list all available dynamic ioengines with --enghelp
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32 #include <pthread.h>
33
34 #include "fio.h"
35 #include "smalloc.h"
36 #include "verify.h"
37 #include "diskutil.h"
38 #include "cgroup.h"
39 #include "profile.h"
40 #include "lib/rand.h"
41 #include "lib/memalign.h"
42 #include "server.h"
43 #include "lib/getrusage.h"
44 #include "idletime.h"
45 #include "err.h"
46 #include "workqueue.h"
47 #include "lib/mountcheck.h"
48 #include "rate-submit.h"
49 #include "helper_thread.h"
50 #include "pshared.h"
51 #include "zone-dist.h"
52
53 static struct fio_sem *startup_sem;
54 static struct flist_head *cgroup_list;
55 static struct cgroup_mnt *cgroup_mnt;
56 static int exit_value;
57 static volatile bool fio_abort;
58 static unsigned int nr_process = 0;
59 static unsigned int nr_thread = 0;
60
61 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
62
63 int groupid = 0;
64 unsigned int thread_number = 0;
65 unsigned int stat_number = 0;
66 int shm_id = 0;
67 int temp_stall_ts;
68 unsigned long done_secs = 0;
69 #ifdef PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP
70 pthread_mutex_t overlap_check = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;
71 #else
72 pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
73 #endif
74
75 #define JOB_START_TIMEOUT       (5 * 1000)
76
77 static void sig_int(int sig)
78 {
79         if (threads) {
80                 if (is_backend)
81                         fio_server_got_signal(sig);
82                 else {
83                         log_info("\nfio: terminating on signal %d\n", sig);
84                         log_info_flush();
85                         exit_value = 128;
86                 }
87
88                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
89         }
90 }
91
92 void sig_show_status(int sig)
93 {
94         show_running_run_stats();
95 }
96
97 static void set_sig_handlers(void)
98 {
99         struct sigaction act;
100
101         memset(&act, 0, sizeof(act));
102         act.sa_handler = sig_int;
103         act.sa_flags = SA_RESTART;
104         sigaction(SIGINT, &act, NULL);
105
106         memset(&act, 0, sizeof(act));
107         act.sa_handler = sig_int;
108         act.sa_flags = SA_RESTART;
109         sigaction(SIGTERM, &act, NULL);
110
111 /* Windows uses SIGBREAK as a quit signal from other applications */
112 #ifdef WIN32
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGBREAK, &act, NULL);
117 #endif
118
119         memset(&act, 0, sizeof(act));
120         act.sa_handler = sig_show_status;
121         act.sa_flags = SA_RESTART;
122         sigaction(SIGUSR1, &act, NULL);
123
124         if (is_backend) {
125                 memset(&act, 0, sizeof(act));
126                 act.sa_handler = sig_int;
127                 act.sa_flags = SA_RESTART;
128                 sigaction(SIGPIPE, &act, NULL);
129         }
130 }
131
132 /*
133  * Check if we are above the minimum rate given.
134  */
135 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
136                              enum fio_ddir ddir)
137 {
138         unsigned long long bytes = 0;
139         unsigned long iops = 0;
140         unsigned long spent;
141         unsigned long long rate;
142         unsigned long long ratemin = 0;
143         unsigned int rate_iops = 0;
144         unsigned int rate_iops_min = 0;
145
146         assert(ddir_rw(ddir));
147
148         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
149                 return false;
150
151         /*
152          * allow a 2 second settle period in the beginning
153          */
154         if (mtime_since(&td->start, now) < 2000)
155                 return false;
156
157         iops += td->this_io_blocks[ddir];
158         bytes += td->this_io_bytes[ddir];
159         ratemin += td->o.ratemin[ddir];
160         rate_iops += td->o.rate_iops[ddir];
161         rate_iops_min += td->o.rate_iops_min[ddir];
162
163         /*
164          * if rate blocks is set, sample is running
165          */
166         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
167                 spent = mtime_since(&td->lastrate[ddir], now);
168                 if (spent < td->o.ratecycle)
169                         return false;
170
171                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
172                         /*
173                          * check bandwidth specified rate
174                          */
175                         if (bytes < td->rate_bytes[ddir]) {
176                                 log_err("%s: rate_min=%lluB/s not met, only transferred %lluB\n",
177                                         td->o.name, ratemin, bytes);
178                                 return true;
179                         } else {
180                                 if (spent)
181                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
182                                 else
183                                         rate = 0;
184
185                                 if (rate < ratemin ||
186                                     bytes < td->rate_bytes[ddir]) {
187                                         log_err("%s: rate_min=%lluB/s not met, got %lluB/s\n",
188                                                 td->o.name, ratemin, rate);
189                                         return true;
190                                 }
191                         }
192                 } else {
193                         /*
194                          * checks iops specified rate
195                          */
196                         if (iops < rate_iops) {
197                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
198                                                 td->o.name, rate_iops, iops);
199                                 return true;
200                         } else {
201                                 if (spent)
202                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
203                                 else
204                                         rate = 0;
205
206                                 if (rate < rate_iops_min ||
207                                     iops < td->rate_blocks[ddir]) {
208                                         log_err("%s: rate_iops_min=%u not met, got %llu IOPS\n",
209                                                 td->o.name, rate_iops_min, rate);
210                                         return true;
211                                 }
212                         }
213                 }
214         }
215
216         td->rate_bytes[ddir] = bytes;
217         td->rate_blocks[ddir] = iops;
218         memcpy(&td->lastrate[ddir], now, sizeof(*now));
219         return false;
220 }
221
222 static bool check_min_rate(struct thread_data *td, struct timespec *now)
223 {
224         bool ret = false;
225
226         for_each_rw_ddir(ddir) {
227                 if (td->bytes_done[ddir])
228                         ret |= __check_min_rate(td, now, ddir);
229         }
230
231         return ret;
232 }
233
234 /*
235  * When job exits, we can cancel the in-flight IO if we are using async
236  * io. Attempt to do so.
237  */
238 static void cleanup_pending_aio(struct thread_data *td)
239 {
240         int r;
241
242         /*
243          * get immediately available events, if any
244          */
245         r = io_u_queued_complete(td, 0);
246
247         /*
248          * now cancel remaining active events
249          */
250         if (td->io_ops->cancel) {
251                 struct io_u *io_u;
252                 int i;
253
254                 io_u_qiter(&td->io_u_all, io_u, i) {
255                         if (io_u->flags & IO_U_F_FLIGHT) {
256                                 r = td->io_ops->cancel(td, io_u);
257                                 if (!r)
258                                         put_io_u(td, io_u);
259                         }
260                 }
261         }
262
263         if (td->cur_depth)
264                 r = io_u_queued_complete(td, td->cur_depth);
265 }
266
267 /*
268  * Helper to handle the final sync of a file. Works just like the normal
269  * io path, just does everything sync.
270  */
271 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
272 {
273         struct io_u *io_u = __get_io_u(td);
274         enum fio_q_status ret;
275
276         if (!io_u)
277                 return true;
278
279         io_u->ddir = DDIR_SYNC;
280         io_u->file = f;
281         io_u_set(td, io_u, IO_U_F_NO_FILE_PUT);
282
283         if (td_io_prep(td, io_u)) {
284                 put_io_u(td, io_u);
285                 return true;
286         }
287
288 requeue:
289         ret = td_io_queue(td, io_u);
290         switch (ret) {
291         case FIO_Q_QUEUED:
292                 td_io_commit(td);
293                 if (io_u_queued_complete(td, 1) < 0)
294                         return true;
295                 break;
296         case FIO_Q_COMPLETED:
297                 if (io_u->error) {
298                         td_verror(td, io_u->error, "td_io_queue");
299                         return true;
300                 }
301
302                 if (io_u_sync_complete(td, io_u) < 0)
303                         return true;
304                 break;
305         case FIO_Q_BUSY:
306                 td_io_commit(td);
307                 goto requeue;
308         }
309
310         return false;
311 }
312
313 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
314 {
315         int ret, ret2;
316
317         if (fio_file_open(f))
318                 return fio_io_sync(td, f);
319
320         if (td_io_open_file(td, f))
321                 return 1;
322
323         ret = fio_io_sync(td, f);
324         ret2 = 0;
325         if (fio_file_open(f))
326                 ret2 = td_io_close_file(td, f);
327         return (ret || ret2);
328 }
329
330 static inline void __update_ts_cache(struct thread_data *td)
331 {
332         fio_gettime(&td->ts_cache, NULL);
333 }
334
335 static inline void update_ts_cache(struct thread_data *td)
336 {
337         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
338                 __update_ts_cache(td);
339 }
340
341 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
342 {
343         if (in_ramp_time(td))
344                 return false;
345         if (!td->o.timeout)
346                 return false;
347         if (utime_since(&td->epoch, t) >= td->o.timeout)
348                 return true;
349
350         return false;
351 }
352
353 /*
354  * We need to update the runtime consistently in ms, but keep a running
355  * tally of the current elapsed time in microseconds for sub millisecond
356  * updates.
357  */
358 static inline void update_runtime(struct thread_data *td,
359                                   unsigned long long *elapsed_us,
360                                   const enum fio_ddir ddir)
361 {
362         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
363                 return;
364
365         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
366         elapsed_us[ddir] += utime_since_now(&td->start);
367         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
368 }
369
370 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
371                                 int *retptr)
372 {
373         int ret = *retptr;
374
375         if (ret < 0 || td->error) {
376                 int err = td->error;
377                 enum error_type_bit eb;
378
379                 if (ret < 0)
380                         err = -ret;
381
382                 eb = td_error_type(ddir, err);
383                 if (!(td->o.continue_on_error & (1 << eb)))
384                         return true;
385
386                 if (td_non_fatal_error(td, eb, err)) {
387                         /*
388                          * Continue with the I/Os in case of
389                          * a non fatal error.
390                          */
391                         update_error_count(td, err);
392                         td_clear_error(td);
393                         *retptr = 0;
394                         return false;
395                 } else if (td->o.fill_device && err == ENOSPC) {
396                         /*
397                          * We expect to hit this error if
398                          * fill_device option is set.
399                          */
400                         td_clear_error(td);
401                         fio_mark_td_terminate(td);
402                         return true;
403                 } else {
404                         /*
405                          * Stop the I/O in case of a fatal
406                          * error.
407                          */
408                         update_error_count(td, err);
409                         return true;
410                 }
411         }
412
413         return false;
414 }
415
416 static void check_update_rusage(struct thread_data *td)
417 {
418         if (td->update_rusage) {
419                 td->update_rusage = 0;
420                 update_rusage_stat(td);
421                 fio_sem_up(td->rusage_sem);
422         }
423 }
424
425 static int wait_for_completions(struct thread_data *td, struct timespec *time)
426 {
427         const int full = queue_full(td);
428         int min_evts = 0;
429         int ret;
430
431         if (td->flags & TD_F_REGROW_LOGS)
432                 return io_u_quiesce(td);
433
434         /*
435          * if the queue is full, we MUST reap at least 1 event
436          */
437         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
438         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
439                 min_evts = 1;
440
441         if (time && __should_check_rate(td))
442                 fio_gettime(time, NULL);
443
444         do {
445                 ret = io_u_queued_complete(td, min_evts);
446                 if (ret < 0)
447                         break;
448         } while (full && (td->cur_depth > td->o.iodepth_low));
449
450         return ret;
451 }
452
453 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
454                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
455                    struct timespec *comp_time)
456 {
457         switch (*ret) {
458         case FIO_Q_COMPLETED:
459                 if (io_u->error) {
460                         *ret = -io_u->error;
461                         clear_io_u(td, io_u);
462                 } else if (io_u->resid) {
463                         long long bytes = io_u->xfer_buflen - io_u->resid;
464                         struct fio_file *f = io_u->file;
465
466                         if (bytes_issued)
467                                 *bytes_issued += bytes;
468
469                         if (!from_verify)
470                                 trim_io_piece(io_u);
471
472                         /*
473                          * zero read, fail
474                          */
475                         if (!bytes) {
476                                 if (!from_verify)
477                                         unlog_io_piece(td, io_u);
478                                 td_verror(td, EIO, "full resid");
479                                 put_io_u(td, io_u);
480                                 break;
481                         }
482
483                         io_u->xfer_buflen = io_u->resid;
484                         io_u->xfer_buf += bytes;
485                         io_u->offset += bytes;
486
487                         if (ddir_rw(io_u->ddir))
488                                 td->ts.short_io_u[io_u->ddir]++;
489
490                         if (io_u->offset == f->real_file_size)
491                                 goto sync_done;
492
493                         requeue_io_u(td, &io_u);
494                 } else {
495 sync_done:
496                         if (comp_time && __should_check_rate(td))
497                                 fio_gettime(comp_time, NULL);
498
499                         *ret = io_u_sync_complete(td, io_u);
500                         if (*ret < 0)
501                                 break;
502                 }
503
504                 if (td->flags & TD_F_REGROW_LOGS)
505                         regrow_logs(td);
506
507                 /*
508                  * when doing I/O (not when verifying),
509                  * check for any errors that are to be ignored
510                  */
511                 if (!from_verify)
512                         break;
513
514                 return 0;
515         case FIO_Q_QUEUED:
516                 /*
517                  * if the engine doesn't have a commit hook,
518                  * the io_u is really queued. if it does have such
519                  * a hook, it has to call io_u_queued() itself.
520                  */
521                 if (td->io_ops->commit == NULL)
522                         io_u_queued(td, io_u);
523                 if (bytes_issued)
524                         *bytes_issued += io_u->xfer_buflen;
525                 break;
526         case FIO_Q_BUSY:
527                 if (!from_verify)
528                         unlog_io_piece(td, io_u);
529                 requeue_io_u(td, &io_u);
530                 td_io_commit(td);
531                 break;
532         default:
533                 assert(*ret < 0);
534                 td_verror(td, -(*ret), "td_io_queue");
535                 break;
536         }
537
538         if (break_on_this_error(td, ddir, ret))
539                 return 1;
540
541         return 0;
542 }
543
544 static inline bool io_in_polling(struct thread_data *td)
545 {
546         return !td->o.iodepth_batch_complete_min &&
547                    !td->o.iodepth_batch_complete_max;
548 }
549 /*
550  * Unlinks files from thread data fio_file structure
551  */
552 static int unlink_all_files(struct thread_data *td)
553 {
554         struct fio_file *f;
555         unsigned int i;
556         int ret = 0;
557
558         for_each_file(td, f, i) {
559                 if (f->filetype != FIO_TYPE_FILE)
560                         continue;
561                 ret = td_io_unlink_file(td, f);
562                 if (ret)
563                         break;
564         }
565
566         if (ret)
567                 td_verror(td, ret, "unlink_all_files");
568
569         return ret;
570 }
571
572 /*
573  * Check if io_u will overlap an in-flight IO in the queue
574  */
575 bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
576 {
577         bool overlap;
578         struct io_u *check_io_u;
579         unsigned long long x1, x2, y1, y2;
580         int i;
581
582         x1 = io_u->offset;
583         x2 = io_u->offset + io_u->buflen;
584         overlap = false;
585         io_u_qiter(q, check_io_u, i) {
586                 if (check_io_u->flags & IO_U_F_FLIGHT) {
587                         y1 = check_io_u->offset;
588                         y2 = check_io_u->offset + check_io_u->buflen;
589
590                         if (x1 < y2 && y1 < x2) {
591                                 overlap = true;
592                                 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
593                                                 x1, io_u->buflen,
594                                                 y1, check_io_u->buflen);
595                                 break;
596                         }
597                 }
598         }
599
600         return overlap;
601 }
602
603 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
604 {
605         /*
606          * Check for overlap if the user asked us to, and we have
607          * at least one IO in flight besides this one.
608          */
609         if (td->o.serialize_overlap && td->cur_depth > 1 &&
610             in_flight_overlap(&td->io_u_all, io_u))
611                 return FIO_Q_BUSY;
612
613         return td_io_queue(td, io_u);
614 }
615
616 /*
617  * The main verify engine. Runs over the writes we previously submitted,
618  * reads the blocks back in, and checks the crc/md5 of the data.
619  */
620 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
621 {
622         struct fio_file *f;
623         struct io_u *io_u;
624         int ret, min_events;
625         unsigned int i;
626
627         dprint(FD_VERIFY, "starting loop\n");
628
629         /*
630          * sync io first and invalidate cache, to make sure we really
631          * read from disk.
632          */
633         for_each_file(td, f, i) {
634                 if (!fio_file_open(f))
635                         continue;
636                 if (fio_io_sync(td, f))
637                         break;
638                 if (file_invalidate_cache(td, f))
639                         break;
640         }
641
642         check_update_rusage(td);
643
644         if (td->error)
645                 return;
646
647         /*
648          * verify_state needs to be reset before verification
649          * proceeds so that expected random seeds match actual
650          * random seeds in headers. The main loop will reset
651          * all random number generators if randrepeat is set.
652          */
653         if (!td->o.rand_repeatable)
654                 td_fill_verify_state_seed(td);
655
656         td_set_runstate(td, TD_VERIFYING);
657
658         io_u = NULL;
659         while (!td->terminate) {
660                 enum fio_ddir ddir;
661                 int full;
662
663                 update_ts_cache(td);
664                 check_update_rusage(td);
665
666                 if (runtime_exceeded(td, &td->ts_cache)) {
667                         __update_ts_cache(td);
668                         if (runtime_exceeded(td, &td->ts_cache)) {
669                                 fio_mark_td_terminate(td);
670                                 break;
671                         }
672                 }
673
674                 if (flow_threshold_exceeded(td))
675                         continue;
676
677                 if (!td->o.experimental_verify) {
678                         io_u = __get_io_u(td);
679                         if (!io_u)
680                                 break;
681
682                         if (get_next_verify(td, io_u)) {
683                                 put_io_u(td, io_u);
684                                 break;
685                         }
686
687                         if (td_io_prep(td, io_u)) {
688                                 put_io_u(td, io_u);
689                                 break;
690                         }
691                 } else {
692                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
693                                 break;
694
695                         while ((io_u = get_io_u(td)) != NULL) {
696                                 if (IS_ERR_OR_NULL(io_u)) {
697                                         io_u = NULL;
698                                         ret = FIO_Q_BUSY;
699                                         goto reap;
700                                 }
701
702                                 /*
703                                  * We are only interested in the places where
704                                  * we wrote or trimmed IOs. Turn those into
705                                  * reads for verification purposes.
706                                  */
707                                 if (io_u->ddir == DDIR_READ) {
708                                         /*
709                                          * Pretend we issued it for rwmix
710                                          * accounting
711                                          */
712                                         td->io_issues[DDIR_READ]++;
713                                         put_io_u(td, io_u);
714                                         continue;
715                                 } else if (io_u->ddir == DDIR_TRIM) {
716                                         io_u->ddir = DDIR_READ;
717                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
718                                         break;
719                                 } else if (io_u->ddir == DDIR_WRITE) {
720                                         io_u->ddir = DDIR_READ;
721                                         populate_verify_io_u(td, io_u);
722                                         break;
723                                 } else {
724                                         put_io_u(td, io_u);
725                                         continue;
726                                 }
727                         }
728
729                         if (!io_u)
730                                 break;
731                 }
732
733                 if (verify_state_should_stop(td, io_u)) {
734                         put_io_u(td, io_u);
735                         break;
736                 }
737
738                 if (td->o.verify_async)
739                         io_u->end_io = verify_io_u_async;
740                 else
741                         io_u->end_io = verify_io_u;
742
743                 ddir = io_u->ddir;
744                 if (!td->o.disable_slat)
745                         fio_gettime(&io_u->start_time, NULL);
746
747                 ret = io_u_submit(td, io_u);
748
749                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
750                         break;
751
752                 /*
753                  * if we can queue more, do so. but check if there are
754                  * completed io_u's first. Note that we can get BUSY even
755                  * without IO queued, if the system is resource starved.
756                  */
757 reap:
758                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
759                 if (full || io_in_polling(td))
760                         ret = wait_for_completions(td, NULL);
761
762                 if (ret < 0)
763                         break;
764         }
765
766         check_update_rusage(td);
767
768         if (!td->error) {
769                 min_events = td->cur_depth;
770
771                 if (min_events)
772                         ret = io_u_queued_complete(td, min_events);
773         } else
774                 cleanup_pending_aio(td);
775
776         td_set_runstate(td, TD_RUNNING);
777
778         dprint(FD_VERIFY, "exiting loop\n");
779 }
780
781 static bool exceeds_number_ios(struct thread_data *td)
782 {
783         unsigned long long number_ios;
784
785         if (!td->o.number_ios)
786                 return false;
787
788         number_ios = ddir_rw_sum(td->io_blocks);
789         number_ios += td->io_u_queued + td->io_u_in_flight;
790
791         return number_ios >= (td->o.number_ios * td->loops);
792 }
793
794 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
795 {
796         unsigned long long bytes, limit;
797
798         if (td_rw(td))
799                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
800         else if (td_write(td))
801                 bytes = this_bytes[DDIR_WRITE];
802         else if (td_read(td))
803                 bytes = this_bytes[DDIR_READ];
804         else
805                 bytes = this_bytes[DDIR_TRIM];
806
807         if (td->o.io_size)
808                 limit = td->o.io_size;
809         else
810                 limit = td->o.size;
811
812         limit *= td->loops;
813         return bytes >= limit || exceeds_number_ios(td);
814 }
815
816 static bool io_issue_bytes_exceeded(struct thread_data *td)
817 {
818         return io_bytes_exceeded(td, td->io_issue_bytes);
819 }
820
821 static bool io_complete_bytes_exceeded(struct thread_data *td)
822 {
823         return io_bytes_exceeded(td, td->this_io_bytes);
824 }
825
826 /*
827  * used to calculate the next io time for rate control
828  *
829  */
830 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
831 {
832         uint64_t bps = td->rate_bps[ddir];
833
834         assert(!(td->flags & TD_F_CHILD));
835
836         if (td->o.rate_process == RATE_PROCESS_POISSON) {
837                 uint64_t val, iops;
838
839                 iops = bps / td->o.bs[ddir];
840                 val = (int64_t) (1000000 / iops) *
841                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
842                 if (val) {
843                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
844                                         (unsigned long long) 1000000 / val,
845                                         ddir);
846                 }
847                 td->last_usec[ddir] += val;
848                 return td->last_usec[ddir];
849         } else if (bps) {
850                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
851                 uint64_t secs = bytes / bps;
852                 uint64_t remainder = bytes % bps;
853
854                 return remainder * 1000000 / bps + secs * 1000000;
855         }
856
857         return 0;
858 }
859
860 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
861 {
862         unsigned long long b;
863         uint64_t total;
864         int left;
865
866         b = ddir_rw_sum(td->io_blocks);
867         if (b % td->o.thinktime_blocks)
868                 return;
869
870         io_u_quiesce(td);
871
872         total = 0;
873         if (td->o.thinktime_spin)
874                 total = usec_spin(td->o.thinktime_spin);
875
876         left = td->o.thinktime - total;
877         if (left)
878                 total += usec_sleep(td, left);
879
880         /*
881          * If we're ignoring thinktime for the rate, add the number of bytes
882          * we would have done while sleeping, minus one block to ensure we
883          * start issuing immediately after the sleep.
884          */
885         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
886                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
887                 uint64_t bs = td->o.min_bs[ddir];
888                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
889                 uint64_t over;
890
891                 if (usperop <= total)
892                         over = bs;
893                 else
894                         over = (usperop - total) / usperop * -bs;
895
896                 td->rate_io_issue_bytes[ddir] += (missed - over);
897                 /* adjust for rate_process=poisson */
898                 td->last_usec[ddir] += total;
899         }
900 }
901
902 /*
903  * Main IO worker function. It retrieves io_u's to process and queues
904  * and reaps them, checking for rate and errors along the way.
905  *
906  * Returns number of bytes written and trimmed.
907  */
908 static void do_io(struct thread_data *td, uint64_t *bytes_done)
909 {
910         unsigned int i;
911         int ret = 0;
912         uint64_t total_bytes, bytes_issued = 0;
913
914         for (i = 0; i < DDIR_RWDIR_CNT; i++)
915                 bytes_done[i] = td->bytes_done[i];
916
917         if (in_ramp_time(td))
918                 td_set_runstate(td, TD_RAMP);
919         else
920                 td_set_runstate(td, TD_RUNNING);
921
922         lat_target_init(td);
923
924         total_bytes = td->o.size;
925         /*
926         * Allow random overwrite workloads to write up to io_size
927         * before starting verification phase as 'size' doesn't apply.
928         */
929         if (td_write(td) && td_random(td) && td->o.norandommap)
930                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
931         /*
932          * If verify_backlog is enabled, we'll run the verify in this
933          * handler as well. For that case, we may need up to twice the
934          * amount of bytes.
935          */
936         if (td->o.verify != VERIFY_NONE &&
937            (td_write(td) && td->o.verify_backlog))
938                 total_bytes += td->o.size;
939
940         /* In trimwrite mode, each byte is trimmed and then written, so
941          * allow total_bytes to be twice as big */
942         if (td_trimwrite(td))
943                 total_bytes += td->total_io_size;
944
945         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
946                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
947                 td->o.time_based) {
948                 struct timespec comp_time;
949                 struct io_u *io_u;
950                 int full;
951                 enum fio_ddir ddir;
952
953                 check_update_rusage(td);
954
955                 if (td->terminate || td->done)
956                         break;
957
958                 update_ts_cache(td);
959
960                 if (runtime_exceeded(td, &td->ts_cache)) {
961                         __update_ts_cache(td);
962                         if (runtime_exceeded(td, &td->ts_cache)) {
963                                 fio_mark_td_terminate(td);
964                                 break;
965                         }
966                 }
967
968                 if (flow_threshold_exceeded(td))
969                         continue;
970
971                 /*
972                  * Break if we exceeded the bytes. The exception is time
973                  * based runs, but we still need to break out of the loop
974                  * for those to run verification, if enabled.
975                  * Jobs read from iolog do not use this stop condition.
976                  */
977                 if (bytes_issued >= total_bytes &&
978                     !td->o.read_iolog_file &&
979                     (!td->o.time_based ||
980                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
981                         break;
982
983                 io_u = get_io_u(td);
984                 if (IS_ERR_OR_NULL(io_u)) {
985                         int err = PTR_ERR(io_u);
986
987                         io_u = NULL;
988                         ddir = DDIR_INVAL;
989                         if (err == -EBUSY) {
990                                 ret = FIO_Q_BUSY;
991                                 goto reap;
992                         }
993                         if (td->o.latency_target)
994                                 goto reap;
995                         break;
996                 }
997
998                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
999                         populate_verify_io_u(td, io_u);
1000
1001                 ddir = io_u->ddir;
1002
1003                 /*
1004                  * Add verification end_io handler if:
1005                  *      - Asked to verify (!td_rw(td))
1006                  *      - Or the io_u is from our verify list (mixed write/ver)
1007                  */
1008                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1009                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1010
1011                         if (verify_state_should_stop(td, io_u)) {
1012                                 put_io_u(td, io_u);
1013                                 break;
1014                         }
1015
1016                         if (td->o.verify_async)
1017                                 io_u->end_io = verify_io_u_async;
1018                         else
1019                                 io_u->end_io = verify_io_u;
1020                         td_set_runstate(td, TD_VERIFYING);
1021                 } else if (in_ramp_time(td))
1022                         td_set_runstate(td, TD_RAMP);
1023                 else
1024                         td_set_runstate(td, TD_RUNNING);
1025
1026                 /*
1027                  * Always log IO before it's issued, so we know the specific
1028                  * order of it. The logged unit will track when the IO has
1029                  * completed.
1030                  */
1031                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1032                     td->o.do_verify &&
1033                     td->o.verify != VERIFY_NONE &&
1034                     !td->o.experimental_verify)
1035                         log_io_piece(td, io_u);
1036
1037                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1038                         const unsigned long long blen = io_u->xfer_buflen;
1039                         const enum fio_ddir __ddir = acct_ddir(io_u);
1040
1041                         if (td->error)
1042                                 break;
1043
1044                         workqueue_enqueue(&td->io_wq, &io_u->work);
1045                         ret = FIO_Q_QUEUED;
1046
1047                         if (ddir_rw(__ddir)) {
1048                                 td->io_issues[__ddir]++;
1049                                 td->io_issue_bytes[__ddir] += blen;
1050                                 td->rate_io_issue_bytes[__ddir] += blen;
1051                         }
1052
1053                         if (should_check_rate(td))
1054                                 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1055
1056                 } else {
1057                         ret = io_u_submit(td, io_u);
1058
1059                         if (should_check_rate(td))
1060                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1061
1062                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1063                                 break;
1064
1065                         /*
1066                          * See if we need to complete some commands. Note that
1067                          * we can get BUSY even without IO queued, if the
1068                          * system is resource starved.
1069                          */
1070 reap:
1071                         full = queue_full(td) ||
1072                                 (ret == FIO_Q_BUSY && td->cur_depth);
1073                         if (full || io_in_polling(td))
1074                                 ret = wait_for_completions(td, &comp_time);
1075                 }
1076                 if (ret < 0)
1077                         break;
1078                 if (!ddir_rw_sum(td->bytes_done) &&
1079                     !td_ioengine_flagged(td, FIO_NOIO))
1080                         continue;
1081
1082                 if (!in_ramp_time(td) && should_check_rate(td)) {
1083                         if (check_min_rate(td, &comp_time)) {
1084                                 if (exitall_on_terminate || td->o.exitall_error)
1085                                         fio_terminate_threads(td->groupid, td->o.exit_what);
1086                                 td_verror(td, EIO, "check_min_rate");
1087                                 break;
1088                         }
1089                 }
1090                 if (!in_ramp_time(td) && td->o.latency_target)
1091                         lat_target_check(td);
1092
1093                 if (ddir_rw(ddir) && td->o.thinktime)
1094                         handle_thinktime(td, ddir);
1095         }
1096
1097         check_update_rusage(td);
1098
1099         if (td->trim_entries)
1100                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1101
1102         if (td->o.fill_device && td->error == ENOSPC) {
1103                 td->error = 0;
1104                 fio_mark_td_terminate(td);
1105         }
1106         if (!td->error) {
1107                 struct fio_file *f;
1108
1109                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1110                         workqueue_flush(&td->io_wq);
1111                         i = 0;
1112                 } else
1113                         i = td->cur_depth;
1114
1115                 if (i) {
1116                         ret = io_u_queued_complete(td, i);
1117                         if (td->o.fill_device && td->error == ENOSPC)
1118                                 td->error = 0;
1119                 }
1120
1121                 if (should_fsync(td) && (td->o.end_fsync || td->o.fsync_on_close)) {
1122                         td_set_runstate(td, TD_FSYNCING);
1123
1124                         for_each_file(td, f, i) {
1125                                 if (!fio_file_fsync(td, f))
1126                                         continue;
1127
1128                                 log_err("fio: end_fsync failed for file %s\n",
1129                                                                 f->file_name);
1130                         }
1131                 }
1132         } else
1133                 cleanup_pending_aio(td);
1134
1135         /*
1136          * stop job if we failed doing any IO
1137          */
1138         if (!ddir_rw_sum(td->this_io_bytes))
1139                 td->done = 1;
1140
1141         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1142                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1143 }
1144
1145 static void free_file_completion_logging(struct thread_data *td)
1146 {
1147         struct fio_file *f;
1148         unsigned int i;
1149
1150         for_each_file(td, f, i) {
1151                 if (!f->last_write_comp)
1152                         break;
1153                 sfree(f->last_write_comp);
1154         }
1155 }
1156
1157 static int init_file_completion_logging(struct thread_data *td,
1158                                         unsigned int depth)
1159 {
1160         struct fio_file *f;
1161         unsigned int i;
1162
1163         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1164                 return 0;
1165
1166         for_each_file(td, f, i) {
1167                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1168                 if (!f->last_write_comp)
1169                         goto cleanup;
1170         }
1171
1172         return 0;
1173
1174 cleanup:
1175         free_file_completion_logging(td);
1176         log_err("fio: failed to alloc write comp data\n");
1177         return 1;
1178 }
1179
1180 static void cleanup_io_u(struct thread_data *td)
1181 {
1182         struct io_u *io_u;
1183
1184         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1185
1186                 if (td->io_ops->io_u_free)
1187                         td->io_ops->io_u_free(td, io_u);
1188
1189                 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1190         }
1191
1192         free_io_mem(td);
1193
1194         io_u_rexit(&td->io_u_requeues);
1195         io_u_qexit(&td->io_u_freelist, false);
1196         io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1197
1198         free_file_completion_logging(td);
1199 }
1200
1201 static int init_io_u(struct thread_data *td)
1202 {
1203         struct io_u *io_u;
1204         int cl_align, i, max_units;
1205         int err;
1206
1207         max_units = td->o.iodepth;
1208
1209         err = 0;
1210         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1211         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1212         err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1213
1214         if (err) {
1215                 log_err("fio: failed setting up IO queues\n");
1216                 return 1;
1217         }
1218
1219         cl_align = os_cache_line_size();
1220
1221         for (i = 0; i < max_units; i++) {
1222                 void *ptr;
1223
1224                 if (td->terminate)
1225                         return 1;
1226
1227                 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1228                 if (!ptr) {
1229                         log_err("fio: unable to allocate aligned memory\n");
1230                         return 1;
1231                 }
1232
1233                 io_u = ptr;
1234                 memset(io_u, 0, sizeof(*io_u));
1235                 INIT_FLIST_HEAD(&io_u->verify_list);
1236                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1237
1238                 io_u->index = i;
1239                 io_u->flags = IO_U_F_FREE;
1240                 io_u_qpush(&td->io_u_freelist, io_u);
1241
1242                 /*
1243                  * io_u never leaves this stack, used for iteration of all
1244                  * io_u buffers.
1245                  */
1246                 io_u_qpush(&td->io_u_all, io_u);
1247
1248                 if (td->io_ops->io_u_init) {
1249                         int ret = td->io_ops->io_u_init(td, io_u);
1250
1251                         if (ret) {
1252                                 log_err("fio: failed to init engine data: %d\n", ret);
1253                                 return 1;
1254                         }
1255                 }
1256         }
1257
1258         init_io_u_buffers(td);
1259
1260         if (init_file_completion_logging(td, max_units))
1261                 return 1;
1262
1263         return 0;
1264 }
1265
1266 int init_io_u_buffers(struct thread_data *td)
1267 {
1268         struct io_u *io_u;
1269         unsigned long long max_bs, min_write;
1270         int i, max_units;
1271         int data_xfer = 1;
1272         char *p;
1273
1274         max_units = td->o.iodepth;
1275         max_bs = td_max_bs(td);
1276         min_write = td->o.min_bs[DDIR_WRITE];
1277         td->orig_buffer_size = (unsigned long long) max_bs
1278                                         * (unsigned long long) max_units;
1279
1280         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1281                 data_xfer = 0;
1282
1283         /*
1284          * if we may later need to do address alignment, then add any
1285          * possible adjustment here so that we don't cause a buffer
1286          * overflow later. this adjustment may be too much if we get
1287          * lucky and the allocator gives us an aligned address.
1288          */
1289         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1290             td_ioengine_flagged(td, FIO_RAWIO))
1291                 td->orig_buffer_size += page_mask + td->o.mem_align;
1292
1293         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1294                 unsigned long long bs;
1295
1296                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1297                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1298         }
1299
1300         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1301                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1302                 return 1;
1303         }
1304
1305         if (data_xfer && allocate_io_mem(td))
1306                 return 1;
1307
1308         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1309             td_ioengine_flagged(td, FIO_RAWIO))
1310                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1311         else
1312                 p = td->orig_buffer;
1313
1314         for (i = 0; i < max_units; i++) {
1315                 io_u = td->io_u_all.io_us[i];
1316                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1317
1318                 if (data_xfer) {
1319                         io_u->buf = p;
1320                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1321
1322                         if (td_write(td))
1323                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1324                         if (td_write(td) && td->o.verify_pattern_bytes) {
1325                                 /*
1326                                  * Fill the buffer with the pattern if we are
1327                                  * going to be doing writes.
1328                                  */
1329                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1330                         }
1331                 }
1332                 p += max_bs;
1333         }
1334
1335         return 0;
1336 }
1337
1338 /*
1339  * This function is Linux specific.
1340  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1341  */
1342 static int switch_ioscheduler(struct thread_data *td)
1343 {
1344 #ifdef FIO_HAVE_IOSCHED_SWITCH
1345         char tmp[256], tmp2[128], *p;
1346         FILE *f;
1347         int ret;
1348
1349         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1350                 return 0;
1351
1352         assert(td->files && td->files[0]);
1353         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1354
1355         f = fopen(tmp, "r+");
1356         if (!f) {
1357                 if (errno == ENOENT) {
1358                         log_err("fio: os or kernel doesn't support IO scheduler"
1359                                 " switching\n");
1360                         return 0;
1361                 }
1362                 td_verror(td, errno, "fopen iosched");
1363                 return 1;
1364         }
1365
1366         /*
1367          * Set io scheduler.
1368          */
1369         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1370         if (ferror(f) || ret != 1) {
1371                 td_verror(td, errno, "fwrite");
1372                 fclose(f);
1373                 return 1;
1374         }
1375
1376         rewind(f);
1377
1378         /*
1379          * Read back and check that the selected scheduler is now the default.
1380          */
1381         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1382         if (ferror(f) || ret < 0) {
1383                 td_verror(td, errno, "fread");
1384                 fclose(f);
1385                 return 1;
1386         }
1387         tmp[ret] = '\0';
1388         /*
1389          * either a list of io schedulers or "none\n" is expected. Strip the
1390          * trailing newline.
1391          */
1392         p = tmp;
1393         strsep(&p, "\n");
1394
1395         /*
1396          * Write to "none" entry doesn't fail, so check the result here.
1397          */
1398         if (!strcmp(tmp, "none")) {
1399                 log_err("fio: io scheduler is not tunable\n");
1400                 fclose(f);
1401                 return 0;
1402         }
1403
1404         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1405         if (!strstr(tmp, tmp2)) {
1406                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1407                 td_verror(td, EINVAL, "iosched_switch");
1408                 fclose(f);
1409                 return 1;
1410         }
1411
1412         fclose(f);
1413         return 0;
1414 #else
1415         return 0;
1416 #endif
1417 }
1418
1419 static bool keep_running(struct thread_data *td)
1420 {
1421         unsigned long long limit;
1422
1423         if (td->done)
1424                 return false;
1425         if (td->terminate)
1426                 return false;
1427         if (td->o.time_based)
1428                 return true;
1429         if (td->o.loops) {
1430                 td->o.loops--;
1431                 return true;
1432         }
1433         if (exceeds_number_ios(td))
1434                 return false;
1435
1436         if (td->o.io_size)
1437                 limit = td->o.io_size;
1438         else
1439                 limit = td->o.size;
1440
1441         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1442                 uint64_t diff;
1443
1444                 /*
1445                  * If the difference is less than the maximum IO size, we
1446                  * are done.
1447                  */
1448                 diff = limit - ddir_rw_sum(td->io_bytes);
1449                 if (diff < td_max_bs(td))
1450                         return false;
1451
1452                 if (fio_files_done(td) && !td->o.io_size)
1453                         return false;
1454
1455                 return true;
1456         }
1457
1458         return false;
1459 }
1460
1461 static int exec_string(struct thread_options *o, const char *string,
1462                        const char *mode)
1463 {
1464         int ret;
1465         char *str;
1466
1467         if (asprintf(&str, "%s > %s.%s.txt 2>&1", string, o->name, mode) < 0)
1468                 return -1;
1469
1470         log_info("%s : Saving output of %s in %s.%s.txt\n", o->name, mode,
1471                  o->name, mode);
1472         ret = system(str);
1473         if (ret == -1)
1474                 log_err("fio: exec of cmd <%s> failed\n", str);
1475
1476         free(str);
1477         return ret;
1478 }
1479
1480 /*
1481  * Dry run to compute correct state of numberio for verification.
1482  */
1483 static uint64_t do_dry_run(struct thread_data *td)
1484 {
1485         td_set_runstate(td, TD_RUNNING);
1486
1487         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1488                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1489                 struct io_u *io_u;
1490                 int ret;
1491
1492                 if (td->terminate || td->done)
1493                         break;
1494
1495                 io_u = get_io_u(td);
1496                 if (IS_ERR_OR_NULL(io_u))
1497                         break;
1498
1499                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1500                 io_u->error = 0;
1501                 io_u->resid = 0;
1502                 if (ddir_rw(acct_ddir(io_u)))
1503                         td->io_issues[acct_ddir(io_u)]++;
1504                 if (ddir_rw(io_u->ddir)) {
1505                         io_u_mark_depth(td, 1);
1506                         td->ts.total_io_u[io_u->ddir]++;
1507                 }
1508
1509                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1510                     td->o.do_verify &&
1511                     td->o.verify != VERIFY_NONE &&
1512                     !td->o.experimental_verify)
1513                         log_io_piece(td, io_u);
1514
1515                 ret = io_u_sync_complete(td, io_u);
1516                 (void) ret;
1517         }
1518
1519         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1520 }
1521
1522 struct fork_data {
1523         struct thread_data *td;
1524         struct sk_out *sk_out;
1525 };
1526
1527 /*
1528  * Entry point for the thread based jobs. The process based jobs end up
1529  * here as well, after a little setup.
1530  */
1531 static void *thread_main(void *data)
1532 {
1533         struct fork_data *fd = data;
1534         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1535         struct thread_data *td = fd->td;
1536         struct thread_options *o = &td->o;
1537         struct sk_out *sk_out = fd->sk_out;
1538         uint64_t bytes_done[DDIR_RWDIR_CNT];
1539         int deadlock_loop_cnt;
1540         bool clear_state;
1541         int res, ret;
1542
1543         sk_out_assign(sk_out);
1544         free(fd);
1545
1546         if (!o->use_thread) {
1547                 setsid();
1548                 td->pid = getpid();
1549         } else
1550                 td->pid = gettid();
1551
1552         fio_local_clock_init();
1553
1554         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1555
1556         if (is_backend)
1557                 fio_server_send_start(td);
1558
1559         INIT_FLIST_HEAD(&td->io_log_list);
1560         INIT_FLIST_HEAD(&td->io_hist_list);
1561         INIT_FLIST_HEAD(&td->verify_list);
1562         INIT_FLIST_HEAD(&td->trim_list);
1563         td->io_hist_tree = RB_ROOT;
1564
1565         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1566         if (ret) {
1567                 td_verror(td, ret, "mutex_cond_init_pshared");
1568                 goto err;
1569         }
1570         ret = cond_init_pshared(&td->verify_cond);
1571         if (ret) {
1572                 td_verror(td, ret, "mutex_cond_pshared");
1573                 goto err;
1574         }
1575
1576         td_set_runstate(td, TD_INITIALIZED);
1577         dprint(FD_MUTEX, "up startup_sem\n");
1578         fio_sem_up(startup_sem);
1579         dprint(FD_MUTEX, "wait on td->sem\n");
1580         fio_sem_down(td->sem);
1581         dprint(FD_MUTEX, "done waiting on td->sem\n");
1582
1583         /*
1584          * A new gid requires privilege, so we need to do this before setting
1585          * the uid.
1586          */
1587         if (o->gid != -1U && setgid(o->gid)) {
1588                 td_verror(td, errno, "setgid");
1589                 goto err;
1590         }
1591         if (o->uid != -1U && setuid(o->uid)) {
1592                 td_verror(td, errno, "setuid");
1593                 goto err;
1594         }
1595
1596         td_zone_gen_index(td);
1597
1598         /*
1599          * Do this early, we don't want the compress threads to be limited
1600          * to the same CPUs as the IO workers. So do this before we set
1601          * any potential CPU affinity
1602          */
1603         if (iolog_compress_init(td, sk_out))
1604                 goto err;
1605
1606         /*
1607          * If we have a gettimeofday() thread, make sure we exclude that
1608          * thread from this job
1609          */
1610         if (o->gtod_cpu)
1611                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1612
1613         /*
1614          * Set affinity first, in case it has an impact on the memory
1615          * allocations.
1616          */
1617         if (fio_option_is_set(o, cpumask)) {
1618                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1619                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1620                         if (!ret) {
1621                                 log_err("fio: no CPUs set\n");
1622                                 log_err("fio: Try increasing number of available CPUs\n");
1623                                 td_verror(td, EINVAL, "cpus_split");
1624                                 goto err;
1625                         }
1626                 }
1627                 ret = fio_setaffinity(td->pid, o->cpumask);
1628                 if (ret == -1) {
1629                         td_verror(td, errno, "cpu_set_affinity");
1630                         goto err;
1631                 }
1632         }
1633
1634 #ifdef CONFIG_LIBNUMA
1635         /* numa node setup */
1636         if (fio_option_is_set(o, numa_cpunodes) ||
1637             fio_option_is_set(o, numa_memnodes)) {
1638                 struct bitmask *mask;
1639
1640                 if (numa_available() < 0) {
1641                         td_verror(td, errno, "Does not support NUMA API\n");
1642                         goto err;
1643                 }
1644
1645                 if (fio_option_is_set(o, numa_cpunodes)) {
1646                         mask = numa_parse_nodestring(o->numa_cpunodes);
1647                         ret = numa_run_on_node_mask(mask);
1648                         numa_free_nodemask(mask);
1649                         if (ret == -1) {
1650                                 td_verror(td, errno, \
1651                                         "numa_run_on_node_mask failed\n");
1652                                 goto err;
1653                         }
1654                 }
1655
1656                 if (fio_option_is_set(o, numa_memnodes)) {
1657                         mask = NULL;
1658                         if (o->numa_memnodes)
1659                                 mask = numa_parse_nodestring(o->numa_memnodes);
1660
1661                         switch (o->numa_mem_mode) {
1662                         case MPOL_INTERLEAVE:
1663                                 numa_set_interleave_mask(mask);
1664                                 break;
1665                         case MPOL_BIND:
1666                                 numa_set_membind(mask);
1667                                 break;
1668                         case MPOL_LOCAL:
1669                                 numa_set_localalloc();
1670                                 break;
1671                         case MPOL_PREFERRED:
1672                                 numa_set_preferred(o->numa_mem_prefer_node);
1673                                 break;
1674                         case MPOL_DEFAULT:
1675                         default:
1676                                 break;
1677                         }
1678
1679                         if (mask)
1680                                 numa_free_nodemask(mask);
1681
1682                 }
1683         }
1684 #endif
1685
1686         if (fio_pin_memory(td))
1687                 goto err;
1688
1689         /*
1690          * May alter parameters that init_io_u() will use, so we need to
1691          * do this first.
1692          */
1693         if (!init_iolog(td))
1694                 goto err;
1695
1696         if (td_io_init(td))
1697                 goto err;
1698
1699         if (init_io_u(td))
1700                 goto err;
1701
1702         if (td->io_ops->post_init && td->io_ops->post_init(td))
1703                 goto err;
1704
1705         if (o->verify_async && verify_async_init(td))
1706                 goto err;
1707
1708         if (fio_option_is_set(o, ioprio) ||
1709             fio_option_is_set(o, ioprio_class)) {
1710                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1711                 if (ret == -1) {
1712                         td_verror(td, errno, "ioprio_set");
1713                         goto err;
1714                 }
1715         }
1716
1717         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1718                 goto err;
1719
1720         errno = 0;
1721         if (nice(o->nice) == -1 && errno != 0) {
1722                 td_verror(td, errno, "nice");
1723                 goto err;
1724         }
1725
1726         if (o->ioscheduler && switch_ioscheduler(td))
1727                 goto err;
1728
1729         if (!o->create_serialize && setup_files(td))
1730                 goto err;
1731
1732         if (!init_random_map(td))
1733                 goto err;
1734
1735         if (o->exec_prerun && exec_string(o, o->exec_prerun, "prerun"))
1736                 goto err;
1737
1738         if (o->pre_read && !pre_read_files(td))
1739                 goto err;
1740
1741         fio_verify_init(td);
1742
1743         if (rate_submit_init(td, sk_out))
1744                 goto err;
1745
1746         set_epoch_time(td, o->log_unix_epoch);
1747         fio_getrusage(&td->ru_start);
1748         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1749         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1750         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1751
1752         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1753                         o->ratemin[DDIR_TRIM]) {
1754                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1755                                         sizeof(td->bw_sample_time));
1756                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1757                                         sizeof(td->bw_sample_time));
1758                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1759                                         sizeof(td->bw_sample_time));
1760         }
1761
1762         memset(bytes_done, 0, sizeof(bytes_done));
1763         clear_state = false;
1764
1765         while (keep_running(td)) {
1766                 uint64_t verify_bytes;
1767
1768                 fio_gettime(&td->start, NULL);
1769                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1770
1771                 if (clear_state) {
1772                         clear_io_state(td, 0);
1773
1774                         if (o->unlink_each_loop && unlink_all_files(td))
1775                                 break;
1776                 }
1777
1778                 prune_io_piece_log(td);
1779
1780                 if (td->o.verify_only && td_write(td))
1781                         verify_bytes = do_dry_run(td);
1782                 else {
1783                         do_io(td, bytes_done);
1784
1785                         if (!ddir_rw_sum(bytes_done)) {
1786                                 fio_mark_td_terminate(td);
1787                                 verify_bytes = 0;
1788                         } else {
1789                                 verify_bytes = bytes_done[DDIR_WRITE] +
1790                                                 bytes_done[DDIR_TRIM];
1791                         }
1792                 }
1793
1794                 /*
1795                  * If we took too long to shut down, the main thread could
1796                  * already consider us reaped/exited. If that happens, break
1797                  * out and clean up.
1798                  */
1799                 if (td->runstate >= TD_EXITED)
1800                         break;
1801
1802                 clear_state = true;
1803
1804                 /*
1805                  * Make sure we've successfully updated the rusage stats
1806                  * before waiting on the stat mutex. Otherwise we could have
1807                  * the stat thread holding stat mutex and waiting for
1808                  * the rusage_sem, which would never get upped because
1809                  * this thread is waiting for the stat mutex.
1810                  */
1811                 deadlock_loop_cnt = 0;
1812                 do {
1813                         check_update_rusage(td);
1814                         if (!fio_sem_down_trylock(stat_sem))
1815                                 break;
1816                         usleep(1000);
1817                         if (deadlock_loop_cnt++ > 5000) {
1818                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1819                                 td->error = EDEADLK;
1820                                 goto err;
1821                         }
1822                 } while (1);
1823
1824                 if (td_read(td) && td->io_bytes[DDIR_READ])
1825                         update_runtime(td, elapsed_us, DDIR_READ);
1826                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1827                         update_runtime(td, elapsed_us, DDIR_WRITE);
1828                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1829                         update_runtime(td, elapsed_us, DDIR_TRIM);
1830                 fio_gettime(&td->start, NULL);
1831                 fio_sem_up(stat_sem);
1832
1833                 if (td->error || td->terminate)
1834                         break;
1835
1836                 if (!o->do_verify ||
1837                     o->verify == VERIFY_NONE ||
1838                     td_ioengine_flagged(td, FIO_UNIDIR))
1839                         continue;
1840
1841                 clear_io_state(td, 0);
1842
1843                 fio_gettime(&td->start, NULL);
1844
1845                 do_verify(td, verify_bytes);
1846
1847                 /*
1848                  * See comment further up for why this is done here.
1849                  */
1850                 check_update_rusage(td);
1851
1852                 fio_sem_down(stat_sem);
1853                 update_runtime(td, elapsed_us, DDIR_READ);
1854                 fio_gettime(&td->start, NULL);
1855                 fio_sem_up(stat_sem);
1856
1857                 if (td->error || td->terminate)
1858                         break;
1859         }
1860
1861         /*
1862          * Acquire this lock if we were doing overlap checking in
1863          * offload mode so that we don't clean up this job while
1864          * another thread is checking its io_u's for overlap
1865          */
1866         if (td_offload_overlap(td)) {
1867                 int res = pthread_mutex_lock(&overlap_check);
1868                 assert(res == 0);
1869         }
1870         td_set_runstate(td, TD_FINISHING);
1871         if (td_offload_overlap(td)) {
1872                 res = pthread_mutex_unlock(&overlap_check);
1873                 assert(res == 0);
1874         }
1875
1876         update_rusage_stat(td);
1877         td->ts.total_run_time = mtime_since_now(&td->epoch);
1878         for_each_rw_ddir(ddir) {
1879                 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
1880         }
1881
1882         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1883             (td->o.verify != VERIFY_NONE && td_write(td)))
1884                 verify_save_state(td->thread_number);
1885
1886         fio_unpin_memory(td);
1887
1888         td_writeout_logs(td, true);
1889
1890         iolog_compress_exit(td);
1891         rate_submit_exit(td);
1892
1893         if (o->exec_postrun)
1894                 exec_string(o, o->exec_postrun, "postrun");
1895
1896         if (exitall_on_terminate || (o->exitall_error && td->error))
1897                 fio_terminate_threads(td->groupid, td->o.exit_what);
1898
1899 err:
1900         if (td->error)
1901                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1902                                                         td->verror);
1903
1904         if (o->verify_async)
1905                 verify_async_exit(td);
1906
1907         close_and_free_files(td);
1908         cleanup_io_u(td);
1909         close_ioengine(td);
1910         cgroup_shutdown(td, cgroup_mnt);
1911         verify_free_state(td);
1912         td_zone_free_index(td);
1913
1914         if (fio_option_is_set(o, cpumask)) {
1915                 ret = fio_cpuset_exit(&o->cpumask);
1916                 if (ret)
1917                         td_verror(td, ret, "fio_cpuset_exit");
1918         }
1919
1920         /*
1921          * do this very late, it will log file closing as well
1922          */
1923         if (o->write_iolog_file)
1924                 write_iolog_close(td);
1925         if (td->io_log_rfile)
1926                 fclose(td->io_log_rfile);
1927
1928         td_set_runstate(td, TD_EXITED);
1929
1930         /*
1931          * Do this last after setting our runstate to exited, so we
1932          * know that the stat thread is signaled.
1933          */
1934         check_update_rusage(td);
1935
1936         sk_out_drop();
1937         return (void *) (uintptr_t) td->error;
1938 }
1939
1940 /*
1941  * Run over the job map and reap the threads that have exited, if any.
1942  */
1943 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1944                          uint64_t *m_rate)
1945 {
1946         struct thread_data *td;
1947         unsigned int cputhreads, realthreads, pending;
1948         int i, status, ret;
1949
1950         /*
1951          * reap exited threads (TD_EXITED -> TD_REAPED)
1952          */
1953         realthreads = pending = cputhreads = 0;
1954         for_each_td(td, i) {
1955                 int flags = 0;
1956
1957                  if (!strcmp(td->o.ioengine, "cpuio"))
1958                         cputhreads++;
1959                 else
1960                         realthreads++;
1961
1962                 if (!td->pid) {
1963                         pending++;
1964                         continue;
1965                 }
1966                 if (td->runstate == TD_REAPED)
1967                         continue;
1968                 if (td->o.use_thread) {
1969                         if (td->runstate == TD_EXITED) {
1970                                 td_set_runstate(td, TD_REAPED);
1971                                 goto reaped;
1972                         }
1973                         continue;
1974                 }
1975
1976                 flags = WNOHANG;
1977                 if (td->runstate == TD_EXITED)
1978                         flags = 0;
1979
1980                 /*
1981                  * check if someone quit or got killed in an unusual way
1982                  */
1983                 ret = waitpid(td->pid, &status, flags);
1984                 if (ret < 0) {
1985                         if (errno == ECHILD) {
1986                                 log_err("fio: pid=%d disappeared %d\n",
1987                                                 (int) td->pid, td->runstate);
1988                                 td->sig = ECHILD;
1989                                 td_set_runstate(td, TD_REAPED);
1990                                 goto reaped;
1991                         }
1992                         perror("waitpid");
1993                 } else if (ret == td->pid) {
1994                         if (WIFSIGNALED(status)) {
1995                                 int sig = WTERMSIG(status);
1996
1997                                 if (sig != SIGTERM && sig != SIGUSR2)
1998                                         log_err("fio: pid=%d, got signal=%d\n",
1999                                                         (int) td->pid, sig);
2000                                 td->sig = sig;
2001                                 td_set_runstate(td, TD_REAPED);
2002                                 goto reaped;
2003                         }
2004                         if (WIFEXITED(status)) {
2005                                 if (WEXITSTATUS(status) && !td->error)
2006                                         td->error = WEXITSTATUS(status);
2007
2008                                 td_set_runstate(td, TD_REAPED);
2009                                 goto reaped;
2010                         }
2011                 }
2012
2013                 /*
2014                  * If the job is stuck, do a forceful timeout of it and
2015                  * move on.
2016                  */
2017                 if (td->terminate &&
2018                     td->runstate < TD_FSYNCING &&
2019                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2020                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2021                                 "%lu seconds, it appears to be stuck. Doing "
2022                                 "forceful exit of this job.\n",
2023                                 td->o.name, td->runstate,
2024                                 (unsigned long) time_since_now(&td->terminate_time));
2025                         td_set_runstate(td, TD_REAPED);
2026                         goto reaped;
2027                 }
2028
2029                 /*
2030                  * thread is not dead, continue
2031                  */
2032                 pending++;
2033                 continue;
2034 reaped:
2035                 (*nr_running)--;
2036                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2037                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2038                 if (!td->pid)
2039                         pending--;
2040
2041                 if (td->error)
2042                         exit_value++;
2043
2044                 done_secs += mtime_since_now(&td->epoch) / 1000;
2045                 profile_td_exit(td);
2046                 flow_exit_job(td);
2047         }
2048
2049         if (*nr_running == cputhreads && !pending && realthreads)
2050                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2051 }
2052
2053 static bool __check_trigger_file(void)
2054 {
2055         struct stat sb;
2056
2057         if (!trigger_file)
2058                 return false;
2059
2060         if (stat(trigger_file, &sb))
2061                 return false;
2062
2063         if (unlink(trigger_file) < 0)
2064                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2065                                                         strerror(errno));
2066
2067         return true;
2068 }
2069
2070 static bool trigger_timedout(void)
2071 {
2072         if (trigger_timeout)
2073                 if (time_since_genesis() >= trigger_timeout) {
2074                         trigger_timeout = 0;
2075                         return true;
2076                 }
2077
2078         return false;
2079 }
2080
2081 void exec_trigger(const char *cmd)
2082 {
2083         int ret;
2084
2085         if (!cmd || cmd[0] == '\0')
2086                 return;
2087
2088         ret = system(cmd);
2089         if (ret == -1)
2090                 log_err("fio: failed executing %s trigger\n", cmd);
2091 }
2092
2093 void check_trigger_file(void)
2094 {
2095         if (__check_trigger_file() || trigger_timedout()) {
2096                 if (nr_clients)
2097                         fio_clients_send_trigger(trigger_remote_cmd);
2098                 else {
2099                         verify_save_state(IO_LIST_ALL);
2100                         fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2101                         exec_trigger(trigger_cmd);
2102                 }
2103         }
2104 }
2105
2106 static int fio_verify_load_state(struct thread_data *td)
2107 {
2108         int ret;
2109
2110         if (!td->o.verify_state)
2111                 return 0;
2112
2113         if (is_backend) {
2114                 void *data;
2115
2116                 ret = fio_server_get_verify_state(td->o.name,
2117                                         td->thread_number - 1, &data);
2118                 if (!ret)
2119                         verify_assign_state(td, data);
2120         } else {
2121                 char prefix[PATH_MAX];
2122
2123                 if (aux_path)
2124                         sprintf(prefix, "%s%clocal", aux_path,
2125                                         FIO_OS_PATH_SEPARATOR);
2126                 else
2127                         strcpy(prefix, "local");
2128                 ret = verify_load_state(td, prefix);
2129         }
2130
2131         return ret;
2132 }
2133
2134 static void do_usleep(unsigned int usecs)
2135 {
2136         check_for_running_stats();
2137         check_trigger_file();
2138         usleep(usecs);
2139 }
2140
2141 static bool check_mount_writes(struct thread_data *td)
2142 {
2143         struct fio_file *f;
2144         unsigned int i;
2145
2146         if (!td_write(td) || td->o.allow_mounted_write)
2147                 return false;
2148
2149         /*
2150          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2151          * are mkfs'd and mounted.
2152          */
2153         for_each_file(td, f, i) {
2154 #ifdef FIO_HAVE_CHARDEV_SIZE
2155                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2156 #else
2157                 if (f->filetype != FIO_TYPE_BLOCK)
2158 #endif
2159                         continue;
2160                 if (device_is_mounted(f->file_name))
2161                         goto mounted;
2162         }
2163
2164         return false;
2165 mounted:
2166         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2167         return true;
2168 }
2169
2170 static bool waitee_running(struct thread_data *me)
2171 {
2172         const char *waitee = me->o.wait_for;
2173         const char *self = me->o.name;
2174         struct thread_data *td;
2175         int i;
2176
2177         if (!waitee)
2178                 return false;
2179
2180         for_each_td(td, i) {
2181                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2182                         continue;
2183
2184                 if (td->runstate < TD_EXITED) {
2185                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2186                                         self, td->o.name,
2187                                         runstate_to_name(td->runstate));
2188                         return true;
2189                 }
2190         }
2191
2192         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2193         return false;
2194 }
2195
2196 /*
2197  * Main function for kicking off and reaping jobs, as needed.
2198  */
2199 static void run_threads(struct sk_out *sk_out)
2200 {
2201         struct thread_data *td;
2202         unsigned int i, todo, nr_running, nr_started;
2203         uint64_t m_rate, t_rate;
2204         uint64_t spent;
2205
2206         if (fio_gtod_offload && fio_start_gtod_thread())
2207                 return;
2208
2209         fio_idle_prof_init();
2210
2211         set_sig_handlers();
2212
2213         nr_thread = nr_process = 0;
2214         for_each_td(td, i) {
2215                 if (check_mount_writes(td))
2216                         return;
2217                 if (td->o.use_thread)
2218                         nr_thread++;
2219                 else
2220                         nr_process++;
2221         }
2222
2223         if (output_format & FIO_OUTPUT_NORMAL) {
2224                 struct buf_output out;
2225
2226                 buf_output_init(&out);
2227                 __log_buf(&out, "Starting ");
2228                 if (nr_thread)
2229                         __log_buf(&out, "%d thread%s", nr_thread,
2230                                                 nr_thread > 1 ? "s" : "");
2231                 if (nr_process) {
2232                         if (nr_thread)
2233                                 __log_buf(&out, " and ");
2234                         __log_buf(&out, "%d process%s", nr_process,
2235                                                 nr_process > 1 ? "es" : "");
2236                 }
2237                 __log_buf(&out, "\n");
2238                 log_info_buf(out.buf, out.buflen);
2239                 buf_output_free(&out);
2240         }
2241
2242         todo = thread_number;
2243         nr_running = 0;
2244         nr_started = 0;
2245         m_rate = t_rate = 0;
2246
2247         for_each_td(td, i) {
2248                 print_status_init(td->thread_number - 1);
2249
2250                 if (!td->o.create_serialize)
2251                         continue;
2252
2253                 if (fio_verify_load_state(td))
2254                         goto reap;
2255
2256                 /*
2257                  * do file setup here so it happens sequentially,
2258                  * we don't want X number of threads getting their
2259                  * client data interspersed on disk
2260                  */
2261                 if (setup_files(td)) {
2262 reap:
2263                         exit_value++;
2264                         if (td->error)
2265                                 log_err("fio: pid=%d, err=%d/%s\n",
2266                                         (int) td->pid, td->error, td->verror);
2267                         td_set_runstate(td, TD_REAPED);
2268                         todo--;
2269                 } else {
2270                         struct fio_file *f;
2271                         unsigned int j;
2272
2273                         /*
2274                          * for sharing to work, each job must always open
2275                          * its own files. so close them, if we opened them
2276                          * for creation
2277                          */
2278                         for_each_file(td, f, j) {
2279                                 if (fio_file_open(f))
2280                                         td_io_close_file(td, f);
2281                         }
2282                 }
2283         }
2284
2285         /* start idle threads before io threads start to run */
2286         fio_idle_prof_start();
2287
2288         set_genesis_time();
2289
2290         while (todo) {
2291                 struct thread_data *map[REAL_MAX_JOBS];
2292                 struct timespec this_start;
2293                 int this_jobs = 0, left;
2294                 struct fork_data *fd;
2295
2296                 /*
2297                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2298                  */
2299                 for_each_td(td, i) {
2300                         if (td->runstate != TD_NOT_CREATED)
2301                                 continue;
2302
2303                         /*
2304                          * never got a chance to start, killed by other
2305                          * thread for some reason
2306                          */
2307                         if (td->terminate) {
2308                                 todo--;
2309                                 continue;
2310                         }
2311
2312                         if (td->o.start_delay) {
2313                                 spent = utime_since_genesis();
2314
2315                                 if (td->o.start_delay > spent)
2316                                         continue;
2317                         }
2318
2319                         if (td->o.stonewall && (nr_started || nr_running)) {
2320                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2321                                                         td->o.name);
2322                                 break;
2323                         }
2324
2325                         if (waitee_running(td)) {
2326                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2327                                                 td->o.name, td->o.wait_for);
2328                                 continue;
2329                         }
2330
2331                         init_disk_util(td);
2332
2333                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2334                         td->update_rusage = 0;
2335
2336                         /*
2337                          * Set state to created. Thread will transition
2338                          * to TD_INITIALIZED when it's done setting up.
2339                          */
2340                         td_set_runstate(td, TD_CREATED);
2341                         map[this_jobs++] = td;
2342                         nr_started++;
2343
2344                         fd = calloc(1, sizeof(*fd));
2345                         fd->td = td;
2346                         fd->sk_out = sk_out;
2347
2348                         if (td->o.use_thread) {
2349                                 int ret;
2350
2351                                 dprint(FD_PROCESS, "will pthread_create\n");
2352                                 ret = pthread_create(&td->thread, NULL,
2353                                                         thread_main, fd);
2354                                 if (ret) {
2355                                         log_err("pthread_create: %s\n",
2356                                                         strerror(ret));
2357                                         free(fd);
2358                                         nr_started--;
2359                                         break;
2360                                 }
2361                                 fd = NULL;
2362                                 ret = pthread_detach(td->thread);
2363                                 if (ret)
2364                                         log_err("pthread_detach: %s",
2365                                                         strerror(ret));
2366                         } else {
2367                                 pid_t pid;
2368                                 dprint(FD_PROCESS, "will fork\n");
2369                                 pid = fork();
2370                                 if (!pid) {
2371                                         int ret;
2372
2373                                         ret = (int)(uintptr_t)thread_main(fd);
2374                                         _exit(ret);
2375                                 } else if (i == fio_debug_jobno)
2376                                         *fio_debug_jobp = pid;
2377                         }
2378                         dprint(FD_MUTEX, "wait on startup_sem\n");
2379                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2380                                 log_err("fio: job startup hung? exiting.\n");
2381                                 fio_terminate_threads(TERMINATE_ALL, TERMINATE_ALL);
2382                                 fio_abort = true;
2383                                 nr_started--;
2384                                 free(fd);
2385                                 break;
2386                         }
2387                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2388                 }
2389
2390                 /*
2391                  * Wait for the started threads to transition to
2392                  * TD_INITIALIZED.
2393                  */
2394                 fio_gettime(&this_start, NULL);
2395                 left = this_jobs;
2396                 while (left && !fio_abort) {
2397                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2398                                 break;
2399
2400                         do_usleep(100000);
2401
2402                         for (i = 0; i < this_jobs; i++) {
2403                                 td = map[i];
2404                                 if (!td)
2405                                         continue;
2406                                 if (td->runstate == TD_INITIALIZED) {
2407                                         map[i] = NULL;
2408                                         left--;
2409                                 } else if (td->runstate >= TD_EXITED) {
2410                                         map[i] = NULL;
2411                                         left--;
2412                                         todo--;
2413                                         nr_running++; /* work-around... */
2414                                 }
2415                         }
2416                 }
2417
2418                 if (left) {
2419                         log_err("fio: %d job%s failed to start\n", left,
2420                                         left > 1 ? "s" : "");
2421                         for (i = 0; i < this_jobs; i++) {
2422                                 td = map[i];
2423                                 if (!td)
2424                                         continue;
2425                                 kill(td->pid, SIGTERM);
2426                         }
2427                         break;
2428                 }
2429
2430                 /*
2431                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2432                  */
2433                 for_each_td(td, i) {
2434                         if (td->runstate != TD_INITIALIZED)
2435                                 continue;
2436
2437                         if (in_ramp_time(td))
2438                                 td_set_runstate(td, TD_RAMP);
2439                         else
2440                                 td_set_runstate(td, TD_RUNNING);
2441                         nr_running++;
2442                         nr_started--;
2443                         m_rate += ddir_rw_sum(td->o.ratemin);
2444                         t_rate += ddir_rw_sum(td->o.rate);
2445                         todo--;
2446                         fio_sem_up(td->sem);
2447                 }
2448
2449                 reap_threads(&nr_running, &t_rate, &m_rate);
2450
2451                 if (todo)
2452                         do_usleep(100000);
2453         }
2454
2455         while (nr_running) {
2456                 reap_threads(&nr_running, &t_rate, &m_rate);
2457                 do_usleep(10000);
2458         }
2459
2460         fio_idle_prof_stop();
2461
2462         update_io_ticks();
2463 }
2464
2465 static void free_disk_util(void)
2466 {
2467         disk_util_prune_entries();
2468         helper_thread_destroy();
2469 }
2470
2471 int fio_backend(struct sk_out *sk_out)
2472 {
2473         struct thread_data *td;
2474         int i;
2475
2476         if (exec_profile) {
2477                 if (load_profile(exec_profile))
2478                         return 1;
2479                 free(exec_profile);
2480                 exec_profile = NULL;
2481         }
2482         if (!thread_number)
2483                 return 0;
2484
2485         if (write_bw_log) {
2486                 struct log_params p = {
2487                         .log_type = IO_LOG_TYPE_BW,
2488                 };
2489
2490                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2491                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2492                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2493         }
2494
2495         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2496         if (!sk_out)
2497                 is_local_backend = true;
2498         if (startup_sem == NULL)
2499                 return 1;
2500
2501         set_genesis_time();
2502         stat_init();
2503         if (helper_thread_create(startup_sem, sk_out))
2504                 log_err("fio: failed to create helper thread\n");
2505
2506         cgroup_list = smalloc(sizeof(*cgroup_list));
2507         if (cgroup_list)
2508                 INIT_FLIST_HEAD(cgroup_list);
2509
2510         run_threads(sk_out);
2511
2512         helper_thread_exit();
2513
2514         if (!fio_abort) {
2515                 __show_run_stats();
2516                 if (write_bw_log) {
2517                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2518                                 struct io_log *log = agg_io_log[i];
2519
2520                                 flush_log(log, false);
2521                                 free_log(log);
2522                         }
2523                 }
2524         }
2525
2526         for_each_td(td, i) {
2527                 steadystate_free(td);
2528                 fio_options_free(td);
2529                 if (td->rusage_sem) {
2530                         fio_sem_remove(td->rusage_sem);
2531                         td->rusage_sem = NULL;
2532                 }
2533                 fio_sem_remove(td->sem);
2534                 td->sem = NULL;
2535         }
2536
2537         free_disk_util();
2538         if (cgroup_list) {
2539                 cgroup_kill(cgroup_list);
2540                 sfree(cgroup_list);
2541         }
2542
2543         fio_sem_remove(startup_sem);
2544         stat_exit();
2545         return exit_value;
2546 }