stat: remove duplicated code in show_mixed_ddir_status()
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18 #include "oslib/asprintf.h"
19
20 #ifdef WIN32
21 #define LOG_MSEC_SLACK  2
22 #else
23 #define LOG_MSEC_SLACK  1
24 #endif
25
26 struct fio_sem *stat_sem;
27
28 void clear_rusage_stat(struct thread_data *td)
29 {
30         struct thread_stat *ts = &td->ts;
31
32         fio_getrusage(&td->ru_start);
33         ts->usr_time = ts->sys_time = 0;
34         ts->ctx = 0;
35         ts->minf = ts->majf = 0;
36 }
37
38 void update_rusage_stat(struct thread_data *td)
39 {
40         struct thread_stat *ts = &td->ts;
41
42         fio_getrusage(&td->ru_end);
43         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
44                                         &td->ru_end.ru_utime);
45         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
46                                         &td->ru_end.ru_stime);
47         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
48                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
49         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
50         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
51
52         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
53 }
54
55 /*
56  * Given a latency, return the index of the corresponding bucket in
57  * the structure tracking percentiles.
58  *
59  * (1) find the group (and error bits) that the value (latency)
60  * belongs to by looking at its MSB. (2) find the bucket number in the
61  * group by looking at the index bits.
62  *
63  */
64 static unsigned int plat_val_to_idx(unsigned long long val)
65 {
66         unsigned int msb, error_bits, base, offset, idx;
67
68         /* Find MSB starting from bit 0 */
69         if (val == 0)
70                 msb = 0;
71         else
72                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
73
74         /*
75          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
76          * all bits of the sample as index
77          */
78         if (msb <= FIO_IO_U_PLAT_BITS)
79                 return val;
80
81         /* Compute the number of error bits to discard*/
82         error_bits = msb - FIO_IO_U_PLAT_BITS;
83
84         /* Compute the number of buckets before the group */
85         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
86
87         /*
88          * Discard the error bits and apply the mask to find the
89          * index for the buckets in the group
90          */
91         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
92
93         /* Make sure the index does not exceed (array size - 1) */
94         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
95                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
96
97         return idx;
98 }
99
100 /*
101  * Convert the given index of the bucket array to the value
102  * represented by the bucket
103  */
104 static unsigned long long plat_idx_to_val(unsigned int idx)
105 {
106         unsigned int error_bits;
107         unsigned long long k, base;
108
109         assert(idx < FIO_IO_U_PLAT_NR);
110
111         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
112          * all bits of the sample as index */
113         if (idx < (FIO_IO_U_PLAT_VAL << 1))
114                 return idx;
115
116         /* Find the group and compute the minimum value of that group */
117         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
118         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
119
120         /* Find its bucket number of the group */
121         k = idx % FIO_IO_U_PLAT_VAL;
122
123         /* Return the mean of the range of the bucket */
124         return base + ((k + 0.5) * (1 << error_bits));
125 }
126
127 static int double_cmp(const void *a, const void *b)
128 {
129         const fio_fp64_t fa = *(const fio_fp64_t *) a;
130         const fio_fp64_t fb = *(const fio_fp64_t *) b;
131         int cmp = 0;
132
133         if (fa.u.f > fb.u.f)
134                 cmp = 1;
135         else if (fa.u.f < fb.u.f)
136                 cmp = -1;
137
138         return cmp;
139 }
140
141 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
142                                    fio_fp64_t *plist, unsigned long long **output,
143                                    unsigned long long *maxv, unsigned long long *minv)
144 {
145         unsigned long long sum = 0;
146         unsigned int len, i, j = 0;
147         unsigned long long *ovals = NULL;
148         bool is_last;
149
150         *minv = -1ULL;
151         *maxv = 0;
152
153         len = 0;
154         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
155                 len++;
156
157         if (!len)
158                 return 0;
159
160         /*
161          * Sort the percentile list. Note that it may already be sorted if
162          * we are using the default values, but since it's a short list this
163          * isn't a worry. Also note that this does not work for NaN values.
164          */
165         if (len > 1)
166                 qsort(plist, len, sizeof(plist[0]), double_cmp);
167
168         ovals = malloc(len * sizeof(*ovals));
169         if (!ovals)
170                 return 0;
171
172         /*
173          * Calculate bucket values, note down max and min values
174          */
175         is_last = false;
176         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
177                 sum += io_u_plat[i];
178                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
179                         assert(plist[j].u.f <= 100.0);
180
181                         ovals[j] = plat_idx_to_val(i);
182                         if (ovals[j] < *minv)
183                                 *minv = ovals[j];
184                         if (ovals[j] > *maxv)
185                                 *maxv = ovals[j];
186
187                         is_last = (j == len - 1) != 0;
188                         if (is_last)
189                                 break;
190
191                         j++;
192                 }
193         }
194
195         if (!is_last)
196                 log_err("fio: error calculating latency percentiles\n");
197
198         *output = ovals;
199         return len;
200 }
201
202 /*
203  * Find and display the p-th percentile of clat
204  */
205 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
206                                   fio_fp64_t *plist, unsigned int precision,
207                                   const char *pre, struct buf_output *out)
208 {
209         unsigned int divisor, len, i, j = 0;
210         unsigned long long minv, maxv;
211         unsigned long long *ovals;
212         int per_line, scale_down, time_width;
213         bool is_last;
214         char fmt[32];
215
216         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217         if (!len || !ovals)
218                 return;
219
220         /*
221          * We default to nsecs, but if the value range is such that we
222          * should scale down to usecs or msecs, do that.
223          */
224         if (minv > 2000000 && maxv > 99999999ULL) {
225                 scale_down = 2;
226                 divisor = 1000000;
227                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
228         } else if (minv > 2000 && maxv > 99999) {
229                 scale_down = 1;
230                 divisor = 1000;
231                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
232         } else {
233                 scale_down = 0;
234                 divisor = 1;
235                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
236         }
237
238
239         time_width = max(5, (int) (log10(maxv / divisor) + 1));
240         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
241                         precision, time_width);
242         /* fmt will be something like " %5.2fth=[%4llu]%c" */
243         per_line = (80 - 7) / (precision + 10 + time_width);
244
245         for (j = 0; j < len; j++) {
246                 /* for formatting */
247                 if (j != 0 && (j % per_line) == 0)
248                         log_buf(out, "     |");
249
250                 /* end of the list */
251                 is_last = (j == len - 1) != 0;
252
253                 for (i = 0; i < scale_down; i++)
254                         ovals[j] = (ovals[j] + 999) / 1000;
255
256                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257
258                 if (is_last)
259                         break;
260
261                 if ((j % per_line) == per_line - 1)     /* for formatting */
262                         log_buf(out, "\n");
263         }
264
265         free(ovals);
266 }
267
268 bool calc_lat(struct io_stat *is, unsigned long long *min,
269               unsigned long long *max, double *mean, double *dev)
270 {
271         double n = (double) is->samples;
272
273         if (n == 0)
274                 return false;
275
276         *min = is->min_val;
277         *max = is->max_val;
278         *mean = is->mean.u.f;
279
280         if (n > 1.0)
281                 *dev = sqrt(is->S.u.f / (n - 1.0));
282         else
283                 *dev = 0;
284
285         return true;
286 }
287
288 void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out) 
289 {
290         char *io, *agg, *min, *max;
291         char *ioalt, *aggalt, *minalt, *maxalt;
292         uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0;
293         uint64_t min_run = -1, max_run = 0;
294         const int i2p = is_power_of_2(rs->kb_base);
295         int i;
296
297         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
298                 if (!rs->max_run[i])
299                         continue;
300                 io_mix += rs->iobytes[i];
301                 agg_mix += rs->agg[i];
302                 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
303                 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
304                 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
305                 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
306         }
307         io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
308         ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
309         agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
310         aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
311         min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
312         minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
313         max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
314         maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
315         log_buf(out, "  MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
316                         agg, aggalt, min, max, minalt, maxalt, io, ioalt,
317                         (unsigned long long) min_run,
318                         (unsigned long long) max_run);
319         free(io);
320         free(agg);
321         free(min);
322         free(max);
323         free(ioalt);
324         free(aggalt);
325         free(minalt);
326         free(maxalt);
327 }
328
329 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
330 {
331         char *io, *agg, *min, *max;
332         char *ioalt, *aggalt, *minalt, *maxalt;
333         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
334         int i;
335
336         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
337
338         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
339                 const int i2p = is_power_of_2(rs->kb_base);
340
341                 if (!rs->max_run[i])
342                         continue;
343
344                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
345                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
346                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
347                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
348                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
349                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
350                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
351                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
352                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
353                                 (rs->unified_rw_rep == UNIFIED_MIXED) ? "  MIXED" : str[i],
354                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
355                                 (unsigned long long) rs->min_run[i],
356                                 (unsigned long long) rs->max_run[i]);
357
358                 free(io);
359                 free(agg);
360                 free(min);
361                 free(max);
362                 free(ioalt);
363                 free(aggalt);
364                 free(minalt);
365                 free(maxalt);
366         }
367
368         /* Need to aggregate statisitics to show mixed values */
369         if (rs->unified_rw_rep == UNIFIED_BOTH)
370                 show_mixed_group_stats(rs, out);
371 }
372
373 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
374 {
375         int i;
376
377         /*
378          * Do depth distribution calculations
379          */
380         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
381                 if (total) {
382                         io_u_dist[i] = (double) map[i] / (double) total;
383                         io_u_dist[i] *= 100.0;
384                         if (io_u_dist[i] < 0.1 && map[i])
385                                 io_u_dist[i] = 0.1;
386                 } else
387                         io_u_dist[i] = 0.0;
388         }
389 }
390
391 static void stat_calc_lat(struct thread_stat *ts, double *dst,
392                           uint64_t *src, int nr)
393 {
394         unsigned long total = ddir_rw_sum(ts->total_io_u);
395         int i;
396
397         /*
398          * Do latency distribution calculations
399          */
400         for (i = 0; i < nr; i++) {
401                 if (total) {
402                         dst[i] = (double) src[i] / (double) total;
403                         dst[i] *= 100.0;
404                         if (dst[i] < 0.01 && src[i])
405                                 dst[i] = 0.01;
406                 } else
407                         dst[i] = 0.0;
408         }
409 }
410
411 /*
412  * To keep the terse format unaltered, add all of the ns latency
413  * buckets to the first us latency bucket
414  */
415 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
416 {
417         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
418         int i;
419
420         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
421
422         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
423                 ntotal += ts->io_u_lat_n[i];
424
425         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
426 }
427
428 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
429 {
430         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
431 }
432
433 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
434 {
435         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
436 }
437
438 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
439 {
440         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
441 }
442
443 static void display_lat(const char *name, unsigned long long min,
444                         unsigned long long max, double mean, double dev,
445                         struct buf_output *out)
446 {
447         const char *base = "(nsec)";
448         char *minp, *maxp;
449
450         if (nsec_to_msec(&min, &max, &mean, &dev))
451                 base = "(msec)";
452         else if (nsec_to_usec(&min, &max, &mean, &dev))
453                 base = "(usec)";
454
455         minp = num2str(min, 6, 1, 0, N2S_NONE);
456         maxp = num2str(max, 6, 1, 0, N2S_NONE);
457
458         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
459                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
460
461         free(minp);
462         free(maxp);
463 }
464
465 static double convert_agg_kbytes_percent(struct group_run_stats *rs, int ddir, int mean)
466 {
467         double p_of_agg = 100.0;
468         if (rs && rs->agg[ddir] > 1024) {
469                 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
470
471                 if (p_of_agg > 100.0)
472                         p_of_agg = 100.0;
473         }
474         return p_of_agg;
475 }
476
477 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
478                              int ddir, struct buf_output *out)
479 {
480         unsigned long runt;
481         unsigned long long min, max, bw, iops;
482         double mean, dev;
483         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
484         int i2p;
485
486         if (ddir_sync(ddir)) {
487                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
488                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
489                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
490                         show_clat_percentiles(ts->io_u_sync_plat,
491                                                 ts->sync_stat.samples,
492                                                 ts->percentile_list,
493                                                 ts->percentile_precision,
494                                                 io_ddir_name(ddir), out);
495                 }
496                 return;
497         }
498
499         assert(ddir_rw(ddir));
500
501         if (!ts->runtime[ddir])
502                 return;
503
504         i2p = is_power_of_2(rs->kb_base);
505         runt = ts->runtime[ddir];
506
507         bw = (1000 * ts->io_bytes[ddir]) / runt;
508         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
509         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
510         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
511
512         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
513         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
514         if (ddir == DDIR_WRITE)
515                 post_st = zbd_write_status(ts);
516         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
517                 uint64_t total;
518                 double hit;
519
520                 total = ts->cachehit + ts->cachemiss;
521                 hit = (double) ts->cachehit / (double) total;
522                 hit *= 100.0;
523                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
524                         post_st = NULL;
525         }
526
527         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
528                         (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
529                         iops_p, bw_p, bw_p_alt, io_p,
530                         (unsigned long long) ts->runtime[ddir],
531                         post_st ? : "");
532
533         free(post_st);
534         free(io_p);
535         free(bw_p);
536         free(bw_p_alt);
537         free(iops_p);
538
539         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
540                 display_lat("slat", min, max, mean, dev, out);
541         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
542                 display_lat("clat", min, max, mean, dev, out);
543         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
544                 display_lat(" lat", min, max, mean, dev, out);
545         if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
546                 display_lat(ts->lat_percentiles ? "high prio_lat" : "high prio_clat",
547                                 min, max, mean, dev, out);
548                 if (calc_lat(&ts->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
549                         display_lat(ts->lat_percentiles ? "low prio_lat" : "low prio_clat",
550                                         min, max, mean, dev, out);
551         }
552
553         if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
554                 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
555                                         ts->slat_stat[ddir].samples,
556                                         ts->percentile_list,
557                                         ts->percentile_precision, "slat", out);
558         if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
559                 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
560                                         ts->clat_stat[ddir].samples,
561                                         ts->percentile_list,
562                                         ts->percentile_precision, "clat", out);
563         if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
564                 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
565                                         ts->lat_stat[ddir].samples,
566                                         ts->percentile_list,
567                                         ts->percentile_precision, "lat", out);
568
569         if (ts->clat_percentiles || ts->lat_percentiles) {
570                 const char *name = ts->lat_percentiles ? "lat" : "clat";
571                 char prio_name[32];
572                 uint64_t samples;
573
574                 if (ts->lat_percentiles)
575                         samples = ts->lat_stat[ddir].samples;
576                 else
577                         samples = ts->clat_stat[ddir].samples;
578
579                 /* Only print this if some high and low priority stats were collected */
580                 if (ts->clat_high_prio_stat[ddir].samples > 0 &&
581                         ts->clat_low_prio_stat[ddir].samples > 0)
582                 {
583                         sprintf(prio_name, "high prio (%.2f%%) %s",
584                                         100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
585                                         name);
586                         show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
587                                                 ts->clat_high_prio_stat[ddir].samples,
588                                                 ts->percentile_list,
589                                                 ts->percentile_precision, prio_name, out);
590
591                         sprintf(prio_name, "low prio (%.2f%%) %s",
592                                         100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
593                                         name);
594                         show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
595                                                 ts->clat_low_prio_stat[ddir].samples,
596                                                 ts->percentile_list,
597                                                 ts->percentile_precision, prio_name, out);
598                 }
599         }
600
601         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
602                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
603                 const char *bw_str;
604
605                 if ((rs->unit_base == 1) && i2p)
606                         bw_str = "Kibit";
607                 else if (rs->unit_base == 1)
608                         bw_str = "kbit";
609                 else if (i2p)
610                         bw_str = "KiB";
611                 else
612                         bw_str = "kB";
613
614                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
615
616                 if (rs->unit_base == 1) {
617                         min *= 8.0;
618                         max *= 8.0;
619                         mean *= 8.0;
620                         dev *= 8.0;
621                 }
622
623                 if (mean > fkb_base * fkb_base) {
624                         min /= fkb_base;
625                         max /= fkb_base;
626                         mean /= fkb_base;
627                         dev /= fkb_base;
628                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
629                 }
630
631                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
632                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
633                         bw_str, min, max, p_of_agg, mean, dev,
634                         (&ts->bw_stat[ddir])->samples);
635         }
636         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
637                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
638                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
639                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
640         }
641 }
642
643 static void show_mixed_ddir_status(struct group_run_stats *rs,
644                                    struct thread_stat *ts,
645                                    struct buf_output *out)
646 {
647         struct thread_stat *ts_lcl;
648
649         /*
650          * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
651          * Trims (ddir = 2)
652          */
653         ts_lcl = malloc(sizeof(struct thread_stat));
654         memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
655         /* calculate mixed stats  */
656         ts_lcl->unified_rw_rep = UNIFIED_MIXED;
657         init_thread_stat_min_vals(ts_lcl);
658         ts_lcl->lat_percentiles = ts->lat_percentiles;
659         ts_lcl->clat_percentiles = ts->clat_percentiles;
660         ts_lcl->slat_percentiles = ts->slat_percentiles;
661         ts_lcl->percentile_precision = ts->percentile_precision;
662         memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
663
664         sum_thread_stats(ts_lcl, ts);
665
666         show_ddir_status(rs, ts_lcl, DDIR_READ, out);
667         free(ts_lcl);
668 }
669
670 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
671                      const char *msg, struct buf_output *out)
672 {
673         bool new_line = true, shown = false;
674         int i, line = 0;
675
676         for (i = 0; i < nr; i++) {
677                 if (io_u_lat[i] <= 0.0)
678                         continue;
679                 shown = true;
680                 if (new_line) {
681                         if (line)
682                                 log_buf(out, "\n");
683                         log_buf(out, "  lat (%s)   : ", msg);
684                         new_line = false;
685                         line = 0;
686                 }
687                 if (line)
688                         log_buf(out, ", ");
689                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
690                 line++;
691                 if (line == 5)
692                         new_line = true;
693         }
694
695         if (shown)
696                 log_buf(out, "\n");
697
698         return true;
699 }
700
701 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
702 {
703         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
704                                  "250=", "500=", "750=", "1000=", };
705
706         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
707 }
708
709 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
710 {
711         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
712                                  "250=", "500=", "750=", "1000=", };
713
714         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
715 }
716
717 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
718 {
719         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
720                                  "250=", "500=", "750=", "1000=", "2000=",
721                                  ">=2000=", };
722
723         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
724 }
725
726 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
727 {
728         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
729         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
730         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
731
732         stat_calc_lat_n(ts, io_u_lat_n);
733         stat_calc_lat_u(ts, io_u_lat_u);
734         stat_calc_lat_m(ts, io_u_lat_m);
735
736         show_lat_n(io_u_lat_n, out);
737         show_lat_u(io_u_lat_u, out);
738         show_lat_m(io_u_lat_m, out);
739 }
740
741 static int block_state_category(int block_state)
742 {
743         switch (block_state) {
744         case BLOCK_STATE_UNINIT:
745                 return 0;
746         case BLOCK_STATE_TRIMMED:
747         case BLOCK_STATE_WRITTEN:
748                 return 1;
749         case BLOCK_STATE_WRITE_FAILURE:
750         case BLOCK_STATE_TRIM_FAILURE:
751                 return 2;
752         default:
753                 /* Silence compile warning on some BSDs and have a return */
754                 assert(0);
755                 return -1;
756         }
757 }
758
759 static int compare_block_infos(const void *bs1, const void *bs2)
760 {
761         uint64_t block1 = *(uint64_t *)bs1;
762         uint64_t block2 = *(uint64_t *)bs2;
763         int state1 = BLOCK_INFO_STATE(block1);
764         int state2 = BLOCK_INFO_STATE(block2);
765         int bscat1 = block_state_category(state1);
766         int bscat2 = block_state_category(state2);
767         int cycles1 = BLOCK_INFO_TRIMS(block1);
768         int cycles2 = BLOCK_INFO_TRIMS(block2);
769
770         if (bscat1 < bscat2)
771                 return -1;
772         if (bscat1 > bscat2)
773                 return 1;
774
775         if (cycles1 < cycles2)
776                 return -1;
777         if (cycles1 > cycles2)
778                 return 1;
779
780         if (state1 < state2)
781                 return -1;
782         if (state1 > state2)
783                 return 1;
784
785         assert(block1 == block2);
786         return 0;
787 }
788
789 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
790                                   fio_fp64_t *plist, unsigned int **percentiles,
791                                   unsigned int *types)
792 {
793         int len = 0;
794         int i, nr_uninit;
795
796         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
797
798         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
799                 len++;
800
801         if (!len)
802                 return 0;
803
804         /*
805          * Sort the percentile list. Note that it may already be sorted if
806          * we are using the default values, but since it's a short list this
807          * isn't a worry. Also note that this does not work for NaN values.
808          */
809         if (len > 1)
810                 qsort(plist, len, sizeof(plist[0]), double_cmp);
811
812         /* Start only after the uninit entries end */
813         for (nr_uninit = 0;
814              nr_uninit < nr_block_infos
815                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
816              nr_uninit ++)
817                 ;
818
819         if (nr_uninit == nr_block_infos)
820                 return 0;
821
822         *percentiles = calloc(len, sizeof(**percentiles));
823
824         for (i = 0; i < len; i++) {
825                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
826                                 + nr_uninit;
827                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
828         }
829
830         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
831         for (i = 0; i < nr_block_infos; i++)
832                 types[BLOCK_INFO_STATE(block_infos[i])]++;
833
834         return len;
835 }
836
837 static const char *block_state_names[] = {
838         [BLOCK_STATE_UNINIT] = "unwritten",
839         [BLOCK_STATE_TRIMMED] = "trimmed",
840         [BLOCK_STATE_WRITTEN] = "written",
841         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
842         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
843 };
844
845 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
846                              fio_fp64_t *plist, struct buf_output *out)
847 {
848         int len, pos, i;
849         unsigned int *percentiles = NULL;
850         unsigned int block_state_counts[BLOCK_STATE_COUNT];
851
852         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
853                                      &percentiles, block_state_counts);
854
855         log_buf(out, "  block lifetime percentiles :\n   |");
856         pos = 0;
857         for (i = 0; i < len; i++) {
858                 uint32_t block_info = percentiles[i];
859 #define LINE_LENGTH     75
860                 char str[LINE_LENGTH];
861                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
862                                      plist[i].u.f, block_info,
863                                      i == len - 1 ? '\n' : ',');
864                 assert(strln < LINE_LENGTH);
865                 if (pos + strln > LINE_LENGTH) {
866                         pos = 0;
867                         log_buf(out, "\n   |");
868                 }
869                 log_buf(out, "%s", str);
870                 pos += strln;
871 #undef LINE_LENGTH
872         }
873         if (percentiles)
874                 free(percentiles);
875
876         log_buf(out, "        states               :");
877         for (i = 0; i < BLOCK_STATE_COUNT; i++)
878                 log_buf(out, " %s=%u%c",
879                          block_state_names[i], block_state_counts[i],
880                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
881 }
882
883 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
884 {
885         char *p1, *p1alt, *p2;
886         unsigned long long bw_mean, iops_mean;
887         const int i2p = is_power_of_2(ts->kb_base);
888
889         if (!ts->ss_dur)
890                 return;
891
892         bw_mean = steadystate_bw_mean(ts);
893         iops_mean = steadystate_iops_mean(ts);
894
895         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
896         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
897         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
898
899         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
900                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
901                 p1, p1alt, p2,
902                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
903                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
904                 ts->ss_criterion.u.f,
905                 ts->ss_state & FIO_SS_PCT ? "%" : "");
906
907         free(p1);
908         free(p1alt);
909         free(p2);
910 }
911
912 static void show_agg_stats(struct disk_util_agg *agg, int terse,
913                            struct buf_output *out)
914 {
915         if (!agg->slavecount)
916                 return;
917
918         if (!terse) {
919                 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
920                          "aggrticks=%llu/%llu, aggrin_queue=%llu, "
921                          "aggrutil=%3.2f%%",
922                         (unsigned long long) agg->ios[0] / agg->slavecount,
923                         (unsigned long long) agg->ios[1] / agg->slavecount,
924                         (unsigned long long) agg->merges[0] / agg->slavecount,
925                         (unsigned long long) agg->merges[1] / agg->slavecount,
926                         (unsigned long long) agg->ticks[0] / agg->slavecount,
927                         (unsigned long long) agg->ticks[1] / agg->slavecount,
928                         (unsigned long long) agg->time_in_queue / agg->slavecount,
929                         agg->max_util.u.f);
930         } else {
931                 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
932                         (unsigned long long) agg->ios[0] / agg->slavecount,
933                         (unsigned long long) agg->ios[1] / agg->slavecount,
934                         (unsigned long long) agg->merges[0] / agg->slavecount,
935                         (unsigned long long) agg->merges[1] / agg->slavecount,
936                         (unsigned long long) agg->ticks[0] / agg->slavecount,
937                         (unsigned long long) agg->ticks[1] / agg->slavecount,
938                         (unsigned long long) agg->time_in_queue / agg->slavecount,
939                         agg->max_util.u.f);
940         }
941 }
942
943 static void aggregate_slaves_stats(struct disk_util *masterdu)
944 {
945         struct disk_util_agg *agg = &masterdu->agg;
946         struct disk_util_stat *dus;
947         struct flist_head *entry;
948         struct disk_util *slavedu;
949         double util;
950
951         flist_for_each(entry, &masterdu->slaves) {
952                 slavedu = flist_entry(entry, struct disk_util, slavelist);
953                 dus = &slavedu->dus;
954                 agg->ios[0] += dus->s.ios[0];
955                 agg->ios[1] += dus->s.ios[1];
956                 agg->merges[0] += dus->s.merges[0];
957                 agg->merges[1] += dus->s.merges[1];
958                 agg->sectors[0] += dus->s.sectors[0];
959                 agg->sectors[1] += dus->s.sectors[1];
960                 agg->ticks[0] += dus->s.ticks[0];
961                 agg->ticks[1] += dus->s.ticks[1];
962                 agg->time_in_queue += dus->s.time_in_queue;
963                 agg->slavecount++;
964
965                 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
966                 /* System utilization is the utilization of the
967                  * component with the highest utilization.
968                  */
969                 if (util > agg->max_util.u.f)
970                         agg->max_util.u.f = util;
971
972         }
973
974         if (agg->max_util.u.f > 100.0)
975                 agg->max_util.u.f = 100.0;
976 }
977
978 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
979                      int terse, struct buf_output *out)
980 {
981         double util = 0;
982
983         if (dus->s.msec)
984                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
985         if (util > 100.0)
986                 util = 100.0;
987
988         if (!terse) {
989                 if (agg->slavecount)
990                         log_buf(out, "  ");
991
992                 log_buf(out, "  %s: ios=%llu/%llu, merge=%llu/%llu, "
993                          "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
994                                 dus->name,
995                                 (unsigned long long) dus->s.ios[0],
996                                 (unsigned long long) dus->s.ios[1],
997                                 (unsigned long long) dus->s.merges[0],
998                                 (unsigned long long) dus->s.merges[1],
999                                 (unsigned long long) dus->s.ticks[0],
1000                                 (unsigned long long) dus->s.ticks[1],
1001                                 (unsigned long long) dus->s.time_in_queue,
1002                                 util);
1003         } else {
1004                 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1005                                 dus->name,
1006                                 (unsigned long long) dus->s.ios[0],
1007                                 (unsigned long long) dus->s.ios[1],
1008                                 (unsigned long long) dus->s.merges[0],
1009                                 (unsigned long long) dus->s.merges[1],
1010                                 (unsigned long long) dus->s.ticks[0],
1011                                 (unsigned long long) dus->s.ticks[1],
1012                                 (unsigned long long) dus->s.time_in_queue,
1013                                 util);
1014         }
1015
1016         /*
1017          * If the device has slaves, aggregate the stats for
1018          * those slave devices also.
1019          */
1020         show_agg_stats(agg, terse, out);
1021
1022         if (!terse)
1023                 log_buf(out, "\n");
1024 }
1025
1026 void json_array_add_disk_util(struct disk_util_stat *dus,
1027                 struct disk_util_agg *agg, struct json_array *array)
1028 {
1029         struct json_object *obj;
1030         double util = 0;
1031
1032         if (dus->s.msec)
1033                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1034         if (util > 100.0)
1035                 util = 100.0;
1036
1037         obj = json_create_object();
1038         json_array_add_value_object(array, obj);
1039
1040         json_object_add_value_string(obj, "name", (const char *)dus->name);
1041         json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1042         json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1043         json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1044         json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1045         json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1046         json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1047         json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1048         json_object_add_value_float(obj, "util", util);
1049
1050         /*
1051          * If the device has slaves, aggregate the stats for
1052          * those slave devices also.
1053          */
1054         if (!agg->slavecount)
1055                 return;
1056         json_object_add_value_int(obj, "aggr_read_ios",
1057                                 agg->ios[0] / agg->slavecount);
1058         json_object_add_value_int(obj, "aggr_write_ios",
1059                                 agg->ios[1] / agg->slavecount);
1060         json_object_add_value_int(obj, "aggr_read_merges",
1061                                 agg->merges[0] / agg->slavecount);
1062         json_object_add_value_int(obj, "aggr_write_merge",
1063                                 agg->merges[1] / agg->slavecount);
1064         json_object_add_value_int(obj, "aggr_read_ticks",
1065                                 agg->ticks[0] / agg->slavecount);
1066         json_object_add_value_int(obj, "aggr_write_ticks",
1067                                 agg->ticks[1] / agg->slavecount);
1068         json_object_add_value_int(obj, "aggr_in_queue",
1069                                 agg->time_in_queue / agg->slavecount);
1070         json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1071 }
1072
1073 static void json_object_add_disk_utils(struct json_object *obj,
1074                                        struct flist_head *head)
1075 {
1076         struct json_array *array = json_create_array();
1077         struct flist_head *entry;
1078         struct disk_util *du;
1079
1080         json_object_add_value_array(obj, "disk_util", array);
1081
1082         flist_for_each(entry, head) {
1083                 du = flist_entry(entry, struct disk_util, list);
1084
1085                 aggregate_slaves_stats(du);
1086                 json_array_add_disk_util(&du->dus, &du->agg, array);
1087         }
1088 }
1089
1090 void show_disk_util(int terse, struct json_object *parent,
1091                     struct buf_output *out)
1092 {
1093         struct flist_head *entry;
1094         struct disk_util *du;
1095         bool do_json;
1096
1097         if (!is_running_backend())
1098                 return;
1099
1100         if (flist_empty(&disk_list))
1101                 return;
1102
1103         if ((output_format & FIO_OUTPUT_JSON) && parent)
1104                 do_json = true;
1105         else
1106                 do_json = false;
1107
1108         if (!terse && !do_json)
1109                 log_buf(out, "\nDisk stats (read/write):\n");
1110
1111         if (do_json) {
1112                 json_object_add_disk_utils(parent, &disk_list);
1113         } else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1114                 flist_for_each(entry, &disk_list) {
1115                         du = flist_entry(entry, struct disk_util, list);
1116
1117                         aggregate_slaves_stats(du);
1118                         print_disk_util(&du->dus, &du->agg, terse, out);
1119                 }
1120         }
1121 }
1122
1123 static void show_thread_status_normal(struct thread_stat *ts,
1124                                       struct group_run_stats *rs,
1125                                       struct buf_output *out)
1126 {
1127         double usr_cpu, sys_cpu;
1128         unsigned long runtime;
1129         double io_u_dist[FIO_IO_U_MAP_NR];
1130         time_t time_p;
1131         char time_buf[32];
1132
1133         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1134                 return;
1135
1136         memset(time_buf, 0, sizeof(time_buf));
1137
1138         time(&time_p);
1139         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1140
1141         if (!ts->error) {
1142                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1143                                         ts->name, ts->groupid, ts->members,
1144                                         ts->error, (int) ts->pid, time_buf);
1145         } else {
1146                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1147                                         ts->name, ts->groupid, ts->members,
1148                                         ts->error, ts->verror, (int) ts->pid,
1149                                         time_buf);
1150         }
1151
1152         if (strlen(ts->description))
1153                 log_buf(out, "  Description  : [%s]\n", ts->description);
1154
1155         for_each_rw_ddir(ddir) {
1156                 if (ts->io_bytes[ddir])
1157                         show_ddir_status(rs, ts, ddir, out);
1158         }
1159
1160         if (ts->unified_rw_rep == UNIFIED_BOTH)
1161                 show_mixed_ddir_status(rs, ts, out);
1162
1163         show_latencies(ts, out);
1164
1165         if (ts->sync_stat.samples)
1166                 show_ddir_status(rs, ts, DDIR_SYNC, out);
1167
1168         runtime = ts->total_run_time;
1169         if (runtime) {
1170                 double runt = (double) runtime;
1171
1172                 usr_cpu = (double) ts->usr_time * 100 / runt;
1173                 sys_cpu = (double) ts->sys_time * 100 / runt;
1174         } else {
1175                 usr_cpu = 0;
1176                 sys_cpu = 0;
1177         }
1178
1179         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1180                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1181                         (unsigned long long) ts->ctx,
1182                         (unsigned long long) ts->majf,
1183                         (unsigned long long) ts->minf);
1184
1185         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1186         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1187                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1188                                         io_u_dist[1], io_u_dist[2],
1189                                         io_u_dist[3], io_u_dist[4],
1190                                         io_u_dist[5], io_u_dist[6]);
1191
1192         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1193         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1194                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1195                                         io_u_dist[1], io_u_dist[2],
1196                                         io_u_dist[3], io_u_dist[4],
1197                                         io_u_dist[5], io_u_dist[6]);
1198         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1199         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1200                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1201                                         io_u_dist[1], io_u_dist[2],
1202                                         io_u_dist[3], io_u_dist[4],
1203                                         io_u_dist[5], io_u_dist[6]);
1204         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1205                                  " short=%llu,%llu,%llu,0"
1206                                  " dropped=%llu,%llu,%llu,0\n",
1207                                         (unsigned long long) ts->total_io_u[0],
1208                                         (unsigned long long) ts->total_io_u[1],
1209                                         (unsigned long long) ts->total_io_u[2],
1210                                         (unsigned long long) ts->total_io_u[3],
1211                                         (unsigned long long) ts->short_io_u[0],
1212                                         (unsigned long long) ts->short_io_u[1],
1213                                         (unsigned long long) ts->short_io_u[2],
1214                                         (unsigned long long) ts->drop_io_u[0],
1215                                         (unsigned long long) ts->drop_io_u[1],
1216                                         (unsigned long long) ts->drop_io_u[2]);
1217         if (ts->continue_on_error) {
1218                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1219                                         (unsigned long long)ts->total_err_count,
1220                                         ts->first_error,
1221                                         strerror(ts->first_error));
1222         }
1223         if (ts->latency_depth) {
1224                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1225                                         (unsigned long long)ts->latency_target,
1226                                         (unsigned long long)ts->latency_window,
1227                                         ts->latency_percentile.u.f,
1228                                         ts->latency_depth);
1229         }
1230
1231         if (ts->nr_block_infos)
1232                 show_block_infos(ts->nr_block_infos, ts->block_infos,
1233                                   ts->percentile_list, out);
1234
1235         if (ts->ss_dur)
1236                 show_ss_normal(ts, out);
1237 }
1238
1239 static void show_ddir_status_terse(struct thread_stat *ts,
1240                                    struct group_run_stats *rs, int ddir,
1241                                    int ver, struct buf_output *out)
1242 {
1243         unsigned long long min, max, minv, maxv, bw, iops;
1244         unsigned long long *ovals = NULL;
1245         double mean, dev;
1246         unsigned int len;
1247         int i, bw_stat;
1248
1249         assert(ddir_rw(ddir));
1250
1251         iops = bw = 0;
1252         if (ts->runtime[ddir]) {
1253                 uint64_t runt = ts->runtime[ddir];
1254
1255                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1256                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1257         }
1258
1259         log_buf(out, ";%llu;%llu;%llu;%llu",
1260                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1261                                         (unsigned long long) ts->runtime[ddir]);
1262
1263         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1264                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1265         else
1266                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1267
1268         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1269                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1270         else
1271                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1272
1273         if (ts->lat_percentiles) {
1274                 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1275                                         ts->lat_stat[ddir].samples,
1276                                         ts->percentile_list, &ovals, &maxv,
1277                                         &minv);
1278         } else if (ts->clat_percentiles) {
1279                 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1280                                         ts->clat_stat[ddir].samples,
1281                                         ts->percentile_list, &ovals, &maxv,
1282                                         &minv);
1283         } else {
1284                 len = 0;
1285         }
1286
1287         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1288                 if (i >= len) {
1289                         log_buf(out, ";0%%=0");
1290                         continue;
1291                 }
1292                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1293         }
1294
1295         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1296                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1297         else
1298                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1299
1300         free(ovals);
1301
1302         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1303         if (bw_stat) {
1304                 double p_of_agg = 100.0;
1305
1306                 if (rs->agg[ddir]) {
1307                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1308                         if (p_of_agg > 100.0)
1309                                 p_of_agg = 100.0;
1310                 }
1311
1312                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1313         } else {
1314                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1315         }
1316
1317         if (ver == 5) {
1318                 if (bw_stat)
1319                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1320                 else
1321                         log_buf(out, ";%lu", 0UL);
1322
1323                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1324                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1325                                 mean, dev, (&ts->iops_stat[ddir])->samples);
1326                 else
1327                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1328         }
1329 }
1330
1331 static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1332                                    struct group_run_stats *rs,
1333                                    int ver, struct buf_output *out)
1334 {
1335         struct thread_stat *ts_lcl;
1336
1337         /*
1338          * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
1339          * Trims (ddir = 2)
1340          */
1341         ts_lcl = malloc(sizeof(struct thread_stat));
1342         memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1343         /* calculate mixed stats  */
1344         ts_lcl->unified_rw_rep = UNIFIED_MIXED;
1345         init_thread_stat_min_vals(ts_lcl);
1346         ts_lcl->lat_percentiles = ts->lat_percentiles;
1347         ts_lcl->clat_percentiles = ts->clat_percentiles;
1348         ts_lcl->slat_percentiles = ts->slat_percentiles;
1349         ts_lcl->percentile_precision = ts->percentile_precision;
1350         memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1351         
1352         sum_thread_stats(ts_lcl, ts);
1353
1354         /* add the aggregated stats to json parent */
1355         show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1356         free(ts_lcl);
1357 }
1358
1359 static struct json_object *add_ddir_lat_json(struct thread_stat *ts,
1360                                              uint32_t percentiles,
1361                                              struct io_stat *lat_stat,
1362                                              uint64_t *io_u_plat)
1363 {
1364         char buf[120];
1365         double mean, dev;
1366         unsigned int i, len;
1367         struct json_object *lat_object, *percentile_object, *clat_bins_object;
1368         unsigned long long min, max, maxv, minv, *ovals = NULL;
1369
1370         if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1371                 min = max = 0;
1372                 mean = dev = 0.0;
1373         }
1374         lat_object = json_create_object();
1375         json_object_add_value_int(lat_object, "min", min);
1376         json_object_add_value_int(lat_object, "max", max);
1377         json_object_add_value_float(lat_object, "mean", mean);
1378         json_object_add_value_float(lat_object, "stddev", dev);
1379         json_object_add_value_int(lat_object, "N", lat_stat->samples);
1380
1381         if (percentiles && lat_stat->samples) {
1382                 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1383                                 ts->percentile_list, &ovals, &maxv, &minv);
1384
1385                 if (len > FIO_IO_U_LIST_MAX_LEN)
1386                         len = FIO_IO_U_LIST_MAX_LEN;
1387
1388                 percentile_object = json_create_object();
1389                 json_object_add_value_object(lat_object, "percentile", percentile_object);
1390                 for (i = 0; i < len; i++) {
1391                         snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1392                         json_object_add_value_int(percentile_object, buf, ovals[i]);
1393                 }
1394                 free(ovals);
1395
1396                 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1397                         clat_bins_object = json_create_object();
1398                         json_object_add_value_object(lat_object, "bins", clat_bins_object);
1399
1400                         for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1401                                 if (io_u_plat[i]) {
1402                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1403                                         json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1404                                 }
1405                 }
1406         }
1407
1408         return lat_object;
1409 }
1410
1411 static void add_ddir_status_json(struct thread_stat *ts,
1412                 struct group_run_stats *rs, int ddir, struct json_object *parent)
1413 {
1414         unsigned long long min, max;
1415         unsigned long long bw_bytes, bw;
1416         double mean, dev, iops;
1417         struct json_object *dir_object, *tmp_object;
1418         double p_of_agg = 100.0;
1419
1420         assert(ddir_rw(ddir) || ddir_sync(ddir));
1421
1422         if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1423                 return;
1424
1425         dir_object = json_create_object();
1426         json_object_add_value_object(parent,
1427                 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1428
1429         if (ddir_rw(ddir)) {
1430                 bw_bytes = 0;
1431                 bw = 0;
1432                 iops = 0.0;
1433                 if (ts->runtime[ddir]) {
1434                         uint64_t runt = ts->runtime[ddir];
1435
1436                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1437                         bw = bw_bytes / 1024; /* KiB/s */
1438                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1439                 }
1440
1441                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1442                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1443                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1444                 json_object_add_value_int(dir_object, "bw", bw);
1445                 json_object_add_value_float(dir_object, "iops", iops);
1446                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1447                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1448                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1449                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1450
1451                 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1452                                 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1453                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1454
1455                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1456                                 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1457                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1458
1459                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1460                                 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1461                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1462         } else {
1463                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1464                 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1465                                 &ts->sync_stat, ts->io_u_sync_plat);
1466                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1467         }
1468
1469         if (!ddir_rw(ddir))
1470                 return;
1471
1472         /* Only print PRIO latencies if some high priority samples were gathered */
1473         if (ts->clat_high_prio_stat[ddir].samples > 0) {
1474                 const char *high, *low;
1475
1476                 if (ts->lat_percentiles) {
1477                         high = "lat_high_prio";
1478                         low = "lat_low_prio";
1479                 } else {
1480                         high = "clat_high_prio";
1481                         low = "clat_low_prio";
1482                 }
1483
1484                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1485                                 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1486                 json_object_add_value_object(dir_object, high, tmp_object);
1487
1488                 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1489                                 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1490                 json_object_add_value_object(dir_object, low, tmp_object);
1491         }
1492
1493         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1494                 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1495         } else {
1496                 min = max = 0;
1497                 p_of_agg = mean = dev = 0.0;
1498         }
1499
1500         json_object_add_value_int(dir_object, "bw_min", min);
1501         json_object_add_value_int(dir_object, "bw_max", max);
1502         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1503         json_object_add_value_float(dir_object, "bw_mean", mean);
1504         json_object_add_value_float(dir_object, "bw_dev", dev);
1505         json_object_add_value_int(dir_object, "bw_samples",
1506                                 (&ts->bw_stat[ddir])->samples);
1507
1508         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1509                 min = max = 0;
1510                 mean = dev = 0.0;
1511         }
1512         json_object_add_value_int(dir_object, "iops_min", min);
1513         json_object_add_value_int(dir_object, "iops_max", max);
1514         json_object_add_value_float(dir_object, "iops_mean", mean);
1515         json_object_add_value_float(dir_object, "iops_stddev", dev);
1516         json_object_add_value_int(dir_object, "iops_samples",
1517                                 (&ts->iops_stat[ddir])->samples);
1518
1519         if (ts->cachehit + ts->cachemiss) {
1520                 uint64_t total;
1521                 double hit;
1522
1523                 total = ts->cachehit + ts->cachemiss;
1524                 hit = (double) ts->cachehit / (double) total;
1525                 hit *= 100.0;
1526                 json_object_add_value_float(dir_object, "cachehit", hit);
1527         }
1528 }
1529
1530 static void add_mixed_ddir_status_json(struct thread_stat *ts,
1531                 struct group_run_stats *rs, struct json_object *parent)
1532 {
1533         struct thread_stat *ts_lcl;
1534
1535         /*
1536          * Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and
1537          * Trims (ddir = 2)
1538          */
1539         ts_lcl = malloc(sizeof(struct thread_stat));
1540         memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1541         /* calculate mixed stats  */
1542         ts_lcl->unified_rw_rep = UNIFIED_MIXED;
1543         init_thread_stat_min_vals(ts_lcl);
1544         ts_lcl->lat_percentiles = ts->lat_percentiles;
1545         ts_lcl->clat_percentiles = ts->clat_percentiles;
1546         ts_lcl->slat_percentiles = ts->slat_percentiles;
1547         ts_lcl->percentile_precision = ts->percentile_precision;
1548         memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1549
1550         sum_thread_stats(ts_lcl, ts);
1551
1552         /* add the aggregated stats to json parent */
1553         add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1554         free(ts_lcl);
1555 }
1556
1557 static void show_thread_status_terse_all(struct thread_stat *ts,
1558                                          struct group_run_stats *rs, int ver,
1559                                          struct buf_output *out)
1560 {
1561         double io_u_dist[FIO_IO_U_MAP_NR];
1562         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1563         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1564         double usr_cpu, sys_cpu;
1565         int i;
1566
1567         /* General Info */
1568         if (ver == 2)
1569                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1570         else
1571                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1572                         ts->name, ts->groupid, ts->error);
1573
1574         /* Log Read Status, or mixed if unified_rw_rep = 1 */
1575         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1576         if (ts->unified_rw_rep != UNIFIED_MIXED) {
1577                 /* Log Write Status */
1578                 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1579                 /* Log Trim Status */
1580                 if (ver == 2 || ver == 4 || ver == 5)
1581                         show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1582         }
1583         if (ts->unified_rw_rep == UNIFIED_BOTH)
1584                 show_mixed_ddir_status_terse(ts, rs, ver, out);
1585         /* CPU Usage */
1586         if (ts->total_run_time) {
1587                 double runt = (double) ts->total_run_time;
1588
1589                 usr_cpu = (double) ts->usr_time * 100 / runt;
1590                 sys_cpu = (double) ts->sys_time * 100 / runt;
1591         } else {
1592                 usr_cpu = 0;
1593                 sys_cpu = 0;
1594         }
1595
1596         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1597                                                 (unsigned long long) ts->ctx,
1598                                                 (unsigned long long) ts->majf,
1599                                                 (unsigned long long) ts->minf);
1600
1601         /* Calc % distribution of IO depths, usecond, msecond latency */
1602         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1603         stat_calc_lat_nu(ts, io_u_lat_u);
1604         stat_calc_lat_m(ts, io_u_lat_m);
1605
1606         /* Only show fixed 7 I/O depth levels*/
1607         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1608                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1609                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1610
1611         /* Microsecond latency */
1612         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1613                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1614         /* Millisecond latency */
1615         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1616                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1617
1618         /* disk util stats, if any */
1619         if (ver >= 3 && is_running_backend())
1620                 show_disk_util(1, NULL, out);
1621
1622         /* Additional output if continue_on_error set - default off*/
1623         if (ts->continue_on_error)
1624                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1625
1626         /* Additional output if description is set */
1627         if (strlen(ts->description)) {
1628                 if (ver == 2)
1629                         log_buf(out, "\n");
1630                 log_buf(out, ";%s", ts->description);
1631         }
1632
1633         log_buf(out, "\n");
1634 }
1635
1636 static void json_add_job_opts(struct json_object *root, const char *name,
1637                               struct flist_head *opt_list)
1638 {
1639         struct json_object *dir_object;
1640         struct flist_head *entry;
1641         struct print_option *p;
1642
1643         if (flist_empty(opt_list))
1644                 return;
1645
1646         dir_object = json_create_object();
1647         json_object_add_value_object(root, name, dir_object);
1648
1649         flist_for_each(entry, opt_list) {
1650                 p = flist_entry(entry, struct print_option, list);
1651                 json_object_add_value_string(dir_object, p->name, p->value);
1652         }
1653 }
1654
1655 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1656                                                    struct group_run_stats *rs,
1657                                                    struct flist_head *opt_list)
1658 {
1659         struct json_object *root, *tmp;
1660         struct jobs_eta *je;
1661         double io_u_dist[FIO_IO_U_MAP_NR];
1662         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1663         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1664         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1665         double usr_cpu, sys_cpu;
1666         int i;
1667         size_t size;
1668
1669         root = json_create_object();
1670         json_object_add_value_string(root, "jobname", ts->name);
1671         json_object_add_value_int(root, "groupid", ts->groupid);
1672         json_object_add_value_int(root, "error", ts->error);
1673
1674         /* ETA Info */
1675         je = get_jobs_eta(true, &size);
1676         if (je) {
1677                 json_object_add_value_int(root, "eta", je->eta_sec);
1678                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1679         }
1680
1681         if (opt_list)
1682                 json_add_job_opts(root, "job options", opt_list);
1683
1684         add_ddir_status_json(ts, rs, DDIR_READ, root);
1685         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1686         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1687         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1688
1689         if (ts->unified_rw_rep == UNIFIED_BOTH)
1690                 add_mixed_ddir_status_json(ts, rs, root);
1691
1692         /* CPU Usage */
1693         if (ts->total_run_time) {
1694                 double runt = (double) ts->total_run_time;
1695
1696                 usr_cpu = (double) ts->usr_time * 100 / runt;
1697                 sys_cpu = (double) ts->sys_time * 100 / runt;
1698         } else {
1699                 usr_cpu = 0;
1700                 sys_cpu = 0;
1701         }
1702         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1703         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1704         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1705         json_object_add_value_int(root, "ctx", ts->ctx);
1706         json_object_add_value_int(root, "majf", ts->majf);
1707         json_object_add_value_int(root, "minf", ts->minf);
1708
1709         /* Calc % distribution of IO depths */
1710         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1711         tmp = json_create_object();
1712         json_object_add_value_object(root, "iodepth_level", tmp);
1713         /* Only show fixed 7 I/O depth levels*/
1714         for (i = 0; i < 7; i++) {
1715                 char name[20];
1716                 if (i < 6)
1717                         snprintf(name, 20, "%d", 1 << i);
1718                 else
1719                         snprintf(name, 20, ">=%d", 1 << i);
1720                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1721         }
1722
1723         /* Calc % distribution of submit IO depths */
1724         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1725         tmp = json_create_object();
1726         json_object_add_value_object(root, "iodepth_submit", tmp);
1727         /* Only show fixed 7 I/O depth levels*/
1728         for (i = 0; i < 7; i++) {
1729                 char name[20];
1730                 if (i == 0)
1731                         snprintf(name, 20, "0");
1732                 else if (i < 6)
1733                         snprintf(name, 20, "%d", 1 << (i+1));
1734                 else
1735                         snprintf(name, 20, ">=%d", 1 << i);
1736                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1737         }
1738
1739         /* Calc % distribution of completion IO depths */
1740         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1741         tmp = json_create_object();
1742         json_object_add_value_object(root, "iodepth_complete", tmp);
1743         /* Only show fixed 7 I/O depth levels*/
1744         for (i = 0; i < 7; i++) {
1745                 char name[20];
1746                 if (i == 0)
1747                         snprintf(name, 20, "0");
1748                 else if (i < 6)
1749                         snprintf(name, 20, "%d", 1 << (i+1));
1750                 else
1751                         snprintf(name, 20, ">=%d", 1 << i);
1752                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1753         }
1754
1755         /* Calc % distribution of nsecond, usecond, msecond latency */
1756         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1757         stat_calc_lat_n(ts, io_u_lat_n);
1758         stat_calc_lat_u(ts, io_u_lat_u);
1759         stat_calc_lat_m(ts, io_u_lat_m);
1760
1761         /* Nanosecond latency */
1762         tmp = json_create_object();
1763         json_object_add_value_object(root, "latency_ns", tmp);
1764         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1765                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1766                                  "250", "500", "750", "1000", };
1767                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1768         }
1769         /* Microsecond latency */
1770         tmp = json_create_object();
1771         json_object_add_value_object(root, "latency_us", tmp);
1772         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1773                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1774                                  "250", "500", "750", "1000", };
1775                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1776         }
1777         /* Millisecond latency */
1778         tmp = json_create_object();
1779         json_object_add_value_object(root, "latency_ms", tmp);
1780         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1781                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1782                                  "250", "500", "750", "1000", "2000",
1783                                  ">=2000", };
1784                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1785         }
1786
1787         /* Additional output if continue_on_error set - default off*/
1788         if (ts->continue_on_error) {
1789                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1790                 json_object_add_value_int(root, "first_error", ts->first_error);
1791         }
1792
1793         if (ts->latency_depth) {
1794                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1795                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1796                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1797                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1798         }
1799
1800         /* Additional output if description is set */
1801         if (strlen(ts->description))
1802                 json_object_add_value_string(root, "desc", ts->description);
1803
1804         if (ts->nr_block_infos) {
1805                 /* Block error histogram and types */
1806                 int len;
1807                 unsigned int *percentiles = NULL;
1808                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1809
1810                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1811                                              ts->percentile_list,
1812                                              &percentiles, block_state_counts);
1813
1814                 if (len) {
1815                         struct json_object *block, *percentile_object, *states;
1816                         int state;
1817                         block = json_create_object();
1818                         json_object_add_value_object(root, "block", block);
1819
1820                         percentile_object = json_create_object();
1821                         json_object_add_value_object(block, "percentiles",
1822                                                      percentile_object);
1823                         for (i = 0; i < len; i++) {
1824                                 char buf[20];
1825                                 snprintf(buf, sizeof(buf), "%f",
1826                                          ts->percentile_list[i].u.f);
1827                                 json_object_add_value_int(percentile_object,
1828                                                           buf,
1829                                                           percentiles[i]);
1830                         }
1831
1832                         states = json_create_object();
1833                         json_object_add_value_object(block, "states", states);
1834                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1835                                 json_object_add_value_int(states,
1836                                         block_state_names[state],
1837                                         block_state_counts[state]);
1838                         }
1839                         free(percentiles);
1840                 }
1841         }
1842
1843         if (ts->ss_dur) {
1844                 struct json_object *data;
1845                 struct json_array *iops, *bw;
1846                 int j, k, l;
1847                 char ss_buf[64];
1848
1849                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1850                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1851                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1852                         (float) ts->ss_limit.u.f,
1853                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1854
1855                 tmp = json_create_object();
1856                 json_object_add_value_object(root, "steadystate", tmp);
1857                 json_object_add_value_string(tmp, "ss", ss_buf);
1858                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1859                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1860
1861                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1862                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1863                 json_object_add_value_string(tmp, "criterion", ss_buf);
1864                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1865                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1866
1867                 data = json_create_object();
1868                 json_object_add_value_object(tmp, "data", data);
1869                 bw = json_create_array();
1870                 iops = json_create_array();
1871
1872                 /*
1873                 ** if ss was attained or the buffer is not full,
1874                 ** ss->head points to the first element in the list.
1875                 ** otherwise it actually points to the second element
1876                 ** in the list
1877                 */
1878                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1879                         j = ts->ss_head;
1880                 else
1881                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1882                 for (l = 0; l < ts->ss_dur; l++) {
1883                         k = (j + l) % ts->ss_dur;
1884                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1885                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1886                 }
1887                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1888                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1889                 json_object_add_value_array(data, "iops", iops);
1890                 json_object_add_value_array(data, "bw", bw);
1891         }
1892
1893         return root;
1894 }
1895
1896 static void show_thread_status_terse(struct thread_stat *ts,
1897                                      struct group_run_stats *rs,
1898                                      struct buf_output *out)
1899 {
1900         if (terse_version >= 2 && terse_version <= 5)
1901                 show_thread_status_terse_all(ts, rs, terse_version, out);
1902         else
1903                 log_err("fio: bad terse version!? %d\n", terse_version);
1904 }
1905
1906 struct json_object *show_thread_status(struct thread_stat *ts,
1907                                        struct group_run_stats *rs,
1908                                        struct flist_head *opt_list,
1909                                        struct buf_output *out)
1910 {
1911         struct json_object *ret = NULL;
1912
1913         if (output_format & FIO_OUTPUT_TERSE)
1914                 show_thread_status_terse(ts, rs,  out);
1915         if (output_format & FIO_OUTPUT_JSON)
1916                 ret = show_thread_status_json(ts, rs, opt_list);
1917         if (output_format & FIO_OUTPUT_NORMAL)
1918                 show_thread_status_normal(ts, rs,  out);
1919
1920         return ret;
1921 }
1922
1923 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1924 {
1925         double mean, S;
1926
1927         dst->min_val = min(dst->min_val, src->min_val);
1928         dst->max_val = max(dst->max_val, src->max_val);
1929
1930         /*
1931          * Compute new mean and S after the merge
1932          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1933          *  #Parallel_algorithm>
1934          */
1935         if (first) {
1936                 mean = src->mean.u.f;
1937                 S = src->S.u.f;
1938         } else {
1939                 double delta = src->mean.u.f - dst->mean.u.f;
1940
1941                 mean = ((src->mean.u.f * src->samples) +
1942                         (dst->mean.u.f * dst->samples)) /
1943                         (dst->samples + src->samples);
1944
1945                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1946                         (dst->samples * src->samples) /
1947                         (dst->samples + src->samples);
1948         }
1949
1950         dst->samples += src->samples;
1951         dst->mean.u.f = mean;
1952         dst->S.u.f = S;
1953
1954 }
1955
1956 /*
1957  * We sum two kinds of stats - one that is time based, in which case we
1958  * apply the proper summing technique, and then one that is iops/bw
1959  * numbers. For group_reporting, we should just add those up, not make
1960  * them the mean of everything.
1961  */
1962 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool pure_sum)
1963 {
1964         bool first = dst->samples == 0;
1965
1966         if (src->samples == 0)
1967                 return;
1968
1969         if (!pure_sum) {
1970                 __sum_stat(dst, src, first);
1971                 return;
1972         }
1973
1974         if (first) {
1975                 dst->min_val = src->min_val;
1976                 dst->max_val = src->max_val;
1977                 dst->samples = src->samples;
1978                 dst->mean.u.f = src->mean.u.f;
1979                 dst->S.u.f = src->S.u.f;
1980         } else {
1981                 dst->min_val += src->min_val;
1982                 dst->max_val += src->max_val;
1983                 dst->samples += src->samples;
1984                 dst->mean.u.f += src->mean.u.f;
1985                 dst->S.u.f += src->S.u.f;
1986         }
1987 }
1988
1989 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1990 {
1991         int i;
1992
1993         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1994                 if (dst->max_run[i] < src->max_run[i])
1995                         dst->max_run[i] = src->max_run[i];
1996                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1997                         dst->min_run[i] = src->min_run[i];
1998                 if (dst->max_bw[i] < src->max_bw[i])
1999                         dst->max_bw[i] = src->max_bw[i];
2000                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2001                         dst->min_bw[i] = src->min_bw[i];
2002
2003                 dst->iobytes[i] += src->iobytes[i];
2004                 dst->agg[i] += src->agg[i];
2005         }
2006
2007         if (!dst->kb_base)
2008                 dst->kb_base = src->kb_base;
2009         if (!dst->unit_base)
2010                 dst->unit_base = src->unit_base;
2011         if (!dst->sig_figs)
2012                 dst->sig_figs = src->sig_figs;
2013 }
2014
2015 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src)
2016 {
2017         int k, l, m;
2018
2019         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2020                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2021                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], false);
2022                         sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], false);
2023                         sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], false);
2024                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], false);
2025                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], false);
2026                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], true);
2027                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], true);
2028
2029                         dst->io_bytes[l] += src->io_bytes[l];
2030
2031                         if (dst->runtime[l] < src->runtime[l])
2032                                 dst->runtime[l] = src->runtime[l];
2033                 } else {
2034                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], false);
2035                         sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], false);
2036                         sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], false);
2037                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], false);
2038                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], false);
2039                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], true);
2040                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], true);
2041
2042                         dst->io_bytes[0] += src->io_bytes[l];
2043
2044                         if (dst->runtime[0] < src->runtime[l])
2045                                 dst->runtime[0] = src->runtime[l];
2046                 }
2047         }
2048
2049         sum_stat(&dst->sync_stat, &src->sync_stat, false);
2050         dst->usr_time += src->usr_time;
2051         dst->sys_time += src->sys_time;
2052         dst->ctx += src->ctx;
2053         dst->majf += src->majf;
2054         dst->minf += src->minf;
2055
2056         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2057                 dst->io_u_map[k] += src->io_u_map[k];
2058                 dst->io_u_submit[k] += src->io_u_submit[k];
2059                 dst->io_u_complete[k] += src->io_u_complete[k];
2060         }
2061
2062         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2063                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2064         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2065                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2066         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2067                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2068
2069         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2070                 if (dst->unified_rw_rep != UNIFIED_MIXED) {
2071                         dst->total_io_u[k] += src->total_io_u[k];
2072                         dst->short_io_u[k] += src->short_io_u[k];
2073                         dst->drop_io_u[k] += src->drop_io_u[k];
2074                 } else {
2075                         dst->total_io_u[0] += src->total_io_u[k];
2076                         dst->short_io_u[0] += src->short_io_u[k];
2077                         dst->drop_io_u[0] += src->drop_io_u[k];
2078                 }
2079         }
2080
2081         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2082
2083         for (k = 0; k < FIO_LAT_CNT; k++)
2084                 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2085                         for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2086                                 if (dst->unified_rw_rep != UNIFIED_MIXED)
2087                                         dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2088                                 else
2089                                         dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2090
2091         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2092                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2093
2094         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2095                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
2096                         if (dst->unified_rw_rep != UNIFIED_MIXED) {
2097                                 dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
2098                                 dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
2099                         } else {
2100                                 dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
2101                                 dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
2102                         }
2103
2104                 }
2105         }
2106
2107         dst->total_run_time += src->total_run_time;
2108         dst->total_submit += src->total_submit;
2109         dst->total_complete += src->total_complete;
2110         dst->nr_zone_resets += src->nr_zone_resets;
2111         dst->cachehit += src->cachehit;
2112         dst->cachemiss += src->cachemiss;
2113 }
2114
2115 void init_group_run_stat(struct group_run_stats *gs)
2116 {
2117         int i;
2118         memset(gs, 0, sizeof(*gs));
2119
2120         for (i = 0; i < DDIR_RWDIR_CNT; i++)
2121                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2122 }
2123
2124 void init_thread_stat_min_vals(struct thread_stat *ts)
2125 {
2126         int i;
2127
2128         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2129                 ts->clat_stat[i].min_val = ULONG_MAX;
2130                 ts->slat_stat[i].min_val = ULONG_MAX;
2131                 ts->lat_stat[i].min_val = ULONG_MAX;
2132                 ts->bw_stat[i].min_val = ULONG_MAX;
2133                 ts->iops_stat[i].min_val = ULONG_MAX;
2134                 ts->clat_high_prio_stat[i].min_val = ULONG_MAX;
2135                 ts->clat_low_prio_stat[i].min_val = ULONG_MAX;
2136         }
2137         ts->sync_stat.min_val = ULONG_MAX;
2138 }
2139
2140 void init_thread_stat(struct thread_stat *ts)
2141 {
2142         memset(ts, 0, sizeof(*ts));
2143
2144         init_thread_stat_min_vals(ts);
2145         ts->groupid = -1;
2146 }
2147
2148 void __show_run_stats(void)
2149 {
2150         struct group_run_stats *runstats, *rs;
2151         struct thread_data *td;
2152         struct thread_stat *threadstats, *ts;
2153         int i, j, k, nr_ts, last_ts, idx;
2154         bool kb_base_warned = false;
2155         bool unit_base_warned = false;
2156         struct json_object *root = NULL;
2157         struct json_array *array = NULL;
2158         struct buf_output output[FIO_OUTPUT_NR];
2159         struct flist_head **opt_lists;
2160
2161         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2162
2163         for (i = 0; i < groupid + 1; i++)
2164                 init_group_run_stat(&runstats[i]);
2165
2166         /*
2167          * find out how many threads stats we need. if group reporting isn't
2168          * enabled, it's one-per-td.
2169          */
2170         nr_ts = 0;
2171         last_ts = -1;
2172         for_each_td(td, i) {
2173                 if (!td->o.group_reporting) {
2174                         nr_ts++;
2175                         continue;
2176                 }
2177                 if (last_ts == td->groupid)
2178                         continue;
2179                 if (!td->o.stats)
2180                         continue;
2181
2182                 last_ts = td->groupid;
2183                 nr_ts++;
2184         }
2185
2186         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2187         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2188
2189         for (i = 0; i < nr_ts; i++) {
2190                 init_thread_stat(&threadstats[i]);
2191                 opt_lists[i] = NULL;
2192         }
2193
2194         j = 0;
2195         last_ts = -1;
2196         idx = 0;
2197         for_each_td(td, i) {
2198                 if (!td->o.stats)
2199                         continue;
2200                 if (idx && (!td->o.group_reporting ||
2201                     (td->o.group_reporting && last_ts != td->groupid))) {
2202                         idx = 0;
2203                         j++;
2204                 }
2205
2206                 last_ts = td->groupid;
2207
2208                 ts = &threadstats[j];
2209
2210                 ts->clat_percentiles = td->o.clat_percentiles;
2211                 ts->lat_percentiles = td->o.lat_percentiles;
2212                 ts->slat_percentiles = td->o.slat_percentiles;
2213                 ts->percentile_precision = td->o.percentile_precision;
2214                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2215                 opt_lists[j] = &td->opt_list;
2216
2217                 idx++;
2218                 ts->members++;
2219
2220                 if (ts->groupid == -1) {
2221                         /*
2222                          * These are per-group shared already
2223                          */
2224                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2225                         if (td->o.description)
2226                                 snprintf(ts->description,
2227                                          sizeof(ts->description), "%s",
2228                                          td->o.description);
2229                         else
2230                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2231
2232                         /*
2233                          * If multiple entries in this group, this is
2234                          * the first member.
2235                          */
2236                         ts->thread_number = td->thread_number;
2237                         ts->groupid = td->groupid;
2238
2239                         /*
2240                          * first pid in group, not very useful...
2241                          */
2242                         ts->pid = td->pid;
2243
2244                         ts->kb_base = td->o.kb_base;
2245                         ts->unit_base = td->o.unit_base;
2246                         ts->sig_figs = td->o.sig_figs;
2247                         ts->unified_rw_rep = td->o.unified_rw_rep;
2248                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2249                         log_info("fio: kb_base differs for jobs in group, using"
2250                                  " %u as the base\n", ts->kb_base);
2251                         kb_base_warned = true;
2252                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2253                         log_info("fio: unit_base differs for jobs in group, using"
2254                                  " %u as the base\n", ts->unit_base);
2255                         unit_base_warned = true;
2256                 }
2257
2258                 ts->continue_on_error = td->o.continue_on_error;
2259                 ts->total_err_count += td->total_err_count;
2260                 ts->first_error = td->first_error;
2261                 if (!ts->error) {
2262                         if (!td->error && td->o.continue_on_error &&
2263                             td->first_error) {
2264                                 ts->error = td->first_error;
2265                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2266                                          td->verror);
2267                         } else  if (td->error) {
2268                                 ts->error = td->error;
2269                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2270                                          td->verror);
2271                         }
2272                 }
2273
2274                 ts->latency_depth = td->latency_qd;
2275                 ts->latency_target = td->o.latency_target;
2276                 ts->latency_percentile = td->o.latency_percentile;
2277                 ts->latency_window = td->o.latency_window;
2278
2279                 ts->nr_block_infos = td->ts.nr_block_infos;
2280                 for (k = 0; k < ts->nr_block_infos; k++)
2281                         ts->block_infos[k] = td->ts.block_infos[k];
2282
2283                 sum_thread_stats(ts, &td->ts);
2284
2285                 if (td->o.ss_dur) {
2286                         ts->ss_state = td->ss.state;
2287                         ts->ss_dur = td->ss.dur;
2288                         ts->ss_head = td->ss.head;
2289                         ts->ss_bw_data = td->ss.bw_data;
2290                         ts->ss_iops_data = td->ss.iops_data;
2291                         ts->ss_limit.u.f = td->ss.limit;
2292                         ts->ss_slope.u.f = td->ss.slope;
2293                         ts->ss_deviation.u.f = td->ss.deviation;
2294                         ts->ss_criterion.u.f = td->ss.criterion;
2295                 }
2296                 else
2297                         ts->ss_dur = ts->ss_state = 0;
2298         }
2299
2300         for (i = 0; i < nr_ts; i++) {
2301                 unsigned long long bw;
2302
2303                 ts = &threadstats[i];
2304                 if (ts->groupid == -1)
2305                         continue;
2306                 rs = &runstats[ts->groupid];
2307                 rs->kb_base = ts->kb_base;
2308                 rs->unit_base = ts->unit_base;
2309                 rs->sig_figs = ts->sig_figs;
2310                 rs->unified_rw_rep |= ts->unified_rw_rep;
2311
2312                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2313                         if (!ts->runtime[j])
2314                                 continue;
2315                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2316                                 rs->min_run[j] = ts->runtime[j];
2317                         if (ts->runtime[j] > rs->max_run[j])
2318                                 rs->max_run[j] = ts->runtime[j];
2319
2320                         bw = 0;
2321                         if (ts->runtime[j])
2322                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2323                         if (bw < rs->min_bw[j])
2324                                 rs->min_bw[j] = bw;
2325                         if (bw > rs->max_bw[j])
2326                                 rs->max_bw[j] = bw;
2327
2328                         rs->iobytes[j] += ts->io_bytes[j];
2329                 }
2330         }
2331
2332         for (i = 0; i < groupid + 1; i++) {
2333                 int ddir;
2334
2335                 rs = &runstats[i];
2336
2337                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2338                         if (rs->max_run[ddir])
2339                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2340                                                 rs->max_run[ddir];
2341                 }
2342         }
2343
2344         for (i = 0; i < FIO_OUTPUT_NR; i++)
2345                 buf_output_init(&output[i]);
2346
2347         /*
2348          * don't overwrite last signal output
2349          */
2350         if (output_format & FIO_OUTPUT_NORMAL)
2351                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2352         if (output_format & FIO_OUTPUT_JSON) {
2353                 struct thread_data *global;
2354                 char time_buf[32];
2355                 struct timeval now;
2356                 unsigned long long ms_since_epoch;
2357                 time_t tv_sec;
2358
2359                 gettimeofday(&now, NULL);
2360                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2361                                  (unsigned long long)(now.tv_usec) / 1000;
2362
2363                 tv_sec = now.tv_sec;
2364                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2365                 if (time_buf[strlen(time_buf) - 1] == '\n')
2366                         time_buf[strlen(time_buf) - 1] = '\0';
2367
2368                 root = json_create_object();
2369                 json_object_add_value_string(root, "fio version", fio_version_string);
2370                 json_object_add_value_int(root, "timestamp", now.tv_sec);
2371                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2372                 json_object_add_value_string(root, "time", time_buf);
2373                 global = get_global_options();
2374                 json_add_job_opts(root, "global options", &global->opt_list);
2375                 array = json_create_array();
2376                 json_object_add_value_array(root, "jobs", array);
2377         }
2378
2379         if (is_backend)
2380                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2381
2382         for (i = 0; i < nr_ts; i++) {
2383                 ts = &threadstats[i];
2384                 rs = &runstats[ts->groupid];
2385
2386                 if (is_backend) {
2387                         fio_server_send_job_options(opt_lists[i], i);
2388                         fio_server_send_ts(ts, rs);
2389                 } else {
2390                         if (output_format & FIO_OUTPUT_TERSE)
2391                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2392                         if (output_format & FIO_OUTPUT_JSON) {
2393                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2394                                 json_array_add_value_object(array, tmp);
2395                         }
2396                         if (output_format & FIO_OUTPUT_NORMAL)
2397                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2398                 }
2399         }
2400         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2401                 /* disk util stats, if any */
2402                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2403
2404                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2405
2406                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2407                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2408                 json_free_object(root);
2409         }
2410
2411         for (i = 0; i < groupid + 1; i++) {
2412                 rs = &runstats[i];
2413
2414                 rs->groupid = i;
2415                 if (is_backend)
2416                         fio_server_send_gs(rs);
2417                 else if (output_format & FIO_OUTPUT_NORMAL)
2418                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2419         }
2420
2421         if (is_backend)
2422                 fio_server_send_du();
2423         else if (output_format & FIO_OUTPUT_NORMAL) {
2424                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2425                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2426         }
2427
2428         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2429                 struct buf_output *out = &output[i];
2430
2431                 log_info_buf(out->buf, out->buflen);
2432                 buf_output_free(out);
2433         }
2434
2435         fio_idle_prof_cleanup();
2436
2437         log_info_flush();
2438         free(runstats);
2439         free(threadstats);
2440         free(opt_lists);
2441 }
2442
2443 int __show_running_run_stats(void)
2444 {
2445         struct thread_data *td;
2446         unsigned long long *rt;
2447         struct timespec ts;
2448         int i;
2449
2450         fio_sem_down(stat_sem);
2451
2452         rt = malloc(thread_number * sizeof(unsigned long long));
2453         fio_gettime(&ts, NULL);
2454
2455         for_each_td(td, i) {
2456                 td->update_rusage = 1;
2457                 for_each_rw_ddir(ddir) {
2458                         td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2459                 }
2460                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2461
2462                 rt[i] = mtime_since(&td->start, &ts);
2463                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2464                         td->ts.runtime[DDIR_READ] += rt[i];
2465                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2466                         td->ts.runtime[DDIR_WRITE] += rt[i];
2467                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2468                         td->ts.runtime[DDIR_TRIM] += rt[i];
2469         }
2470
2471         for_each_td(td, i) {
2472                 if (td->runstate >= TD_EXITED)
2473                         continue;
2474                 if (td->rusage_sem) {
2475                         td->update_rusage = 1;
2476                         fio_sem_down(td->rusage_sem);
2477                 }
2478                 td->update_rusage = 0;
2479         }
2480
2481         __show_run_stats();
2482
2483         for_each_td(td, i) {
2484                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2485                         td->ts.runtime[DDIR_READ] -= rt[i];
2486                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2487                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2488                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2489                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2490         }
2491
2492         free(rt);
2493         fio_sem_up(stat_sem);
2494
2495         return 0;
2496 }
2497
2498 static bool status_file_disabled;
2499
2500 #define FIO_STATUS_FILE         "fio-dump-status"
2501
2502 static int check_status_file(void)
2503 {
2504         struct stat sb;
2505         const char *temp_dir;
2506         char fio_status_file_path[PATH_MAX];
2507
2508         if (status_file_disabled)
2509                 return 0;
2510
2511         temp_dir = getenv("TMPDIR");
2512         if (temp_dir == NULL) {
2513                 temp_dir = getenv("TEMP");
2514                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2515                         temp_dir = NULL;
2516         }
2517         if (temp_dir == NULL)
2518                 temp_dir = "/tmp";
2519 #ifdef __COVERITY__
2520         __coverity_tainted_data_sanitize__(temp_dir);
2521 #endif
2522
2523         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2524
2525         if (stat(fio_status_file_path, &sb))
2526                 return 0;
2527
2528         if (unlink(fio_status_file_path) < 0) {
2529                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2530                                                         strerror(errno));
2531                 log_err("fio: disabling status file updates\n");
2532                 status_file_disabled = true;
2533         }
2534
2535         return 1;
2536 }
2537
2538 void check_for_running_stats(void)
2539 {
2540         if (check_status_file()) {
2541                 show_running_run_stats();
2542                 return;
2543         }
2544 }
2545
2546 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2547 {
2548         double val = data;
2549         double delta;
2550
2551         if (data > is->max_val)
2552                 is->max_val = data;
2553         if (data < is->min_val)
2554                 is->min_val = data;
2555
2556         delta = val - is->mean.u.f;
2557         if (delta) {
2558                 is->mean.u.f += delta / (is->samples + 1.0);
2559                 is->S.u.f += delta * (val - is->mean.u.f);
2560         }
2561
2562         is->samples++;
2563 }
2564
2565 /*
2566  * Return a struct io_logs, which is added to the tail of the log
2567  * list for 'iolog'.
2568  */
2569 static struct io_logs *get_new_log(struct io_log *iolog)
2570 {
2571         size_t new_samples;
2572         struct io_logs *cur_log;
2573
2574         /*
2575          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2576          * forever
2577          */
2578         if (!iolog->cur_log_max) {
2579                 new_samples = iolog->td->o.log_entries;
2580         } else {
2581                 new_samples = iolog->cur_log_max * 2;
2582                 if (new_samples > MAX_LOG_ENTRIES)
2583                         new_samples = MAX_LOG_ENTRIES;
2584         }
2585
2586         cur_log = smalloc(sizeof(*cur_log));
2587         if (cur_log) {
2588                 INIT_FLIST_HEAD(&cur_log->list);
2589                 cur_log->log = calloc(new_samples, log_entry_sz(iolog));
2590                 if (cur_log->log) {
2591                         cur_log->nr_samples = 0;
2592                         cur_log->max_samples = new_samples;
2593                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2594                         iolog->cur_log_max = new_samples;
2595                         return cur_log;
2596                 }
2597                 sfree(cur_log);
2598         }
2599
2600         return NULL;
2601 }
2602
2603 /*
2604  * Add and return a new log chunk, or return current log if big enough
2605  */
2606 static struct io_logs *regrow_log(struct io_log *iolog)
2607 {
2608         struct io_logs *cur_log;
2609         int i;
2610
2611         if (!iolog || iolog->disabled)
2612                 goto disable;
2613
2614         cur_log = iolog_cur_log(iolog);
2615         if (!cur_log) {
2616                 cur_log = get_new_log(iolog);
2617                 if (!cur_log)
2618                         return NULL;
2619         }
2620
2621         if (cur_log->nr_samples < cur_log->max_samples)
2622                 return cur_log;
2623
2624         /*
2625          * No room for a new sample. If we're compressing on the fly, flush
2626          * out the current chunk
2627          */
2628         if (iolog->log_gz) {
2629                 if (iolog_cur_flush(iolog, cur_log)) {
2630                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2631                         return NULL;
2632                 }
2633         }
2634
2635         /*
2636          * Get a new log array, and add to our list
2637          */
2638         cur_log = get_new_log(iolog);
2639         if (!cur_log) {
2640                 log_err("fio: failed extending iolog! Will stop logging.\n");
2641                 return NULL;
2642         }
2643
2644         if (!iolog->pending || !iolog->pending->nr_samples)
2645                 return cur_log;
2646
2647         /*
2648          * Flush pending items to new log
2649          */
2650         for (i = 0; i < iolog->pending->nr_samples; i++) {
2651                 struct io_sample *src, *dst;
2652
2653                 src = get_sample(iolog, iolog->pending, i);
2654                 dst = get_sample(iolog, cur_log, i);
2655                 memcpy(dst, src, log_entry_sz(iolog));
2656         }
2657         cur_log->nr_samples = iolog->pending->nr_samples;
2658
2659         iolog->pending->nr_samples = 0;
2660         return cur_log;
2661 disable:
2662         if (iolog)
2663                 iolog->disabled = true;
2664         return NULL;
2665 }
2666
2667 void regrow_logs(struct thread_data *td)
2668 {
2669         regrow_log(td->slat_log);
2670         regrow_log(td->clat_log);
2671         regrow_log(td->clat_hist_log);
2672         regrow_log(td->lat_log);
2673         regrow_log(td->bw_log);
2674         regrow_log(td->iops_log);
2675         td->flags &= ~TD_F_REGROW_LOGS;
2676 }
2677
2678 void regrow_agg_logs(void)
2679 {
2680         enum fio_ddir ddir;
2681
2682         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2683                 regrow_log(agg_io_log[ddir]);
2684 }
2685
2686 static struct io_logs *get_cur_log(struct io_log *iolog)
2687 {
2688         struct io_logs *cur_log;
2689
2690         cur_log = iolog_cur_log(iolog);
2691         if (!cur_log) {
2692                 cur_log = get_new_log(iolog);
2693                 if (!cur_log)
2694                         return NULL;
2695         }
2696
2697         if (cur_log->nr_samples < cur_log->max_samples)
2698                 return cur_log;
2699
2700         /*
2701          * Out of space. If we're in IO offload mode, or we're not doing
2702          * per unit logging (hence logging happens outside of the IO thread
2703          * as well), add a new log chunk inline. If we're doing inline
2704          * submissions, flag 'td' as needing a log regrow and we'll take
2705          * care of it on the submission side.
2706          */
2707         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2708             !per_unit_log(iolog))
2709                 return regrow_log(iolog);
2710
2711         if (iolog->td)
2712                 iolog->td->flags |= TD_F_REGROW_LOGS;
2713         if (iolog->pending)
2714                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2715         return iolog->pending;
2716 }
2717
2718 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2719                              enum fio_ddir ddir, unsigned long long bs,
2720                              unsigned long t, uint64_t offset,
2721                              unsigned int priority)
2722 {
2723         struct io_logs *cur_log;
2724
2725         if (iolog->disabled)
2726                 return;
2727         if (flist_empty(&iolog->io_logs))
2728                 iolog->avg_last[ddir] = t;
2729
2730         cur_log = get_cur_log(iolog);
2731         if (cur_log) {
2732                 struct io_sample *s;
2733
2734                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2735
2736                 s->data = data;
2737                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2738                 io_sample_set_ddir(iolog, s, ddir);
2739                 s->bs = bs;
2740                 s->priority = priority;
2741
2742                 if (iolog->log_offset) {
2743                         struct io_sample_offset *so = (void *) s;
2744
2745                         so->offset = offset;
2746                 }
2747
2748                 cur_log->nr_samples++;
2749                 return;
2750         }
2751
2752         iolog->disabled = true;
2753 }
2754
2755 static inline void reset_io_stat(struct io_stat *ios)
2756 {
2757         ios->min_val = -1ULL;
2758         ios->max_val = ios->samples = 0;
2759         ios->mean.u.f = ios->S.u.f = 0;
2760 }
2761
2762 void reset_io_stats(struct thread_data *td)
2763 {
2764         struct thread_stat *ts = &td->ts;
2765         int i, j, k;
2766
2767         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2768                 reset_io_stat(&ts->clat_high_prio_stat[i]);
2769                 reset_io_stat(&ts->clat_low_prio_stat[i]);
2770                 reset_io_stat(&ts->clat_stat[i]);
2771                 reset_io_stat(&ts->slat_stat[i]);
2772                 reset_io_stat(&ts->lat_stat[i]);
2773                 reset_io_stat(&ts->bw_stat[i]);
2774                 reset_io_stat(&ts->iops_stat[i]);
2775
2776                 ts->io_bytes[i] = 0;
2777                 ts->runtime[i] = 0;
2778                 ts->total_io_u[i] = 0;
2779                 ts->short_io_u[i] = 0;
2780                 ts->drop_io_u[i] = 0;
2781
2782                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2783                         ts->io_u_plat_high_prio[i][j] = 0;
2784                         ts->io_u_plat_low_prio[i][j] = 0;
2785                         if (!i)
2786                                 ts->io_u_sync_plat[j] = 0;
2787                 }
2788         }
2789
2790         for (i = 0; i < FIO_LAT_CNT; i++)
2791                 for (j = 0; j < DDIR_RWDIR_CNT; j++)
2792                         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2793                                 ts->io_u_plat[i][j][k] = 0;
2794
2795         ts->total_io_u[DDIR_SYNC] = 0;
2796
2797         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2798                 ts->io_u_map[i] = 0;
2799                 ts->io_u_submit[i] = 0;
2800                 ts->io_u_complete[i] = 0;
2801         }
2802
2803         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2804                 ts->io_u_lat_n[i] = 0;
2805         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2806                 ts->io_u_lat_u[i] = 0;
2807         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2808                 ts->io_u_lat_m[i] = 0;
2809
2810         ts->total_submit = 0;
2811         ts->total_complete = 0;
2812         ts->nr_zone_resets = 0;
2813         ts->cachehit = ts->cachemiss = 0;
2814 }
2815
2816 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2817                               unsigned long elapsed, bool log_max)
2818 {
2819         /*
2820          * Note an entry in the log. Use the mean from the logged samples,
2821          * making sure to properly round up. Only write a log entry if we
2822          * had actual samples done.
2823          */
2824         if (iolog->avg_window[ddir].samples) {
2825                 union io_sample_data data;
2826
2827                 if (log_max)
2828                         data.val = iolog->avg_window[ddir].max_val;
2829                 else
2830                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2831
2832                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
2833         }
2834
2835         reset_io_stat(&iolog->avg_window[ddir]);
2836 }
2837
2838 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2839                              bool log_max)
2840 {
2841         int ddir;
2842
2843         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2844                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2845 }
2846
2847 static unsigned long add_log_sample(struct thread_data *td,
2848                                     struct io_log *iolog,
2849                                     union io_sample_data data,
2850                                     enum fio_ddir ddir, unsigned long long bs,
2851                                     uint64_t offset, unsigned int ioprio)
2852 {
2853         unsigned long elapsed, this_window;
2854
2855         if (!ddir_rw(ddir))
2856                 return 0;
2857
2858         elapsed = mtime_since_now(&td->epoch);
2859
2860         /*
2861          * If no time averaging, just add the log sample.
2862          */
2863         if (!iolog->avg_msec) {
2864                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
2865                                  ioprio);
2866                 return 0;
2867         }
2868
2869         /*
2870          * Add the sample. If the time period has passed, then
2871          * add that entry to the log and clear.
2872          */
2873         add_stat_sample(&iolog->avg_window[ddir], data.val);
2874
2875         /*
2876          * If period hasn't passed, adding the above sample is all we
2877          * need to do.
2878          */
2879         this_window = elapsed - iolog->avg_last[ddir];
2880         if (elapsed < iolog->avg_last[ddir])
2881                 return iolog->avg_last[ddir] - elapsed;
2882         else if (this_window < iolog->avg_msec) {
2883                 unsigned long diff = iolog->avg_msec - this_window;
2884
2885                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2886                         return diff;
2887         }
2888
2889         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2890
2891         iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
2892
2893         return iolog->avg_msec;
2894 }
2895
2896 void finalize_logs(struct thread_data *td, bool unit_logs)
2897 {
2898         unsigned long elapsed;
2899
2900         elapsed = mtime_since_now(&td->epoch);
2901
2902         if (td->clat_log && unit_logs)
2903                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2904         if (td->slat_log && unit_logs)
2905                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2906         if (td->lat_log && unit_logs)
2907                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2908         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2909                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2910         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2911                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2912 }
2913
2914 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
2915                     unsigned long long bs)
2916 {
2917         struct io_log *iolog;
2918
2919         if (!ddir_rw(ddir))
2920                 return;
2921
2922         iolog = agg_io_log[ddir];
2923         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
2924 }
2925
2926 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2927 {
2928         unsigned int idx = plat_val_to_idx(nsec);
2929         assert(idx < FIO_IO_U_PLAT_NR);
2930
2931         ts->io_u_sync_plat[idx]++;
2932         add_stat_sample(&ts->sync_stat, nsec);
2933 }
2934
2935 static inline void add_lat_percentile_sample(struct thread_stat *ts,
2936                                              unsigned long long nsec,
2937                                              enum fio_ddir ddir,
2938                                              enum fio_lat lat)
2939 {
2940         unsigned int idx = plat_val_to_idx(nsec);
2941         assert(idx < FIO_IO_U_PLAT_NR);
2942
2943         ts->io_u_plat[lat][ddir][idx]++;
2944 }
2945
2946 static inline void add_lat_percentile_prio_sample(struct thread_stat *ts,
2947                                                   unsigned long long nsec,
2948                                                   enum fio_ddir ddir,
2949                                                   bool high_prio)
2950 {
2951         unsigned int idx = plat_val_to_idx(nsec);
2952
2953         if (!high_prio)
2954                 ts->io_u_plat_low_prio[ddir][idx]++;
2955         else
2956                 ts->io_u_plat_high_prio[ddir][idx]++;
2957 }
2958
2959 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2960                      unsigned long long nsec, unsigned long long bs,
2961                      uint64_t offset, unsigned int ioprio, bool high_prio)
2962 {
2963         const bool needs_lock = td_async_processing(td);
2964         unsigned long elapsed, this_window;
2965         struct thread_stat *ts = &td->ts;
2966         struct io_log *iolog = td->clat_hist_log;
2967
2968         if (needs_lock)
2969                 __td_io_u_lock(td);
2970
2971         add_stat_sample(&ts->clat_stat[ddir], nsec);
2972
2973         /*
2974          * When lat_percentiles=1 (default 0), the reported high/low priority
2975          * percentiles and stats are used for describing total latency values,
2976          * even though the variable names themselves start with clat_.
2977          *
2978          * Because of the above definition, add a prio stat sample only when
2979          * lat_percentiles=0. add_lat_sample() will add the prio stat sample
2980          * when lat_percentiles=1.
2981          */
2982         if (!ts->lat_percentiles) {
2983                 if (high_prio)
2984                         add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
2985                 else
2986                         add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
2987         }
2988
2989         if (td->clat_log)
2990                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2991                                offset, ioprio);
2992
2993         if (ts->clat_percentiles) {
2994                 /*
2995                  * Because of the above definition, add a prio lat percentile
2996                  * sample only when lat_percentiles=0. add_lat_sample() will add
2997                  * the prio lat percentile sample when lat_percentiles=1.
2998                  */
2999                 add_lat_percentile_sample(ts, nsec, ddir, FIO_CLAT);
3000                 if (!ts->lat_percentiles)
3001                         add_lat_percentile_prio_sample(ts, nsec, ddir,
3002                                                        high_prio);
3003         }
3004
3005         if (iolog && iolog->hist_msec) {
3006                 struct io_hist *hw = &iolog->hist_window[ddir];
3007
3008                 hw->samples++;
3009                 elapsed = mtime_since_now(&td->epoch);
3010                 if (!hw->hist_last)
3011                         hw->hist_last = elapsed;
3012                 this_window = elapsed - hw->hist_last;
3013
3014                 if (this_window >= iolog->hist_msec) {
3015                         uint64_t *io_u_plat;
3016                         struct io_u_plat_entry *dst;
3017
3018                         /*
3019                          * Make a byte-for-byte copy of the latency histogram
3020                          * stored in td->ts.io_u_plat[ddir], recording it in a
3021                          * log sample. Note that the matching call to free() is
3022                          * located in iolog.c after printing this sample to the
3023                          * log file.
3024                          */
3025                         io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3026                         dst = malloc(sizeof(struct io_u_plat_entry));
3027                         memcpy(&(dst->io_u_plat), io_u_plat,
3028                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3029                         flist_add(&dst->list, &hw->list);
3030                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3031                                          elapsed, offset, ioprio);
3032
3033                         /*
3034                          * Update the last time we recorded as being now, minus
3035                          * any drift in time we encountered before actually
3036                          * making the record.
3037                          */
3038                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3039                         hw->samples = 0;
3040                 }
3041         }
3042
3043         if (needs_lock)
3044                 __td_io_u_unlock(td);
3045 }
3046
3047 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3048                      unsigned long long nsec, unsigned long long bs,
3049                      uint64_t offset, unsigned int ioprio)
3050 {
3051         const bool needs_lock = td_async_processing(td);
3052         struct thread_stat *ts = &td->ts;
3053
3054         if (!ddir_rw(ddir))
3055                 return;
3056
3057         if (needs_lock)
3058                 __td_io_u_lock(td);
3059
3060         add_stat_sample(&ts->slat_stat[ddir], nsec);
3061
3062         if (td->slat_log)
3063                 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3064                                offset, ioprio);
3065
3066         if (ts->slat_percentiles)
3067                 add_lat_percentile_sample(ts, nsec, ddir, FIO_SLAT);
3068
3069         if (needs_lock)
3070                 __td_io_u_unlock(td);
3071 }
3072
3073 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3074                     unsigned long long nsec, unsigned long long bs,
3075                     uint64_t offset, unsigned int ioprio, bool high_prio)
3076 {
3077         const bool needs_lock = td_async_processing(td);
3078         struct thread_stat *ts = &td->ts;
3079
3080         if (!ddir_rw(ddir))
3081                 return;
3082
3083         if (needs_lock)
3084                 __td_io_u_lock(td);
3085
3086         add_stat_sample(&ts->lat_stat[ddir], nsec);
3087
3088         if (td->lat_log)
3089                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3090                                offset, ioprio);
3091
3092         /*
3093          * When lat_percentiles=1 (default 0), the reported high/low priority
3094          * percentiles and stats are used for describing total latency values,
3095          * even though the variable names themselves start with clat_.
3096          *
3097          * Because of the above definition, add a prio stat and prio lat
3098          * percentile sample only when lat_percentiles=1. add_clat_sample() will
3099          * add the prio stat and prio lat percentile sample when
3100          * lat_percentiles=0.
3101          */
3102         if (ts->lat_percentiles) {
3103                 add_lat_percentile_sample(ts, nsec, ddir, FIO_LAT);
3104                 add_lat_percentile_prio_sample(ts, nsec, ddir, high_prio);
3105                 if (high_prio)
3106                         add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3107                 else
3108                         add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3109
3110         }
3111         if (needs_lock)
3112                 __td_io_u_unlock(td);
3113 }
3114
3115 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3116                    unsigned int bytes, unsigned long long spent)
3117 {
3118         const bool needs_lock = td_async_processing(td);
3119         struct thread_stat *ts = &td->ts;
3120         unsigned long rate;
3121
3122         if (spent)
3123                 rate = (unsigned long) (bytes * 1000000ULL / spent);
3124         else
3125                 rate = 0;
3126
3127         if (needs_lock)
3128                 __td_io_u_lock(td);
3129
3130         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3131
3132         if (td->bw_log)
3133                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3134                                bytes, io_u->offset, io_u->ioprio);
3135
3136         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3137
3138         if (needs_lock)
3139                 __td_io_u_unlock(td);
3140 }
3141
3142 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3143                          struct timespec *t, unsigned int avg_time,
3144                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3145                          struct io_stat *stat, struct io_log *log,
3146                          bool is_kb)
3147 {
3148         const bool needs_lock = td_async_processing(td);
3149         unsigned long spent, rate;
3150         enum fio_ddir ddir;
3151         unsigned long next, next_log;
3152
3153         next_log = avg_time;
3154
3155         spent = mtime_since(parent_tv, t);
3156         if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3157                 return avg_time - spent;
3158
3159         if (needs_lock)
3160                 __td_io_u_lock(td);
3161
3162         /*
3163          * Compute both read and write rates for the interval.
3164          */
3165         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3166                 uint64_t delta;
3167
3168                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3169                 if (!delta)
3170                         continue; /* No entries for interval */
3171
3172                 if (spent) {
3173                         if (is_kb)
3174                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
3175                         else
3176                                 rate = (delta * 1000) / spent;
3177                 } else
3178                         rate = 0;
3179
3180                 add_stat_sample(&stat[ddir], rate);
3181
3182                 if (log) {
3183                         unsigned long long bs = 0;
3184
3185                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3186                                 bs = td->o.min_bs[ddir];
3187
3188                         next = add_log_sample(td, log, sample_val(rate), ddir,
3189                                               bs, 0, 0);
3190                         next_log = min(next_log, next);
3191                 }
3192
3193                 stat_io_bytes[ddir] = this_io_bytes[ddir];
3194         }
3195
3196         *parent_tv = *t;
3197
3198         if (needs_lock)
3199                 __td_io_u_unlock(td);
3200
3201         if (spent <= avg_time)
3202                 next = avg_time;
3203         else
3204                 next = avg_time - (1 + spent - avg_time);
3205
3206         return min(next, next_log);
3207 }
3208
3209 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3210 {
3211         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3212                                 td->this_io_bytes, td->stat_io_bytes,
3213                                 td->ts.bw_stat, td->bw_log, true);
3214 }
3215
3216 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3217                      unsigned int bytes)
3218 {
3219         const bool needs_lock = td_async_processing(td);
3220         struct thread_stat *ts = &td->ts;
3221
3222         if (needs_lock)
3223                 __td_io_u_lock(td);
3224
3225         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3226
3227         if (td->iops_log)
3228                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3229                                bytes, io_u->offset, io_u->ioprio);
3230
3231         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3232
3233         if (needs_lock)
3234                 __td_io_u_unlock(td);
3235 }
3236
3237 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3238 {
3239         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3240                                 td->this_io_blocks, td->stat_io_blocks,
3241                                 td->ts.iops_stat, td->iops_log, false);
3242 }
3243
3244 /*
3245  * Returns msecs to next event
3246  */
3247 int calc_log_samples(void)
3248 {
3249         struct thread_data *td;
3250         unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3251         struct timespec now;
3252         int i;
3253         long elapsed_time = 0;
3254
3255         fio_gettime(&now, NULL);
3256
3257         for_each_td(td, i) {
3258                 elapsed_time = mtime_since_now(&td->epoch);
3259
3260                 if (!td->o.stats)
3261                         continue;
3262                 if (in_ramp_time(td) ||
3263                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3264                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3265                         continue;
3266                 }
3267                 if (!td->bw_log ||
3268                         (td->bw_log && !per_unit_log(td->bw_log))) {
3269                         tmp = add_bw_samples(td, &now);
3270
3271                         if (td->bw_log)
3272                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3273                 }
3274                 if (!td->iops_log ||
3275                         (td->iops_log && !per_unit_log(td->iops_log))) {
3276                         tmp = add_iops_samples(td, &now);
3277
3278                         if (td->iops_log)
3279                                 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3280                 }
3281
3282                 if (tmp < next)
3283                         next = tmp;
3284         }
3285
3286         /* if log_avg_msec_min has not been changed, set it to 0 */
3287         if (log_avg_msec_min == -1U)
3288                 log_avg_msec_min = 0;
3289
3290         if (log_avg_msec_min == 0)
3291                 next_mod = elapsed_time;
3292         else
3293                 next_mod = elapsed_time % log_avg_msec_min;
3294
3295         /* correction to keep the time on the log avg msec boundary */
3296         next = min(next, (log_avg_msec_min - next_mod));
3297
3298         return next == ~0U ? 0 : next;
3299 }
3300
3301 void stat_init(void)
3302 {
3303         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3304 }
3305
3306 void stat_exit(void)
3307 {
3308         /*
3309          * When we have the mutex, we know out-of-band access to it
3310          * have ended.
3311          */
3312         fio_sem_down(stat_sem);
3313         fio_sem_remove(stat_sem);
3314 }
3315
3316 /*
3317  * Called from signal handler. Wake up status thread.
3318  */
3319 void show_running_run_stats(void)
3320 {
3321         helper_do_stat();
3322 }
3323
3324 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3325 {
3326         /* Ignore io_u's which span multiple blocks--they will just get
3327          * inaccurate counts. */
3328         int idx = (io_u->offset - io_u->file->file_offset)
3329                         / td->o.bs[DDIR_TRIM];
3330         uint32_t *info = &td->ts.block_infos[idx];
3331         assert(idx < td->ts.nr_block_infos);
3332         return info;
3333 }
3334