stat: Fix a memory leak in add_ddir_status_json()
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/stat.h>
5 #include <math.h>
6
7 #include "fio.h"
8 #include "diskutil.h"
9 #include "lib/ieee754.h"
10 #include "json.h"
11 #include "lib/getrusage.h"
12 #include "idletime.h"
13 #include "lib/pow2.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
16 #include "smalloc.h"
17 #include "zbd.h"
18 #include "oslib/asprintf.h"
19
20 #define LOG_MSEC_SLACK  1
21
22 struct fio_sem *stat_sem;
23
24 void clear_rusage_stat(struct thread_data *td)
25 {
26         struct thread_stat *ts = &td->ts;
27
28         fio_getrusage(&td->ru_start);
29         ts->usr_time = ts->sys_time = 0;
30         ts->ctx = 0;
31         ts->minf = ts->majf = 0;
32 }
33
34 void update_rusage_stat(struct thread_data *td)
35 {
36         struct thread_stat *ts = &td->ts;
37
38         fio_getrusage(&td->ru_end);
39         ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
40                                         &td->ru_end.ru_utime);
41         ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
42                                         &td->ru_end.ru_stime);
43         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
44                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
45         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
46         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
47
48         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
49 }
50
51 /*
52  * Given a latency, return the index of the corresponding bucket in
53  * the structure tracking percentiles.
54  *
55  * (1) find the group (and error bits) that the value (latency)
56  * belongs to by looking at its MSB. (2) find the bucket number in the
57  * group by looking at the index bits.
58  *
59  */
60 static unsigned int plat_val_to_idx(unsigned long long val)
61 {
62         unsigned int msb, error_bits, base, offset, idx;
63
64         /* Find MSB starting from bit 0 */
65         if (val == 0)
66                 msb = 0;
67         else
68                 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
69
70         /*
71          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
72          * all bits of the sample as index
73          */
74         if (msb <= FIO_IO_U_PLAT_BITS)
75                 return val;
76
77         /* Compute the number of error bits to discard*/
78         error_bits = msb - FIO_IO_U_PLAT_BITS;
79
80         /* Compute the number of buckets before the group */
81         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
82
83         /*
84          * Discard the error bits and apply the mask to find the
85          * index for the buckets in the group
86          */
87         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
88
89         /* Make sure the index does not exceed (array size - 1) */
90         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
91                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
92
93         return idx;
94 }
95
96 /*
97  * Convert the given index of the bucket array to the value
98  * represented by the bucket
99  */
100 static unsigned long long plat_idx_to_val(unsigned int idx)
101 {
102         unsigned int error_bits;
103         unsigned long long k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
138                                    fio_fp64_t *plist, unsigned long long **output,
139                                    unsigned long long *maxv, unsigned long long *minv)
140 {
141         unsigned long long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned long long *ovals = NULL;
144         bool is_last;
145
146         *minv = -1ULL;
147         *maxv = 0;
148
149         len = 0;
150         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
151                 len++;
152
153         if (!len)
154                 return 0;
155
156         /*
157          * Sort the percentile list. Note that it may already be sorted if
158          * we are using the default values, but since it's a short list this
159          * isn't a worry. Also note that this does not work for NaN values.
160          */
161         if (len > 1)
162                 qsort(plist, len, sizeof(plist[0]), double_cmp);
163
164         ovals = malloc(len * sizeof(*ovals));
165         if (!ovals)
166                 return 0;
167
168         /*
169          * Calculate bucket values, note down max and min values
170          */
171         is_last = false;
172         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
173                 sum += io_u_plat[i];
174                 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
175                         assert(plist[j].u.f <= 100.0);
176
177                         ovals[j] = plat_idx_to_val(i);
178                         if (ovals[j] < *minv)
179                                 *minv = ovals[j];
180                         if (ovals[j] > *maxv)
181                                 *maxv = ovals[j];
182
183                         is_last = (j == len - 1) != 0;
184                         if (is_last)
185                                 break;
186
187                         j++;
188                 }
189         }
190
191         if (!is_last)
192                 log_err("fio: error calculating latency percentiles\n");
193
194         *output = ovals;
195         return len;
196 }
197
198 /*
199  * Find and display the p-th percentile of clat
200  */
201 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
202                                   fio_fp64_t *plist, unsigned int precision,
203                                   const char *pre, struct buf_output *out)
204 {
205         unsigned int divisor, len, i, j = 0;
206         unsigned long long minv, maxv;
207         unsigned long long *ovals;
208         int per_line, scale_down, time_width;
209         bool is_last;
210         char fmt[32];
211
212         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
213         if (!len || !ovals)
214                 goto out;
215
216         /*
217          * We default to nsecs, but if the value range is such that we
218          * should scale down to usecs or msecs, do that.
219          */
220         if (minv > 2000000 && maxv > 99999999ULL) {
221                 scale_down = 2;
222                 divisor = 1000000;
223                 log_buf(out, "    %s percentiles (msec):\n     |", pre);
224         } else if (minv > 2000 && maxv > 99999) {
225                 scale_down = 1;
226                 divisor = 1000;
227                 log_buf(out, "    %s percentiles (usec):\n     |", pre);
228         } else {
229                 scale_down = 0;
230                 divisor = 1;
231                 log_buf(out, "    %s percentiles (nsec):\n     |", pre);
232         }
233
234
235         time_width = max(5, (int) (log10(maxv / divisor) + 1));
236         snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
237                         precision, time_width);
238         /* fmt will be something like " %5.2fth=[%4llu]%c" */
239         per_line = (80 - 7) / (precision + 10 + time_width);
240
241         for (j = 0; j < len; j++) {
242                 /* for formatting */
243                 if (j != 0 && (j % per_line) == 0)
244                         log_buf(out, "     |");
245
246                 /* end of the list */
247                 is_last = (j == len - 1) != 0;
248
249                 for (i = 0; i < scale_down; i++)
250                         ovals[j] = (ovals[j] + 999) / 1000;
251
252                 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
253
254                 if (is_last)
255                         break;
256
257                 if ((j % per_line) == per_line - 1)     /* for formatting */
258                         log_buf(out, "\n");
259         }
260
261 out:
262         free(ovals);
263 }
264
265 bool calc_lat(struct io_stat *is, unsigned long long *min,
266               unsigned long long *max, double *mean, double *dev)
267 {
268         double n = (double) is->samples;
269
270         if (n == 0)
271                 return false;
272
273         *min = is->min_val;
274         *max = is->max_val;
275         *mean = is->mean.u.f;
276
277         if (n > 1.0)
278                 *dev = sqrt(is->S.u.f / (n - 1.0));
279         else
280                 *dev = 0;
281
282         return true;
283 }
284
285 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
286 {
287         char *io, *agg, *min, *max;
288         char *ioalt, *aggalt, *minalt, *maxalt;
289         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
290         int i;
291
292         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
293
294         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
295                 const int i2p = is_power_of_2(rs->kb_base);
296
297                 if (!rs->max_run[i])
298                         continue;
299
300                 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
301                 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
302                 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
303                 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
304                 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
305                 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
306                 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
307                 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
308                 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
309                                 rs->unified_rw_rep ? "  MIXED" : str[i],
310                                 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
311                                 (unsigned long long) rs->min_run[i],
312                                 (unsigned long long) rs->max_run[i]);
313
314                 free(io);
315                 free(agg);
316                 free(min);
317                 free(max);
318                 free(ioalt);
319                 free(aggalt);
320                 free(minalt);
321                 free(maxalt);
322         }
323 }
324
325 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
326 {
327         int i;
328
329         /*
330          * Do depth distribution calculations
331          */
332         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
333                 if (total) {
334                         io_u_dist[i] = (double) map[i] / (double) total;
335                         io_u_dist[i] *= 100.0;
336                         if (io_u_dist[i] < 0.1 && map[i])
337                                 io_u_dist[i] = 0.1;
338                 } else
339                         io_u_dist[i] = 0.0;
340         }
341 }
342
343 static void stat_calc_lat(struct thread_stat *ts, double *dst,
344                           uint64_t *src, int nr)
345 {
346         unsigned long total = ddir_rw_sum(ts->total_io_u);
347         int i;
348
349         /*
350          * Do latency distribution calculations
351          */
352         for (i = 0; i < nr; i++) {
353                 if (total) {
354                         dst[i] = (double) src[i] / (double) total;
355                         dst[i] *= 100.0;
356                         if (dst[i] < 0.01 && src[i])
357                                 dst[i] = 0.01;
358                 } else
359                         dst[i] = 0.0;
360         }
361 }
362
363 /*
364  * To keep the terse format unaltered, add all of the ns latency
365  * buckets to the first us latency bucket
366  */
367 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
368 {
369         unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
370         int i;
371
372         stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
373
374         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
375                 ntotal += ts->io_u_lat_n[i];
376
377         io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
378 }
379
380 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
381 {
382         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
383 }
384
385 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
386 {
387         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
388 }
389
390 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
391 {
392         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
393 }
394
395 static void display_lat(const char *name, unsigned long long min,
396                         unsigned long long max, double mean, double dev,
397                         struct buf_output *out)
398 {
399         const char *base = "(nsec)";
400         char *minp, *maxp;
401
402         if (nsec_to_msec(&min, &max, &mean, &dev))
403                 base = "(msec)";
404         else if (nsec_to_usec(&min, &max, &mean, &dev))
405                 base = "(usec)";
406
407         minp = num2str(min, 6, 1, 0, N2S_NONE);
408         maxp = num2str(max, 6, 1, 0, N2S_NONE);
409
410         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
411                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
412
413         free(minp);
414         free(maxp);
415 }
416
417 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
418                              int ddir, struct buf_output *out)
419 {
420         unsigned long runt;
421         unsigned long long min, max, bw, iops;
422         double mean, dev;
423         char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
424         int i2p;
425
426         if (ddir_sync(ddir)) {
427                 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
428                         log_buf(out, "  %s:\n", "fsync/fdatasync/sync_file_range");
429                         display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
430                         show_clat_percentiles(ts->io_u_sync_plat,
431                                                 ts->sync_stat.samples,
432                                                 ts->percentile_list,
433                                                 ts->percentile_precision,
434                                                 io_ddir_name(ddir), out);
435                 }
436                 return;
437         }
438
439         assert(ddir_rw(ddir));
440
441         if (!ts->runtime[ddir])
442                 return;
443
444         i2p = is_power_of_2(rs->kb_base);
445         runt = ts->runtime[ddir];
446
447         bw = (1000 * ts->io_bytes[ddir]) / runt;
448         io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
449         bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
450         bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
451
452         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
453         iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
454         if (ddir == DDIR_WRITE)
455                 post_st = zbd_write_status(ts);
456         else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
457                 uint64_t total;
458                 double hit;
459
460                 total = ts->cachehit + ts->cachemiss;
461                 hit = (double) ts->cachehit / (double) total;
462                 hit *= 100.0;
463                 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
464                         post_st = NULL;
465         }
466
467         log_buf(out, "  %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
468                         rs->unified_rw_rep ? "mixed" : io_ddir_name(ddir),
469                         iops_p, bw_p, bw_p_alt, io_p,
470                         (unsigned long long) ts->runtime[ddir],
471                         post_st ? : "");
472
473         free(post_st);
474         free(io_p);
475         free(bw_p);
476         free(bw_p_alt);
477         free(iops_p);
478
479         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
480                 display_lat("slat", min, max, mean, dev, out);
481         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
482                 display_lat("clat", min, max, mean, dev, out);
483         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
484                 display_lat(" lat", min, max, mean, dev, out);
485
486         if (ts->clat_percentiles || ts->lat_percentiles) {
487                 const char *name = ts->clat_percentiles ? "clat" : " lat";
488                 uint64_t samples;
489
490                 if (ts->clat_percentiles)
491                         samples = ts->clat_stat[ddir].samples;
492                 else
493                         samples = ts->lat_stat[ddir].samples;
494
495                 show_clat_percentiles(ts->io_u_plat[ddir],
496                                         samples,
497                                         ts->percentile_list,
498                                         ts->percentile_precision, name, out);
499         }
500         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
501                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
502                 const char *bw_str;
503
504                 if ((rs->unit_base == 1) && i2p)
505                         bw_str = "Kibit";
506                 else if (rs->unit_base == 1)
507                         bw_str = "kbit";
508                 else if (i2p)
509                         bw_str = "KiB";
510                 else
511                         bw_str = "kB";
512
513                 if (rs->agg[ddir]) {
514                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
515                         if (p_of_agg > 100.0)
516                                 p_of_agg = 100.0;
517                 }
518
519                 if (rs->unit_base == 1) {
520                         min *= 8.0;
521                         max *= 8.0;
522                         mean *= 8.0;
523                         dev *= 8.0;
524                 }
525
526                 if (mean > fkb_base * fkb_base) {
527                         min /= fkb_base;
528                         max /= fkb_base;
529                         mean /= fkb_base;
530                         dev /= fkb_base;
531                         bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
532                 }
533
534                 log_buf(out, "   bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
535                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
536                         bw_str, min, max, p_of_agg, mean, dev,
537                         (&ts->bw_stat[ddir])->samples);
538         }
539         if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
540                 log_buf(out, "   iops        : min=%5llu, max=%5llu, "
541                         "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
542                         min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
543         }
544 }
545
546 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
547                      const char *msg, struct buf_output *out)
548 {
549         bool new_line = true, shown = false;
550         int i, line = 0;
551
552         for (i = 0; i < nr; i++) {
553                 if (io_u_lat[i] <= 0.0)
554                         continue;
555                 shown = true;
556                 if (new_line) {
557                         if (line)
558                                 log_buf(out, "\n");
559                         log_buf(out, "  lat (%s)   : ", msg);
560                         new_line = false;
561                         line = 0;
562                 }
563                 if (line)
564                         log_buf(out, ", ");
565                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
566                 line++;
567                 if (line == 5)
568                         new_line = true;
569         }
570
571         if (shown)
572                 log_buf(out, "\n");
573
574         return true;
575 }
576
577 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
578 {
579         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
580                                  "250=", "500=", "750=", "1000=", };
581
582         show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
583 }
584
585 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
586 {
587         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
588                                  "250=", "500=", "750=", "1000=", };
589
590         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
591 }
592
593 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
594 {
595         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
596                                  "250=", "500=", "750=", "1000=", "2000=",
597                                  ">=2000=", };
598
599         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
600 }
601
602 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
603 {
604         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
605         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
606         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
607
608         stat_calc_lat_n(ts, io_u_lat_n);
609         stat_calc_lat_u(ts, io_u_lat_u);
610         stat_calc_lat_m(ts, io_u_lat_m);
611
612         show_lat_n(io_u_lat_n, out);
613         show_lat_u(io_u_lat_u, out);
614         show_lat_m(io_u_lat_m, out);
615 }
616
617 static int block_state_category(int block_state)
618 {
619         switch (block_state) {
620         case BLOCK_STATE_UNINIT:
621                 return 0;
622         case BLOCK_STATE_TRIMMED:
623         case BLOCK_STATE_WRITTEN:
624                 return 1;
625         case BLOCK_STATE_WRITE_FAILURE:
626         case BLOCK_STATE_TRIM_FAILURE:
627                 return 2;
628         default:
629                 /* Silence compile warning on some BSDs and have a return */
630                 assert(0);
631                 return -1;
632         }
633 }
634
635 static int compare_block_infos(const void *bs1, const void *bs2)
636 {
637         uint64_t block1 = *(uint64_t *)bs1;
638         uint64_t block2 = *(uint64_t *)bs2;
639         int state1 = BLOCK_INFO_STATE(block1);
640         int state2 = BLOCK_INFO_STATE(block2);
641         int bscat1 = block_state_category(state1);
642         int bscat2 = block_state_category(state2);
643         int cycles1 = BLOCK_INFO_TRIMS(block1);
644         int cycles2 = BLOCK_INFO_TRIMS(block2);
645
646         if (bscat1 < bscat2)
647                 return -1;
648         if (bscat1 > bscat2)
649                 return 1;
650
651         if (cycles1 < cycles2)
652                 return -1;
653         if (cycles1 > cycles2)
654                 return 1;
655
656         if (state1 < state2)
657                 return -1;
658         if (state1 > state2)
659                 return 1;
660
661         assert(block1 == block2);
662         return 0;
663 }
664
665 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
666                                   fio_fp64_t *plist, unsigned int **percentiles,
667                                   unsigned int *types)
668 {
669         int len = 0;
670         int i, nr_uninit;
671
672         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
673
674         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
675                 len++;
676
677         if (!len)
678                 return 0;
679
680         /*
681          * Sort the percentile list. Note that it may already be sorted if
682          * we are using the default values, but since it's a short list this
683          * isn't a worry. Also note that this does not work for NaN values.
684          */
685         if (len > 1)
686                 qsort(plist, len, sizeof(plist[0]), double_cmp);
687
688         /* Start only after the uninit entries end */
689         for (nr_uninit = 0;
690              nr_uninit < nr_block_infos
691                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
692              nr_uninit ++)
693                 ;
694
695         if (nr_uninit == nr_block_infos)
696                 return 0;
697
698         *percentiles = calloc(len, sizeof(**percentiles));
699
700         for (i = 0; i < len; i++) {
701                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
702                                 + nr_uninit;
703                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
704         }
705
706         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
707         for (i = 0; i < nr_block_infos; i++)
708                 types[BLOCK_INFO_STATE(block_infos[i])]++;
709
710         return len;
711 }
712
713 static const char *block_state_names[] = {
714         [BLOCK_STATE_UNINIT] = "unwritten",
715         [BLOCK_STATE_TRIMMED] = "trimmed",
716         [BLOCK_STATE_WRITTEN] = "written",
717         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
718         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
719 };
720
721 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
722                              fio_fp64_t *plist, struct buf_output *out)
723 {
724         int len, pos, i;
725         unsigned int *percentiles = NULL;
726         unsigned int block_state_counts[BLOCK_STATE_COUNT];
727
728         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
729                                      &percentiles, block_state_counts);
730
731         log_buf(out, "  block lifetime percentiles :\n   |");
732         pos = 0;
733         for (i = 0; i < len; i++) {
734                 uint32_t block_info = percentiles[i];
735 #define LINE_LENGTH     75
736                 char str[LINE_LENGTH];
737                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
738                                      plist[i].u.f, block_info,
739                                      i == len - 1 ? '\n' : ',');
740                 assert(strln < LINE_LENGTH);
741                 if (pos + strln > LINE_LENGTH) {
742                         pos = 0;
743                         log_buf(out, "\n   |");
744                 }
745                 log_buf(out, "%s", str);
746                 pos += strln;
747 #undef LINE_LENGTH
748         }
749         if (percentiles)
750                 free(percentiles);
751
752         log_buf(out, "        states               :");
753         for (i = 0; i < BLOCK_STATE_COUNT; i++)
754                 log_buf(out, " %s=%u%c",
755                          block_state_names[i], block_state_counts[i],
756                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
757 }
758
759 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
760 {
761         char *p1, *p1alt, *p2;
762         unsigned long long bw_mean, iops_mean;
763         const int i2p = is_power_of_2(ts->kb_base);
764
765         if (!ts->ss_dur)
766                 return;
767
768         bw_mean = steadystate_bw_mean(ts);
769         iops_mean = steadystate_iops_mean(ts);
770
771         p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
772         p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
773         p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
774
775         log_buf(out, "  steadystate  : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
776                 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
777                 p1, p1alt, p2,
778                 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
779                 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
780                 ts->ss_criterion.u.f,
781                 ts->ss_state & FIO_SS_PCT ? "%" : "");
782
783         free(p1);
784         free(p1alt);
785         free(p2);
786 }
787
788 static void show_agg_stats(struct disk_util_agg *agg, int terse,
789                            struct buf_output *out)
790 {
791         if (!agg->slavecount)
792                 return;
793
794         if (!terse) {
795                 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
796                          "aggrticks=%llu/%llu, aggrin_queue=%llu, "
797                          "aggrutil=%3.2f%%",
798                         (unsigned long long) agg->ios[0] / agg->slavecount,
799                         (unsigned long long) agg->ios[1] / agg->slavecount,
800                         (unsigned long long) agg->merges[0] / agg->slavecount,
801                         (unsigned long long) agg->merges[1] / agg->slavecount,
802                         (unsigned long long) agg->ticks[0] / agg->slavecount,
803                         (unsigned long long) agg->ticks[1] / agg->slavecount,
804                         (unsigned long long) agg->time_in_queue / agg->slavecount,
805                         agg->max_util.u.f);
806         } else {
807                 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
808                         (unsigned long long) agg->ios[0] / agg->slavecount,
809                         (unsigned long long) agg->ios[1] / agg->slavecount,
810                         (unsigned long long) agg->merges[0] / agg->slavecount,
811                         (unsigned long long) agg->merges[1] / agg->slavecount,
812                         (unsigned long long) agg->ticks[0] / agg->slavecount,
813                         (unsigned long long) agg->ticks[1] / agg->slavecount,
814                         (unsigned long long) agg->time_in_queue / agg->slavecount,
815                         agg->max_util.u.f);
816         }
817 }
818
819 static void aggregate_slaves_stats(struct disk_util *masterdu)
820 {
821         struct disk_util_agg *agg = &masterdu->agg;
822         struct disk_util_stat *dus;
823         struct flist_head *entry;
824         struct disk_util *slavedu;
825         double util;
826
827         flist_for_each(entry, &masterdu->slaves) {
828                 slavedu = flist_entry(entry, struct disk_util, slavelist);
829                 dus = &slavedu->dus;
830                 agg->ios[0] += dus->s.ios[0];
831                 agg->ios[1] += dus->s.ios[1];
832                 agg->merges[0] += dus->s.merges[0];
833                 agg->merges[1] += dus->s.merges[1];
834                 agg->sectors[0] += dus->s.sectors[0];
835                 agg->sectors[1] += dus->s.sectors[1];
836                 agg->ticks[0] += dus->s.ticks[0];
837                 agg->ticks[1] += dus->s.ticks[1];
838                 agg->time_in_queue += dus->s.time_in_queue;
839                 agg->slavecount++;
840
841                 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
842                 /* System utilization is the utilization of the
843                  * component with the highest utilization.
844                  */
845                 if (util > agg->max_util.u.f)
846                         agg->max_util.u.f = util;
847
848         }
849
850         if (agg->max_util.u.f > 100.0)
851                 agg->max_util.u.f = 100.0;
852 }
853
854 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
855                      int terse, struct buf_output *out)
856 {
857         double util = 0;
858
859         if (dus->s.msec)
860                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
861         if (util > 100.0)
862                 util = 100.0;
863
864         if (!terse) {
865                 if (agg->slavecount)
866                         log_buf(out, "  ");
867
868                 log_buf(out, "  %s: ios=%llu/%llu, merge=%llu/%llu, "
869                          "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
870                                 dus->name,
871                                 (unsigned long long) dus->s.ios[0],
872                                 (unsigned long long) dus->s.ios[1],
873                                 (unsigned long long) dus->s.merges[0],
874                                 (unsigned long long) dus->s.merges[1],
875                                 (unsigned long long) dus->s.ticks[0],
876                                 (unsigned long long) dus->s.ticks[1],
877                                 (unsigned long long) dus->s.time_in_queue,
878                                 util);
879         } else {
880                 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
881                                 dus->name,
882                                 (unsigned long long) dus->s.ios[0],
883                                 (unsigned long long) dus->s.ios[1],
884                                 (unsigned long long) dus->s.merges[0],
885                                 (unsigned long long) dus->s.merges[1],
886                                 (unsigned long long) dus->s.ticks[0],
887                                 (unsigned long long) dus->s.ticks[1],
888                                 (unsigned long long) dus->s.time_in_queue,
889                                 util);
890         }
891
892         /*
893          * If the device has slaves, aggregate the stats for
894          * those slave devices also.
895          */
896         show_agg_stats(agg, terse, out);
897
898         if (!terse)
899                 log_buf(out, "\n");
900 }
901
902 void json_array_add_disk_util(struct disk_util_stat *dus,
903                 struct disk_util_agg *agg, struct json_array *array)
904 {
905         struct json_object *obj;
906         double util = 0;
907
908         if (dus->s.msec)
909                 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
910         if (util > 100.0)
911                 util = 100.0;
912
913         obj = json_create_object();
914         json_array_add_value_object(array, obj);
915
916         json_object_add_value_string(obj, "name", dus->name);
917         json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
918         json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
919         json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
920         json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
921         json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
922         json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
923         json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
924         json_object_add_value_float(obj, "util", util);
925
926         /*
927          * If the device has slaves, aggregate the stats for
928          * those slave devices also.
929          */
930         if (!agg->slavecount)
931                 return;
932         json_object_add_value_int(obj, "aggr_read_ios",
933                                 agg->ios[0] / agg->slavecount);
934         json_object_add_value_int(obj, "aggr_write_ios",
935                                 agg->ios[1] / agg->slavecount);
936         json_object_add_value_int(obj, "aggr_read_merges",
937                                 agg->merges[0] / agg->slavecount);
938         json_object_add_value_int(obj, "aggr_write_merge",
939                                 agg->merges[1] / agg->slavecount);
940         json_object_add_value_int(obj, "aggr_read_ticks",
941                                 agg->ticks[0] / agg->slavecount);
942         json_object_add_value_int(obj, "aggr_write_ticks",
943                                 agg->ticks[1] / agg->slavecount);
944         json_object_add_value_int(obj, "aggr_in_queue",
945                                 agg->time_in_queue / agg->slavecount);
946         json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
947 }
948
949 static void json_object_add_disk_utils(struct json_object *obj,
950                                        struct flist_head *head)
951 {
952         struct json_array *array = json_create_array();
953         struct flist_head *entry;
954         struct disk_util *du;
955
956         json_object_add_value_array(obj, "disk_util", array);
957
958         flist_for_each(entry, head) {
959                 du = flist_entry(entry, struct disk_util, list);
960
961                 aggregate_slaves_stats(du);
962                 json_array_add_disk_util(&du->dus, &du->agg, array);
963         }
964 }
965
966 void show_disk_util(int terse, struct json_object *parent,
967                     struct buf_output *out)
968 {
969         struct flist_head *entry;
970         struct disk_util *du;
971         bool do_json;
972
973         if (!is_running_backend())
974                 return;
975
976         if (flist_empty(&disk_list)) {
977                 return;
978         }
979
980         if ((output_format & FIO_OUTPUT_JSON) && parent)
981                 do_json = true;
982         else
983                 do_json = false;
984
985         if (!terse && !do_json)
986                 log_buf(out, "\nDisk stats (read/write):\n");
987
988         if (do_json)
989                 json_object_add_disk_utils(parent, &disk_list);
990         else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
991                 flist_for_each(entry, &disk_list) {
992                         du = flist_entry(entry, struct disk_util, list);
993
994                         aggregate_slaves_stats(du);
995                         print_disk_util(&du->dus, &du->agg, terse, out);
996                 }
997         }
998 }
999
1000 static void show_thread_status_normal(struct thread_stat *ts,
1001                                       struct group_run_stats *rs,
1002                                       struct buf_output *out)
1003 {
1004         double usr_cpu, sys_cpu;
1005         unsigned long runtime;
1006         double io_u_dist[FIO_IO_U_MAP_NR];
1007         time_t time_p;
1008         char time_buf[32];
1009
1010         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1011                 return;
1012                 
1013         memset(time_buf, 0, sizeof(time_buf));
1014
1015         time(&time_p);
1016         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1017
1018         if (!ts->error) {
1019                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1020                                         ts->name, ts->groupid, ts->members,
1021                                         ts->error, (int) ts->pid, time_buf);
1022         } else {
1023                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1024                                         ts->name, ts->groupid, ts->members,
1025                                         ts->error, ts->verror, (int) ts->pid,
1026                                         time_buf);
1027         }
1028
1029         if (strlen(ts->description))
1030                 log_buf(out, "  Description  : [%s]\n", ts->description);
1031
1032         if (ts->io_bytes[DDIR_READ])
1033                 show_ddir_status(rs, ts, DDIR_READ, out);
1034         if (ts->io_bytes[DDIR_WRITE])
1035                 show_ddir_status(rs, ts, DDIR_WRITE, out);
1036         if (ts->io_bytes[DDIR_TRIM])
1037                 show_ddir_status(rs, ts, DDIR_TRIM, out);
1038
1039         show_latencies(ts, out);
1040
1041         if (ts->sync_stat.samples)
1042                 show_ddir_status(rs, ts, DDIR_SYNC, out);
1043
1044         runtime = ts->total_run_time;
1045         if (runtime) {
1046                 double runt = (double) runtime;
1047
1048                 usr_cpu = (double) ts->usr_time * 100 / runt;
1049                 sys_cpu = (double) ts->sys_time * 100 / runt;
1050         } else {
1051                 usr_cpu = 0;
1052                 sys_cpu = 0;
1053         }
1054
1055         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1056                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1057                         (unsigned long long) ts->ctx,
1058                         (unsigned long long) ts->majf,
1059                         (unsigned long long) ts->minf);
1060
1061         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1062         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1063                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1064                                         io_u_dist[1], io_u_dist[2],
1065                                         io_u_dist[3], io_u_dist[4],
1066                                         io_u_dist[5], io_u_dist[6]);
1067
1068         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1069         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1070                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1071                                         io_u_dist[1], io_u_dist[2],
1072                                         io_u_dist[3], io_u_dist[4],
1073                                         io_u_dist[5], io_u_dist[6]);
1074         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1075         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1076                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1077                                         io_u_dist[1], io_u_dist[2],
1078                                         io_u_dist[3], io_u_dist[4],
1079                                         io_u_dist[5], io_u_dist[6]);
1080         log_buf(out, "     issued rwts: total=%llu,%llu,%llu,%llu"
1081                                  " short=%llu,%llu,%llu,0"
1082                                  " dropped=%llu,%llu,%llu,0\n",
1083                                         (unsigned long long) ts->total_io_u[0],
1084                                         (unsigned long long) ts->total_io_u[1],
1085                                         (unsigned long long) ts->total_io_u[2],
1086                                         (unsigned long long) ts->total_io_u[3],
1087                                         (unsigned long long) ts->short_io_u[0],
1088                                         (unsigned long long) ts->short_io_u[1],
1089                                         (unsigned long long) ts->short_io_u[2],
1090                                         (unsigned long long) ts->drop_io_u[0],
1091                                         (unsigned long long) ts->drop_io_u[1],
1092                                         (unsigned long long) ts->drop_io_u[2]);
1093         if (ts->continue_on_error) {
1094                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
1095                                         (unsigned long long)ts->total_err_count,
1096                                         ts->first_error,
1097                                         strerror(ts->first_error));
1098         }
1099         if (ts->latency_depth) {
1100                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1101                                         (unsigned long long)ts->latency_target,
1102                                         (unsigned long long)ts->latency_window,
1103                                         ts->latency_percentile.u.f,
1104                                         ts->latency_depth);
1105         }
1106
1107         if (ts->nr_block_infos)
1108                 show_block_infos(ts->nr_block_infos, ts->block_infos,
1109                                   ts->percentile_list, out);
1110
1111         if (ts->ss_dur)
1112                 show_ss_normal(ts, out);
1113 }
1114
1115 static void show_ddir_status_terse(struct thread_stat *ts,
1116                                    struct group_run_stats *rs, int ddir,
1117                                    int ver, struct buf_output *out)
1118 {
1119         unsigned long long min, max, minv, maxv, bw, iops;
1120         unsigned long long *ovals = NULL;
1121         double mean, dev;
1122         unsigned int len;
1123         int i, bw_stat;
1124
1125         assert(ddir_rw(ddir));
1126
1127         iops = bw = 0;
1128         if (ts->runtime[ddir]) {
1129                 uint64_t runt = ts->runtime[ddir];
1130
1131                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1132                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1133         }
1134
1135         log_buf(out, ";%llu;%llu;%llu;%llu",
1136                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1137                                         (unsigned long long) ts->runtime[ddir]);
1138
1139         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1140                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1141         else
1142                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1143
1144         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1145                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1146         else
1147                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1148
1149         if (ts->clat_percentiles || ts->lat_percentiles) {
1150                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
1151                                         ts->clat_stat[ddir].samples,
1152                                         ts->percentile_list, &ovals, &maxv,
1153                                         &minv);
1154         } else
1155                 len = 0;
1156
1157         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1158                 if (i >= len) {
1159                         log_buf(out, ";0%%=0");
1160                         continue;
1161                 }
1162                 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1163         }
1164
1165         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1166                 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1167         else
1168                 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1169
1170         free(ovals);
1171
1172         bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1173         if (bw_stat) {
1174                 double p_of_agg = 100.0;
1175
1176                 if (rs->agg[ddir]) {
1177                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1178                         if (p_of_agg > 100.0)
1179                                 p_of_agg = 100.0;
1180                 }
1181
1182                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1183         } else
1184                 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1185
1186         if (ver == 5) {
1187                 if (bw_stat)
1188                         log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1189                 else
1190                         log_buf(out, ";%lu", 0UL);
1191
1192                 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1193                         log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1194                                 mean, dev, (&ts->iops_stat[ddir])->samples);
1195                 else
1196                         log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1197         }
1198 }
1199
1200 static void add_ddir_status_json(struct thread_stat *ts,
1201                 struct group_run_stats *rs, int ddir, struct json_object *parent)
1202 {
1203         unsigned long long min, max, minv, maxv;
1204         unsigned long long bw_bytes, bw;
1205         unsigned long long *ovals = NULL;
1206         double mean, dev, iops;
1207         unsigned int len;
1208         int i;
1209         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object = NULL;
1210         char buf[120];
1211         double p_of_agg = 100.0;
1212
1213         assert(ddir_rw(ddir) || ddir_sync(ddir));
1214
1215         if (ts->unified_rw_rep && ddir != DDIR_READ)
1216                 return;
1217
1218         dir_object = json_create_object();
1219         json_object_add_value_object(parent,
1220                 ts->unified_rw_rep ? "mixed" : io_ddir_name(ddir), dir_object);
1221
1222         if (ddir_rw(ddir)) {
1223                 bw_bytes = 0;
1224                 bw = 0;
1225                 iops = 0.0;
1226                 if (ts->runtime[ddir]) {
1227                         uint64_t runt = ts->runtime[ddir];
1228
1229                         bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1230                         bw = bw_bytes / 1024; /* KiB/s */
1231                         iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1232                 }
1233
1234                 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1235                 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1236                 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1237                 json_object_add_value_int(dir_object, "bw", bw);
1238                 json_object_add_value_float(dir_object, "iops", iops);
1239                 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1240                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1241                 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1242                 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1243
1244                 if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
1245                         min = max = 0;
1246                         mean = dev = 0.0;
1247                 }
1248                 tmp_object = json_create_object();
1249                 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1250                 json_object_add_value_int(tmp_object, "min", min);
1251                 json_object_add_value_int(tmp_object, "max", max);
1252                 json_object_add_value_float(tmp_object, "mean", mean);
1253                 json_object_add_value_float(tmp_object, "stddev", dev);
1254
1255                 if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
1256                         min = max = 0;
1257                         mean = dev = 0.0;
1258                 }
1259                 tmp_object = json_create_object();
1260                 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1261                 json_object_add_value_int(tmp_object, "min", min);
1262                 json_object_add_value_int(tmp_object, "max", max);
1263                 json_object_add_value_float(tmp_object, "mean", mean);
1264                 json_object_add_value_float(tmp_object, "stddev", dev);
1265         } else {
1266                 if (!calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
1267                         min = max = 0;
1268                         mean = dev = 0.0;
1269                 }
1270
1271                 tmp_object = json_create_object();
1272                 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1273                 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1274                 json_object_add_value_int(tmp_object, "min", min);
1275                 json_object_add_value_int(tmp_object, "max", max);
1276                 json_object_add_value_float(tmp_object, "mean", mean);
1277                 json_object_add_value_float(tmp_object, "stddev", dev);
1278         }
1279
1280         if (ts->clat_percentiles || ts->lat_percentiles) {
1281                 if (ddir_rw(ddir)) {
1282                         uint64_t samples;
1283
1284                         if (ts->clat_percentiles)
1285                                 samples = ts->clat_stat[ddir].samples;
1286                         else
1287                                 samples = ts->lat_stat[ddir].samples;
1288
1289                         len = calc_clat_percentiles(ts->io_u_plat[ddir],
1290                                         samples, ts->percentile_list, &ovals,
1291                                         &maxv, &minv);
1292                 } else {
1293                         len = calc_clat_percentiles(ts->io_u_sync_plat,
1294                                         ts->sync_stat.samples,
1295                                         ts->percentile_list, &ovals, &maxv,
1296                                         &minv);
1297                 }
1298
1299                 if (len > FIO_IO_U_LIST_MAX_LEN)
1300                         len = FIO_IO_U_LIST_MAX_LEN;
1301         } else
1302                 len = 0;
1303
1304         percentile_object = json_create_object();
1305         if (ts->clat_percentiles)
1306                 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1307         for (i = 0; i < len; i++) {
1308                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1309                 json_object_add_value_int(percentile_object, buf, ovals[i]);
1310         }
1311
1312         free(ovals);
1313
1314         if (output_format & FIO_OUTPUT_JSON_PLUS) {
1315                 clat_bins_object = json_create_object();
1316                 if (ts->clat_percentiles)
1317                         json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1318
1319                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
1320                         if (ddir_rw(ddir)) {
1321                                 if (ts->io_u_plat[ddir][i]) {
1322                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1323                                         json_object_add_value_int(clat_bins_object, buf, ts->io_u_plat[ddir][i]);
1324                                 }
1325                         } else {
1326                                 if (ts->io_u_sync_plat[i]) {
1327                                         snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1328                                         json_object_add_value_int(clat_bins_object, buf, ts->io_u_sync_plat[i]);
1329                                 }
1330                         }
1331                 }
1332         }
1333
1334         if (!ddir_rw(ddir))
1335                 return;
1336
1337         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
1338                 min = max = 0;
1339                 mean = dev = 0.0;
1340         }
1341         tmp_object = json_create_object();
1342         json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1343         json_object_add_value_int(tmp_object, "min", min);
1344         json_object_add_value_int(tmp_object, "max", max);
1345         json_object_add_value_float(tmp_object, "mean", mean);
1346         json_object_add_value_float(tmp_object, "stddev", dev);
1347         if (ts->lat_percentiles)
1348                 json_object_add_value_object(tmp_object, "percentile", percentile_object);
1349         if (output_format & FIO_OUTPUT_JSON_PLUS && ts->lat_percentiles)
1350                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
1351
1352         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1353                 if (rs->agg[ddir]) {
1354                         p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1355                         if (p_of_agg > 100.0)
1356                                 p_of_agg = 100.0;
1357                 }
1358         } else {
1359                 min = max = 0;
1360                 p_of_agg = mean = dev = 0.0;
1361         }
1362         json_object_add_value_int(dir_object, "bw_min", min);
1363         json_object_add_value_int(dir_object, "bw_max", max);
1364         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1365         json_object_add_value_float(dir_object, "bw_mean", mean);
1366         json_object_add_value_float(dir_object, "bw_dev", dev);
1367         json_object_add_value_int(dir_object, "bw_samples",
1368                                 (&ts->bw_stat[ddir])->samples);
1369
1370         if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1371                 min = max = 0;
1372                 mean = dev = 0.0;
1373         }
1374         json_object_add_value_int(dir_object, "iops_min", min);
1375         json_object_add_value_int(dir_object, "iops_max", max);
1376         json_object_add_value_float(dir_object, "iops_mean", mean);
1377         json_object_add_value_float(dir_object, "iops_stddev", dev);
1378         json_object_add_value_int(dir_object, "iops_samples",
1379                                 (&ts->iops_stat[ddir])->samples);
1380
1381         if (ts->cachehit + ts->cachemiss) {
1382                 uint64_t total;
1383                 double hit;
1384
1385                 total = ts->cachehit + ts->cachemiss;
1386                 hit = (double) ts->cachehit / (double) total;
1387                 hit *= 100.0;
1388                 json_object_add_value_float(dir_object, "cachehit", hit);
1389         }
1390 }
1391
1392 static void show_thread_status_terse_all(struct thread_stat *ts,
1393                                          struct group_run_stats *rs, int ver,
1394                                          struct buf_output *out)
1395 {
1396         double io_u_dist[FIO_IO_U_MAP_NR];
1397         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1398         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1399         double usr_cpu, sys_cpu;
1400         int i;
1401
1402         /* General Info */
1403         if (ver == 2)
1404                 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1405         else
1406                 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1407                         ts->name, ts->groupid, ts->error);
1408
1409         /* Log Read Status */
1410         show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1411         /* Log Write Status */
1412         show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1413         /* Log Trim Status */
1414         if (ver == 2 || ver == 4 || ver == 5)
1415                 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1416
1417         /* CPU Usage */
1418         if (ts->total_run_time) {
1419                 double runt = (double) ts->total_run_time;
1420
1421                 usr_cpu = (double) ts->usr_time * 100 / runt;
1422                 sys_cpu = (double) ts->sys_time * 100 / runt;
1423         } else {
1424                 usr_cpu = 0;
1425                 sys_cpu = 0;
1426         }
1427
1428         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1429                                                 (unsigned long long) ts->ctx,
1430                                                 (unsigned long long) ts->majf,
1431                                                 (unsigned long long) ts->minf);
1432
1433         /* Calc % distribution of IO depths, usecond, msecond latency */
1434         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1435         stat_calc_lat_nu(ts, io_u_lat_u);
1436         stat_calc_lat_m(ts, io_u_lat_m);
1437
1438         /* Only show fixed 7 I/O depth levels*/
1439         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1440                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1441                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1442
1443         /* Microsecond latency */
1444         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1445                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1446         /* Millisecond latency */
1447         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1448                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1449
1450         /* disk util stats, if any */
1451         if (ver >= 3 && is_running_backend())
1452                 show_disk_util(1, NULL, out);
1453
1454         /* Additional output if continue_on_error set - default off*/
1455         if (ts->continue_on_error)
1456                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1457
1458         /* Additional output if description is set */
1459         if (strlen(ts->description)) {
1460                 if (ver == 2)
1461                         log_buf(out, "\n");
1462                 log_buf(out, ";%s", ts->description);
1463         }
1464
1465         log_buf(out, "\n");
1466 }
1467
1468 static void json_add_job_opts(struct json_object *root, const char *name,
1469                               struct flist_head *opt_list)
1470 {
1471         struct json_object *dir_object;
1472         struct flist_head *entry;
1473         struct print_option *p;
1474
1475         if (flist_empty(opt_list))
1476                 return;
1477
1478         dir_object = json_create_object();
1479         json_object_add_value_object(root, name, dir_object);
1480
1481         flist_for_each(entry, opt_list) {
1482                 const char *pos = "";
1483
1484                 p = flist_entry(entry, struct print_option, list);
1485                 if (p->value)
1486                         pos = p->value;
1487                 json_object_add_value_string(dir_object, p->name, pos);
1488         }
1489 }
1490
1491 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1492                                                    struct group_run_stats *rs,
1493                                                    struct flist_head *opt_list)
1494 {
1495         struct json_object *root, *tmp;
1496         struct jobs_eta *je;
1497         double io_u_dist[FIO_IO_U_MAP_NR];
1498         double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1499         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1500         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1501         double usr_cpu, sys_cpu;
1502         int i;
1503         size_t size;
1504
1505         root = json_create_object();
1506         json_object_add_value_string(root, "jobname", ts->name);
1507         json_object_add_value_int(root, "groupid", ts->groupid);
1508         json_object_add_value_int(root, "error", ts->error);
1509
1510         /* ETA Info */
1511         je = get_jobs_eta(true, &size);
1512         if (je) {
1513                 json_object_add_value_int(root, "eta", je->eta_sec);
1514                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1515         }
1516
1517         if (opt_list)
1518                 json_add_job_opts(root, "job options", opt_list);
1519
1520         add_ddir_status_json(ts, rs, DDIR_READ, root);
1521         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1522         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1523         add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1524
1525         /* CPU Usage */
1526         if (ts->total_run_time) {
1527                 double runt = (double) ts->total_run_time;
1528
1529                 usr_cpu = (double) ts->usr_time * 100 / runt;
1530                 sys_cpu = (double) ts->sys_time * 100 / runt;
1531         } else {
1532                 usr_cpu = 0;
1533                 sys_cpu = 0;
1534         }
1535         json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1536         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1537         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1538         json_object_add_value_int(root, "ctx", ts->ctx);
1539         json_object_add_value_int(root, "majf", ts->majf);
1540         json_object_add_value_int(root, "minf", ts->minf);
1541
1542         /* Calc % distribution of IO depths */
1543         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1544         tmp = json_create_object();
1545         json_object_add_value_object(root, "iodepth_level", tmp);
1546         /* Only show fixed 7 I/O depth levels*/
1547         for (i = 0; i < 7; i++) {
1548                 char name[20];
1549                 if (i < 6)
1550                         snprintf(name, 20, "%d", 1 << i);
1551                 else
1552                         snprintf(name, 20, ">=%d", 1 << i);
1553                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1554         }
1555
1556         /* Calc % distribution of submit IO depths */
1557         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1558         tmp = json_create_object();
1559         json_object_add_value_object(root, "iodepth_submit", tmp);
1560         /* Only show fixed 7 I/O depth levels*/
1561         for (i = 0; i < 7; i++) {
1562                 char name[20];
1563                 if (i == 0)
1564                         snprintf(name, 20, "0");
1565                 else if (i < 6)
1566                         snprintf(name, 20, "%d", 1 << (i+1));
1567                 else
1568                         snprintf(name, 20, ">=%d", 1 << i);
1569                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1570         }
1571
1572         /* Calc % distribution of completion IO depths */
1573         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1574         tmp = json_create_object();
1575         json_object_add_value_object(root, "iodepth_complete", tmp);
1576         /* Only show fixed 7 I/O depth levels*/
1577         for (i = 0; i < 7; i++) {
1578                 char name[20];
1579                 if (i == 0)
1580                         snprintf(name, 20, "0");
1581                 else if (i < 6)
1582                         snprintf(name, 20, "%d", 1 << (i+1));
1583                 else
1584                         snprintf(name, 20, ">=%d", 1 << i);
1585                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1586         }
1587
1588         /* Calc % distribution of nsecond, usecond, msecond latency */
1589         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1590         stat_calc_lat_n(ts, io_u_lat_n);
1591         stat_calc_lat_u(ts, io_u_lat_u);
1592         stat_calc_lat_m(ts, io_u_lat_m);
1593
1594         /* Nanosecond latency */
1595         tmp = json_create_object();
1596         json_object_add_value_object(root, "latency_ns", tmp);
1597         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1598                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1599                                  "250", "500", "750", "1000", };
1600                 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1601         }
1602         /* Microsecond latency */
1603         tmp = json_create_object();
1604         json_object_add_value_object(root, "latency_us", tmp);
1605         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1606                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1607                                  "250", "500", "750", "1000", };
1608                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1609         }
1610         /* Millisecond latency */
1611         tmp = json_create_object();
1612         json_object_add_value_object(root, "latency_ms", tmp);
1613         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1614                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1615                                  "250", "500", "750", "1000", "2000",
1616                                  ">=2000", };
1617                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1618         }
1619
1620         /* Additional output if continue_on_error set - default off*/
1621         if (ts->continue_on_error) {
1622                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1623                 json_object_add_value_int(root, "first_error", ts->first_error);
1624         }
1625
1626         if (ts->latency_depth) {
1627                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1628                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1629                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1630                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1631         }
1632
1633         /* Additional output if description is set */
1634         if (strlen(ts->description))
1635                 json_object_add_value_string(root, "desc", ts->description);
1636
1637         if (ts->nr_block_infos) {
1638                 /* Block error histogram and types */
1639                 int len;
1640                 unsigned int *percentiles = NULL;
1641                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1642
1643                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1644                                              ts->percentile_list,
1645                                              &percentiles, block_state_counts);
1646
1647                 if (len) {
1648                         struct json_object *block, *percentile_object, *states;
1649                         int state;
1650                         block = json_create_object();
1651                         json_object_add_value_object(root, "block", block);
1652
1653                         percentile_object = json_create_object();
1654                         json_object_add_value_object(block, "percentiles",
1655                                                      percentile_object);
1656                         for (i = 0; i < len; i++) {
1657                                 char buf[20];
1658                                 snprintf(buf, sizeof(buf), "%f",
1659                                          ts->percentile_list[i].u.f);
1660                                 json_object_add_value_int(percentile_object,
1661                                                           buf,
1662                                                           percentiles[i]);
1663                         }
1664
1665                         states = json_create_object();
1666                         json_object_add_value_object(block, "states", states);
1667                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1668                                 json_object_add_value_int(states,
1669                                         block_state_names[state],
1670                                         block_state_counts[state]);
1671                         }
1672                         free(percentiles);
1673                 }
1674         }
1675
1676         if (ts->ss_dur) {
1677                 struct json_object *data;
1678                 struct json_array *iops, *bw;
1679                 int j, k, l;
1680                 char ss_buf[64];
1681
1682                 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1683                         ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1684                         ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1685                         (float) ts->ss_limit.u.f,
1686                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1687
1688                 tmp = json_create_object();
1689                 json_object_add_value_object(root, "steadystate", tmp);
1690                 json_object_add_value_string(tmp, "ss", ss_buf);
1691                 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1692                 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
1693
1694                 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
1695                         ts->ss_state & FIO_SS_PCT ? "%" : "");
1696                 json_object_add_value_string(tmp, "criterion", ss_buf);
1697                 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
1698                 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
1699
1700                 data = json_create_object();
1701                 json_object_add_value_object(tmp, "data", data);
1702                 bw = json_create_array();
1703                 iops = json_create_array();
1704
1705                 /*
1706                 ** if ss was attained or the buffer is not full,
1707                 ** ss->head points to the first element in the list.
1708                 ** otherwise it actually points to the second element
1709                 ** in the list
1710                 */
1711                 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
1712                         j = ts->ss_head;
1713                 else
1714                         j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
1715                 for (l = 0; l < ts->ss_dur; l++) {
1716                         k = (j + l) % ts->ss_dur;
1717                         json_array_add_value_int(bw, ts->ss_bw_data[k]);
1718                         json_array_add_value_int(iops, ts->ss_iops_data[k]);
1719                 }
1720                 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
1721                 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
1722                 json_object_add_value_array(data, "iops", iops);
1723                 json_object_add_value_array(data, "bw", bw);
1724         }
1725
1726         return root;
1727 }
1728
1729 static void show_thread_status_terse(struct thread_stat *ts,
1730                                      struct group_run_stats *rs,
1731                                      struct buf_output *out)
1732 {
1733         if (terse_version >= 2 && terse_version <= 5)
1734                 show_thread_status_terse_all(ts, rs, terse_version, out);
1735         else
1736                 log_err("fio: bad terse version!? %d\n", terse_version);
1737 }
1738
1739 struct json_object *show_thread_status(struct thread_stat *ts,
1740                                        struct group_run_stats *rs,
1741                                        struct flist_head *opt_list,
1742                                        struct buf_output *out)
1743 {
1744         struct json_object *ret = NULL;
1745
1746         if (output_format & FIO_OUTPUT_TERSE)
1747                 show_thread_status_terse(ts, rs,  out);
1748         if (output_format & FIO_OUTPUT_JSON)
1749                 ret = show_thread_status_json(ts, rs, opt_list);
1750         if (output_format & FIO_OUTPUT_NORMAL)
1751                 show_thread_status_normal(ts, rs,  out);
1752
1753         return ret;
1754 }
1755
1756 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1757 {
1758         double mean, S;
1759
1760         dst->min_val = min(dst->min_val, src->min_val);
1761         dst->max_val = max(dst->max_val, src->max_val);
1762
1763         /*
1764          * Compute new mean and S after the merge
1765          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1766          *  #Parallel_algorithm>
1767          */
1768         if (first) {
1769                 mean = src->mean.u.f;
1770                 S = src->S.u.f;
1771         } else {
1772                 double delta = src->mean.u.f - dst->mean.u.f;
1773
1774                 mean = ((src->mean.u.f * src->samples) +
1775                         (dst->mean.u.f * dst->samples)) /
1776                         (dst->samples + src->samples);
1777
1778                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1779                         (dst->samples * src->samples) /
1780                         (dst->samples + src->samples);
1781         }
1782
1783         dst->samples += src->samples;
1784         dst->mean.u.f = mean;
1785         dst->S.u.f = S;
1786
1787 }
1788
1789 /*
1790  * We sum two kinds of stats - one that is time based, in which case we
1791  * apply the proper summing technique, and then one that is iops/bw
1792  * numbers. For group_reporting, we should just add those up, not make
1793  * them the mean of everything.
1794  */
1795 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
1796                      bool pure_sum)
1797 {
1798         if (src->samples == 0)
1799                 return;
1800
1801         if (!pure_sum) {
1802                 __sum_stat(dst, src, first);
1803                 return;
1804         }
1805
1806         if (first) {
1807                 dst->min_val = src->min_val;
1808                 dst->max_val = src->max_val;
1809                 dst->samples = src->samples;
1810                 dst->mean.u.f = src->mean.u.f;
1811                 dst->S.u.f = src->S.u.f;
1812         } else {
1813                 dst->min_val += src->min_val;
1814                 dst->max_val += src->max_val;
1815                 dst->samples += src->samples;
1816                 dst->mean.u.f += src->mean.u.f;
1817                 dst->S.u.f += src->S.u.f;
1818         }
1819 }
1820
1821 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1822 {
1823         int i;
1824
1825         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1826                 if (dst->max_run[i] < src->max_run[i])
1827                         dst->max_run[i] = src->max_run[i];
1828                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1829                         dst->min_run[i] = src->min_run[i];
1830                 if (dst->max_bw[i] < src->max_bw[i])
1831                         dst->max_bw[i] = src->max_bw[i];
1832                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1833                         dst->min_bw[i] = src->min_bw[i];
1834
1835                 dst->iobytes[i] += src->iobytes[i];
1836                 dst->agg[i] += src->agg[i];
1837         }
1838
1839         if (!dst->kb_base)
1840                 dst->kb_base = src->kb_base;
1841         if (!dst->unit_base)
1842                 dst->unit_base = src->unit_base;
1843         if (!dst->sig_figs)
1844                 dst->sig_figs = src->sig_figs;
1845 }
1846
1847 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1848                       bool first)
1849 {
1850         int l, k;
1851
1852         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1853                 if (!dst->unified_rw_rep) {
1854                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
1855                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
1856                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
1857                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
1858                         sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
1859
1860                         dst->io_bytes[l] += src->io_bytes[l];
1861
1862                         if (dst->runtime[l] < src->runtime[l])
1863                                 dst->runtime[l] = src->runtime[l];
1864                 } else {
1865                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
1866                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
1867                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
1868                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
1869                         sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
1870
1871                         dst->io_bytes[0] += src->io_bytes[l];
1872
1873                         if (dst->runtime[0] < src->runtime[l])
1874                                 dst->runtime[0] = src->runtime[l];
1875
1876                         /*
1877                          * We're summing to the same destination, so override
1878                          * 'first' after the first iteration of the loop
1879                          */
1880                         first = false;
1881                 }
1882         }
1883
1884         sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
1885         dst->usr_time += src->usr_time;
1886         dst->sys_time += src->sys_time;
1887         dst->ctx += src->ctx;
1888         dst->majf += src->majf;
1889         dst->minf += src->minf;
1890
1891         for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
1892                 dst->io_u_map[k] += src->io_u_map[k];
1893                 dst->io_u_submit[k] += src->io_u_submit[k];
1894                 dst->io_u_complete[k] += src->io_u_complete[k];
1895         }
1896
1897         for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
1898                 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
1899         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1900                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1901         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1902                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1903
1904         for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
1905                 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
1906
1907         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1908                 if (!dst->unified_rw_rep) {
1909                         dst->total_io_u[k] += src->total_io_u[k];
1910                         dst->short_io_u[k] += src->short_io_u[k];
1911                         dst->drop_io_u[k] += src->drop_io_u[k];
1912                 } else {
1913                         dst->total_io_u[0] += src->total_io_u[k];
1914                         dst->short_io_u[0] += src->short_io_u[k];
1915                         dst->drop_io_u[0] += src->drop_io_u[k];
1916                 }
1917         }
1918
1919         dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
1920
1921         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1922                 int m;
1923
1924                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1925                         if (!dst->unified_rw_rep)
1926                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1927                         else
1928                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1929                 }
1930         }
1931
1932         dst->total_run_time += src->total_run_time;
1933         dst->total_submit += src->total_submit;
1934         dst->total_complete += src->total_complete;
1935         dst->nr_zone_resets += src->nr_zone_resets;
1936         dst->cachehit += src->cachehit;
1937         dst->cachemiss += src->cachemiss;
1938 }
1939
1940 void init_group_run_stat(struct group_run_stats *gs)
1941 {
1942         int i;
1943         memset(gs, 0, sizeof(*gs));
1944
1945         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1946                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1947 }
1948
1949 void init_thread_stat(struct thread_stat *ts)
1950 {
1951         int j;
1952
1953         memset(ts, 0, sizeof(*ts));
1954
1955         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1956                 ts->lat_stat[j].min_val = -1UL;
1957                 ts->clat_stat[j].min_val = -1UL;
1958                 ts->slat_stat[j].min_val = -1UL;
1959                 ts->bw_stat[j].min_val = -1UL;
1960                 ts->iops_stat[j].min_val = -1UL;
1961         }
1962         ts->sync_stat.min_val = -1UL;
1963         ts->groupid = -1;
1964 }
1965
1966 void __show_run_stats(void)
1967 {
1968         struct group_run_stats *runstats, *rs;
1969         struct thread_data *td;
1970         struct thread_stat *threadstats, *ts;
1971         int i, j, k, nr_ts, last_ts, idx;
1972         bool kb_base_warned = false;
1973         bool unit_base_warned = false;
1974         struct json_object *root = NULL;
1975         struct json_array *array = NULL;
1976         struct buf_output output[FIO_OUTPUT_NR];
1977         struct flist_head **opt_lists;
1978
1979         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1980
1981         for (i = 0; i < groupid + 1; i++)
1982                 init_group_run_stat(&runstats[i]);
1983
1984         /*
1985          * find out how many threads stats we need. if group reporting isn't
1986          * enabled, it's one-per-td.
1987          */
1988         nr_ts = 0;
1989         last_ts = -1;
1990         for_each_td(td, i) {
1991                 if (!td->o.group_reporting) {
1992                         nr_ts++;
1993                         continue;
1994                 }
1995                 if (last_ts == td->groupid)
1996                         continue;
1997                 if (!td->o.stats)
1998                         continue;
1999
2000                 last_ts = td->groupid;
2001                 nr_ts++;
2002         }
2003
2004         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2005         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2006
2007         for (i = 0; i < nr_ts; i++) {
2008                 init_thread_stat(&threadstats[i]);
2009                 opt_lists[i] = NULL;
2010         }
2011
2012         j = 0;
2013         last_ts = -1;
2014         idx = 0;
2015         for_each_td(td, i) {
2016                 if (!td->o.stats)
2017                         continue;
2018                 if (idx && (!td->o.group_reporting ||
2019                     (td->o.group_reporting && last_ts != td->groupid))) {
2020                         idx = 0;
2021                         j++;
2022                 }
2023
2024                 last_ts = td->groupid;
2025
2026                 ts = &threadstats[j];
2027
2028                 ts->clat_percentiles = td->o.clat_percentiles;
2029                 ts->lat_percentiles = td->o.lat_percentiles;
2030                 ts->percentile_precision = td->o.percentile_precision;
2031                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2032                 opt_lists[j] = &td->opt_list;
2033
2034                 idx++;
2035                 ts->members++;
2036
2037                 if (ts->groupid == -1) {
2038                         /*
2039                          * These are per-group shared already
2040                          */
2041                         snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2042                         if (td->o.description)
2043                                 snprintf(ts->description,
2044                                          sizeof(ts->description), "%s",
2045                                          td->o.description);
2046                         else
2047                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2048
2049                         /*
2050                          * If multiple entries in this group, this is
2051                          * the first member.
2052                          */
2053                         ts->thread_number = td->thread_number;
2054                         ts->groupid = td->groupid;
2055
2056                         /*
2057                          * first pid in group, not very useful...
2058                          */
2059                         ts->pid = td->pid;
2060
2061                         ts->kb_base = td->o.kb_base;
2062                         ts->unit_base = td->o.unit_base;
2063                         ts->sig_figs = td->o.sig_figs;
2064                         ts->unified_rw_rep = td->o.unified_rw_rep;
2065                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2066                         log_info("fio: kb_base differs for jobs in group, using"
2067                                  " %u as the base\n", ts->kb_base);
2068                         kb_base_warned = true;
2069                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2070                         log_info("fio: unit_base differs for jobs in group, using"
2071                                  " %u as the base\n", ts->unit_base);
2072                         unit_base_warned = true;
2073                 }
2074
2075                 ts->continue_on_error = td->o.continue_on_error;
2076                 ts->total_err_count += td->total_err_count;
2077                 ts->first_error = td->first_error;
2078                 if (!ts->error) {
2079                         if (!td->error && td->o.continue_on_error &&
2080                             td->first_error) {
2081                                 ts->error = td->first_error;
2082                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2083                                          td->verror);
2084                         } else  if (td->error) {
2085                                 ts->error = td->error;
2086                                 snprintf(ts->verror, sizeof(ts->verror), "%s",
2087                                          td->verror);
2088                         }
2089                 }
2090
2091                 ts->latency_depth = td->latency_qd;
2092                 ts->latency_target = td->o.latency_target;
2093                 ts->latency_percentile = td->o.latency_percentile;
2094                 ts->latency_window = td->o.latency_window;
2095
2096                 ts->nr_block_infos = td->ts.nr_block_infos;
2097                 for (k = 0; k < ts->nr_block_infos; k++)
2098                         ts->block_infos[k] = td->ts.block_infos[k];
2099
2100                 sum_thread_stats(ts, &td->ts, idx == 1);
2101
2102                 if (td->o.ss_dur) {
2103                         ts->ss_state = td->ss.state;
2104                         ts->ss_dur = td->ss.dur;
2105                         ts->ss_head = td->ss.head;
2106                         ts->ss_bw_data = td->ss.bw_data;
2107                         ts->ss_iops_data = td->ss.iops_data;
2108                         ts->ss_limit.u.f = td->ss.limit;
2109                         ts->ss_slope.u.f = td->ss.slope;
2110                         ts->ss_deviation.u.f = td->ss.deviation;
2111                         ts->ss_criterion.u.f = td->ss.criterion;
2112                 }
2113                 else
2114                         ts->ss_dur = ts->ss_state = 0;
2115         }
2116
2117         for (i = 0; i < nr_ts; i++) {
2118                 unsigned long long bw;
2119
2120                 ts = &threadstats[i];
2121                 if (ts->groupid == -1)
2122                         continue;
2123                 rs = &runstats[ts->groupid];
2124                 rs->kb_base = ts->kb_base;
2125                 rs->unit_base = ts->unit_base;
2126                 rs->sig_figs = ts->sig_figs;
2127                 rs->unified_rw_rep += ts->unified_rw_rep;
2128
2129                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2130                         if (!ts->runtime[j])
2131                                 continue;
2132                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2133                                 rs->min_run[j] = ts->runtime[j];
2134                         if (ts->runtime[j] > rs->max_run[j])
2135                                 rs->max_run[j] = ts->runtime[j];
2136
2137                         bw = 0;
2138                         if (ts->runtime[j])
2139                                 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2140                         if (bw < rs->min_bw[j])
2141                                 rs->min_bw[j] = bw;
2142                         if (bw > rs->max_bw[j])
2143                                 rs->max_bw[j] = bw;
2144
2145                         rs->iobytes[j] += ts->io_bytes[j];
2146                 }
2147         }
2148
2149         for (i = 0; i < groupid + 1; i++) {
2150                 int ddir;
2151
2152                 rs = &runstats[i];
2153
2154                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2155                         if (rs->max_run[ddir])
2156                                 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2157                                                 rs->max_run[ddir];
2158                 }
2159         }
2160
2161         for (i = 0; i < FIO_OUTPUT_NR; i++)
2162                 buf_output_init(&output[i]);
2163
2164         /*
2165          * don't overwrite last signal output
2166          */
2167         if (output_format & FIO_OUTPUT_NORMAL)
2168                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2169         if (output_format & FIO_OUTPUT_JSON) {
2170                 struct thread_data *global;
2171                 char time_buf[32];
2172                 struct timeval now;
2173                 unsigned long long ms_since_epoch;
2174                 time_t tv_sec;
2175
2176                 gettimeofday(&now, NULL);
2177                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2178                                  (unsigned long long)(now.tv_usec) / 1000;
2179
2180                 tv_sec = now.tv_sec;
2181                 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2182                 if (time_buf[strlen(time_buf) - 1] == '\n')
2183                         time_buf[strlen(time_buf) - 1] = '\0';
2184
2185                 root = json_create_object();
2186                 json_object_add_value_string(root, "fio version", fio_version_string);
2187                 json_object_add_value_int(root, "timestamp", now.tv_sec);
2188                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2189                 json_object_add_value_string(root, "time", time_buf);
2190                 global = get_global_options();
2191                 json_add_job_opts(root, "global options", &global->opt_list);
2192                 array = json_create_array();
2193                 json_object_add_value_array(root, "jobs", array);
2194         }
2195
2196         if (is_backend)
2197                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2198
2199         for (i = 0; i < nr_ts; i++) {
2200                 ts = &threadstats[i];
2201                 rs = &runstats[ts->groupid];
2202
2203                 if (is_backend) {
2204                         fio_server_send_job_options(opt_lists[i], i);
2205                         fio_server_send_ts(ts, rs);
2206                 } else {
2207                         if (output_format & FIO_OUTPUT_TERSE)
2208                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2209                         if (output_format & FIO_OUTPUT_JSON) {
2210                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2211                                 json_array_add_value_object(array, tmp);
2212                         }
2213                         if (output_format & FIO_OUTPUT_NORMAL)
2214                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2215                 }
2216         }
2217         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2218                 /* disk util stats, if any */
2219                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2220
2221                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2222
2223                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2224                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2225                 json_free_object(root);
2226         }
2227
2228         for (i = 0; i < groupid + 1; i++) {
2229                 rs = &runstats[i];
2230
2231                 rs->groupid = i;
2232                 if (is_backend)
2233                         fio_server_send_gs(rs);
2234                 else if (output_format & FIO_OUTPUT_NORMAL)
2235                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2236         }
2237
2238         if (is_backend)
2239                 fio_server_send_du();
2240         else if (output_format & FIO_OUTPUT_NORMAL) {
2241                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2242                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2243         }
2244
2245         for (i = 0; i < FIO_OUTPUT_NR; i++) {
2246                 struct buf_output *out = &output[i];
2247
2248                 log_info_buf(out->buf, out->buflen);
2249                 buf_output_free(out);
2250         }
2251
2252         fio_idle_prof_cleanup();
2253
2254         log_info_flush();
2255         free(runstats);
2256         free(threadstats);
2257         free(opt_lists);
2258 }
2259
2260 void __show_running_run_stats(void)
2261 {
2262         struct thread_data *td;
2263         unsigned long long *rt;
2264         struct timespec ts;
2265         int i;
2266
2267         fio_sem_down(stat_sem);
2268
2269         rt = malloc(thread_number * sizeof(unsigned long long));
2270         fio_gettime(&ts, NULL);
2271
2272         for_each_td(td, i) {
2273                 td->update_rusage = 1;
2274                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
2275                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
2276                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
2277                 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2278
2279                 rt[i] = mtime_since(&td->start, &ts);
2280                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2281                         td->ts.runtime[DDIR_READ] += rt[i];
2282                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2283                         td->ts.runtime[DDIR_WRITE] += rt[i];
2284                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2285                         td->ts.runtime[DDIR_TRIM] += rt[i];
2286         }
2287
2288         for_each_td(td, i) {
2289                 if (td->runstate >= TD_EXITED)
2290                         continue;
2291                 if (td->rusage_sem) {
2292                         td->update_rusage = 1;
2293                         fio_sem_down(td->rusage_sem);
2294                 }
2295                 td->update_rusage = 0;
2296         }
2297
2298         __show_run_stats();
2299
2300         for_each_td(td, i) {
2301                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2302                         td->ts.runtime[DDIR_READ] -= rt[i];
2303                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2304                         td->ts.runtime[DDIR_WRITE] -= rt[i];
2305                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2306                         td->ts.runtime[DDIR_TRIM] -= rt[i];
2307         }
2308
2309         free(rt);
2310         fio_sem_up(stat_sem);
2311 }
2312
2313 static bool status_interval_init;
2314 static struct timespec status_time;
2315 static bool status_file_disabled;
2316
2317 #define FIO_STATUS_FILE         "fio-dump-status"
2318
2319 static int check_status_file(void)
2320 {
2321         struct stat sb;
2322         const char *temp_dir;
2323         char fio_status_file_path[PATH_MAX];
2324
2325         if (status_file_disabled)
2326                 return 0;
2327
2328         temp_dir = getenv("TMPDIR");
2329         if (temp_dir == NULL) {
2330                 temp_dir = getenv("TEMP");
2331                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2332                         temp_dir = NULL;
2333         }
2334         if (temp_dir == NULL)
2335                 temp_dir = "/tmp";
2336 #ifdef __COVERITY__
2337         __coverity_tainted_data_sanitize__(temp_dir);
2338 #endif
2339
2340         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2341
2342         if (stat(fio_status_file_path, &sb))
2343                 return 0;
2344
2345         if (unlink(fio_status_file_path) < 0) {
2346                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2347                                                         strerror(errno));
2348                 log_err("fio: disabling status file updates\n");
2349                 status_file_disabled = true;
2350         }
2351
2352         return 1;
2353 }
2354
2355 void check_for_running_stats(void)
2356 {
2357         if (status_interval) {
2358                 if (!status_interval_init) {
2359                         fio_gettime(&status_time, NULL);
2360                         status_interval_init = true;
2361                 } else if (mtime_since_now(&status_time) >= status_interval) {
2362                         show_running_run_stats();
2363                         fio_gettime(&status_time, NULL);
2364                         return;
2365                 }
2366         }
2367         if (check_status_file()) {
2368                 show_running_run_stats();
2369                 return;
2370         }
2371 }
2372
2373 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2374 {
2375         double val = data;
2376         double delta;
2377
2378         if (data > is->max_val)
2379                 is->max_val = data;
2380         if (data < is->min_val)
2381                 is->min_val = data;
2382
2383         delta = val - is->mean.u.f;
2384         if (delta) {
2385                 is->mean.u.f += delta / (is->samples + 1.0);
2386                 is->S.u.f += delta * (val - is->mean.u.f);
2387         }
2388
2389         is->samples++;
2390 }
2391
2392 /*
2393  * Return a struct io_logs, which is added to the tail of the log
2394  * list for 'iolog'.
2395  */
2396 static struct io_logs *get_new_log(struct io_log *iolog)
2397 {
2398         size_t new_size, new_samples;
2399         struct io_logs *cur_log;
2400
2401         /*
2402          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2403          * forever
2404          */
2405         if (!iolog->cur_log_max)
2406                 new_samples = DEF_LOG_ENTRIES;
2407         else {
2408                 new_samples = iolog->cur_log_max * 2;
2409                 if (new_samples > MAX_LOG_ENTRIES)
2410                         new_samples = MAX_LOG_ENTRIES;
2411         }
2412
2413         new_size = new_samples * log_entry_sz(iolog);
2414
2415         cur_log = smalloc(sizeof(*cur_log));
2416         if (cur_log) {
2417                 INIT_FLIST_HEAD(&cur_log->list);
2418                 cur_log->log = malloc(new_size);
2419                 if (cur_log->log) {
2420                         cur_log->nr_samples = 0;
2421                         cur_log->max_samples = new_samples;
2422                         flist_add_tail(&cur_log->list, &iolog->io_logs);
2423                         iolog->cur_log_max = new_samples;
2424                         return cur_log;
2425                 }
2426                 sfree(cur_log);
2427         }
2428
2429         return NULL;
2430 }
2431
2432 /*
2433  * Add and return a new log chunk, or return current log if big enough
2434  */
2435 static struct io_logs *regrow_log(struct io_log *iolog)
2436 {
2437         struct io_logs *cur_log;
2438         int i;
2439
2440         if (!iolog || iolog->disabled)
2441                 goto disable;
2442
2443         cur_log = iolog_cur_log(iolog);
2444         if (!cur_log) {
2445                 cur_log = get_new_log(iolog);
2446                 if (!cur_log)
2447                         return NULL;
2448         }
2449
2450         if (cur_log->nr_samples < cur_log->max_samples)
2451                 return cur_log;
2452
2453         /*
2454          * No room for a new sample. If we're compressing on the fly, flush
2455          * out the current chunk
2456          */
2457         if (iolog->log_gz) {
2458                 if (iolog_cur_flush(iolog, cur_log)) {
2459                         log_err("fio: failed flushing iolog! Will stop logging.\n");
2460                         return NULL;
2461                 }
2462         }
2463
2464         /*
2465          * Get a new log array, and add to our list
2466          */
2467         cur_log = get_new_log(iolog);
2468         if (!cur_log) {
2469                 log_err("fio: failed extending iolog! Will stop logging.\n");
2470                 return NULL;
2471         }
2472
2473         if (!iolog->pending || !iolog->pending->nr_samples)
2474                 return cur_log;
2475
2476         /*
2477          * Flush pending items to new log
2478          */
2479         for (i = 0; i < iolog->pending->nr_samples; i++) {
2480                 struct io_sample *src, *dst;
2481
2482                 src = get_sample(iolog, iolog->pending, i);
2483                 dst = get_sample(iolog, cur_log, i);
2484                 memcpy(dst, src, log_entry_sz(iolog));
2485         }
2486         cur_log->nr_samples = iolog->pending->nr_samples;
2487
2488         iolog->pending->nr_samples = 0;
2489         return cur_log;
2490 disable:
2491         if (iolog)
2492                 iolog->disabled = true;
2493         return NULL;
2494 }
2495
2496 void regrow_logs(struct thread_data *td)
2497 {
2498         regrow_log(td->slat_log);
2499         regrow_log(td->clat_log);
2500         regrow_log(td->clat_hist_log);
2501         regrow_log(td->lat_log);
2502         regrow_log(td->bw_log);
2503         regrow_log(td->iops_log);
2504         td->flags &= ~TD_F_REGROW_LOGS;
2505 }
2506
2507 static struct io_logs *get_cur_log(struct io_log *iolog)
2508 {
2509         struct io_logs *cur_log;
2510
2511         cur_log = iolog_cur_log(iolog);
2512         if (!cur_log) {
2513                 cur_log = get_new_log(iolog);
2514                 if (!cur_log)
2515                         return NULL;
2516         }
2517
2518         if (cur_log->nr_samples < cur_log->max_samples)
2519                 return cur_log;
2520
2521         /*
2522          * Out of space. If we're in IO offload mode, or we're not doing
2523          * per unit logging (hence logging happens outside of the IO thread
2524          * as well), add a new log chunk inline. If we're doing inline
2525          * submissions, flag 'td' as needing a log regrow and we'll take
2526          * care of it on the submission side.
2527          */
2528         if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2529             !per_unit_log(iolog))
2530                 return regrow_log(iolog);
2531
2532         if (iolog->td)
2533                 iolog->td->flags |= TD_F_REGROW_LOGS;
2534         if (iolog->pending)
2535                 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2536         return iolog->pending;
2537 }
2538
2539 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2540                              enum fio_ddir ddir, unsigned long long bs,
2541                              unsigned long t, uint64_t offset)
2542 {
2543         struct io_logs *cur_log;
2544
2545         if (iolog->disabled)
2546                 return;
2547         if (flist_empty(&iolog->io_logs))
2548                 iolog->avg_last[ddir] = t;
2549
2550         cur_log = get_cur_log(iolog);
2551         if (cur_log) {
2552                 struct io_sample *s;
2553
2554                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2555
2556                 s->data = data;
2557                 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2558                 io_sample_set_ddir(iolog, s, ddir);
2559                 s->bs = bs;
2560
2561                 if (iolog->log_offset) {
2562                         struct io_sample_offset *so = (void *) s;
2563
2564                         so->offset = offset;
2565                 }
2566
2567                 cur_log->nr_samples++;
2568                 return;
2569         }
2570
2571         iolog->disabled = true;
2572 }
2573
2574 static inline void reset_io_stat(struct io_stat *ios)
2575 {
2576         ios->min_val = -1ULL;
2577         ios->max_val = ios->samples = 0;
2578         ios->mean.u.f = ios->S.u.f = 0;
2579 }
2580
2581 void reset_io_stats(struct thread_data *td)
2582 {
2583         struct thread_stat *ts = &td->ts;
2584         int i, j;
2585
2586         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2587                 reset_io_stat(&ts->clat_stat[i]);
2588                 reset_io_stat(&ts->slat_stat[i]);
2589                 reset_io_stat(&ts->lat_stat[i]);
2590                 reset_io_stat(&ts->bw_stat[i]);
2591                 reset_io_stat(&ts->iops_stat[i]);
2592
2593                 ts->io_bytes[i] = 0;
2594                 ts->runtime[i] = 0;
2595                 ts->total_io_u[i] = 0;
2596                 ts->short_io_u[i] = 0;
2597                 ts->drop_io_u[i] = 0;
2598
2599                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2600                         ts->io_u_plat[i][j] = 0;
2601                         if (!i)
2602                                 ts->io_u_sync_plat[j] = 0;
2603                 }
2604         }
2605
2606         ts->total_io_u[DDIR_SYNC] = 0;
2607
2608         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2609                 ts->io_u_map[i] = 0;
2610                 ts->io_u_submit[i] = 0;
2611                 ts->io_u_complete[i] = 0;
2612         }
2613
2614         for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2615                 ts->io_u_lat_n[i] = 0;
2616         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2617                 ts->io_u_lat_u[i] = 0;
2618         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2619                 ts->io_u_lat_m[i] = 0;
2620
2621         ts->total_submit = 0;
2622         ts->total_complete = 0;
2623         ts->nr_zone_resets = 0;
2624         ts->cachehit = ts->cachemiss = 0;
2625 }
2626
2627 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2628                               unsigned long elapsed, bool log_max)
2629 {
2630         /*
2631          * Note an entry in the log. Use the mean from the logged samples,
2632          * making sure to properly round up. Only write a log entry if we
2633          * had actual samples done.
2634          */
2635         if (iolog->avg_window[ddir].samples) {
2636                 union io_sample_data data;
2637
2638                 if (log_max)
2639                         data.val = iolog->avg_window[ddir].max_val;
2640                 else
2641                         data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2642
2643                 __add_log_sample(iolog, data, ddir, 0, elapsed, 0);
2644         }
2645
2646         reset_io_stat(&iolog->avg_window[ddir]);
2647 }
2648
2649 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2650                              bool log_max)
2651 {
2652         int ddir;
2653
2654         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2655                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2656 }
2657
2658 static unsigned long add_log_sample(struct thread_data *td,
2659                                     struct io_log *iolog,
2660                                     union io_sample_data data,
2661                                     enum fio_ddir ddir, unsigned long long bs,
2662                                     uint64_t offset)
2663 {
2664         unsigned long elapsed, this_window;
2665
2666         if (!ddir_rw(ddir))
2667                 return 0;
2668
2669         elapsed = mtime_since_now(&td->epoch);
2670
2671         /*
2672          * If no time averaging, just add the log sample.
2673          */
2674         if (!iolog->avg_msec) {
2675                 __add_log_sample(iolog, data, ddir, bs, elapsed, offset);
2676                 return 0;
2677         }
2678
2679         /*
2680          * Add the sample. If the time period has passed, then
2681          * add that entry to the log and clear.
2682          */
2683         add_stat_sample(&iolog->avg_window[ddir], data.val);
2684
2685         /*
2686          * If period hasn't passed, adding the above sample is all we
2687          * need to do.
2688          */
2689         this_window = elapsed - iolog->avg_last[ddir];
2690         if (elapsed < iolog->avg_last[ddir])
2691                 return iolog->avg_last[ddir] - elapsed;
2692         else if (this_window < iolog->avg_msec) {
2693                 unsigned long diff = iolog->avg_msec - this_window;
2694
2695                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2696                         return diff;
2697         }
2698
2699         __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
2700
2701         iolog->avg_last[ddir] = elapsed - (this_window - iolog->avg_msec);
2702         return iolog->avg_msec;
2703 }
2704
2705 void finalize_logs(struct thread_data *td, bool unit_logs)
2706 {
2707         unsigned long elapsed;
2708
2709         elapsed = mtime_since_now(&td->epoch);
2710
2711         if (td->clat_log && unit_logs)
2712                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2713         if (td->slat_log && unit_logs)
2714                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2715         if (td->lat_log && unit_logs)
2716                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2717         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2718                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2719         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2720                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2721 }
2722
2723 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir, unsigned long long bs)
2724 {
2725         struct io_log *iolog;
2726
2727         if (!ddir_rw(ddir))
2728                 return;
2729
2730         iolog = agg_io_log[ddir];
2731         __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0);
2732 }
2733
2734 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
2735 {
2736         unsigned int idx = plat_val_to_idx(nsec);
2737         assert(idx < FIO_IO_U_PLAT_NR);
2738
2739         ts->io_u_sync_plat[idx]++;
2740         add_stat_sample(&ts->sync_stat, nsec);
2741 }
2742
2743 static void add_clat_percentile_sample(struct thread_stat *ts,
2744                                 unsigned long long nsec, enum fio_ddir ddir)
2745 {
2746         unsigned int idx = plat_val_to_idx(nsec);
2747         assert(idx < FIO_IO_U_PLAT_NR);
2748
2749         ts->io_u_plat[ddir][idx]++;
2750 }
2751
2752 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2753                      unsigned long long nsec, unsigned long long bs,
2754                      uint64_t offset)
2755 {
2756         const bool needs_lock = td_async_processing(td);
2757         unsigned long elapsed, this_window;
2758         struct thread_stat *ts = &td->ts;
2759         struct io_log *iolog = td->clat_hist_log;
2760
2761         if (needs_lock)
2762                 __td_io_u_lock(td);
2763
2764         add_stat_sample(&ts->clat_stat[ddir], nsec);
2765
2766         if (td->clat_log)
2767                 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
2768                                offset);
2769
2770         if (ts->clat_percentiles)
2771                 add_clat_percentile_sample(ts, nsec, ddir);
2772
2773         if (iolog && iolog->hist_msec) {
2774                 struct io_hist *hw = &iolog->hist_window[ddir];
2775
2776                 hw->samples++;
2777                 elapsed = mtime_since_now(&td->epoch);
2778                 if (!hw->hist_last)
2779                         hw->hist_last = elapsed;
2780                 this_window = elapsed - hw->hist_last;
2781                 
2782                 if (this_window >= iolog->hist_msec) {
2783                         uint64_t *io_u_plat;
2784                         struct io_u_plat_entry *dst;
2785
2786                         /*
2787                          * Make a byte-for-byte copy of the latency histogram
2788                          * stored in td->ts.io_u_plat[ddir], recording it in a
2789                          * log sample. Note that the matching call to free() is
2790                          * located in iolog.c after printing this sample to the
2791                          * log file.
2792                          */
2793                         io_u_plat = (uint64_t *) td->ts.io_u_plat[ddir];
2794                         dst = malloc(sizeof(struct io_u_plat_entry));
2795                         memcpy(&(dst->io_u_plat), io_u_plat,
2796                                 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
2797                         flist_add(&dst->list, &hw->list);
2798                         __add_log_sample(iolog, sample_plat(dst), ddir, bs,
2799                                                 elapsed, offset);
2800
2801                         /*
2802                          * Update the last time we recorded as being now, minus
2803                          * any drift in time we encountered before actually
2804                          * making the record.
2805                          */
2806                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2807                         hw->samples = 0;
2808                 }
2809         }
2810
2811         if (needs_lock)
2812                 __td_io_u_unlock(td);
2813 }
2814
2815 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2816                      unsigned long usec, unsigned long long bs, uint64_t offset)
2817 {
2818         const bool needs_lock = td_async_processing(td);
2819         struct thread_stat *ts = &td->ts;
2820
2821         if (!ddir_rw(ddir))
2822                 return;
2823
2824         if (needs_lock)
2825                 __td_io_u_lock(td);
2826
2827         add_stat_sample(&ts->slat_stat[ddir], usec);
2828
2829         if (td->slat_log)
2830                 add_log_sample(td, td->slat_log, sample_val(usec), ddir, bs, offset);
2831
2832         if (needs_lock)
2833                 __td_io_u_unlock(td);
2834 }
2835
2836 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2837                     unsigned long long nsec, unsigned long long bs,
2838                     uint64_t offset)
2839 {
2840         const bool needs_lock = td_async_processing(td);
2841         struct thread_stat *ts = &td->ts;
2842
2843         if (!ddir_rw(ddir))
2844                 return;
2845
2846         if (needs_lock)
2847                 __td_io_u_lock(td);
2848
2849         add_stat_sample(&ts->lat_stat[ddir], nsec);
2850
2851         if (td->lat_log)
2852                 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
2853                                offset);
2854
2855         if (ts->lat_percentiles)
2856                 add_clat_percentile_sample(ts, nsec, ddir);
2857
2858         if (needs_lock)
2859                 __td_io_u_unlock(td);
2860 }
2861
2862 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2863                    unsigned int bytes, unsigned long long spent)
2864 {
2865         const bool needs_lock = td_async_processing(td);
2866         struct thread_stat *ts = &td->ts;
2867         unsigned long rate;
2868
2869         if (spent)
2870                 rate = (unsigned long) (bytes * 1000000ULL / spent);
2871         else
2872                 rate = 0;
2873
2874         if (needs_lock)
2875                 __td_io_u_lock(td);
2876
2877         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2878
2879         if (td->bw_log)
2880                 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
2881                                bytes, io_u->offset);
2882
2883         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2884
2885         if (needs_lock)
2886                 __td_io_u_unlock(td);
2887 }
2888
2889 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
2890                          struct timespec *t, unsigned int avg_time,
2891                          uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
2892                          struct io_stat *stat, struct io_log *log,
2893                          bool is_kb)
2894 {
2895         const bool needs_lock = td_async_processing(td);
2896         unsigned long spent, rate;
2897         enum fio_ddir ddir;
2898         unsigned long next, next_log;
2899
2900         next_log = avg_time;
2901
2902         spent = mtime_since(parent_tv, t);
2903         if (spent < avg_time && avg_time - spent >= LOG_MSEC_SLACK)
2904                 return avg_time - spent;
2905
2906         if (needs_lock)
2907                 __td_io_u_lock(td);
2908
2909         /*
2910          * Compute both read and write rates for the interval.
2911          */
2912         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2913                 uint64_t delta;
2914
2915                 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
2916                 if (!delta)
2917                         continue; /* No entries for interval */
2918
2919                 if (spent) {
2920                         if (is_kb)
2921                                 rate = delta * 1000 / spent / 1024; /* KiB/s */
2922                         else
2923                                 rate = (delta * 1000) / spent;
2924                 } else
2925                         rate = 0;
2926
2927                 add_stat_sample(&stat[ddir], rate);
2928
2929                 if (log) {
2930                         unsigned long long bs = 0;
2931
2932                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2933                                 bs = td->o.min_bs[ddir];
2934
2935                         next = add_log_sample(td, log, sample_val(rate), ddir, bs, 0);
2936                         next_log = min(next_log, next);
2937                 }
2938
2939                 stat_io_bytes[ddir] = this_io_bytes[ddir];
2940         }
2941
2942         timespec_add_msec(parent_tv, avg_time);
2943
2944         if (needs_lock)
2945                 __td_io_u_unlock(td);
2946
2947         if (spent <= avg_time)
2948                 next = avg_time;
2949         else
2950                 next = avg_time - (1 + spent - avg_time);
2951
2952         return min(next, next_log);
2953 }
2954
2955 static int add_bw_samples(struct thread_data *td, struct timespec *t)
2956 {
2957         return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
2958                                 td->this_io_bytes, td->stat_io_bytes,
2959                                 td->ts.bw_stat, td->bw_log, true);
2960 }
2961
2962 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2963                      unsigned int bytes)
2964 {
2965         const bool needs_lock = td_async_processing(td);
2966         struct thread_stat *ts = &td->ts;
2967
2968         if (needs_lock)
2969                 __td_io_u_lock(td);
2970
2971         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2972
2973         if (td->iops_log)
2974                 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
2975                                bytes, io_u->offset);
2976
2977         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2978
2979         if (needs_lock)
2980                 __td_io_u_unlock(td);
2981 }
2982
2983 static int add_iops_samples(struct thread_data *td, struct timespec *t)
2984 {
2985         return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
2986                                 td->this_io_blocks, td->stat_io_blocks,
2987                                 td->ts.iops_stat, td->iops_log, false);
2988 }
2989
2990 /*
2991  * Returns msecs to next event
2992  */
2993 int calc_log_samples(void)
2994 {
2995         struct thread_data *td;
2996         unsigned int next = ~0U, tmp;
2997         struct timespec now;
2998         int i;
2999
3000         fio_gettime(&now, NULL);
3001
3002         for_each_td(td, i) {
3003                 if (!td->o.stats)
3004                         continue;
3005                 if (in_ramp_time(td) ||
3006                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3007                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3008                         continue;
3009                 }
3010                 if (!td->bw_log ||
3011                         (td->bw_log && !per_unit_log(td->bw_log))) {
3012                         tmp = add_bw_samples(td, &now);
3013                         if (tmp < next)
3014                                 next = tmp;
3015                 }
3016                 if (!td->iops_log ||
3017                         (td->iops_log && !per_unit_log(td->iops_log))) {
3018                         tmp = add_iops_samples(td, &now);
3019                         if (tmp < next)
3020                                 next = tmp;
3021                 }
3022         }
3023
3024         return next == ~0U ? 0 : next;
3025 }
3026
3027 void stat_init(void)
3028 {
3029         stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3030 }
3031
3032 void stat_exit(void)
3033 {
3034         /*
3035          * When we have the mutex, we know out-of-band access to it
3036          * have ended.
3037          */
3038         fio_sem_down(stat_sem);
3039         fio_sem_remove(stat_sem);
3040 }
3041
3042 /*
3043  * Called from signal handler. Wake up status thread.
3044  */
3045 void show_running_run_stats(void)
3046 {
3047         helper_do_stat();
3048 }
3049
3050 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3051 {
3052         /* Ignore io_u's which span multiple blocks--they will just get
3053          * inaccurate counts. */
3054         int idx = (io_u->offset - io_u->file->file_offset)
3055                         / td->o.bs[DDIR_TRIM];
3056         uint32_t *info = &td->ts.block_infos[idx];
3057         assert(idx < td->ts.nr_block_infos);
3058         return info;
3059 }