Use a pointer to const char* for I/O engine name (in response to aa2b823c)
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "lib/memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "workqueue.h"
58#include "lib/mountcheck.h"
59#include "rate-submit.h"
60#include "helper_thread.h"
61
62static struct fio_mutex *startup_mutex;
63static struct flist_head *cgroup_list;
64static char *cgroup_mnt;
65static int exit_value;
66static volatile int fio_abort;
67static unsigned int nr_process = 0;
68static unsigned int nr_thread = 0;
69
70struct io_log *agg_io_log[DDIR_RWDIR_CNT];
71
72int groupid = 0;
73unsigned int thread_number = 0;
74unsigned int stat_number = 0;
75int shm_id = 0;
76int temp_stall_ts;
77unsigned long done_secs = 0;
78
79#define PAGE_ALIGN(buf) \
80 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
81
82#define JOB_START_TIMEOUT (5 * 1000)
83
84static void sig_int(int sig)
85{
86 if (threads) {
87 if (is_backend)
88 fio_server_got_signal(sig);
89 else {
90 log_info("\nfio: terminating on signal %d\n", sig);
91 log_info_flush();
92 exit_value = 128;
93 }
94
95 fio_terminate_threads(TERMINATE_ALL);
96 }
97}
98
99void sig_show_status(int sig)
100{
101 show_running_run_stats();
102}
103
104static void set_sig_handlers(void)
105{
106 struct sigaction act;
107
108 memset(&act, 0, sizeof(act));
109 act.sa_handler = sig_int;
110 act.sa_flags = SA_RESTART;
111 sigaction(SIGINT, &act, NULL);
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGTERM, &act, NULL);
117
118/* Windows uses SIGBREAK as a quit signal from other applications */
119#ifdef WIN32
120 memset(&act, 0, sizeof(act));
121 act.sa_handler = sig_int;
122 act.sa_flags = SA_RESTART;
123 sigaction(SIGBREAK, &act, NULL);
124#endif
125
126 memset(&act, 0, sizeof(act));
127 act.sa_handler = sig_show_status;
128 act.sa_flags = SA_RESTART;
129 sigaction(SIGUSR1, &act, NULL);
130
131 if (is_backend) {
132 memset(&act, 0, sizeof(act));
133 act.sa_handler = sig_int;
134 act.sa_flags = SA_RESTART;
135 sigaction(SIGPIPE, &act, NULL);
136 }
137}
138
139/*
140 * Check if we are above the minimum rate given.
141 */
142static bool __check_min_rate(struct thread_data *td, struct timeval *now,
143 enum fio_ddir ddir)
144{
145 unsigned long long bytes = 0;
146 unsigned long iops = 0;
147 unsigned long spent;
148 unsigned long rate;
149 unsigned int ratemin = 0;
150 unsigned int rate_iops = 0;
151 unsigned int rate_iops_min = 0;
152
153 assert(ddir_rw(ddir));
154
155 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
156 return false;
157
158 /*
159 * allow a 2 second settle period in the beginning
160 */
161 if (mtime_since(&td->start, now) < 2000)
162 return false;
163
164 iops += td->this_io_blocks[ddir];
165 bytes += td->this_io_bytes[ddir];
166 ratemin += td->o.ratemin[ddir];
167 rate_iops += td->o.rate_iops[ddir];
168 rate_iops_min += td->o.rate_iops_min[ddir];
169
170 /*
171 * if rate blocks is set, sample is running
172 */
173 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
174 spent = mtime_since(&td->lastrate[ddir], now);
175 if (spent < td->o.ratecycle)
176 return false;
177
178 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
179 /*
180 * check bandwidth specified rate
181 */
182 if (bytes < td->rate_bytes[ddir]) {
183 log_err("%s: min rate %u not met\n", td->o.name,
184 ratemin);
185 return true;
186 } else {
187 if (spent)
188 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
189 else
190 rate = 0;
191
192 if (rate < ratemin ||
193 bytes < td->rate_bytes[ddir]) {
194 log_err("%s: min rate %u not met, got"
195 " %luKB/sec\n", td->o.name,
196 ratemin, rate);
197 return true;
198 }
199 }
200 } else {
201 /*
202 * checks iops specified rate
203 */
204 if (iops < rate_iops) {
205 log_err("%s: min iops rate %u not met\n",
206 td->o.name, rate_iops);
207 return true;
208 } else {
209 if (spent)
210 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
211 else
212 rate = 0;
213
214 if (rate < rate_iops_min ||
215 iops < td->rate_blocks[ddir]) {
216 log_err("%s: min iops rate %u not met,"
217 " got %lu\n", td->o.name,
218 rate_iops_min, rate);
219 return true;
220 }
221 }
222 }
223 }
224
225 td->rate_bytes[ddir] = bytes;
226 td->rate_blocks[ddir] = iops;
227 memcpy(&td->lastrate[ddir], now, sizeof(*now));
228 return false;
229}
230
231static bool check_min_rate(struct thread_data *td, struct timeval *now)
232{
233 bool ret = false;
234
235 if (td->bytes_done[DDIR_READ])
236 ret |= __check_min_rate(td, now, DDIR_READ);
237 if (td->bytes_done[DDIR_WRITE])
238 ret |= __check_min_rate(td, now, DDIR_WRITE);
239 if (td->bytes_done[DDIR_TRIM])
240 ret |= __check_min_rate(td, now, DDIR_TRIM);
241
242 return ret;
243}
244
245/*
246 * When job exits, we can cancel the in-flight IO if we are using async
247 * io. Attempt to do so.
248 */
249static void cleanup_pending_aio(struct thread_data *td)
250{
251 int r;
252
253 /*
254 * get immediately available events, if any
255 */
256 r = io_u_queued_complete(td, 0);
257 if (r < 0)
258 return;
259
260 /*
261 * now cancel remaining active events
262 */
263 if (td->io_ops->cancel) {
264 struct io_u *io_u;
265 int i;
266
267 io_u_qiter(&td->io_u_all, io_u, i) {
268 if (io_u->flags & IO_U_F_FLIGHT) {
269 r = td->io_ops->cancel(td, io_u);
270 if (!r)
271 put_io_u(td, io_u);
272 }
273 }
274 }
275
276 if (td->cur_depth)
277 r = io_u_queued_complete(td, td->cur_depth);
278}
279
280/*
281 * Helper to handle the final sync of a file. Works just like the normal
282 * io path, just does everything sync.
283 */
284static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
285{
286 struct io_u *io_u = __get_io_u(td);
287 int ret;
288
289 if (!io_u)
290 return true;
291
292 io_u->ddir = DDIR_SYNC;
293 io_u->file = f;
294
295 if (td_io_prep(td, io_u)) {
296 put_io_u(td, io_u);
297 return true;
298 }
299
300requeue:
301 ret = td_io_queue(td, io_u);
302 if (ret < 0) {
303 td_verror(td, io_u->error, "td_io_queue");
304 put_io_u(td, io_u);
305 return true;
306 } else if (ret == FIO_Q_QUEUED) {
307 if (td_io_commit(td))
308 return true;
309 if (io_u_queued_complete(td, 1) < 0)
310 return true;
311 } else if (ret == FIO_Q_COMPLETED) {
312 if (io_u->error) {
313 td_verror(td, io_u->error, "td_io_queue");
314 return true;
315 }
316
317 if (io_u_sync_complete(td, io_u) < 0)
318 return true;
319 } else if (ret == FIO_Q_BUSY) {
320 if (td_io_commit(td))
321 return true;
322 goto requeue;
323 }
324
325 return false;
326}
327
328static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
329{
330 int ret;
331
332 if (fio_file_open(f))
333 return fio_io_sync(td, f);
334
335 if (td_io_open_file(td, f))
336 return 1;
337
338 ret = fio_io_sync(td, f);
339 td_io_close_file(td, f);
340 return ret;
341}
342
343static inline void __update_tv_cache(struct thread_data *td)
344{
345 fio_gettime(&td->tv_cache, NULL);
346}
347
348static inline void update_tv_cache(struct thread_data *td)
349{
350 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
351 __update_tv_cache(td);
352}
353
354static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
355{
356 if (in_ramp_time(td))
357 return false;
358 if (!td->o.timeout)
359 return false;
360 if (utime_since(&td->epoch, t) >= td->o.timeout)
361 return true;
362
363 return false;
364}
365
366/*
367 * We need to update the runtime consistently in ms, but keep a running
368 * tally of the current elapsed time in microseconds for sub millisecond
369 * updates.
370 */
371static inline void update_runtime(struct thread_data *td,
372 unsigned long long *elapsed_us,
373 const enum fio_ddir ddir)
374{
375 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
376 return;
377
378 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
379 elapsed_us[ddir] += utime_since_now(&td->start);
380 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
381}
382
383static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
384 int *retptr)
385{
386 int ret = *retptr;
387
388 if (ret < 0 || td->error) {
389 int err = td->error;
390 enum error_type_bit eb;
391
392 if (ret < 0)
393 err = -ret;
394
395 eb = td_error_type(ddir, err);
396 if (!(td->o.continue_on_error & (1 << eb)))
397 return true;
398
399 if (td_non_fatal_error(td, eb, err)) {
400 /*
401 * Continue with the I/Os in case of
402 * a non fatal error.
403 */
404 update_error_count(td, err);
405 td_clear_error(td);
406 *retptr = 0;
407 return false;
408 } else if (td->o.fill_device && err == ENOSPC) {
409 /*
410 * We expect to hit this error if
411 * fill_device option is set.
412 */
413 td_clear_error(td);
414 fio_mark_td_terminate(td);
415 return true;
416 } else {
417 /*
418 * Stop the I/O in case of a fatal
419 * error.
420 */
421 update_error_count(td, err);
422 return true;
423 }
424 }
425
426 return false;
427}
428
429static void check_update_rusage(struct thread_data *td)
430{
431 if (td->update_rusage) {
432 td->update_rusage = 0;
433 update_rusage_stat(td);
434 fio_mutex_up(td->rusage_sem);
435 }
436}
437
438static int wait_for_completions(struct thread_data *td, struct timeval *time)
439{
440 const int full = queue_full(td);
441 int min_evts = 0;
442 int ret;
443
444 if (td->flags & TD_F_REGROW_LOGS) {
445 ret = io_u_quiesce(td);
446 regrow_logs(td);
447 return ret;
448 }
449
450 /*
451 * if the queue is full, we MUST reap at least 1 event
452 */
453 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
454 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
455 min_evts = 1;
456
457 if (time && (__should_check_rate(td, DDIR_READ) ||
458 __should_check_rate(td, DDIR_WRITE) ||
459 __should_check_rate(td, DDIR_TRIM)))
460 fio_gettime(time, NULL);
461
462 do {
463 ret = io_u_queued_complete(td, min_evts);
464 if (ret < 0)
465 break;
466 } while (full && (td->cur_depth > td->o.iodepth_low));
467
468 return ret;
469}
470
471int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
472 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
473 struct timeval *comp_time)
474{
475 int ret2;
476
477 switch (*ret) {
478 case FIO_Q_COMPLETED:
479 if (io_u->error) {
480 *ret = -io_u->error;
481 clear_io_u(td, io_u);
482 } else if (io_u->resid) {
483 int bytes = io_u->xfer_buflen - io_u->resid;
484 struct fio_file *f = io_u->file;
485
486 if (bytes_issued)
487 *bytes_issued += bytes;
488
489 if (!from_verify)
490 trim_io_piece(td, io_u);
491
492 /*
493 * zero read, fail
494 */
495 if (!bytes) {
496 if (!from_verify)
497 unlog_io_piece(td, io_u);
498 td_verror(td, EIO, "full resid");
499 put_io_u(td, io_u);
500 break;
501 }
502
503 io_u->xfer_buflen = io_u->resid;
504 io_u->xfer_buf += bytes;
505 io_u->offset += bytes;
506
507 if (ddir_rw(io_u->ddir))
508 td->ts.short_io_u[io_u->ddir]++;
509
510 f = io_u->file;
511 if (io_u->offset == f->real_file_size)
512 goto sync_done;
513
514 requeue_io_u(td, &io_u);
515 } else {
516sync_done:
517 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
518 __should_check_rate(td, DDIR_WRITE) ||
519 __should_check_rate(td, DDIR_TRIM)))
520 fio_gettime(comp_time, NULL);
521
522 *ret = io_u_sync_complete(td, io_u);
523 if (*ret < 0)
524 break;
525 }
526
527 if (td->flags & TD_F_REGROW_LOGS)
528 regrow_logs(td);
529
530 /*
531 * when doing I/O (not when verifying),
532 * check for any errors that are to be ignored
533 */
534 if (!from_verify)
535 break;
536
537 return 0;
538 case FIO_Q_QUEUED:
539 /*
540 * if the engine doesn't have a commit hook,
541 * the io_u is really queued. if it does have such
542 * a hook, it has to call io_u_queued() itself.
543 */
544 if (td->io_ops->commit == NULL)
545 io_u_queued(td, io_u);
546 if (bytes_issued)
547 *bytes_issued += io_u->xfer_buflen;
548 break;
549 case FIO_Q_BUSY:
550 if (!from_verify)
551 unlog_io_piece(td, io_u);
552 requeue_io_u(td, &io_u);
553 ret2 = td_io_commit(td);
554 if (ret2 < 0)
555 *ret = ret2;
556 break;
557 default:
558 assert(*ret < 0);
559 td_verror(td, -(*ret), "td_io_queue");
560 break;
561 }
562
563 if (break_on_this_error(td, ddir, ret))
564 return 1;
565
566 return 0;
567}
568
569static inline bool io_in_polling(struct thread_data *td)
570{
571 return !td->o.iodepth_batch_complete_min &&
572 !td->o.iodepth_batch_complete_max;
573}
574/*
575 * Unlinks files from thread data fio_file structure
576 */
577static int unlink_all_files(struct thread_data *td)
578{
579 struct fio_file *f;
580 unsigned int i;
581 int ret = 0;
582
583 for_each_file(td, f, i) {
584 if (f->filetype != FIO_TYPE_FILE)
585 continue;
586 ret = td_io_unlink_file(td, f);
587 if (ret)
588 break;
589 }
590
591 if (ret)
592 td_verror(td, ret, "unlink_all_files");
593
594 return ret;
595}
596
597/*
598 * The main verify engine. Runs over the writes we previously submitted,
599 * reads the blocks back in, and checks the crc/md5 of the data.
600 */
601static void do_verify(struct thread_data *td, uint64_t verify_bytes)
602{
603 struct fio_file *f;
604 struct io_u *io_u;
605 int ret, min_events;
606 unsigned int i;
607
608 dprint(FD_VERIFY, "starting loop\n");
609
610 /*
611 * sync io first and invalidate cache, to make sure we really
612 * read from disk.
613 */
614 for_each_file(td, f, i) {
615 if (!fio_file_open(f))
616 continue;
617 if (fio_io_sync(td, f))
618 break;
619 if (file_invalidate_cache(td, f))
620 break;
621 }
622
623 check_update_rusage(td);
624
625 if (td->error)
626 return;
627
628 /*
629 * verify_state needs to be reset before verification
630 * proceeds so that expected random seeds match actual
631 * random seeds in headers. The main loop will reset
632 * all random number generators if randrepeat is set.
633 */
634 if (!td->o.rand_repeatable)
635 td_fill_verify_state_seed(td);
636
637 td_set_runstate(td, TD_VERIFYING);
638
639 io_u = NULL;
640 while (!td->terminate) {
641 enum fio_ddir ddir;
642 int full;
643
644 update_tv_cache(td);
645 check_update_rusage(td);
646
647 if (runtime_exceeded(td, &td->tv_cache)) {
648 __update_tv_cache(td);
649 if (runtime_exceeded(td, &td->tv_cache)) {
650 fio_mark_td_terminate(td);
651 break;
652 }
653 }
654
655 if (flow_threshold_exceeded(td))
656 continue;
657
658 if (!td->o.experimental_verify) {
659 io_u = __get_io_u(td);
660 if (!io_u)
661 break;
662
663 if (get_next_verify(td, io_u)) {
664 put_io_u(td, io_u);
665 break;
666 }
667
668 if (td_io_prep(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672 } else {
673 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
674 break;
675
676 while ((io_u = get_io_u(td)) != NULL) {
677 if (IS_ERR_OR_NULL(io_u)) {
678 io_u = NULL;
679 ret = FIO_Q_BUSY;
680 goto reap;
681 }
682
683 /*
684 * We are only interested in the places where
685 * we wrote or trimmed IOs. Turn those into
686 * reads for verification purposes.
687 */
688 if (io_u->ddir == DDIR_READ) {
689 /*
690 * Pretend we issued it for rwmix
691 * accounting
692 */
693 td->io_issues[DDIR_READ]++;
694 put_io_u(td, io_u);
695 continue;
696 } else if (io_u->ddir == DDIR_TRIM) {
697 io_u->ddir = DDIR_READ;
698 io_u_set(io_u, IO_U_F_TRIMMED);
699 break;
700 } else if (io_u->ddir == DDIR_WRITE) {
701 io_u->ddir = DDIR_READ;
702 break;
703 } else {
704 put_io_u(td, io_u);
705 continue;
706 }
707 }
708
709 if (!io_u)
710 break;
711 }
712
713 if (verify_state_should_stop(td, io_u)) {
714 put_io_u(td, io_u);
715 break;
716 }
717
718 if (td->o.verify_async)
719 io_u->end_io = verify_io_u_async;
720 else
721 io_u->end_io = verify_io_u;
722
723 ddir = io_u->ddir;
724 if (!td->o.disable_slat)
725 fio_gettime(&io_u->start_time, NULL);
726
727 ret = td_io_queue(td, io_u);
728
729 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
730 break;
731
732 /*
733 * if we can queue more, do so. but check if there are
734 * completed io_u's first. Note that we can get BUSY even
735 * without IO queued, if the system is resource starved.
736 */
737reap:
738 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
739 if (full || io_in_polling(td))
740 ret = wait_for_completions(td, NULL);
741
742 if (ret < 0)
743 break;
744 }
745
746 check_update_rusage(td);
747
748 if (!td->error) {
749 min_events = td->cur_depth;
750
751 if (min_events)
752 ret = io_u_queued_complete(td, min_events);
753 } else
754 cleanup_pending_aio(td);
755
756 td_set_runstate(td, TD_RUNNING);
757
758 dprint(FD_VERIFY, "exiting loop\n");
759}
760
761static bool exceeds_number_ios(struct thread_data *td)
762{
763 unsigned long long number_ios;
764
765 if (!td->o.number_ios)
766 return false;
767
768 number_ios = ddir_rw_sum(td->io_blocks);
769 number_ios += td->io_u_queued + td->io_u_in_flight;
770
771 return number_ios >= (td->o.number_ios * td->loops);
772}
773
774static bool io_issue_bytes_exceeded(struct thread_data *td)
775{
776 unsigned long long bytes, limit;
777
778 if (td_rw(td))
779 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
780 else if (td_write(td))
781 bytes = td->io_issue_bytes[DDIR_WRITE];
782 else if (td_read(td))
783 bytes = td->io_issue_bytes[DDIR_READ];
784 else
785 bytes = td->io_issue_bytes[DDIR_TRIM];
786
787 if (td->o.io_limit)
788 limit = td->o.io_limit;
789 else
790 limit = td->o.size;
791
792 limit *= td->loops;
793 return bytes >= limit || exceeds_number_ios(td);
794}
795
796static bool io_complete_bytes_exceeded(struct thread_data *td)
797{
798 unsigned long long bytes, limit;
799
800 if (td_rw(td))
801 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
802 else if (td_write(td))
803 bytes = td->this_io_bytes[DDIR_WRITE];
804 else if (td_read(td))
805 bytes = td->this_io_bytes[DDIR_READ];
806 else
807 bytes = td->this_io_bytes[DDIR_TRIM];
808
809 if (td->o.io_limit)
810 limit = td->o.io_limit;
811 else
812 limit = td->o.size;
813
814 limit *= td->loops;
815 return bytes >= limit || exceeds_number_ios(td);
816}
817
818/*
819 * used to calculate the next io time for rate control
820 *
821 */
822static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
823{
824 uint64_t secs, remainder, bps, bytes, iops;
825
826 assert(!(td->flags & TD_F_CHILD));
827 bytes = td->rate_io_issue_bytes[ddir];
828 bps = td->rate_bps[ddir];
829
830 if (td->o.rate_process == RATE_PROCESS_POISSON) {
831 uint64_t val;
832 iops = bps / td->o.bs[ddir];
833 val = (int64_t) (1000000 / iops) *
834 -logf(__rand_0_1(&td->poisson_state));
835 if (val) {
836 dprint(FD_RATE, "poisson rate iops=%llu\n",
837 (unsigned long long) 1000000 / val);
838 }
839 td->last_usec += val;
840 return td->last_usec;
841 } else if (bps) {
842 secs = bytes / bps;
843 remainder = bytes % bps;
844 return remainder * 1000000 / bps + secs * 1000000;
845 }
846
847 return 0;
848}
849
850/*
851 * Main IO worker function. It retrieves io_u's to process and queues
852 * and reaps them, checking for rate and errors along the way.
853 *
854 * Returns number of bytes written and trimmed.
855 */
856static void do_io(struct thread_data *td, uint64_t *bytes_done)
857{
858 unsigned int i;
859 int ret = 0;
860 uint64_t total_bytes, bytes_issued = 0;
861
862 for (i = 0; i < DDIR_RWDIR_CNT; i++)
863 bytes_done[i] = td->bytes_done[i];
864
865 if (in_ramp_time(td))
866 td_set_runstate(td, TD_RAMP);
867 else
868 td_set_runstate(td, TD_RUNNING);
869
870 lat_target_init(td);
871
872 total_bytes = td->o.size;
873 /*
874 * Allow random overwrite workloads to write up to io_limit
875 * before starting verification phase as 'size' doesn't apply.
876 */
877 if (td_write(td) && td_random(td) && td->o.norandommap)
878 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
879 /*
880 * If verify_backlog is enabled, we'll run the verify in this
881 * handler as well. For that case, we may need up to twice the
882 * amount of bytes.
883 */
884 if (td->o.verify != VERIFY_NONE &&
885 (td_write(td) && td->o.verify_backlog))
886 total_bytes += td->o.size;
887
888 /* In trimwrite mode, each byte is trimmed and then written, so
889 * allow total_bytes to be twice as big */
890 if (td_trimwrite(td))
891 total_bytes += td->total_io_size;
892
893 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
894 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
895 td->o.time_based) {
896 struct timeval comp_time;
897 struct io_u *io_u;
898 int full;
899 enum fio_ddir ddir;
900
901 check_update_rusage(td);
902
903 if (td->terminate || td->done)
904 break;
905
906 update_tv_cache(td);
907
908 if (runtime_exceeded(td, &td->tv_cache)) {
909 __update_tv_cache(td);
910 if (runtime_exceeded(td, &td->tv_cache)) {
911 fio_mark_td_terminate(td);
912 break;
913 }
914 }
915
916 if (flow_threshold_exceeded(td))
917 continue;
918
919 /*
920 * Break if we exceeded the bytes. The exception is time
921 * based runs, but we still need to break out of the loop
922 * for those to run verification, if enabled.
923 */
924 if (bytes_issued >= total_bytes &&
925 (!td->o.time_based ||
926 (td->o.time_based && td->o.verify != VERIFY_NONE)))
927 break;
928
929 io_u = get_io_u(td);
930 if (IS_ERR_OR_NULL(io_u)) {
931 int err = PTR_ERR(io_u);
932
933 io_u = NULL;
934 if (err == -EBUSY) {
935 ret = FIO_Q_BUSY;
936 goto reap;
937 }
938 if (td->o.latency_target)
939 goto reap;
940 break;
941 }
942
943 ddir = io_u->ddir;
944
945 /*
946 * Add verification end_io handler if:
947 * - Asked to verify (!td_rw(td))
948 * - Or the io_u is from our verify list (mixed write/ver)
949 */
950 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
951 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
952
953 if (!td->o.verify_pattern_bytes) {
954 io_u->rand_seed = __rand(&td->verify_state);
955 if (sizeof(int) != sizeof(long *))
956 io_u->rand_seed *= __rand(&td->verify_state);
957 }
958
959 if (verify_state_should_stop(td, io_u)) {
960 put_io_u(td, io_u);
961 break;
962 }
963
964 if (td->o.verify_async)
965 io_u->end_io = verify_io_u_async;
966 else
967 io_u->end_io = verify_io_u;
968 td_set_runstate(td, TD_VERIFYING);
969 } else if (in_ramp_time(td))
970 td_set_runstate(td, TD_RAMP);
971 else
972 td_set_runstate(td, TD_RUNNING);
973
974 /*
975 * Always log IO before it's issued, so we know the specific
976 * order of it. The logged unit will track when the IO has
977 * completed.
978 */
979 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
980 td->o.do_verify &&
981 td->o.verify != VERIFY_NONE &&
982 !td->o.experimental_verify)
983 log_io_piece(td, io_u);
984
985 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
986 const unsigned long blen = io_u->xfer_buflen;
987 const enum fio_ddir ddir = acct_ddir(io_u);
988
989 if (td->error)
990 break;
991
992 workqueue_enqueue(&td->io_wq, &io_u->work);
993 ret = FIO_Q_QUEUED;
994
995 if (ddir_rw(ddir)) {
996 td->io_issues[ddir]++;
997 td->io_issue_bytes[ddir] += blen;
998 td->rate_io_issue_bytes[ddir] += blen;
999 }
1000
1001 if (should_check_rate(td))
1002 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1003
1004 } else {
1005 ret = td_io_queue(td, io_u);
1006
1007 if (should_check_rate(td))
1008 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1009
1010 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1011 break;
1012
1013 /*
1014 * See if we need to complete some commands. Note that
1015 * we can get BUSY even without IO queued, if the
1016 * system is resource starved.
1017 */
1018reap:
1019 full = queue_full(td) ||
1020 (ret == FIO_Q_BUSY && td->cur_depth);
1021 if (full || io_in_polling(td))
1022 ret = wait_for_completions(td, &comp_time);
1023 }
1024 if (ret < 0)
1025 break;
1026 if (!ddir_rw_sum(td->bytes_done) &&
1027 !(td->io_ops->flags & FIO_NOIO))
1028 continue;
1029
1030 if (!in_ramp_time(td) && should_check_rate(td)) {
1031 if (check_min_rate(td, &comp_time)) {
1032 if (exitall_on_terminate || td->o.exitall_error)
1033 fio_terminate_threads(td->groupid);
1034 td_verror(td, EIO, "check_min_rate");
1035 break;
1036 }
1037 }
1038 if (!in_ramp_time(td) && td->o.latency_target)
1039 lat_target_check(td);
1040
1041 if (td->o.thinktime) {
1042 unsigned long long b;
1043
1044 b = ddir_rw_sum(td->io_blocks);
1045 if (!(b % td->o.thinktime_blocks)) {
1046 int left;
1047
1048 io_u_quiesce(td);
1049
1050 if (td->o.thinktime_spin)
1051 usec_spin(td->o.thinktime_spin);
1052
1053 left = td->o.thinktime - td->o.thinktime_spin;
1054 if (left)
1055 usec_sleep(td, left);
1056 }
1057 }
1058 }
1059
1060 check_update_rusage(td);
1061
1062 if (td->trim_entries)
1063 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1064
1065 if (td->o.fill_device && td->error == ENOSPC) {
1066 td->error = 0;
1067 fio_mark_td_terminate(td);
1068 }
1069 if (!td->error) {
1070 struct fio_file *f;
1071
1072 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1073 workqueue_flush(&td->io_wq);
1074 i = 0;
1075 } else
1076 i = td->cur_depth;
1077
1078 if (i) {
1079 ret = io_u_queued_complete(td, i);
1080 if (td->o.fill_device && td->error == ENOSPC)
1081 td->error = 0;
1082 }
1083
1084 if (should_fsync(td) && td->o.end_fsync) {
1085 td_set_runstate(td, TD_FSYNCING);
1086
1087 for_each_file(td, f, i) {
1088 if (!fio_file_fsync(td, f))
1089 continue;
1090
1091 log_err("fio: end_fsync failed for file %s\n",
1092 f->file_name);
1093 }
1094 }
1095 } else
1096 cleanup_pending_aio(td);
1097
1098 /*
1099 * stop job if we failed doing any IO
1100 */
1101 if (!ddir_rw_sum(td->this_io_bytes))
1102 td->done = 1;
1103
1104 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1105 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1106}
1107
1108static void free_file_completion_logging(struct thread_data *td)
1109{
1110 struct fio_file *f;
1111 unsigned int i;
1112
1113 for_each_file(td, f, i) {
1114 if (!f->last_write_comp)
1115 break;
1116 sfree(f->last_write_comp);
1117 }
1118}
1119
1120static int init_file_completion_logging(struct thread_data *td,
1121 unsigned int depth)
1122{
1123 struct fio_file *f;
1124 unsigned int i;
1125
1126 if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1127 return 0;
1128
1129 for_each_file(td, f, i) {
1130 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1131 if (!f->last_write_comp)
1132 goto cleanup;
1133 }
1134
1135 return 0;
1136
1137cleanup:
1138 free_file_completion_logging(td);
1139 log_err("fio: failed to alloc write comp data\n");
1140 return 1;
1141}
1142
1143static void cleanup_io_u(struct thread_data *td)
1144{
1145 struct io_u *io_u;
1146
1147 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1148
1149 if (td->io_ops->io_u_free)
1150 td->io_ops->io_u_free(td, io_u);
1151
1152 fio_memfree(io_u, sizeof(*io_u));
1153 }
1154
1155 free_io_mem(td);
1156
1157 io_u_rexit(&td->io_u_requeues);
1158 io_u_qexit(&td->io_u_freelist);
1159 io_u_qexit(&td->io_u_all);
1160
1161 free_file_completion_logging(td);
1162}
1163
1164static int init_io_u(struct thread_data *td)
1165{
1166 struct io_u *io_u;
1167 unsigned int max_bs, min_write;
1168 int cl_align, i, max_units;
1169 int data_xfer = 1, err;
1170 char *p;
1171
1172 max_units = td->o.iodepth;
1173 max_bs = td_max_bs(td);
1174 min_write = td->o.min_bs[DDIR_WRITE];
1175 td->orig_buffer_size = (unsigned long long) max_bs
1176 * (unsigned long long) max_units;
1177
1178 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1179 data_xfer = 0;
1180
1181 err = 0;
1182 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1183 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1184 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1185
1186 if (err) {
1187 log_err("fio: failed setting up IO queues\n");
1188 return 1;
1189 }
1190
1191 /*
1192 * if we may later need to do address alignment, then add any
1193 * possible adjustment here so that we don't cause a buffer
1194 * overflow later. this adjustment may be too much if we get
1195 * lucky and the allocator gives us an aligned address.
1196 */
1197 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1198 (td->io_ops->flags & FIO_RAWIO))
1199 td->orig_buffer_size += page_mask + td->o.mem_align;
1200
1201 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1202 unsigned long bs;
1203
1204 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1205 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1206 }
1207
1208 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1209 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1210 return 1;
1211 }
1212
1213 if (data_xfer && allocate_io_mem(td))
1214 return 1;
1215
1216 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1217 (td->io_ops->flags & FIO_RAWIO))
1218 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1219 else
1220 p = td->orig_buffer;
1221
1222 cl_align = os_cache_line_size();
1223
1224 for (i = 0; i < max_units; i++) {
1225 void *ptr;
1226
1227 if (td->terminate)
1228 return 1;
1229
1230 ptr = fio_memalign(cl_align, sizeof(*io_u));
1231 if (!ptr) {
1232 log_err("fio: unable to allocate aligned memory\n");
1233 break;
1234 }
1235
1236 io_u = ptr;
1237 memset(io_u, 0, sizeof(*io_u));
1238 INIT_FLIST_HEAD(&io_u->verify_list);
1239 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1240
1241 if (data_xfer) {
1242 io_u->buf = p;
1243 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1244
1245 if (td_write(td))
1246 io_u_fill_buffer(td, io_u, min_write, max_bs);
1247 if (td_write(td) && td->o.verify_pattern_bytes) {
1248 /*
1249 * Fill the buffer with the pattern if we are
1250 * going to be doing writes.
1251 */
1252 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1253 }
1254 }
1255
1256 io_u->index = i;
1257 io_u->flags = IO_U_F_FREE;
1258 io_u_qpush(&td->io_u_freelist, io_u);
1259
1260 /*
1261 * io_u never leaves this stack, used for iteration of all
1262 * io_u buffers.
1263 */
1264 io_u_qpush(&td->io_u_all, io_u);
1265
1266 if (td->io_ops->io_u_init) {
1267 int ret = td->io_ops->io_u_init(td, io_u);
1268
1269 if (ret) {
1270 log_err("fio: failed to init engine data: %d\n", ret);
1271 return 1;
1272 }
1273 }
1274
1275 p += max_bs;
1276 }
1277
1278 if (init_file_completion_logging(td, max_units))
1279 return 1;
1280
1281 return 0;
1282}
1283
1284static int switch_ioscheduler(struct thread_data *td)
1285{
1286#ifdef FIO_HAVE_IOSCHED_SWITCH
1287 char tmp[256], tmp2[128];
1288 FILE *f;
1289 int ret;
1290
1291 if (td->io_ops->flags & FIO_DISKLESSIO)
1292 return 0;
1293
1294 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1295
1296 f = fopen(tmp, "r+");
1297 if (!f) {
1298 if (errno == ENOENT) {
1299 log_err("fio: os or kernel doesn't support IO scheduler"
1300 " switching\n");
1301 return 0;
1302 }
1303 td_verror(td, errno, "fopen iosched");
1304 return 1;
1305 }
1306
1307 /*
1308 * Set io scheduler.
1309 */
1310 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1311 if (ferror(f) || ret != 1) {
1312 td_verror(td, errno, "fwrite");
1313 fclose(f);
1314 return 1;
1315 }
1316
1317 rewind(f);
1318
1319 /*
1320 * Read back and check that the selected scheduler is now the default.
1321 */
1322 memset(tmp, 0, sizeof(tmp));
1323 ret = fread(tmp, sizeof(tmp), 1, f);
1324 if (ferror(f) || ret < 0) {
1325 td_verror(td, errno, "fread");
1326 fclose(f);
1327 return 1;
1328 }
1329 /*
1330 * either a list of io schedulers or "none\n" is expected.
1331 */
1332 tmp[strlen(tmp) - 1] = '\0';
1333
1334
1335 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1336 if (!strstr(tmp, tmp2)) {
1337 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1338 td_verror(td, EINVAL, "iosched_switch");
1339 fclose(f);
1340 return 1;
1341 }
1342
1343 fclose(f);
1344 return 0;
1345#else
1346 return 0;
1347#endif
1348}
1349
1350static bool keep_running(struct thread_data *td)
1351{
1352 unsigned long long limit;
1353
1354 if (td->done)
1355 return false;
1356 if (td->o.time_based)
1357 return true;
1358 if (td->o.loops) {
1359 td->o.loops--;
1360 return true;
1361 }
1362 if (exceeds_number_ios(td))
1363 return false;
1364
1365 if (td->o.io_limit)
1366 limit = td->o.io_limit;
1367 else
1368 limit = td->o.size;
1369
1370 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1371 uint64_t diff;
1372
1373 /*
1374 * If the difference is less than the minimum IO size, we
1375 * are done.
1376 */
1377 diff = limit - ddir_rw_sum(td->io_bytes);
1378 if (diff < td_max_bs(td))
1379 return false;
1380
1381 if (fio_files_done(td) && !td->o.io_limit)
1382 return false;
1383
1384 return true;
1385 }
1386
1387 return false;
1388}
1389
1390static int exec_string(struct thread_options *o, const char *string, const char *mode)
1391{
1392 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1393 int ret;
1394 char *str;
1395
1396 str = malloc(newlen);
1397 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1398
1399 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1400 ret = system(str);
1401 if (ret == -1)
1402 log_err("fio: exec of cmd <%s> failed\n", str);
1403
1404 free(str);
1405 return ret;
1406}
1407
1408/*
1409 * Dry run to compute correct state of numberio for verification.
1410 */
1411static uint64_t do_dry_run(struct thread_data *td)
1412{
1413 td_set_runstate(td, TD_RUNNING);
1414
1415 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1416 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1417 struct io_u *io_u;
1418 int ret;
1419
1420 if (td->terminate || td->done)
1421 break;
1422
1423 io_u = get_io_u(td);
1424 if (IS_ERR_OR_NULL(io_u))
1425 break;
1426
1427 io_u_set(io_u, IO_U_F_FLIGHT);
1428 io_u->error = 0;
1429 io_u->resid = 0;
1430 if (ddir_rw(acct_ddir(io_u)))
1431 td->io_issues[acct_ddir(io_u)]++;
1432 if (ddir_rw(io_u->ddir)) {
1433 io_u_mark_depth(td, 1);
1434 td->ts.total_io_u[io_u->ddir]++;
1435 }
1436
1437 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1438 td->o.do_verify &&
1439 td->o.verify != VERIFY_NONE &&
1440 !td->o.experimental_verify)
1441 log_io_piece(td, io_u);
1442
1443 ret = io_u_sync_complete(td, io_u);
1444 (void) ret;
1445 }
1446
1447 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1448}
1449
1450struct fork_data {
1451 struct thread_data *td;
1452 struct sk_out *sk_out;
1453};
1454
1455/*
1456 * Entry point for the thread based jobs. The process based jobs end up
1457 * here as well, after a little setup.
1458 */
1459static void *thread_main(void *data)
1460{
1461 struct fork_data *fd = data;
1462 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1463 struct thread_data *td = fd->td;
1464 struct thread_options *o = &td->o;
1465 struct sk_out *sk_out = fd->sk_out;
1466 int clear_state;
1467 int ret;
1468
1469 sk_out_assign(sk_out);
1470 free(fd);
1471
1472 if (!o->use_thread) {
1473 setsid();
1474 td->pid = getpid();
1475 } else
1476 td->pid = gettid();
1477
1478 fio_local_clock_init(o->use_thread);
1479
1480 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1481
1482 if (is_backend)
1483 fio_server_send_start(td);
1484
1485 INIT_FLIST_HEAD(&td->io_log_list);
1486 INIT_FLIST_HEAD(&td->io_hist_list);
1487 INIT_FLIST_HEAD(&td->verify_list);
1488 INIT_FLIST_HEAD(&td->trim_list);
1489 INIT_FLIST_HEAD(&td->next_rand_list);
1490 td->io_hist_tree = RB_ROOT;
1491
1492 ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1493 if (ret) {
1494 td_verror(td, ret, "mutex_cond_init_pshared");
1495 goto err;
1496 }
1497 ret = cond_init_pshared(&td->verify_cond);
1498 if (ret) {
1499 td_verror(td, ret, "mutex_cond_pshared");
1500 goto err;
1501 }
1502
1503 td_set_runstate(td, TD_INITIALIZED);
1504 dprint(FD_MUTEX, "up startup_mutex\n");
1505 fio_mutex_up(startup_mutex);
1506 dprint(FD_MUTEX, "wait on td->mutex\n");
1507 fio_mutex_down(td->mutex);
1508 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1509
1510 /*
1511 * A new gid requires privilege, so we need to do this before setting
1512 * the uid.
1513 */
1514 if (o->gid != -1U && setgid(o->gid)) {
1515 td_verror(td, errno, "setgid");
1516 goto err;
1517 }
1518 if (o->uid != -1U && setuid(o->uid)) {
1519 td_verror(td, errno, "setuid");
1520 goto err;
1521 }
1522
1523 /*
1524 * Do this early, we don't want the compress threads to be limited
1525 * to the same CPUs as the IO workers. So do this before we set
1526 * any potential CPU affinity
1527 */
1528 if (iolog_compress_init(td, sk_out))
1529 goto err;
1530
1531 /*
1532 * If we have a gettimeofday() thread, make sure we exclude that
1533 * thread from this job
1534 */
1535 if (o->gtod_cpu)
1536 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1537
1538 /*
1539 * Set affinity first, in case it has an impact on the memory
1540 * allocations.
1541 */
1542 if (fio_option_is_set(o, cpumask)) {
1543 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1544 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1545 if (!ret) {
1546 log_err("fio: no CPUs set\n");
1547 log_err("fio: Try increasing number of available CPUs\n");
1548 td_verror(td, EINVAL, "cpus_split");
1549 goto err;
1550 }
1551 }
1552 ret = fio_setaffinity(td->pid, o->cpumask);
1553 if (ret == -1) {
1554 td_verror(td, errno, "cpu_set_affinity");
1555 goto err;
1556 }
1557 }
1558
1559#ifdef CONFIG_LIBNUMA
1560 /* numa node setup */
1561 if (fio_option_is_set(o, numa_cpunodes) ||
1562 fio_option_is_set(o, numa_memnodes)) {
1563 struct bitmask *mask;
1564
1565 if (numa_available() < 0) {
1566 td_verror(td, errno, "Does not support NUMA API\n");
1567 goto err;
1568 }
1569
1570 if (fio_option_is_set(o, numa_cpunodes)) {
1571 mask = numa_parse_nodestring(o->numa_cpunodes);
1572 ret = numa_run_on_node_mask(mask);
1573 numa_free_nodemask(mask);
1574 if (ret == -1) {
1575 td_verror(td, errno, \
1576 "numa_run_on_node_mask failed\n");
1577 goto err;
1578 }
1579 }
1580
1581 if (fio_option_is_set(o, numa_memnodes)) {
1582 mask = NULL;
1583 if (o->numa_memnodes)
1584 mask = numa_parse_nodestring(o->numa_memnodes);
1585
1586 switch (o->numa_mem_mode) {
1587 case MPOL_INTERLEAVE:
1588 numa_set_interleave_mask(mask);
1589 break;
1590 case MPOL_BIND:
1591 numa_set_membind(mask);
1592 break;
1593 case MPOL_LOCAL:
1594 numa_set_localalloc();
1595 break;
1596 case MPOL_PREFERRED:
1597 numa_set_preferred(o->numa_mem_prefer_node);
1598 break;
1599 case MPOL_DEFAULT:
1600 default:
1601 break;
1602 }
1603
1604 if (mask)
1605 numa_free_nodemask(mask);
1606
1607 }
1608 }
1609#endif
1610
1611 if (fio_pin_memory(td))
1612 goto err;
1613
1614 /*
1615 * May alter parameters that init_io_u() will use, so we need to
1616 * do this first.
1617 */
1618 if (init_iolog(td))
1619 goto err;
1620
1621 if (init_io_u(td))
1622 goto err;
1623
1624 if (o->verify_async && verify_async_init(td))
1625 goto err;
1626
1627 if (fio_option_is_set(o, ioprio) ||
1628 fio_option_is_set(o, ioprio_class)) {
1629 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1630 if (ret == -1) {
1631 td_verror(td, errno, "ioprio_set");
1632 goto err;
1633 }
1634 }
1635
1636 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1637 goto err;
1638
1639 errno = 0;
1640 if (nice(o->nice) == -1 && errno != 0) {
1641 td_verror(td, errno, "nice");
1642 goto err;
1643 }
1644
1645 if (o->ioscheduler && switch_ioscheduler(td))
1646 goto err;
1647
1648 if (!o->create_serialize && setup_files(td))
1649 goto err;
1650
1651 if (td_io_init(td))
1652 goto err;
1653
1654 if (init_random_map(td))
1655 goto err;
1656
1657 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1658 goto err;
1659
1660 if (o->pre_read) {
1661 if (pre_read_files(td) < 0)
1662 goto err;
1663 }
1664
1665 fio_verify_init(td);
1666
1667 if (rate_submit_init(td, sk_out))
1668 goto err;
1669
1670 fio_gettime(&td->epoch, NULL);
1671 fio_getrusage(&td->ru_start);
1672 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1673 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1674
1675 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1676 o->ratemin[DDIR_TRIM]) {
1677 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1678 sizeof(td->bw_sample_time));
1679 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1680 sizeof(td->bw_sample_time));
1681 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1682 sizeof(td->bw_sample_time));
1683 }
1684
1685 clear_state = 0;
1686 while (keep_running(td)) {
1687 uint64_t verify_bytes;
1688
1689 fio_gettime(&td->start, NULL);
1690 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1691
1692 if (clear_state) {
1693 clear_io_state(td, 0);
1694
1695 if (o->unlink_each_loop && unlink_all_files(td))
1696 break;
1697 }
1698
1699 prune_io_piece_log(td);
1700
1701 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1702 verify_bytes = do_dry_run(td);
1703 else {
1704 uint64_t bytes_done[DDIR_RWDIR_CNT];
1705
1706 do_io(td, bytes_done);
1707
1708 if (!ddir_rw_sum(bytes_done)) {
1709 fio_mark_td_terminate(td);
1710 verify_bytes = 0;
1711 } else {
1712 verify_bytes = bytes_done[DDIR_WRITE] +
1713 bytes_done[DDIR_TRIM];
1714 }
1715 }
1716
1717 clear_state = 1;
1718
1719 /*
1720 * Make sure we've successfully updated the rusage stats
1721 * before waiting on the stat mutex. Otherwise we could have
1722 * the stat thread holding stat mutex and waiting for
1723 * the rusage_sem, which would never get upped because
1724 * this thread is waiting for the stat mutex.
1725 */
1726 check_update_rusage(td);
1727
1728 fio_mutex_down(stat_mutex);
1729 if (td_read(td) && td->io_bytes[DDIR_READ])
1730 update_runtime(td, elapsed_us, DDIR_READ);
1731 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1732 update_runtime(td, elapsed_us, DDIR_WRITE);
1733 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1734 update_runtime(td, elapsed_us, DDIR_TRIM);
1735 fio_gettime(&td->start, NULL);
1736 fio_mutex_up(stat_mutex);
1737
1738 if (td->error || td->terminate)
1739 break;
1740
1741 if (!o->do_verify ||
1742 o->verify == VERIFY_NONE ||
1743 (td->io_ops->flags & FIO_UNIDIR))
1744 continue;
1745
1746 clear_io_state(td, 0);
1747
1748 fio_gettime(&td->start, NULL);
1749
1750 do_verify(td, verify_bytes);
1751
1752 /*
1753 * See comment further up for why this is done here.
1754 */
1755 check_update_rusage(td);
1756
1757 fio_mutex_down(stat_mutex);
1758 update_runtime(td, elapsed_us, DDIR_READ);
1759 fio_gettime(&td->start, NULL);
1760 fio_mutex_up(stat_mutex);
1761
1762 if (td->error || td->terminate)
1763 break;
1764 }
1765
1766 td_set_runstate(td, TD_FINISHING);
1767
1768 update_rusage_stat(td);
1769 td->ts.total_run_time = mtime_since_now(&td->epoch);
1770 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1771 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1772 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1773
1774 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1775 (td->o.verify != VERIFY_NONE && td_write(td)))
1776 verify_save_state(td->thread_number);
1777
1778 fio_unpin_memory(td);
1779
1780 td_writeout_logs(td, true);
1781
1782 iolog_compress_exit(td);
1783 rate_submit_exit(td);
1784
1785 if (o->exec_postrun)
1786 exec_string(o, o->exec_postrun, (const char *)"postrun");
1787
1788 if (exitall_on_terminate || (o->exitall_error && td->error))
1789 fio_terminate_threads(td->groupid);
1790
1791err:
1792 if (td->error)
1793 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1794 td->verror);
1795
1796 if (o->verify_async)
1797 verify_async_exit(td);
1798
1799 close_and_free_files(td);
1800 cleanup_io_u(td);
1801 close_ioengine(td);
1802 cgroup_shutdown(td, &cgroup_mnt);
1803 verify_free_state(td);
1804
1805 if (td->zone_state_index) {
1806 int i;
1807
1808 for (i = 0; i < DDIR_RWDIR_CNT; i++)
1809 free(td->zone_state_index[i]);
1810 free(td->zone_state_index);
1811 td->zone_state_index = NULL;
1812 }
1813
1814 if (fio_option_is_set(o, cpumask)) {
1815 ret = fio_cpuset_exit(&o->cpumask);
1816 if (ret)
1817 td_verror(td, ret, "fio_cpuset_exit");
1818 }
1819
1820 /*
1821 * do this very late, it will log file closing as well
1822 */
1823 if (o->write_iolog_file)
1824 write_iolog_close(td);
1825
1826 fio_mutex_remove(td->mutex);
1827 td->mutex = NULL;
1828
1829 td_set_runstate(td, TD_EXITED);
1830
1831 /*
1832 * Do this last after setting our runstate to exited, so we
1833 * know that the stat thread is signaled.
1834 */
1835 check_update_rusage(td);
1836
1837 sk_out_drop();
1838 return (void *) (uintptr_t) td->error;
1839}
1840
1841static void dump_td_info(struct thread_data *td)
1842{
1843 log_err("fio: job '%s' (state=%d) hasn't exited in %lu seconds, it "
1844 "appears to be stuck. Doing forceful exit of this job.\n",
1845 td->o.name, td->runstate,
1846 (unsigned long) time_since_now(&td->terminate_time));
1847}
1848
1849/*
1850 * Run over the job map and reap the threads that have exited, if any.
1851 */
1852static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1853 unsigned int *m_rate)
1854{
1855 struct thread_data *td;
1856 unsigned int cputhreads, realthreads, pending;
1857 int i, status, ret;
1858
1859 /*
1860 * reap exited threads (TD_EXITED -> TD_REAPED)
1861 */
1862 realthreads = pending = cputhreads = 0;
1863 for_each_td(td, i) {
1864 int flags = 0;
1865
1866 /*
1867 * ->io_ops is NULL for a thread that has closed its
1868 * io engine
1869 */
1870 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1871 cputhreads++;
1872 else
1873 realthreads++;
1874
1875 if (!td->pid) {
1876 pending++;
1877 continue;
1878 }
1879 if (td->runstate == TD_REAPED)
1880 continue;
1881 if (td->o.use_thread) {
1882 if (td->runstate == TD_EXITED) {
1883 td_set_runstate(td, TD_REAPED);
1884 goto reaped;
1885 }
1886 continue;
1887 }
1888
1889 flags = WNOHANG;
1890 if (td->runstate == TD_EXITED)
1891 flags = 0;
1892
1893 /*
1894 * check if someone quit or got killed in an unusual way
1895 */
1896 ret = waitpid(td->pid, &status, flags);
1897 if (ret < 0) {
1898 if (errno == ECHILD) {
1899 log_err("fio: pid=%d disappeared %d\n",
1900 (int) td->pid, td->runstate);
1901 td->sig = ECHILD;
1902 td_set_runstate(td, TD_REAPED);
1903 goto reaped;
1904 }
1905 perror("waitpid");
1906 } else if (ret == td->pid) {
1907 if (WIFSIGNALED(status)) {
1908 int sig = WTERMSIG(status);
1909
1910 if (sig != SIGTERM && sig != SIGUSR2)
1911 log_err("fio: pid=%d, got signal=%d\n",
1912 (int) td->pid, sig);
1913 td->sig = sig;
1914 td_set_runstate(td, TD_REAPED);
1915 goto reaped;
1916 }
1917 if (WIFEXITED(status)) {
1918 if (WEXITSTATUS(status) && !td->error)
1919 td->error = WEXITSTATUS(status);
1920
1921 td_set_runstate(td, TD_REAPED);
1922 goto reaped;
1923 }
1924 }
1925
1926 /*
1927 * If the job is stuck, do a forceful timeout of it and
1928 * move on.
1929 */
1930 if (td->terminate &&
1931 td->runstate < TD_FSYNCING &&
1932 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1933 dump_td_info(td);
1934 td_set_runstate(td, TD_REAPED);
1935 goto reaped;
1936 }
1937
1938 /*
1939 * thread is not dead, continue
1940 */
1941 pending++;
1942 continue;
1943reaped:
1944 (*nr_running)--;
1945 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1946 (*t_rate) -= ddir_rw_sum(td->o.rate);
1947 if (!td->pid)
1948 pending--;
1949
1950 if (td->error)
1951 exit_value++;
1952
1953 done_secs += mtime_since_now(&td->epoch) / 1000;
1954 profile_td_exit(td);
1955 }
1956
1957 if (*nr_running == cputhreads && !pending && realthreads)
1958 fio_terminate_threads(TERMINATE_ALL);
1959}
1960
1961static bool __check_trigger_file(void)
1962{
1963 struct stat sb;
1964
1965 if (!trigger_file)
1966 return false;
1967
1968 if (stat(trigger_file, &sb))
1969 return false;
1970
1971 if (unlink(trigger_file) < 0)
1972 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1973 strerror(errno));
1974
1975 return true;
1976}
1977
1978static bool trigger_timedout(void)
1979{
1980 if (trigger_timeout)
1981 return time_since_genesis() >= trigger_timeout;
1982
1983 return false;
1984}
1985
1986void exec_trigger(const char *cmd)
1987{
1988 int ret;
1989
1990 if (!cmd)
1991 return;
1992
1993 ret = system(cmd);
1994 if (ret == -1)
1995 log_err("fio: failed executing %s trigger\n", cmd);
1996}
1997
1998void check_trigger_file(void)
1999{
2000 if (__check_trigger_file() || trigger_timedout()) {
2001 if (nr_clients)
2002 fio_clients_send_trigger(trigger_remote_cmd);
2003 else {
2004 verify_save_state(IO_LIST_ALL);
2005 fio_terminate_threads(TERMINATE_ALL);
2006 exec_trigger(trigger_cmd);
2007 }
2008 }
2009}
2010
2011static int fio_verify_load_state(struct thread_data *td)
2012{
2013 int ret;
2014
2015 if (!td->o.verify_state)
2016 return 0;
2017
2018 if (is_backend) {
2019 void *data;
2020
2021 ret = fio_server_get_verify_state(td->o.name,
2022 td->thread_number - 1, &data);
2023 if (!ret)
2024 verify_assign_state(td, data);
2025 } else
2026 ret = verify_load_state(td, "local");
2027
2028 return ret;
2029}
2030
2031static void do_usleep(unsigned int usecs)
2032{
2033 check_for_running_stats();
2034 check_trigger_file();
2035 usleep(usecs);
2036}
2037
2038static bool check_mount_writes(struct thread_data *td)
2039{
2040 struct fio_file *f;
2041 unsigned int i;
2042
2043 if (!td_write(td) || td->o.allow_mounted_write)
2044 return false;
2045
2046 for_each_file(td, f, i) {
2047 if (f->filetype != FIO_TYPE_BD)
2048 continue;
2049 if (device_is_mounted(f->file_name))
2050 goto mounted;
2051 }
2052
2053 return false;
2054mounted:
2055 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
2056 return true;
2057}
2058
2059static bool waitee_running(struct thread_data *me)
2060{
2061 const char *waitee = me->o.wait_for;
2062 const char *self = me->o.name;
2063 struct thread_data *td;
2064 int i;
2065
2066 if (!waitee)
2067 return false;
2068
2069 for_each_td(td, i) {
2070 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2071 continue;
2072
2073 if (td->runstate < TD_EXITED) {
2074 dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2075 self, td->o.name,
2076 runstate_to_name(td->runstate));
2077 return true;
2078 }
2079 }
2080
2081 dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2082 return false;
2083}
2084
2085/*
2086 * Main function for kicking off and reaping jobs, as needed.
2087 */
2088static void run_threads(struct sk_out *sk_out)
2089{
2090 struct thread_data *td;
2091 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2092 uint64_t spent;
2093
2094 if (fio_gtod_offload && fio_start_gtod_thread())
2095 return;
2096
2097 fio_idle_prof_init();
2098
2099 set_sig_handlers();
2100
2101 nr_thread = nr_process = 0;
2102 for_each_td(td, i) {
2103 if (check_mount_writes(td))
2104 return;
2105 if (td->o.use_thread)
2106 nr_thread++;
2107 else
2108 nr_process++;
2109 }
2110
2111 if (output_format & FIO_OUTPUT_NORMAL) {
2112 log_info("Starting ");
2113 if (nr_thread)
2114 log_info("%d thread%s", nr_thread,
2115 nr_thread > 1 ? "s" : "");
2116 if (nr_process) {
2117 if (nr_thread)
2118 log_info(" and ");
2119 log_info("%d process%s", nr_process,
2120 nr_process > 1 ? "es" : "");
2121 }
2122 log_info("\n");
2123 log_info_flush();
2124 }
2125
2126 todo = thread_number;
2127 nr_running = 0;
2128 nr_started = 0;
2129 m_rate = t_rate = 0;
2130
2131 for_each_td(td, i) {
2132 print_status_init(td->thread_number - 1);
2133
2134 if (!td->o.create_serialize)
2135 continue;
2136
2137 if (fio_verify_load_state(td))
2138 goto reap;
2139
2140 /*
2141 * do file setup here so it happens sequentially,
2142 * we don't want X number of threads getting their
2143 * client data interspersed on disk
2144 */
2145 if (setup_files(td)) {
2146reap:
2147 exit_value++;
2148 if (td->error)
2149 log_err("fio: pid=%d, err=%d/%s\n",
2150 (int) td->pid, td->error, td->verror);
2151 td_set_runstate(td, TD_REAPED);
2152 todo--;
2153 } else {
2154 struct fio_file *f;
2155 unsigned int j;
2156
2157 /*
2158 * for sharing to work, each job must always open
2159 * its own files. so close them, if we opened them
2160 * for creation
2161 */
2162 for_each_file(td, f, j) {
2163 if (fio_file_open(f))
2164 td_io_close_file(td, f);
2165 }
2166 }
2167 }
2168
2169 /* start idle threads before io threads start to run */
2170 fio_idle_prof_start();
2171
2172 set_genesis_time();
2173
2174 while (todo) {
2175 struct thread_data *map[REAL_MAX_JOBS];
2176 struct timeval this_start;
2177 int this_jobs = 0, left;
2178 struct fork_data *fd;
2179
2180 /*
2181 * create threads (TD_NOT_CREATED -> TD_CREATED)
2182 */
2183 for_each_td(td, i) {
2184 if (td->runstate != TD_NOT_CREATED)
2185 continue;
2186
2187 /*
2188 * never got a chance to start, killed by other
2189 * thread for some reason
2190 */
2191 if (td->terminate) {
2192 todo--;
2193 continue;
2194 }
2195
2196 if (td->o.start_delay) {
2197 spent = utime_since_genesis();
2198
2199 if (td->o.start_delay > spent)
2200 continue;
2201 }
2202
2203 if (td->o.stonewall && (nr_started || nr_running)) {
2204 dprint(FD_PROCESS, "%s: stonewall wait\n",
2205 td->o.name);
2206 break;
2207 }
2208
2209 if (waitee_running(td)) {
2210 dprint(FD_PROCESS, "%s: waiting for %s\n",
2211 td->o.name, td->o.wait_for);
2212 continue;
2213 }
2214
2215 init_disk_util(td);
2216
2217 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2218 td->update_rusage = 0;
2219
2220 /*
2221 * Set state to created. Thread will transition
2222 * to TD_INITIALIZED when it's done setting up.
2223 */
2224 td_set_runstate(td, TD_CREATED);
2225 map[this_jobs++] = td;
2226 nr_started++;
2227
2228 fd = calloc(1, sizeof(*fd));
2229 fd->td = td;
2230 fd->sk_out = sk_out;
2231
2232 if (td->o.use_thread) {
2233 int ret;
2234
2235 dprint(FD_PROCESS, "will pthread_create\n");
2236 ret = pthread_create(&td->thread, NULL,
2237 thread_main, fd);
2238 if (ret) {
2239 log_err("pthread_create: %s\n",
2240 strerror(ret));
2241 free(fd);
2242 nr_started--;
2243 break;
2244 }
2245 ret = pthread_detach(td->thread);
2246 if (ret)
2247 log_err("pthread_detach: %s",
2248 strerror(ret));
2249 } else {
2250 pid_t pid;
2251 dprint(FD_PROCESS, "will fork\n");
2252 pid = fork();
2253 if (!pid) {
2254 int ret;
2255
2256 ret = (int)(uintptr_t)thread_main(fd);
2257 _exit(ret);
2258 } else if (i == fio_debug_jobno)
2259 *fio_debug_jobp = pid;
2260 }
2261 dprint(FD_MUTEX, "wait on startup_mutex\n");
2262 if (fio_mutex_down_timeout(startup_mutex, 10000)) {
2263 log_err("fio: job startup hung? exiting.\n");
2264 fio_terminate_threads(TERMINATE_ALL);
2265 fio_abort = 1;
2266 nr_started--;
2267 break;
2268 }
2269 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2270 }
2271
2272 /*
2273 * Wait for the started threads to transition to
2274 * TD_INITIALIZED.
2275 */
2276 fio_gettime(&this_start, NULL);
2277 left = this_jobs;
2278 while (left && !fio_abort) {
2279 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2280 break;
2281
2282 do_usleep(100000);
2283
2284 for (i = 0; i < this_jobs; i++) {
2285 td = map[i];
2286 if (!td)
2287 continue;
2288 if (td->runstate == TD_INITIALIZED) {
2289 map[i] = NULL;
2290 left--;
2291 } else if (td->runstate >= TD_EXITED) {
2292 map[i] = NULL;
2293 left--;
2294 todo--;
2295 nr_running++; /* work-around... */
2296 }
2297 }
2298 }
2299
2300 if (left) {
2301 log_err("fio: %d job%s failed to start\n", left,
2302 left > 1 ? "s" : "");
2303 for (i = 0; i < this_jobs; i++) {
2304 td = map[i];
2305 if (!td)
2306 continue;
2307 kill(td->pid, SIGTERM);
2308 }
2309 break;
2310 }
2311
2312 /*
2313 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2314 */
2315 for_each_td(td, i) {
2316 if (td->runstate != TD_INITIALIZED)
2317 continue;
2318
2319 if (in_ramp_time(td))
2320 td_set_runstate(td, TD_RAMP);
2321 else
2322 td_set_runstate(td, TD_RUNNING);
2323 nr_running++;
2324 nr_started--;
2325 m_rate += ddir_rw_sum(td->o.ratemin);
2326 t_rate += ddir_rw_sum(td->o.rate);
2327 todo--;
2328 fio_mutex_up(td->mutex);
2329 }
2330
2331 reap_threads(&nr_running, &t_rate, &m_rate);
2332
2333 if (todo)
2334 do_usleep(100000);
2335 }
2336
2337 while (nr_running) {
2338 reap_threads(&nr_running, &t_rate, &m_rate);
2339 do_usleep(10000);
2340 }
2341
2342 fio_idle_prof_stop();
2343
2344 update_io_ticks();
2345}
2346
2347static void free_disk_util(void)
2348{
2349 disk_util_prune_entries();
2350 helper_thread_destroy();
2351}
2352
2353int fio_backend(struct sk_out *sk_out)
2354{
2355 struct thread_data *td;
2356 int i;
2357
2358 if (exec_profile) {
2359 if (load_profile(exec_profile))
2360 return 1;
2361 free(exec_profile);
2362 exec_profile = NULL;
2363 }
2364 if (!thread_number)
2365 return 0;
2366
2367 if (write_bw_log) {
2368 struct log_params p = {
2369 .log_type = IO_LOG_TYPE_BW,
2370 };
2371
2372 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2373 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2374 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2375 }
2376
2377 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2378 if (startup_mutex == NULL)
2379 return 1;
2380
2381 set_genesis_time();
2382 stat_init();
2383 helper_thread_create(startup_mutex, sk_out);
2384
2385 cgroup_list = smalloc(sizeof(*cgroup_list));
2386 INIT_FLIST_HEAD(cgroup_list);
2387
2388 run_threads(sk_out);
2389
2390 helper_thread_exit();
2391
2392 if (!fio_abort) {
2393 __show_run_stats();
2394 if (write_bw_log) {
2395 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2396 struct io_log *log = agg_io_log[i];
2397
2398 flush_log(log, false);
2399 free_log(log);
2400 }
2401 }
2402 }
2403
2404 for_each_td(td, i) {
2405 fio_options_free(td);
2406 if (td->rusage_sem) {
2407 fio_mutex_remove(td->rusage_sem);
2408 td->rusage_sem = NULL;
2409 }
2410 }
2411
2412 free_disk_util();
2413 cgroup_kill(cgroup_list);
2414 sfree(cgroup_list);
2415 sfree(cgroup_mnt);
2416
2417 fio_mutex_remove(startup_mutex);
2418 stat_exit();
2419 return exit_value;
2420}