Add support for queuing > 1 command at the time
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long spent;
100         unsigned long rate;
101         int ddir = td->ddir;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         /*
110          * if rate blocks is set, sample is running
111          */
112         if (td->rate_bytes) {
113                 spent = mtime_since(&td->lastrate, now);
114                 if (spent < td->ratecycle)
115                         return 0;
116
117                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118                 if (rate < td->ratemin) {
119                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120                         return 1;
121                 }
122         }
123
124         td->rate_bytes = td->this_io_bytes[ddir];
125         memcpy(&td->lastrate, now, sizeof(*now));
126         return 0;
127 }
128
129 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130 {
131         if (!td->timeout)
132                 return 0;
133         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134                 return 1;
135
136         return 0;
137 }
138
139 static struct fio_file *get_next_file(struct thread_data *td)
140 {
141         unsigned int old_next_file = td->next_file;
142         struct fio_file *f;
143
144         do {
145                 f = &td->files[td->next_file];
146
147                 td->next_file++;
148                 if (td->next_file >= td->nr_files)
149                         td->next_file = 0;
150
151                 if (f->fd != -1)
152                         break;
153
154                 f = NULL;
155         } while (td->next_file != old_next_file);
156
157         return f;
158 }
159
160 /*
161  * When job exits, we can cancel the in-flight IO if we are using async
162  * io. Attempt to do so.
163  */
164 static void cleanup_pending_aio(struct thread_data *td)
165 {
166         struct list_head *entry, *n;
167         struct io_u *io_u;
168         int r;
169
170         /*
171          * get immediately available events, if any
172          */
173         io_u_queued_complete(td, 0, NULL);
174
175         /*
176          * now cancel remaining active events
177          */
178         if (td->io_ops->cancel) {
179                 list_for_each_safe(entry, n, &td->io_u_busylist) {
180                         io_u = list_entry(entry, struct io_u, list);
181
182                         r = td->io_ops->cancel(td, io_u);
183                         if (!r)
184                                 put_io_u(td, io_u);
185                 }
186         }
187
188         if (td->cur_depth)
189                 io_u_queued_complete(td, td->cur_depth, NULL);
190 }
191
192 /*
193  * Helper to handle the final sync of a file. Works just like the normal
194  * io path, just does everything sync.
195  */
196 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
197 {
198         struct io_u *io_u = __get_io_u(td);
199         int ret;
200
201         if (!io_u)
202                 return 1;
203
204         io_u->ddir = DDIR_SYNC;
205         io_u->file = f;
206
207         if (td_io_prep(td, io_u)) {
208                 put_io_u(td, io_u);
209                 return 1;
210         }
211
212 requeue:
213         ret = td_io_queue(td, io_u);
214         if (ret < 0) {
215                 td_verror(td, io_u->error);
216                 put_io_u(td, io_u);
217                 return 1;
218         } else if (ret == FIO_Q_QUEUED) {
219                 if (io_u_queued_complete(td, 1, NULL))
220                         return 1;
221         } else if (ret == FIO_Q_COMPLETED) {
222                 if (io_u->error) {
223                         td_verror(td, io_u->error);
224                         return 1;
225                 }
226
227                 io_u_sync_complete(td, io_u, NULL);
228         } else if (ret == FIO_Q_BUSY) {
229                 if (td_io_commit(td))
230                         return 1;
231                 goto requeue;
232         }
233
234         return 0;
235 }
236
237 /*
238  * The main verify engine. Runs over the writes we previusly submitted,
239  * reads the blocks back in, and checks the crc/md5 of the data.
240  */
241 static void do_verify(struct thread_data *td)
242 {
243         struct fio_file *f;
244         struct io_u *io_u;
245         int ret, i, min_events;
246
247         /*
248          * sync io first and invalidate cache, to make sure we really
249          * read from disk.
250          */
251         for_each_file(td, f, i) {
252                 fio_io_sync(td, f);
253                 file_invalidate_cache(td, f);
254         }
255
256         td_set_runstate(td, TD_VERIFYING);
257
258         io_u = NULL;
259         while (!td->terminate) {
260                 io_u = __get_io_u(td);
261                 if (!io_u)
262                         break;
263
264                 if (runtime_exceeded(td, &io_u->start_time))
265                         break;
266
267                 if (get_next_verify(td, io_u))
268                         break;
269
270                 if (td_io_prep(td, io_u))
271                         break;
272
273 requeue:
274                 ret = td_io_queue(td, io_u);
275
276                 switch (ret) {
277                 case FIO_Q_COMPLETED:
278                         if (io_u->error)
279                                 ret = -io_u->error;
280                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
281                                 int bytes = io_u->xfer_buflen - io_u->resid;
282
283                                 io_u->xfer_buflen = io_u->resid;
284                                 io_u->xfer_buf += bytes;
285                                 goto requeue;
286                         }
287                         ret = io_u_sync_complete(td, io_u, verify_io_u);
288                         if (ret)
289                                 break;
290                         continue;
291                 case FIO_Q_QUEUED:
292                         break;
293                 case FIO_Q_BUSY:
294                         requeue_io_u(td, &io_u);
295                         ret = td_io_commit(td);
296                         break;
297                 default:
298                         assert(ret < 0);
299                         td_verror(td, -ret);
300                         break;
301                 }
302
303                 if (ret < 0 || td->error)
304                         break;
305
306                 /*
307                  * if we can queue more, do so. but check if there are
308                  * completed io_u's first.
309                  */
310                 min_events = 0;
311                 if (queue_full(td) || ret == FIO_Q_BUSY)
312                         min_events = 1;
313
314                 /*
315                  * Reap required number of io units, if any, and do the
316                  * verification on them through the callback handler
317                  */
318                 if (io_u_queued_complete(td, min_events, verify_io_u))
319                         break;
320         }
321
322         if (io_u)
323                 put_io_u(td, io_u);
324
325         if (td->cur_depth)
326                 cleanup_pending_aio(td);
327
328         td_set_runstate(td, TD_RUNNING);
329 }
330
331 /*
332  * Not really an io thread, all it does is burn CPU cycles in the specified
333  * manner.
334  */
335 static void do_cpuio(struct thread_data *td)
336 {
337         struct timeval e;
338         int split = 100 / td->cpuload;
339         int i = 0;
340
341         while (!td->terminate) {
342                 fio_gettime(&e, NULL);
343
344                 if (runtime_exceeded(td, &e))
345                         break;
346
347                 if (!(i % split))
348                         __usec_sleep(10000);
349                 else
350                         usec_sleep(td, 10000);
351
352                 i++;
353         }
354 }
355
356 /*
357  * Main IO worker function. It retrieves io_u's to process and queues
358  * and reaps them, checking for rate and errors along the way.
359  */
360 static void do_io(struct thread_data *td)
361 {
362         struct timeval s;
363         unsigned long usec;
364         struct fio_file *f;
365         int i, ret = 0;
366
367         td_set_runstate(td, TD_RUNNING);
368
369         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
370                 struct timeval comp_time;
371                 long bytes_done = 0;
372                 int min_evts = 0;
373                 struct io_u *io_u;
374
375                 if (td->terminate)
376                         break;
377
378                 f = get_next_file(td);
379                 if (!f)
380                         break;
381
382                 io_u = get_io_u(td, f);
383                 if (!io_u)
384                         break;
385
386                 memcpy(&s, &io_u->start_time, sizeof(s));
387
388                 if (runtime_exceeded(td, &s)) {
389                         put_io_u(td, io_u);
390                         break;
391                 }
392 requeue:
393                 ret = td_io_queue(td, io_u);
394
395                 switch (ret) {
396                 case FIO_Q_COMPLETED:
397                         if (io_u->error) {
398                                 ret = io_u->error;
399                                 break;
400                         }
401                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
402                                 int bytes = io_u->xfer_buflen - io_u->resid;
403
404                                 io_u->xfer_buflen = io_u->resid;
405                                 io_u->xfer_buf += bytes;
406                                 goto requeue;
407                         }
408                         fio_gettime(&comp_time, NULL);
409                         bytes_done = io_u_sync_complete(td, io_u, NULL);
410                         if (bytes_done < 0)
411                                 ret = bytes_done;
412                         break;
413                 case FIO_Q_QUEUED:
414                         break;
415                 case FIO_Q_BUSY:
416                         requeue_io_u(td, &io_u);
417                         ret = td_io_commit(td);
418                         break;
419                 default:
420                         assert(ret < 0);
421                         put_io_u(td, io_u);
422                         break;
423                 }
424
425                 if (ret < 0 || td->error)
426                         break;
427
428                 if (io_u)
429                         add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
430
431                 /*
432                  * See if we need to complete some commands
433                  */
434                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
435                         min_evts = 0;
436                         if (queue_full(td) || ret == FIO_Q_BUSY)
437                                 min_evts = 1;
438
439                         fio_gettime(&comp_time, NULL);
440                         bytes_done = io_u_queued_complete(td, min_evts, NULL);
441                         if (bytes_done < 0)
442                                 break;
443                 }
444
445                 if (!bytes_done)
446                         continue;
447
448                 /*
449                  * the rate is batched for now, it should work for batches
450                  * of completions except the very first one which may look
451                  * a little bursty
452                  */
453                 usec = utime_since(&s, &comp_time);
454
455                 rate_throttle(td, usec, bytes_done, td->ddir);
456
457                 if (check_min_rate(td, &comp_time)) {
458                         if (exitall_on_terminate)
459                                 terminate_threads(td->groupid, 0);
460                         td_verror(td, ENODATA);
461                         break;
462                 }
463
464                 if (td->thinktime) {
465                         unsigned long long b;
466
467                         b = td->io_blocks[0] + td->io_blocks[1];
468                         if (!(b % td->thinktime_blocks)) {
469                                 int left;
470
471                                 if (td->thinktime_spin)
472                                         __usec_sleep(td->thinktime_spin);
473
474                                 left = td->thinktime - td->thinktime_spin;
475                                 if (left)
476                                         usec_sleep(td, left);
477                         }
478                 }
479         }
480
481         if (!td->error) {
482                 if (td->cur_depth)
483                         cleanup_pending_aio(td);
484
485                 if (should_fsync(td) && td->end_fsync) {
486                         td_set_runstate(td, TD_FSYNCING);
487                         for_each_file(td, f, i)
488                                 fio_io_sync(td, f);
489                 }
490         }
491 }
492
493 static void cleanup_io_u(struct thread_data *td)
494 {
495         struct list_head *entry, *n;
496         struct io_u *io_u;
497
498         list_for_each_safe(entry, n, &td->io_u_freelist) {
499                 io_u = list_entry(entry, struct io_u, list);
500
501                 list_del(&io_u->list);
502                 free(io_u);
503         }
504
505         free_io_mem(td);
506 }
507
508 /*
509  * "randomly" fill the buffer contents
510  */
511 static void fill_rand_buf(struct io_u *io_u, int max_bs)
512 {
513         int *ptr = io_u->buf;
514
515         while ((void *) ptr - io_u->buf < max_bs) {
516                 *ptr = rand() * 0x9e370001;
517                 ptr++;
518         }
519 }
520
521 static int init_io_u(struct thread_data *td)
522 {
523         struct io_u *io_u;
524         unsigned int max_bs;
525         int i, max_units;
526         char *p;
527
528         if (td->io_ops->flags & FIO_CPUIO)
529                 return 0;
530
531         if (td->io_ops->flags & FIO_SYNCIO)
532                 max_units = 1;
533         else
534                 max_units = td->iodepth;
535
536         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
537         td->orig_buffer_size = max_bs * max_units;
538
539         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
540                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
541         else
542                 td->orig_buffer_size += page_mask;
543
544         if (allocate_io_mem(td))
545                 return 1;
546
547         p = ALIGN(td->orig_buffer);
548         for (i = 0; i < max_units; i++) {
549                 io_u = malloc(sizeof(*io_u));
550                 memset(io_u, 0, sizeof(*io_u));
551                 INIT_LIST_HEAD(&io_u->list);
552
553                 io_u->buf = p + max_bs * i;
554                 if (td_write(td) || td_rw(td))
555                         fill_rand_buf(io_u, max_bs);
556
557                 io_u->index = i;
558                 list_add(&io_u->list, &td->io_u_freelist);
559         }
560
561         return 0;
562 }
563
564 static int switch_ioscheduler(struct thread_data *td)
565 {
566         char tmp[256], tmp2[128];
567         FILE *f;
568         int ret;
569
570         if (td->io_ops->flags & FIO_CPUIO)
571                 return 0;
572
573         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
574
575         f = fopen(tmp, "r+");
576         if (!f) {
577                 td_verror(td, errno);
578                 return 1;
579         }
580
581         /*
582          * Set io scheduler.
583          */
584         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
585         if (ferror(f) || ret != 1) {
586                 td_verror(td, errno);
587                 fclose(f);
588                 return 1;
589         }
590
591         rewind(f);
592
593         /*
594          * Read back and check that the selected scheduler is now the default.
595          */
596         ret = fread(tmp, 1, sizeof(tmp), f);
597         if (ferror(f) || ret < 0) {
598                 td_verror(td, errno);
599                 fclose(f);
600                 return 1;
601         }
602
603         sprintf(tmp2, "[%s]", td->ioscheduler);
604         if (!strstr(tmp, tmp2)) {
605                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
606                 td_verror(td, EINVAL);
607                 fclose(f);
608                 return 1;
609         }
610
611         fclose(f);
612         return 0;
613 }
614
615 static void clear_io_state(struct thread_data *td)
616 {
617         struct fio_file *f;
618         int i;
619
620         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
621         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
622         td->zone_bytes = 0;
623
624         for_each_file(td, f, i) {
625                 f->last_pos = 0;
626                 if (td->io_ops->flags & FIO_SYNCIO)
627                         lseek(f->fd, SEEK_SET, 0);
628
629                 if (f->file_map)
630                         memset(f->file_map, 0, f->num_maps * sizeof(long));
631         }
632 }
633
634 /*
635  * Entry point for the thread based jobs. The process based jobs end up
636  * here as well, after a little setup.
637  */
638 static void *thread_main(void *data)
639 {
640         unsigned long long runtime[2];
641         struct thread_data *td = data;
642
643         if (!td->use_thread)
644                 setsid();
645
646         td->pid = getpid();
647
648         INIT_LIST_HEAD(&td->io_u_freelist);
649         INIT_LIST_HEAD(&td->io_u_busylist);
650         INIT_LIST_HEAD(&td->io_u_requeues);
651         INIT_LIST_HEAD(&td->io_hist_list);
652         INIT_LIST_HEAD(&td->io_log_list);
653
654         if (init_io_u(td))
655                 goto err;
656
657         if (fio_setaffinity(td) == -1) {
658                 td_verror(td, errno);
659                 goto err;
660         }
661
662         if (init_iolog(td))
663                 goto err;
664
665         if (td->ioprio) {
666                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
667                         td_verror(td, errno);
668                         goto err;
669                 }
670         }
671
672         if (nice(td->nice) == -1) {
673                 td_verror(td, errno);
674                 goto err;
675         }
676
677         if (init_random_state(td))
678                 goto err;
679
680         if (td->ioscheduler && switch_ioscheduler(td))
681                 goto err;
682
683         td_set_runstate(td, TD_INITIALIZED);
684         fio_sem_up(&startup_sem);
685         fio_sem_down(&td->mutex);
686
687         if (!td->create_serialize && setup_files(td))
688                 goto err;
689         if (open_files(td))
690                 goto err;
691
692         /*
693          * Do this late, as some IO engines would like to have the
694          * files setup prior to initializing structures.
695          */
696         if (td_io_init(td))
697                 goto err;
698
699         if (td->exec_prerun) {
700                 if (system(td->exec_prerun) < 0)
701                         goto err;
702         }
703
704         fio_gettime(&td->epoch, NULL);
705         getrusage(RUSAGE_SELF, &td->ru_start);
706
707         runtime[0] = runtime[1] = 0;
708         while (td->loops--) {
709                 fio_gettime(&td->start, NULL);
710                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
711
712                 if (td->ratemin)
713                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
714
715                 clear_io_state(td);
716                 prune_io_piece_log(td);
717
718                 if (td->io_ops->flags & FIO_CPUIO)
719                         do_cpuio(td);
720                 else
721                         do_io(td);
722
723                 runtime[td->ddir] += utime_since_now(&td->start);
724                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
725                         runtime[td->ddir ^ 1] = runtime[td->ddir];
726
727                 if (td->error || td->terminate)
728                         break;
729
730                 if (td->verify == VERIFY_NONE)
731                         continue;
732
733                 clear_io_state(td);
734                 fio_gettime(&td->start, NULL);
735
736                 do_verify(td);
737
738                 runtime[DDIR_READ] += utime_since_now(&td->start);
739
740                 if (td->error || td->terminate)
741                         break;
742         }
743
744         update_rusage_stat(td);
745         fio_gettime(&td->end_time, NULL);
746         td->runtime[0] = runtime[0] / 1000;
747         td->runtime[1] = runtime[1] / 1000;
748
749         if (td->bw_log)
750                 finish_log(td, td->bw_log, "bw");
751         if (td->slat_log)
752                 finish_log(td, td->slat_log, "slat");
753         if (td->clat_log)
754                 finish_log(td, td->clat_log, "clat");
755         if (td->write_iolog_file)
756                 write_iolog_close(td);
757         if (td->exec_postrun) {
758                 if (system(td->exec_postrun) < 0)
759                         log_err("fio: postrun %s failed\n", td->exec_postrun);
760         }
761
762         if (exitall_on_terminate)
763                 terminate_threads(td->groupid, 0);
764
765 err:
766         if (td->error)
767                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
768         close_files(td);
769         close_ioengine(td);
770         cleanup_io_u(td);
771         td_set_runstate(td, TD_EXITED);
772         return (void *) td->error;
773 }
774
775 /*
776  * We cannot pass the td data into a forked process, so attach the td and
777  * pass it to the thread worker.
778  */
779 static int fork_main(int shmid, int offset)
780 {
781         struct thread_data *td;
782         void *data, *ret;
783
784         data = shmat(shmid, NULL, 0);
785         if (data == (void *) -1) {
786                 int __err = errno;
787
788                 perror("shmat");
789                 return __err;
790         }
791
792         td = data + offset * sizeof(struct thread_data);
793         ret = thread_main(td);
794         shmdt(data);
795         return (int) ret;
796 }
797
798 /*
799  * Run over the job map and reap the threads that have exited, if any.
800  */
801 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
802 {
803         struct thread_data *td;
804         int i, cputhreads, pending, status, ret;
805
806         /*
807          * reap exited threads (TD_EXITED -> TD_REAPED)
808          */
809         pending = cputhreads = 0;
810         for_each_td(td, i) {
811                 /*
812                  * ->io_ops is NULL for a thread that has closed its
813                  * io engine
814                  */
815                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
816                         cputhreads++;
817
818                 if (td->runstate < TD_EXITED) {
819                         /*
820                          * check if someone quit or got killed in an unusual way
821                          */
822                         ret = waitpid(td->pid, &status, WNOHANG);
823                         if (ret < 0)
824                                 perror("waitpid");
825                         else if ((ret == td->pid) && WIFSIGNALED(status)) {
826                                 int sig = WTERMSIG(status);
827
828                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
829                                 td_set_runstate(td, TD_REAPED);
830                                 goto reaped;
831                         }
832                 }
833
834                 if (td->runstate != TD_EXITED) {
835                         if (td->runstate < TD_RUNNING)
836                                 pending++;
837
838                         continue;
839                 }
840
841                 if (td->error)
842                         exit_value++;
843
844                 td_set_runstate(td, TD_REAPED);
845
846                 if (td->use_thread) {
847                         long ret;
848
849                         if (pthread_join(td->thread, (void *) &ret))
850                                 perror("thread_join");
851                 } else {
852                         int status;
853
854                         ret = waitpid(td->pid, &status, 0);
855                         if (ret < 0)
856                                 perror("waitpid");
857                         else if (WIFEXITED(status) && WEXITSTATUS(status)) {
858                                 if (!exit_value)
859                                         exit_value++;
860                         }
861                 }
862
863 reaped:
864                 (*nr_running)--;
865                 (*m_rate) -= td->ratemin;
866                 (*t_rate) -= td->rate;
867         }
868
869         if (*nr_running == cputhreads && !pending)
870                 terminate_threads(TERMINATE_ALL, 0);
871 }
872
873 /*
874  * Main function for kicking off and reaping jobs, as needed.
875  */
876 static void run_threads(void)
877 {
878         struct thread_data *td;
879         unsigned long spent;
880         int i, todo, nr_running, m_rate, t_rate, nr_started;
881
882         if (fio_pin_memory())
883                 return;
884
885         if (!terse_output) {
886                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
887                 fflush(stdout);
888         }
889
890         signal(SIGINT, sig_handler);
891         signal(SIGALRM, sig_handler);
892
893         todo = thread_number;
894         nr_running = 0;
895         nr_started = 0;
896         m_rate = t_rate = 0;
897
898         for_each_td(td, i) {
899                 print_status_init(td->thread_number - 1);
900
901                 if (!td->create_serialize) {
902                         init_disk_util(td);
903                         continue;
904                 }
905
906                 /*
907                  * do file setup here so it happens sequentially,
908                  * we don't want X number of threads getting their
909                  * client data interspersed on disk
910                  */
911                 if (setup_files(td)) {
912                         exit_value++;
913                         if (td->error)
914                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
915                         td_set_runstate(td, TD_REAPED);
916                         todo--;
917                 }
918
919                 init_disk_util(td);
920         }
921
922         while (todo) {
923                 struct thread_data *map[MAX_JOBS];
924                 struct timeval this_start;
925                 int this_jobs = 0, left;
926
927                 /*
928                  * create threads (TD_NOT_CREATED -> TD_CREATED)
929                  */
930                 for_each_td(td, i) {
931                         if (td->runstate != TD_NOT_CREATED)
932                                 continue;
933
934                         /*
935                          * never got a chance to start, killed by other
936                          * thread for some reason
937                          */
938                         if (td->terminate) {
939                                 todo--;
940                                 continue;
941                         }
942
943                         if (td->start_delay) {
944                                 spent = mtime_since_genesis();
945
946                                 if (td->start_delay * 1000 > spent)
947                                         continue;
948                         }
949
950                         if (td->stonewall && (nr_started || nr_running))
951                                 break;
952
953                         /*
954                          * Set state to created. Thread will transition
955                          * to TD_INITIALIZED when it's done setting up.
956                          */
957                         td_set_runstate(td, TD_CREATED);
958                         map[this_jobs++] = td;
959                         fio_sem_init(&startup_sem, 1);
960                         nr_started++;
961
962                         if (td->use_thread) {
963                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
964                                         perror("thread_create");
965                                         nr_started--;
966                                 }
967                         } else {
968                                 if (fork())
969                                         fio_sem_down(&startup_sem);
970                                 else {
971                                         int ret = fork_main(shm_id, i);
972
973                                         exit(ret);
974                                 }
975                         }
976                 }
977
978                 /*
979                  * Wait for the started threads to transition to
980                  * TD_INITIALIZED.
981                  */
982                 fio_gettime(&this_start, NULL);
983                 left = this_jobs;
984                 while (left && !fio_abort) {
985                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
986                                 break;
987
988                         usleep(100000);
989
990                         for (i = 0; i < this_jobs; i++) {
991                                 td = map[i];
992                                 if (!td)
993                                         continue;
994                                 if (td->runstate == TD_INITIALIZED) {
995                                         map[i] = NULL;
996                                         left--;
997                                 } else if (td->runstate >= TD_EXITED) {
998                                         map[i] = NULL;
999                                         left--;
1000                                         todo--;
1001                                         nr_running++; /* work-around... */
1002                                 }
1003                         }
1004                 }
1005
1006                 if (left) {
1007                         log_err("fio: %d jobs failed to start\n", left);
1008                         for (i = 0; i < this_jobs; i++) {
1009                                 td = map[i];
1010                                 if (!td)
1011                                         continue;
1012                                 kill(td->pid, SIGTERM);
1013                         }
1014                         break;
1015                 }
1016
1017                 /*
1018                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1019                  */
1020                 for_each_td(td, i) {
1021                         if (td->runstate != TD_INITIALIZED)
1022                                 continue;
1023
1024                         td_set_runstate(td, TD_RUNNING);
1025                         nr_running++;
1026                         nr_started--;
1027                         m_rate += td->ratemin;
1028                         t_rate += td->rate;
1029                         todo--;
1030                         fio_sem_up(&td->mutex);
1031                 }
1032
1033                 reap_threads(&nr_running, &t_rate, &m_rate);
1034
1035                 if (todo)
1036                         usleep(100000);
1037         }
1038
1039         while (nr_running) {
1040                 reap_threads(&nr_running, &t_rate, &m_rate);
1041                 usleep(10000);
1042         }
1043
1044         update_io_ticks();
1045         fio_unpin_memory();
1046 }
1047
1048 int main(int argc, char *argv[])
1049 {
1050         long ps;
1051
1052         /*
1053          * We need locale for number printing, if it isn't set then just
1054          * go with the US format.
1055          */
1056         if (!getenv("LC_NUMERIC"))
1057                 setlocale(LC_NUMERIC, "en_US");
1058
1059         if (parse_options(argc, argv))
1060                 return 1;
1061
1062         if (!thread_number) {
1063                 log_err("Nothing to do\n");
1064                 return 1;
1065         }
1066
1067         ps = sysconf(_SC_PAGESIZE);
1068         if (ps < 0) {
1069                 log_err("Failed to get page size\n");
1070                 return 1;
1071         }
1072
1073         page_mask = ps - 1;
1074
1075         if (write_bw_log) {
1076                 setup_log(&agg_io_log[DDIR_READ]);
1077                 setup_log(&agg_io_log[DDIR_WRITE]);
1078         }
1079
1080         disk_util_timer_arm();
1081
1082         run_threads();
1083
1084         if (!fio_abort) {
1085                 show_run_stats();
1086                 if (write_bw_log) {
1087                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1088                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1089                 }
1090         }
1091
1092         return exit_value;
1093 }