Cleanup requeue handling
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         kill(td->pid, SIGQUIT);
71                         td->terminate = 1;
72                         td->start_delay = 0;
73                 }
74         }
75 }
76
77 static void sig_handler(int sig)
78 {
79         switch (sig) {
80                 case SIGALRM:
81                         update_io_ticks();
82                         disk_util_timer_arm();
83                         print_thread_status();
84                         break;
85                 default:
86                         printf("\nfio: terminating on signal %d\n", sig);
87                         fflush(stdout);
88                         terminate_threads(TERMINATE_ALL);
89                         break;
90         }
91 }
92
93 /*
94  * Check if we are above the minimum rate given.
95  */
96 static int check_min_rate(struct thread_data *td, struct timeval *now)
97 {
98         unsigned long long bytes = 0;
99         unsigned long spent;
100         unsigned long rate;
101
102         /*
103          * No minimum rate set, always ok
104          */
105         if (!td->ratemin)
106                 return 0;
107
108         /*
109          * allow a 2 second settle period in the beginning
110          */
111         if (mtime_since(&td->start, now) < 2000)
112                 return 0;
113
114         if (td_read(td))
115                 bytes += td->this_io_bytes[DDIR_READ];
116         if (td_write(td))
117                 bytes += td->this_io_bytes[DDIR_WRITE];
118
119         /*
120          * if rate blocks is set, sample is running
121          */
122         if (td->rate_bytes) {
123                 spent = mtime_since(&td->lastrate, now);
124                 if (spent < td->ratecycle)
125                         return 0;
126
127                 if (bytes < td->rate_bytes) {
128                         fprintf(f_out, "%s: min rate %u not met\n", td->name, td->ratemin);
129                         return 1;
130                 } else {
131                         rate = (bytes - td->rate_bytes) / spent;
132                         if (rate < td->ratemin || bytes < td->rate_bytes) {
133                                 fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
134                                 return 1;
135                         }
136                 }
137         }
138
139         td->rate_bytes = bytes;
140         memcpy(&td->lastrate, now, sizeof(*now));
141         return 0;
142 }
143
144 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
145 {
146         if (!td->timeout)
147                 return 0;
148         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
149                 return 1;
150
151         return 0;
152 }
153
154 /*
155  * When job exits, we can cancel the in-flight IO if we are using async
156  * io. Attempt to do so.
157  */
158 static void cleanup_pending_aio(struct thread_data *td)
159 {
160         struct list_head *entry, *n;
161         struct io_u *io_u;
162         int r;
163
164         /*
165          * get immediately available events, if any
166          */
167         r = io_u_queued_complete(td, 0);
168         if (r < 0)
169                 return;
170
171         /*
172          * now cancel remaining active events
173          */
174         if (td->io_ops->cancel) {
175                 list_for_each_safe(entry, n, &td->io_u_busylist) {
176                         io_u = list_entry(entry, struct io_u, list);
177
178                         /*
179                          * if the io_u isn't in flight, then that generally
180                          * means someone leaked an io_u. complain but fix
181                          * it up, so we don't stall here.
182                          */
183                         if ((io_u->flags & IO_U_F_FLIGHT) == 0) {
184                                 log_err("fio: non-busy IO on busy list\n");
185                                 put_io_u(td, io_u);
186                         } else {
187                                 r = td->io_ops->cancel(td, io_u);
188                                 if (!r)
189                                         put_io_u(td, io_u);
190                         }
191                 }
192         }
193
194         if (td->cur_depth)
195                 r = io_u_queued_complete(td, td->cur_depth);
196 }
197
198 /*
199  * Helper to handle the final sync of a file. Works just like the normal
200  * io path, just does everything sync.
201  */
202 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
203 {
204         struct io_u *io_u = __get_io_u(td);
205         int ret;
206
207         if (!io_u)
208                 return 1;
209
210         io_u->ddir = DDIR_SYNC;
211         io_u->file = f;
212
213         if (td_io_prep(td, io_u)) {
214                 put_io_u(td, io_u);
215                 return 1;
216         }
217
218 requeue:
219         ret = td_io_queue(td, io_u);
220         if (ret < 0) {
221                 td_verror(td, io_u->error, "td_io_queue");
222                 put_io_u(td, io_u);
223                 return 1;
224         } else if (ret == FIO_Q_QUEUED) {
225                 if (io_u_queued_complete(td, 1) < 0)
226                         return 1;
227         } else if (ret == FIO_Q_COMPLETED) {
228                 if (io_u->error) {
229                         td_verror(td, io_u->error, "td_io_queue");
230                         return 1;
231                 }
232
233                 if (io_u_sync_complete(td, io_u) < 0)
234                         return 1;
235         } else if (ret == FIO_Q_BUSY) {
236                 if (td_io_commit(td))
237                         return 1;
238                 goto requeue;
239         }
240
241         return 0;
242 }
243
244 /*
245  * The main verify engine. Runs over the writes we previously submitted,
246  * reads the blocks back in, and checks the crc/md5 of the data.
247  */
248 static void do_verify(struct thread_data *td)
249 {
250         struct fio_file *f;
251         struct io_u *io_u;
252         int ret, i, min_events;
253
254         /*
255          * sync io first and invalidate cache, to make sure we really
256          * read from disk.
257          */
258         for_each_file(td, f, i) {
259                 if (fio_io_sync(td, f))
260                         break;
261                 if (file_invalidate_cache(td, f))
262                         break;
263         }
264
265         if (td->error)
266                 return;
267
268         td_set_runstate(td, TD_VERIFYING);
269
270         io_u = NULL;
271         while (!td->terminate) {
272                 int ret2;
273
274                 io_u = __get_io_u(td);
275                 if (!io_u)
276                         break;
277
278                 if (runtime_exceeded(td, &io_u->start_time)) {
279                         put_io_u(td, io_u);
280                         break;
281                 }
282
283                 if (get_next_verify(td, io_u)) {
284                         put_io_u(td, io_u);
285                         break;
286                 }
287
288                 if (td_io_prep(td, io_u)) {
289                         put_io_u(td, io_u);
290                         break;
291                 }
292
293                 io_u->end_io = verify_io_u;
294
295                 ret = td_io_queue(td, io_u);
296                 switch (ret) {
297                 case FIO_Q_COMPLETED:
298                         if (io_u->error)
299                                 ret = -io_u->error;
300                         else if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
301                                 int bytes = io_u->xfer_buflen - io_u->resid;
302
303                                 io_u->xfer_buflen = io_u->resid;
304                                 io_u->xfer_buf += bytes;
305                                 requeue_io_u(td, &io_u);
306                         } else {
307                                 ret = io_u_sync_complete(td, io_u);
308                                 if (ret < 0)
309                                         break;
310                         }
311                         continue;
312                 case FIO_Q_QUEUED:
313                         break;
314                 case FIO_Q_BUSY:
315                         requeue_io_u(td, &io_u);
316                         ret2 = td_io_commit(td);
317                         if (ret2 < 0)
318                                 ret = ret2;
319                         break;
320                 default:
321                         assert(ret < 0);
322                         td_verror(td, -ret, "td_io_queue");
323                         break;
324                 }
325
326                 if (ret < 0 || td->error)
327                         break;
328
329                 /*
330                  * if we can queue more, do so. but check if there are
331                  * completed io_u's first.
332                  */
333                 min_events = 0;
334                 if (queue_full(td) || ret == FIO_Q_BUSY) {
335                         min_events = 1;
336
337                         if (td->cur_depth > td->iodepth_low)
338                                 min_events = td->cur_depth - td->iodepth_low;
339                 }
340
341                 /*
342                  * Reap required number of io units, if any, and do the
343                  * verification on them through the callback handler
344                  */
345                 if (io_u_queued_complete(td, min_events) < 0)
346                         break;
347         }
348
349         if (!td->error) {
350                 min_events = td->cur_depth;
351
352                 if (min_events)
353                         ret = io_u_queued_complete(td, min_events);
354         } else
355                 cleanup_pending_aio(td);
356
357         td_set_runstate(td, TD_RUNNING);
358 }
359
360 /*
361  * Not really an io thread, all it does is burn CPU cycles in the specified
362  * manner.
363  */
364 static void do_cpuio(struct thread_data *td)
365 {
366         struct timeval e;
367         int split = 100 / td->cpuload;
368         int i = 0;
369
370         while (!td->terminate) {
371                 fio_gettime(&e, NULL);
372
373                 if (runtime_exceeded(td, &e))
374                         break;
375
376                 if (!(i % split))
377                         __usec_sleep(10000);
378                 else
379                         usec_sleep(td, 10000);
380
381                 i++;
382         }
383 }
384
385 /*
386  * Main IO worker function. It retrieves io_u's to process and queues
387  * and reaps them, checking for rate and errors along the way.
388  */
389 static void do_io(struct thread_data *td)
390 {
391         struct timeval s;
392         unsigned long usec;
393         int i, ret = 0;
394
395         td_set_runstate(td, TD_RUNNING);
396
397         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
398                 struct timeval comp_time;
399                 long bytes_done = 0;
400                 int min_evts = 0;
401                 struct io_u *io_u;
402                 int ret2;
403
404                 if (td->terminate)
405                         break;
406
407                 io_u = get_io_u(td);
408                 if (!io_u)
409                         break;
410
411                 memcpy(&s, &io_u->start_time, sizeof(s));
412
413                 if (runtime_exceeded(td, &s)) {
414                         put_io_u(td, io_u);
415                         break;
416                 }
417
418                 ret = td_io_queue(td, io_u);
419                 switch (ret) {
420                 case FIO_Q_COMPLETED:
421                         if (io_u->error)
422                                 ret = -io_u->error;
423                         else if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
424                                 int bytes = io_u->xfer_buflen - io_u->resid;
425
426                                 io_u->xfer_buflen = io_u->resid;
427                                 io_u->xfer_buf += bytes;
428                                 requeue_io_u(td, &io_u);
429                         } else {
430                                 fio_gettime(&comp_time, NULL);
431                                 bytes_done = io_u_sync_complete(td, io_u);
432                                 if (bytes_done < 0)
433                                         ret = bytes_done;
434                         }
435                         break;
436                 case FIO_Q_QUEUED:
437                         /*
438                          * if the engine doesn't have a commit hook,
439                          * the io_u is really queued. if it does have such
440                          * a hook, it has to call io_u_queued() itself.
441                          */
442                         if (td->io_ops->commit == NULL)
443                                 io_u_queued(td, io_u);
444                         break;
445                 case FIO_Q_BUSY:
446                         requeue_io_u(td, &io_u);
447                         ret2 = td_io_commit(td);
448                         if (ret2 < 0)
449                                 ret = ret2;
450                         break;
451                 default:
452                         assert(ret < 0);
453                         put_io_u(td, io_u);
454                         break;
455                 }
456
457                 if (ret < 0 || td->error)
458                         break;
459
460                 /*
461                  * See if we need to complete some commands
462                  */
463                 if (ret == FIO_Q_QUEUED || ret == FIO_Q_BUSY) {
464                         min_evts = 0;
465                         if (queue_full(td) || ret == FIO_Q_BUSY) {
466                                 min_evts = 1;
467
468                                 if (td->cur_depth > td->iodepth_low)
469                                         min_evts = td->cur_depth - td->iodepth_low;
470                         }
471
472                         fio_gettime(&comp_time, NULL);
473                         bytes_done = io_u_queued_complete(td, min_evts);
474                         if (bytes_done < 0)
475                                 break;
476                 }
477
478                 if (!bytes_done)
479                         continue;
480
481                 /*
482                  * the rate is batched for now, it should work for batches
483                  * of completions except the very first one which may look
484                  * a little bursty
485                  */
486                 usec = utime_since(&s, &comp_time);
487
488                 rate_throttle(td, usec, bytes_done);
489
490                 if (check_min_rate(td, &comp_time)) {
491                         if (exitall_on_terminate)
492                                 terminate_threads(td->groupid);
493                         td_verror(td, ENODATA, "check_min_rate");
494                         break;
495                 }
496
497                 if (td->thinktime) {
498                         unsigned long long b;
499
500                         b = td->io_blocks[0] + td->io_blocks[1];
501                         if (!(b % td->thinktime_blocks)) {
502                                 int left;
503
504                                 if (td->thinktime_spin)
505                                         __usec_sleep(td->thinktime_spin);
506
507                                 left = td->thinktime - td->thinktime_spin;
508                                 if (left)
509                                         usec_sleep(td, left);
510                         }
511                 }
512         }
513
514         if (!td->error) {
515                 struct fio_file *f;
516
517                 i = td->cur_depth;
518                 if (i)
519                         ret = io_u_queued_complete(td, i);
520
521                 if (should_fsync(td) && td->end_fsync) {
522                         td_set_runstate(td, TD_FSYNCING);
523                         for_each_file(td, f, i)
524                                 fio_io_sync(td, f);
525                 }
526         } else
527                 cleanup_pending_aio(td);
528 }
529
530 static void cleanup_io_u(struct thread_data *td)
531 {
532         struct list_head *entry, *n;
533         struct io_u *io_u;
534
535         list_for_each_safe(entry, n, &td->io_u_freelist) {
536                 io_u = list_entry(entry, struct io_u, list);
537
538                 list_del(&io_u->list);
539                 free(io_u);
540         }
541
542         free_io_mem(td);
543 }
544
545 /*
546  * "randomly" fill the buffer contents
547  */
548 static void fill_rand_buf(struct io_u *io_u, int max_bs)
549 {
550         int *ptr = io_u->buf;
551
552         while ((void *) ptr - io_u->buf < max_bs) {
553                 *ptr = rand() * 0x9e370001;
554                 ptr++;
555         }
556 }
557
558 static int init_io_u(struct thread_data *td)
559 {
560         struct io_u *io_u;
561         unsigned int max_bs;
562         int i, max_units;
563         char *p;
564
565         if (td->io_ops->flags & FIO_CPUIO)
566                 return 0;
567
568         if (td->io_ops->flags & FIO_SYNCIO)
569                 max_units = 1;
570         else
571                 max_units = td->iodepth;
572
573         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
574         td->orig_buffer_size = max_bs * max_units;
575
576         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
577                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
578         else
579                 td->orig_buffer_size += page_mask;
580
581         if (allocate_io_mem(td))
582                 return 1;
583
584         p = ALIGN(td->orig_buffer);
585         for (i = 0; i < max_units; i++) {
586                 io_u = malloc(sizeof(*io_u));
587                 memset(io_u, 0, sizeof(*io_u));
588                 INIT_LIST_HEAD(&io_u->list);
589
590                 io_u->buf = p + max_bs * i;
591                 if (td_write(td) || td_rw(td))
592                         fill_rand_buf(io_u, max_bs);
593
594                 io_u->index = i;
595                 io_u->flags = IO_U_F_FREE;
596                 list_add(&io_u->list, &td->io_u_freelist);
597         }
598
599         io_u_init_timeout();
600
601         return 0;
602 }
603
604 static int switch_ioscheduler(struct thread_data *td)
605 {
606         char tmp[256], tmp2[128];
607         FILE *f;
608         int ret;
609
610         if (td->io_ops->flags & FIO_CPUIO)
611                 return 0;
612
613         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
614
615         f = fopen(tmp, "r+");
616         if (!f) {
617                 td_verror(td, errno, "fopen");
618                 return 1;
619         }
620
621         /*
622          * Set io scheduler.
623          */
624         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
625         if (ferror(f) || ret != 1) {
626                 td_verror(td, errno, "fwrite");
627                 fclose(f);
628                 return 1;
629         }
630
631         rewind(f);
632
633         /*
634          * Read back and check that the selected scheduler is now the default.
635          */
636         ret = fread(tmp, 1, sizeof(tmp), f);
637         if (ferror(f) || ret < 0) {
638                 td_verror(td, errno, "fread");
639                 fclose(f);
640                 return 1;
641         }
642
643         sprintf(tmp2, "[%s]", td->ioscheduler);
644         if (!strstr(tmp, tmp2)) {
645                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
646                 td_verror(td, EINVAL, "iosched_switch");
647                 fclose(f);
648                 return 1;
649         }
650
651         fclose(f);
652         return 0;
653 }
654
655 static void clear_io_state(struct thread_data *td)
656 {
657         struct fio_file *f;
658         int i;
659
660         td->ts.stat_io_bytes[0] = td->ts.stat_io_bytes[1] = 0;
661         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
662         td->zone_bytes = 0;
663
664         td->last_was_sync = 0;
665
666         for_each_file(td, f, i) {
667                 f->last_completed_pos = 0;
668
669                 f->last_pos = 0;
670                 if (td->io_ops->flags & FIO_SYNCIO)
671                         lseek(f->fd, SEEK_SET, 0);
672
673                 if (f->file_map)
674                         memset(f->file_map, 0, f->num_maps * sizeof(long));
675         }
676 }
677
678 /*
679  * Entry point for the thread based jobs. The process based jobs end up
680  * here as well, after a little setup.
681  */
682 static void *thread_main(void *data)
683 {
684         unsigned long long runtime[2];
685         struct thread_data *td = data;
686
687         if (!td->use_thread)
688                 setsid();
689
690         td->pid = getpid();
691
692         INIT_LIST_HEAD(&td->io_u_freelist);
693         INIT_LIST_HEAD(&td->io_u_busylist);
694         INIT_LIST_HEAD(&td->io_u_requeues);
695         INIT_LIST_HEAD(&td->io_hist_list);
696         INIT_LIST_HEAD(&td->io_log_list);
697
698         if (init_io_u(td))
699                 goto err;
700
701         if (fio_setaffinity(td) == -1) {
702                 td_verror(td, errno, "cpu_set_affinity");
703                 goto err;
704         }
705
706         if (init_iolog(td))
707                 goto err;
708
709         if (td->ioprio) {
710                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
711                         td_verror(td, errno, "ioprio_set");
712                         goto err;
713                 }
714         }
715
716         if (nice(td->nice) == -1) {
717                 td_verror(td, errno, "nice");
718                 goto err;
719         }
720
721         if (init_random_state(td))
722                 goto err;
723
724         if (td->ioscheduler && switch_ioscheduler(td))
725                 goto err;
726
727         td_set_runstate(td, TD_INITIALIZED);
728         fio_sem_up(&startup_sem);
729         fio_sem_down(&td->mutex);
730
731         if (!td->create_serialize && setup_files(td))
732                 goto err;
733         if (open_files(td))
734                 goto err;
735
736         /*
737          * Do this late, as some IO engines would like to have the
738          * files setup prior to initializing structures.
739          */
740         if (td_io_init(td))
741                 goto err;
742
743         if (td->exec_prerun) {
744                 if (system(td->exec_prerun) < 0)
745                         goto err;
746         }
747
748         fio_gettime(&td->epoch, NULL);
749         memcpy(&td->timeout_end, &td->epoch, sizeof(td->epoch));
750         getrusage(RUSAGE_SELF, &td->ts.ru_start);
751
752         runtime[0] = runtime[1] = 0;
753         while (td->loops--) {
754                 fio_gettime(&td->start, NULL);
755                 memcpy(&td->ts.stat_sample_time, &td->start, sizeof(td->start));
756
757                 if (td->ratemin)
758                         memcpy(&td->lastrate, &td->ts.stat_sample_time, sizeof(td->lastrate));
759
760                 clear_io_state(td);
761                 prune_io_piece_log(td);
762
763                 if (td->io_ops->flags & FIO_CPUIO)
764                         do_cpuio(td);
765                 else
766                         do_io(td);
767
768                 if (td_read(td) && td->io_bytes[DDIR_READ])
769                         runtime[DDIR_READ] += utime_since_now(&td->start);
770                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
771                         runtime[DDIR_WRITE] += utime_since_now(&td->start);
772                 
773                 if (td->error || td->terminate)
774                         break;
775
776                 if (td->verify == VERIFY_NONE)
777                         continue;
778
779                 clear_io_state(td);
780                 fio_gettime(&td->start, NULL);
781
782                 do_verify(td);
783
784                 runtime[DDIR_READ] += utime_since_now(&td->start);
785
786                 if (td->error || td->terminate)
787                         break;
788         }
789
790         update_rusage_stat(td);
791         fio_gettime(&td->end_time, NULL);
792         td->runtime[0] = runtime[0] / 1000;
793         td->runtime[1] = runtime[1] / 1000;
794
795         if (td->ts.bw_log)
796                 finish_log(td, td->ts.bw_log, "bw");
797         if (td->ts.slat_log)
798                 finish_log(td, td->ts.slat_log, "slat");
799         if (td->ts.clat_log)
800                 finish_log(td, td->ts.clat_log, "clat");
801         if (td->write_iolog_file)
802                 write_iolog_close(td);
803         if (td->exec_postrun) {
804                 if (system(td->exec_postrun) < 0)
805                         log_err("fio: postrun %s failed\n", td->exec_postrun);
806         }
807
808         if (exitall_on_terminate)
809                 terminate_threads(td->groupid);
810
811 err:
812         if (td->error)
813                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
814         close_files(td);
815         close_ioengine(td);
816         cleanup_io_u(td);
817         td_set_runstate(td, TD_EXITED);
818         return (void *) (unsigned long) td->error;
819 }
820
821 /*
822  * We cannot pass the td data into a forked process, so attach the td and
823  * pass it to the thread worker.
824  */
825 static int fork_main(int shmid, int offset)
826 {
827         struct thread_data *td;
828         void *data, *ret;
829
830         data = shmat(shmid, NULL, 0);
831         if (data == (void *) -1) {
832                 int __err = errno;
833
834                 perror("shmat");
835                 return __err;
836         }
837
838         td = data + offset * sizeof(struct thread_data);
839         ret = thread_main(td);
840         shmdt(data);
841         return (int) (unsigned long) ret;
842 }
843
844 /*
845  * Run over the job map and reap the threads that have exited, if any.
846  */
847 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
848 {
849         struct thread_data *td;
850         int i, cputhreads, pending, status, ret;
851
852         /*
853          * reap exited threads (TD_EXITED -> TD_REAPED)
854          */
855         pending = cputhreads = 0;
856         for_each_td(td, i) {
857                 int flags = 0;
858
859                 /*
860                  * ->io_ops is NULL for a thread that has closed its
861                  * io engine
862                  */
863                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
864                         cputhreads++;
865
866                 if (!td->pid || td->runstate == TD_REAPED)
867                         continue;
868                 if (td->use_thread) {
869                         if (td->runstate == TD_EXITED) {
870                                 td_set_runstate(td, TD_REAPED);
871                                 goto reaped;
872                         }
873                         continue;
874                 }
875
876                 flags = WNOHANG;
877                 if (td->runstate == TD_EXITED)
878                         flags = 0;
879
880                 /*
881                  * check if someone quit or got killed in an unusual way
882                  */
883                 ret = waitpid(td->pid, &status, flags);
884                 if (ret < 0) {
885                         if (errno == ECHILD) {
886                                 log_err("fio: pid=%d disappeared %d\n", td->pid, td->runstate);
887                                 td_set_runstate(td, TD_REAPED);
888                                 goto reaped;
889                         }
890                         perror("waitpid");
891                 } else if (ret == td->pid) {
892                         if (WIFSIGNALED(status)) {
893                                 int sig = WTERMSIG(status);
894
895                                 if (sig != SIGQUIT)
896                                         log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
897                                 td_set_runstate(td, TD_REAPED);
898                                 goto reaped;
899                         }
900                         if (WIFEXITED(status)) {
901                                 if (WEXITSTATUS(status) && !td->error)
902                                         td->error = WEXITSTATUS(status);
903
904                                 td_set_runstate(td, TD_REAPED);
905                                 goto reaped;
906                         }
907                 }
908
909                 /*
910                  * thread is not dead, continue
911                  */
912                 continue;
913 reaped:
914                 if (td->use_thread) {
915                         long ret;
916
917                         if (pthread_join(td->thread, (void *) &ret))
918                                 perror("pthread_join");
919                 }
920
921                 (*nr_running)--;
922                 (*m_rate) -= td->ratemin;
923                 (*t_rate) -= td->rate;
924
925                 if (td->error)
926                         exit_value++;
927         }
928
929         if (*nr_running == cputhreads && !pending)
930                 terminate_threads(TERMINATE_ALL);
931 }
932
933 /*
934  * Main function for kicking off and reaping jobs, as needed.
935  */
936 static void run_threads(void)
937 {
938         struct thread_data *td;
939         unsigned long spent;
940         int i, todo, nr_running, m_rate, t_rate, nr_started;
941
942         if (fio_pin_memory())
943                 return;
944
945         if (!terse_output) {
946                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
947                 fflush(stdout);
948         }
949
950         signal(SIGINT, sig_handler);
951         signal(SIGALRM, sig_handler);
952
953         todo = thread_number;
954         nr_running = 0;
955         nr_started = 0;
956         m_rate = t_rate = 0;
957
958         for_each_td(td, i) {
959                 print_status_init(td->thread_number - 1);
960
961                 if (!td->create_serialize) {
962                         init_disk_util(td);
963                         continue;
964                 }
965
966                 /*
967                  * do file setup here so it happens sequentially,
968                  * we don't want X number of threads getting their
969                  * client data interspersed on disk
970                  */
971                 if (setup_files(td)) {
972                         exit_value++;
973                         if (td->error)
974                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
975                         td_set_runstate(td, TD_REAPED);
976                         todo--;
977                 }
978
979                 init_disk_util(td);
980         }
981
982         set_genesis_time();
983
984         while (todo) {
985                 struct thread_data *map[MAX_JOBS];
986                 struct timeval this_start;
987                 int this_jobs = 0, left;
988
989                 /*
990                  * create threads (TD_NOT_CREATED -> TD_CREATED)
991                  */
992                 for_each_td(td, i) {
993                         if (td->runstate != TD_NOT_CREATED)
994                                 continue;
995
996                         /*
997                          * never got a chance to start, killed by other
998                          * thread for some reason
999                          */
1000                         if (td->terminate) {
1001                                 todo--;
1002                                 continue;
1003                         }
1004
1005                         if (td->start_delay) {
1006                                 spent = mtime_since_genesis();
1007
1008                                 if (td->start_delay * 1000 > spent)
1009                                         continue;
1010                         }
1011
1012                         if (td->stonewall && (nr_started || nr_running))
1013                                 break;
1014
1015                         /*
1016                          * Set state to created. Thread will transition
1017                          * to TD_INITIALIZED when it's done setting up.
1018                          */
1019                         td_set_runstate(td, TD_CREATED);
1020                         map[this_jobs++] = td;
1021                         fio_sem_init(&startup_sem, 1);
1022                         nr_started++;
1023
1024                         if (td->use_thread) {
1025                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1026                                         perror("thread_create");
1027                                         nr_started--;
1028                                 }
1029                         } else {
1030                                 if (fork())
1031                                         fio_sem_down(&startup_sem);
1032                                 else {
1033                                         int ret = fork_main(shm_id, i);
1034
1035                                         exit(ret);
1036                                 }
1037                         }
1038                 }
1039
1040                 /*
1041                  * Wait for the started threads to transition to
1042                  * TD_INITIALIZED.
1043                  */
1044                 fio_gettime(&this_start, NULL);
1045                 left = this_jobs;
1046                 while (left && !fio_abort) {
1047                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1048                                 break;
1049
1050                         usleep(100000);
1051
1052                         for (i = 0; i < this_jobs; i++) {
1053                                 td = map[i];
1054                                 if (!td)
1055                                         continue;
1056                                 if (td->runstate == TD_INITIALIZED) {
1057                                         map[i] = NULL;
1058                                         left--;
1059                                 } else if (td->runstate >= TD_EXITED) {
1060                                         map[i] = NULL;
1061                                         left--;
1062                                         todo--;
1063                                         nr_running++; /* work-around... */
1064                                 }
1065                         }
1066                 }
1067
1068                 if (left) {
1069                         log_err("fio: %d jobs failed to start\n", left);
1070                         for (i = 0; i < this_jobs; i++) {
1071                                 td = map[i];
1072                                 if (!td)
1073                                         continue;
1074                                 kill(td->pid, SIGTERM);
1075                         }
1076                         break;
1077                 }
1078
1079                 /*
1080                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1081                  */
1082                 for_each_td(td, i) {
1083                         if (td->runstate != TD_INITIALIZED)
1084                                 continue;
1085
1086                         td_set_runstate(td, TD_RUNNING);
1087                         nr_running++;
1088                         nr_started--;
1089                         m_rate += td->ratemin;
1090                         t_rate += td->rate;
1091                         todo--;
1092                         fio_sem_up(&td->mutex);
1093                 }
1094
1095                 reap_threads(&nr_running, &t_rate, &m_rate);
1096
1097                 if (todo)
1098                         usleep(100000);
1099         }
1100
1101         while (nr_running) {
1102                 reap_threads(&nr_running, &t_rate, &m_rate);
1103                 usleep(10000);
1104         }
1105
1106         update_io_ticks();
1107         fio_unpin_memory();
1108 }
1109
1110 int main(int argc, char *argv[])
1111 {
1112         long ps;
1113
1114         /*
1115          * We need locale for number printing, if it isn't set then just
1116          * go with the US format.
1117          */
1118         if (!getenv("LC_NUMERIC"))
1119                 setlocale(LC_NUMERIC, "en_US");
1120
1121         if (parse_options(argc, argv))
1122                 return 1;
1123
1124         if (!thread_number) {
1125                 log_err("Nothing to do\n");
1126                 return 1;
1127         }
1128
1129         ps = sysconf(_SC_PAGESIZE);
1130         if (ps < 0) {
1131                 log_err("Failed to get page size\n");
1132                 return 1;
1133         }
1134
1135         page_mask = ps - 1;
1136
1137         if (write_bw_log) {
1138                 setup_log(&agg_io_log[DDIR_READ]);
1139                 setup_log(&agg_io_log[DDIR_WRITE]);
1140         }
1141
1142         set_genesis_time();
1143
1144         disk_util_timer_arm();
1145
1146         run_threads();
1147
1148         if (!fio_abort) {
1149                 show_run_stats();
1150                 if (write_bw_log) {
1151                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1152                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1153                 }
1154         }
1155
1156         return exit_value;
1157 }