Unify and fixup error handling
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long spent;
100         unsigned long rate;
101         int ddir = td->ddir;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         /*
110          * if rate blocks is set, sample is running
111          */
112         if (td->rate_bytes) {
113                 spent = mtime_since(&td->lastrate, now);
114                 if (spent < td->ratecycle)
115                         return 0;
116
117                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118                 if (rate < td->ratemin) {
119                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120                         return 1;
121                 }
122         }
123
124         td->rate_bytes = td->this_io_bytes[ddir];
125         memcpy(&td->lastrate, now, sizeof(*now));
126         return 0;
127 }
128
129 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130 {
131         if (!td->timeout)
132                 return 0;
133         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134                 return 1;
135
136         return 0;
137 }
138
139 static struct fio_file *get_next_file(struct thread_data *td)
140 {
141         unsigned int old_next_file = td->next_file;
142         struct fio_file *f;
143
144         do {
145                 f = &td->files[td->next_file];
146
147                 td->next_file++;
148                 if (td->next_file >= td->nr_files)
149                         td->next_file = 0;
150
151                 if (f->fd != -1)
152                         break;
153
154                 f = NULL;
155         } while (td->next_file != old_next_file);
156
157         return f;
158 }
159
160 /*
161  * When job exits, we can cancel the in-flight IO if we are using async
162  * io. Attempt to do so.
163  */
164 static void cleanup_pending_aio(struct thread_data *td)
165 {
166         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
167         struct list_head *entry, *n;
168         struct io_completion_data icd;
169         struct io_u *io_u;
170         int r;
171
172         /*
173          * get immediately available events, if any
174          */
175         r = td_io_getevents(td, 0, td->cur_depth, &ts);
176         if (r > 0) {
177                 init_icd(&icd, NULL, r);
178                 ios_completed(td, &icd);
179         }
180
181         /*
182          * now cancel remaining active events
183          */
184         if (td->io_ops->cancel) {
185                 list_for_each_safe(entry, n, &td->io_u_busylist) {
186                         io_u = list_entry(entry, struct io_u, list);
187
188                         r = td->io_ops->cancel(td, io_u);
189                         if (!r)
190                                 put_io_u(td, io_u);
191                 }
192         }
193
194         if (td->cur_depth) {
195                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
196                 if (r > 0) {
197                         init_icd(&icd, NULL, r);
198                         ios_completed(td, &icd);
199                 }
200         }
201 }
202
203 /*
204  * Helper to handle the final sync of a file. Works just like the normal
205  * io path, just does everything sync.
206  */
207 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
208 {
209         struct io_u *io_u = __get_io_u(td);
210         struct io_completion_data icd;
211         int ret;
212
213         if (!io_u)
214                 return 1;
215
216         io_u->ddir = DDIR_SYNC;
217         io_u->file = f;
218
219         if (td_io_prep(td, io_u)) {
220                 put_io_u(td, io_u);
221                 return 1;
222         }
223
224         ret = td_io_queue(td, io_u);
225         if (ret < 0) {
226                 td_verror(td, io_u->error);
227                 put_io_u(td, io_u);
228                 return 1;
229         } else if (ret == FIO_Q_QUEUED) {
230                 ret = td_io_getevents(td, 1, td->cur_depth, NULL);
231                 if (ret < 0) {
232                         td_verror(td, -ret);
233                         return 1;
234                 }
235
236                 init_icd(&icd, NULL, ret);
237                 ios_completed(td, &icd);
238                 if (icd.error) {
239                         td_verror(td, icd.error);
240                         return 1;
241                 }
242         } else if (ret == FIO_Q_COMPLETED) {
243                 if (io_u->error) {
244                         td_verror(td, io_u->error);
245                         return 1;
246                 }
247
248                 init_icd(&icd, NULL, 1);
249                 io_completed(td, io_u, &icd);
250                 put_io_u(td, io_u);
251         }
252
253         return 0;
254 }
255
256 /*
257  * The main verify engine. Runs over the writes we previusly submitted,
258  * reads the blocks back in, and checks the crc/md5 of the data.
259  */
260 static void do_verify(struct thread_data *td)
261 {
262         struct fio_file *f;
263         struct io_u *io_u;
264         int ret, i, min_events;
265
266         /*
267          * sync io first and invalidate cache, to make sure we really
268          * read from disk.
269          */
270         for_each_file(td, f, i) {
271                 fio_io_sync(td, f);
272                 file_invalidate_cache(td, f);
273         }
274
275         td_set_runstate(td, TD_VERIFYING);
276
277         io_u = NULL;
278         while (!td->terminate) {
279                 struct io_completion_data icd;
280                 struct timespec *timeout;
281
282                 io_u = __get_io_u(td);
283                 if (!io_u)
284                         break;
285
286                 if (runtime_exceeded(td, &io_u->start_time))
287                         break;
288
289                 if (get_next_verify(td, io_u))
290                         break;
291
292                 if (td_io_prep(td, io_u))
293                         break;
294
295 requeue:
296                 ret = td_io_queue(td, io_u);
297
298                 switch (ret) {
299                 case FIO_Q_COMPLETED:
300                         if (io_u->error)
301                                 ret = -io_u->error;
302                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
303                                 int bytes = io_u->xfer_buflen - io_u->resid;
304
305                                 io_u->xfer_buflen = io_u->resid;
306                                 io_u->xfer_buf += bytes;
307                                 goto requeue;
308                         }
309                         init_icd(&icd, verify_io_u, 1);
310                         io_completed(td, io_u, &icd);
311                         if (icd.error) {
312                                 ret = icd.error;
313                                 break;
314                         }
315                         put_io_u(td, io_u);
316                         continue;
317                 case FIO_Q_QUEUED:
318                         break;
319                 default:
320                         assert(ret < 0);
321                         td_verror(td, -ret);
322                         break;
323                 }
324
325                 if (ret < 0)
326                         break;
327
328                 /*
329                  * if we can queue more, do so. but check if there are
330                  * completed io_u's first.
331                  */
332                 if (queue_full(td)) {
333                         timeout = NULL;
334                         min_events = 1;
335                 } else {
336                         struct timespec ts;
337
338                         ts.tv_sec = 0;
339                         ts.tv_nsec = 0;
340                         timeout = &ts;
341                         min_events = 0;
342                 }
343
344                 /*
345                  * Reap required number of io units, if any, and do the
346                  * verification on them through the callback handler
347                  */
348                 ret = td_io_getevents(td, min_events, td->cur_depth, timeout);
349                 if (ret < 0) {
350                         td_verror(td, -ret);
351                         break;
352                 } else if (!ret)
353                         continue;
354
355                 init_icd(&icd, verify_io_u, ret);
356                 ios_completed(td, &icd);
357
358                 if (icd.error) {
359                         td_verror(td, icd.error);
360                         break;
361                 }
362         }
363
364         if (io_u)
365                 put_io_u(td, io_u);
366
367         if (td->cur_depth)
368                 cleanup_pending_aio(td);
369
370         td_set_runstate(td, TD_RUNNING);
371 }
372
373 /*
374  * Not really an io thread, all it does is burn CPU cycles in the specified
375  * manner.
376  */
377 static void do_cpuio(struct thread_data *td)
378 {
379         struct timeval e;
380         int split = 100 / td->cpuload;
381         int i = 0;
382
383         while (!td->terminate) {
384                 fio_gettime(&e, NULL);
385
386                 if (runtime_exceeded(td, &e))
387                         break;
388
389                 if (!(i % split))
390                         __usec_sleep(10000);
391                 else
392                         usec_sleep(td, 10000);
393
394                 i++;
395         }
396 }
397
398 /*
399  * Main IO worker function. It retrieves io_u's to process and queues
400  * and reaps them, checking for rate and errors along the way.
401  */
402 static void do_io(struct thread_data *td)
403 {
404         struct io_completion_data icd;
405         struct timeval s;
406         unsigned long usec;
407         struct fio_file *f;
408         int i, ret = 0;
409
410         td_set_runstate(td, TD_RUNNING);
411
412         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
413                 struct timespec *timeout;
414                 int min_evts = 0;
415                 struct io_u *io_u;
416
417                 if (td->terminate)
418                         break;
419
420                 f = get_next_file(td);
421                 if (!f)
422                         break;
423
424                 io_u = get_io_u(td, f);
425                 if (!io_u)
426                         break;
427
428                 memcpy(&s, &io_u->start_time, sizeof(s));
429 requeue:
430                 ret = td_io_queue(td, io_u);
431
432                 switch (ret) {
433                 case FIO_Q_COMPLETED:
434                         if (io_u->error) {
435                                 ret = io_u->error;
436                                 break;
437                         }
438                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
439                                 int bytes = io_u->xfer_buflen - io_u->resid;
440
441                                 io_u->xfer_buflen = io_u->resid;
442                                 io_u->xfer_buf += bytes;
443                                 goto requeue;
444                         }
445                         init_icd(&icd, NULL, 1);
446                         io_completed(td, io_u, &icd);
447                         put_io_u(td, io_u);
448                         break;
449                 case FIO_Q_QUEUED:
450                         break;
451                 default:
452                         assert(ret < 0);
453                         put_io_u(td, io_u);
454                         break;
455                 }
456
457                 if (ret < 0)
458                         break;
459
460                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
461
462                 if (ret == FIO_Q_QUEUED) {
463                         if (td->cur_depth < td->iodepth) {
464                                 struct timespec ts;
465
466                                 ts.tv_sec = 0;
467                                 ts.tv_nsec = 0;
468                                 timeout = &ts;
469                                 min_evts = 0;
470                         } else {
471                                 timeout = NULL;
472                                 min_evts = 1;
473                         }
474
475                         ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
476                         if (ret < 0) {
477                                 td_verror(td, -ret);
478                                 break;
479                         } else if (!ret)
480                                 continue;
481
482                         init_icd(&icd, NULL, ret);
483                         ios_completed(td, &icd);
484                         if (icd.error) {
485                                 td_verror(td, icd.error);
486                                 break;
487                         }
488                 }
489
490                 /*
491                  * the rate is batched for now, it should work for batches
492                  * of completions except the very first one which may look
493                  * a little bursty
494                  */
495                 usec = utime_since(&s, &icd.time);
496
497                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
498
499                 if (check_min_rate(td, &icd.time)) {
500                         if (exitall_on_terminate)
501                                 terminate_threads(td->groupid, 0);
502                         td_verror(td, ENODATA);
503                         break;
504                 }
505
506                 if (runtime_exceeded(td, &icd.time))
507                         break;
508
509                 if (td->thinktime) {
510                         unsigned long long b;
511
512                         b = td->io_blocks[0] + td->io_blocks[1];
513                         if (!(b % td->thinktime_blocks)) {
514                                 int left;
515
516                                 if (td->thinktime_spin)
517                                         __usec_sleep(td->thinktime_spin);
518
519                                 left = td->thinktime - td->thinktime_spin;
520                                 if (left)
521                                         usec_sleep(td, left);
522                         }
523                 }
524         }
525
526         if (!td->error) {
527                 if (td->cur_depth)
528                         cleanup_pending_aio(td);
529
530                 if (should_fsync(td) && td->end_fsync) {
531                         td_set_runstate(td, TD_FSYNCING);
532                         for_each_file(td, f, i)
533                                 fio_io_sync(td, f);
534                 }
535         }
536 }
537
538 static void cleanup_io_u(struct thread_data *td)
539 {
540         struct list_head *entry, *n;
541         struct io_u *io_u;
542
543         list_for_each_safe(entry, n, &td->io_u_freelist) {
544                 io_u = list_entry(entry, struct io_u, list);
545
546                 list_del(&io_u->list);
547                 free(io_u);
548         }
549
550         free_io_mem(td);
551 }
552
553 /*
554  * "randomly" fill the buffer contents
555  */
556 static void fill_rand_buf(struct io_u *io_u, int max_bs)
557 {
558         int *ptr = io_u->buf;
559
560         while ((void *) ptr - io_u->buf < max_bs) {
561                 *ptr = rand() * 0x9e370001;
562                 ptr++;
563         }
564 }
565
566 static int init_io_u(struct thread_data *td)
567 {
568         struct io_u *io_u;
569         unsigned int max_bs;
570         int i, max_units;
571         char *p;
572
573         if (td->io_ops->flags & FIO_CPUIO)
574                 return 0;
575
576         if (td->io_ops->flags & FIO_SYNCIO)
577                 max_units = 1;
578         else
579                 max_units = td->iodepth;
580
581         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
582         td->orig_buffer_size = max_bs * max_units;
583
584         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
585                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
586         else
587                 td->orig_buffer_size += page_mask;
588
589         if (allocate_io_mem(td))
590                 return 1;
591
592         p = ALIGN(td->orig_buffer);
593         for (i = 0; i < max_units; i++) {
594                 io_u = malloc(sizeof(*io_u));
595                 memset(io_u, 0, sizeof(*io_u));
596                 INIT_LIST_HEAD(&io_u->list);
597
598                 io_u->buf = p + max_bs * i;
599                 if (td_write(td) || td_rw(td))
600                         fill_rand_buf(io_u, max_bs);
601
602                 io_u->index = i;
603                 list_add(&io_u->list, &td->io_u_freelist);
604         }
605
606         return 0;
607 }
608
609 static int switch_ioscheduler(struct thread_data *td)
610 {
611         char tmp[256], tmp2[128];
612         FILE *f;
613         int ret;
614
615         if (td->io_ops->flags & FIO_CPUIO)
616                 return 0;
617
618         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
619
620         f = fopen(tmp, "r+");
621         if (!f) {
622                 td_verror(td, errno);
623                 return 1;
624         }
625
626         /*
627          * Set io scheduler.
628          */
629         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
630         if (ferror(f) || ret != 1) {
631                 td_verror(td, errno);
632                 fclose(f);
633                 return 1;
634         }
635
636         rewind(f);
637
638         /*
639          * Read back and check that the selected scheduler is now the default.
640          */
641         ret = fread(tmp, 1, sizeof(tmp), f);
642         if (ferror(f) || ret < 0) {
643                 td_verror(td, errno);
644                 fclose(f);
645                 return 1;
646         }
647
648         sprintf(tmp2, "[%s]", td->ioscheduler);
649         if (!strstr(tmp, tmp2)) {
650                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
651                 td_verror(td, EINVAL);
652                 fclose(f);
653                 return 1;
654         }
655
656         fclose(f);
657         return 0;
658 }
659
660 static void clear_io_state(struct thread_data *td)
661 {
662         struct fio_file *f;
663         int i;
664
665         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
666         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
667         td->zone_bytes = 0;
668
669         for_each_file(td, f, i) {
670                 f->last_pos = 0;
671                 if (td->io_ops->flags & FIO_SYNCIO)
672                         lseek(f->fd, SEEK_SET, 0);
673
674                 if (f->file_map)
675                         memset(f->file_map, 0, f->num_maps * sizeof(long));
676         }
677 }
678
679 /*
680  * Entry point for the thread based jobs. The process based jobs end up
681  * here as well, after a little setup.
682  */
683 static void *thread_main(void *data)
684 {
685         unsigned long long runtime[2];
686         struct thread_data *td = data;
687
688         if (!td->use_thread)
689                 setsid();
690
691         td->pid = getpid();
692
693         INIT_LIST_HEAD(&td->io_u_freelist);
694         INIT_LIST_HEAD(&td->io_u_busylist);
695         INIT_LIST_HEAD(&td->io_hist_list);
696         INIT_LIST_HEAD(&td->io_log_list);
697
698         if (init_io_u(td))
699                 goto err;
700
701         if (fio_setaffinity(td) == -1) {
702                 td_verror(td, errno);
703                 goto err;
704         }
705
706         if (init_iolog(td))
707                 goto err;
708
709         if (td->ioprio) {
710                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
711                         td_verror(td, errno);
712                         goto err;
713                 }
714         }
715
716         if (nice(td->nice) == -1) {
717                 td_verror(td, errno);
718                 goto err;
719         }
720
721         if (init_random_state(td))
722                 goto err;
723
724         if (td->ioscheduler && switch_ioscheduler(td))
725                 goto err;
726
727         td_set_runstate(td, TD_INITIALIZED);
728         fio_sem_up(&startup_sem);
729         fio_sem_down(&td->mutex);
730
731         if (!td->create_serialize && setup_files(td))
732                 goto err;
733         if (open_files(td))
734                 goto err;
735
736         /*
737          * Do this late, as some IO engines would like to have the
738          * files setup prior to initializing structures.
739          */
740         if (td_io_init(td))
741                 goto err;
742
743         if (td->exec_prerun) {
744                 if (system(td->exec_prerun) < 0)
745                         goto err;
746         }
747
748         fio_gettime(&td->epoch, NULL);
749         getrusage(RUSAGE_SELF, &td->ru_start);
750
751         runtime[0] = runtime[1] = 0;
752         while (td->loops--) {
753                 fio_gettime(&td->start, NULL);
754                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
755
756                 if (td->ratemin)
757                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
758
759                 clear_io_state(td);
760                 prune_io_piece_log(td);
761
762                 if (td->io_ops->flags & FIO_CPUIO)
763                         do_cpuio(td);
764                 else
765                         do_io(td);
766
767                 runtime[td->ddir] += utime_since_now(&td->start);
768                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
769                         runtime[td->ddir ^ 1] = runtime[td->ddir];
770
771                 if (td->error || td->terminate)
772                         break;
773
774                 if (td->verify == VERIFY_NONE)
775                         continue;
776
777                 clear_io_state(td);
778                 fio_gettime(&td->start, NULL);
779
780                 do_verify(td);
781
782                 runtime[DDIR_READ] += utime_since_now(&td->start);
783
784                 if (td->error || td->terminate)
785                         break;
786         }
787
788         update_rusage_stat(td);
789         fio_gettime(&td->end_time, NULL);
790         td->runtime[0] = runtime[0] / 1000;
791         td->runtime[1] = runtime[1] / 1000;
792
793         if (td->bw_log)
794                 finish_log(td, td->bw_log, "bw");
795         if (td->slat_log)
796                 finish_log(td, td->slat_log, "slat");
797         if (td->clat_log)
798                 finish_log(td, td->clat_log, "clat");
799         if (td->write_iolog_file)
800                 write_iolog_close(td);
801         if (td->exec_postrun) {
802                 if (system(td->exec_postrun) < 0)
803                         log_err("fio: postrun %s failed\n", td->exec_postrun);
804         }
805
806         if (exitall_on_terminate)
807                 terminate_threads(td->groupid, 0);
808
809 err:
810         if (td->error)
811                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
812         close_files(td);
813         close_ioengine(td);
814         cleanup_io_u(td);
815         td_set_runstate(td, TD_EXITED);
816         return (void *) td->error;
817 }
818
819 /*
820  * We cannot pass the td data into a forked process, so attach the td and
821  * pass it to the thread worker.
822  */
823 static int fork_main(int shmid, int offset)
824 {
825         struct thread_data *td;
826         void *data, *ret;
827
828         data = shmat(shmid, NULL, 0);
829         if (data == (void *) -1) {
830                 int __err = errno;
831
832                 perror("shmat");
833                 return __err;
834         }
835
836         td = data + offset * sizeof(struct thread_data);
837         ret = thread_main(td);
838         shmdt(data);
839         return (int) ret;
840 }
841
842 /*
843  * Run over the job map and reap the threads that have exited, if any.
844  */
845 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
846 {
847         struct thread_data *td;
848         int i, cputhreads, pending, status, ret;
849
850         /*
851          * reap exited threads (TD_EXITED -> TD_REAPED)
852          */
853         pending = cputhreads = 0;
854         for_each_td(td, i) {
855                 /*
856                  * ->io_ops is NULL for a thread that has closed its
857                  * io engine
858                  */
859                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
860                         cputhreads++;
861
862                 if (td->runstate < TD_EXITED) {
863                         /*
864                          * check if someone quit or got killed in an unusual way
865                          */
866                         ret = waitpid(td->pid, &status, WNOHANG);
867                         if (ret < 0)
868                                 perror("waitpid");
869                         else if ((ret == td->pid) && WIFSIGNALED(status)) {
870                                 int sig = WTERMSIG(status);
871
872                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
873                                 td_set_runstate(td, TD_REAPED);
874                                 goto reaped;
875                         }
876                 }
877
878                 if (td->runstate != TD_EXITED) {
879                         if (td->runstate < TD_RUNNING)
880                                 pending++;
881
882                         continue;
883                 }
884
885                 if (td->error)
886                         exit_value++;
887
888                 td_set_runstate(td, TD_REAPED);
889
890                 if (td->use_thread) {
891                         long ret;
892
893                         if (pthread_join(td->thread, (void *) &ret))
894                                 perror("thread_join");
895                 } else {
896                         int status;
897
898                         ret = waitpid(td->pid, &status, 0);
899                         if (ret < 0)
900                                 perror("waitpid");
901                         else if (WIFEXITED(status) && WEXITSTATUS(status)) {
902                                 if (!exit_value)
903                                         exit_value++;
904                         }
905                 }
906
907 reaped:
908                 (*nr_running)--;
909                 (*m_rate) -= td->ratemin;
910                 (*t_rate) -= td->rate;
911         }
912
913         if (*nr_running == cputhreads && !pending)
914                 terminate_threads(TERMINATE_ALL, 0);
915 }
916
917 /*
918  * Main function for kicking off and reaping jobs, as needed.
919  */
920 static void run_threads(void)
921 {
922         struct thread_data *td;
923         unsigned long spent;
924         int i, todo, nr_running, m_rate, t_rate, nr_started;
925
926         if (fio_pin_memory())
927                 return;
928
929         if (!terse_output) {
930                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
931                 fflush(stdout);
932         }
933
934         signal(SIGINT, sig_handler);
935         signal(SIGALRM, sig_handler);
936
937         todo = thread_number;
938         nr_running = 0;
939         nr_started = 0;
940         m_rate = t_rate = 0;
941
942         for_each_td(td, i) {
943                 print_status_init(td->thread_number - 1);
944
945                 if (!td->create_serialize) {
946                         init_disk_util(td);
947                         continue;
948                 }
949
950                 /*
951                  * do file setup here so it happens sequentially,
952                  * we don't want X number of threads getting their
953                  * client data interspersed on disk
954                  */
955                 if (setup_files(td)) {
956                         exit_value++;
957                         if (td->error)
958                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
959                         td_set_runstate(td, TD_REAPED);
960                         todo--;
961                 }
962
963                 init_disk_util(td);
964         }
965
966         while (todo) {
967                 struct thread_data *map[MAX_JOBS];
968                 struct timeval this_start;
969                 int this_jobs = 0, left;
970
971                 /*
972                  * create threads (TD_NOT_CREATED -> TD_CREATED)
973                  */
974                 for_each_td(td, i) {
975                         if (td->runstate != TD_NOT_CREATED)
976                                 continue;
977
978                         /*
979                          * never got a chance to start, killed by other
980                          * thread for some reason
981                          */
982                         if (td->terminate) {
983                                 todo--;
984                                 continue;
985                         }
986
987                         if (td->start_delay) {
988                                 spent = mtime_since_genesis();
989
990                                 if (td->start_delay * 1000 > spent)
991                                         continue;
992                         }
993
994                         if (td->stonewall && (nr_started || nr_running))
995                                 break;
996
997                         /*
998                          * Set state to created. Thread will transition
999                          * to TD_INITIALIZED when it's done setting up.
1000                          */
1001                         td_set_runstate(td, TD_CREATED);
1002                         map[this_jobs++] = td;
1003                         fio_sem_init(&startup_sem, 1);
1004                         nr_started++;
1005
1006                         if (td->use_thread) {
1007                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
1008                                         perror("thread_create");
1009                                         nr_started--;
1010                                 }
1011                         } else {
1012                                 if (fork())
1013                                         fio_sem_down(&startup_sem);
1014                                 else {
1015                                         int ret = fork_main(shm_id, i);
1016
1017                                         exit(ret);
1018                                 }
1019                         }
1020                 }
1021
1022                 /*
1023                  * Wait for the started threads to transition to
1024                  * TD_INITIALIZED.
1025                  */
1026                 fio_gettime(&this_start, NULL);
1027                 left = this_jobs;
1028                 while (left && !fio_abort) {
1029                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1030                                 break;
1031
1032                         usleep(100000);
1033
1034                         for (i = 0; i < this_jobs; i++) {
1035                                 td = map[i];
1036                                 if (!td)
1037                                         continue;
1038                                 if (td->runstate == TD_INITIALIZED) {
1039                                         map[i] = NULL;
1040                                         left--;
1041                                 } else if (td->runstate >= TD_EXITED) {
1042                                         map[i] = NULL;
1043                                         left--;
1044                                         todo--;
1045                                         nr_running++; /* work-around... */
1046                                 }
1047                         }
1048                 }
1049
1050                 if (left) {
1051                         log_err("fio: %d jobs failed to start\n", left);
1052                         for (i = 0; i < this_jobs; i++) {
1053                                 td = map[i];
1054                                 if (!td)
1055                                         continue;
1056                                 kill(td->pid, SIGTERM);
1057                         }
1058                         break;
1059                 }
1060
1061                 /*
1062                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1063                  */
1064                 for_each_td(td, i) {
1065                         if (td->runstate != TD_INITIALIZED)
1066                                 continue;
1067
1068                         td_set_runstate(td, TD_RUNNING);
1069                         nr_running++;
1070                         nr_started--;
1071                         m_rate += td->ratemin;
1072                         t_rate += td->rate;
1073                         todo--;
1074                         fio_sem_up(&td->mutex);
1075                 }
1076
1077                 reap_threads(&nr_running, &t_rate, &m_rate);
1078
1079                 if (todo)
1080                         usleep(100000);
1081         }
1082
1083         while (nr_running) {
1084                 reap_threads(&nr_running, &t_rate, &m_rate);
1085                 usleep(10000);
1086         }
1087
1088         update_io_ticks();
1089         fio_unpin_memory();
1090 }
1091
1092 int main(int argc, char *argv[])
1093 {
1094         long ps;
1095
1096         /*
1097          * We need locale for number printing, if it isn't set then just
1098          * go with the US format.
1099          */
1100         if (!getenv("LC_NUMERIC"))
1101                 setlocale(LC_NUMERIC, "en_US");
1102
1103         if (parse_options(argc, argv))
1104                 return 1;
1105
1106         if (!thread_number) {
1107                 log_err("Nothing to do\n");
1108                 return 1;
1109         }
1110
1111         ps = sysconf(_SC_PAGESIZE);
1112         if (ps < 0) {
1113                 log_err("Failed to get page size\n");
1114                 return 1;
1115         }
1116
1117         page_mask = ps - 1;
1118
1119         if (write_bw_log) {
1120                 setup_log(&agg_io_log[DDIR_READ]);
1121                 setup_log(&agg_io_log[DDIR_WRITE]);
1122         }
1123
1124         disk_util_timer_arm();
1125
1126         run_threads();
1127
1128         if (!fio_abort) {
1129                 show_run_stats();
1130                 if (write_bw_log) {
1131                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1132                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1133                 }
1134         }
1135
1136         return exit_value;
1137 }