Wrap thread_data in thread_segment
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32 #include <pthread.h>
33
34 #include "fio.h"
35 #include "smalloc.h"
36 #include "verify.h"
37 #include "diskutil.h"
38 #include "cgroup.h"
39 #include "profile.h"
40 #include "lib/rand.h"
41 #include "lib/memalign.h"
42 #include "server.h"
43 #include "lib/getrusage.h"
44 #include "idletime.h"
45 #include "err.h"
46 #include "workqueue.h"
47 #include "lib/mountcheck.h"
48 #include "rate-submit.h"
49 #include "helper_thread.h"
50 #include "pshared.h"
51 #include "zone-dist.h"
52
53 static struct fio_sem *startup_sem;
54 static struct flist_head *cgroup_list;
55 static struct cgroup_mnt *cgroup_mnt;
56 static int exit_value;
57 static volatile bool fio_abort;
58 static unsigned int nr_process = 0;
59 static unsigned int nr_thread = 0;
60
61 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63 int groupid = 0;
64 unsigned int thread_number = 0;
65 unsigned int stat_number = 0;
66 int temp_stall_ts;
67 unsigned long done_secs = 0;
68 #ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
69 pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
70 #else
71 pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
72 #endif
73
74 #define JOB_START_TIMEOUT       (5 * 1000)
75
76 static void sig_int(int sig)
77 {
78         if (segments[0].threads) {
79                 if (is_backend)
80                         fio_server_got_signal(sig);
81                 else {
82                         log_info("\nfio: terminating on signal %d\n", sig);
83                         log_info_flush();
84                         exit_value = 128;
85                 }
86
87                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
88         }
89 }
90
91 void sig_show_status(int sig)
92 {
93         show_running_run_stats();
94 }
95
96 static void set_sig_handlers(void)
97 {
98         struct sigaction act;
99
100         memset(&act, 0, sizeof(act));
101         act.sa_handler = sig_int;
102         act.sa_flags = SA_RESTART;
103         sigaction(SIGINT, &act, NULL);
104
105         memset(&act, 0, sizeof(act));
106         act.sa_handler = sig_int;
107         act.sa_flags = SA_RESTART;
108         sigaction(SIGTERM, &act, NULL);
109
110 /* Windows uses SIGBREAK as a quit signal from other applications */
111 #ifdef WIN32
112         memset(&act, 0, sizeof(act));
113         act.sa_handler = sig_int;
114         act.sa_flags = SA_RESTART;
115         sigaction(SIGBREAK, &act, NULL);
116 #endif
117
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_show_status;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGUSR1, &act, NULL);
122
123         if (is_backend) {
124                 memset(&act, 0, sizeof(act));
125                 act.sa_handler = sig_int;
126                 act.sa_flags = SA_RESTART;
127                 sigaction(SIGPIPE, &act, NULL);
128         }
129 }
130
131 /*
132  * Check if we are above the minimum rate given.
133  */
134 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
135                              enum fio_ddir ddir)
136 {
137         unsigned long long bytes = 0;
138         unsigned long iops = 0;
139         unsigned long spent;
140         unsigned long long rate;
141         unsigned long long ratemin = 0;
142         unsigned int rate_iops = 0;
143         unsigned int rate_iops_min = 0;
144
145         assert(ddir_rw(ddir));
146
147         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
148                 return false;
149
150         /*
151          * allow a 2 second settle period in the beginning
152          */
153         if (mtime_since(&td->start, now) < 2000)
154                 return false;
155
156         iops += td->this_io_blocks[ddir];
157         bytes += td->this_io_bytes[ddir];
158         ratemin += td->o.ratemin[ddir];
159         rate_iops += td->o.rate_iops[ddir];
160         rate_iops_min += td->o.rate_iops_min[ddir];
161
162         /*
163          * if rate blocks is set, sample is running
164          */
165         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
166                 spent = mtime_since(&td->lastrate[ddir], now);
167                 if (spent < td->o.ratecycle)
168                         return false;
169
170                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
171                         /*
172                          * check bandwidth specified rate
173                          */
174                         if (bytes < td->rate_bytes[ddir]) {
175                                 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
176                                         td->o.name, ratemin, bytes);
177                                 return true;
178                         } else {
179                                 if (spent)
180                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
181                                 else
182                                         rate = 0;
183
184                                 if (rate < ratemin ||
185                                     bytes < td->rate_bytes[ddir]) {
186                                         log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
187                                                 td->o.name, ratemin, rate);
188                                         return true;
189                                 }
190                         }
191                 } else {
192                         /*
193                          * checks iops specified rate
194                          */
195                         if (iops < rate_iops) {
196                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
197                                                 td->o.name, rate_iops, iops);
198                                 return true;
199                         } else {
200                                 if (spent)
201                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
202                                 else
203                                         rate = 0;
204
205                                 if (rate < rate_iops_min ||
206                                     iops < td->rate_blocks[ddir]) {
207                                         log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
208                                                 td->o.name, rate_iops_min, rate);
209                                         return true;
210                                 }
211                         }
212                 }
213         }
214
215         td->rate_bytes[ddir] = bytes;
216         td->rate_blocks[ddir] = iops;
217         memcpy(&td->lastrate[ddir], now, sizeof(*now));
218         return false;
219 }
220
221 static bool check_min_rate(struct thread_data *td, struct timespec *now)
222 {
223         bool ret = false;
224
225         for_each_rw_ddir(ddir) {
226                 if (td->bytes_done[ddir])
227                         ret |= __check_min_rate(td, now, ddir);
228         }
229
230         return ret;
231 }
232
233 /*
234  * When job exits, we can cancel the in-flight IO if we are using async
235  * io. Attempt to do so.
236  */
237 static void cleanup_pending_aio(struct thread_data *td)
238 {
239         int r;
240
241         /*
242          * get immediately available events, if any
243          */
244         r = io_u_queued_complete(td, 0);
245
246         /*
247          * now cancel remaining active events
248          */
249         if (td->io_ops->cancel) {
250                 struct io_u *io_u;
251                 int i;
252
253                 io_u_qiter(&td->io_u_all, io_u, i) {
254                         if (io_u->flags & IO_U_F_FLIGHT) {
255                                 r = td->io_ops->cancel(td, io_u);
256                                 if (!r)
257                                         put_io_u(td, io_u);
258                         }
259                 }
260         }
261
262         if (td->cur_depth)
263                 r = io_u_queued_complete(td, td->cur_depth);
264 }
265
266 /*
267  * Helper to handle the final sync of a file. Works just like the normal
268  * io path, just does everything sync.
269  */
270 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
271 {
272         struct io_u *io_u = __get_io_u(td);
273         enum fio_q_status ret;
274
275         if (!io_u)
276                 return true;
277
278         io_u->ddir = DDIR_SYNC;
279         io_u->file = f;
280         io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
281
282         if (td_io_prep(td, io_u)) {
283                 put_io_u(td, io_u);
284                 return true;
285         }
286
287 requeue:
288         ret = td_io_queue(td, io_u);
289         switch (ret) {
290         case FIO_Q_QUEUED:
291                 td_io_commit(td);
292                 if (io_u_queued_complete(td, 1) < 0)
293                         return true;
294                 break;
295         case FIO_Q_COMPLETED:
296                 if (io_u->error) {
297                         td_verror(td, io_u->error, "td_io_queue");
298                         return true;
299                 }
300
301                 if (io_u_sync_complete(td, io_u) < 0)
302                         return true;
303                 break;
304         case FIO_Q_BUSY:
305                 td_io_commit(td);
306                 goto requeue;
307         }
308
309         return false;
310 }
311
312 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
313 {
314         int ret, ret2;
315
316         if (fio_file_open(f))
317                 return fio_io_sync(td, f);
318
319         if (td_io_open_file(td, f))
320                 return 1;
321
322         ret = fio_io_sync(td, f);
323         ret2 = 0;
324         if (fio_file_open(f))
325                 ret2 = td_io_close_file(td, f);
326         return (ret || ret2);
327 }
328
329 static inline void __update_ts_cache(struct thread_data *td)
330 {
331         fio_gettime(&td->ts_cache, NULL);
332 }
333
334 static inline void update_ts_cache(struct thread_data *td)
335 {
336         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
337                 __update_ts_cache(td);
338 }
339
340 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
341 {
342         if (in_ramp_time(td))
343                 return false;
344         if (!td->o.timeout)
345                 return false;
346         if (utime_since(&td->epoch, t) >= td->o.timeout)
347                 return true;
348
349         return false;
350 }
351
352 /*
353  * We need to update the runtime consistently in ms, but keep a running
354  * tally of the current elapsed time in microseconds for sub millisecond
355  * updates.
356  */
357 static inline void update_runtime(struct thread_data *td,
358                                   unsigned long long *elapsed_us,
359                                   const enum fio_ddir ddir)
360 {
361         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
362                 return;
363
364         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
365         elapsed_us[ddir] += utime_since_now(&td->start);
366         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
367 }
368
369 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
370                                 int *retptr)
371 {
372         int ret = *retptr;
373
374         if (ret < 0 || td->error) {
375                 int err = td->error;
376                 enum error_type_bit eb;
377
378                 if (ret < 0)
379                         err = -ret;
380
381                 eb = td_error_type(ddir, err);
382                 if (!(td->o.continue_on_error & (1 << eb)))
383                         return true;
384
385                 if (td_non_fatal_error(td, eb, err)) {
386                         /*
387                          * Continue with the I/Os in case of
388                          * a non fatal error.
389                          */
390                         update_error_count(td, err);
391                         td_clear_error(td);
392                         *retptr = 0;
393                         return false;
394                 } else if (td->o.fill_device && err == ENOSPC) {
395                         /*
396                          * We expect to hit this error if
397                          * fill_device option is set.
398                          */
399                         td_clear_error(td);
400                         fio_mark_td_terminate(td);
401                         return true;
402                 } else {
403                         /*
404                          * Stop the I/O in case of a fatal
405                          * error.
406                          */
407                         update_error_count(td, err);
408                         return true;
409                 }
410         }
411
412         return false;
413 }
414
415 static void check_update_rusage(struct thread_data *td)
416 {
417         if (td->update_rusage) {
418                 td->update_rusage = 0;
419                 update_rusage_stat(td);
420                 fio_sem_up(td->rusage_sem);
421         }
422 }
423
424 static int wait_for_completions(struct thread_data *td, struct timespec *time)
425 {
426         const int full = queue_full(td);
427         int min_evts = 0;
428         int ret;
429
430         if (td->flags & TD_F_REGROW_LOGS)
431                 return io_u_quiesce(td);
432
433         /*
434          * if the queue is full, we MUST reap at least 1 event
435          */
436         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
437         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
438                 min_evts = 1;
439
440         if (time && __should_check_rate(td))
441                 fio_gettime(time, NULL);
442
443         do {
444                 ret = io_u_queued_complete(td, min_evts);
445                 if (ret < 0)
446                         break;
447         } while (full && (td->cur_depth > td->o.iodepth_low));
448
449         return ret;
450 }
451
452 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
453                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
454                    struct timespec *comp_time)
455 {
456         switch (*ret) {
457         case FIO_Q_COMPLETED:
458                 if (io_u->error) {
459                         *ret = -io_u->error;
460                         clear_io_u(td, io_u);
461                 } else if (io_u->resid) {
462                         long long bytes = io_u->xfer_buflen - io_u->resid;
463                         struct fio_file *f = io_u->file;
464
465                         if (bytes_issued)
466                                 *bytes_issued += bytes;
467
468                         if (!from_verify)
469                                 trim_io_piece(io_u);
470
471                         /*
472                          * zero read, fail
473                          */
474                         if (!bytes) {
475                                 if (!from_verify)
476                                         unlog_io_piece(td, io_u);
477                                 td_verror(td, EIO, "full resid");
478                                 put_io_u(td, io_u);
479                                 break;
480                         }
481
482                         io_u->xfer_buflen = io_u->resid;
483                         io_u->xfer_buf += bytes;
484                         io_u->offset += bytes;
485
486                         if (ddir_rw(io_u->ddir))
487                                 td->ts.short_io_u[io_u->ddir]++;
488
489                         if (io_u->offset == f->real_file_size)
490                                 goto sync_done;
491
492                         requeue_io_u(td, &io_u);
493                 } else {
494 sync_done:
495                         if (comp_time && __should_check_rate(td))
496                                 fio_gettime(comp_time, NULL);
497
498                         *ret = io_u_sync_complete(td, io_u);
499                         if (*ret < 0)
500                                 break;
501                 }
502
503                 if (td->flags & TD_F_REGROW_LOGS)
504                         regrow_logs(td);
505
506                 /*
507                  * when doing I/O (not when verifying),
508                  * check for any errors that are to be ignored
509                  */
510                 if (!from_verify)
511                         break;
512
513                 return 0;
514         case FIO_Q_QUEUED:
515                 /*
516                  * if the engine doesn't have a commit hook,
517                  * the io_u is really queued. if it does have such
518                  * a hook, it has to call io_u_queued() itself.
519                  */
520                 if (td->io_ops->commit == NULL)
521                         io_u_queued(td, io_u);
522                 if (bytes_issued)
523                         *bytes_issued += io_u->xfer_buflen;
524                 break;
525         case FIO_Q_BUSY:
526                 if (!from_verify)
527                         unlog_io_piece(td, io_u);
528                 requeue_io_u(td, &io_u);
529                 td_io_commit(td);
530                 break;
531         default:
532                 assert(*ret < 0);
533                 td_verror(td, -(*ret), "td_io_queue");
534                 break;
535         }
536
537         if (break_on_this_error(td, ddir, ret))
538                 return 1;
539
540         return 0;
541 }
542
543 static inline bool io_in_polling(struct thread_data *td)
544 {
545         return !td->o.iodepth_batch_complete_min &&
546                    !td->o.iodepth_batch_complete_max;
547 }
548 /*
549  * Unlinks files from thread data fio_file structure
550  */
551 static int unlink_all_files(struct thread_data *td)
552 {
553         struct fio_file *f;
554         unsigned int i;
555         int ret = 0;
556
557         for_each_file(td, f, i) {
558                 if (f->filetype != FIO_TYPE_FILE)
559                         continue;
560                 ret = td_io_unlink_file(td, f);
561                 if (ret)
562                         break;
563         }
564
565         if (ret)
566                 td_verror(td, ret, "unlink_all_files");
567
568         return ret;
569 }
570
571 /*
572  * Check if io_u will overlap an in-flight IO in the queue
573  */
574 bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
575 {
576         bool overlap;
577         struct io_u *check_io_u;
578         unsigned long long x1, x2, y1, y2;
579         int i;
580
581         x1 = io_u->offset;
582         x2 = io_u->offset + io_u->buflen;
583         overlap = false;
584         io_u_qiter(q, check_io_u, i) {
585                 if (check_io_u->flags & IO_U_F_FLIGHT) {
586                         y1 = check_io_u->offset;
587                         y2 = check_io_u->offset + check_io_u->buflen;
588
589                         if (x1 < y2 && y1 < x2) {
590                                 overlap = true;
591                                 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
592                                                 x1, io_u->buflen,
593                                                 y1, check_io_u->buflen);
594                                 break;
595                         }
596                 }
597         }
598
599         return overlap;
600 }
601
602 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
603 {
604         /*
605          * Check for overlap if the user asked us to, and we have
606          * at least one IO in flight besides this one.
607          */
608         if (td->o.serialize_overlap && td->cur_depth > 1 &&
609             in_flight_overlap(&td->io_u_all, io_u))
610                 return FIO_Q_BUSY;
611
612         return td_io_queue(td, io_u);
613 }
614
615 /*
616  * The main verify engine. Runs over the writes we previously submitted,
617  * reads the blocks back in, and checks the crc/md5 of the data.
618  */
619 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
620 {
621         struct fio_file *f;
622         struct io_u *io_u;
623         int ret, min_events;
624         unsigned int i;
625
626         dprint(FD_VERIFY, "starting loop\n");
627
628         /*
629          * sync io first and invalidate cache, to make sure we really
630          * read from disk.
631          */
632         for_each_file(td, f, i) {
633                 if (!fio_file_open(f))
634                         continue;
635                 if (fio_io_sync(td, f))
636                         break;
637                 if (file_invalidate_cache(td, f))
638                         break;
639         }
640
641         check_update_rusage(td);
642
643         if (td->error)
644                 return;
645
646         /*
647          * verify_state needs to be reset before verification
648          * proceeds so that expected random seeds match actual
649          * random seeds in headers. The main loop will reset
650          * all random number generators if randrepeat is set.
651          */
652         if (!td->o.rand_repeatable)
653                 td_fill_verify_state_seed(td);
654
655         td_set_runstate(td, TD_VERIFYING);
656
657         io_u = NULL;
658         while (!td->terminate) {
659                 enum fio_ddir ddir;
660                 int full;
661
662                 update_ts_cache(td);
663                 check_update_rusage(td);
664
665                 if (runtime_exceeded(td, &td->ts_cache)) {
666                         __update_ts_cache(td);
667                         if (runtime_exceeded(td, &td->ts_cache)) {
668                                 fio_mark_td_terminate(td);
669                                 break;
670                         }
671                 }
672
673                 if (flow_threshold_exceeded(td))
674                         continue;
675
676                 if (!td->o.experimental_verify) {
677                         io_u = __get_io_u(td);
678                         if (!io_u)
679                                 break;
680
681                         if (get_next_verify(td, io_u)) {
682                                 put_io_u(td, io_u);
683                                 break;
684                         }
685
686                         if (td_io_prep(td, io_u)) {
687                                 put_io_u(td, io_u);
688                                 break;
689                         }
690                 } else {
691                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
692                                 break;
693
694                         while ((io_u = get_io_u(td)) != NULL) {
695                                 if (IS_ERR_OR_NULL(io_u)) {
696                                         io_u = NULL;
697                                         ret = FIO_Q_BUSY;
698                                         goto reap;
699                                 }
700
701                                 /*
702                                  * We are only interested in the places where
703                                  * we wrote or trimmed IOs. Turn those into
704                                  * reads for verification purposes.
705                                  */
706                                 if (io_u->ddir == DDIR_READ) {
707                                         /*
708                                          * Pretend we issued it for rwmix
709                                          * accounting
710                                          */
711                                         td->io_issues[DDIR_READ]++;
712                                         put_io_u(td, io_u);
713                                         continue;
714                                 } else if (io_u->ddir == DDIR_TRIM) {
715                                         io_u->ddir = DDIR_READ;
716                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
717                                         break;
718                                 } else if (io_u->ddir == DDIR_WRITE) {
719                                         io_u->ddir = DDIR_READ;
720                                         populate_verify_io_u(td, io_u);
721                                         break;
722                                 } else {
723                                         put_io_u(td, io_u);
724                                         continue;
725                                 }
726                         }
727
728                         if (!io_u)
729                                 break;
730                 }
731
732                 if (verify_state_should_stop(td, io_u)) {
733                         put_io_u(td, io_u);
734                         break;
735                 }
736
737                 if (td->o.verify_async)
738                         io_u->end_io = verify_io_u_async;
739                 else
740                         io_u->end_io = verify_io_u;
741
742                 ddir = io_u->ddir;
743                 if (!td->o.disable_slat)
744                         fio_gettime(&io_u->start_time, NULL);
745
746                 ret = io_u_submit(td, io_u);
747
748                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
749                         break;
750
751                 /*
752                  * if we can queue more, do so. but check if there are
753                  * completed io_u's first. Note that we can get BUSY even
754                  * without IO queued, if the system is resource starved.
755                  */
756 reap:
757                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
758                 if (full || io_in_polling(td))
759                         ret = wait_for_completions(td, NULL);
760
761                 if (ret < 0)
762                         break;
763         }
764
765         check_update_rusage(td);
766
767         if (!td->error) {
768                 min_events = td->cur_depth;
769
770                 if (min_events)
771                         ret = io_u_queued_complete(td, min_events);
772         } else
773                 cleanup_pending_aio(td);
774
775         td_set_runstate(td, TD_RUNNING);
776
777         dprint(FD_VERIFY, "exiting loop\n");
778 }
779
780 static bool exceeds_number_ios(struct thread_data *td)
781 {
782         unsigned long long number_ios;
783
784         if (!td->o.number_ios)
785                 return false;
786
787         number_ios = ddir_rw_sum(td->io_blocks);
788         number_ios += td->io_u_queued + td->io_u_in_flight;
789
790         return number_ios >= (td->o.number_ios * td->loops);
791 }
792
793 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
794 {
795         unsigned long long bytes, limit;
796
797         if (td_rw(td))
798                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
799         else if (td_write(td))
800                 bytes = this_bytes[DDIR_WRITE];
801         else if (td_read(td))
802                 bytes = this_bytes[DDIR_READ];
803         else
804                 bytes = this_bytes[DDIR_TRIM];
805
806         if (td->o.io_size)
807                 limit = td->o.io_size;
808         else
809                 limit = td->o.size;
810
811         limit *= td->loops;
812         return bytes >= limit || exceeds_number_ios(td);
813 }
814
815 static bool io_issue_bytes_exceeded(struct thread_data *td)
816 {
817         return io_bytes_exceeded(td, td->io_issue_bytes);
818 }
819
820 static bool io_complete_bytes_exceeded(struct thread_data *td)
821 {
822         return io_bytes_exceeded(td, td->this_io_bytes);
823 }
824
825 /*
826  * used to calculate the next io time for rate control
827  *
828  */
829 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
830 {
831         uint64_t bps = td->rate_bps[ddir];
832
833         assert(!(td->flags & TD_F_CHILD));
834
835         if (td->o.rate_process == RATE_PROCESS_POISSON) {
836                 uint64_t val, iops;
837
838                 iops = bps / td->o.bs[ddir];
839                 val = (int64_t) (1000000 / iops) *
840                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
841                 if (val) {
842                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
843                                         (unsigned long long) 1000000 / val,
844                                         ddir);
845                 }
846                 td->last_usec[ddir] += val;
847                 return td->last_usec[ddir];
848         } else if (bps) {
849                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
850                 uint64_t secs = bytes / bps;
851                 uint64_t remainder = bytes % bps;
852
853                 return remainder * 1000000 / bps + secs * 1000000;
854         }
855
856         return 0;
857 }
858
859 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
860 {
861         unsigned long long b;
862         uint64_t total;
863         int left;
864
865         b = ddir_rw_sum(td->io_blocks);
866         if (b % td->o.thinktime_blocks)
867                 return;
868
869         io_u_quiesce(td);
870
871         total = 0;
872         if (td->o.thinktime_spin)
873                 total = usec_spin(td->o.thinktime_spin);
874
875         left = td->o.thinktime - total;
876         if (left)
877                 total += usec_sleep(td, left);
878
879         /*
880          * If we're ignoring thinktime for the rate, add the number of bytes
881          * we would have done while sleeping, minus one block to ensure we
882          * start issuing immediately after the sleep.
883          */
884         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
885                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
886                 uint64_t bs = td->o.min_bs[ddir];
887                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
888                 uint64_t over;
889
890                 if (usperop <= total)
891                         over = bs;
892                 else
893                         over = (usperop - total) / usperop * -bs;
894
895                 td->rate_io_issue_bytes[ddir] += (missed - over);
896                 /* adjust for rate_process=poisson */
897                 td->last_usec[ddir] += total;
898         }
899 }
900
901 /*
902  * Main IO worker function. It retrieves io_u's to process and queues
903  * and reaps them, checking for rate and errors along the way.
904  *
905  * Returns number of bytes written and trimmed.
906  */
907 static void do_io(struct thread_data *td, uint64_t *bytes_done)
908 {
909         unsigned int i;
910         int ret = 0;
911         uint64_t total_bytes, bytes_issued = 0;
912
913         for (i = 0; i < DDIR_RWDIR_CNT; i++)
914                 bytes_done[i] = td->bytes_done[i];
915
916         if (in_ramp_time(td))
917                 td_set_runstate(td, TD_RAMP);
918         else
919                 td_set_runstate(td, TD_RUNNING);
920
921         lat_target_init(td);
922
923         total_bytes = td->o.size;
924         /*
925         * Allow random overwrite workloads to write up to io_size
926         * before starting verification phase as 'size' doesn't apply.
927         */
928         if (td_write(td) && td_random(td) && td->o.norandommap)
929                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
930         /*
931          * If verify_backlog is enabled, we'll run the verify in this
932          * handler as well. For that case, we may need up to twice the
933          * amount of bytes.
934          */
935         if (td->o.verify != VERIFY_NONE &&
936            (td_write(td) && td->o.verify_backlog))
937                 total_bytes += td->o.size;
938
939         /* In trimwrite mode, each byte is trimmed and then written, so
940          * allow total_bytes to be twice as big */
941         if (td_trimwrite(td))
942                 total_bytes += td->total_io_size;
943
944         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
945                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
946                 td->o.time_based) {
947                 struct timespec comp_time;
948                 struct io_u *io_u;
949                 int full;
950                 enum fio_ddir ddir;
951
952                 check_update_rusage(td);
953
954                 if (td->terminate || td->done)
955                         break;
956
957                 update_ts_cache(td);
958
959                 if (runtime_exceeded(td, &td->ts_cache)) {
960                         __update_ts_cache(td);
961                         if (runtime_exceeded(td, &td->ts_cache)) {
962                                 fio_mark_td_terminate(td);
963                                 break;
964                         }
965                 }
966
967                 if (flow_threshold_exceeded(td))
968                         continue;
969
970                 /*
971                  * Break if we exceeded the bytes. The exception is time
972                  * based runs, but we still need to break out of the loop
973                  * for those to run verification, if enabled.
974                  * Jobs read from iolog do not use this stop condition.
975                  */
976                 if (bytes_issued >= total_bytes &&
977                     !td->o.read_iolog_file &&
978                     (!td->o.time_based ||
979                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
980                         break;
981
982                 io_u = get_io_u(td);
983                 if (IS_ERR_OR_NULL(io_u)) {
984                         int err = PTR_ERR(io_u);
985
986                         io_u = NULL;
987                         ddir = DDIR_INVAL;
988                         if (err == -EBUSY) {
989                                 ret = FIO_Q_BUSY;
990                                 goto reap;
991                         }
992                         if (td->o.latency_target)
993                                 goto reap;
994                         break;
995                 }
996
997                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
998                         populate_verify_io_u(td, io_u);
999
1000                 ddir = io_u->ddir;
1001
1002                 /*
1003                  * Add verification end_io handler if:
1004                  *      - Asked to verify (!td_rw(td))
1005                  *      - Or the io_u is from our verify list (mixed write/ver)
1006                  */
1007                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1008                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1009
1010                         if (verify_state_should_stop(td, io_u)) {
1011                                 put_io_u(td, io_u);
1012                                 break;
1013                         }
1014
1015                         if (td->o.verify_async)
1016                                 io_u->end_io = verify_io_u_async;
1017                         else
1018                                 io_u->end_io = verify_io_u;
1019                         td_set_runstate(td, TD_VERIFYING);
1020                 } else if (in_ramp_time(td))
1021                         td_set_runstate(td, TD_RAMP);
1022                 else
1023                         td_set_runstate(td, TD_RUNNING);
1024
1025                 /*
1026                  * Always log IO before it's issued, so we know the specific
1027                  * order of it. The logged unit will track when the IO has
1028                  * completed.
1029                  */
1030                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1031                     td->o.do_verify &&
1032                     td->o.verify != VERIFY_NONE &&
1033                     !td->o.experimental_verify)
1034                         log_io_piece(td, io_u);
1035
1036                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1037                         const unsigned long long blen = io_u->xfer_buflen;
1038                         const enum fio_ddir __ddir = acct_ddir(io_u);
1039
1040                         if (td->error)
1041                                 break;
1042
1043                         workqueue_enqueue(&td->io_wq, &io_u->work);
1044                         ret = FIO_Q_QUEUED;
1045
1046                         if (ddir_rw(__ddir)) {
1047                                 td->io_issues[__ddir]++;
1048                                 td->io_issue_bytes[__ddir] += blen;
1049                                 td->rate_io_issue_bytes[__ddir] += blen;
1050                         }
1051
1052                         if (should_check_rate(td))
1053                                 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1054
1055                 } else {
1056                         ret = io_u_submit(td, io_u);
1057
1058                         if (should_check_rate(td))
1059                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1060
1061                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1062                                 break;
1063
1064                         /*
1065                          * See if we need to complete some commands. Note that
1066                          * we can get BUSY even without IO queued, if the
1067                          * system is resource starved.
1068                          */
1069 reap:
1070                         full = queue_full(td) ||
1071                                 (ret == FIO_Q_BUSY && td->cur_depth);
1072                         if (full || io_in_polling(td))
1073                                 ret = wait_for_completions(td, &comp_time);
1074                 }
1075                 if (ret < 0)
1076                         break;
1077                 if (!ddir_rw_sum(td->bytes_done) &&
1078                     !td_ioengine_flagged(td, FIO_NOIO))
1079                         continue;
1080
1081                 if (!in_ramp_time(td) && should_check_rate(td)) {
1082                         if (check_min_rate(td, &comp_time)) {
1083                                 if (exitall_on_terminate || td->o.exitall_error)
1084                                         fio_terminate_threads(td->groupid, td->o.exit_what);
1085                                 td_verror(td, EIO, "check_min_rate");
1086                                 break;
1087                         }
1088                 }
1089                 if (!in_ramp_time(td) && td->o.latency_target)
1090                         lat_target_check(td);
1091
1092                 if (ddir_rw(ddir) && td->o.thinktime)
1093                         handle_thinktime(td, ddir);
1094         }
1095
1096         check_update_rusage(td);
1097
1098         if (td->trim_entries)
1099                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1100
1101         if (td->o.fill_device && td->error == ENOSPC) {
1102                 td->error = 0;
1103                 fio_mark_td_terminate(td);
1104         }
1105         if (!td->error) {
1106                 struct fio_file *f;
1107
1108                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1109                         workqueue_flush(&td->io_wq);
1110                         i = 0;
1111                 } else
1112                         i = td->cur_depth;
1113
1114                 if (i) {
1115                         ret = io_u_queued_complete(td, i);
1116                         if (td->o.fill_device && td->error == ENOSPC)
1117                                 td->error = 0;
1118                 }
1119
1120                 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1121                         td_set_runstate(td, TD_FSYNCING);
1122
1123                         for_each_file(td, f, i) {
1124                                 if (!fio_file_fsync(td, f))
1125                                         continue;
1126
1127                                 log_err("fio: end_fsync failed for file %s\n",
1128                                                                 f->file_name);
1129                         }
1130                 }
1131         } else
1132                 cleanup_pending_aio(td);
1133
1134         /*
1135          * stop job if we failed doing any IO
1136          */
1137         if (!ddir_rw_sum(td->this_io_bytes))
1138                 td->done = 1;
1139
1140         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1141                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1142 }
1143
1144 static void free_file_completion_logging(struct thread_data *td)
1145 {
1146         struct fio_file *f;
1147         unsigned int i;
1148
1149         for_each_file(td, f, i) {
1150                 if (!f->last_write_comp)
1151                         break;
1152                 sfree(f->last_write_comp);
1153         }
1154 }
1155
1156 static int init_file_completion_logging(struct thread_data *td,
1157                                         unsigned int depth)
1158 {
1159         struct fio_file *f;
1160         unsigned int i;
1161
1162         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1163                 return 0;
1164
1165         for_each_file(td, f, i) {
1166                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1167                 if (!f->last_write_comp)
1168                         goto cleanup;
1169         }
1170
1171         return 0;
1172
1173 cleanup:
1174         free_file_completion_logging(td);
1175         log_err("fio: failed to alloc write comp data\n");
1176         return 1;
1177 }
1178
1179 static void cleanup_io_u(struct thread_data *td)
1180 {
1181         struct io_u *io_u;
1182
1183         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1184
1185                 if (td->io_ops->io_u_free)
1186                         td->io_ops->io_u_free(td, io_u);
1187
1188                 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1189         }
1190
1191         free_io_mem(td);
1192
1193         io_u_rexit(&td->io_u_requeues);
1194         io_u_qexit(&td->io_u_freelist, false);
1195         io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1196
1197         free_file_completion_logging(td);
1198 }
1199
1200 static int init_io_u(struct thread_data *td)
1201 {
1202         struct io_u *io_u;
1203         int cl_align, i, max_units;
1204         int err;
1205
1206         max_units = td->o.iodepth;
1207
1208         err = 0;
1209         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1210         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1211         err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1212
1213         if (err) {
1214                 log_err("fio: failed setting up IO queues\n");
1215                 return 1;
1216         }
1217
1218         cl_align = os_cache_line_size();
1219
1220         for (i = 0; i < max_units; i++) {
1221                 void *ptr;
1222
1223                 if (td->terminate)
1224                         return 1;
1225
1226                 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1227                 if (!ptr) {
1228                         log_err("fio: unable to allocate aligned memory\n");
1229                         return 1;
1230                 }
1231
1232                 io_u = ptr;
1233                 memset(io_u, 0, sizeof(*io_u));
1234                 INIT_FLIST_HEAD(&io_u->verify_list);
1235                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1236
1237                 io_u->index = i;
1238                 io_u->flags = IO_U_F_FREE;
1239                 io_u_qpush(&td->io_u_freelist, io_u);
1240
1241                 /*
1242                  * io_u never leaves this stack, used for iteration of all
1243                  * io_u buffers.
1244                  */
1245                 io_u_qpush(&td->io_u_all, io_u);
1246
1247                 if (td->io_ops->io_u_init) {
1248                         int ret = td->io_ops->io_u_init(td, io_u);
1249
1250                         if (ret) {
1251                                 log_err("fio: failed to init engine data: %d\n", ret);
1252                                 return 1;
1253                         }
1254                 }
1255         }
1256
1257         init_io_u_buffers(td);
1258
1259         if (init_file_completion_logging(td, max_units))
1260                 return 1;
1261
1262         return 0;
1263 }
1264
1265 int init_io_u_buffers(struct thread_data *td)
1266 {
1267         struct io_u *io_u;
1268         unsigned long long max_bs, min_write;
1269         int i, max_units;
1270         int data_xfer = 1;
1271         char *p;
1272
1273         max_units = td->o.iodepth;
1274         max_bs = td_max_bs(td);
1275         min_write = td->o.min_bs[DDIR_WRITE];
1276         td->orig_buffer_size = (unsigned long long) max_bs
1277                                         * (unsigned long long) max_units;
1278
1279         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1280                 data_xfer = 0;
1281
1282         /*
1283          * if we may later need to do address alignment, then add any
1284          * possible adjustment here so that we don't cause a buffer
1285          * overflow later. this adjustment may be too much if we get
1286          * lucky and the allocator gives us an aligned address.
1287          */
1288         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1289             td_ioengine_flagged(td, FIO_RAWIO))
1290                 td->orig_buffer_size += page_mask + td->o.mem_align;
1291
1292         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1293                 unsigned long long bs;
1294
1295                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1296                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1297         }
1298
1299         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1300                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1301                 return 1;
1302         }
1303
1304         if (data_xfer && allocate_io_mem(td))
1305                 return 1;
1306
1307         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1308             td_ioengine_flagged(td, FIO_RAWIO))
1309                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1310         else
1311                 p = td->orig_buffer;
1312
1313         for (i = 0; i < max_units; i++) {
1314                 io_u = td->io_u_all.io_us[i];
1315                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1316
1317                 if (data_xfer) {
1318                         io_u->buf = p;
1319                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1320
1321                         if (td_write(td))
1322                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1323                         if (td_write(td) && td->o.verify_pattern_bytes) {
1324                                 /*
1325                                  * Fill the buffer with the pattern if we are
1326                                  * going to be doing writes.
1327                                  */
1328                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1329                         }
1330                 }
1331                 p += max_bs;
1332         }
1333
1334         return 0;
1335 }
1336
1337 /*
1338  * This function is Linux specific.
1339  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1340  */
1341 static int switch_ioscheduler(struct thread_data *td)
1342 {
1343 #ifdef FIO_HAVE_IOSCHED_SWITCH
1344         char tmp[256], tmp2[128], *p;
1345         FILE *f;
1346         int ret;
1347
1348         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1349                 return 0;
1350
1351         assert(td->files && td->files[0]);
1352         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1353
1354         f = fopen(tmp, "r+");
1355         if (!f) {
1356                 if (errno == ENOENT) {
1357                         log_err("fio: os or kernel doesn't support IO scheduler"
1358                                 " switching\n");
1359                         return 0;
1360                 }
1361                 td_verror(td, errno, "fopen iosched");
1362                 return 1;
1363         }
1364
1365         /*
1366          * Set io scheduler.
1367          */
1368         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1369         if (ferror(f) || ret != 1) {
1370                 td_verror(td, errno, "fwrite");
1371                 fclose(f);
1372                 return 1;
1373         }
1374
1375         rewind(f);
1376
1377         /*
1378          * Read back and check that the selected scheduler is now the default.
1379          */
1380         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1381         if (ferror(f) || ret < 0) {
1382                 td_verror(td, errno, "fread");
1383                 fclose(f);
1384                 return 1;
1385         }
1386         tmp[ret] = '\0';
1387         /*
1388          * either a list of io schedulers or "none\n" is expected. Strip the
1389          * trailing newline.
1390          */
1391         p = tmp;
1392         strsep(&p, "\n");
1393
1394         /*
1395          * Write to "none" entry doesn't fail, so check the result here.
1396          */
1397         if (!strcmp(tmp, "none")) {
1398                 log_err("fio: io scheduler is not tunable\n");
1399                 fclose(f);
1400                 return 0;
1401         }
1402
1403         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1404         if (!strstr(tmp, tmp2)) {
1405                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1406                 td_verror(td, EINVAL, "iosched_switch");
1407                 fclose(f);
1408                 return 1;
1409         }
1410
1411         fclose(f);
1412         return 0;
1413 #else
1414         return 0;
1415 #endif
1416 }
1417
1418 static bool keep_running(struct thread_data *td)
1419 {
1420         unsigned long long limit;
1421
1422         if (td->done)
1423                 return false;
1424         if (td->terminate)
1425                 return false;
1426         if (td->o.time_based)
1427                 return true;
1428         if (td->o.loops) {
1429                 td->o.loops--;
1430                 return true;
1431         }
1432         if (exceeds_number_ios(td))
1433                 return false;
1434
1435         if (td->o.io_size)
1436                 limit = td->o.io_size;
1437         else
1438                 limit = td->o.size;
1439
1440         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1441                 uint64_t diff;
1442
1443                 /*
1444                  * If the difference is less than the maximum IO size, we
1445                  * are done.
1446                  */
1447                 diff = limit - ddir_rw_sum(td->io_bytes);
1448                 if (diff < td_max_bs(td))
1449                         return false;
1450
1451                 if (fio_files_done(td) && !td->o.io_size)
1452                         return false;
1453
1454                 return true;
1455         }
1456
1457         return false;
1458 }
1459
1460 static int exec_string(struct thread_options *o, const char *string,
1461                        const char *mode)
1462 {
1463         int ret;
1464         char *str;
1465
1466         if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1467                 return -1;
1468
1469         log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1470                  o->name, mode);
1471         ret = system(str);
1472         if (ret == -1)
1473                 log_err("fio: exec of cmd <%s> failed\n", str);
1474
1475         free(str);
1476         return ret;
1477 }
1478
1479 /*
1480  * Dry run to compute correct state of numberio for verification.
1481  */
1482 static uint64_t do_dry_run(struct thread_data *td)
1483 {
1484         td_set_runstate(td, TD_RUNNING);
1485
1486         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1487                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1488                 struct io_u *io_u;
1489                 int ret;
1490
1491                 if (td->terminate || td->done)
1492                         break;
1493
1494                 io_u = get_io_u(td);
1495                 if (IS_ERR_OR_NULL(io_u))
1496                         break;
1497
1498                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1499                 io_u->error = 0;
1500                 io_u->resid = 0;
1501                 if (ddir_rw(acct_ddir(io_u)))
1502                         td->io_issues[acct_ddir(io_u)]++;
1503                 if (ddir_rw(io_u->ddir)) {
1504                         io_u_mark_depth(td, 1);
1505                         td->ts.total_io_u[io_u->ddir]++;
1506                 }
1507
1508                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1509                     td->o.do_verify &&
1510                     td->o.verify != VERIFY_NONE &&
1511                     !td->o.experimental_verify)
1512                         log_io_piece(td, io_u);
1513
1514                 ret = io_u_sync_complete(td, io_u);
1515                 (void) ret;
1516         }
1517
1518         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1519 }
1520
1521 struct fork_data {
1522         struct thread_data *td;
1523         struct sk_out *sk_out;
1524 };
1525
1526 /*
1527  * Entry point for the thread based jobs. The process based jobs end up
1528  * here as well, after a little setup.
1529  */
1530 static void *thread_main(void *data)
1531 {
1532         struct fork_data *fd = data;
1533         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1534         struct thread_data *td = fd->td;
1535         struct thread_options *o = &td->o;
1536         struct sk_out *sk_out = fd->sk_out;
1537         uint64_t bytes_done[DDIR_RWDIR_CNT];
1538         int deadlock_loop_cnt;
1539         bool clear_state;
1540         int res, ret;
1541
1542         sk_out_assign(sk_out);
1543         free(fd);
1544
1545         if (!o->use_thread) {
1546                 setsid();
1547                 td->pid = getpid();
1548         } else
1549                 td->pid = gettid();
1550
1551         fio_local_clock_init();
1552
1553         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1554
1555         if (is_backend)
1556                 fio_server_send_start(td);
1557
1558         INIT_FLIST_HEAD(&td->io_log_list);
1559         INIT_FLIST_HEAD(&td->io_hist_list);
1560         INIT_FLIST_HEAD(&td->verify_list);
1561         INIT_FLIST_HEAD(&td->trim_list);
1562         td->io_hist_tree = RB_ROOT;
1563
1564         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1565         if (ret) {
1566                 td_verror(td, ret, "mutex_cond_init_pshared");
1567                 goto err;
1568         }
1569         ret = cond_init_pshared(&td->verify_cond);
1570         if (ret) {
1571                 td_verror(td, ret, "mutex_cond_pshared");
1572                 goto err;
1573         }
1574
1575         td_set_runstate(td, TD_INITIALIZED);
1576         dprint(FD_MUTEX, "up startup_sem\n");
1577         fio_sem_up(startup_sem);
1578         dprint(FD_MUTEX, "wait on td->sem\n");
1579         fio_sem_down(td->sem);
1580         dprint(FD_MUTEX, "done waiting on td->sem\n");
1581
1582         /*
1583          * A new gid requires privilege, so we need to do this before setting
1584          * the uid.
1585          */
1586         if (o->gid != -1U && setgid(o->gid)) {
1587                 td_verror(td, errno, "setgid");
1588                 goto err;
1589         }
1590         if (o->uid != -1U && setuid(o->uid)) {
1591                 td_verror(td, errno, "setuid");
1592                 goto err;
1593         }
1594
1595         td_zone_gen_index(td);
1596
1597         /*
1598          * Do this early, we don't want the compress threads to be limited
1599          * to the same CPUs as the IO workers. So do this before we set
1600          * any potential CPU affinity
1601          */
1602         if (iolog_compress_init(td, sk_out))
1603                 goto err;
1604
1605         /*
1606          * If we have a gettimeofday() thread, make sure we exclude that
1607          * thread from this job
1608          */
1609         if (o->gtod_cpu)
1610                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1611
1612         /*
1613          * Set affinity first, in case it has an impact on the memory
1614          * allocations.
1615          */
1616         if (fio_option_is_set(o, cpumask)) {
1617                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1618                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1619                         if (!ret) {
1620                                 log_err("fio: no CPUs set\n");
1621                                 log_err("fio: Try increasing number of available CPUs\n");
1622                                 td_verror(td, EINVAL, "cpus_split");
1623                                 goto err;
1624                         }
1625                 }
1626                 ret = fio_setaffinity(td->pid, o->cpumask);
1627                 if (ret == -1) {
1628                         td_verror(td, errno, "cpu_set_affinity");
1629                         goto err;
1630                 }
1631         }
1632
1633 #ifdef CONFIG_LIBNUMA
1634         /* numa node setup */
1635         if (fio_option_is_set(o, numa_cpunodes) ||
1636             fio_option_is_set(o, numa_memnodes)) {
1637                 struct bitmask *mask;
1638
1639                 if (numa_available() < 0) {
1640                         td_verror(td, errno, "Does not support NUMA API\n");
1641                         goto err;
1642                 }
1643
1644                 if (fio_option_is_set(o, numa_cpunodes)) {
1645                         mask = numa_parse_nodestring(o->numa_cpunodes);
1646                         ret = numa_run_on_node_mask(mask);
1647                         numa_free_nodemask(mask);
1648                         if (ret == -1) {
1649                                 td_verror(td, errno, \
1650                                         "numa_run_on_node_mask failed\n");
1651                                 goto err;
1652                         }
1653                 }
1654
1655                 if (fio_option_is_set(o, numa_memnodes)) {
1656                         mask = NULL;
1657                         if (o->numa_memnodes)
1658                                 mask = numa_parse_nodestring(o->numa_memnodes);
1659
1660                         switch (o->numa_mem_mode) {
1661                         case MPOL_INTERLEAVE:
1662                                 numa_set_interleave_mask(mask);
1663                                 break;
1664                         case MPOL_BIND:
1665                                 numa_set_membind(mask);
1666                                 break;
1667                         case MPOL_LOCAL:
1668                                 numa_set_localalloc();
1669                                 break;
1670                         case MPOL_PREFERRED:
1671                                 numa_set_preferred(o->numa_mem_prefer_node);
1672                                 break;
1673                         case MPOL_DEFAULT:
1674                         default:
1675                                 break;
1676                         }
1677
1678                         if (mask)
1679                                 numa_free_nodemask(mask);
1680
1681                 }
1682         }
1683 #endif
1684
1685         if (fio_pin_memory(td))
1686                 goto err;
1687
1688         /*
1689          * May alter parameters that init_io_u() will use, so we need to
1690          * do this first.
1691          */
1692         if (!init_iolog(td))
1693                 goto err;
1694
1695         if (td_io_init(td))
1696                 goto err;
1697
1698         if (init_io_u(td))
1699                 goto err;
1700
1701         if (td->io_ops->post_init && td->io_ops->post_init(td))
1702                 goto err;
1703
1704         if (o->verify_async && verify_async_init(td))
1705                 goto err;
1706
1707         if (fio_option_is_set(o, ioprio) ||
1708             fio_option_is_set(o, ioprio_class)) {
1709                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1710                 if (ret == -1) {
1711                         td_verror(td, errno, "ioprio_set");
1712                         goto err;
1713                 }
1714         }
1715
1716         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1717                 goto err;
1718
1719         errno = 0;
1720         if (nice(o->nice) == -1 && errno != 0) {
1721                 td_verror(td, errno, "nice");
1722                 goto err;
1723         }
1724
1725         if (o->ioscheduler && switch_ioscheduler(td))
1726                 goto err;
1727
1728         if (!o->create_serialize && setup_files(td))
1729                 goto err;
1730
1731         if (!init_random_map(td))
1732                 goto err;
1733
1734         if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1735                 goto err;
1736
1737         if (o->pre_read && !pre_read_files(td))
1738                 goto err;
1739
1740         fio_verify_init(td);
1741
1742         if (rate_submit_init(td, sk_out))
1743                 goto err;
1744
1745         set_epoch_time(td, o->log_unix_epoch);
1746         fio_getrusage(&td->ru_start);
1747         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1748         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1749         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1750
1751         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1752                         o->ratemin[DDIR_TRIM]) {
1753                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1754                                         sizeof(td->bw_sample_time));
1755                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1756                                         sizeof(td->bw_sample_time));
1757                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1758                                         sizeof(td->bw_sample_time));
1759         }
1760
1761         memset(bytes_done, 0, sizeof(bytes_done));
1762         clear_state = false;
1763
1764         while (keep_running(td)) {
1765                 uint64_t verify_bytes;
1766
1767                 fio_gettime(&td->start, NULL);
1768                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1769
1770                 if (clear_state) {
1771                         clear_io_state(td, 0);
1772
1773                         if (o->unlink_each_loop && unlink_all_files(td))
1774                                 break;
1775                 }
1776
1777                 prune_io_piece_log(td);
1778
1779                 if (td->o.verify_only && td_write(td))
1780                         verify_bytes = do_dry_run(td);
1781                 else {
1782                         do_io(td, bytes_done);
1783
1784                         if (!ddir_rw_sum(bytes_done)) {
1785                                 fio_mark_td_terminate(td);
1786                                 verify_bytes = 0;
1787                         } else {
1788                                 verify_bytes = bytes_done[DDIR_WRITE] +
1789                                                 bytes_done[DDIR_TRIM];
1790                         }
1791                 }
1792
1793                 /*
1794                  * If we took too long to shut down, the main thread could
1795                  * already consider us reaped/exited. If that happens, break
1796                  * out and clean up.
1797                  */
1798                 if (td->runstate >= TD_EXITED)
1799                         break;
1800
1801                 clear_state = true;
1802
1803                 /*
1804                  * Make sure we've successfully updated the rusage stats
1805                  * before waiting on the stat mutex. Otherwise we could have
1806                  * the stat thread holding stat mutex and waiting for
1807                  * the rusage_sem, which would never get upped because
1808                  * this thread is waiting for the stat mutex.
1809                  */
1810                 deadlock_loop_cnt = 0;
1811                 do {
1812                         check_update_rusage(td);
1813                         if (!fio_sem_down_trylock(stat_sem))
1814                                 break;
1815                         usleep(1000);
1816                         if (deadlock_loop_cnt++ > 5000) {
1817                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1818                                 td->error = EDEADLK;
1819                                 goto err;
1820                         }
1821                 } while (1);
1822
1823                 if (td_read(td) && td->io_bytes[DDIR_READ])
1824                         update_runtime(td, elapsed_us, DDIR_READ);
1825                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1826                         update_runtime(td, elapsed_us, DDIR_WRITE);
1827                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1828                         update_runtime(td, elapsed_us, DDIR_TRIM);
1829                 fio_gettime(&td->start, NULL);
1830                 fio_sem_up(stat_sem);
1831
1832                 if (td->error || td->terminate)
1833                         break;
1834
1835                 if (!o->do_verify ||
1836                     o->verify == VERIFY_NONE ||
1837                     td_ioengine_flagged(td, FIO_UNIDIR))
1838                         continue;
1839
1840                 clear_io_state(td, 0);
1841
1842                 fio_gettime(&td->start, NULL);
1843
1844                 do_verify(td, verify_bytes);
1845
1846                 /*
1847                  * See comment further up for why this is done here.
1848                  */
1849                 check_update_rusage(td);
1850
1851                 fio_sem_down(stat_sem);
1852                 update_runtime(td, elapsed_us, DDIR_READ);
1853                 fio_gettime(&td->start, NULL);
1854                 fio_sem_up(stat_sem);
1855
1856                 if (td->error || td->terminate)
1857                         break;
1858         }
1859
1860         /*
1861          * Acquire this lock if we were doing overlap checking in
1862          * offload mode so that we don't clean up this job while
1863          * another thread is checking its io_u's for overlap
1864          */
1865         if (td_offload_overlap(td)) {
1866                 int res = pthread_mutex_lock(&overlap_check);
1867                 assert(res == 0);
1868         }
1869         td_set_runstate(td, TD_FINISHING);
1870         if (td_offload_overlap(td)) {
1871                 res = pthread_mutex_unlock(&overlap_check);
1872                 assert(res == 0);
1873         }
1874
1875         update_rusage_stat(td);
1876         td->ts.total_run_time = mtime_since_now(&td->epoch);
1877         for_each_rw_ddir(ddir) {
1878                 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1879         }
1880
1881         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1882             (td->o.verify != VERIFY_NONE && td_write(td)))
1883                 verify_save_state(td->thread_number);
1884
1885         fio_unpin_memory(td);
1886
1887         td_writeout_logs(td, true);
1888
1889         iolog_compress_exit(td);
1890         rate_submit_exit(td);
1891
1892         if (o->exec_postrun)
1893                 exec_string(o, o->exec_postrun, "postrun");
1894
1895         if (exitall_on_terminate || (o->exitall_error && td->error))
1896                 fio_terminate_threads(td->groupid, td->o.exit_what);
1897
1898 err:
1899         if (td->error)
1900                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1901                                                         td->verror);
1902
1903         if (o->verify_async)
1904                 verify_async_exit(td);
1905
1906         close_and_free_files(td);
1907         cleanup_io_u(td);
1908         close_ioengine(td);
1909         cgroup_shutdown(td, cgroup_mnt);
1910         verify_free_state(td);
1911         td_zone_free_index(td);
1912
1913         if (fio_option_is_set(o, cpumask)) {
1914                 ret = fio_cpuset_exit(&o->cpumask);
1915                 if (ret)
1916                         td_verror(td, ret, "fio_cpuset_exit");
1917         }
1918
1919         /*
1920          * do this very late, it will log file closing as well
1921          */
1922         if (o->write_iolog_file)
1923                 write_iolog_close(td);
1924         if (td->io_log_rfile)
1925                 fclose(td->io_log_rfile);
1926
1927         td_set_runstate(td, TD_EXITED);
1928
1929         /*
1930          * Do this last after setting our runstate to exited, so we
1931          * know that the stat thread is signaled.
1932          */
1933         check_update_rusage(td);
1934
1935         sk_out_drop();
1936         return (void *) (uintptr_t) td->error;
1937 }
1938
1939 /*
1940  * Run over the job map and reap the threads that have exited, if any.
1941  */
1942 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1943                          uint64_t *m_rate)
1944 {
1945         struct thread_data *td;
1946         unsigned int cputhreads, realthreads, pending;
1947         int i, status, ret;
1948
1949         /*
1950          * reap exited threads (TD_EXITED -> TD_REAPED)
1951          */
1952         realthreads = pending = cputhreads = 0;
1953         for_each_td(td, i) {
1954                 int flags = 0;
1955
1956                  if (!strcmp(td->o.ioengine, "cpuio"))
1957                         cputhreads++;
1958                 else
1959                         realthreads++;
1960
1961                 if (!td->pid) {
1962                         pending++;
1963                         continue;
1964                 }
1965                 if (td->runstate == TD_REAPED)
1966                         continue;
1967                 if (td->o.use_thread) {
1968                         if (td->runstate == TD_EXITED) {
1969                                 td_set_runstate(td, TD_REAPED);
1970                                 goto reaped;
1971                         }
1972                         continue;
1973                 }
1974
1975                 flags = WNOHANG;
1976                 if (td->runstate == TD_EXITED)
1977                         flags = 0;
1978
1979                 /*
1980                  * check if someone quit or got killed in an unusual way
1981                  */
1982                 ret = waitpid(td->pid, &status, flags);
1983                 if (ret < 0) {
1984                         if (errno == ECHILD) {
1985                                 log_err("fio: pid=%d disappeared %d\n",
1986                                                 (int) td->pid, td->runstate);
1987                                 td->sig = ECHILD;
1988                                 td_set_runstate(td, TD_REAPED);
1989                                 goto reaped;
1990                         }
1991                         perror("waitpid");
1992                 } else if (ret == td->pid) {
1993                         if (WIFSIGNALED(status)) {
1994                                 int sig = WTERMSIG(status);
1995
1996                                 if (sig != SIGTERM && sig != SIGUSR2)
1997                                         log_err("fio: pid=%d, got signal=%d\n",
1998                                                         (int) td->pid, sig);
1999                                 td->sig = sig;
2000                                 td_set_runstate(td, TD_REAPED);
2001                                 goto reaped;
2002                         }
2003                         if (WIFEXITED(status)) {
2004                                 if (WEXITSTATUS(status) && !td->error)
2005                                         td->error = WEXITSTATUS(status);
2006
2007                                 td_set_runstate(td, TD_REAPED);
2008                                 goto reaped;
2009                         }
2010                 }
2011
2012                 /*
2013                  * If the job is stuck, do a forceful timeout of it and
2014                  * move on.
2015                  */
2016                 if (td->terminate &&
2017                     td->runstate < TD_FSYNCING &&
2018                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2019                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2020                                 "%lu seconds, it appears to be stuck. Doing "
2021                                 "forceful exit of this job.\n",
2022                                 td->o.name, td->runstate,
2023                                 (unsigned long) time_since_now(&td->terminate_time));
2024                         td_set_runstate(td, TD_REAPED);
2025                         goto reaped;
2026                 }
2027
2028                 /*
2029                  * thread is not dead, continue
2030                  */
2031                 pending++;
2032                 continue;
2033 reaped:
2034                 (*nr_running)--;
2035                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2036                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2037                 if (!td->pid)
2038                         pending--;
2039
2040                 if (td->error)
2041                         exit_value++;
2042
2043                 done_secs += mtime_since_now(&td->epoch) / 1000;
2044                 profile_td_exit(td);
2045                 flow_exit_job(td);
2046         }
2047
2048         if (*nr_running == cputhreads && !pending && realthreads)
2049                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2050 }
2051
2052 static bool __check_trigger_file(void)
2053 {
2054         struct stat sb;
2055
2056         if (!trigger_file)
2057                 return false;
2058
2059         if (stat(trigger_file, &sb))
2060                 return false;
2061
2062         if (unlink(trigger_file) < 0)
2063                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2064                                                         strerror(errno));
2065
2066         return true;
2067 }
2068
2069 static bool trigger_timedout(void)
2070 {
2071         if (trigger_timeout)
2072                 if (time_since_genesis() >= trigger_timeout) {
2073                         trigger_timeout = 0;
2074                         return true;
2075                 }
2076
2077         return false;
2078 }
2079
2080 void exec_trigger(const char *cmd)
2081 {
2082         int ret;
2083
2084         if (!cmd || cmd[0] == '\0')
2085                 return;
2086
2087         ret = system(cmd);
2088         if (ret == -1)
2089                 log_err("fio: failed executing %s trigger\n", cmd);
2090 }
2091
2092 void check_trigger_file(void)
2093 {
2094         if (__check_trigger_file() || trigger_timedout()) {
2095                 if (nr_clients)
2096                         fio_clients_send_trigger(trigger_remote_cmd);
2097                 else {
2098                         verify_save_state(IO_LIST_ALL);
2099                         fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2100                         exec_trigger(trigger_cmd);
2101                 }
2102         }
2103 }
2104
2105 static int fio_verify_load_state(struct thread_data *td)
2106 {
2107         int ret;
2108
2109         if (!td->o.verify_state)
2110                 return 0;
2111
2112         if (is_backend) {
2113                 void *data;
2114
2115                 ret = fio_server_get_verify_state(td->o.name,
2116                                         td->thread_number - 1, &data);
2117                 if (!ret)
2118                         verify_assign_state(td, data);
2119         } else {
2120                 char prefix[PATH_MAX];
2121
2122                 if (aux_path)
2123                         sprintf(prefix, "%s%clocal", aux_path,
2124                                         FIO_OS_PATH_SEPARATOR);
2125                 else
2126                         strcpy(prefix, "local");
2127                 ret = verify_load_state(td, prefix);
2128         }
2129
2130         return ret;
2131 }
2132
2133 static void do_usleep(unsigned int usecs)
2134 {
2135         check_for_running_stats();
2136         check_trigger_file();
2137         usleep(usecs);
2138 }
2139
2140 static bool check_mount_writes(struct thread_data *td)
2141 {
2142         struct fio_file *f;
2143         unsigned int i;
2144
2145         if (!td_write(td) || td->o.allow_mounted_write)
2146                 return false;
2147
2148         /*
2149          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2150          * are mkfs'd and mounted.
2151          */
2152         for_each_file(td, f, i) {
2153 #ifdef FIO_HAVE_CHARDEV_SIZE
2154                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2155 #else
2156                 if (f->filetype != FIO_TYPE_BLOCK)
2157 #endif
2158                         continue;
2159                 if (device_is_mounted(f->file_name))
2160                         goto mounted;
2161         }
2162
2163         return false;
2164 mounted:
2165         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2166         return true;
2167 }
2168
2169 static bool waitee_running(struct thread_data *me)
2170 {
2171         const char *waitee = me->o.wait_for;
2172         const char *self = me->o.name;
2173         struct thread_data *td;
2174         int i;
2175
2176         if (!waitee)
2177                 return false;
2178
2179         for_each_td(td, i) {
2180                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2181                         continue;
2182
2183                 if (td->runstate < TD_EXITED) {
2184                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2185                                         self, td->o.name,
2186                                         runstate_to_name(td->runstate));
2187                         return true;
2188                 }
2189         }
2190
2191         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2192         return false;
2193 }
2194
2195 /*
2196  * Main function for kicking off and reaping jobs, as needed.
2197  */
2198 static void run_threads(struct sk_out *sk_out)
2199 {
2200         struct thread_data *td;
2201         unsigned int i, todo, nr_running, nr_started;
2202         uint64_t m_rate, t_rate;
2203         uint64_t spent;
2204
2205         if (fio_gtod_offload && fio_start_gtod_thread())
2206                 return;
2207
2208         fio_idle_prof_init();
2209
2210         set_sig_handlers();
2211
2212         nr_thread = nr_process = 0;
2213         for_each_td(td, i) {
2214                 if (check_mount_writes(td))
2215                         return;
2216                 if (td->o.use_thread)
2217                         nr_thread++;
2218                 else
2219                         nr_process++;
2220         }
2221
2222         if (output_format & FIO_OUTPUT_NORMAL) {
2223                 struct buf_output out;
2224
2225                 buf_output_init(&out);
2226                 __log_buf(&out, "Starting ");
2227                 if (nr_thread)
2228                         __log_buf(&out, "%d thread%s", nr_thread,
2229                                                 nr_thread > 1 ? "s" : "");
2230                 if (nr_process) {
2231                         if (nr_thread)
2232                                 __log_buf(&out, " and ");
2233                         __log_buf(&out, "%d process%s", nr_process,
2234                                                 nr_process > 1 ? "es" : "");
2235                 }
2236                 __log_buf(&out, "\n");
2237                 log_info_buf(out.buf, out.buflen);
2238                 buf_output_free(&out);
2239         }
2240
2241         todo = thread_number;
2242         nr_running = 0;
2243         nr_started = 0;
2244         m_rate = t_rate = 0;
2245
2246         for_each_td(td, i) {
2247                 print_status_init(td->thread_number - 1);
2248
2249                 if (!td->o.create_serialize)
2250                         continue;
2251
2252                 if (fio_verify_load_state(td))
2253                         goto reap;
2254
2255                 /*
2256                  * do file setup here so it happens sequentially,
2257                  * we don't want X number of threads getting their
2258                  * client data interspersed on disk
2259                  */
2260                 if (setup_files(td)) {
2261 reap:
2262                         exit_value++;
2263                         if (td->error)
2264                                 log_err("fio: pid=%d, err=%d/%s\n",
2265                                         (int) td->pid, td->error, td->verror);
2266                         td_set_runstate(td, TD_REAPED);
2267                         todo--;
2268                 } else {
2269                         struct fio_file *f;
2270                         unsigned int j;
2271
2272                         /*
2273                          * for sharing to work, each job must always open
2274                          * its own files. so close them, if we opened them
2275                          * for creation
2276                          */
2277                         for_each_file(td, f, j) {
2278                                 if (fio_file_open(f))
2279                                         td_io_close_file(td, f);
2280                         }
2281                 }
2282         }
2283
2284         /* start idle threads before io threads start to run */
2285         fio_idle_prof_start();
2286
2287         set_genesis_time();
2288
2289         while (todo) {
2290                 struct thread_data *map[REAL_MAX_JOBS];
2291                 struct timespec this_start;
2292                 int this_jobs = 0, left;
2293                 struct fork_data *fd;
2294
2295                 /*
2296                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2297                  */
2298                 for_each_td(td, i) {
2299                         if (td->runstate != TD_NOT_CREATED)
2300                                 continue;
2301
2302                         /*
2303                          * never got a chance to start, killed by other
2304                          * thread for some reason
2305                          */
2306                         if (td->terminate) {
2307                                 todo--;
2308                                 continue;
2309                         }
2310
2311                         if (td->o.start_delay) {
2312                                 spent = utime_since_genesis();
2313
2314                                 if (td->o.start_delay > spent)
2315                                         continue;
2316                         }
2317
2318                         if (td->o.stonewall && (nr_started || nr_running)) {
2319                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2320                                                         td->o.name);
2321                                 break;
2322                         }
2323
2324                         if (waitee_running(td)) {
2325                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2326                                                 td->o.name, td->o.wait_for);
2327                                 continue;
2328                         }
2329
2330                         init_disk_util(td);
2331
2332                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2333                         td->update_rusage = 0;
2334
2335                         /*
2336                          * Set state to created. Thread will transition
2337                          * to TD_INITIALIZED when it's done setting up.
2338                          */
2339                         td_set_runstate(td, TD_CREATED);
2340                         map[this_jobs++] = td;
2341                         nr_started++;
2342
2343                         fd = calloc(1, sizeof(*fd));
2344                         fd->td = td;
2345                         fd->sk_out = sk_out;
2346
2347                         if (td->o.use_thread) {
2348                                 int ret;
2349
2350                                 dprint(FD_PROCESS, "will pthread_create\n");
2351                                 ret = pthread_create(&td->thread, NULL,
2352                                                         thread_main, fd);
2353                                 if (ret) {
2354                                         log_err("pthread_create: %s\n",
2355                                                         strerror(ret));
2356                                         free(fd);
2357                                         nr_started--;
2358                                         break;
2359                                 }
2360                                 fd = NULL;
2361                                 ret = pthread_detach(td->thread);
2362                                 if (ret)
2363                                         log_err("pthread_detach: %s",
2364                                                         strerror(ret));
2365                         } else {
2366                                 pid_t pid;
2367                                 dprint(FD_PROCESS, "will fork\n");
2368                                 pid = fork();
2369                                 if (!pid) {
2370                                         int ret;
2371
2372                                         ret = (int)(uintptr_t)thread_main(fd);
2373                                         _exit(ret);
2374                                 } else if (i == fio_debug_jobno)
2375                                         *fio_debug_jobp = pid;
2376                         }
2377                         dprint(FD_MUTEX, "wait on startup_sem\n");
2378                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2379                                 log_err("fio: job startup hung? exiting.\n");
2380                                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2381                                 fio_abort = true;
2382                                 nr_started--;
2383                                 free(fd);
2384                                 break;
2385                         }
2386                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2387                 }
2388
2389                 /*
2390                  * Wait for the started threads to transition to
2391                  * TD_INITIALIZED.
2392                  */
2393                 fio_gettime(&this_start, NULL);
2394                 left = this_jobs;
2395                 while (left && !fio_abort) {
2396                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2397                                 break;
2398
2399                         do_usleep(100000);
2400
2401                         for (i = 0; i < this_jobs; i++) {
2402                                 td = map[i];
2403                                 if (!td)
2404                                         continue;
2405                                 if (td->runstate == TD_INITIALIZED) {
2406                                         map[i] = NULL;
2407                                         left--;
2408                                 } else if (td->runstate >= TD_EXITED) {
2409                                         map[i] = NULL;
2410                                         left--;
2411                                         todo--;
2412                                         nr_running++; /* work-around... */
2413                                 }
2414                         }
2415                 }
2416
2417                 if (left) {
2418                         log_err("fio: %d job%s failed to start\n", left,
2419                                         left > 1 ? "s" : "");
2420                         for (i = 0; i < this_jobs; i++) {
2421                                 td = map[i];
2422                                 if (!td)
2423                                         continue;
2424                                 kill(td->pid, SIGTERM);
2425                         }
2426                         break;
2427                 }
2428
2429                 /*
2430                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2431                  */
2432                 for_each_td(td, i) {
2433                         if (td->runstate != TD_INITIALIZED)
2434                                 continue;
2435
2436                         if (in_ramp_time(td))
2437                                 td_set_runstate(td, TD_RAMP);
2438                         else
2439                                 td_set_runstate(td, TD_RUNNING);
2440                         nr_running++;
2441                         nr_started--;
2442                         m_rate += ddir_rw_sum(td->o.ratemin);
2443                         t_rate += ddir_rw_sum(td->o.rate);
2444                         todo--;
2445                         fio_sem_up(td->sem);
2446                 }
2447
2448                 reap_threads(&nr_running, &t_rate, &m_rate);
2449
2450                 if (todo)
2451                         do_usleep(100000);
2452         }
2453
2454         while (nr_running) {
2455                 reap_threads(&nr_running, &t_rate, &m_rate);
2456                 do_usleep(10000);
2457         }
2458
2459         fio_idle_prof_stop();
2460
2461         update_io_ticks();
2462 }
2463
2464 static void free_disk_util(void)
2465 {
2466         disk_util_prune_entries();
2467         helper_thread_destroy();
2468 }
2469
2470 int fio_backend(struct sk_out *sk_out)
2471 {
2472         struct thread_data *td;
2473         int i;
2474
2475         if (exec_profile) {
2476                 if (load_profile(exec_profile))
2477                         return 1;
2478                 free(exec_profile);
2479                 exec_profile = NULL;
2480         }
2481         if (!thread_number)
2482                 return 0;
2483
2484         if (write_bw_log) {
2485                 struct log_params p = {
2486                         .log_type = IO_LOG_TYPE_BW,
2487                 };
2488
2489                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2490                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2491                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2492         }
2493
2494         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2495         if (!sk_out)
2496                 is_local_backend = true;
2497         if (startup_sem == NULL)
2498                 return 1;
2499
2500         set_genesis_time();
2501         stat_init();
2502         if (helper_thread_create(startup_sem, sk_out))
2503                 log_err("fio: failed to create helper thread\n");
2504
2505         cgroup_list = smalloc(sizeof(*cgroup_list));
2506         if (cgroup_list)
2507                 INIT_FLIST_HEAD(cgroup_list);
2508
2509         run_threads(sk_out);
2510
2511         helper_thread_exit();
2512
2513         if (!fio_abort) {
2514                 __show_run_stats();
2515                 if (write_bw_log) {
2516                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2517                                 struct io_log *log = agg_io_log[i];
2518
2519                                 flush_log(log, false);
2520                                 free_log(log);
2521                         }
2522                 }
2523         }
2524
2525         for_each_td(td, i) {
2526                 steadystate_free(td);
2527                 fio_options_free(td);
2528                 if (td->rusage_sem) {
2529                         fio_sem_remove(td->rusage_sem);
2530                         td->rusage_sem = NULL;
2531                 }
2532                 fio_sem_remove(td->sem);
2533                 td->sem = NULL;
2534         }
2535
2536         free_disk_util();
2537         if (cgroup_list) {
2538                 cgroup_kill(cgroup_list);
2539                 sfree(cgroup_list);
2540         }
2541
2542         fio_sem_remove(startup_sem);
2543         stat_exit();
2544         return exit_value;
2545 }