status = RPM_RESUMING;
3172 spin_unlock_irq(q->queue_lock);
3173}
3174EXPORT_SYMBOL(blk_pre_runtime_resume);
3175
3176/**
3177 * blk_post_runtime_resume - Post runtime resume processing
3178 * @q: the queue of the device
3179 * @err: return value of the device's runtime_resume function
3180 *
3181 * Description:
3182 * Update the queue's runtime status according to the return value of the
3183 * device's runtime_resume function. If it is successfully resumed, process
3184 * the requests that are queued into the device's queue when it is resuming
3185 * and then mark last busy and initiate autosuspend for it.
3186 *
3187 * This function should be called near the end of the device's
3188 * runtime_resume callback.
3189 */
3190void blk_post_runtime_resume(struct request_queue *q, int err)
3191{
3192 spin_lock_irq(q->queue_lock);
3193 if (!err) {
3194 q->rpm_status = RPM_ACTIVE;
3195 __blk_run_queue(q);
3196 pm_runtime_mark_last_busy(q->dev);
c60855cd 3197 pm_request_autosuspend(q->dev);
6c954667
LM
3198 } else {
3199 q->rpm_status = RPM_SUSPENDED;
3200 }
3201 spin_unlock_irq(q->queue_lock);
3202}
3203EXPORT_SYMBOL(blk_post_runtime_resume);
3204#endif
3205
1da177e4
LT
3206int __init blk_dev_init(void)
3207{
9eb55b03
NK
3208 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3209 sizeof(((struct request *)0)->cmd_flags));
3210
89b90be2
TH
3211 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3212 kblockd_workqueue = alloc_workqueue("kblockd",
695588f9
VK
3213 WQ_MEM_RECLAIM | WQ_HIGHPRI |
3214 WQ_POWER_EFFICIENT, 0);
1da177e4
LT
3215 if (!kblockd_workqueue)
3216 panic("Failed to create kblockd\n");
3217
3218 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 3219 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 3220
8324aa91 3221 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 3222 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 3223
d38ecf93 3224 return 0;
1da177e4 3225}