Merge branch 'thinkcycles-parameter' of https://github.com/cloehle/fio
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32 #include <pthread.h>
33
34 #include "fio.h"
35 #include "smalloc.h"
36 #include "verify.h"
37 #include "diskutil.h"
38 #include "cgroup.h"
39 #include "profile.h"
40 #include "lib/rand.h"
41 #include "lib/memalign.h"
42 #include "server.h"
43 #include "lib/getrusage.h"
44 #include "idletime.h"
45 #include "err.h"
46 #include "workqueue.h"
47 #include "lib/mountcheck.h"
48 #include "rate-submit.h"
49 #include "helper_thread.h"
50 #include "pshared.h"
51 #include "zone-dist.h"
52 #include "fio_time.h"
53
54 static struct fio_sem *startup_sem;
55 static struct flist_head *cgroup_list;
56 static struct cgroup_mnt *cgroup_mnt;
57 static int exit_value;
58 static volatile bool fio_abort;
59 static unsigned int nr_process = 0;
60 static unsigned int nr_thread = 0;
61
62 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
63
64 int groupid = 0;
65 unsigned int thread_number = 0;
66 unsigned int nr_segments = 0;
67 unsigned int cur_segment = 0;
68 unsigned int stat_number = 0;
69 int temp_stall_ts;
70 unsigned long done_secs = 0;
71 #ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
72 pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
73 #else
74 pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
75 #endif
76
77 #define JOB_START_TIMEOUT       (5 * 1000)
78
79 static void sig_int(int sig)
80 {
81         if (nr_segments) {
82                 if (is_backend)
83                         fio_server_got_signal(sig);
84                 else {
85                         log_info("\nfio: terminating on signal %d\n", sig);
86                         log_info_flush();
87                         exit_value = 128;
88                 }
89
90                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
91         }
92 }
93
94 #ifdef WIN32
95 static void sig_break(int sig)
96 {
97         sig_int(sig);
98
99         /**
100          * Windows terminates all job processes on SIGBREAK after the handler
101          * returns, so give them time to wrap-up and give stats
102          */
103         for_each_td(td) {
104                 while (td->runstate < TD_EXITED)
105                         sleep(1);
106         } end_for_each();
107 }
108 #endif
109
110 void sig_show_status(int sig)
111 {
112         show_running_run_stats();
113 }
114
115 static void set_sig_handlers(void)
116 {
117         struct sigaction act;
118
119         memset(&act, 0, sizeof(act));
120         act.sa_handler = sig_int;
121         act.sa_flags = SA_RESTART;
122         sigaction(SIGINT, &act, NULL);
123
124         memset(&act, 0, sizeof(act));
125         act.sa_handler = sig_int;
126         act.sa_flags = SA_RESTART;
127         sigaction(SIGTERM, &act, NULL);
128
129 /* Windows uses SIGBREAK as a quit signal from other applications */
130 #ifdef WIN32
131         memset(&act, 0, sizeof(act));
132         act.sa_handler = sig_break;
133         act.sa_flags = SA_RESTART;
134         sigaction(SIGBREAK, &act, NULL);
135 #endif
136
137         memset(&act, 0, sizeof(act));
138         act.sa_handler = sig_show_status;
139         act.sa_flags = SA_RESTART;
140         sigaction(SIGUSR1, &act, NULL);
141
142         if (is_backend) {
143                 memset(&act, 0, sizeof(act));
144                 act.sa_handler = sig_int;
145                 act.sa_flags = SA_RESTART;
146                 sigaction(SIGPIPE, &act, NULL);
147         }
148 }
149
150 /*
151  * Check if we are above the minimum rate given.
152  */
153 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
154                              enum fio_ddir ddir)
155 {
156         unsigned long long current_rate_check_bytes = td->this_io_bytes[ddir];
157         unsigned long current_rate_check_blocks = td->this_io_blocks[ddir];
158         unsigned long long option_rate_bytes_min = td->o.ratemin[ddir];
159         unsigned int option_rate_iops_min = td->o.rate_iops_min[ddir];
160
161         assert(ddir_rw(ddir));
162
163         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
164                 return false;
165
166         /*
167          * allow a 2 second settle period in the beginning
168          */
169         if (mtime_since(&td->start, now) < 2000)
170                 return false;
171
172         /*
173          * if last_rate_check_blocks or last_rate_check_bytes is set,
174          * we can compute a rate per ratecycle
175          */
176         if (td->last_rate_check_bytes[ddir] || td->last_rate_check_blocks[ddir]) {
177                 unsigned long spent = mtime_since(&td->last_rate_check_time[ddir], now);
178                 if (spent < td->o.ratecycle || spent==0)
179                         return false;
180
181                 if (td->o.ratemin[ddir]) {
182                         /*
183                          * check bandwidth specified rate
184                          */
185                         unsigned long long current_rate_bytes =
186                                 ((current_rate_check_bytes - td->last_rate_check_bytes[ddir]) * 1000) / spent;
187                         if (current_rate_bytes < option_rate_bytes_min) {
188                                 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
189                                         td->o.name, option_rate_bytes_min, current_rate_bytes);
190                                 return true;
191                         }
192                 } else {
193                         /*
194                          * checks iops specified rate
195                          */
196                         unsigned long long current_rate_iops =
197                                 ((current_rate_check_blocks - td->last_rate_check_blocks[ddir]) * 1000) / spent;
198
199                         if (current_rate_iops < option_rate_iops_min) {
200                                 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
201                                         td->o.name, option_rate_iops_min, current_rate_iops);
202                                 return true;
203                         }
204                 }
205         }
206
207         td->last_rate_check_bytes[ddir] = current_rate_check_bytes;
208         td->last_rate_check_blocks[ddir] = current_rate_check_blocks;
209         memcpy(&td->last_rate_check_time[ddir], now, sizeof(*now));
210         return false;
211 }
212
213 static bool check_min_rate(struct thread_data *td, struct timespec *now)
214 {
215         bool ret = false;
216
217         for_each_rw_ddir(ddir) {
218                 if (td->bytes_done[ddir])
219                         ret |= __check_min_rate(td, now, ddir);
220         }
221
222         return ret;
223 }
224
225 /*
226  * When job exits, we can cancel the in-flight IO if we are using async
227  * io. Attempt to do so.
228  */
229 static void cleanup_pending_aio(struct thread_data *td)
230 {
231         int r;
232
233         /*
234          * get immediately available events, if any
235          */
236         r = io_u_queued_complete(td, 0);
237
238         /*
239          * now cancel remaining active events
240          */
241         if (td->io_ops->cancel) {
242                 struct io_u *io_u;
243                 int i;
244
245                 io_u_qiter(&td->io_u_all, io_u, i) {
246                         if (io_u->flags & IO_U_F_FLIGHT) {
247                                 r = td->io_ops->cancel(td, io_u);
248                                 if (!r)
249                                         put_io_u(td, io_u);
250                         }
251                 }
252         }
253
254         if (td->cur_depth)
255                 r = io_u_queued_complete(td, td->cur_depth);
256 }
257
258 /*
259  * Helper to handle the final sync of a file. Works just like the normal
260  * io path, just does everything sync.
261  */
262 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
263 {
264         struct io_u *io_u = __get_io_u(td);
265         enum fio_q_status ret;
266
267         if (!io_u)
268                 return true;
269
270         io_u->ddir = DDIR_SYNC;
271         io_u->file = f;
272         io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
273
274         if (td_io_prep(td, io_u)) {
275                 put_io_u(td, io_u);
276                 return true;
277         }
278
279 requeue:
280         ret = td_io_queue(td, io_u);
281         switch (ret) {
282         case FIO_Q_QUEUED:
283                 td_io_commit(td);
284                 if (io_u_queued_complete(td, 1) < 0)
285                         return true;
286                 break;
287         case FIO_Q_COMPLETED:
288                 if (io_u->error) {
289                         td_verror(td, io_u->error, "td_io_queue");
290                         return true;
291                 }
292
293                 if (io_u_sync_complete(td, io_u) < 0)
294                         return true;
295                 break;
296         case FIO_Q_BUSY:
297                 td_io_commit(td);
298                 goto requeue;
299         }
300
301         return false;
302 }
303
304 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
305 {
306         int ret, ret2;
307
308         if (fio_file_open(f))
309                 return fio_io_sync(td, f);
310
311         if (td_io_open_file(td, f))
312                 return 1;
313
314         ret = fio_io_sync(td, f);
315         ret2 = 0;
316         if (fio_file_open(f))
317                 ret2 = td_io_close_file(td, f);
318         return (ret || ret2);
319 }
320
321 static inline void __update_ts_cache(struct thread_data *td)
322 {
323         fio_gettime(&td->ts_cache, NULL);
324 }
325
326 static inline void update_ts_cache(struct thread_data *td)
327 {
328         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
329                 __update_ts_cache(td);
330 }
331
332 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
333 {
334         if (in_ramp_time(td))
335                 return false;
336         if (!td->o.timeout)
337                 return false;
338         if (utime_since(&td->epoch, t) >= td->o.timeout)
339                 return true;
340
341         return false;
342 }
343
344 /*
345  * We need to update the runtime consistently in ms, but keep a running
346  * tally of the current elapsed time in microseconds for sub millisecond
347  * updates.
348  */
349 static inline void update_runtime(struct thread_data *td,
350                                   unsigned long long *elapsed_us,
351                                   const enum fio_ddir ddir)
352 {
353         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
354                 return;
355
356         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
357         elapsed_us[ddir] += utime_since_now(&td->start);
358         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
359 }
360
361 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
362                                 int *retptr)
363 {
364         int ret = *retptr;
365
366         if (ret < 0 || td->error) {
367                 int err = td->error;
368                 enum error_type_bit eb;
369
370                 if (ret < 0)
371                         err = -ret;
372
373                 eb = td_error_type(ddir, err);
374                 if (!(td->o.continue_on_error & (1 << eb)))
375                         return true;
376
377                 if (td_non_fatal_error(td, eb, err)) {
378                         /*
379                          * Continue with the I/Os in case of
380                          * a non fatal error.
381                          */
382                         update_error_count(td, err);
383                         td_clear_error(td);
384                         *retptr = 0;
385                         return false;
386                 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
387                         /*
388                          * We expect to hit this error if
389                          * fill_device option is set.
390                          */
391                         td_clear_error(td);
392                         fio_mark_td_terminate(td);
393                         return true;
394                 } else {
395                         /*
396                          * Stop the I/O in case of a fatal
397                          * error.
398                          */
399                         update_error_count(td, err);
400                         return true;
401                 }
402         }
403
404         return false;
405 }
406
407 static void check_update_rusage(struct thread_data *td)
408 {
409         if (td->update_rusage) {
410                 td->update_rusage = 0;
411                 update_rusage_stat(td);
412                 fio_sem_up(td->rusage_sem);
413         }
414 }
415
416 static int wait_for_completions(struct thread_data *td, struct timespec *time)
417 {
418         const int full = queue_full(td);
419         int min_evts = 0;
420         int ret;
421
422         if (td->flags & TD_F_REGROW_LOGS)
423                 return io_u_quiesce(td);
424
425         /*
426          * if the queue is full, we MUST reap at least 1 event
427          */
428         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
429         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
430                 min_evts = 1;
431
432         if (time && should_check_rate(td))
433                 fio_gettime(time, NULL);
434
435         do {
436                 ret = io_u_queued_complete(td, min_evts);
437                 if (ret < 0)
438                         break;
439         } while (full && (td->cur_depth > td->o.iodepth_low));
440
441         return ret;
442 }
443
444 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
445                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
446                    struct timespec *comp_time)
447 {
448         switch (*ret) {
449         case FIO_Q_COMPLETED:
450                 if (io_u->error) {
451                         *ret = -io_u->error;
452                         clear_io_u(td, io_u);
453                 } else if (io_u->resid) {
454                         long long bytes = io_u->xfer_buflen - io_u->resid;
455                         struct fio_file *f = io_u->file;
456
457                         if (bytes_issued)
458                                 *bytes_issued += bytes;
459
460                         if (!from_verify)
461                                 trim_io_piece(io_u);
462
463                         /*
464                          * zero read, fail
465                          */
466                         if (!bytes) {
467                                 if (!from_verify)
468                                         unlog_io_piece(td, io_u);
469                                 td_verror(td, EIO, "full resid");
470                                 clear_io_u(td, io_u);
471                                 break;
472                         }
473
474                         io_u->xfer_buflen = io_u->resid;
475                         io_u->xfer_buf += bytes;
476                         io_u->offset += bytes;
477
478                         if (ddir_rw(io_u->ddir))
479                                 td->ts.short_io_u[io_u->ddir]++;
480
481                         if (io_u->offset == f->real_file_size)
482                                 goto sync_done;
483
484                         requeue_io_u(td, &io_u);
485                 } else {
486 sync_done:
487                         if (comp_time && should_check_rate(td))
488                                 fio_gettime(comp_time, NULL);
489
490                         *ret = io_u_sync_complete(td, io_u);
491                         if (*ret < 0)
492                                 break;
493                 }
494
495                 if (td->flags & TD_F_REGROW_LOGS)
496                         regrow_logs(td);
497
498                 /*
499                  * when doing I/O (not when verifying),
500                  * check for any errors that are to be ignored
501                  */
502                 if (!from_verify)
503                         break;
504
505                 return 0;
506         case FIO_Q_QUEUED:
507                 /*
508                  * if the engine doesn't have a commit hook,
509                  * the io_u is really queued. if it does have such
510                  * a hook, it has to call io_u_queued() itself.
511                  */
512                 if (td->io_ops->commit == NULL)
513                         io_u_queued(td, io_u);
514                 if (bytes_issued)
515                         *bytes_issued += io_u->xfer_buflen;
516                 break;
517         case FIO_Q_BUSY:
518                 if (!from_verify)
519                         unlog_io_piece(td, io_u);
520                 requeue_io_u(td, &io_u);
521                 td_io_commit(td);
522                 break;
523         default:
524                 assert(*ret < 0);
525                 td_verror(td, -(*ret), "td_io_queue");
526                 break;
527         }
528
529         if (break_on_this_error(td, ddir, ret))
530                 return 1;
531
532         return 0;
533 }
534
535 static inline bool io_in_polling(struct thread_data *td)
536 {
537         return !td->o.iodepth_batch_complete_min &&
538                    !td->o.iodepth_batch_complete_max;
539 }
540 /*
541  * Unlinks files from thread data fio_file structure
542  */
543 static int unlink_all_files(struct thread_data *td)
544 {
545         struct fio_file *f;
546         unsigned int i;
547         int ret = 0;
548
549         for_each_file(td, f, i) {
550                 if (f->filetype != FIO_TYPE_FILE)
551                         continue;
552                 ret = td_io_unlink_file(td, f);
553                 if (ret)
554                         break;
555         }
556
557         if (ret)
558                 td_verror(td, ret, "unlink_all_files");
559
560         return ret;
561 }
562
563 /*
564  * Check if io_u will overlap an in-flight IO in the queue
565  */
566 bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
567 {
568         bool overlap;
569         struct io_u *check_io_u;
570         unsigned long long x1, x2, y1, y2;
571         int i;
572
573         x1 = io_u->offset;
574         x2 = io_u->offset + io_u->buflen;
575         overlap = false;
576         io_u_qiter(q, check_io_u, i) {
577                 if (check_io_u->flags & IO_U_F_FLIGHT) {
578                         y1 = check_io_u->offset;
579                         y2 = check_io_u->offset + check_io_u->buflen;
580
581                         if (x1 < y2 && y1 < x2) {
582                                 overlap = true;
583                                 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
584                                                 x1, io_u->buflen,
585                                                 y1, check_io_u->buflen);
586                                 break;
587                         }
588                 }
589         }
590
591         return overlap;
592 }
593
594 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
595 {
596         /*
597          * Check for overlap if the user asked us to, and we have
598          * at least one IO in flight besides this one.
599          */
600         if (td->o.serialize_overlap && td->cur_depth > 1 &&
601             in_flight_overlap(&td->io_u_all, io_u))
602                 return FIO_Q_BUSY;
603
604         return td_io_queue(td, io_u);
605 }
606
607 /*
608  * The main verify engine. Runs over the writes we previously submitted,
609  * reads the blocks back in, and checks the crc/md5 of the data.
610  */
611 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
612 {
613         struct fio_file *f;
614         struct io_u *io_u;
615         int ret, min_events;
616         unsigned int i;
617
618         dprint(FD_VERIFY, "starting loop\n");
619
620         /*
621          * sync io first and invalidate cache, to make sure we really
622          * read from disk.
623          */
624         for_each_file(td, f, i) {
625                 if (!fio_file_open(f))
626                         continue;
627                 if (fio_io_sync(td, f))
628                         break;
629                 if (file_invalidate_cache(td, f))
630                         break;
631         }
632
633         check_update_rusage(td);
634
635         if (td->error)
636                 return;
637
638         td_set_runstate(td, TD_VERIFYING);
639
640         io_u = NULL;
641         while (!td->terminate) {
642                 enum fio_ddir ddir;
643                 int full;
644
645                 update_ts_cache(td);
646                 check_update_rusage(td);
647
648                 if (runtime_exceeded(td, &td->ts_cache)) {
649                         __update_ts_cache(td);
650                         if (runtime_exceeded(td, &td->ts_cache)) {
651                                 fio_mark_td_terminate(td);
652                                 break;
653                         }
654                 }
655
656                 if (flow_threshold_exceeded(td))
657                         continue;
658
659                 if (!td->o.experimental_verify) {
660                         io_u = __get_io_u(td);
661                         if (!io_u)
662                                 break;
663
664                         if (get_next_verify(td, io_u)) {
665                                 put_io_u(td, io_u);
666                                 break;
667                         }
668
669                         if (td_io_prep(td, io_u)) {
670                                 put_io_u(td, io_u);
671                                 break;
672                         }
673                 } else {
674                         if (td->bytes_verified + td->o.rw_min_bs > verify_bytes)
675                                 break;
676
677                         while ((io_u = get_io_u(td)) != NULL) {
678                                 if (IS_ERR_OR_NULL(io_u)) {
679                                         io_u = NULL;
680                                         ret = FIO_Q_BUSY;
681                                         goto reap;
682                                 }
683
684                                 /*
685                                  * We are only interested in the places where
686                                  * we wrote or trimmed IOs. Turn those into
687                                  * reads for verification purposes.
688                                  */
689                                 if (io_u->ddir == DDIR_READ) {
690                                         /*
691                                          * Pretend we issued it for rwmix
692                                          * accounting
693                                          */
694                                         td->io_issues[DDIR_READ]++;
695                                         put_io_u(td, io_u);
696                                         continue;
697                                 } else if (io_u->ddir == DDIR_TRIM) {
698                                         io_u->ddir = DDIR_READ;
699                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
700                                         break;
701                                 } else if (io_u->ddir == DDIR_WRITE) {
702                                         io_u->ddir = DDIR_READ;
703                                         io_u->numberio = td->verify_read_issues;
704                                         td->verify_read_issues++;
705                                         populate_verify_io_u(td, io_u);
706                                         break;
707                                 } else {
708                                         put_io_u(td, io_u);
709                                         continue;
710                                 }
711                         }
712
713                         if (!io_u)
714                                 break;
715                 }
716
717                 if (verify_state_should_stop(td, io_u)) {
718                         put_io_u(td, io_u);
719                         break;
720                 }
721
722                 if (td->o.verify_async)
723                         io_u->end_io = verify_io_u_async;
724                 else
725                         io_u->end_io = verify_io_u;
726
727                 ddir = io_u->ddir;
728                 if (!td->o.disable_slat)
729                         fio_gettime(&io_u->start_time, NULL);
730
731                 ret = io_u_submit(td, io_u);
732
733                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
734                         break;
735
736                 /*
737                  * if we can queue more, do so. but check if there are
738                  * completed io_u's first. Note that we can get BUSY even
739                  * without IO queued, if the system is resource starved.
740                  */
741 reap:
742                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
743                 if (full || io_in_polling(td))
744                         ret = wait_for_completions(td, NULL);
745
746                 if (ret < 0)
747                         break;
748         }
749
750         check_update_rusage(td);
751
752         if (!td->error) {
753                 min_events = td->cur_depth;
754
755                 if (min_events)
756                         ret = io_u_queued_complete(td, min_events);
757         } else
758                 cleanup_pending_aio(td);
759
760         td_set_runstate(td, TD_RUNNING);
761
762         dprint(FD_VERIFY, "exiting loop\n");
763 }
764
765 static bool exceeds_number_ios(struct thread_data *td)
766 {
767         unsigned long long number_ios;
768
769         if (!td->o.number_ios)
770                 return false;
771
772         number_ios = ddir_rw_sum(td->io_blocks);
773         number_ios += td->io_u_queued + td->io_u_in_flight;
774
775         return number_ios >= (td->o.number_ios * td->loops);
776 }
777
778 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
779 {
780         unsigned long long bytes, limit;
781
782         if (td_rw(td))
783                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
784         else if (td_write(td))
785                 bytes = this_bytes[DDIR_WRITE];
786         else if (td_read(td))
787                 bytes = this_bytes[DDIR_READ];
788         else
789                 bytes = this_bytes[DDIR_TRIM];
790
791         if (td->o.io_size)
792                 limit = td->o.io_size;
793         else
794                 limit = td->o.size;
795
796         limit *= td->loops;
797         return bytes >= limit || exceeds_number_ios(td);
798 }
799
800 static bool io_issue_bytes_exceeded(struct thread_data *td)
801 {
802         return io_bytes_exceeded(td, td->io_issue_bytes);
803 }
804
805 static bool io_complete_bytes_exceeded(struct thread_data *td)
806 {
807         return io_bytes_exceeded(td, td->this_io_bytes);
808 }
809
810 /*
811  * used to calculate the next io time for rate control
812  *
813  */
814 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
815 {
816         uint64_t bps = td->rate_bps[ddir];
817
818         assert(!(td->flags & TD_F_CHILD));
819
820         if (td->o.rate_process == RATE_PROCESS_POISSON) {
821                 uint64_t val, iops;
822
823                 iops = bps / td->o.min_bs[ddir];
824                 val = (int64_t) (1000000 / iops) *
825                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
826                 if (val) {
827                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
828                                         (unsigned long long) 1000000 / val,
829                                         ddir);
830                 }
831                 td->last_usec[ddir] += val;
832                 return td->last_usec[ddir];
833         } else if (bps) {
834                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
835                 uint64_t secs = bytes / bps;
836                 uint64_t remainder = bytes % bps;
837
838                 return remainder * 1000000 / bps + secs * 1000000;
839         }
840
841         return 0;
842 }
843
844 static void init_thinktime(struct thread_data *td)
845 {
846         if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
847                 td->thinktime_blocks_counter = td->io_blocks;
848         else
849                 td->thinktime_blocks_counter = td->io_issues;
850         td->last_thinktime = td->epoch;
851         td->last_thinktime_blocks = 0;
852 }
853
854 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
855                              struct timespec *time)
856 {
857         unsigned long long b;
858         unsigned long long runtime_left;
859         uint64_t total;
860         int left;
861         struct timespec now;
862         bool stall = false;
863
864         if (td->o.thinktime_iotime) {
865                 fio_gettime(&now, NULL);
866                 if (utime_since(&td->last_thinktime, &now)
867                     >= td->o.thinktime_iotime) {
868                         stall = true;
869                 } else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
870                         /*
871                          * When thinktime_iotime is set and thinktime_blocks is
872                          * not set, skip the thinktime_blocks check, since
873                          * thinktime_blocks default value 1 does not work
874                          * together with thinktime_iotime.
875                          */
876                         return;
877                 }
878
879         }
880
881         b = ddir_rw_sum(td->thinktime_blocks_counter);
882         if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
883                 stall = true;
884
885         if (!stall)
886                 return;
887
888         io_u_quiesce(td);
889
890         left = td->o.thinktime_spin;
891         if (td->o.timeout) {
892                 runtime_left = td->o.timeout - utime_since_now(&td->epoch);
893                 if (runtime_left < (unsigned long long)left)
894                         left = runtime_left;
895         }
896
897         total = 0;
898         if (left)
899                 total = usec_spin(left);
900
901         /*
902          * usec_spin() might run for slightly longer than intended in a VM
903          * where the vCPU could get descheduled or the hypervisor could steal
904          * CPU time. Ensure "left" doesn't become negative.
905          */
906         if (total < td->o.thinktime)
907                 left = td->o.thinktime - total;
908         else
909                 left = 0;
910
911         if (td->o.timeout) {
912                 runtime_left = td->o.timeout - utime_since_now(&td->epoch);
913                 if (runtime_left < (unsigned long long)left)
914                         left = runtime_left;
915         }
916
917         if (left)
918                 total += usec_sleep(td, left);
919
920         /*
921          * If we're ignoring thinktime for the rate, add the number of bytes
922          * we would have done while sleeping, minus one block to ensure we
923          * start issuing immediately after the sleep.
924          */
925         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
926                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
927                 uint64_t bs = td->o.min_bs[ddir];
928                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
929                 uint64_t over;
930
931                 if (usperop <= total)
932                         over = bs;
933                 else
934                         over = (usperop - total) / usperop * -bs;
935
936                 td->rate_io_issue_bytes[ddir] += (missed - over);
937                 /* adjust for rate_process=poisson */
938                 td->last_usec[ddir] += total;
939         }
940
941         if (time && should_check_rate(td))
942                 fio_gettime(time, NULL);
943
944         td->last_thinktime_blocks = b;
945         if (td->o.thinktime_iotime) {
946                 fio_gettime(&now, NULL);
947                 td->last_thinktime = now;
948         }
949 }
950
951 /*
952  * Main IO worker function. It retrieves io_u's to process and queues
953  * and reaps them, checking for rate and errors along the way.
954  *
955  * Returns number of bytes written and trimmed.
956  */
957 static void do_io(struct thread_data *td, uint64_t *bytes_done)
958 {
959         unsigned int i;
960         int ret = 0;
961         uint64_t total_bytes, bytes_issued = 0;
962
963         for (i = 0; i < DDIR_RWDIR_CNT; i++)
964                 bytes_done[i] = td->bytes_done[i];
965
966         if (in_ramp_time(td))
967                 td_set_runstate(td, TD_RAMP);
968         else
969                 td_set_runstate(td, TD_RUNNING);
970
971         lat_target_init(td);
972
973         total_bytes = td->o.size;
974         /*
975         * Allow random overwrite workloads to write up to io_size
976         * before starting verification phase as 'size' doesn't apply.
977         */
978         if (td_write(td) && td_random(td) && td->o.norandommap)
979                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
980         /*
981          * If verify_backlog is enabled, we'll run the verify in this
982          * handler as well. For that case, we may need up to twice the
983          * amount of bytes.
984          */
985         if (td->o.verify != VERIFY_NONE &&
986            (td_write(td) && td->o.verify_backlog))
987                 total_bytes += td->o.size;
988
989         /* In trimwrite mode, each byte is trimmed and then written, so
990          * allow total_bytes or number of ios to be twice as big */
991         if (td_trimwrite(td)) {
992                 total_bytes += td->total_io_size;
993                 td->o.number_ios *= 2;
994         }
995
996         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
997                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
998                 td->o.time_based) {
999                 struct timespec comp_time;
1000                 struct io_u *io_u;
1001                 int full;
1002                 enum fio_ddir ddir;
1003
1004                 check_update_rusage(td);
1005
1006                 if (td->terminate || td->done)
1007                         break;
1008
1009                 update_ts_cache(td);
1010
1011                 if (runtime_exceeded(td, &td->ts_cache)) {
1012                         __update_ts_cache(td);
1013                         if (runtime_exceeded(td, &td->ts_cache)) {
1014                                 fio_mark_td_terminate(td);
1015                                 break;
1016                         }
1017                 }
1018
1019                 if (flow_threshold_exceeded(td))
1020                         continue;
1021
1022                 /*
1023                  * Break if we exceeded the bytes. The exception is time
1024                  * based runs, but we still need to break out of the loop
1025                  * for those to run verification, if enabled.
1026                  * Jobs read from iolog do not use this stop condition.
1027                  */
1028                 if (bytes_issued >= total_bytes &&
1029                     !td->o.read_iolog_file &&
1030                     (!td->o.time_based ||
1031                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
1032                         break;
1033
1034                 io_u = get_io_u(td);
1035                 if (IS_ERR_OR_NULL(io_u)) {
1036                         int err = PTR_ERR(io_u);
1037
1038                         io_u = NULL;
1039                         ddir = DDIR_INVAL;
1040                         if (err == -EBUSY) {
1041                                 ret = FIO_Q_BUSY;
1042                                 goto reap;
1043                         }
1044                         if (td->o.latency_target)
1045                                 goto reap;
1046                         break;
1047                 }
1048
1049                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY) {
1050                         if (!(io_u->flags & IO_U_F_PATTERN_DONE)) {
1051                                 io_u_set(td, io_u, IO_U_F_PATTERN_DONE);
1052                                 io_u->numberio = td->io_issues[io_u->ddir];
1053                                 populate_verify_io_u(td, io_u);
1054                         }
1055                 }
1056
1057                 ddir = io_u->ddir;
1058
1059                 /*
1060                  * Add verification end_io handler if:
1061                  *      - Asked to verify (!td_rw(td))
1062                  *      - Or the io_u is from our verify list (mixed write/ver)
1063                  */
1064                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1065                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1066
1067                         if (verify_state_should_stop(td, io_u)) {
1068                                 put_io_u(td, io_u);
1069                                 break;
1070                         }
1071
1072                         if (td->o.verify_async)
1073                                 io_u->end_io = verify_io_u_async;
1074                         else
1075                                 io_u->end_io = verify_io_u;
1076                         td_set_runstate(td, TD_VERIFYING);
1077                 } else if (in_ramp_time(td))
1078                         td_set_runstate(td, TD_RAMP);
1079                 else
1080                         td_set_runstate(td, TD_RUNNING);
1081
1082                 /*
1083                  * Always log IO before it's issued, so we know the specific
1084                  * order of it. The logged unit will track when the IO has
1085                  * completed.
1086                  */
1087                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1088                     td->o.do_verify &&
1089                     td->o.verify != VERIFY_NONE &&
1090                     !td->o.experimental_verify)
1091                         log_io_piece(td, io_u);
1092
1093                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1094                         const unsigned long long blen = io_u->xfer_buflen;
1095                         const enum fio_ddir __ddir = acct_ddir(io_u);
1096
1097                         if (td->error)
1098                                 break;
1099
1100                         workqueue_enqueue(&td->io_wq, &io_u->work);
1101                         ret = FIO_Q_QUEUED;
1102
1103                         if (ddir_rw(__ddir)) {
1104                                 td->io_issues[__ddir]++;
1105                                 td->io_issue_bytes[__ddir] += blen;
1106                                 td->rate_io_issue_bytes[__ddir] += blen;
1107                         }
1108
1109                         if (should_check_rate(td)) {
1110                                 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1111                                 fio_gettime(&comp_time, NULL);
1112                         }
1113
1114                 } else {
1115                         ret = io_u_submit(td, io_u);
1116
1117                         if (should_check_rate(td))
1118                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1119
1120                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1121                                 break;
1122
1123                         /*
1124                          * See if we need to complete some commands. Note that
1125                          * we can get BUSY even without IO queued, if the
1126                          * system is resource starved.
1127                          */
1128 reap:
1129                         full = queue_full(td) ||
1130                                 (ret == FIO_Q_BUSY && td->cur_depth);
1131                         if (full || io_in_polling(td))
1132                                 ret = wait_for_completions(td, &comp_time);
1133                 }
1134                 if (ret < 0)
1135                         break;
1136
1137                 if (ddir_rw(ddir) && td->o.thinkcycles)
1138                         cycles_spin(td->o.thinkcycles);
1139
1140                 if (ddir_rw(ddir) && td->o.thinktime)
1141                         handle_thinktime(td, ddir, &comp_time);
1142
1143                 if (!ddir_rw_sum(td->bytes_done) &&
1144                     !td_ioengine_flagged(td, FIO_NOIO))
1145                         continue;
1146
1147                 if (!in_ramp_time(td) && should_check_rate(td)) {
1148                         if (check_min_rate(td, &comp_time)) {
1149                                 if (exitall_on_terminate || td->o.exitall_error)
1150                                         fio_terminate_threads(td->groupid, td->o.exit_what);
1151                                 td_verror(td, EIO, "check_min_rate");
1152                                 break;
1153                         }
1154                 }
1155                 if (!in_ramp_time(td) && td->o.latency_target)
1156                         lat_target_check(td);
1157         }
1158
1159         check_update_rusage(td);
1160
1161         if (td->trim_entries)
1162                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1163
1164         if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1165                 td->error = 0;
1166                 fio_mark_td_terminate(td);
1167         }
1168         if (!td->error) {
1169                 struct fio_file *f;
1170
1171                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1172                         workqueue_flush(&td->io_wq);
1173                         i = 0;
1174                 } else
1175                         i = td->cur_depth;
1176
1177                 if (i) {
1178                         ret = io_u_queued_complete(td, i);
1179                         if (td->o.fill_device &&
1180                             (td->error == ENOSPC || td->error == EDQUOT))
1181                                 td->error = 0;
1182                 }
1183
1184                 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1185                         td_set_runstate(td, TD_FSYNCING);
1186
1187                         for_each_file(td, f, i) {
1188                                 if (!fio_file_fsync(td, f))
1189                                         continue;
1190
1191                                 log_err("fio: end_fsync failed for file %s\n",
1192                                                                 f->file_name);
1193                         }
1194                 }
1195         } else {
1196                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD)
1197                         workqueue_flush(&td->io_wq);
1198                 cleanup_pending_aio(td);
1199         }
1200
1201         /*
1202          * stop job if we failed doing any IO
1203          */
1204         if (!ddir_rw_sum(td->this_io_bytes))
1205                 td->done = 1;
1206
1207         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1208                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1209 }
1210
1211 static void free_file_completion_logging(struct thread_data *td)
1212 {
1213         struct fio_file *f;
1214         unsigned int i;
1215
1216         for_each_file(td, f, i) {
1217                 if (!f->last_write_comp)
1218                         break;
1219                 sfree(f->last_write_comp);
1220         }
1221 }
1222
1223 static int init_file_completion_logging(struct thread_data *td,
1224                                         unsigned int depth)
1225 {
1226         struct fio_file *f;
1227         unsigned int i;
1228
1229         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1230                 return 0;
1231
1232         for_each_file(td, f, i) {
1233                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1234                 if (!f->last_write_comp)
1235                         goto cleanup;
1236         }
1237
1238         return 0;
1239
1240 cleanup:
1241         free_file_completion_logging(td);
1242         log_err("fio: failed to alloc write comp data\n");
1243         return 1;
1244 }
1245
1246 static void cleanup_io_u(struct thread_data *td)
1247 {
1248         struct io_u *io_u;
1249
1250         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1251
1252                 if (td->io_ops->io_u_free)
1253                         td->io_ops->io_u_free(td, io_u);
1254
1255                 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1256         }
1257
1258         free_io_mem(td);
1259
1260         io_u_rexit(&td->io_u_requeues);
1261         io_u_qexit(&td->io_u_freelist, false);
1262         io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1263
1264         free_file_completion_logging(td);
1265 }
1266
1267 static int init_io_u(struct thread_data *td)
1268 {
1269         struct io_u *io_u;
1270         int cl_align, i, max_units;
1271         int err;
1272
1273         max_units = td->o.iodepth;
1274
1275         err = 0;
1276         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1277         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1278         err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1279
1280         if (err) {
1281                 log_err("fio: failed setting up IO queues\n");
1282                 return 1;
1283         }
1284
1285         cl_align = os_cache_line_size();
1286
1287         for (i = 0; i < max_units; i++) {
1288                 void *ptr;
1289
1290                 if (td->terminate)
1291                         return 1;
1292
1293                 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1294                 if (!ptr) {
1295                         log_err("fio: unable to allocate aligned memory\n");
1296                         return 1;
1297                 }
1298
1299                 io_u = ptr;
1300                 memset(io_u, 0, sizeof(*io_u));
1301                 INIT_FLIST_HEAD(&io_u->verify_list);
1302                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1303
1304                 io_u->index = i;
1305                 io_u->flags = IO_U_F_FREE;
1306                 io_u_qpush(&td->io_u_freelist, io_u);
1307
1308                 /*
1309                  * io_u never leaves this stack, used for iteration of all
1310                  * io_u buffers.
1311                  */
1312                 io_u_qpush(&td->io_u_all, io_u);
1313
1314                 if (td->io_ops->io_u_init) {
1315                         int ret = td->io_ops->io_u_init(td, io_u);
1316
1317                         if (ret) {
1318                                 log_err("fio: failed to init engine data: %d\n", ret);
1319                                 return 1;
1320                         }
1321                 }
1322         }
1323
1324         if (init_io_u_buffers(td))
1325                 return 1;
1326
1327         if (init_file_completion_logging(td, max_units))
1328                 return 1;
1329
1330         return 0;
1331 }
1332
1333 int init_io_u_buffers(struct thread_data *td)
1334 {
1335         struct io_u *io_u;
1336         unsigned long long max_bs, min_write;
1337         int i, max_units;
1338         int data_xfer = 1;
1339         char *p;
1340
1341         max_units = td->o.iodepth;
1342         max_bs = td_max_bs(td);
1343         min_write = td->o.min_bs[DDIR_WRITE];
1344         td->orig_buffer_size = (unsigned long long) max_bs
1345                                         * (unsigned long long) max_units;
1346
1347         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1348                 data_xfer = 0;
1349
1350         /*
1351          * if we may later need to do address alignment, then add any
1352          * possible adjustment here so that we don't cause a buffer
1353          * overflow later. this adjustment may be too much if we get
1354          * lucky and the allocator gives us an aligned address.
1355          */
1356         if (td->o.odirect || td->o.mem_align ||
1357             td_ioengine_flagged(td, FIO_RAWIO))
1358                 td->orig_buffer_size += page_mask + td->o.mem_align;
1359
1360         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1361                 unsigned long long bs;
1362
1363                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1364                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1365         }
1366
1367         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1368                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1369                 return 1;
1370         }
1371
1372         if (data_xfer && allocate_io_mem(td))
1373                 return 1;
1374
1375         if (td->o.odirect || td->o.mem_align ||
1376             td_ioengine_flagged(td, FIO_RAWIO))
1377                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1378         else
1379                 p = td->orig_buffer;
1380
1381         for (i = 0; i < max_units; i++) {
1382                 io_u = td->io_u_all.io_us[i];
1383                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1384
1385                 if (data_xfer) {
1386                         io_u->buf = p;
1387                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1388
1389                         if (td_write(td))
1390                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1391                         if (td_write(td) && td->o.verify_pattern_bytes) {
1392                                 /*
1393                                  * Fill the buffer with the pattern if we are
1394                                  * going to be doing writes.
1395                                  */
1396                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1397                         }
1398                 }
1399                 p += max_bs;
1400         }
1401
1402         return 0;
1403 }
1404
1405 #ifdef FIO_HAVE_IOSCHED_SWITCH
1406 /*
1407  * These functions are Linux specific.
1408  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1409  */
1410 static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1411 {
1412         char tmp[256], tmp2[128], *p;
1413         FILE *f;
1414         int ret;
1415
1416         assert(file->du && file->du->sysfs_root);
1417         sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1418
1419         f = fopen(tmp, "r+");
1420         if (!f) {
1421                 if (errno == ENOENT) {
1422                         log_err("fio: os or kernel doesn't support IO scheduler"
1423                                 " switching\n");
1424                         return 0;
1425                 }
1426                 td_verror(td, errno, "fopen iosched");
1427                 return 1;
1428         }
1429
1430         /*
1431          * Set io scheduler.
1432          */
1433         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1434         if (ferror(f) || ret != 1) {
1435                 td_verror(td, errno, "fwrite");
1436                 fclose(f);
1437                 return 1;
1438         }
1439
1440         rewind(f);
1441
1442         /*
1443          * Read back and check that the selected scheduler is now the default.
1444          */
1445         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1446         if (ferror(f) || ret < 0) {
1447                 td_verror(td, errno, "fread");
1448                 fclose(f);
1449                 return 1;
1450         }
1451         tmp[ret] = '\0';
1452         /*
1453          * either a list of io schedulers or "none\n" is expected. Strip the
1454          * trailing newline.
1455          */
1456         p = tmp;
1457         strsep(&p, "\n");
1458
1459         /*
1460          * Write to "none" entry doesn't fail, so check the result here.
1461          */
1462         if (!strcmp(tmp, "none")) {
1463                 log_err("fio: io scheduler is not tunable\n");
1464                 fclose(f);
1465                 return 0;
1466         }
1467
1468         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1469         if (!strstr(tmp, tmp2)) {
1470                 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1471                 td_verror(td, EINVAL, "iosched_switch");
1472                 fclose(f);
1473                 return 1;
1474         }
1475
1476         fclose(f);
1477         return 0;
1478 }
1479
1480 static int switch_ioscheduler(struct thread_data *td)
1481 {
1482         struct fio_file *f;
1483         unsigned int i;
1484         int ret = 0;
1485
1486         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1487                 return 0;
1488
1489         assert(td->files && td->files[0]);
1490
1491         for_each_file(td, f, i) {
1492
1493                 /* Only consider regular files and block device files */
1494                 switch (f->filetype) {
1495                 case FIO_TYPE_FILE:
1496                 case FIO_TYPE_BLOCK:
1497                         /*
1498                          * Make sure that the device hosting the file could
1499                          * be determined.
1500                          */
1501                         if (!f->du)
1502                                 continue;
1503                         break;
1504                 case FIO_TYPE_CHAR:
1505                 case FIO_TYPE_PIPE:
1506                 default:
1507                         continue;
1508                 }
1509
1510                 ret = set_ioscheduler(td, f);
1511                 if (ret)
1512                         return ret;
1513         }
1514
1515         return 0;
1516 }
1517
1518 #else
1519
1520 static int switch_ioscheduler(struct thread_data *td)
1521 {
1522         return 0;
1523 }
1524
1525 #endif /* FIO_HAVE_IOSCHED_SWITCH */
1526
1527 static bool keep_running(struct thread_data *td)
1528 {
1529         unsigned long long limit;
1530
1531         if (td->done)
1532                 return false;
1533         if (td->terminate)
1534                 return false;
1535         if (td->o.time_based)
1536                 return true;
1537         if (td->o.loops) {
1538                 td->o.loops--;
1539                 return true;
1540         }
1541         if (exceeds_number_ios(td))
1542                 return false;
1543
1544         if (td->o.io_size)
1545                 limit = td->o.io_size;
1546         else
1547                 limit = td->o.size;
1548
1549         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1550                 uint64_t diff;
1551
1552                 /*
1553                  * If the difference is less than the maximum IO size, we
1554                  * are done.
1555                  */
1556                 diff = limit - ddir_rw_sum(td->io_bytes);
1557                 if (diff < td_max_bs(td))
1558                         return false;
1559
1560                 if (fio_files_done(td) && !td->o.io_size)
1561                         return false;
1562
1563                 return true;
1564         }
1565
1566         return false;
1567 }
1568
1569 static int exec_string(struct thread_options *o, const char *string,
1570                        const char *mode)
1571 {
1572         int ret;
1573         char *str;
1574
1575         if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1576                 return -1;
1577
1578         log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1579                  o->name, mode);
1580         ret = system(str);
1581         if (ret == -1)
1582                 log_err("fio: exec of cmd <%s> failed\n", str);
1583
1584         free(str);
1585         return ret;
1586 }
1587
1588 /*
1589  * Dry run to compute correct state of numberio for verification.
1590  */
1591 static uint64_t do_dry_run(struct thread_data *td)
1592 {
1593         td_set_runstate(td, TD_RUNNING);
1594
1595         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1596                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1597                 struct io_u *io_u;
1598                 int ret;
1599
1600                 if (td->terminate || td->done)
1601                         break;
1602
1603                 io_u = get_io_u(td);
1604                 if (IS_ERR_OR_NULL(io_u))
1605                         break;
1606
1607                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1608                 io_u->error = 0;
1609                 io_u->resid = 0;
1610                 if (ddir_rw(acct_ddir(io_u)))
1611                         td->io_issues[acct_ddir(io_u)]++;
1612                 if (ddir_rw(io_u->ddir)) {
1613                         io_u_mark_depth(td, 1);
1614                         td->ts.total_io_u[io_u->ddir]++;
1615                 }
1616
1617                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1618                     td->o.do_verify &&
1619                     td->o.verify != VERIFY_NONE &&
1620                     !td->o.experimental_verify)
1621                         log_io_piece(td, io_u);
1622
1623                 ret = io_u_sync_complete(td, io_u);
1624                 (void) ret;
1625         }
1626
1627         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1628 }
1629
1630 struct fork_data {
1631         struct thread_data *td;
1632         struct sk_out *sk_out;
1633 };
1634
1635 /*
1636  * Entry point for the thread based jobs. The process based jobs end up
1637  * here as well, after a little setup.
1638  */
1639 static void *thread_main(void *data)
1640 {
1641         struct fork_data *fd = data;
1642         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1643         struct thread_data *td = fd->td;
1644         struct thread_options *o = &td->o;
1645         struct sk_out *sk_out = fd->sk_out;
1646         uint64_t bytes_done[DDIR_RWDIR_CNT];
1647         int deadlock_loop_cnt;
1648         bool clear_state;
1649         int ret;
1650
1651         sk_out_assign(sk_out);
1652         free(fd);
1653
1654         if (!o->use_thread) {
1655                 setsid();
1656                 td->pid = getpid();
1657         } else
1658                 td->pid = gettid();
1659
1660         fio_local_clock_init();
1661
1662         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1663
1664         if (is_backend)
1665                 fio_server_send_start(td);
1666
1667         INIT_FLIST_HEAD(&td->io_log_list);
1668         INIT_FLIST_HEAD(&td->io_hist_list);
1669         INIT_FLIST_HEAD(&td->verify_list);
1670         INIT_FLIST_HEAD(&td->trim_list);
1671         td->io_hist_tree = RB_ROOT;
1672
1673         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1674         if (ret) {
1675                 td_verror(td, ret, "mutex_cond_init_pshared");
1676                 goto err;
1677         }
1678         ret = cond_init_pshared(&td->verify_cond);
1679         if (ret) {
1680                 td_verror(td, ret, "mutex_cond_pshared");
1681                 goto err;
1682         }
1683
1684         td_set_runstate(td, TD_INITIALIZED);
1685         dprint(FD_MUTEX, "up startup_sem\n");
1686         fio_sem_up(startup_sem);
1687         dprint(FD_MUTEX, "wait on td->sem\n");
1688         fio_sem_down(td->sem);
1689         dprint(FD_MUTEX, "done waiting on td->sem\n");
1690
1691         /*
1692          * A new gid requires privilege, so we need to do this before setting
1693          * the uid.
1694          */
1695         if (o->gid != -1U && setgid(o->gid)) {
1696                 td_verror(td, errno, "setgid");
1697                 goto err;
1698         }
1699         if (o->uid != -1U && setuid(o->uid)) {
1700                 td_verror(td, errno, "setuid");
1701                 goto err;
1702         }
1703
1704         td_zone_gen_index(td);
1705
1706         /*
1707          * Do this early, we don't want the compress threads to be limited
1708          * to the same CPUs as the IO workers. So do this before we set
1709          * any potential CPU affinity
1710          */
1711         if (iolog_compress_init(td, sk_out))
1712                 goto err;
1713
1714         /*
1715          * If we have a gettimeofday() thread, make sure we exclude that
1716          * thread from this job
1717          */
1718         if (o->gtod_cpu)
1719                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1720
1721         /*
1722          * Set affinity first, in case it has an impact on the memory
1723          * allocations.
1724          */
1725         if (fio_option_is_set(o, cpumask)) {
1726                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1727                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1728                         if (!ret) {
1729                                 log_err("fio: no CPUs set\n");
1730                                 log_err("fio: Try increasing number of available CPUs\n");
1731                                 td_verror(td, EINVAL, "cpus_split");
1732                                 goto err;
1733                         }
1734                 }
1735                 ret = fio_setaffinity(td->pid, o->cpumask);
1736                 if (ret == -1) {
1737                         td_verror(td, errno, "cpu_set_affinity");
1738                         goto err;
1739                 }
1740         }
1741
1742 #ifdef CONFIG_LIBNUMA
1743         /* numa node setup */
1744         if (fio_option_is_set(o, numa_cpunodes) ||
1745             fio_option_is_set(o, numa_memnodes)) {
1746                 struct bitmask *mask;
1747
1748                 if (numa_available() < 0) {
1749                         td_verror(td, errno, "Does not support NUMA API\n");
1750                         goto err;
1751                 }
1752
1753                 if (fio_option_is_set(o, numa_cpunodes)) {
1754                         mask = numa_parse_nodestring(o->numa_cpunodes);
1755                         ret = numa_run_on_node_mask(mask);
1756                         numa_free_nodemask(mask);
1757                         if (ret == -1) {
1758                                 td_verror(td, errno, \
1759                                         "numa_run_on_node_mask failed\n");
1760                                 goto err;
1761                         }
1762                 }
1763
1764                 if (fio_option_is_set(o, numa_memnodes)) {
1765                         mask = NULL;
1766                         if (o->numa_memnodes)
1767                                 mask = numa_parse_nodestring(o->numa_memnodes);
1768
1769                         switch (o->numa_mem_mode) {
1770                         case MPOL_INTERLEAVE:
1771                                 numa_set_interleave_mask(mask);
1772                                 break;
1773                         case MPOL_BIND:
1774                                 numa_set_membind(mask);
1775                                 break;
1776                         case MPOL_LOCAL:
1777                                 numa_set_localalloc();
1778                                 break;
1779                         case MPOL_PREFERRED:
1780                                 numa_set_preferred(o->numa_mem_prefer_node);
1781                                 break;
1782                         case MPOL_DEFAULT:
1783                         default:
1784                                 break;
1785                         }
1786
1787                         if (mask)
1788                                 numa_free_nodemask(mask);
1789
1790                 }
1791         }
1792 #endif
1793
1794         if (fio_pin_memory(td))
1795                 goto err;
1796
1797         /*
1798          * May alter parameters that init_io_u() will use, so we need to
1799          * do this first.
1800          */
1801         if (!init_iolog(td))
1802                 goto err;
1803
1804         /* ioprio_set() has to be done before td_io_init() */
1805         if (fio_option_is_set(o, ioprio) ||
1806             fio_option_is_set(o, ioprio_class) ||
1807             fio_option_is_set(o, ioprio_hint)) {
1808                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class,
1809                                  o->ioprio, o->ioprio_hint);
1810                 if (ret == -1) {
1811                         td_verror(td, errno, "ioprio_set");
1812                         goto err;
1813                 }
1814                 td->ioprio = ioprio_value(o->ioprio_class, o->ioprio,
1815                                           o->ioprio_hint);
1816                 td->ts.ioprio = td->ioprio;
1817         }
1818
1819         if (td_io_init(td))
1820                 goto err;
1821
1822         if (td_ioengine_flagged(td, FIO_SYNCIO) && td->o.iodepth > 1 && td->o.io_submit_mode != IO_MODE_OFFLOAD) {
1823                 log_info("note: both iodepth >= 1 and synchronous I/O engine "
1824                          "are selected, queue depth will be capped at 1\n");
1825         }
1826
1827         if (init_io_u(td))
1828                 goto err;
1829
1830         if (td->io_ops->post_init && td->io_ops->post_init(td))
1831                 goto err;
1832
1833         if (o->verify_async && verify_async_init(td))
1834                 goto err;
1835
1836         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1837                 goto err;
1838
1839         errno = 0;
1840         if (nice(o->nice) == -1 && errno != 0) {
1841                 td_verror(td, errno, "nice");
1842                 goto err;
1843         }
1844
1845         if (o->ioscheduler && switch_ioscheduler(td))
1846                 goto err;
1847
1848         if (!o->create_serialize && setup_files(td))
1849                 goto err;
1850
1851         if (!init_random_map(td))
1852                 goto err;
1853
1854         if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1855                 goto err;
1856
1857         if (o->pre_read && !pre_read_files(td))
1858                 goto err;
1859
1860         fio_verify_init(td);
1861
1862         if (rate_submit_init(td, sk_out))
1863                 goto err;
1864
1865         set_epoch_time(td, o->log_alternate_epoch_clock_id, o->job_start_clock_id);
1866         fio_getrusage(&td->ru_start);
1867         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1868         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1869         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1870
1871         init_thinktime(td);
1872
1873         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1874                         o->ratemin[DDIR_TRIM]) {
1875                 memcpy(&td->last_rate_check_time[DDIR_READ], &td->bw_sample_time,
1876                                         sizeof(td->bw_sample_time));
1877                 memcpy(&td->last_rate_check_time[DDIR_WRITE], &td->bw_sample_time,
1878                                         sizeof(td->bw_sample_time));
1879                 memcpy(&td->last_rate_check_time[DDIR_TRIM], &td->bw_sample_time,
1880                                         sizeof(td->bw_sample_time));
1881         }
1882
1883         memset(bytes_done, 0, sizeof(bytes_done));
1884         clear_state = false;
1885
1886         while (keep_running(td)) {
1887                 uint64_t verify_bytes;
1888
1889                 fio_gettime(&td->start, NULL);
1890                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1891
1892                 if (clear_state) {
1893                         clear_io_state(td, 0);
1894
1895                         if (o->unlink_each_loop && unlink_all_files(td))
1896                                 break;
1897                 }
1898
1899                 prune_io_piece_log(td);
1900
1901                 if (td->o.verify_only && td_write(td))
1902                         verify_bytes = do_dry_run(td);
1903                 else {
1904                         if (!td->o.rand_repeatable)
1905                                 /* save verify rand state to replay hdr seeds later at verify */
1906                                 frand_copy(&td->verify_state_last_do_io, &td->verify_state);
1907                         do_io(td, bytes_done);
1908                         if (!td->o.rand_repeatable)
1909                                 frand_copy(&td->verify_state, &td->verify_state_last_do_io);
1910                         if (!ddir_rw_sum(bytes_done)) {
1911                                 fio_mark_td_terminate(td);
1912                                 verify_bytes = 0;
1913                         } else {
1914                                 verify_bytes = bytes_done[DDIR_WRITE] +
1915                                                 bytes_done[DDIR_TRIM];
1916                         }
1917                 }
1918
1919                 /*
1920                  * If we took too long to shut down, the main thread could
1921                  * already consider us reaped/exited. If that happens, break
1922                  * out and clean up.
1923                  */
1924                 if (td->runstate >= TD_EXITED)
1925                         break;
1926
1927                 clear_state = true;
1928
1929                 /*
1930                  * Make sure we've successfully updated the rusage stats
1931                  * before waiting on the stat mutex. Otherwise we could have
1932                  * the stat thread holding stat mutex and waiting for
1933                  * the rusage_sem, which would never get upped because
1934                  * this thread is waiting for the stat mutex.
1935                  */
1936                 deadlock_loop_cnt = 0;
1937                 do {
1938                         check_update_rusage(td);
1939                         if (!fio_sem_down_trylock(stat_sem))
1940                                 break;
1941                         usleep(1000);
1942                         if (deadlock_loop_cnt++ > 5000) {
1943                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1944                                 td->error = EDEADLK;
1945                                 goto err;
1946                         }
1947                 } while (1);
1948
1949                 if (td->io_bytes[DDIR_READ] && (td_read(td) ||
1950                         ((td->flags & TD_F_VER_BACKLOG) && td_write(td))))
1951                         update_runtime(td, elapsed_us, DDIR_READ);
1952                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1953                         update_runtime(td, elapsed_us, DDIR_WRITE);
1954                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1955                         update_runtime(td, elapsed_us, DDIR_TRIM);
1956                 fio_gettime(&td->start, NULL);
1957                 fio_sem_up(stat_sem);
1958
1959                 if (td->error || td->terminate)
1960                         break;
1961
1962                 if (!o->do_verify ||
1963                     o->verify == VERIFY_NONE ||
1964                     td_ioengine_flagged(td, FIO_UNIDIR))
1965                         continue;
1966
1967                 clear_io_state(td, 0);
1968
1969                 fio_gettime(&td->start, NULL);
1970
1971                 do_verify(td, verify_bytes);
1972
1973                 /*
1974                  * See comment further up for why this is done here.
1975                  */
1976                 check_update_rusage(td);
1977
1978                 fio_sem_down(stat_sem);
1979                 update_runtime(td, elapsed_us, DDIR_READ);
1980                 fio_gettime(&td->start, NULL);
1981                 fio_sem_up(stat_sem);
1982
1983                 if (td->error || td->terminate)
1984                         break;
1985         }
1986
1987         /*
1988          * Acquire this lock if we were doing overlap checking in
1989          * offload mode so that we don't clean up this job while
1990          * another thread is checking its io_u's for overlap
1991          */
1992         if (td_offload_overlap(td)) {
1993                 int res;
1994
1995                 res = pthread_mutex_lock(&overlap_check);
1996                 if (res) {
1997                         td->error = errno;
1998                         goto err;
1999                 }
2000         }
2001         td_set_runstate(td, TD_FINISHING);
2002         if (td_offload_overlap(td)) {
2003                 int res;
2004
2005                 res = pthread_mutex_unlock(&overlap_check);
2006                 if (res) {
2007                         td->error = errno;
2008                         goto err;
2009                 }
2010         }
2011
2012         update_rusage_stat(td);
2013         td->ts.total_run_time = mtime_since_now(&td->epoch);
2014         for_each_rw_ddir(ddir) {
2015                 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2016         }
2017
2018         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
2019             (td->o.verify != VERIFY_NONE && td_write(td)))
2020                 verify_save_state(td->thread_number);
2021
2022         fio_unpin_memory(td);
2023
2024         td_writeout_logs(td, true);
2025
2026         iolog_compress_exit(td);
2027         rate_submit_exit(td);
2028
2029         if (o->exec_postrun)
2030                 exec_string(o, o->exec_postrun, "postrun");
2031
2032         if (exitall_on_terminate || (o->exitall_error && td->error))
2033                 fio_terminate_threads(td->groupid, td->o.exit_what);
2034
2035 err:
2036         if (td->error)
2037                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
2038                                                         td->verror);
2039
2040         if (o->verify_async)
2041                 verify_async_exit(td);
2042
2043         close_and_free_files(td);
2044         cleanup_io_u(td);
2045         close_ioengine(td);
2046         cgroup_shutdown(td, cgroup_mnt);
2047         verify_free_state(td);
2048         td_zone_free_index(td);
2049
2050         if (fio_option_is_set(o, cpumask)) {
2051                 ret = fio_cpuset_exit(&o->cpumask);
2052                 if (ret)
2053                         td_verror(td, ret, "fio_cpuset_exit");
2054         }
2055
2056         /*
2057          * do this very late, it will log file closing as well
2058          */
2059         if (o->write_iolog_file)
2060                 write_iolog_close(td);
2061         if (td->io_log_rfile)
2062                 fclose(td->io_log_rfile);
2063
2064         td_set_runstate(td, TD_EXITED);
2065
2066         /*
2067          * Do this last after setting our runstate to exited, so we
2068          * know that the stat thread is signaled.
2069          */
2070         check_update_rusage(td);
2071
2072         sk_out_drop();
2073         return (void *) (uintptr_t) td->error;
2074 }
2075
2076 /*
2077  * Run over the job map and reap the threads that have exited, if any.
2078  */
2079 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2080                          uint64_t *m_rate)
2081 {
2082         unsigned int cputhreads, realthreads, pending;
2083         int status, ret;
2084
2085         /*
2086          * reap exited threads (TD_EXITED -> TD_REAPED)
2087          */
2088         realthreads = pending = cputhreads = 0;
2089         for_each_td(td) {
2090                 int flags = 0;
2091
2092                 if (!strcmp(td->o.ioengine, "cpuio"))
2093                         cputhreads++;
2094                 else
2095                         realthreads++;
2096
2097                 if (!td->pid) {
2098                         pending++;
2099                         continue;
2100                 }
2101                 if (td->runstate == TD_REAPED)
2102                         continue;
2103                 if (td->o.use_thread) {
2104                         if (td->runstate == TD_EXITED) {
2105                                 td_set_runstate(td, TD_REAPED);
2106                                 goto reaped;
2107                         }
2108                         continue;
2109                 }
2110
2111                 flags = WNOHANG;
2112                 if (td->runstate == TD_EXITED)
2113                         flags = 0;
2114
2115                 /*
2116                  * check if someone quit or got killed in an unusual way
2117                  */
2118                 ret = waitpid(td->pid, &status, flags);
2119                 if (ret < 0) {
2120                         if (errno == ECHILD) {
2121                                 log_err("fio: pid=%d disappeared %d\n",
2122                                                 (int) td->pid, td->runstate);
2123                                 td->sig = ECHILD;
2124                                 td_set_runstate(td, TD_REAPED);
2125                                 goto reaped;
2126                         }
2127                         perror("waitpid");
2128                 } else if (ret == td->pid) {
2129                         if (WIFSIGNALED(status)) {
2130                                 int sig = WTERMSIG(status);
2131
2132                                 if (sig != SIGTERM && sig != SIGUSR2)
2133                                         log_err("fio: pid=%d, got signal=%d\n",
2134                                                         (int) td->pid, sig);
2135                                 td->sig = sig;
2136                                 td_set_runstate(td, TD_REAPED);
2137                                 goto reaped;
2138                         }
2139                         if (WIFEXITED(status)) {
2140                                 if (WEXITSTATUS(status) && !td->error)
2141                                         td->error = WEXITSTATUS(status);
2142
2143                                 td_set_runstate(td, TD_REAPED);
2144                                 goto reaped;
2145                         }
2146                 }
2147
2148                 /*
2149                  * If the job is stuck, do a forceful timeout of it and
2150                  * move on.
2151                  */
2152                 if (td->terminate &&
2153                     td->runstate < TD_FSYNCING &&
2154                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2155                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2156                                 "%lu seconds, it appears to be stuck. Doing "
2157                                 "forceful exit of this job.\n",
2158                                 td->o.name, td->runstate,
2159                                 (unsigned long) time_since_now(&td->terminate_time));
2160                         td_set_runstate(td, TD_REAPED);
2161                         goto reaped;
2162                 }
2163
2164                 /*
2165                  * thread is not dead, continue
2166                  */
2167                 pending++;
2168                 continue;
2169 reaped:
2170                 (*nr_running)--;
2171                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2172                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2173                 if (!td->pid)
2174                         pending--;
2175
2176                 if (td->error)
2177                         exit_value++;
2178
2179                 done_secs += mtime_since_now(&td->epoch) / 1000;
2180                 profile_td_exit(td);
2181                 flow_exit_job(td);
2182         } end_for_each();
2183
2184         if (*nr_running == cputhreads && !pending && realthreads)
2185                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2186 }
2187
2188 static bool __check_trigger_file(void)
2189 {
2190         struct stat sb;
2191
2192         if (!trigger_file)
2193                 return false;
2194
2195         if (stat(trigger_file, &sb))
2196                 return false;
2197
2198         if (unlink(trigger_file) < 0)
2199                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2200                                                         strerror(errno));
2201
2202         return true;
2203 }
2204
2205 static bool trigger_timedout(void)
2206 {
2207         if (trigger_timeout)
2208                 if (time_since_genesis() >= trigger_timeout) {
2209                         trigger_timeout = 0;
2210                         return true;
2211                 }
2212
2213         return false;
2214 }
2215
2216 void exec_trigger(const char *cmd)
2217 {
2218         int ret;
2219
2220         if (!cmd || cmd[0] == '\0')
2221                 return;
2222
2223         ret = system(cmd);
2224         if (ret == -1)
2225                 log_err("fio: failed executing %s trigger\n", cmd);
2226 }
2227
2228 void check_trigger_file(void)
2229 {
2230         if (__check_trigger_file() || trigger_timedout()) {
2231                 if (nr_clients)
2232                         fio_clients_send_trigger(trigger_remote_cmd);
2233                 else {
2234                         verify_save_state(IO_LIST_ALL);
2235                         fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2236                         exec_trigger(trigger_cmd);
2237                 }
2238         }
2239 }
2240
2241 static int fio_verify_load_state(struct thread_data *td)
2242 {
2243         int ret;
2244
2245         if (!td->o.verify_state)
2246                 return 0;
2247
2248         if (is_backend) {
2249                 void *data;
2250
2251                 ret = fio_server_get_verify_state(td->o.name,
2252                                         td->thread_number - 1, &data);
2253                 if (!ret)
2254                         verify_assign_state(td, data);
2255         } else {
2256                 char prefix[PATH_MAX];
2257
2258                 if (aux_path)
2259                         sprintf(prefix, "%s%clocal", aux_path,
2260                                         FIO_OS_PATH_SEPARATOR);
2261                 else
2262                         strcpy(prefix, "local");
2263                 ret = verify_load_state(td, prefix);
2264         }
2265
2266         return ret;
2267 }
2268
2269 static void do_usleep(unsigned int usecs)
2270 {
2271         check_for_running_stats();
2272         check_trigger_file();
2273         usleep(usecs);
2274 }
2275
2276 static bool check_mount_writes(struct thread_data *td)
2277 {
2278         struct fio_file *f;
2279         unsigned int i;
2280
2281         if (!td_write(td) || td->o.allow_mounted_write)
2282                 return false;
2283
2284         /*
2285          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2286          * are mkfs'd and mounted.
2287          */
2288         for_each_file(td, f, i) {
2289 #ifdef FIO_HAVE_CHARDEV_SIZE
2290                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2291 #else
2292                 if (f->filetype != FIO_TYPE_BLOCK)
2293 #endif
2294                         continue;
2295                 if (device_is_mounted(f->file_name))
2296                         goto mounted;
2297         }
2298
2299         return false;
2300 mounted:
2301         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2302         return true;
2303 }
2304
2305 static bool waitee_running(struct thread_data *me)
2306 {
2307         const char *waitee = me->o.wait_for;
2308         const char *self = me->o.name;
2309
2310         if (!waitee)
2311                 return false;
2312
2313         for_each_td(td) {
2314                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2315                         continue;
2316
2317                 if (td->runstate < TD_EXITED) {
2318                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2319                                         self, td->o.name,
2320                                         runstate_to_name(td->runstate));
2321                         return true;
2322                 }
2323         } end_for_each();
2324
2325         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2326         return false;
2327 }
2328
2329 /*
2330  * Main function for kicking off and reaping jobs, as needed.
2331  */
2332 static void run_threads(struct sk_out *sk_out)
2333 {
2334         struct thread_data *td;
2335         unsigned int i, todo, nr_running, nr_started;
2336         uint64_t m_rate, t_rate;
2337         uint64_t spent;
2338
2339         if (fio_gtod_offload && fio_start_gtod_thread())
2340                 return;
2341
2342         fio_idle_prof_init();
2343
2344         set_sig_handlers();
2345
2346         nr_thread = nr_process = 0;
2347         for_each_td(td) {
2348                 if (check_mount_writes(td))
2349                         return;
2350                 if (td->o.use_thread)
2351                         nr_thread++;
2352                 else
2353                         nr_process++;
2354         } end_for_each();
2355
2356         if (output_format & FIO_OUTPUT_NORMAL) {
2357                 struct buf_output out;
2358
2359                 buf_output_init(&out);
2360                 __log_buf(&out, "Starting ");
2361                 if (nr_thread)
2362                         __log_buf(&out, "%d thread%s", nr_thread,
2363                                                 nr_thread > 1 ? "s" : "");
2364                 if (nr_process) {
2365                         if (nr_thread)
2366                                 __log_buf(&out, " and ");
2367                         __log_buf(&out, "%d process%s", nr_process,
2368                                                 nr_process > 1 ? "es" : "");
2369                 }
2370                 __log_buf(&out, "\n");
2371                 log_info_buf(out.buf, out.buflen);
2372                 buf_output_free(&out);
2373         }
2374
2375         todo = thread_number;
2376         nr_running = 0;
2377         nr_started = 0;
2378         m_rate = t_rate = 0;
2379
2380         for_each_td(td) {
2381                 print_status_init(td->thread_number - 1);
2382
2383                 if (!td->o.create_serialize)
2384                         continue;
2385
2386                 if (fio_verify_load_state(td))
2387                         goto reap;
2388
2389                 /*
2390                  * do file setup here so it happens sequentially,
2391                  * we don't want X number of threads getting their
2392                  * client data interspersed on disk
2393                  */
2394                 if (setup_files(td)) {
2395 reap:
2396                         exit_value++;
2397                         if (td->error)
2398                                 log_err("fio: pid=%d, err=%d/%s\n",
2399                                         (int) td->pid, td->error, td->verror);
2400                         td_set_runstate(td, TD_REAPED);
2401                         todo--;
2402                 } else {
2403                         struct fio_file *f;
2404                         unsigned int j;
2405
2406                         /*
2407                          * for sharing to work, each job must always open
2408                          * its own files. so close them, if we opened them
2409                          * for creation
2410                          */
2411                         for_each_file(td, f, j) {
2412                                 if (fio_file_open(f))
2413                                         td_io_close_file(td, f);
2414                         }
2415                 }
2416         } end_for_each();
2417
2418         /* start idle threads before io threads start to run */
2419         fio_idle_prof_start();
2420
2421         set_genesis_time();
2422
2423         while (todo) {
2424                 struct thread_data *map[REAL_MAX_JOBS];
2425                 struct timespec this_start;
2426                 int this_jobs = 0, left;
2427                 struct fork_data *fd;
2428
2429                 /*
2430                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2431                  */
2432                 for_each_td(td) {
2433                         if (td->runstate != TD_NOT_CREATED)
2434                                 continue;
2435
2436                         /*
2437                          * never got a chance to start, killed by other
2438                          * thread for some reason
2439                          */
2440                         if (td->terminate) {
2441                                 todo--;
2442                                 continue;
2443                         }
2444
2445                         if (td->o.start_delay) {
2446                                 spent = utime_since_genesis();
2447
2448                                 if (td->o.start_delay > spent)
2449                                         continue;
2450                         }
2451
2452                         if (td->o.stonewall && (nr_started || nr_running)) {
2453                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2454                                                         td->o.name);
2455                                 break;
2456                         }
2457
2458                         if (waitee_running(td)) {
2459                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2460                                                 td->o.name, td->o.wait_for);
2461                                 continue;
2462                         }
2463
2464                         init_disk_util(td);
2465
2466                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2467                         td->update_rusage = 0;
2468
2469                         /*
2470                          * Set state to created. Thread will transition
2471                          * to TD_INITIALIZED when it's done setting up.
2472                          */
2473                         td_set_runstate(td, TD_CREATED);
2474                         map[this_jobs++] = td;
2475                         nr_started++;
2476
2477                         fd = calloc(1, sizeof(*fd));
2478                         fd->td = td;
2479                         fd->sk_out = sk_out;
2480
2481                         if (td->o.use_thread) {
2482                                 int ret;
2483
2484                                 dprint(FD_PROCESS, "will pthread_create\n");
2485                                 ret = pthread_create(&td->thread, NULL,
2486                                                         thread_main, fd);
2487                                 if (ret) {
2488                                         log_err("pthread_create: %s\n",
2489                                                         strerror(ret));
2490                                         free(fd);
2491                                         nr_started--;
2492                                         break;
2493                                 }
2494                                 fd = NULL;
2495                                 ret = pthread_detach(td->thread);
2496                                 if (ret)
2497                                         log_err("pthread_detach: %s",
2498                                                         strerror(ret));
2499                         } else {
2500                                 pid_t pid;
2501                                 void *eo;
2502                                 dprint(FD_PROCESS, "will fork\n");
2503                                 eo = td->eo;
2504                                 read_barrier();
2505                                 pid = fork();
2506                                 if (!pid) {
2507                                         int ret;
2508
2509                                         ret = (int)(uintptr_t)thread_main(fd);
2510                                         _exit(ret);
2511                                 } else if (__td_index == fio_debug_jobno)
2512                                         *fio_debug_jobp = pid;
2513                                 free(eo);
2514                                 free(fd);
2515                                 fd = NULL;
2516                         }
2517                         dprint(FD_MUTEX, "wait on startup_sem\n");
2518                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2519                                 log_err("fio: job startup hung? exiting.\n");
2520                                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2521                                 fio_abort = true;
2522                                 nr_started--;
2523                                 free(fd);
2524                                 break;
2525                         }
2526                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2527                 } end_for_each();
2528
2529                 /*
2530                  * Wait for the started threads to transition to
2531                  * TD_INITIALIZED.
2532                  */
2533                 fio_gettime(&this_start, NULL);
2534                 left = this_jobs;
2535                 while (left && !fio_abort) {
2536                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2537                                 break;
2538
2539                         do_usleep(100000);
2540
2541                         for (i = 0; i < this_jobs; i++) {
2542                                 td = map[i];
2543                                 if (!td)
2544                                         continue;
2545                                 if (td->runstate == TD_INITIALIZED) {
2546                                         map[i] = NULL;
2547                                         left--;
2548                                 } else if (td->runstate >= TD_EXITED) {
2549                                         map[i] = NULL;
2550                                         left--;
2551                                         todo--;
2552                                         nr_running++; /* work-around... */
2553                                 }
2554                         }
2555                 }
2556
2557                 if (left) {
2558                         log_err("fio: %d job%s failed to start\n", left,
2559                                         left > 1 ? "s" : "");
2560                         for (i = 0; i < this_jobs; i++) {
2561                                 td = map[i];
2562                                 if (!td)
2563                                         continue;
2564                                 kill(td->pid, SIGTERM);
2565                         }
2566                         break;
2567                 }
2568
2569                 /*
2570                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2571                  */
2572                 for_each_td(td) {
2573                         if (td->runstate != TD_INITIALIZED)
2574                                 continue;
2575
2576                         if (in_ramp_time(td))
2577                                 td_set_runstate(td, TD_RAMP);
2578                         else
2579                                 td_set_runstate(td, TD_RUNNING);
2580                         nr_running++;
2581                         nr_started--;
2582                         m_rate += ddir_rw_sum(td->o.ratemin);
2583                         t_rate += ddir_rw_sum(td->o.rate);
2584                         todo--;
2585                         fio_sem_up(td->sem);
2586                 } end_for_each();
2587
2588                 reap_threads(&nr_running, &t_rate, &m_rate);
2589
2590                 if (todo)
2591                         do_usleep(100000);
2592         }
2593
2594         while (nr_running) {
2595                 reap_threads(&nr_running, &t_rate, &m_rate);
2596                 do_usleep(10000);
2597         }
2598
2599         fio_idle_prof_stop();
2600
2601         update_io_ticks();
2602 }
2603
2604 static void free_disk_util(void)
2605 {
2606         disk_util_prune_entries();
2607         helper_thread_destroy();
2608 }
2609
2610 int fio_backend(struct sk_out *sk_out)
2611 {
2612         int i;
2613         if (exec_profile) {
2614                 if (load_profile(exec_profile))
2615                         return 1;
2616                 free(exec_profile);
2617                 exec_profile = NULL;
2618         }
2619         if (!thread_number)
2620                 return 0;
2621
2622         if (write_bw_log) {
2623                 struct log_params p = {
2624                         .log_type = IO_LOG_TYPE_BW,
2625                 };
2626
2627                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2628                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2629                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2630         }
2631
2632         if (init_global_dedupe_working_set_seeds()) {
2633                 log_err("fio: failed to initialize global dedupe working set\n");
2634                 return 1;
2635         }
2636
2637         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2638         if (!sk_out)
2639                 is_local_backend = true;
2640         if (startup_sem == NULL)
2641                 return 1;
2642
2643         set_genesis_time();
2644         stat_init();
2645         if (helper_thread_create(startup_sem, sk_out))
2646                 log_err("fio: failed to create helper thread\n");
2647
2648         cgroup_list = smalloc(sizeof(*cgroup_list));
2649         if (cgroup_list)
2650                 INIT_FLIST_HEAD(cgroup_list);
2651
2652         run_threads(sk_out);
2653
2654         helper_thread_exit();
2655
2656         if (!fio_abort) {
2657                 __show_run_stats();
2658                 if (write_bw_log) {
2659                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2660                                 struct io_log *log = agg_io_log[i];
2661
2662                                 flush_log(log, false);
2663                                 free_log(log);
2664                         }
2665                 }
2666         }
2667
2668         for_each_td(td) {
2669                 struct thread_stat *ts = &td->ts;
2670
2671                 free_clat_prio_stats(ts);
2672                 steadystate_free(td);
2673                 fio_options_free(td);
2674                 fio_dump_options_free(td);
2675                 if (td->rusage_sem) {
2676                         fio_sem_remove(td->rusage_sem);
2677                         td->rusage_sem = NULL;
2678                 }
2679                 fio_sem_remove(td->sem);
2680                 td->sem = NULL;
2681         } end_for_each();
2682
2683         free_disk_util();
2684         if (cgroup_list) {
2685                 cgroup_kill(cgroup_list);
2686                 sfree(cgroup_list);
2687         }
2688
2689         fio_sem_remove(startup_sem);
2690         stat_exit();
2691         return exit_value;
2692 }