verify: fix numberio accounting of experimental verify
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32 #include <pthread.h>
33
34 #include "fio.h"
35 #include "smalloc.h"
36 #include "verify.h"
37 #include "diskutil.h"
38 #include "cgroup.h"
39 #include "profile.h"
40 #include "lib/rand.h"
41 #include "lib/memalign.h"
42 #include "server.h"
43 #include "lib/getrusage.h"
44 #include "idletime.h"
45 #include "err.h"
46 #include "workqueue.h"
47 #include "lib/mountcheck.h"
48 #include "rate-submit.h"
49 #include "helper_thread.h"
50 #include "pshared.h"
51 #include "zone-dist.h"
52
53 static struct fio_sem *startup_sem;
54 static struct flist_head *cgroup_list;
55 static struct cgroup_mnt *cgroup_mnt;
56 static int exit_value;
57 static volatile bool fio_abort;
58 static unsigned int nr_process = 0;
59 static unsigned int nr_thread = 0;
60
61 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63 int groupid = 0;
64 unsigned int thread_number = 0;
65 unsigned int nr_segments = 0;
66 unsigned int cur_segment = 0;
67 unsigned int stat_number = 0;
68 int temp_stall_ts;
69 unsigned long done_secs = 0;
70 #ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
71 pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
72 #else
73 pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
74 #endif
75
76 #define JOB_START_TIMEOUT       (5 * 1000)
77
78 static void sig_int(int sig)
79 {
80         if (nr_segments) {
81                 if (is_backend)
82                         fio_server_got_signal(sig);
83                 else {
84                         log_info("\nfio: terminating on signal %d\n", sig);
85                         log_info_flush();
86                         exit_value = 128;
87                 }
88
89                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
90         }
91 }
92
93 #ifdef WIN32
94 static void sig_break(int sig)
95 {
96         struct thread_data *td;
97         int i;
98
99         sig_int(sig);
100
101         /**
102          * Windows terminates all job processes on SIGBREAK after the handler
103          * returns, so give them time to wrap-up and give stats
104          */
105         for_each_td(td, i) {
106                 while (td->runstate < TD_EXITED)
107                         sleep(1);
108         }
109 }
110 #endif
111
112 void sig_show_status(int sig)
113 {
114         show_running_run_stats();
115 }
116
117 static void set_sig_handlers(void)
118 {
119         struct sigaction act;
120
121         memset(&act, 0, sizeof(act));
122         act.sa_handler = sig_int;
123         act.sa_flags = SA_RESTART;
124         sigaction(SIGINT, &act, NULL);
125
126         memset(&act, 0, sizeof(act));
127         act.sa_handler = sig_int;
128         act.sa_flags = SA_RESTART;
129         sigaction(SIGTERM, &act, NULL);
130
131 /* Windows uses SIGBREAK as a quit signal from other applications */
132 #ifdef WIN32
133         memset(&act, 0, sizeof(act));
134         act.sa_handler = sig_break;
135         act.sa_flags = SA_RESTART;
136         sigaction(SIGBREAK, &act, NULL);
137 #endif
138
139         memset(&act, 0, sizeof(act));
140         act.sa_handler = sig_show_status;
141         act.sa_flags = SA_RESTART;
142         sigaction(SIGUSR1, &act, NULL);
143
144         if (is_backend) {
145                 memset(&act, 0, sizeof(act));
146                 act.sa_handler = sig_int;
147                 act.sa_flags = SA_RESTART;
148                 sigaction(SIGPIPE, &act, NULL);
149         }
150 }
151
152 /*
153  * Check if we are above the minimum rate given.
154  */
155 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
156                              enum fio_ddir ddir)
157 {
158         unsigned long long current_rate_check_bytes = td->this_io_bytes[ddir];
159         unsigned long current_rate_check_blocks = td->this_io_blocks[ddir];
160         unsigned long long option_rate_bytes_min = td->o.ratemin[ddir];
161         unsigned int option_rate_iops_min = td->o.rate_iops_min[ddir];
162
163         assert(ddir_rw(ddir));
164
165         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
166                 return false;
167
168         /*
169          * allow a 2 second settle period in the beginning
170          */
171         if (mtime_since(&td->start, now) < 2000)
172                 return false;
173
174         /*
175          * if last_rate_check_blocks or last_rate_check_bytes is set,
176          * we can compute a rate per ratecycle
177          */
178         if (td->last_rate_check_bytes[ddir] || td->last_rate_check_blocks[ddir]) {
179                 unsigned long spent = mtime_since(&td->last_rate_check_time[ddir], now);
180                 if (spent < td->o.ratecycle || spent==0)
181                         return false;
182
183                 if (td->o.ratemin[ddir]) {
184                         /*
185                          * check bandwidth specified rate
186                          */
187                         unsigned long long current_rate_bytes =
188                                 ((current_rate_check_bytes - td->last_rate_check_bytes[ddir]) * 1000) / spent;
189                         if (current_rate_bytes < option_rate_bytes_min) {
190                                 log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
191                                         td->o.name, option_rate_bytes_min, current_rate_bytes);
192                                 return true;
193                         }
194                 } else {
195                         /*
196                          * checks iops specified rate
197                          */
198                         unsigned long long current_rate_iops =
199                                 ((current_rate_check_blocks - td->last_rate_check_blocks[ddir]) * 1000) / spent;
200
201                         if (current_rate_iops < option_rate_iops_min) {
202                                 log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
203                                         td->o.name, option_rate_iops_min, current_rate_iops);
204                                 return true;
205                         }
206                 }
207         }
208
209         td->last_rate_check_bytes[ddir] = current_rate_check_bytes;
210         td->last_rate_check_blocks[ddir] = current_rate_check_blocks;
211         memcpy(&td->last_rate_check_time[ddir], now, sizeof(*now));
212         return false;
213 }
214
215 static bool check_min_rate(struct thread_data *td, struct timespec *now)
216 {
217         bool ret = false;
218
219         for_each_rw_ddir(ddir) {
220                 if (td->bytes_done[ddir])
221                         ret |= __check_min_rate(td, now, ddir);
222         }
223
224         return ret;
225 }
226
227 /*
228  * When job exits, we can cancel the in-flight IO if we are using async
229  * io. Attempt to do so.
230  */
231 static void cleanup_pending_aio(struct thread_data *td)
232 {
233         int r;
234
235         /*
236          * get immediately available events, if any
237          */
238         r = io_u_queued_complete(td, 0);
239
240         /*
241          * now cancel remaining active events
242          */
243         if (td->io_ops->cancel) {
244                 struct io_u *io_u;
245                 int i;
246
247                 io_u_qiter(&td->io_u_all, io_u, i) {
248                         if (io_u->flags & IO_U_F_FLIGHT) {
249                                 r = td->io_ops->cancel(td, io_u);
250                                 if (!r)
251                                         put_io_u(td, io_u);
252                         }
253                 }
254         }
255
256         if (td->cur_depth)
257                 r = io_u_queued_complete(td, td->cur_depth);
258 }
259
260 /*
261  * Helper to handle the final sync of a file. Works just like the normal
262  * io path, just does everything sync.
263  */
264 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
265 {
266         struct io_u *io_u = __get_io_u(td);
267         enum fio_q_status ret;
268
269         if (!io_u)
270                 return true;
271
272         io_u->ddir = DDIR_SYNC;
273         io_u->file = f;
274         io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
275
276         if (td_io_prep(td, io_u)) {
277                 put_io_u(td, io_u);
278                 return true;
279         }
280
281 requeue:
282         ret = td_io_queue(td, io_u);
283         switch (ret) {
284         case FIO_Q_QUEUED:
285                 td_io_commit(td);
286                 if (io_u_queued_complete(td, 1) < 0)
287                         return true;
288                 break;
289         case FIO_Q_COMPLETED:
290                 if (io_u->error) {
291                         td_verror(td, io_u->error, "td_io_queue");
292                         return true;
293                 }
294
295                 if (io_u_sync_complete(td, io_u) < 0)
296                         return true;
297                 break;
298         case FIO_Q_BUSY:
299                 td_io_commit(td);
300                 goto requeue;
301         }
302
303         return false;
304 }
305
306 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
307 {
308         int ret, ret2;
309
310         if (fio_file_open(f))
311                 return fio_io_sync(td, f);
312
313         if (td_io_open_file(td, f))
314                 return 1;
315
316         ret = fio_io_sync(td, f);
317         ret2 = 0;
318         if (fio_file_open(f))
319                 ret2 = td_io_close_file(td, f);
320         return (ret || ret2);
321 }
322
323 static inline void __update_ts_cache(struct thread_data *td)
324 {
325         fio_gettime(&td->ts_cache, NULL);
326 }
327
328 static inline void update_ts_cache(struct thread_data *td)
329 {
330         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
331                 __update_ts_cache(td);
332 }
333
334 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
335 {
336         if (in_ramp_time(td))
337                 return false;
338         if (!td->o.timeout)
339                 return false;
340         if (utime_since(&td->epoch, t) >= td->o.timeout)
341                 return true;
342
343         return false;
344 }
345
346 /*
347  * We need to update the runtime consistently in ms, but keep a running
348  * tally of the current elapsed time in microseconds for sub millisecond
349  * updates.
350  */
351 static inline void update_runtime(struct thread_data *td,
352                                   unsigned long long *elapsed_us,
353                                   const enum fio_ddir ddir)
354 {
355         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
356                 return;
357
358         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
359         elapsed_us[ddir] += utime_since_now(&td->start);
360         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
361 }
362
363 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
364                                 int *retptr)
365 {
366         int ret = *retptr;
367
368         if (ret < 0 || td->error) {
369                 int err = td->error;
370                 enum error_type_bit eb;
371
372                 if (ret < 0)
373                         err = -ret;
374
375                 eb = td_error_type(ddir, err);
376                 if (!(td->o.continue_on_error & (1 << eb)))
377                         return true;
378
379                 if (td_non_fatal_error(td, eb, err)) {
380                         /*
381                          * Continue with the I/Os in case of
382                          * a non fatal error.
383                          */
384                         update_error_count(td, err);
385                         td_clear_error(td);
386                         *retptr = 0;
387                         return false;
388                 } else if (td->o.fill_device && (err == ENOSPC || err == EDQUOT)) {
389                         /*
390                          * We expect to hit this error if
391                          * fill_device option is set.
392                          */
393                         td_clear_error(td);
394                         fio_mark_td_terminate(td);
395                         return true;
396                 } else {
397                         /*
398                          * Stop the I/O in case of a fatal
399                          * error.
400                          */
401                         update_error_count(td, err);
402                         return true;
403                 }
404         }
405
406         return false;
407 }
408
409 static void check_update_rusage(struct thread_data *td)
410 {
411         if (td->update_rusage) {
412                 td->update_rusage = 0;
413                 update_rusage_stat(td);
414                 fio_sem_up(td->rusage_sem);
415         }
416 }
417
418 static int wait_for_completions(struct thread_data *td, struct timespec *time)
419 {
420         const int full = queue_full(td);
421         int min_evts = 0;
422         int ret;
423
424         if (td->flags & TD_F_REGROW_LOGS)
425                 return io_u_quiesce(td);
426
427         /*
428          * if the queue is full, we MUST reap at least 1 event
429          */
430         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
431         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
432                 min_evts = 1;
433
434         if (time && should_check_rate(td))
435                 fio_gettime(time, NULL);
436
437         do {
438                 ret = io_u_queued_complete(td, min_evts);
439                 if (ret < 0)
440                         break;
441         } while (full && (td->cur_depth > td->o.iodepth_low));
442
443         return ret;
444 }
445
446 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
447                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
448                    struct timespec *comp_time)
449 {
450         switch (*ret) {
451         case FIO_Q_COMPLETED:
452                 if (io_u->error) {
453                         *ret = -io_u->error;
454                         clear_io_u(td, io_u);
455                 } else if (io_u->resid) {
456                         long long bytes = io_u->xfer_buflen - io_u->resid;
457                         struct fio_file *f = io_u->file;
458
459                         if (bytes_issued)
460                                 *bytes_issued += bytes;
461
462                         if (!from_verify)
463                                 trim_io_piece(io_u);
464
465                         /*
466                          * zero read, fail
467                          */
468                         if (!bytes) {
469                                 if (!from_verify)
470                                         unlog_io_piece(td, io_u);
471                                 td_verror(td, EIO, "full resid");
472                                 put_io_u(td, io_u);
473                                 break;
474                         }
475
476                         io_u->xfer_buflen = io_u->resid;
477                         io_u->xfer_buf += bytes;
478                         io_u->offset += bytes;
479
480                         if (ddir_rw(io_u->ddir))
481                                 td->ts.short_io_u[io_u->ddir]++;
482
483                         if (io_u->offset == f->real_file_size)
484                                 goto sync_done;
485
486                         requeue_io_u(td, &io_u);
487                 } else {
488 sync_done:
489                         if (comp_time && should_check_rate(td))
490                                 fio_gettime(comp_time, NULL);
491
492                         *ret = io_u_sync_complete(td, io_u);
493                         if (*ret < 0)
494                                 break;
495                 }
496
497                 if (td->flags & TD_F_REGROW_LOGS)
498                         regrow_logs(td);
499
500                 /*
501                  * when doing I/O (not when verifying),
502                  * check for any errors that are to be ignored
503                  */
504                 if (!from_verify)
505                         break;
506
507                 return 0;
508         case FIO_Q_QUEUED:
509                 /*
510                  * if the engine doesn't have a commit hook,
511                  * the io_u is really queued. if it does have such
512                  * a hook, it has to call io_u_queued() itself.
513                  */
514                 if (td->io_ops->commit == NULL)
515                         io_u_queued(td, io_u);
516                 if (bytes_issued)
517                         *bytes_issued += io_u->xfer_buflen;
518                 break;
519         case FIO_Q_BUSY:
520                 if (!from_verify)
521                         unlog_io_piece(td, io_u);
522                 requeue_io_u(td, &io_u);
523                 td_io_commit(td);
524                 break;
525         default:
526                 assert(*ret < 0);
527                 td_verror(td, -(*ret), "td_io_queue");
528                 break;
529         }
530
531         if (break_on_this_error(td, ddir, ret))
532                 return 1;
533
534         return 0;
535 }
536
537 static inline bool io_in_polling(struct thread_data *td)
538 {
539         return !td->o.iodepth_batch_complete_min &&
540                    !td->o.iodepth_batch_complete_max;
541 }
542 /*
543  * Unlinks files from thread data fio_file structure
544  */
545 static int unlink_all_files(struct thread_data *td)
546 {
547         struct fio_file *f;
548         unsigned int i;
549         int ret = 0;
550
551         for_each_file(td, f, i) {
552                 if (f->filetype != FIO_TYPE_FILE)
553                         continue;
554                 ret = td_io_unlink_file(td, f);
555                 if (ret)
556                         break;
557         }
558
559         if (ret)
560                 td_verror(td, ret, "unlink_all_files");
561
562         return ret;
563 }
564
565 /*
566  * Check if io_u will overlap an in-flight IO in the queue
567  */
568 bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
569 {
570         bool overlap;
571         struct io_u *check_io_u;
572         unsigned long long x1, x2, y1, y2;
573         int i;
574
575         x1 = io_u->offset;
576         x2 = io_u->offset + io_u->buflen;
577         overlap = false;
578         io_u_qiter(q, check_io_u, i) {
579                 if (check_io_u->flags & IO_U_F_FLIGHT) {
580                         y1 = check_io_u->offset;
581                         y2 = check_io_u->offset + check_io_u->buflen;
582
583                         if (x1 < y2 && y1 < x2) {
584                                 overlap = true;
585                                 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
586                                                 x1, io_u->buflen,
587                                                 y1, check_io_u->buflen);
588                                 break;
589                         }
590                 }
591         }
592
593         return overlap;
594 }
595
596 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
597 {
598         /*
599          * Check for overlap if the user asked us to, and we have
600          * at least one IO in flight besides this one.
601          */
602         if (td->o.serialize_overlap && td->cur_depth > 1 &&
603             in_flight_overlap(&td->io_u_all, io_u))
604                 return FIO_Q_BUSY;
605
606         return td_io_queue(td, io_u);
607 }
608
609 /*
610  * The main verify engine. Runs over the writes we previously submitted,
611  * reads the blocks back in, and checks the crc/md5 of the data.
612  */
613 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
614 {
615         struct fio_file *f;
616         struct io_u *io_u;
617         int ret, min_events;
618         unsigned int i;
619
620         dprint(FD_VERIFY, "starting loop\n");
621
622         /*
623          * sync io first and invalidate cache, to make sure we really
624          * read from disk.
625          */
626         for_each_file(td, f, i) {
627                 if (!fio_file_open(f))
628                         continue;
629                 if (fio_io_sync(td, f))
630                         break;
631                 if (file_invalidate_cache(td, f))
632                         break;
633         }
634
635         check_update_rusage(td);
636
637         if (td->error)
638                 return;
639
640         /*
641          * verify_state needs to be reset before verification
642          * proceeds so that expected random seeds match actual
643          * random seeds in headers. The main loop will reset
644          * all random number generators if randrepeat is set.
645          */
646         if (!td->o.rand_repeatable)
647                 td_fill_verify_state_seed(td);
648
649         td_set_runstate(td, TD_VERIFYING);
650
651         io_u = NULL;
652         while (!td->terminate) {
653                 enum fio_ddir ddir;
654                 int full;
655
656                 update_ts_cache(td);
657                 check_update_rusage(td);
658
659                 if (runtime_exceeded(td, &td->ts_cache)) {
660                         __update_ts_cache(td);
661                         if (runtime_exceeded(td, &td->ts_cache)) {
662                                 fio_mark_td_terminate(td);
663                                 break;
664                         }
665                 }
666
667                 if (flow_threshold_exceeded(td))
668                         continue;
669
670                 if (!td->o.experimental_verify) {
671                         io_u = __get_io_u(td);
672                         if (!io_u)
673                                 break;
674
675                         if (get_next_verify(td, io_u)) {
676                                 put_io_u(td, io_u);
677                                 break;
678                         }
679
680                         if (td_io_prep(td, io_u)) {
681                                 put_io_u(td, io_u);
682                                 break;
683                         }
684                 } else {
685                         if (td->bytes_verified + td->o.rw_min_bs > verify_bytes)
686                                 break;
687
688                         while ((io_u = get_io_u(td)) != NULL) {
689                                 if (IS_ERR_OR_NULL(io_u)) {
690                                         io_u = NULL;
691                                         ret = FIO_Q_BUSY;
692                                         goto reap;
693                                 }
694
695                                 /*
696                                  * We are only interested in the places where
697                                  * we wrote or trimmed IOs. Turn those into
698                                  * reads for verification purposes.
699                                  */
700                                 if (io_u->ddir == DDIR_READ) {
701                                         /*
702                                          * Pretend we issued it for rwmix
703                                          * accounting
704                                          */
705                                         td->io_issues[DDIR_READ]++;
706                                         put_io_u(td, io_u);
707                                         continue;
708                                 } else if (io_u->ddir == DDIR_TRIM) {
709                                         io_u->ddir = DDIR_READ;
710                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
711                                         break;
712                                 } else if (io_u->ddir == DDIR_WRITE) {
713                                         io_u->ddir = DDIR_READ;
714                                         io_u->numberio = td->verify_read_issues;
715                                         td->verify_read_issues++;
716                                         populate_verify_io_u(td, io_u);
717                                         break;
718                                 } else {
719                                         put_io_u(td, io_u);
720                                         continue;
721                                 }
722                         }
723
724                         if (!io_u)
725                                 break;
726                 }
727
728                 if (verify_state_should_stop(td, io_u)) {
729                         put_io_u(td, io_u);
730                         break;
731                 }
732
733                 if (td->o.verify_async)
734                         io_u->end_io = verify_io_u_async;
735                 else
736                         io_u->end_io = verify_io_u;
737
738                 ddir = io_u->ddir;
739                 if (!td->o.disable_slat)
740                         fio_gettime(&io_u->start_time, NULL);
741
742                 ret = io_u_submit(td, io_u);
743
744                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
745                         break;
746
747                 /*
748                  * if we can queue more, do so. but check if there are
749                  * completed io_u's first. Note that we can get BUSY even
750                  * without IO queued, if the system is resource starved.
751                  */
752 reap:
753                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
754                 if (full || io_in_polling(td))
755                         ret = wait_for_completions(td, NULL);
756
757                 if (ret < 0)
758                         break;
759         }
760
761         check_update_rusage(td);
762
763         if (!td->error) {
764                 min_events = td->cur_depth;
765
766                 if (min_events)
767                         ret = io_u_queued_complete(td, min_events);
768         } else
769                 cleanup_pending_aio(td);
770
771         td_set_runstate(td, TD_RUNNING);
772
773         dprint(FD_VERIFY, "exiting loop\n");
774 }
775
776 static bool exceeds_number_ios(struct thread_data *td)
777 {
778         unsigned long long number_ios;
779
780         if (!td->o.number_ios)
781                 return false;
782
783         number_ios = ddir_rw_sum(td->io_blocks);
784         number_ios += td->io_u_queued + td->io_u_in_flight;
785
786         return number_ios >= (td->o.number_ios * td->loops);
787 }
788
789 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
790 {
791         unsigned long long bytes, limit;
792
793         if (td_rw(td))
794                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
795         else if (td_write(td))
796                 bytes = this_bytes[DDIR_WRITE];
797         else if (td_read(td))
798                 bytes = this_bytes[DDIR_READ];
799         else
800                 bytes = this_bytes[DDIR_TRIM];
801
802         if (td->o.io_size)
803                 limit = td->o.io_size;
804         else
805                 limit = td->o.size;
806
807         limit *= td->loops;
808         return bytes >= limit || exceeds_number_ios(td);
809 }
810
811 static bool io_issue_bytes_exceeded(struct thread_data *td)
812 {
813         return io_bytes_exceeded(td, td->io_issue_bytes);
814 }
815
816 static bool io_complete_bytes_exceeded(struct thread_data *td)
817 {
818         return io_bytes_exceeded(td, td->this_io_bytes);
819 }
820
821 /*
822  * used to calculate the next io time for rate control
823  *
824  */
825 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
826 {
827         uint64_t bps = td->rate_bps[ddir];
828
829         assert(!(td->flags & TD_F_CHILD));
830
831         if (td->o.rate_process == RATE_PROCESS_POISSON) {
832                 uint64_t val, iops;
833
834                 iops = bps / td->o.min_bs[ddir];
835                 val = (int64_t) (1000000 / iops) *
836                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
837                 if (val) {
838                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
839                                         (unsigned long long) 1000000 / val,
840                                         ddir);
841                 }
842                 td->last_usec[ddir] += val;
843                 return td->last_usec[ddir];
844         } else if (bps) {
845                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
846                 uint64_t secs = bytes / bps;
847                 uint64_t remainder = bytes % bps;
848
849                 return remainder * 1000000 / bps + secs * 1000000;
850         }
851
852         return 0;
853 }
854
855 static void init_thinktime(struct thread_data *td)
856 {
857         if (td->o.thinktime_blocks_type == THINKTIME_BLOCKS_TYPE_COMPLETE)
858                 td->thinktime_blocks_counter = td->io_blocks;
859         else
860                 td->thinktime_blocks_counter = td->io_issues;
861         td->last_thinktime = td->epoch;
862         td->last_thinktime_blocks = 0;
863 }
864
865 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir,
866                              struct timespec *time)
867 {
868         unsigned long long b;
869         uint64_t total;
870         int left;
871         struct timespec now;
872         bool stall = false;
873
874         if (td->o.thinktime_iotime) {
875                 fio_gettime(&now, NULL);
876                 if (utime_since(&td->last_thinktime, &now)
877                     >= td->o.thinktime_iotime + td->o.thinktime) {
878                         stall = true;
879                 } else if (!fio_option_is_set(&td->o, thinktime_blocks)) {
880                         /*
881                          * When thinktime_iotime is set and thinktime_blocks is
882                          * not set, skip the thinktime_blocks check, since
883                          * thinktime_blocks default value 1 does not work
884                          * together with thinktime_iotime.
885                          */
886                         return;
887                 }
888
889         }
890
891         b = ddir_rw_sum(td->thinktime_blocks_counter);
892         if (b >= td->last_thinktime_blocks + td->o.thinktime_blocks)
893                 stall = true;
894
895         if (!stall)
896                 return;
897
898         io_u_quiesce(td);
899
900         total = 0;
901         if (td->o.thinktime_spin)
902                 total = usec_spin(td->o.thinktime_spin);
903
904         left = td->o.thinktime - total;
905         if (left)
906                 total += usec_sleep(td, left);
907
908         /*
909          * If we're ignoring thinktime for the rate, add the number of bytes
910          * we would have done while sleeping, minus one block to ensure we
911          * start issuing immediately after the sleep.
912          */
913         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
914                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
915                 uint64_t bs = td->o.min_bs[ddir];
916                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
917                 uint64_t over;
918
919                 if (usperop <= total)
920                         over = bs;
921                 else
922                         over = (usperop - total) / usperop * -bs;
923
924                 td->rate_io_issue_bytes[ddir] += (missed - over);
925                 /* adjust for rate_process=poisson */
926                 td->last_usec[ddir] += total;
927         }
928
929         if (time && should_check_rate(td))
930                 fio_gettime(time, NULL);
931
932         td->last_thinktime_blocks = b;
933         if (td->o.thinktime_iotime)
934                 td->last_thinktime = now;
935 }
936
937 /*
938  * Main IO worker function. It retrieves io_u's to process and queues
939  * and reaps them, checking for rate and errors along the way.
940  *
941  * Returns number of bytes written and trimmed.
942  */
943 static void do_io(struct thread_data *td, uint64_t *bytes_done)
944 {
945         unsigned int i;
946         int ret = 0;
947         uint64_t total_bytes, bytes_issued = 0;
948
949         for (i = 0; i < DDIR_RWDIR_CNT; i++)
950                 bytes_done[i] = td->bytes_done[i];
951
952         if (in_ramp_time(td))
953                 td_set_runstate(td, TD_RAMP);
954         else
955                 td_set_runstate(td, TD_RUNNING);
956
957         lat_target_init(td);
958
959         total_bytes = td->o.size;
960         /*
961         * Allow random overwrite workloads to write up to io_size
962         * before starting verification phase as 'size' doesn't apply.
963         */
964         if (td_write(td) && td_random(td) && td->o.norandommap)
965                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
966         /*
967          * If verify_backlog is enabled, we'll run the verify in this
968          * handler as well. For that case, we may need up to twice the
969          * amount of bytes.
970          */
971         if (td->o.verify != VERIFY_NONE &&
972            (td_write(td) && td->o.verify_backlog))
973                 total_bytes += td->o.size;
974
975         /* In trimwrite mode, each byte is trimmed and then written, so
976          * allow total_bytes or number of ios to be twice as big */
977         if (td_trimwrite(td)) {
978                 total_bytes += td->total_io_size;
979                 td->o.number_ios *= 2;
980         }
981
982         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
983                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
984                 td->o.time_based) {
985                 struct timespec comp_time;
986                 struct io_u *io_u;
987                 int full;
988                 enum fio_ddir ddir;
989
990                 check_update_rusage(td);
991
992                 if (td->terminate || td->done)
993                         break;
994
995                 update_ts_cache(td);
996
997                 if (runtime_exceeded(td, &td->ts_cache)) {
998                         __update_ts_cache(td);
999                         if (runtime_exceeded(td, &td->ts_cache)) {
1000                                 fio_mark_td_terminate(td);
1001                                 break;
1002                         }
1003                 }
1004
1005                 if (flow_threshold_exceeded(td))
1006                         continue;
1007
1008                 /*
1009                  * Break if we exceeded the bytes. The exception is time
1010                  * based runs, but we still need to break out of the loop
1011                  * for those to run verification, if enabled.
1012                  * Jobs read from iolog do not use this stop condition.
1013                  */
1014                 if (bytes_issued >= total_bytes &&
1015                     !td->o.read_iolog_file &&
1016                     (!td->o.time_based ||
1017                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
1018                         break;
1019
1020                 io_u = get_io_u(td);
1021                 if (IS_ERR_OR_NULL(io_u)) {
1022                         int err = PTR_ERR(io_u);
1023
1024                         io_u = NULL;
1025                         ddir = DDIR_INVAL;
1026                         if (err == -EBUSY) {
1027                                 ret = FIO_Q_BUSY;
1028                                 goto reap;
1029                         }
1030                         if (td->o.latency_target)
1031                                 goto reap;
1032                         break;
1033                 }
1034
1035                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY) {
1036                         io_u->numberio = td->io_issues[io_u->ddir];
1037                         populate_verify_io_u(td, io_u);
1038                 }
1039
1040                 ddir = io_u->ddir;
1041
1042                 /*
1043                  * Add verification end_io handler if:
1044                  *      - Asked to verify (!td_rw(td))
1045                  *      - Or the io_u is from our verify list (mixed write/ver)
1046                  */
1047                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1048                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1049
1050                         if (verify_state_should_stop(td, io_u)) {
1051                                 put_io_u(td, io_u);
1052                                 break;
1053                         }
1054
1055                         if (td->o.verify_async)
1056                                 io_u->end_io = verify_io_u_async;
1057                         else
1058                                 io_u->end_io = verify_io_u;
1059                         td_set_runstate(td, TD_VERIFYING);
1060                 } else if (in_ramp_time(td))
1061                         td_set_runstate(td, TD_RAMP);
1062                 else
1063                         td_set_runstate(td, TD_RUNNING);
1064
1065                 /*
1066                  * Always log IO before it's issued, so we know the specific
1067                  * order of it. The logged unit will track when the IO has
1068                  * completed.
1069                  */
1070                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1071                     td->o.do_verify &&
1072                     td->o.verify != VERIFY_NONE &&
1073                     !td->o.experimental_verify)
1074                         log_io_piece(td, io_u);
1075
1076                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1077                         const unsigned long long blen = io_u->xfer_buflen;
1078                         const enum fio_ddir __ddir = acct_ddir(io_u);
1079
1080                         if (td->error)
1081                                 break;
1082
1083                         workqueue_enqueue(&td->io_wq, &io_u->work);
1084                         ret = FIO_Q_QUEUED;
1085
1086                         if (ddir_rw(__ddir)) {
1087                                 td->io_issues[__ddir]++;
1088                                 td->io_issue_bytes[__ddir] += blen;
1089                                 td->rate_io_issue_bytes[__ddir] += blen;
1090                         }
1091
1092                         if (should_check_rate(td)) {
1093                                 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1094                                 fio_gettime(&comp_time, NULL);
1095                         }
1096
1097                 } else {
1098                         ret = io_u_submit(td, io_u);
1099
1100                         if (should_check_rate(td))
1101                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1102
1103                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1104                                 break;
1105
1106                         /*
1107                          * See if we need to complete some commands. Note that
1108                          * we can get BUSY even without IO queued, if the
1109                          * system is resource starved.
1110                          */
1111 reap:
1112                         full = queue_full(td) ||
1113                                 (ret == FIO_Q_BUSY && td->cur_depth);
1114                         if (full || io_in_polling(td))
1115                                 ret = wait_for_completions(td, &comp_time);
1116                 }
1117                 if (ret < 0)
1118                         break;
1119
1120                 if (ddir_rw(ddir) && td->o.thinktime)
1121                         handle_thinktime(td, ddir, &comp_time);
1122
1123                 if (!ddir_rw_sum(td->bytes_done) &&
1124                     !td_ioengine_flagged(td, FIO_NOIO))
1125                         continue;
1126
1127                 if (!in_ramp_time(td) && should_check_rate(td)) {
1128                         if (check_min_rate(td, &comp_time)) {
1129                                 if (exitall_on_terminate || td->o.exitall_error)
1130                                         fio_terminate_threads(td->groupid, td->o.exit_what);
1131                                 td_verror(td, EIO, "check_min_rate");
1132                                 break;
1133                         }
1134                 }
1135                 if (!in_ramp_time(td) && td->o.latency_target)
1136                         lat_target_check(td);
1137         }
1138
1139         check_update_rusage(td);
1140
1141         if (td->trim_entries)
1142                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1143
1144         if (td->o.fill_device && (td->error == ENOSPC || td->error == EDQUOT)) {
1145                 td->error = 0;
1146                 fio_mark_td_terminate(td);
1147         }
1148         if (!td->error) {
1149                 struct fio_file *f;
1150
1151                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1152                         workqueue_flush(&td->io_wq);
1153                         i = 0;
1154                 } else
1155                         i = td->cur_depth;
1156
1157                 if (i) {
1158                         ret = io_u_queued_complete(td, i);
1159                         if (td->o.fill_device &&
1160                             (td->error == ENOSPC || td->error == EDQUOT))
1161                                 td->error = 0;
1162                 }
1163
1164                 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1165                         td_set_runstate(td, TD_FSYNCING);
1166
1167                         for_each_file(td, f, i) {
1168                                 if (!fio_file_fsync(td, f))
1169                                         continue;
1170
1171                                 log_err("fio: end_fsync failed for file %s\n",
1172                                                                 f->file_name);
1173                         }
1174                 }
1175         } else {
1176                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD)
1177                         workqueue_flush(&td->io_wq);
1178                 cleanup_pending_aio(td);
1179         }
1180
1181         /*
1182          * stop job if we failed doing any IO
1183          */
1184         if (!ddir_rw_sum(td->this_io_bytes))
1185                 td->done = 1;
1186
1187         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1188                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1189 }
1190
1191 static void free_file_completion_logging(struct thread_data *td)
1192 {
1193         struct fio_file *f;
1194         unsigned int i;
1195
1196         for_each_file(td, f, i) {
1197                 if (!f->last_write_comp)
1198                         break;
1199                 sfree(f->last_write_comp);
1200         }
1201 }
1202
1203 static int init_file_completion_logging(struct thread_data *td,
1204                                         unsigned int depth)
1205 {
1206         struct fio_file *f;
1207         unsigned int i;
1208
1209         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1210                 return 0;
1211
1212         for_each_file(td, f, i) {
1213                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1214                 if (!f->last_write_comp)
1215                         goto cleanup;
1216         }
1217
1218         return 0;
1219
1220 cleanup:
1221         free_file_completion_logging(td);
1222         log_err("fio: failed to alloc write comp data\n");
1223         return 1;
1224 }
1225
1226 static void cleanup_io_u(struct thread_data *td)
1227 {
1228         struct io_u *io_u;
1229
1230         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1231
1232                 if (td->io_ops->io_u_free)
1233                         td->io_ops->io_u_free(td, io_u);
1234
1235                 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1236         }
1237
1238         free_io_mem(td);
1239
1240         io_u_rexit(&td->io_u_requeues);
1241         io_u_qexit(&td->io_u_freelist, false);
1242         io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1243
1244         free_file_completion_logging(td);
1245 }
1246
1247 static int init_io_u(struct thread_data *td)
1248 {
1249         struct io_u *io_u;
1250         int cl_align, i, max_units;
1251         int err;
1252
1253         max_units = td->o.iodepth;
1254
1255         err = 0;
1256         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1257         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1258         err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1259
1260         if (err) {
1261                 log_err("fio: failed setting up IO queues\n");
1262                 return 1;
1263         }
1264
1265         cl_align = os_cache_line_size();
1266
1267         for (i = 0; i < max_units; i++) {
1268                 void *ptr;
1269
1270                 if (td->terminate)
1271                         return 1;
1272
1273                 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1274                 if (!ptr) {
1275                         log_err("fio: unable to allocate aligned memory\n");
1276                         return 1;
1277                 }
1278
1279                 io_u = ptr;
1280                 memset(io_u, 0, sizeof(*io_u));
1281                 INIT_FLIST_HEAD(&io_u->verify_list);
1282                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1283
1284                 io_u->index = i;
1285                 io_u->flags = IO_U_F_FREE;
1286                 io_u_qpush(&td->io_u_freelist, io_u);
1287
1288                 /*
1289                  * io_u never leaves this stack, used for iteration of all
1290                  * io_u buffers.
1291                  */
1292                 io_u_qpush(&td->io_u_all, io_u);
1293
1294                 if (td->io_ops->io_u_init) {
1295                         int ret = td->io_ops->io_u_init(td, io_u);
1296
1297                         if (ret) {
1298                                 log_err("fio: failed to init engine data: %d\n", ret);
1299                                 return 1;
1300                         }
1301                 }
1302         }
1303
1304         init_io_u_buffers(td);
1305
1306         if (init_file_completion_logging(td, max_units))
1307                 return 1;
1308
1309         return 0;
1310 }
1311
1312 int init_io_u_buffers(struct thread_data *td)
1313 {
1314         struct io_u *io_u;
1315         unsigned long long max_bs, min_write;
1316         int i, max_units;
1317         int data_xfer = 1;
1318         char *p;
1319
1320         max_units = td->o.iodepth;
1321         max_bs = td_max_bs(td);
1322         min_write = td->o.min_bs[DDIR_WRITE];
1323         td->orig_buffer_size = (unsigned long long) max_bs
1324                                         * (unsigned long long) max_units;
1325
1326         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1327                 data_xfer = 0;
1328
1329         /*
1330          * if we may later need to do address alignment, then add any
1331          * possible adjustment here so that we don't cause a buffer
1332          * overflow later. this adjustment may be too much if we get
1333          * lucky and the allocator gives us an aligned address.
1334          */
1335         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1336             td_ioengine_flagged(td, FIO_RAWIO))
1337                 td->orig_buffer_size += page_mask + td->o.mem_align;
1338
1339         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1340                 unsigned long long bs;
1341
1342                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1343                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1344         }
1345
1346         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1347                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1348                 return 1;
1349         }
1350
1351         if (data_xfer && allocate_io_mem(td))
1352                 return 1;
1353
1354         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1355             td_ioengine_flagged(td, FIO_RAWIO))
1356                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1357         else
1358                 p = td->orig_buffer;
1359
1360         for (i = 0; i < max_units; i++) {
1361                 io_u = td->io_u_all.io_us[i];
1362                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1363
1364                 if (data_xfer) {
1365                         io_u->buf = p;
1366                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1367
1368                         if (td_write(td))
1369                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1370                         if (td_write(td) && td->o.verify_pattern_bytes) {
1371                                 /*
1372                                  * Fill the buffer with the pattern if we are
1373                                  * going to be doing writes.
1374                                  */
1375                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1376                         }
1377                 }
1378                 p += max_bs;
1379         }
1380
1381         return 0;
1382 }
1383
1384 #ifdef FIO_HAVE_IOSCHED_SWITCH
1385 /*
1386  * These functions are Linux specific.
1387  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1388  */
1389 static int set_ioscheduler(struct thread_data *td, struct fio_file *file)
1390 {
1391         char tmp[256], tmp2[128], *p;
1392         FILE *f;
1393         int ret;
1394
1395         assert(file->du && file->du->sysfs_root);
1396         sprintf(tmp, "%s/queue/scheduler", file->du->sysfs_root);
1397
1398         f = fopen(tmp, "r+");
1399         if (!f) {
1400                 if (errno == ENOENT) {
1401                         log_err("fio: os or kernel doesn't support IO scheduler"
1402                                 " switching\n");
1403                         return 0;
1404                 }
1405                 td_verror(td, errno, "fopen iosched");
1406                 return 1;
1407         }
1408
1409         /*
1410          * Set io scheduler.
1411          */
1412         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1413         if (ferror(f) || ret != 1) {
1414                 td_verror(td, errno, "fwrite");
1415                 fclose(f);
1416                 return 1;
1417         }
1418
1419         rewind(f);
1420
1421         /*
1422          * Read back and check that the selected scheduler is now the default.
1423          */
1424         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1425         if (ferror(f) || ret < 0) {
1426                 td_verror(td, errno, "fread");
1427                 fclose(f);
1428                 return 1;
1429         }
1430         tmp[ret] = '\0';
1431         /*
1432          * either a list of io schedulers or "none\n" is expected. Strip the
1433          * trailing newline.
1434          */
1435         p = tmp;
1436         strsep(&p, "\n");
1437
1438         /*
1439          * Write to "none" entry doesn't fail, so check the result here.
1440          */
1441         if (!strcmp(tmp, "none")) {
1442                 log_err("fio: io scheduler is not tunable\n");
1443                 fclose(f);
1444                 return 0;
1445         }
1446
1447         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1448         if (!strstr(tmp, tmp2)) {
1449                 log_err("fio: unable to set io scheduler to %s\n", td->o.ioscheduler);
1450                 td_verror(td, EINVAL, "iosched_switch");
1451                 fclose(f);
1452                 return 1;
1453         }
1454
1455         fclose(f);
1456         return 0;
1457 }
1458
1459 static int switch_ioscheduler(struct thread_data *td)
1460 {
1461         struct fio_file *f;
1462         unsigned int i;
1463         int ret = 0;
1464
1465         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1466                 return 0;
1467
1468         assert(td->files && td->files[0]);
1469
1470         for_each_file(td, f, i) {
1471
1472                 /* Only consider regular files and block device files */
1473                 switch (f->filetype) {
1474                 case FIO_TYPE_FILE:
1475                 case FIO_TYPE_BLOCK:
1476                         /*
1477                          * Make sure that the device hosting the file could
1478                          * be determined.
1479                          */
1480                         if (!f->du)
1481                                 continue;
1482                         break;
1483                 case FIO_TYPE_CHAR:
1484                 case FIO_TYPE_PIPE:
1485                 default:
1486                         continue;
1487                 }
1488
1489                 ret = set_ioscheduler(td, f);
1490                 if (ret)
1491                         return ret;
1492         }
1493
1494         return 0;
1495 }
1496
1497 #else
1498
1499 static int switch_ioscheduler(struct thread_data *td)
1500 {
1501         return 0;
1502 }
1503
1504 #endif /* FIO_HAVE_IOSCHED_SWITCH */
1505
1506 static bool keep_running(struct thread_data *td)
1507 {
1508         unsigned long long limit;
1509
1510         if (td->done)
1511                 return false;
1512         if (td->terminate)
1513                 return false;
1514         if (td->o.time_based)
1515                 return true;
1516         if (td->o.loops) {
1517                 td->o.loops--;
1518                 return true;
1519         }
1520         if (exceeds_number_ios(td))
1521                 return false;
1522
1523         if (td->o.io_size)
1524                 limit = td->o.io_size;
1525         else
1526                 limit = td->o.size;
1527
1528         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1529                 uint64_t diff;
1530
1531                 /*
1532                  * If the difference is less than the maximum IO size, we
1533                  * are done.
1534                  */
1535                 diff = limit - ddir_rw_sum(td->io_bytes);
1536                 if (diff < td_max_bs(td))
1537                         return false;
1538
1539                 if (fio_files_done(td) && !td->o.io_size)
1540                         return false;
1541
1542                 return true;
1543         }
1544
1545         return false;
1546 }
1547
1548 static int exec_string(struct thread_options *o, const char *string,
1549                        const char *mode)
1550 {
1551         int ret;
1552         char *str;
1553
1554         if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1555                 return -1;
1556
1557         log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1558                  o->name, mode);
1559         ret = system(str);
1560         if (ret == -1)
1561                 log_err("fio: exec of cmd <%s> failed\n", str);
1562
1563         free(str);
1564         return ret;
1565 }
1566
1567 /*
1568  * Dry run to compute correct state of numberio for verification.
1569  */
1570 static uint64_t do_dry_run(struct thread_data *td)
1571 {
1572         td_set_runstate(td, TD_RUNNING);
1573
1574         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1575                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1576                 struct io_u *io_u;
1577                 int ret;
1578
1579                 if (td->terminate || td->done)
1580                         break;
1581
1582                 io_u = get_io_u(td);
1583                 if (IS_ERR_OR_NULL(io_u))
1584                         break;
1585
1586                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1587                 io_u->error = 0;
1588                 io_u->resid = 0;
1589                 if (ddir_rw(acct_ddir(io_u)))
1590                         td->io_issues[acct_ddir(io_u)]++;
1591                 if (ddir_rw(io_u->ddir)) {
1592                         io_u_mark_depth(td, 1);
1593                         td->ts.total_io_u[io_u->ddir]++;
1594                 }
1595
1596                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1597                     td->o.do_verify &&
1598                     td->o.verify != VERIFY_NONE &&
1599                     !td->o.experimental_verify)
1600                         log_io_piece(td, io_u);
1601
1602                 ret = io_u_sync_complete(td, io_u);
1603                 (void) ret;
1604         }
1605
1606         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1607 }
1608
1609 struct fork_data {
1610         struct thread_data *td;
1611         struct sk_out *sk_out;
1612 };
1613
1614 /*
1615  * Entry point for the thread based jobs. The process based jobs end up
1616  * here as well, after a little setup.
1617  */
1618 static void *thread_main(void *data)
1619 {
1620         struct fork_data *fd = data;
1621         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1622         struct thread_data *td = fd->td;
1623         struct thread_options *o = &td->o;
1624         struct sk_out *sk_out = fd->sk_out;
1625         uint64_t bytes_done[DDIR_RWDIR_CNT];
1626         int deadlock_loop_cnt;
1627         bool clear_state;
1628         int res, ret;
1629
1630         sk_out_assign(sk_out);
1631         free(fd);
1632
1633         if (!o->use_thread) {
1634                 setsid();
1635                 td->pid = getpid();
1636         } else
1637                 td->pid = gettid();
1638
1639         fio_local_clock_init();
1640
1641         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1642
1643         if (is_backend)
1644                 fio_server_send_start(td);
1645
1646         INIT_FLIST_HEAD(&td->io_log_list);
1647         INIT_FLIST_HEAD(&td->io_hist_list);
1648         INIT_FLIST_HEAD(&td->verify_list);
1649         INIT_FLIST_HEAD(&td->trim_list);
1650         td->io_hist_tree = RB_ROOT;
1651
1652         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1653         if (ret) {
1654                 td_verror(td, ret, "mutex_cond_init_pshared");
1655                 goto err;
1656         }
1657         ret = cond_init_pshared(&td->verify_cond);
1658         if (ret) {
1659                 td_verror(td, ret, "mutex_cond_pshared");
1660                 goto err;
1661         }
1662
1663         td_set_runstate(td, TD_INITIALIZED);
1664         dprint(FD_MUTEX, "up startup_sem\n");
1665         fio_sem_up(startup_sem);
1666         dprint(FD_MUTEX, "wait on td->sem\n");
1667         fio_sem_down(td->sem);
1668         dprint(FD_MUTEX, "done waiting on td->sem\n");
1669
1670         /*
1671          * A new gid requires privilege, so we need to do this before setting
1672          * the uid.
1673          */
1674         if (o->gid != -1U && setgid(o->gid)) {
1675                 td_verror(td, errno, "setgid");
1676                 goto err;
1677         }
1678         if (o->uid != -1U && setuid(o->uid)) {
1679                 td_verror(td, errno, "setuid");
1680                 goto err;
1681         }
1682
1683         td_zone_gen_index(td);
1684
1685         /*
1686          * Do this early, we don't want the compress threads to be limited
1687          * to the same CPUs as the IO workers. So do this before we set
1688          * any potential CPU affinity
1689          */
1690         if (iolog_compress_init(td, sk_out))
1691                 goto err;
1692
1693         /*
1694          * If we have a gettimeofday() thread, make sure we exclude that
1695          * thread from this job
1696          */
1697         if (o->gtod_cpu)
1698                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1699
1700         /*
1701          * Set affinity first, in case it has an impact on the memory
1702          * allocations.
1703          */
1704         if (fio_option_is_set(o, cpumask)) {
1705                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1706                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1707                         if (!ret) {
1708                                 log_err("fio: no CPUs set\n");
1709                                 log_err("fio: Try increasing number of available CPUs\n");
1710                                 td_verror(td, EINVAL, "cpus_split");
1711                                 goto err;
1712                         }
1713                 }
1714                 ret = fio_setaffinity(td->pid, o->cpumask);
1715                 if (ret == -1) {
1716                         td_verror(td, errno, "cpu_set_affinity");
1717                         goto err;
1718                 }
1719         }
1720
1721 #ifdef CONFIG_LIBNUMA
1722         /* numa node setup */
1723         if (fio_option_is_set(o, numa_cpunodes) ||
1724             fio_option_is_set(o, numa_memnodes)) {
1725                 struct bitmask *mask;
1726
1727                 if (numa_available() < 0) {
1728                         td_verror(td, errno, "Does not support NUMA API\n");
1729                         goto err;
1730                 }
1731
1732                 if (fio_option_is_set(o, numa_cpunodes)) {
1733                         mask = numa_parse_nodestring(o->numa_cpunodes);
1734                         ret = numa_run_on_node_mask(mask);
1735                         numa_free_nodemask(mask);
1736                         if (ret == -1) {
1737                                 td_verror(td, errno, \
1738                                         "numa_run_on_node_mask failed\n");
1739                                 goto err;
1740                         }
1741                 }
1742
1743                 if (fio_option_is_set(o, numa_memnodes)) {
1744                         mask = NULL;
1745                         if (o->numa_memnodes)
1746                                 mask = numa_parse_nodestring(o->numa_memnodes);
1747
1748                         switch (o->numa_mem_mode) {
1749                         case MPOL_INTERLEAVE:
1750                                 numa_set_interleave_mask(mask);
1751                                 break;
1752                         case MPOL_BIND:
1753                                 numa_set_membind(mask);
1754                                 break;
1755                         case MPOL_LOCAL:
1756                                 numa_set_localalloc();
1757                                 break;
1758                         case MPOL_PREFERRED:
1759                                 numa_set_preferred(o->numa_mem_prefer_node);
1760                                 break;
1761                         case MPOL_DEFAULT:
1762                         default:
1763                                 break;
1764                         }
1765
1766                         if (mask)
1767                                 numa_free_nodemask(mask);
1768
1769                 }
1770         }
1771 #endif
1772
1773         if (fio_pin_memory(td))
1774                 goto err;
1775
1776         /*
1777          * May alter parameters that init_io_u() will use, so we need to
1778          * do this first.
1779          */
1780         if (!init_iolog(td))
1781                 goto err;
1782
1783         /* ioprio_set() has to be done before td_io_init() */
1784         if (fio_option_is_set(o, ioprio) ||
1785             fio_option_is_set(o, ioprio_class)) {
1786                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1787                 if (ret == -1) {
1788                         td_verror(td, errno, "ioprio_set");
1789                         goto err;
1790                 }
1791                 td->ioprio = ioprio_value(o->ioprio_class, o->ioprio);
1792                 td->ts.ioprio = td->ioprio;
1793         }
1794
1795         if (td_io_init(td))
1796                 goto err;
1797
1798         if (td_ioengine_flagged(td, FIO_SYNCIO) && td->o.iodepth > 1) {
1799                 log_info("note: both iodepth >= 1 and synchronous I/O engine "
1800                          "are selected, queue depth will be capped at 1\n");
1801         }
1802
1803         if (init_io_u(td))
1804                 goto err;
1805
1806         if (td->io_ops->post_init && td->io_ops->post_init(td))
1807                 goto err;
1808
1809         if (o->verify_async && verify_async_init(td))
1810                 goto err;
1811
1812         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1813                 goto err;
1814
1815         errno = 0;
1816         if (nice(o->nice) == -1 && errno != 0) {
1817                 td_verror(td, errno, "nice");
1818                 goto err;
1819         }
1820
1821         if (o->ioscheduler && switch_ioscheduler(td))
1822                 goto err;
1823
1824         if (!o->create_serialize && setup_files(td))
1825                 goto err;
1826
1827         if (!init_random_map(td))
1828                 goto err;
1829
1830         if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1831                 goto err;
1832
1833         if (o->pre_read && !pre_read_files(td))
1834                 goto err;
1835
1836         fio_verify_init(td);
1837
1838         if (rate_submit_init(td, sk_out))
1839                 goto err;
1840
1841         set_epoch_time(td, o->log_unix_epoch | o->log_alternate_epoch, o->log_alternate_epoch_clock_id);
1842         fio_getrusage(&td->ru_start);
1843         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1844         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1845         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1846
1847         init_thinktime(td);
1848
1849         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1850                         o->ratemin[DDIR_TRIM]) {
1851                 memcpy(&td->last_rate_check_time[DDIR_READ], &td->bw_sample_time,
1852                                         sizeof(td->bw_sample_time));
1853                 memcpy(&td->last_rate_check_time[DDIR_WRITE], &td->bw_sample_time,
1854                                         sizeof(td->bw_sample_time));
1855                 memcpy(&td->last_rate_check_time[DDIR_TRIM], &td->bw_sample_time,
1856                                         sizeof(td->bw_sample_time));
1857         }
1858
1859         memset(bytes_done, 0, sizeof(bytes_done));
1860         clear_state = false;
1861
1862         while (keep_running(td)) {
1863                 uint64_t verify_bytes;
1864
1865                 fio_gettime(&td->start, NULL);
1866                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1867
1868                 if (clear_state) {
1869                         clear_io_state(td, 0);
1870
1871                         if (o->unlink_each_loop && unlink_all_files(td))
1872                                 break;
1873                 }
1874
1875                 prune_io_piece_log(td);
1876
1877                 if (td->o.verify_only && td_write(td))
1878                         verify_bytes = do_dry_run(td);
1879                 else {
1880                         do_io(td, bytes_done);
1881
1882                         if (!ddir_rw_sum(bytes_done)) {
1883                                 fio_mark_td_terminate(td);
1884                                 verify_bytes = 0;
1885                         } else {
1886                                 verify_bytes = bytes_done[DDIR_WRITE] +
1887                                                 bytes_done[DDIR_TRIM];
1888                         }
1889                 }
1890
1891                 /*
1892                  * If we took too long to shut down, the main thread could
1893                  * already consider us reaped/exited. If that happens, break
1894                  * out and clean up.
1895                  */
1896                 if (td->runstate >= TD_EXITED)
1897                         break;
1898
1899                 clear_state = true;
1900
1901                 /*
1902                  * Make sure we've successfully updated the rusage stats
1903                  * before waiting on the stat mutex. Otherwise we could have
1904                  * the stat thread holding stat mutex and waiting for
1905                  * the rusage_sem, which would never get upped because
1906                  * this thread is waiting for the stat mutex.
1907                  */
1908                 deadlock_loop_cnt = 0;
1909                 do {
1910                         check_update_rusage(td);
1911                         if (!fio_sem_down_trylock(stat_sem))
1912                                 break;
1913                         usleep(1000);
1914                         if (deadlock_loop_cnt++ > 5000) {
1915                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1916                                 td->error = EDEADLK;
1917                                 goto err;
1918                         }
1919                 } while (1);
1920
1921                 if (td_read(td) && td->io_bytes[DDIR_READ])
1922                         update_runtime(td, elapsed_us, DDIR_READ);
1923                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1924                         update_runtime(td, elapsed_us, DDIR_WRITE);
1925                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1926                         update_runtime(td, elapsed_us, DDIR_TRIM);
1927                 fio_gettime(&td->start, NULL);
1928                 fio_sem_up(stat_sem);
1929
1930                 if (td->error || td->terminate)
1931                         break;
1932
1933                 if (!o->do_verify ||
1934                     o->verify == VERIFY_NONE ||
1935                     td_ioengine_flagged(td, FIO_UNIDIR))
1936                         continue;
1937
1938                 clear_io_state(td, 0);
1939
1940                 fio_gettime(&td->start, NULL);
1941
1942                 do_verify(td, verify_bytes);
1943
1944                 /*
1945                  * See comment further up for why this is done here.
1946                  */
1947                 check_update_rusage(td);
1948
1949                 fio_sem_down(stat_sem);
1950                 update_runtime(td, elapsed_us, DDIR_READ);
1951                 fio_gettime(&td->start, NULL);
1952                 fio_sem_up(stat_sem);
1953
1954                 if (td->error || td->terminate)
1955                         break;
1956         }
1957
1958         /*
1959          * Acquire this lock if we were doing overlap checking in
1960          * offload mode so that we don't clean up this job while
1961          * another thread is checking its io_u's for overlap
1962          */
1963         if (td_offload_overlap(td)) {
1964                 int res = pthread_mutex_lock(&overlap_check);
1965                 assert(res == 0);
1966         }
1967         td_set_runstate(td, TD_FINISHING);
1968         if (td_offload_overlap(td)) {
1969                 res = pthread_mutex_unlock(&overlap_check);
1970                 assert(res == 0);
1971         }
1972
1973         update_rusage_stat(td);
1974         td->ts.total_run_time = mtime_since_now(&td->epoch);
1975         for_each_rw_ddir(ddir) {
1976                 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1977         }
1978
1979         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1980             (td->o.verify != VERIFY_NONE && td_write(td)))
1981                 verify_save_state(td->thread_number);
1982
1983         fio_unpin_memory(td);
1984
1985         td_writeout_logs(td, true);
1986
1987         iolog_compress_exit(td);
1988         rate_submit_exit(td);
1989
1990         if (o->exec_postrun)
1991                 exec_string(o, o->exec_postrun, "postrun");
1992
1993         if (exitall_on_terminate || (o->exitall_error && td->error))
1994                 fio_terminate_threads(td->groupid, td->o.exit_what);
1995
1996 err:
1997         if (td->error)
1998                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1999                                                         td->verror);
2000
2001         if (o->verify_async)
2002                 verify_async_exit(td);
2003
2004         close_and_free_files(td);
2005         cleanup_io_u(td);
2006         close_ioengine(td);
2007         cgroup_shutdown(td, cgroup_mnt);
2008         verify_free_state(td);
2009         td_zone_free_index(td);
2010
2011         if (fio_option_is_set(o, cpumask)) {
2012                 ret = fio_cpuset_exit(&o->cpumask);
2013                 if (ret)
2014                         td_verror(td, ret, "fio_cpuset_exit");
2015         }
2016
2017         /*
2018          * do this very late, it will log file closing as well
2019          */
2020         if (o->write_iolog_file)
2021                 write_iolog_close(td);
2022         if (td->io_log_rfile)
2023                 fclose(td->io_log_rfile);
2024
2025         td_set_runstate(td, TD_EXITED);
2026
2027         /*
2028          * Do this last after setting our runstate to exited, so we
2029          * know that the stat thread is signaled.
2030          */
2031         check_update_rusage(td);
2032
2033         sk_out_drop();
2034         return (void *) (uintptr_t) td->error;
2035 }
2036
2037 /*
2038  * Run over the job map and reap the threads that have exited, if any.
2039  */
2040 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
2041                          uint64_t *m_rate)
2042 {
2043         struct thread_data *td;
2044         unsigned int cputhreads, realthreads, pending;
2045         int i, status, ret;
2046
2047         /*
2048          * reap exited threads (TD_EXITED -> TD_REAPED)
2049          */
2050         realthreads = pending = cputhreads = 0;
2051         for_each_td(td, i) {
2052                 int flags = 0;
2053
2054                 if (!strcmp(td->o.ioengine, "cpuio"))
2055                         cputhreads++;
2056                 else
2057                         realthreads++;
2058
2059                 if (!td->pid) {
2060                         pending++;
2061                         continue;
2062                 }
2063                 if (td->runstate == TD_REAPED)
2064                         continue;
2065                 if (td->o.use_thread) {
2066                         if (td->runstate == TD_EXITED) {
2067                                 td_set_runstate(td, TD_REAPED);
2068                                 goto reaped;
2069                         }
2070                         continue;
2071                 }
2072
2073                 flags = WNOHANG;
2074                 if (td->runstate == TD_EXITED)
2075                         flags = 0;
2076
2077                 /*
2078                  * check if someone quit or got killed in an unusual way
2079                  */
2080                 ret = waitpid(td->pid, &status, flags);
2081                 if (ret < 0) {
2082                         if (errno == ECHILD) {
2083                                 log_err("fio: pid=%d disappeared %d\n",
2084                                                 (int) td->pid, td->runstate);
2085                                 td->sig = ECHILD;
2086                                 td_set_runstate(td, TD_REAPED);
2087                                 goto reaped;
2088                         }
2089                         perror("waitpid");
2090                 } else if (ret == td->pid) {
2091                         if (WIFSIGNALED(status)) {
2092                                 int sig = WTERMSIG(status);
2093
2094                                 if (sig != SIGTERM && sig != SIGUSR2)
2095                                         log_err("fio: pid=%d, got signal=%d\n",
2096                                                         (int) td->pid, sig);
2097                                 td->sig = sig;
2098                                 td_set_runstate(td, TD_REAPED);
2099                                 goto reaped;
2100                         }
2101                         if (WIFEXITED(status)) {
2102                                 if (WEXITSTATUS(status) && !td->error)
2103                                         td->error = WEXITSTATUS(status);
2104
2105                                 td_set_runstate(td, TD_REAPED);
2106                                 goto reaped;
2107                         }
2108                 }
2109
2110                 /*
2111                  * If the job is stuck, do a forceful timeout of it and
2112                  * move on.
2113                  */
2114                 if (td->terminate &&
2115                     td->runstate < TD_FSYNCING &&
2116                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2117                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2118                                 "%lu seconds, it appears to be stuck. Doing "
2119                                 "forceful exit of this job.\n",
2120                                 td->o.name, td->runstate,
2121                                 (unsigned long) time_since_now(&td->terminate_time));
2122                         td_set_runstate(td, TD_REAPED);
2123                         goto reaped;
2124                 }
2125
2126                 /*
2127                  * thread is not dead, continue
2128                  */
2129                 pending++;
2130                 continue;
2131 reaped:
2132                 (*nr_running)--;
2133                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2134                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2135                 if (!td->pid)
2136                         pending--;
2137
2138                 if (td->error)
2139                         exit_value++;
2140
2141                 done_secs += mtime_since_now(&td->epoch) / 1000;
2142                 profile_td_exit(td);
2143                 flow_exit_job(td);
2144         }
2145
2146         if (*nr_running == cputhreads && !pending && realthreads)
2147                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2148 }
2149
2150 static bool __check_trigger_file(void)
2151 {
2152         struct stat sb;
2153
2154         if (!trigger_file)
2155                 return false;
2156
2157         if (stat(trigger_file, &sb))
2158                 return false;
2159
2160         if (unlink(trigger_file) < 0)
2161                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2162                                                         strerror(errno));
2163
2164         return true;
2165 }
2166
2167 static bool trigger_timedout(void)
2168 {
2169         if (trigger_timeout)
2170                 if (time_since_genesis() >= trigger_timeout) {
2171                         trigger_timeout = 0;
2172                         return true;
2173                 }
2174
2175         return false;
2176 }
2177
2178 void exec_trigger(const char *cmd)
2179 {
2180         int ret;
2181
2182         if (!cmd || cmd[0] == '\0')
2183                 return;
2184
2185         ret = system(cmd);
2186         if (ret == -1)
2187                 log_err("fio: failed executing %s trigger\n", cmd);
2188 }
2189
2190 void check_trigger_file(void)
2191 {
2192         if (__check_trigger_file() || trigger_timedout()) {
2193                 if (nr_clients)
2194                         fio_clients_send_trigger(trigger_remote_cmd);
2195                 else {
2196                         verify_save_state(IO_LIST_ALL);
2197                         fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2198                         exec_trigger(trigger_cmd);
2199                 }
2200         }
2201 }
2202
2203 static int fio_verify_load_state(struct thread_data *td)
2204 {
2205         int ret;
2206
2207         if (!td->o.verify_state)
2208                 return 0;
2209
2210         if (is_backend) {
2211                 void *data;
2212
2213                 ret = fio_server_get_verify_state(td->o.name,
2214                                         td->thread_number - 1, &data);
2215                 if (!ret)
2216                         verify_assign_state(td, data);
2217         } else {
2218                 char prefix[PATH_MAX];
2219
2220                 if (aux_path)
2221                         sprintf(prefix, "%s%clocal", aux_path,
2222                                         FIO_OS_PATH_SEPARATOR);
2223                 else
2224                         strcpy(prefix, "local");
2225                 ret = verify_load_state(td, prefix);
2226         }
2227
2228         return ret;
2229 }
2230
2231 static void do_usleep(unsigned int usecs)
2232 {
2233         check_for_running_stats();
2234         check_trigger_file();
2235         usleep(usecs);
2236 }
2237
2238 static bool check_mount_writes(struct thread_data *td)
2239 {
2240         struct fio_file *f;
2241         unsigned int i;
2242
2243         if (!td_write(td) || td->o.allow_mounted_write)
2244                 return false;
2245
2246         /*
2247          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2248          * are mkfs'd and mounted.
2249          */
2250         for_each_file(td, f, i) {
2251 #ifdef FIO_HAVE_CHARDEV_SIZE
2252                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2253 #else
2254                 if (f->filetype != FIO_TYPE_BLOCK)
2255 #endif
2256                         continue;
2257                 if (device_is_mounted(f->file_name))
2258                         goto mounted;
2259         }
2260
2261         return false;
2262 mounted:
2263         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2264         return true;
2265 }
2266
2267 static bool waitee_running(struct thread_data *me)
2268 {
2269         const char *waitee = me->o.wait_for;
2270         const char *self = me->o.name;
2271         struct thread_data *td;
2272         int i;
2273
2274         if (!waitee)
2275                 return false;
2276
2277         for_each_td(td, i) {
2278                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2279                         continue;
2280
2281                 if (td->runstate < TD_EXITED) {
2282                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2283                                         self, td->o.name,
2284                                         runstate_to_name(td->runstate));
2285                         return true;
2286                 }
2287         }
2288
2289         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2290         return false;
2291 }
2292
2293 /*
2294  * Main function for kicking off and reaping jobs, as needed.
2295  */
2296 static void run_threads(struct sk_out *sk_out)
2297 {
2298         struct thread_data *td;
2299         unsigned int i, todo, nr_running, nr_started;
2300         uint64_t m_rate, t_rate;
2301         uint64_t spent;
2302
2303         if (fio_gtod_offload && fio_start_gtod_thread())
2304                 return;
2305
2306         fio_idle_prof_init();
2307
2308         set_sig_handlers();
2309
2310         nr_thread = nr_process = 0;
2311         for_each_td(td, i) {
2312                 if (check_mount_writes(td))
2313                         return;
2314                 if (td->o.use_thread)
2315                         nr_thread++;
2316                 else
2317                         nr_process++;
2318         }
2319
2320         if (output_format & FIO_OUTPUT_NORMAL) {
2321                 struct buf_output out;
2322
2323                 buf_output_init(&out);
2324                 __log_buf(&out, "Starting ");
2325                 if (nr_thread)
2326                         __log_buf(&out, "%d thread%s", nr_thread,
2327                                                 nr_thread > 1 ? "s" : "");
2328                 if (nr_process) {
2329                         if (nr_thread)
2330                                 __log_buf(&out, " and ");
2331                         __log_buf(&out, "%d process%s", nr_process,
2332                                                 nr_process > 1 ? "es" : "");
2333                 }
2334                 __log_buf(&out, "\n");
2335                 log_info_buf(out.buf, out.buflen);
2336                 buf_output_free(&out);
2337         }
2338
2339         todo = thread_number;
2340         nr_running = 0;
2341         nr_started = 0;
2342         m_rate = t_rate = 0;
2343
2344         for_each_td(td, i) {
2345                 print_status_init(td->thread_number - 1);
2346
2347                 if (!td->o.create_serialize)
2348                         continue;
2349
2350                 if (fio_verify_load_state(td))
2351                         goto reap;
2352
2353                 /*
2354                  * do file setup here so it happens sequentially,
2355                  * we don't want X number of threads getting their
2356                  * client data interspersed on disk
2357                  */
2358                 if (setup_files(td)) {
2359 reap:
2360                         exit_value++;
2361                         if (td->error)
2362                                 log_err("fio: pid=%d, err=%d/%s\n",
2363                                         (int) td->pid, td->error, td->verror);
2364                         td_set_runstate(td, TD_REAPED);
2365                         todo--;
2366                 } else {
2367                         struct fio_file *f;
2368                         unsigned int j;
2369
2370                         /*
2371                          * for sharing to work, each job must always open
2372                          * its own files. so close them, if we opened them
2373                          * for creation
2374                          */
2375                         for_each_file(td, f, j) {
2376                                 if (fio_file_open(f))
2377                                         td_io_close_file(td, f);
2378                         }
2379                 }
2380         }
2381
2382         /* start idle threads before io threads start to run */
2383         fio_idle_prof_start();
2384
2385         set_genesis_time();
2386
2387         while (todo) {
2388                 struct thread_data *map[REAL_MAX_JOBS];
2389                 struct timespec this_start;
2390                 int this_jobs = 0, left;
2391                 struct fork_data *fd;
2392
2393                 /*
2394                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2395                  */
2396                 for_each_td(td, i) {
2397                         if (td->runstate != TD_NOT_CREATED)
2398                                 continue;
2399
2400                         /*
2401                          * never got a chance to start, killed by other
2402                          * thread for some reason
2403                          */
2404                         if (td->terminate) {
2405                                 todo--;
2406                                 continue;
2407                         }
2408
2409                         if (td->o.start_delay) {
2410                                 spent = utime_since_genesis();
2411
2412                                 if (td->o.start_delay > spent)
2413                                         continue;
2414                         }
2415
2416                         if (td->o.stonewall && (nr_started || nr_running)) {
2417                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2418                                                         td->o.name);
2419                                 break;
2420                         }
2421
2422                         if (waitee_running(td)) {
2423                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2424                                                 td->o.name, td->o.wait_for);
2425                                 continue;
2426                         }
2427
2428                         init_disk_util(td);
2429
2430                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2431                         td->update_rusage = 0;
2432
2433                         /*
2434                          * Set state to created. Thread will transition
2435                          * to TD_INITIALIZED when it's done setting up.
2436                          */
2437                         td_set_runstate(td, TD_CREATED);
2438                         map[this_jobs++] = td;
2439                         nr_started++;
2440
2441                         fd = calloc(1, sizeof(*fd));
2442                         fd->td = td;
2443                         fd->sk_out = sk_out;
2444
2445                         if (td->o.use_thread) {
2446                                 int ret;
2447
2448                                 dprint(FD_PROCESS, "will pthread_create\n");
2449                                 ret = pthread_create(&td->thread, NULL,
2450                                                         thread_main, fd);
2451                                 if (ret) {
2452                                         log_err("pthread_create: %s\n",
2453                                                         strerror(ret));
2454                                         free(fd);
2455                                         nr_started--;
2456                                         break;
2457                                 }
2458                                 fd = NULL;
2459                                 ret = pthread_detach(td->thread);
2460                                 if (ret)
2461                                         log_err("pthread_detach: %s",
2462                                                         strerror(ret));
2463                         } else {
2464                                 pid_t pid;
2465                                 void *eo;
2466                                 dprint(FD_PROCESS, "will fork\n");
2467                                 eo = td->eo;
2468                                 read_barrier();
2469                                 pid = fork();
2470                                 if (!pid) {
2471                                         int ret;
2472
2473                                         ret = (int)(uintptr_t)thread_main(fd);
2474                                         _exit(ret);
2475                                 } else if (i == fio_debug_jobno)
2476                                         *fio_debug_jobp = pid;
2477                                 free(eo);
2478                                 free(fd);
2479                                 fd = NULL;
2480                         }
2481                         dprint(FD_MUTEX, "wait on startup_sem\n");
2482                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2483                                 log_err("fio: job startup hung? exiting.\n");
2484                                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2485                                 fio_abort = true;
2486                                 nr_started--;
2487                                 free(fd);
2488                                 break;
2489                         }
2490                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2491                 }
2492
2493                 /*
2494                  * Wait for the started threads to transition to
2495                  * TD_INITIALIZED.
2496                  */
2497                 fio_gettime(&this_start, NULL);
2498                 left = this_jobs;
2499                 while (left && !fio_abort) {
2500                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2501                                 break;
2502
2503                         do_usleep(100000);
2504
2505                         for (i = 0; i < this_jobs; i++) {
2506                                 td = map[i];
2507                                 if (!td)
2508                                         continue;
2509                                 if (td->runstate == TD_INITIALIZED) {
2510                                         map[i] = NULL;
2511                                         left--;
2512                                 } else if (td->runstate >= TD_EXITED) {
2513                                         map[i] = NULL;
2514                                         left--;
2515                                         todo--;
2516                                         nr_running++; /* work-around... */
2517                                 }
2518                         }
2519                 }
2520
2521                 if (left) {
2522                         log_err("fio: %d job%s failed to start\n", left,
2523                                         left > 1 ? "s" : "");
2524                         for (i = 0; i < this_jobs; i++) {
2525                                 td = map[i];
2526                                 if (!td)
2527                                         continue;
2528                                 kill(td->pid, SIGTERM);
2529                         }
2530                         break;
2531                 }
2532
2533                 /*
2534                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2535                  */
2536                 for_each_td(td, i) {
2537                         if (td->runstate != TD_INITIALIZED)
2538                                 continue;
2539
2540                         if (in_ramp_time(td))
2541                                 td_set_runstate(td, TD_RAMP);
2542                         else
2543                                 td_set_runstate(td, TD_RUNNING);
2544                         nr_running++;
2545                         nr_started--;
2546                         m_rate += ddir_rw_sum(td->o.ratemin);
2547                         t_rate += ddir_rw_sum(td->o.rate);
2548                         todo--;
2549                         fio_sem_up(td->sem);
2550                 }
2551
2552                 reap_threads(&nr_running, &t_rate, &m_rate);
2553
2554                 if (todo)
2555                         do_usleep(100000);
2556         }
2557
2558         while (nr_running) {
2559                 reap_threads(&nr_running, &t_rate, &m_rate);
2560                 do_usleep(10000);
2561         }
2562
2563         fio_idle_prof_stop();
2564
2565         update_io_ticks();
2566 }
2567
2568 static void free_disk_util(void)
2569 {
2570         disk_util_prune_entries();
2571         helper_thread_destroy();
2572 }
2573
2574 int fio_backend(struct sk_out *sk_out)
2575 {
2576         struct thread_data *td;
2577         int i;
2578
2579         if (exec_profile) {
2580                 if (load_profile(exec_profile))
2581                         return 1;
2582                 free(exec_profile);
2583                 exec_profile = NULL;
2584         }
2585         if (!thread_number)
2586                 return 0;
2587
2588         if (write_bw_log) {
2589                 struct log_params p = {
2590                         .log_type = IO_LOG_TYPE_BW,
2591                 };
2592
2593                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2594                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2595                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2596         }
2597
2598         if (init_global_dedupe_working_set_seeds()) {
2599                 log_err("fio: failed to initialize global dedupe working set\n");
2600                 return 1;
2601         }
2602
2603         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2604         if (!sk_out)
2605                 is_local_backend = true;
2606         if (startup_sem == NULL)
2607                 return 1;
2608
2609         set_genesis_time();
2610         stat_init();
2611         if (helper_thread_create(startup_sem, sk_out))
2612                 log_err("fio: failed to create helper thread\n");
2613
2614         cgroup_list = smalloc(sizeof(*cgroup_list));
2615         if (cgroup_list)
2616                 INIT_FLIST_HEAD(cgroup_list);
2617
2618         run_threads(sk_out);
2619
2620         helper_thread_exit();
2621
2622         if (!fio_abort) {
2623                 __show_run_stats();
2624                 if (write_bw_log) {
2625                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2626                                 struct io_log *log = agg_io_log[i];
2627
2628                                 flush_log(log, false);
2629                                 free_log(log);
2630                         }
2631                 }
2632         }
2633
2634         for_each_td(td, i) {
2635                 struct thread_stat *ts = &td->ts;
2636
2637                 free_clat_prio_stats(ts);
2638                 steadystate_free(td);
2639                 fio_options_free(td);
2640                 fio_dump_options_free(td);
2641                 if (td->rusage_sem) {
2642                         fio_sem_remove(td->rusage_sem);
2643                         td->rusage_sem = NULL;
2644                 }
2645                 fio_sem_remove(td->sem);
2646                 td->sem = NULL;
2647         }
2648
2649         free_disk_util();
2650         if (cgroup_list) {
2651                 cgroup_kill(cgroup_list);
2652                 sfree(cgroup_list);
2653         }
2654
2655         fio_sem_remove(startup_sem);
2656         stat_exit();
2657         return exit_value;
2658 }