9 #include "lib/ieee754.h"
11 #include "lib/getrusage.h"
14 #include "lib/output_buffer.h"
15 #include "helper_thread.h"
18 #include "oslib/asprintf.h"
20 #define LOG_MSEC_SLACK 1
22 struct fio_sem *stat_sem;
24 void clear_rusage_stat(struct thread_data *td)
26 struct thread_stat *ts = &td->ts;
28 fio_getrusage(&td->ru_start);
29 ts->usr_time = ts->sys_time = 0;
31 ts->minf = ts->majf = 0;
34 void update_rusage_stat(struct thread_data *td)
36 struct thread_stat *ts = &td->ts;
38 fio_getrusage(&td->ru_end);
39 ts->usr_time += mtime_since_tv(&td->ru_start.ru_utime,
40 &td->ru_end.ru_utime);
41 ts->sys_time += mtime_since_tv(&td->ru_start.ru_stime,
42 &td->ru_end.ru_stime);
43 ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
44 - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
45 ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
46 ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48 memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
52 * Given a latency, return the index of the corresponding bucket in
53 * the structure tracking percentiles.
55 * (1) find the group (and error bits) that the value (latency)
56 * belongs to by looking at its MSB. (2) find the bucket number in the
57 * group by looking at the index bits.
60 static unsigned int plat_val_to_idx(unsigned long long val)
62 unsigned int msb, error_bits, base, offset, idx;
64 /* Find MSB starting from bit 0 */
68 msb = (sizeof(val)*8) - __builtin_clzll(val) - 1;
71 * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
72 * all bits of the sample as index
74 if (msb <= FIO_IO_U_PLAT_BITS)
77 /* Compute the number of error bits to discard*/
78 error_bits = msb - FIO_IO_U_PLAT_BITS;
80 /* Compute the number of buckets before the group */
81 base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
84 * Discard the error bits and apply the mask to find the
85 * index for the buckets in the group
87 offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89 /* Make sure the index does not exceed (array size - 1) */
90 idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
91 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
97 * Convert the given index of the bucket array to the value
98 * represented by the bucket
100 static unsigned long long plat_idx_to_val(unsigned int idx)
102 unsigned int error_bits;
103 unsigned long long k, base;
105 assert(idx < FIO_IO_U_PLAT_NR);
107 /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108 * all bits of the sample as index */
109 if (idx < (FIO_IO_U_PLAT_VAL << 1))
112 /* Find the group and compute the minimum value of that group */
113 error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114 base = ((unsigned long long) 1) << (error_bits + FIO_IO_U_PLAT_BITS);
116 /* Find its bucket number of the group */
117 k = idx % FIO_IO_U_PLAT_VAL;
119 /* Return the mean of the range of the bucket */
120 return base + ((k + 0.5) * (1 << error_bits));
123 static int double_cmp(const void *a, const void *b)
125 const fio_fp64_t fa = *(const fio_fp64_t *) a;
126 const fio_fp64_t fb = *(const fio_fp64_t *) b;
131 else if (fa.u.f < fb.u.f)
137 unsigned int calc_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
138 fio_fp64_t *plist, unsigned long long **output,
139 unsigned long long *maxv, unsigned long long *minv)
141 unsigned long long sum = 0;
142 unsigned int len, i, j = 0;
143 unsigned long long *ovals = NULL;
150 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
157 * Sort the percentile list. Note that it may already be sorted if
158 * we are using the default values, but since it's a short list this
159 * isn't a worry. Also note that this does not work for NaN values.
162 qsort(plist, len, sizeof(plist[0]), double_cmp);
164 ovals = malloc(len * sizeof(*ovals));
169 * Calculate bucket values, note down max and min values
172 for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
174 while (sum >= ((long double) plist[j].u.f / 100.0 * nr)) {
175 assert(plist[j].u.f <= 100.0);
177 ovals[j] = plat_idx_to_val(i);
178 if (ovals[j] < *minv)
180 if (ovals[j] > *maxv)
183 is_last = (j == len - 1) != 0;
192 log_err("fio: error calculating latency percentiles\n");
199 * Find and display the p-th percentile of clat
201 static void show_clat_percentiles(uint64_t *io_u_plat, unsigned long long nr,
202 fio_fp64_t *plist, unsigned int precision,
203 const char *pre, struct buf_output *out)
205 unsigned int divisor, len, i, j = 0;
206 unsigned long long minv, maxv;
207 unsigned long long *ovals;
208 int per_line, scale_down, time_width;
212 len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
217 * We default to nsecs, but if the value range is such that we
218 * should scale down to usecs or msecs, do that.
220 if (minv > 2000000 && maxv > 99999999ULL) {
223 log_buf(out, " %s percentiles (msec):\n |", pre);
224 } else if (minv > 2000 && maxv > 99999) {
227 log_buf(out, " %s percentiles (usec):\n |", pre);
231 log_buf(out, " %s percentiles (nsec):\n |", pre);
235 time_width = max(5, (int) (log10(maxv / divisor) + 1));
236 snprintf(fmt, sizeof(fmt), " %%%u.%ufth=[%%%dllu]%%c", precision + 3,
237 precision, time_width);
238 /* fmt will be something like " %5.2fth=[%4llu]%c" */
239 per_line = (80 - 7) / (precision + 10 + time_width);
241 for (j = 0; j < len; j++) {
243 if (j != 0 && (j % per_line) == 0)
246 /* end of the list */
247 is_last = (j == len - 1) != 0;
249 for (i = 0; i < scale_down; i++)
250 ovals[j] = (ovals[j] + 999) / 1000;
252 log_buf(out, fmt, plist[j].u.f, ovals[j], is_last ? '\n' : ',');
257 if ((j % per_line) == per_line - 1) /* for formatting */
264 bool calc_lat(struct io_stat *is, unsigned long long *min,
265 unsigned long long *max, double *mean, double *dev)
267 double n = (double) is->samples;
274 *mean = is->mean.u.f;
277 *dev = sqrt(is->S.u.f / (n - 1.0));
284 void show_mixed_group_stats(struct group_run_stats *rs, struct buf_output *out)
286 char *io, *agg, *min, *max;
287 char *ioalt, *aggalt, *minalt, *maxalt;
288 uint64_t io_mix = 0, agg_mix = 0, min_mix = -1, max_mix = 0, min_run = -1, max_run = 0;
290 const int i2p = is_power_of_2(rs->kb_base);
292 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
295 io_mix += rs->iobytes[i];
296 agg_mix += rs->agg[i];
297 min_mix = min_mix < rs->min_bw[i] ? min_mix : rs->min_bw[i];
298 max_mix = max_mix > rs->max_bw[i] ? max_mix : rs->max_bw[i];
299 min_run = min_run < rs->min_run[i] ? min_run : rs->min_run[i];
300 max_run = max_run > rs->max_run[i] ? max_run : rs->max_run[i];
302 io = num2str(io_mix, rs->sig_figs, 1, i2p, N2S_BYTE);
303 ioalt = num2str(io_mix, rs->sig_figs, 1, !i2p, N2S_BYTE);
304 agg = num2str(agg_mix, rs->sig_figs, 1, i2p, rs->unit_base);
305 aggalt = num2str(agg_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
306 min = num2str(min_mix, rs->sig_figs, 1, i2p, rs->unit_base);
307 minalt = num2str(min_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
308 max = num2str(max_mix, rs->sig_figs, 1, i2p, rs->unit_base);
309 maxalt = num2str(max_mix, rs->sig_figs, 1, !i2p, rs->unit_base);
310 log_buf(out, " MIXED: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
311 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
312 (unsigned long long) min_run,
313 (unsigned long long) max_run);
324 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
326 char *io, *agg, *min, *max;
327 char *ioalt, *aggalt, *minalt, *maxalt;
328 const char *str[] = { " READ", " WRITE" , " TRIM"};
331 log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
333 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
334 const int i2p = is_power_of_2(rs->kb_base);
339 io = num2str(rs->iobytes[i], rs->sig_figs, 1, i2p, N2S_BYTE);
340 ioalt = num2str(rs->iobytes[i], rs->sig_figs, 1, !i2p, N2S_BYTE);
341 agg = num2str(rs->agg[i], rs->sig_figs, 1, i2p, rs->unit_base);
342 aggalt = num2str(rs->agg[i], rs->sig_figs, 1, !i2p, rs->unit_base);
343 min = num2str(rs->min_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
344 minalt = num2str(rs->min_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
345 max = num2str(rs->max_bw[i], rs->sig_figs, 1, i2p, rs->unit_base);
346 maxalt = num2str(rs->max_bw[i], rs->sig_figs, 1, !i2p, rs->unit_base);
347 log_buf(out, "%s: bw=%s (%s), %s-%s (%s-%s), io=%s (%s), run=%llu-%llumsec\n",
348 (rs->unified_rw_rep == UNIFIED_MIXED) ? " MIXED" : str[i],
349 agg, aggalt, min, max, minalt, maxalt, io, ioalt,
350 (unsigned long long) rs->min_run[i],
351 (unsigned long long) rs->max_run[i]);
363 /* Need to aggregate statisitics to show mixed values */
364 if (rs->unified_rw_rep == UNIFIED_BOTH)
365 show_mixed_group_stats(rs, out);
368 void stat_calc_dist(uint64_t *map, unsigned long total, double *io_u_dist)
373 * Do depth distribution calculations
375 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
377 io_u_dist[i] = (double) map[i] / (double) total;
378 io_u_dist[i] *= 100.0;
379 if (io_u_dist[i] < 0.1 && map[i])
386 static void stat_calc_lat(struct thread_stat *ts, double *dst,
387 uint64_t *src, int nr)
389 unsigned long total = ddir_rw_sum(ts->total_io_u);
393 * Do latency distribution calculations
395 for (i = 0; i < nr; i++) {
397 dst[i] = (double) src[i] / (double) total;
399 if (dst[i] < 0.01 && src[i])
407 * To keep the terse format unaltered, add all of the ns latency
408 * buckets to the first us latency bucket
410 static void stat_calc_lat_nu(struct thread_stat *ts, double *io_u_lat_u)
412 unsigned long ntotal = 0, total = ddir_rw_sum(ts->total_io_u);
415 stat_calc_lat(ts, io_u_lat_u, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
417 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
418 ntotal += ts->io_u_lat_n[i];
420 io_u_lat_u[0] += 100.0 * (double) ntotal / (double) total;
423 void stat_calc_lat_n(struct thread_stat *ts, double *io_u_lat)
425 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_n, FIO_IO_U_LAT_N_NR);
428 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
430 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
433 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
435 stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
438 static void display_lat(const char *name, unsigned long long min,
439 unsigned long long max, double mean, double dev,
440 struct buf_output *out)
442 const char *base = "(nsec)";
445 if (nsec_to_msec(&min, &max, &mean, &dev))
447 else if (nsec_to_usec(&min, &max, &mean, &dev))
450 minp = num2str(min, 6, 1, 0, N2S_NONE);
451 maxp = num2str(max, 6, 1, 0, N2S_NONE);
453 log_buf(out, " %s %s: min=%s, max=%s, avg=%5.02f,"
454 " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
460 static double convert_agg_kbytes_percent(struct group_run_stats *rs, int ddir, int mean)
462 double p_of_agg = 100.0;
463 if (rs && rs->agg[ddir] > 1024) {
464 p_of_agg = mean * 100.0 / (double) (rs->agg[ddir] / 1024.0);
466 if (p_of_agg > 100.0)
472 static void show_mixed_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
473 struct buf_output *out)
476 unsigned long long min, max, bw, iops;
478 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
479 struct thread_stat *ts_lcl;
484 /* Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and Trims (ddir = 2) */
485 ts_lcl = malloc(sizeof(struct thread_stat));
486 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
487 ts_lcl->unified_rw_rep = UNIFIED_MIXED; /* calculate mixed stats */
488 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
489 ts_lcl->clat_stat[i].min_val = ULONG_MAX;
490 ts_lcl->slat_stat[i].min_val = ULONG_MAX;
491 ts_lcl->lat_stat[i].min_val = ULONG_MAX;
492 ts_lcl->bw_stat[i].min_val = ULONG_MAX;
493 ts_lcl->iops_stat[i].min_val = ULONG_MAX;
494 ts_lcl->clat_high_prio_stat[i].min_val = ULONG_MAX;
495 ts_lcl->clat_low_prio_stat[i].min_val = ULONG_MAX;
497 ts_lcl->sync_stat.min_val = ULONG_MAX;
499 sum_thread_stats(ts_lcl, ts, 1);
501 assert(ddir_rw(ddir));
503 if (!ts_lcl->runtime[ddir])
506 i2p = is_power_of_2(rs->kb_base);
507 runt = ts_lcl->runtime[ddir];
509 bw = (1000 * ts_lcl->io_bytes[ddir]) / runt;
510 io_p = num2str(ts_lcl->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
511 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
512 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
514 iops = (1000 * ts_lcl->total_io_u[ddir]) / runt;
515 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
517 log_buf(out, " mixed: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
518 iops_p, bw_p, bw_p_alt, io_p,
519 (unsigned long long) ts_lcl->runtime[ddir],
528 if (calc_lat(&ts_lcl->slat_stat[ddir], &min, &max, &mean, &dev))
529 display_lat("slat", min, max, mean, dev, out);
530 if (calc_lat(&ts_lcl->clat_stat[ddir], &min, &max, &mean, &dev))
531 display_lat("clat", min, max, mean, dev, out);
532 if (calc_lat(&ts_lcl->lat_stat[ddir], &min, &max, &mean, &dev))
533 display_lat(" lat", min, max, mean, dev, out);
534 if (calc_lat(&ts_lcl->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
535 display_lat(ts_lcl->lat_percentiles ? "high prio_lat" : "high prio_clat",
536 min, max, mean, dev, out);
537 if (calc_lat(&ts_lcl->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
538 display_lat(ts_lcl->lat_percentiles ? "low prio_lat" : "low prio_clat",
539 min, max, mean, dev, out);
542 if (ts->slat_percentiles && ts_lcl->slat_stat[ddir].samples > 0)
543 show_clat_percentiles(ts_lcl->io_u_plat[FIO_SLAT][ddir],
544 ts_lcl->slat_stat[ddir].samples,
546 ts->percentile_precision, "slat", out);
547 if (ts->clat_percentiles && ts_lcl->clat_stat[ddir].samples > 0)
548 show_clat_percentiles(ts_lcl->io_u_plat[FIO_CLAT][ddir],
549 ts_lcl->clat_stat[ddir].samples,
551 ts->percentile_precision, "clat", out);
552 if (ts->lat_percentiles && ts_lcl->lat_stat[ddir].samples > 0)
553 show_clat_percentiles(ts_lcl->io_u_plat[FIO_LAT][ddir],
554 ts_lcl->lat_stat[ddir].samples,
556 ts->percentile_precision, "lat", out);
558 if (ts->clat_percentiles || ts->lat_percentiles) {
559 const char *name = ts->lat_percentiles ? "lat" : "clat";
563 if (ts->lat_percentiles)
564 samples = ts_lcl->lat_stat[ddir].samples;
566 samples = ts_lcl->clat_stat[ddir].samples;
568 /* Only print this if some high and low priority stats were collected */
569 if (ts_lcl->clat_high_prio_stat[ddir].samples > 0 &&
570 ts_lcl->clat_low_prio_stat[ddir].samples > 0)
572 sprintf(prio_name, "high prio (%.2f%%) %s",
573 100. * (double) ts_lcl->clat_high_prio_stat[ddir].samples / (double) samples,
575 show_clat_percentiles(ts_lcl->io_u_plat_high_prio[ddir],
576 ts_lcl->clat_high_prio_stat[ddir].samples,
578 ts->percentile_precision, prio_name, out);
580 sprintf(prio_name, "low prio (%.2f%%) %s",
581 100. * (double) ts_lcl->clat_low_prio_stat[ddir].samples / (double) samples,
583 show_clat_percentiles(ts_lcl->io_u_plat_low_prio[ddir],
584 ts_lcl->clat_low_prio_stat[ddir].samples,
586 ts->percentile_precision, prio_name, out);
590 if (calc_lat(&ts_lcl->bw_stat[ddir], &min, &max, &mean, &dev)) {
591 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
594 if ((rs->unit_base == 1) && i2p)
596 else if (rs->unit_base == 1)
603 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
605 if (rs->unit_base == 1) {
612 if (mean > fkb_base * fkb_base) {
617 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
620 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
621 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
622 bw_str, min, max, p_of_agg, mean, dev,
623 (&ts_lcl->bw_stat[ddir])->samples);
625 if (calc_lat(&ts_lcl->iops_stat[ddir], &min, &max, &mean, &dev)) {
626 log_buf(out, " iops : min=%5llu, max=%5llu, "
627 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
628 min, max, mean, dev, (&ts_lcl->iops_stat[ddir])->samples);
634 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
635 int ddir, struct buf_output *out)
638 unsigned long long min, max, bw, iops;
640 char *io_p, *bw_p, *bw_p_alt, *iops_p, *post_st = NULL;
643 if (ddir_sync(ddir)) {
644 if (calc_lat(&ts->sync_stat, &min, &max, &mean, &dev)) {
645 log_buf(out, " %s:\n", "fsync/fdatasync/sync_file_range");
646 display_lat(io_ddir_name(ddir), min, max, mean, dev, out);
647 show_clat_percentiles(ts->io_u_sync_plat,
648 ts->sync_stat.samples,
650 ts->percentile_precision,
651 io_ddir_name(ddir), out);
656 assert(ddir_rw(ddir));
658 if (!ts->runtime[ddir])
661 i2p = is_power_of_2(rs->kb_base);
662 runt = ts->runtime[ddir];
664 bw = (1000 * ts->io_bytes[ddir]) / runt;
665 io_p = num2str(ts->io_bytes[ddir], ts->sig_figs, 1, i2p, N2S_BYTE);
666 bw_p = num2str(bw, ts->sig_figs, 1, i2p, ts->unit_base);
667 bw_p_alt = num2str(bw, ts->sig_figs, 1, !i2p, ts->unit_base);
669 iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
670 iops_p = num2str(iops, ts->sig_figs, 1, 0, N2S_NONE);
671 if (ddir == DDIR_WRITE)
672 post_st = zbd_write_status(ts);
673 else if (ddir == DDIR_READ && ts->cachehit && ts->cachemiss) {
677 total = ts->cachehit + ts->cachemiss;
678 hit = (double) ts->cachehit / (double) total;
680 if (asprintf(&post_st, "; Cachehit=%0.2f%%", hit) < 0)
684 log_buf(out, " %s: IOPS=%s, BW=%s (%s)(%s/%llumsec)%s\n",
685 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir),
686 iops_p, bw_p, bw_p_alt, io_p,
687 (unsigned long long) ts->runtime[ddir],
696 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
697 display_lat("slat", min, max, mean, dev, out);
698 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
699 display_lat("clat", min, max, mean, dev, out);
700 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
701 display_lat(" lat", min, max, mean, dev, out);
702 if (calc_lat(&ts->clat_high_prio_stat[ddir], &min, &max, &mean, &dev)) {
703 display_lat(ts->lat_percentiles ? "high prio_lat" : "high prio_clat",
704 min, max, mean, dev, out);
705 if (calc_lat(&ts->clat_low_prio_stat[ddir], &min, &max, &mean, &dev))
706 display_lat(ts->lat_percentiles ? "low prio_lat" : "low prio_clat",
707 min, max, mean, dev, out);
710 if (ts->slat_percentiles && ts->slat_stat[ddir].samples > 0)
711 show_clat_percentiles(ts->io_u_plat[FIO_SLAT][ddir],
712 ts->slat_stat[ddir].samples,
714 ts->percentile_precision, "slat", out);
715 if (ts->clat_percentiles && ts->clat_stat[ddir].samples > 0)
716 show_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
717 ts->clat_stat[ddir].samples,
719 ts->percentile_precision, "clat", out);
720 if (ts->lat_percentiles && ts->lat_stat[ddir].samples > 0)
721 show_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
722 ts->lat_stat[ddir].samples,
724 ts->percentile_precision, "lat", out);
726 if (ts->clat_percentiles || ts->lat_percentiles) {
727 const char *name = ts->lat_percentiles ? "lat" : "clat";
731 if (ts->lat_percentiles)
732 samples = ts->lat_stat[ddir].samples;
734 samples = ts->clat_stat[ddir].samples;
736 /* Only print this if some high and low priority stats were collected */
737 if (ts->clat_high_prio_stat[ddir].samples > 0 &&
738 ts->clat_low_prio_stat[ddir].samples > 0)
740 sprintf(prio_name, "high prio (%.2f%%) %s",
741 100. * (double) ts->clat_high_prio_stat[ddir].samples / (double) samples,
743 show_clat_percentiles(ts->io_u_plat_high_prio[ddir],
744 ts->clat_high_prio_stat[ddir].samples,
746 ts->percentile_precision, prio_name, out);
748 sprintf(prio_name, "low prio (%.2f%%) %s",
749 100. * (double) ts->clat_low_prio_stat[ddir].samples / (double) samples,
751 show_clat_percentiles(ts->io_u_plat_low_prio[ddir],
752 ts->clat_low_prio_stat[ddir].samples,
754 ts->percentile_precision, prio_name, out);
758 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
759 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
762 if ((rs->unit_base == 1) && i2p)
764 else if (rs->unit_base == 1)
771 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
773 if (rs->unit_base == 1) {
780 if (mean > fkb_base * fkb_base) {
785 bw_str = (rs->unit_base == 1 ? "Mibit" : "MiB");
788 log_buf(out, " bw (%5s/s): min=%5llu, max=%5llu, per=%3.2f%%, "
789 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
790 bw_str, min, max, p_of_agg, mean, dev,
791 (&ts->bw_stat[ddir])->samples);
793 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
794 log_buf(out, " iops : min=%5llu, max=%5llu, "
795 "avg=%5.02f, stdev=%5.02f, samples=%" PRIu64 "\n",
796 min, max, mean, dev, (&ts->iops_stat[ddir])->samples);
800 static bool show_lat(double *io_u_lat, int nr, const char **ranges,
801 const char *msg, struct buf_output *out)
803 bool new_line = true, shown = false;
806 for (i = 0; i < nr; i++) {
807 if (io_u_lat[i] <= 0.0)
813 log_buf(out, " lat (%s) : ", msg);
819 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
831 static void show_lat_n(double *io_u_lat_n, struct buf_output *out)
833 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
834 "250=", "500=", "750=", "1000=", };
836 show_lat(io_u_lat_n, FIO_IO_U_LAT_N_NR, ranges, "nsec", out);
839 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
841 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
842 "250=", "500=", "750=", "1000=", };
844 show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
847 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
849 const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
850 "250=", "500=", "750=", "1000=", "2000=",
853 show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
856 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
858 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
859 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
860 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
862 stat_calc_lat_n(ts, io_u_lat_n);
863 stat_calc_lat_u(ts, io_u_lat_u);
864 stat_calc_lat_m(ts, io_u_lat_m);
866 show_lat_n(io_u_lat_n, out);
867 show_lat_u(io_u_lat_u, out);
868 show_lat_m(io_u_lat_m, out);
871 static int block_state_category(int block_state)
873 switch (block_state) {
874 case BLOCK_STATE_UNINIT:
876 case BLOCK_STATE_TRIMMED:
877 case BLOCK_STATE_WRITTEN:
879 case BLOCK_STATE_WRITE_FAILURE:
880 case BLOCK_STATE_TRIM_FAILURE:
883 /* Silence compile warning on some BSDs and have a return */
889 static int compare_block_infos(const void *bs1, const void *bs2)
891 uint64_t block1 = *(uint64_t *)bs1;
892 uint64_t block2 = *(uint64_t *)bs2;
893 int state1 = BLOCK_INFO_STATE(block1);
894 int state2 = BLOCK_INFO_STATE(block2);
895 int bscat1 = block_state_category(state1);
896 int bscat2 = block_state_category(state2);
897 int cycles1 = BLOCK_INFO_TRIMS(block1);
898 int cycles2 = BLOCK_INFO_TRIMS(block2);
905 if (cycles1 < cycles2)
907 if (cycles1 > cycles2)
915 assert(block1 == block2);
919 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
920 fio_fp64_t *plist, unsigned int **percentiles,
926 qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
928 while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
935 * Sort the percentile list. Note that it may already be sorted if
936 * we are using the default values, but since it's a short list this
937 * isn't a worry. Also note that this does not work for NaN values.
940 qsort(plist, len, sizeof(plist[0]), double_cmp);
942 /* Start only after the uninit entries end */
944 nr_uninit < nr_block_infos
945 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
949 if (nr_uninit == nr_block_infos)
952 *percentiles = calloc(len, sizeof(**percentiles));
954 for (i = 0; i < len; i++) {
955 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
957 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
960 memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
961 for (i = 0; i < nr_block_infos; i++)
962 types[BLOCK_INFO_STATE(block_infos[i])]++;
967 static const char *block_state_names[] = {
968 [BLOCK_STATE_UNINIT] = "unwritten",
969 [BLOCK_STATE_TRIMMED] = "trimmed",
970 [BLOCK_STATE_WRITTEN] = "written",
971 [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
972 [BLOCK_STATE_WRITE_FAILURE] = "write failure",
975 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
976 fio_fp64_t *plist, struct buf_output *out)
979 unsigned int *percentiles = NULL;
980 unsigned int block_state_counts[BLOCK_STATE_COUNT];
982 len = calc_block_percentiles(nr_block_infos, block_infos, plist,
983 &percentiles, block_state_counts);
985 log_buf(out, " block lifetime percentiles :\n |");
987 for (i = 0; i < len; i++) {
988 uint32_t block_info = percentiles[i];
989 #define LINE_LENGTH 75
990 char str[LINE_LENGTH];
991 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
992 plist[i].u.f, block_info,
993 i == len - 1 ? '\n' : ',');
994 assert(strln < LINE_LENGTH);
995 if (pos + strln > LINE_LENGTH) {
997 log_buf(out, "\n |");
999 log_buf(out, "%s", str);
1006 log_buf(out, " states :");
1007 for (i = 0; i < BLOCK_STATE_COUNT; i++)
1008 log_buf(out, " %s=%u%c",
1009 block_state_names[i], block_state_counts[i],
1010 i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
1013 static void show_ss_normal(struct thread_stat *ts, struct buf_output *out)
1015 char *p1, *p1alt, *p2;
1016 unsigned long long bw_mean, iops_mean;
1017 const int i2p = is_power_of_2(ts->kb_base);
1022 bw_mean = steadystate_bw_mean(ts);
1023 iops_mean = steadystate_iops_mean(ts);
1025 p1 = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, i2p, ts->unit_base);
1026 p1alt = num2str(bw_mean / ts->kb_base, ts->sig_figs, ts->kb_base, !i2p, ts->unit_base);
1027 p2 = num2str(iops_mean, ts->sig_figs, 1, 0, N2S_NONE);
1029 log_buf(out, " steadystate : attained=%s, bw=%s (%s), iops=%s, %s%s=%.3f%s\n",
1030 ts->ss_state & FIO_SS_ATTAINED ? "yes" : "no",
1032 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1033 ts->ss_state & FIO_SS_SLOPE ? " slope": " mean dev",
1034 ts->ss_criterion.u.f,
1035 ts->ss_state & FIO_SS_PCT ? "%" : "");
1042 static void show_agg_stats(struct disk_util_agg *agg, int terse,
1043 struct buf_output *out)
1045 if (!agg->slavecount)
1049 log_buf(out, ", aggrios=%llu/%llu, aggrmerge=%llu/%llu, "
1050 "aggrticks=%llu/%llu, aggrin_queue=%llu, "
1052 (unsigned long long) agg->ios[0] / agg->slavecount,
1053 (unsigned long long) agg->ios[1] / agg->slavecount,
1054 (unsigned long long) agg->merges[0] / agg->slavecount,
1055 (unsigned long long) agg->merges[1] / agg->slavecount,
1056 (unsigned long long) agg->ticks[0] / agg->slavecount,
1057 (unsigned long long) agg->ticks[1] / agg->slavecount,
1058 (unsigned long long) agg->time_in_queue / agg->slavecount,
1061 log_buf(out, ";slaves;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1062 (unsigned long long) agg->ios[0] / agg->slavecount,
1063 (unsigned long long) agg->ios[1] / agg->slavecount,
1064 (unsigned long long) agg->merges[0] / agg->slavecount,
1065 (unsigned long long) agg->merges[1] / agg->slavecount,
1066 (unsigned long long) agg->ticks[0] / agg->slavecount,
1067 (unsigned long long) agg->ticks[1] / agg->slavecount,
1068 (unsigned long long) agg->time_in_queue / agg->slavecount,
1073 static void aggregate_slaves_stats(struct disk_util *masterdu)
1075 struct disk_util_agg *agg = &masterdu->agg;
1076 struct disk_util_stat *dus;
1077 struct flist_head *entry;
1078 struct disk_util *slavedu;
1081 flist_for_each(entry, &masterdu->slaves) {
1082 slavedu = flist_entry(entry, struct disk_util, slavelist);
1083 dus = &slavedu->dus;
1084 agg->ios[0] += dus->s.ios[0];
1085 agg->ios[1] += dus->s.ios[1];
1086 agg->merges[0] += dus->s.merges[0];
1087 agg->merges[1] += dus->s.merges[1];
1088 agg->sectors[0] += dus->s.sectors[0];
1089 agg->sectors[1] += dus->s.sectors[1];
1090 agg->ticks[0] += dus->s.ticks[0];
1091 agg->ticks[1] += dus->s.ticks[1];
1092 agg->time_in_queue += dus->s.time_in_queue;
1095 util = (double) (100 * dus->s.io_ticks / (double) slavedu->dus.s.msec);
1096 /* System utilization is the utilization of the
1097 * component with the highest utilization.
1099 if (util > agg->max_util.u.f)
1100 agg->max_util.u.f = util;
1104 if (agg->max_util.u.f > 100.0)
1105 agg->max_util.u.f = 100.0;
1108 void print_disk_util(struct disk_util_stat *dus, struct disk_util_agg *agg,
1109 int terse, struct buf_output *out)
1114 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1119 if (agg->slavecount)
1122 log_buf(out, " %s: ios=%llu/%llu, merge=%llu/%llu, "
1123 "ticks=%llu/%llu, in_queue=%llu, util=%3.2f%%",
1125 (unsigned long long) dus->s.ios[0],
1126 (unsigned long long) dus->s.ios[1],
1127 (unsigned long long) dus->s.merges[0],
1128 (unsigned long long) dus->s.merges[1],
1129 (unsigned long long) dus->s.ticks[0],
1130 (unsigned long long) dus->s.ticks[1],
1131 (unsigned long long) dus->s.time_in_queue,
1134 log_buf(out, ";%s;%llu;%llu;%llu;%llu;%llu;%llu;%llu;%3.2f%%",
1136 (unsigned long long) dus->s.ios[0],
1137 (unsigned long long) dus->s.ios[1],
1138 (unsigned long long) dus->s.merges[0],
1139 (unsigned long long) dus->s.merges[1],
1140 (unsigned long long) dus->s.ticks[0],
1141 (unsigned long long) dus->s.ticks[1],
1142 (unsigned long long) dus->s.time_in_queue,
1147 * If the device has slaves, aggregate the stats for
1148 * those slave devices also.
1150 show_agg_stats(agg, terse, out);
1156 void json_array_add_disk_util(struct disk_util_stat *dus,
1157 struct disk_util_agg *agg, struct json_array *array)
1159 struct json_object *obj;
1163 util = (double) 100 * dus->s.io_ticks / (double) dus->s.msec;
1167 obj = json_create_object();
1168 json_array_add_value_object(array, obj);
1170 json_object_add_value_string(obj, "name", (const char *)dus->name);
1171 json_object_add_value_int(obj, "read_ios", dus->s.ios[0]);
1172 json_object_add_value_int(obj, "write_ios", dus->s.ios[1]);
1173 json_object_add_value_int(obj, "read_merges", dus->s.merges[0]);
1174 json_object_add_value_int(obj, "write_merges", dus->s.merges[1]);
1175 json_object_add_value_int(obj, "read_ticks", dus->s.ticks[0]);
1176 json_object_add_value_int(obj, "write_ticks", dus->s.ticks[1]);
1177 json_object_add_value_int(obj, "in_queue", dus->s.time_in_queue);
1178 json_object_add_value_float(obj, "util", util);
1181 * If the device has slaves, aggregate the stats for
1182 * those slave devices also.
1184 if (!agg->slavecount)
1186 json_object_add_value_int(obj, "aggr_read_ios",
1187 agg->ios[0] / agg->slavecount);
1188 json_object_add_value_int(obj, "aggr_write_ios",
1189 agg->ios[1] / agg->slavecount);
1190 json_object_add_value_int(obj, "aggr_read_merges",
1191 agg->merges[0] / agg->slavecount);
1192 json_object_add_value_int(obj, "aggr_write_merge",
1193 agg->merges[1] / agg->slavecount);
1194 json_object_add_value_int(obj, "aggr_read_ticks",
1195 agg->ticks[0] / agg->slavecount);
1196 json_object_add_value_int(obj, "aggr_write_ticks",
1197 agg->ticks[1] / agg->slavecount);
1198 json_object_add_value_int(obj, "aggr_in_queue",
1199 agg->time_in_queue / agg->slavecount);
1200 json_object_add_value_float(obj, "aggr_util", agg->max_util.u.f);
1203 static void json_object_add_disk_utils(struct json_object *obj,
1204 struct flist_head *head)
1206 struct json_array *array = json_create_array();
1207 struct flist_head *entry;
1208 struct disk_util *du;
1210 json_object_add_value_array(obj, "disk_util", array);
1212 flist_for_each(entry, head) {
1213 du = flist_entry(entry, struct disk_util, list);
1215 aggregate_slaves_stats(du);
1216 json_array_add_disk_util(&du->dus, &du->agg, array);
1220 void show_disk_util(int terse, struct json_object *parent,
1221 struct buf_output *out)
1223 struct flist_head *entry;
1224 struct disk_util *du;
1227 if (!is_running_backend())
1230 if (flist_empty(&disk_list)) {
1234 if ((output_format & FIO_OUTPUT_JSON) && parent)
1239 if (!terse && !do_json)
1240 log_buf(out, "\nDisk stats (read/write):\n");
1243 json_object_add_disk_utils(parent, &disk_list);
1244 else if (output_format & ~(FIO_OUTPUT_JSON | FIO_OUTPUT_JSON_PLUS)) {
1245 flist_for_each(entry, &disk_list) {
1246 du = flist_entry(entry, struct disk_util, list);
1248 aggregate_slaves_stats(du);
1249 print_disk_util(&du->dus, &du->agg, terse, out);
1254 static void show_thread_status_normal(struct thread_stat *ts,
1255 struct group_run_stats *rs,
1256 struct buf_output *out)
1258 double usr_cpu, sys_cpu;
1259 unsigned long runtime;
1260 double io_u_dist[FIO_IO_U_MAP_NR];
1264 if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
1267 memset(time_buf, 0, sizeof(time_buf));
1270 os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
1273 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
1274 ts->name, ts->groupid, ts->members,
1275 ts->error, (int) ts->pid, time_buf);
1277 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
1278 ts->name, ts->groupid, ts->members,
1279 ts->error, ts->verror, (int) ts->pid,
1283 if (strlen(ts->description))
1284 log_buf(out, " Description : [%s]\n", ts->description);
1286 for_each_rw_ddir(ddir) {
1287 if (ts->io_bytes[ddir])
1288 show_ddir_status(rs, ts, ddir, out);
1291 if (ts->unified_rw_rep == UNIFIED_BOTH)
1292 show_mixed_ddir_status(rs, ts, out);
1294 show_latencies(ts, out);
1296 if (ts->sync_stat.samples)
1297 show_ddir_status(rs, ts, DDIR_SYNC, out);
1299 runtime = ts->total_run_time;
1301 double runt = (double) runtime;
1303 usr_cpu = (double) ts->usr_time * 100 / runt;
1304 sys_cpu = (double) ts->sys_time * 100 / runt;
1310 log_buf(out, " cpu : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
1311 " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
1312 (unsigned long long) ts->ctx,
1313 (unsigned long long) ts->majf,
1314 (unsigned long long) ts->minf);
1316 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1317 log_buf(out, " IO depths : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
1318 " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1319 io_u_dist[1], io_u_dist[2],
1320 io_u_dist[3], io_u_dist[4],
1321 io_u_dist[5], io_u_dist[6]);
1323 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1324 log_buf(out, " submit : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1325 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1326 io_u_dist[1], io_u_dist[2],
1327 io_u_dist[3], io_u_dist[4],
1328 io_u_dist[5], io_u_dist[6]);
1329 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1330 log_buf(out, " complete : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
1331 " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
1332 io_u_dist[1], io_u_dist[2],
1333 io_u_dist[3], io_u_dist[4],
1334 io_u_dist[5], io_u_dist[6]);
1335 log_buf(out, " issued rwts: total=%llu,%llu,%llu,%llu"
1336 " short=%llu,%llu,%llu,0"
1337 " dropped=%llu,%llu,%llu,0\n",
1338 (unsigned long long) ts->total_io_u[0],
1339 (unsigned long long) ts->total_io_u[1],
1340 (unsigned long long) ts->total_io_u[2],
1341 (unsigned long long) ts->total_io_u[3],
1342 (unsigned long long) ts->short_io_u[0],
1343 (unsigned long long) ts->short_io_u[1],
1344 (unsigned long long) ts->short_io_u[2],
1345 (unsigned long long) ts->drop_io_u[0],
1346 (unsigned long long) ts->drop_io_u[1],
1347 (unsigned long long) ts->drop_io_u[2]);
1348 if (ts->continue_on_error) {
1349 log_buf(out, " errors : total=%llu, first_error=%d/<%s>\n",
1350 (unsigned long long)ts->total_err_count,
1352 strerror(ts->first_error));
1354 if (ts->latency_depth) {
1355 log_buf(out, " latency : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
1356 (unsigned long long)ts->latency_target,
1357 (unsigned long long)ts->latency_window,
1358 ts->latency_percentile.u.f,
1362 if (ts->nr_block_infos)
1363 show_block_infos(ts->nr_block_infos, ts->block_infos,
1364 ts->percentile_list, out);
1367 show_ss_normal(ts, out);
1370 static void show_ddir_status_terse(struct thread_stat *ts,
1371 struct group_run_stats *rs, int ddir,
1372 int ver, struct buf_output *out)
1374 unsigned long long min, max, minv, maxv, bw, iops;
1375 unsigned long long *ovals = NULL;
1380 assert(ddir_rw(ddir));
1383 if (ts->runtime[ddir]) {
1384 uint64_t runt = ts->runtime[ddir];
1386 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024; /* KiB/s */
1387 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
1390 log_buf(out, ";%llu;%llu;%llu;%llu",
1391 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
1392 (unsigned long long) ts->runtime[ddir]);
1394 if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
1395 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1397 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1399 if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
1400 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1402 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1404 if (ts->lat_percentiles)
1405 len = calc_clat_percentiles(ts->io_u_plat[FIO_LAT][ddir],
1406 ts->lat_stat[ddir].samples,
1407 ts->percentile_list, &ovals, &maxv,
1409 else if (ts->clat_percentiles)
1410 len = calc_clat_percentiles(ts->io_u_plat[FIO_CLAT][ddir],
1411 ts->clat_stat[ddir].samples,
1412 ts->percentile_list, &ovals, &maxv,
1417 for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
1419 log_buf(out, ";0%%=0");
1422 log_buf(out, ";%f%%=%llu", ts->percentile_list[i].u.f, ovals[i]/1000);
1425 if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
1426 log_buf(out, ";%llu;%llu;%f;%f", min/1000, max/1000, mean/1000, dev/1000);
1428 log_buf(out, ";%llu;%llu;%f;%f", 0ULL, 0ULL, 0.0, 0.0);
1432 bw_stat = calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev);
1434 double p_of_agg = 100.0;
1436 if (rs->agg[ddir]) {
1437 p_of_agg = mean * 100 / (double) (rs->agg[ddir] / 1024);
1438 if (p_of_agg > 100.0)
1442 log_buf(out, ";%llu;%llu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
1444 log_buf(out, ";%llu;%llu;%f%%;%f;%f", 0ULL, 0ULL, 0.0, 0.0, 0.0);
1448 log_buf(out, ";%" PRIu64, (&ts->bw_stat[ddir])->samples);
1450 log_buf(out, ";%lu", 0UL);
1452 if (calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev))
1453 log_buf(out, ";%llu;%llu;%f;%f;%" PRIu64, min, max,
1454 mean, dev, (&ts->iops_stat[ddir])->samples);
1456 log_buf(out, ";%llu;%llu;%f;%f;%lu", 0ULL, 0ULL, 0.0, 0.0, 0UL);
1460 static void show_mixed_ddir_status_terse(struct thread_stat *ts,
1461 struct group_run_stats *rs,
1462 int ver, struct buf_output *out)
1464 struct thread_stat *ts_lcl;
1467 /* Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and Trims (ddir = 2) */
1468 ts_lcl = malloc(sizeof(struct thread_stat));
1469 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1470 ts_lcl->unified_rw_rep = UNIFIED_MIXED; /* calculate mixed stats */
1471 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1472 ts_lcl->clat_stat[i].min_val = ULONG_MAX;
1473 ts_lcl->slat_stat[i].min_val = ULONG_MAX;
1474 ts_lcl->lat_stat[i].min_val = ULONG_MAX;
1475 ts_lcl->bw_stat[i].min_val = ULONG_MAX;
1476 ts_lcl->iops_stat[i].min_val = ULONG_MAX;
1477 ts_lcl->clat_high_prio_stat[i].min_val = ULONG_MAX;
1478 ts_lcl->clat_low_prio_stat[i].min_val = ULONG_MAX;
1480 ts_lcl->sync_stat.min_val = ULONG_MAX;
1481 ts_lcl->lat_percentiles = ts->lat_percentiles;
1482 ts_lcl->clat_percentiles = ts->clat_percentiles;
1483 ts_lcl->slat_percentiles = ts->slat_percentiles;
1484 ts_lcl->percentile_precision = ts->percentile_precision;
1485 memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1487 sum_thread_stats(ts_lcl, ts, 1);
1489 /* add the aggregated stats to json parent */
1490 show_ddir_status_terse(ts_lcl, rs, DDIR_READ, ver, out);
1494 static struct json_object *add_ddir_lat_json(struct thread_stat *ts, uint32_t percentiles,
1495 struct io_stat *lat_stat, uint64_t *io_u_plat)
1499 unsigned int i, len;
1500 struct json_object *lat_object, *percentile_object, *clat_bins_object;
1501 unsigned long long min, max, maxv, minv, *ovals = NULL;
1503 if (!calc_lat(lat_stat, &min, &max, &mean, &dev)) {
1507 lat_object = json_create_object();
1508 json_object_add_value_int(lat_object, "min", min);
1509 json_object_add_value_int(lat_object, "max", max);
1510 json_object_add_value_float(lat_object, "mean", mean);
1511 json_object_add_value_float(lat_object, "stddev", dev);
1512 json_object_add_value_int(lat_object, "N", lat_stat->samples);
1514 if (percentiles && lat_stat->samples) {
1515 len = calc_clat_percentiles(io_u_plat, lat_stat->samples,
1516 ts->percentile_list, &ovals, &maxv, &minv);
1518 if (len > FIO_IO_U_LIST_MAX_LEN)
1519 len = FIO_IO_U_LIST_MAX_LEN;
1521 percentile_object = json_create_object();
1522 json_object_add_value_object(lat_object, "percentile", percentile_object);
1523 for (i = 0; i < len; i++) {
1524 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
1525 json_object_add_value_int(percentile_object, buf, ovals[i]);
1529 if (output_format & FIO_OUTPUT_JSON_PLUS) {
1530 clat_bins_object = json_create_object();
1531 json_object_add_value_object(lat_object, "bins", clat_bins_object);
1533 for(i = 0; i < FIO_IO_U_PLAT_NR; i++)
1535 snprintf(buf, sizeof(buf), "%llu", plat_idx_to_val(i));
1536 json_object_add_value_int(clat_bins_object, buf, io_u_plat[i]);
1544 static void add_ddir_status_json(struct thread_stat *ts,
1545 struct group_run_stats *rs, int ddir, struct json_object *parent)
1547 unsigned long long min, max;
1548 unsigned long long bw_bytes, bw;
1549 double mean, dev, iops;
1550 struct json_object *dir_object, *tmp_object;
1551 double p_of_agg = 100.0;
1553 assert(ddir_rw(ddir) || ddir_sync(ddir));
1555 if ((ts->unified_rw_rep == UNIFIED_MIXED) && ddir != DDIR_READ)
1558 dir_object = json_create_object();
1559 json_object_add_value_object(parent,
1560 (ts->unified_rw_rep == UNIFIED_MIXED) ? "mixed" : io_ddir_name(ddir), dir_object);
1562 if (ddir_rw(ddir)) {
1566 if (ts->runtime[ddir]) {
1567 uint64_t runt = ts->runtime[ddir];
1569 bw_bytes = ((1000 * ts->io_bytes[ddir]) / runt); /* Bytes/s */
1570 bw = bw_bytes / 1024; /* KiB/s */
1571 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
1574 json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir]);
1575 json_object_add_value_int(dir_object, "io_kbytes", ts->io_bytes[ddir] >> 10);
1576 json_object_add_value_int(dir_object, "bw_bytes", bw_bytes);
1577 json_object_add_value_int(dir_object, "bw", bw);
1578 json_object_add_value_float(dir_object, "iops", iops);
1579 json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
1580 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
1581 json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
1582 json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
1584 tmp_object = add_ddir_lat_json(ts, ts->slat_percentiles,
1585 &ts->slat_stat[ddir], ts->io_u_plat[FIO_SLAT][ddir]);
1586 json_object_add_value_object(dir_object, "slat_ns", tmp_object);
1588 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles,
1589 &ts->clat_stat[ddir], ts->io_u_plat[FIO_CLAT][ddir]);
1590 json_object_add_value_object(dir_object, "clat_ns", tmp_object);
1592 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles,
1593 &ts->lat_stat[ddir], ts->io_u_plat[FIO_LAT][ddir]);
1594 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1596 json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[DDIR_SYNC]);
1597 tmp_object = add_ddir_lat_json(ts, ts->lat_percentiles | ts->clat_percentiles,
1598 &ts->sync_stat, ts->io_u_sync_plat);
1599 json_object_add_value_object(dir_object, "lat_ns", tmp_object);
1605 /* Only print PRIO latencies if some high priority samples were gathered */
1606 if (ts->clat_high_prio_stat[ddir].samples > 0) {
1607 const char *high, *low;
1609 if (ts->lat_percentiles) {
1610 high = "lat_high_prio";
1611 low = "lat_low_prio";
1613 high = "clat_high_prio";
1614 low = "clat_low_prio";
1617 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1618 &ts->clat_high_prio_stat[ddir], ts->io_u_plat_high_prio[ddir]);
1619 json_object_add_value_object(dir_object, high, tmp_object);
1621 tmp_object = add_ddir_lat_json(ts, ts->clat_percentiles | ts->lat_percentiles,
1622 &ts->clat_low_prio_stat[ddir], ts->io_u_plat_low_prio[ddir]);
1623 json_object_add_value_object(dir_object, low, tmp_object);
1626 if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
1627 p_of_agg = convert_agg_kbytes_percent(rs, ddir, mean);
1630 p_of_agg = mean = dev = 0.0;
1633 json_object_add_value_int(dir_object, "bw_min", min);
1634 json_object_add_value_int(dir_object, "bw_max", max);
1635 json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
1636 json_object_add_value_float(dir_object, "bw_mean", mean);
1637 json_object_add_value_float(dir_object, "bw_dev", dev);
1638 json_object_add_value_int(dir_object, "bw_samples",
1639 (&ts->bw_stat[ddir])->samples);
1641 if (!calc_lat(&ts->iops_stat[ddir], &min, &max, &mean, &dev)) {
1645 json_object_add_value_int(dir_object, "iops_min", min);
1646 json_object_add_value_int(dir_object, "iops_max", max);
1647 json_object_add_value_float(dir_object, "iops_mean", mean);
1648 json_object_add_value_float(dir_object, "iops_stddev", dev);
1649 json_object_add_value_int(dir_object, "iops_samples",
1650 (&ts->iops_stat[ddir])->samples);
1652 if (ts->cachehit + ts->cachemiss) {
1656 total = ts->cachehit + ts->cachemiss;
1657 hit = (double) ts->cachehit / (double) total;
1659 json_object_add_value_float(dir_object, "cachehit", hit);
1663 static void add_mixed_ddir_status_json(struct thread_stat *ts,
1664 struct group_run_stats *rs, struct json_object *parent)
1666 struct thread_stat *ts_lcl;
1669 /* Handle aggregation of Reads (ddir = 0), Writes (ddir = 1), and Trims (ddir = 2) */
1670 ts_lcl = malloc(sizeof(struct thread_stat));
1671 memset((void *)ts_lcl, 0, sizeof(struct thread_stat));
1672 ts_lcl->unified_rw_rep = UNIFIED_MIXED; /* calculate mixed stats */
1673 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1674 ts_lcl->clat_stat[i].min_val = ULONG_MAX;
1675 ts_lcl->slat_stat[i].min_val = ULONG_MAX;
1676 ts_lcl->lat_stat[i].min_val = ULONG_MAX;
1677 ts_lcl->bw_stat[i].min_val = ULONG_MAX;
1678 ts_lcl->iops_stat[i].min_val = ULONG_MAX;
1679 ts_lcl->clat_high_prio_stat[i].min_val = ULONG_MAX;
1680 ts_lcl->clat_low_prio_stat[i].min_val = ULONG_MAX;
1682 ts_lcl->sync_stat.min_val = ULONG_MAX;
1683 ts_lcl->lat_percentiles = ts->lat_percentiles;
1684 ts_lcl->clat_percentiles = ts->clat_percentiles;
1685 ts_lcl->slat_percentiles = ts->slat_percentiles;
1686 ts_lcl->percentile_precision = ts->percentile_precision;
1687 memcpy(ts_lcl->percentile_list, ts->percentile_list, sizeof(ts->percentile_list));
1689 sum_thread_stats(ts_lcl, ts, 1);
1691 /* add the aggregated stats to json parent */
1692 add_ddir_status_json(ts_lcl, rs, DDIR_READ, parent);
1696 static void show_thread_status_terse_all(struct thread_stat *ts,
1697 struct group_run_stats *rs, int ver,
1698 struct buf_output *out)
1700 double io_u_dist[FIO_IO_U_MAP_NR];
1701 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1702 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1703 double usr_cpu, sys_cpu;
1708 log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
1710 log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1711 ts->name, ts->groupid, ts->error);
1713 /* Log Read Status, or mixed if unified_rw_rep = 1 */
1714 show_ddir_status_terse(ts, rs, DDIR_READ, ver, out);
1715 if (ts->unified_rw_rep != UNIFIED_MIXED) {
1716 /* Log Write Status */
1717 show_ddir_status_terse(ts, rs, DDIR_WRITE, ver, out);
1718 /* Log Trim Status */
1719 if (ver == 2 || ver == 4 || ver == 5)
1720 show_ddir_status_terse(ts, rs, DDIR_TRIM, ver, out);
1722 if (ts->unified_rw_rep == UNIFIED_BOTH)
1723 show_mixed_ddir_status_terse(ts, rs, ver, out);
1725 if (ts->total_run_time) {
1726 double runt = (double) ts->total_run_time;
1728 usr_cpu = (double) ts->usr_time * 100 / runt;
1729 sys_cpu = (double) ts->sys_time * 100 / runt;
1735 log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1736 (unsigned long long) ts->ctx,
1737 (unsigned long long) ts->majf,
1738 (unsigned long long) ts->minf);
1740 /* Calc % distribution of IO depths, usecond, msecond latency */
1741 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1742 stat_calc_lat_nu(ts, io_u_lat_u);
1743 stat_calc_lat_m(ts, io_u_lat_m);
1745 /* Only show fixed 7 I/O depth levels*/
1746 log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1747 io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1748 io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1750 /* Microsecond latency */
1751 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1752 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1753 /* Millisecond latency */
1754 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1755 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1757 /* disk util stats, if any */
1758 if (ver >= 3 && is_running_backend())
1759 show_disk_util(1, NULL, out);
1761 /* Additional output if continue_on_error set - default off*/
1762 if (ts->continue_on_error)
1763 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1765 /* Additional output if description is set */
1766 if (strlen(ts->description)) {
1769 log_buf(out, ";%s", ts->description);
1775 static void json_add_job_opts(struct json_object *root, const char *name,
1776 struct flist_head *opt_list)
1778 struct json_object *dir_object;
1779 struct flist_head *entry;
1780 struct print_option *p;
1782 if (flist_empty(opt_list))
1785 dir_object = json_create_object();
1786 json_object_add_value_object(root, name, dir_object);
1788 flist_for_each(entry, opt_list) {
1789 p = flist_entry(entry, struct print_option, list);
1790 json_object_add_value_string(dir_object, p->name, p->value);
1794 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1795 struct group_run_stats *rs,
1796 struct flist_head *opt_list)
1798 struct json_object *root, *tmp;
1799 struct jobs_eta *je;
1800 double io_u_dist[FIO_IO_U_MAP_NR];
1801 double io_u_lat_n[FIO_IO_U_LAT_N_NR];
1802 double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1803 double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1804 double usr_cpu, sys_cpu;
1808 root = json_create_object();
1809 json_object_add_value_string(root, "jobname", ts->name);
1810 json_object_add_value_int(root, "groupid", ts->groupid);
1811 json_object_add_value_int(root, "error", ts->error);
1814 je = get_jobs_eta(true, &size);
1816 json_object_add_value_int(root, "eta", je->eta_sec);
1817 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1821 json_add_job_opts(root, "job options", opt_list);
1823 add_ddir_status_json(ts, rs, DDIR_READ, root);
1824 add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1825 add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1826 add_ddir_status_json(ts, rs, DDIR_SYNC, root);
1828 if (ts->unified_rw_rep == UNIFIED_BOTH)
1829 add_mixed_ddir_status_json(ts, rs, root);
1832 if (ts->total_run_time) {
1833 double runt = (double) ts->total_run_time;
1835 usr_cpu = (double) ts->usr_time * 100 / runt;
1836 sys_cpu = (double) ts->sys_time * 100 / runt;
1841 json_object_add_value_int(root, "job_runtime", ts->total_run_time);
1842 json_object_add_value_float(root, "usr_cpu", usr_cpu);
1843 json_object_add_value_float(root, "sys_cpu", sys_cpu);
1844 json_object_add_value_int(root, "ctx", ts->ctx);
1845 json_object_add_value_int(root, "majf", ts->majf);
1846 json_object_add_value_int(root, "minf", ts->minf);
1848 /* Calc % distribution of IO depths */
1849 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1850 tmp = json_create_object();
1851 json_object_add_value_object(root, "iodepth_level", tmp);
1852 /* Only show fixed 7 I/O depth levels*/
1853 for (i = 0; i < 7; i++) {
1856 snprintf(name, 20, "%d", 1 << i);
1858 snprintf(name, 20, ">=%d", 1 << i);
1859 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1862 /* Calc % distribution of submit IO depths */
1863 stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
1864 tmp = json_create_object();
1865 json_object_add_value_object(root, "iodepth_submit", tmp);
1866 /* Only show fixed 7 I/O depth levels*/
1867 for (i = 0; i < 7; i++) {
1870 snprintf(name, 20, "0");
1872 snprintf(name, 20, "%d", 1 << (i+1));
1874 snprintf(name, 20, ">=%d", 1 << i);
1875 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1878 /* Calc % distribution of completion IO depths */
1879 stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
1880 tmp = json_create_object();
1881 json_object_add_value_object(root, "iodepth_complete", tmp);
1882 /* Only show fixed 7 I/O depth levels*/
1883 for (i = 0; i < 7; i++) {
1886 snprintf(name, 20, "0");
1888 snprintf(name, 20, "%d", 1 << (i+1));
1890 snprintf(name, 20, ">=%d", 1 << i);
1891 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1894 /* Calc % distribution of nsecond, usecond, msecond latency */
1895 stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1896 stat_calc_lat_n(ts, io_u_lat_n);
1897 stat_calc_lat_u(ts, io_u_lat_u);
1898 stat_calc_lat_m(ts, io_u_lat_m);
1900 /* Nanosecond latency */
1901 tmp = json_create_object();
1902 json_object_add_value_object(root, "latency_ns", tmp);
1903 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++) {
1904 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1905 "250", "500", "750", "1000", };
1906 json_object_add_value_float(tmp, ranges[i], io_u_lat_n[i]);
1908 /* Microsecond latency */
1909 tmp = json_create_object();
1910 json_object_add_value_object(root, "latency_us", tmp);
1911 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1912 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1913 "250", "500", "750", "1000", };
1914 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1916 /* Millisecond latency */
1917 tmp = json_create_object();
1918 json_object_add_value_object(root, "latency_ms", tmp);
1919 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1920 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1921 "250", "500", "750", "1000", "2000",
1923 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1926 /* Additional output if continue_on_error set - default off*/
1927 if (ts->continue_on_error) {
1928 json_object_add_value_int(root, "total_err", ts->total_err_count);
1929 json_object_add_value_int(root, "first_error", ts->first_error);
1932 if (ts->latency_depth) {
1933 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1934 json_object_add_value_int(root, "latency_target", ts->latency_target);
1935 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1936 json_object_add_value_int(root, "latency_window", ts->latency_window);
1939 /* Additional output if description is set */
1940 if (strlen(ts->description))
1941 json_object_add_value_string(root, "desc", ts->description);
1943 if (ts->nr_block_infos) {
1944 /* Block error histogram and types */
1946 unsigned int *percentiles = NULL;
1947 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1949 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1950 ts->percentile_list,
1951 &percentiles, block_state_counts);
1954 struct json_object *block, *percentile_object, *states;
1956 block = json_create_object();
1957 json_object_add_value_object(root, "block", block);
1959 percentile_object = json_create_object();
1960 json_object_add_value_object(block, "percentiles",
1962 for (i = 0; i < len; i++) {
1964 snprintf(buf, sizeof(buf), "%f",
1965 ts->percentile_list[i].u.f);
1966 json_object_add_value_int(percentile_object,
1971 states = json_create_object();
1972 json_object_add_value_object(block, "states", states);
1973 for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1974 json_object_add_value_int(states,
1975 block_state_names[state],
1976 block_state_counts[state]);
1983 struct json_object *data;
1984 struct json_array *iops, *bw;
1988 snprintf(ss_buf, sizeof(ss_buf), "%s%s:%f%s",
1989 ts->ss_state & FIO_SS_IOPS ? "iops" : "bw",
1990 ts->ss_state & FIO_SS_SLOPE ? "_slope" : "",
1991 (float) ts->ss_limit.u.f,
1992 ts->ss_state & FIO_SS_PCT ? "%" : "");
1994 tmp = json_create_object();
1995 json_object_add_value_object(root, "steadystate", tmp);
1996 json_object_add_value_string(tmp, "ss", ss_buf);
1997 json_object_add_value_int(tmp, "duration", (int)ts->ss_dur);
1998 json_object_add_value_int(tmp, "attained", (ts->ss_state & FIO_SS_ATTAINED) > 0);
2000 snprintf(ss_buf, sizeof(ss_buf), "%f%s", (float) ts->ss_criterion.u.f,
2001 ts->ss_state & FIO_SS_PCT ? "%" : "");
2002 json_object_add_value_string(tmp, "criterion", ss_buf);
2003 json_object_add_value_float(tmp, "max_deviation", ts->ss_deviation.u.f);
2004 json_object_add_value_float(tmp, "slope", ts->ss_slope.u.f);
2006 data = json_create_object();
2007 json_object_add_value_object(tmp, "data", data);
2008 bw = json_create_array();
2009 iops = json_create_array();
2012 ** if ss was attained or the buffer is not full,
2013 ** ss->head points to the first element in the list.
2014 ** otherwise it actually points to the second element
2017 if ((ts->ss_state & FIO_SS_ATTAINED) || !(ts->ss_state & FIO_SS_BUFFER_FULL))
2020 j = ts->ss_head == 0 ? ts->ss_dur - 1 : ts->ss_head - 1;
2021 for (l = 0; l < ts->ss_dur; l++) {
2022 k = (j + l) % ts->ss_dur;
2023 json_array_add_value_int(bw, ts->ss_bw_data[k]);
2024 json_array_add_value_int(iops, ts->ss_iops_data[k]);
2026 json_object_add_value_int(data, "bw_mean", steadystate_bw_mean(ts));
2027 json_object_add_value_int(data, "iops_mean", steadystate_iops_mean(ts));
2028 json_object_add_value_array(data, "iops", iops);
2029 json_object_add_value_array(data, "bw", bw);
2035 static void show_thread_status_terse(struct thread_stat *ts,
2036 struct group_run_stats *rs,
2037 struct buf_output *out)
2039 if (terse_version >= 2 && terse_version <= 5)
2040 show_thread_status_terse_all(ts, rs, terse_version, out);
2042 log_err("fio: bad terse version!? %d\n", terse_version);
2045 struct json_object *show_thread_status(struct thread_stat *ts,
2046 struct group_run_stats *rs,
2047 struct flist_head *opt_list,
2048 struct buf_output *out)
2050 struct json_object *ret = NULL;
2052 if (output_format & FIO_OUTPUT_TERSE)
2053 show_thread_status_terse(ts, rs, out);
2054 if (output_format & FIO_OUTPUT_JSON)
2055 ret = show_thread_status_json(ts, rs, opt_list);
2056 if (output_format & FIO_OUTPUT_NORMAL)
2057 show_thread_status_normal(ts, rs, out);
2062 static void __sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
2066 dst->min_val = min(dst->min_val, src->min_val);
2067 dst->max_val = max(dst->max_val, src->max_val);
2070 * Compute new mean and S after the merge
2071 * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
2072 * #Parallel_algorithm>
2075 mean = src->mean.u.f;
2078 double delta = src->mean.u.f - dst->mean.u.f;
2080 mean = ((src->mean.u.f * src->samples) +
2081 (dst->mean.u.f * dst->samples)) /
2082 (dst->samples + src->samples);
2084 S = src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
2085 (dst->samples * src->samples) /
2086 (dst->samples + src->samples);
2089 dst->samples += src->samples;
2090 dst->mean.u.f = mean;
2096 * We sum two kinds of stats - one that is time based, in which case we
2097 * apply the proper summing technique, and then one that is iops/bw
2098 * numbers. For group_reporting, we should just add those up, not make
2099 * them the mean of everything.
2101 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first,
2104 if (src->samples == 0)
2108 __sum_stat(dst, src, first);
2113 dst->min_val = src->min_val;
2114 dst->max_val = src->max_val;
2115 dst->samples = src->samples;
2116 dst->mean.u.f = src->mean.u.f;
2117 dst->S.u.f = src->S.u.f;
2119 dst->min_val += src->min_val;
2120 dst->max_val += src->max_val;
2121 dst->samples += src->samples;
2122 dst->mean.u.f += src->mean.u.f;
2123 dst->S.u.f += src->S.u.f;
2127 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
2131 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2132 if (dst->max_run[i] < src->max_run[i])
2133 dst->max_run[i] = src->max_run[i];
2134 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
2135 dst->min_run[i] = src->min_run[i];
2136 if (dst->max_bw[i] < src->max_bw[i])
2137 dst->max_bw[i] = src->max_bw[i];
2138 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
2139 dst->min_bw[i] = src->min_bw[i];
2141 dst->iobytes[i] += src->iobytes[i];
2142 dst->agg[i] += src->agg[i];
2146 dst->kb_base = src->kb_base;
2147 if (!dst->unit_base)
2148 dst->unit_base = src->unit_base;
2150 dst->sig_figs = src->sig_figs;
2153 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
2158 for (l = 0; l < DDIR_RWDIR_CNT; l++) {
2159 if (!(dst->unified_rw_rep == UNIFIED_MIXED)) {
2160 sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first, false);
2161 sum_stat(&dst->clat_high_prio_stat[l], &src->clat_high_prio_stat[l], first, false);
2162 sum_stat(&dst->clat_low_prio_stat[l], &src->clat_low_prio_stat[l], first, false);
2163 sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first, false);
2164 sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first, false);
2165 sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first, true);
2166 sum_stat(&dst->iops_stat[l], &src->iops_stat[l], first, true);
2168 dst->io_bytes[l] += src->io_bytes[l];
2170 if (dst->runtime[l] < src->runtime[l])
2171 dst->runtime[l] = src->runtime[l];
2173 sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first, false);
2174 sum_stat(&dst->clat_high_prio_stat[0], &src->clat_high_prio_stat[l], first, false);
2175 sum_stat(&dst->clat_low_prio_stat[0], &src->clat_low_prio_stat[l], first, false);
2176 sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first, false);
2177 sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first, false);
2178 sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first, true);
2179 sum_stat(&dst->iops_stat[0], &src->iops_stat[l], first, true);
2181 dst->io_bytes[0] += src->io_bytes[l];
2183 if (dst->runtime[0] < src->runtime[l])
2184 dst->runtime[0] = src->runtime[l];
2187 * We're summing to the same destination, so override
2188 * 'first' after the first iteration of the loop
2194 sum_stat(&dst->sync_stat, &src->sync_stat, first, false);
2195 dst->usr_time += src->usr_time;
2196 dst->sys_time += src->sys_time;
2197 dst->ctx += src->ctx;
2198 dst->majf += src->majf;
2199 dst->minf += src->minf;
2201 for (k = 0; k < FIO_IO_U_MAP_NR; k++) {
2202 dst->io_u_map[k] += src->io_u_map[k];
2203 dst->io_u_submit[k] += src->io_u_submit[k];
2204 dst->io_u_complete[k] += src->io_u_complete[k];
2207 for (k = 0; k < FIO_IO_U_LAT_N_NR; k++)
2208 dst->io_u_lat_n[k] += src->io_u_lat_n[k];
2209 for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
2210 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
2211 for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
2212 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
2214 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2215 if (!(dst->unified_rw_rep == UNIFIED_MIXED)) {
2216 dst->total_io_u[k] += src->total_io_u[k];
2217 dst->short_io_u[k] += src->short_io_u[k];
2218 dst->drop_io_u[k] += src->drop_io_u[k];
2220 dst->total_io_u[0] += src->total_io_u[k];
2221 dst->short_io_u[0] += src->short_io_u[k];
2222 dst->drop_io_u[0] += src->drop_io_u[k];
2226 dst->total_io_u[DDIR_SYNC] += src->total_io_u[DDIR_SYNC];
2228 for (k = 0; k < FIO_LAT_CNT; k++)
2229 for (l = 0; l < DDIR_RWDIR_CNT; l++)
2230 for (m = 0; m < FIO_IO_U_PLAT_NR; m++)
2231 if (!(dst->unified_rw_rep == UNIFIED_MIXED))
2232 dst->io_u_plat[k][l][m] += src->io_u_plat[k][l][m];
2234 dst->io_u_plat[k][0][m] += src->io_u_plat[k][l][m];
2236 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2237 dst->io_u_sync_plat[k] += src->io_u_sync_plat[k];
2239 for (k = 0; k < DDIR_RWDIR_CNT; k++) {
2240 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
2241 if (!(dst->unified_rw_rep == UNIFIED_MIXED)) {
2242 dst->io_u_plat_high_prio[k][m] += src->io_u_plat_high_prio[k][m];
2243 dst->io_u_plat_low_prio[k][m] += src->io_u_plat_low_prio[k][m];
2245 dst->io_u_plat_high_prio[0][m] += src->io_u_plat_high_prio[k][m];
2246 dst->io_u_plat_low_prio[0][m] += src->io_u_plat_low_prio[k][m];
2252 dst->total_run_time += src->total_run_time;
2253 dst->total_submit += src->total_submit;
2254 dst->total_complete += src->total_complete;
2255 dst->nr_zone_resets += src->nr_zone_resets;
2256 dst->cachehit += src->cachehit;
2257 dst->cachemiss += src->cachemiss;
2260 void init_group_run_stat(struct group_run_stats *gs)
2263 memset(gs, 0, sizeof(*gs));
2265 for (i = 0; i < DDIR_RWDIR_CNT; i++)
2266 gs->min_bw[i] = gs->min_run[i] = ~0UL;
2269 void init_thread_stat(struct thread_stat *ts)
2273 memset(ts, 0, sizeof(*ts));
2275 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2276 ts->lat_stat[j].min_val = -1UL;
2277 ts->clat_stat[j].min_val = -1UL;
2278 ts->slat_stat[j].min_val = -1UL;
2279 ts->bw_stat[j].min_val = -1UL;
2280 ts->iops_stat[j].min_val = -1UL;
2281 ts->clat_high_prio_stat[j].min_val = -1UL;
2282 ts->clat_low_prio_stat[j].min_val = -1UL;
2284 ts->sync_stat.min_val = -1UL;
2288 void __show_run_stats(void)
2290 struct group_run_stats *runstats, *rs;
2291 struct thread_data *td;
2292 struct thread_stat *threadstats, *ts;
2293 int i, j, k, nr_ts, last_ts, idx;
2294 bool kb_base_warned = false;
2295 bool unit_base_warned = false;
2296 struct json_object *root = NULL;
2297 struct json_array *array = NULL;
2298 struct buf_output output[FIO_OUTPUT_NR];
2299 struct flist_head **opt_lists;
2301 runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
2303 for (i = 0; i < groupid + 1; i++)
2304 init_group_run_stat(&runstats[i]);
2307 * find out how many threads stats we need. if group reporting isn't
2308 * enabled, it's one-per-td.
2312 for_each_td(td, i) {
2313 if (!td->o.group_reporting) {
2317 if (last_ts == td->groupid)
2322 last_ts = td->groupid;
2326 threadstats = malloc(nr_ts * sizeof(struct thread_stat));
2327 opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
2329 for (i = 0; i < nr_ts; i++) {
2330 init_thread_stat(&threadstats[i]);
2331 opt_lists[i] = NULL;
2337 for_each_td(td, i) {
2340 if (idx && (!td->o.group_reporting ||
2341 (td->o.group_reporting && last_ts != td->groupid))) {
2346 last_ts = td->groupid;
2348 ts = &threadstats[j];
2350 ts->clat_percentiles = td->o.clat_percentiles;
2351 ts->lat_percentiles = td->o.lat_percentiles;
2352 ts->slat_percentiles = td->o.slat_percentiles;
2353 ts->percentile_precision = td->o.percentile_precision;
2354 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
2355 opt_lists[j] = &td->opt_list;
2360 if (ts->groupid == -1) {
2362 * These are per-group shared already
2364 snprintf(ts->name, sizeof(ts->name), "%s", td->o.name);
2365 if (td->o.description)
2366 snprintf(ts->description,
2367 sizeof(ts->description), "%s",
2370 memset(ts->description, 0, FIO_JOBDESC_SIZE);
2373 * If multiple entries in this group, this is
2376 ts->thread_number = td->thread_number;
2377 ts->groupid = td->groupid;
2380 * first pid in group, not very useful...
2384 ts->kb_base = td->o.kb_base;
2385 ts->unit_base = td->o.unit_base;
2386 ts->sig_figs = td->o.sig_figs;
2387 ts->unified_rw_rep = td->o.unified_rw_rep;
2388 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
2389 log_info("fio: kb_base differs for jobs in group, using"
2390 " %u as the base\n", ts->kb_base);
2391 kb_base_warned = true;
2392 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
2393 log_info("fio: unit_base differs for jobs in group, using"
2394 " %u as the base\n", ts->unit_base);
2395 unit_base_warned = true;
2398 ts->continue_on_error = td->o.continue_on_error;
2399 ts->total_err_count += td->total_err_count;
2400 ts->first_error = td->first_error;
2402 if (!td->error && td->o.continue_on_error &&
2404 ts->error = td->first_error;
2405 snprintf(ts->verror, sizeof(ts->verror), "%s",
2407 } else if (td->error) {
2408 ts->error = td->error;
2409 snprintf(ts->verror, sizeof(ts->verror), "%s",
2414 ts->latency_depth = td->latency_qd;
2415 ts->latency_target = td->o.latency_target;
2416 ts->latency_percentile = td->o.latency_percentile;
2417 ts->latency_window = td->o.latency_window;
2419 ts->nr_block_infos = td->ts.nr_block_infos;
2420 for (k = 0; k < ts->nr_block_infos; k++)
2421 ts->block_infos[k] = td->ts.block_infos[k];
2423 sum_thread_stats(ts, &td->ts, idx == 1);
2426 ts->ss_state = td->ss.state;
2427 ts->ss_dur = td->ss.dur;
2428 ts->ss_head = td->ss.head;
2429 ts->ss_bw_data = td->ss.bw_data;
2430 ts->ss_iops_data = td->ss.iops_data;
2431 ts->ss_limit.u.f = td->ss.limit;
2432 ts->ss_slope.u.f = td->ss.slope;
2433 ts->ss_deviation.u.f = td->ss.deviation;
2434 ts->ss_criterion.u.f = td->ss.criterion;
2437 ts->ss_dur = ts->ss_state = 0;
2440 for (i = 0; i < nr_ts; i++) {
2441 unsigned long long bw;
2443 ts = &threadstats[i];
2444 if (ts->groupid == -1)
2446 rs = &runstats[ts->groupid];
2447 rs->kb_base = ts->kb_base;
2448 rs->unit_base = ts->unit_base;
2449 rs->sig_figs = ts->sig_figs;
2450 rs->unified_rw_rep |= ts->unified_rw_rep;
2452 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
2453 if (!ts->runtime[j])
2455 if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
2456 rs->min_run[j] = ts->runtime[j];
2457 if (ts->runtime[j] > rs->max_run[j])
2458 rs->max_run[j] = ts->runtime[j];
2462 bw = ts->io_bytes[j] * 1000 / ts->runtime[j];
2463 if (bw < rs->min_bw[j])
2465 if (bw > rs->max_bw[j])
2468 rs->iobytes[j] += ts->io_bytes[j];
2472 for (i = 0; i < groupid + 1; i++) {
2477 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
2478 if (rs->max_run[ddir])
2479 rs->agg[ddir] = (rs->iobytes[ddir] * 1000) /
2484 for (i = 0; i < FIO_OUTPUT_NR; i++)
2485 buf_output_init(&output[i]);
2488 * don't overwrite last signal output
2490 if (output_format & FIO_OUTPUT_NORMAL)
2491 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
2492 if (output_format & FIO_OUTPUT_JSON) {
2493 struct thread_data *global;
2496 unsigned long long ms_since_epoch;
2499 gettimeofday(&now, NULL);
2500 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
2501 (unsigned long long)(now.tv_usec) / 1000;
2503 tv_sec = now.tv_sec;
2504 os_ctime_r(&tv_sec, time_buf, sizeof(time_buf));
2505 if (time_buf[strlen(time_buf) - 1] == '\n')
2506 time_buf[strlen(time_buf) - 1] = '\0';
2508 root = json_create_object();
2509 json_object_add_value_string(root, "fio version", fio_version_string);
2510 json_object_add_value_int(root, "timestamp", now.tv_sec);
2511 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
2512 json_object_add_value_string(root, "time", time_buf);
2513 global = get_global_options();
2514 json_add_job_opts(root, "global options", &global->opt_list);
2515 array = json_create_array();
2516 json_object_add_value_array(root, "jobs", array);
2520 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
2522 for (i = 0; i < nr_ts; i++) {
2523 ts = &threadstats[i];
2524 rs = &runstats[ts->groupid];
2527 fio_server_send_job_options(opt_lists[i], i);
2528 fio_server_send_ts(ts, rs);
2530 if (output_format & FIO_OUTPUT_TERSE)
2531 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
2532 if (output_format & FIO_OUTPUT_JSON) {
2533 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
2534 json_array_add_value_object(array, tmp);
2536 if (output_format & FIO_OUTPUT_NORMAL)
2537 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
2540 if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
2541 /* disk util stats, if any */
2542 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
2544 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
2546 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
2547 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
2548 json_free_object(root);
2551 for (i = 0; i < groupid + 1; i++) {
2556 fio_server_send_gs(rs);
2557 else if (output_format & FIO_OUTPUT_NORMAL)
2558 show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
2562 fio_server_send_du();
2563 else if (output_format & FIO_OUTPUT_NORMAL) {
2564 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
2565 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
2568 for (i = 0; i < FIO_OUTPUT_NR; i++) {
2569 struct buf_output *out = &output[i];
2571 log_info_buf(out->buf, out->buflen);
2572 buf_output_free(out);
2575 fio_idle_prof_cleanup();
2583 int __show_running_run_stats(void)
2585 struct thread_data *td;
2586 unsigned long long *rt;
2590 fio_sem_down(stat_sem);
2592 rt = malloc(thread_number * sizeof(unsigned long long));
2593 fio_gettime(&ts, NULL);
2595 for_each_td(td, i) {
2596 td->update_rusage = 1;
2597 for_each_rw_ddir(ddir) {
2598 td->ts.io_bytes[ddir] = td->io_bytes[ddir];
2600 td->ts.total_run_time = mtime_since(&td->epoch, &ts);
2602 rt[i] = mtime_since(&td->start, &ts);
2603 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2604 td->ts.runtime[DDIR_READ] += rt[i];
2605 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2606 td->ts.runtime[DDIR_WRITE] += rt[i];
2607 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2608 td->ts.runtime[DDIR_TRIM] += rt[i];
2611 for_each_td(td, i) {
2612 if (td->runstate >= TD_EXITED)
2614 if (td->rusage_sem) {
2615 td->update_rusage = 1;
2616 fio_sem_down(td->rusage_sem);
2618 td->update_rusage = 0;
2623 for_each_td(td, i) {
2624 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
2625 td->ts.runtime[DDIR_READ] -= rt[i];
2626 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
2627 td->ts.runtime[DDIR_WRITE] -= rt[i];
2628 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
2629 td->ts.runtime[DDIR_TRIM] -= rt[i];
2633 fio_sem_up(stat_sem);
2638 static bool status_file_disabled;
2640 #define FIO_STATUS_FILE "fio-dump-status"
2642 static int check_status_file(void)
2645 const char *temp_dir;
2646 char fio_status_file_path[PATH_MAX];
2648 if (status_file_disabled)
2651 temp_dir = getenv("TMPDIR");
2652 if (temp_dir == NULL) {
2653 temp_dir = getenv("TEMP");
2654 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
2657 if (temp_dir == NULL)
2660 __coverity_tainted_data_sanitize__(temp_dir);
2663 snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
2665 if (stat(fio_status_file_path, &sb))
2668 if (unlink(fio_status_file_path) < 0) {
2669 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
2671 log_err("fio: disabling status file updates\n");
2672 status_file_disabled = true;
2678 void check_for_running_stats(void)
2680 if (check_status_file()) {
2681 show_running_run_stats();
2686 static inline void add_stat_sample(struct io_stat *is, unsigned long long data)
2691 if (data > is->max_val)
2693 if (data < is->min_val)
2696 delta = val - is->mean.u.f;
2698 is->mean.u.f += delta / (is->samples + 1.0);
2699 is->S.u.f += delta * (val - is->mean.u.f);
2706 * Return a struct io_logs, which is added to the tail of the log
2709 static struct io_logs *get_new_log(struct io_log *iolog)
2711 size_t new_size, new_samples;
2712 struct io_logs *cur_log;
2715 * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
2718 if (!iolog->cur_log_max)
2719 new_samples = DEF_LOG_ENTRIES;
2721 new_samples = iolog->cur_log_max * 2;
2722 if (new_samples > MAX_LOG_ENTRIES)
2723 new_samples = MAX_LOG_ENTRIES;
2726 new_size = new_samples * log_entry_sz(iolog);
2728 cur_log = smalloc(sizeof(*cur_log));
2730 INIT_FLIST_HEAD(&cur_log->list);
2731 cur_log->log = malloc(new_size);
2733 cur_log->nr_samples = 0;
2734 cur_log->max_samples = new_samples;
2735 flist_add_tail(&cur_log->list, &iolog->io_logs);
2736 iolog->cur_log_max = new_samples;
2746 * Add and return a new log chunk, or return current log if big enough
2748 static struct io_logs *regrow_log(struct io_log *iolog)
2750 struct io_logs *cur_log;
2753 if (!iolog || iolog->disabled)
2756 cur_log = iolog_cur_log(iolog);
2758 cur_log = get_new_log(iolog);
2763 if (cur_log->nr_samples < cur_log->max_samples)
2767 * No room for a new sample. If we're compressing on the fly, flush
2768 * out the current chunk
2770 if (iolog->log_gz) {
2771 if (iolog_cur_flush(iolog, cur_log)) {
2772 log_err("fio: failed flushing iolog! Will stop logging.\n");
2778 * Get a new log array, and add to our list
2780 cur_log = get_new_log(iolog);
2782 log_err("fio: failed extending iolog! Will stop logging.\n");
2786 if (!iolog->pending || !iolog->pending->nr_samples)
2790 * Flush pending items to new log
2792 for (i = 0; i < iolog->pending->nr_samples; i++) {
2793 struct io_sample *src, *dst;
2795 src = get_sample(iolog, iolog->pending, i);
2796 dst = get_sample(iolog, cur_log, i);
2797 memcpy(dst, src, log_entry_sz(iolog));
2799 cur_log->nr_samples = iolog->pending->nr_samples;
2801 iolog->pending->nr_samples = 0;
2805 iolog->disabled = true;
2809 void regrow_logs(struct thread_data *td)
2811 regrow_log(td->slat_log);
2812 regrow_log(td->clat_log);
2813 regrow_log(td->clat_hist_log);
2814 regrow_log(td->lat_log);
2815 regrow_log(td->bw_log);
2816 regrow_log(td->iops_log);
2817 td->flags &= ~TD_F_REGROW_LOGS;
2820 void regrow_agg_logs(void)
2824 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2825 regrow_log(agg_io_log[ddir]);
2828 static struct io_logs *get_cur_log(struct io_log *iolog)
2830 struct io_logs *cur_log;
2832 cur_log = iolog_cur_log(iolog);
2834 cur_log = get_new_log(iolog);
2839 if (cur_log->nr_samples < cur_log->max_samples)
2843 * Out of space. If we're in IO offload mode, or we're not doing
2844 * per unit logging (hence logging happens outside of the IO thread
2845 * as well), add a new log chunk inline. If we're doing inline
2846 * submissions, flag 'td' as needing a log regrow and we'll take
2847 * care of it on the submission side.
2849 if ((iolog->td && iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD) ||
2850 !per_unit_log(iolog))
2851 return regrow_log(iolog);
2854 iolog->td->flags |= TD_F_REGROW_LOGS;
2856 assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2857 return iolog->pending;
2860 static void __add_log_sample(struct io_log *iolog, union io_sample_data data,
2861 enum fio_ddir ddir, unsigned long long bs,
2862 unsigned long t, uint64_t offset,
2863 unsigned int priority)
2865 struct io_logs *cur_log;
2867 if (iolog->disabled)
2869 if (flist_empty(&iolog->io_logs))
2870 iolog->avg_last[ddir] = t;
2872 cur_log = get_cur_log(iolog);
2874 struct io_sample *s;
2876 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2879 s->time = t + (iolog->td ? iolog->td->unix_epoch : 0);
2880 io_sample_set_ddir(iolog, s, ddir);
2882 s->priority = priority;
2884 if (iolog->log_offset) {
2885 struct io_sample_offset *so = (void *) s;
2887 so->offset = offset;
2890 cur_log->nr_samples++;
2894 iolog->disabled = true;
2897 static inline void reset_io_stat(struct io_stat *ios)
2899 ios->min_val = -1ULL;
2900 ios->max_val = ios->samples = 0;
2901 ios->mean.u.f = ios->S.u.f = 0;
2904 void reset_io_stats(struct thread_data *td)
2906 struct thread_stat *ts = &td->ts;
2909 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2910 reset_io_stat(&ts->clat_high_prio_stat[i]);
2911 reset_io_stat(&ts->clat_low_prio_stat[i]);
2912 reset_io_stat(&ts->clat_stat[i]);
2913 reset_io_stat(&ts->slat_stat[i]);
2914 reset_io_stat(&ts->lat_stat[i]);
2915 reset_io_stat(&ts->bw_stat[i]);
2916 reset_io_stat(&ts->iops_stat[i]);
2918 ts->io_bytes[i] = 0;
2920 ts->total_io_u[i] = 0;
2921 ts->short_io_u[i] = 0;
2922 ts->drop_io_u[i] = 0;
2924 for (j = 0; j < FIO_IO_U_PLAT_NR; j++) {
2925 ts->io_u_plat_high_prio[i][j] = 0;
2926 ts->io_u_plat_low_prio[i][j] = 0;
2928 ts->io_u_sync_plat[j] = 0;
2932 for (i = 0; i < FIO_LAT_CNT; i++)
2933 for (j = 0; j < DDIR_RWDIR_CNT; j++)
2934 for (k = 0; k < FIO_IO_U_PLAT_NR; k++)
2935 ts->io_u_plat[i][j][k] = 0;
2937 ts->total_io_u[DDIR_SYNC] = 0;
2939 for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2940 ts->io_u_map[i] = 0;
2941 ts->io_u_submit[i] = 0;
2942 ts->io_u_complete[i] = 0;
2945 for (i = 0; i < FIO_IO_U_LAT_N_NR; i++)
2946 ts->io_u_lat_n[i] = 0;
2947 for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
2948 ts->io_u_lat_u[i] = 0;
2949 for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
2950 ts->io_u_lat_m[i] = 0;
2952 ts->total_submit = 0;
2953 ts->total_complete = 0;
2954 ts->nr_zone_resets = 0;
2955 ts->cachehit = ts->cachemiss = 0;
2958 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2959 unsigned long elapsed, bool log_max)
2962 * Note an entry in the log. Use the mean from the logged samples,
2963 * making sure to properly round up. Only write a log entry if we
2964 * had actual samples done.
2966 if (iolog->avg_window[ddir].samples) {
2967 union io_sample_data data;
2970 data.val = iolog->avg_window[ddir].max_val;
2972 data.val = iolog->avg_window[ddir].mean.u.f + 0.50;
2974 __add_log_sample(iolog, data, ddir, 0, elapsed, 0, 0);
2977 reset_io_stat(&iolog->avg_window[ddir]);
2980 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2985 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2986 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2989 static unsigned long add_log_sample(struct thread_data *td,
2990 struct io_log *iolog,
2991 union io_sample_data data,
2992 enum fio_ddir ddir, unsigned long long bs,
2993 uint64_t offset, unsigned int ioprio)
2995 unsigned long elapsed, this_window;
3000 elapsed = mtime_since_now(&td->epoch);
3003 * If no time averaging, just add the log sample.
3005 if (!iolog->avg_msec) {
3006 __add_log_sample(iolog, data, ddir, bs, elapsed, offset,
3012 * Add the sample. If the time period has passed, then
3013 * add that entry to the log and clear.
3015 add_stat_sample(&iolog->avg_window[ddir], data.val);
3018 * If period hasn't passed, adding the above sample is all we
3021 this_window = elapsed - iolog->avg_last[ddir];
3022 if (elapsed < iolog->avg_last[ddir])
3023 return iolog->avg_last[ddir] - elapsed;
3024 else if (this_window < iolog->avg_msec) {
3025 unsigned long diff = iolog->avg_msec - this_window;
3027 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
3031 __add_stat_to_log(iolog, ddir, elapsed, td->o.log_max != 0);
3033 iolog->avg_last[ddir] = elapsed - (elapsed % iolog->avg_msec);
3035 return iolog->avg_msec;
3038 void finalize_logs(struct thread_data *td, bool unit_logs)
3040 unsigned long elapsed;
3042 elapsed = mtime_since_now(&td->epoch);
3044 if (td->clat_log && unit_logs)
3045 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
3046 if (td->slat_log && unit_logs)
3047 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
3048 if (td->lat_log && unit_logs)
3049 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
3050 if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
3051 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
3052 if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
3053 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
3056 void add_agg_sample(union io_sample_data data, enum fio_ddir ddir,
3057 unsigned long long bs)
3059 struct io_log *iolog;
3064 iolog = agg_io_log[ddir];
3065 __add_log_sample(iolog, data, ddir, bs, mtime_since_genesis(), 0, 0);
3068 void add_sync_clat_sample(struct thread_stat *ts, unsigned long long nsec)
3070 unsigned int idx = plat_val_to_idx(nsec);
3071 assert(idx < FIO_IO_U_PLAT_NR);
3073 ts->io_u_sync_plat[idx]++;
3074 add_stat_sample(&ts->sync_stat, nsec);
3077 static void add_lat_percentile_sample_noprio(struct thread_stat *ts,
3078 unsigned long long nsec, enum fio_ddir ddir, enum fio_lat lat)
3080 unsigned int idx = plat_val_to_idx(nsec);
3081 assert(idx < FIO_IO_U_PLAT_NR);
3083 ts->io_u_plat[lat][ddir][idx]++;
3086 static void add_lat_percentile_sample(struct thread_stat *ts,
3087 unsigned long long nsec, enum fio_ddir ddir,
3088 bool high_prio, enum fio_lat lat)
3090 unsigned int idx = plat_val_to_idx(nsec);
3092 add_lat_percentile_sample_noprio(ts, nsec, ddir, lat);
3095 ts->io_u_plat_low_prio[ddir][idx]++;
3097 ts->io_u_plat_high_prio[ddir][idx]++;
3100 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
3101 unsigned long long nsec, unsigned long long bs,
3102 uint64_t offset, unsigned int ioprio, bool high_prio)
3104 const bool needs_lock = td_async_processing(td);
3105 unsigned long elapsed, this_window;
3106 struct thread_stat *ts = &td->ts;
3107 struct io_log *iolog = td->clat_hist_log;
3112 add_stat_sample(&ts->clat_stat[ddir], nsec);
3114 if (!ts->lat_percentiles) {
3116 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3118 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3122 add_log_sample(td, td->clat_log, sample_val(nsec), ddir, bs,
3125 if (ts->clat_percentiles) {
3126 if (ts->lat_percentiles)
3127 add_lat_percentile_sample_noprio(ts, nsec, ddir, FIO_CLAT);
3129 add_lat_percentile_sample(ts, nsec, ddir, high_prio, FIO_CLAT);
3132 if (iolog && iolog->hist_msec) {
3133 struct io_hist *hw = &iolog->hist_window[ddir];
3136 elapsed = mtime_since_now(&td->epoch);
3138 hw->hist_last = elapsed;
3139 this_window = elapsed - hw->hist_last;
3141 if (this_window >= iolog->hist_msec) {
3142 uint64_t *io_u_plat;
3143 struct io_u_plat_entry *dst;
3146 * Make a byte-for-byte copy of the latency histogram
3147 * stored in td->ts.io_u_plat[ddir], recording it in a
3148 * log sample. Note that the matching call to free() is
3149 * located in iolog.c after printing this sample to the
3152 io_u_plat = (uint64_t *) td->ts.io_u_plat[FIO_CLAT][ddir];
3153 dst = malloc(sizeof(struct io_u_plat_entry));
3154 memcpy(&(dst->io_u_plat), io_u_plat,
3155 FIO_IO_U_PLAT_NR * sizeof(uint64_t));
3156 flist_add(&dst->list, &hw->list);
3157 __add_log_sample(iolog, sample_plat(dst), ddir, bs,
3158 elapsed, offset, ioprio);
3161 * Update the last time we recorded as being now, minus
3162 * any drift in time we encountered before actually
3163 * making the record.
3165 hw->hist_last = elapsed - (this_window - iolog->hist_msec);
3171 __td_io_u_unlock(td);
3174 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
3175 unsigned long long nsec, unsigned long long bs,
3176 uint64_t offset, unsigned int ioprio)
3178 const bool needs_lock = td_async_processing(td);
3179 struct thread_stat *ts = &td->ts;
3187 add_stat_sample(&ts->slat_stat[ddir], nsec);
3190 add_log_sample(td, td->slat_log, sample_val(nsec), ddir, bs,
3193 if (ts->slat_percentiles)
3194 add_lat_percentile_sample_noprio(ts, nsec, ddir, FIO_SLAT);
3197 __td_io_u_unlock(td);
3200 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
3201 unsigned long long nsec, unsigned long long bs,
3202 uint64_t offset, unsigned int ioprio, bool high_prio)
3204 const bool needs_lock = td_async_processing(td);
3205 struct thread_stat *ts = &td->ts;
3213 add_stat_sample(&ts->lat_stat[ddir], nsec);
3216 add_log_sample(td, td->lat_log, sample_val(nsec), ddir, bs,
3219 if (ts->lat_percentiles) {
3220 add_lat_percentile_sample(ts, nsec, ddir, high_prio, FIO_LAT);
3222 add_stat_sample(&ts->clat_high_prio_stat[ddir], nsec);
3224 add_stat_sample(&ts->clat_low_prio_stat[ddir], nsec);
3228 __td_io_u_unlock(td);
3231 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
3232 unsigned int bytes, unsigned long long spent)
3234 const bool needs_lock = td_async_processing(td);
3235 struct thread_stat *ts = &td->ts;
3239 rate = (unsigned long) (bytes * 1000000ULL / spent);
3246 add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
3249 add_log_sample(td, td->bw_log, sample_val(rate), io_u->ddir,
3250 bytes, io_u->offset, io_u->ioprio);
3252 td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
3255 __td_io_u_unlock(td);
3258 static int __add_samples(struct thread_data *td, struct timespec *parent_tv,
3259 struct timespec *t, unsigned int avg_time,
3260 uint64_t *this_io_bytes, uint64_t *stat_io_bytes,
3261 struct io_stat *stat, struct io_log *log,
3264 const bool needs_lock = td_async_processing(td);
3265 unsigned long spent, rate;
3267 unsigned long next, next_log;
3269 next_log = avg_time;
3271 spent = mtime_since(parent_tv, t);
3272 if (spent < avg_time && avg_time - spent > LOG_MSEC_SLACK)
3273 return avg_time - spent;
3279 * Compute both read and write rates for the interval.
3281 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
3284 delta = this_io_bytes[ddir] - stat_io_bytes[ddir];
3286 continue; /* No entries for interval */
3290 rate = delta * 1000 / spent / 1024; /* KiB/s */
3292 rate = (delta * 1000) / spent;
3296 add_stat_sample(&stat[ddir], rate);
3299 unsigned long long bs = 0;
3301 if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
3302 bs = td->o.min_bs[ddir];
3304 next = add_log_sample(td, log, sample_val(rate), ddir,
3306 next_log = min(next_log, next);
3309 stat_io_bytes[ddir] = this_io_bytes[ddir];
3315 __td_io_u_unlock(td);
3317 if (spent <= avg_time)
3320 next = avg_time - (1 + spent - avg_time);
3322 return min(next, next_log);
3325 static int add_bw_samples(struct thread_data *td, struct timespec *t)
3327 return __add_samples(td, &td->bw_sample_time, t, td->o.bw_avg_time,
3328 td->this_io_bytes, td->stat_io_bytes,
3329 td->ts.bw_stat, td->bw_log, true);
3332 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
3335 const bool needs_lock = td_async_processing(td);
3336 struct thread_stat *ts = &td->ts;
3341 add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
3344 add_log_sample(td, td->iops_log, sample_val(1), io_u->ddir,
3345 bytes, io_u->offset, io_u->ioprio);
3347 td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
3350 __td_io_u_unlock(td);
3353 static int add_iops_samples(struct thread_data *td, struct timespec *t)
3355 return __add_samples(td, &td->iops_sample_time, t, td->o.iops_avg_time,
3356 td->this_io_blocks, td->stat_io_blocks,
3357 td->ts.iops_stat, td->iops_log, false);
3361 * Returns msecs to next event
3363 int calc_log_samples(void)
3365 struct thread_data *td;
3366 unsigned int next = ~0U, tmp = 0, next_mod = 0, log_avg_msec_min = -1U;
3367 struct timespec now;
3369 long elapsed_time = 0;
3371 fio_gettime(&now, NULL);
3373 for_each_td(td, i) {
3374 elapsed_time = mtime_since_now(&td->epoch);
3378 if (in_ramp_time(td) ||
3379 !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
3380 next = min(td->o.iops_avg_time, td->o.bw_avg_time);
3384 (td->bw_log && !per_unit_log(td->bw_log))) {
3385 tmp = add_bw_samples(td, &now);
3388 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->bw_log->avg_msec);
3390 if (!td->iops_log ||
3391 (td->iops_log && !per_unit_log(td->iops_log))) {
3392 tmp = add_iops_samples(td, &now);
3395 log_avg_msec_min = min(log_avg_msec_min, (unsigned int)td->iops_log->avg_msec);
3402 /* if log_avg_msec_min has not been changed, set it to 0 */
3403 if (log_avg_msec_min == -1U)
3404 log_avg_msec_min = 0;
3406 if (log_avg_msec_min == 0)
3407 next_mod = elapsed_time;
3409 next_mod = elapsed_time % log_avg_msec_min;
3411 /* correction to keep the time on the log avg msec boundary */
3412 next = min(next, (log_avg_msec_min - next_mod));
3414 return next == ~0U ? 0 : next;
3417 void stat_init(void)
3419 stat_sem = fio_sem_init(FIO_SEM_UNLOCKED);
3422 void stat_exit(void)
3425 * When we have the mutex, we know out-of-band access to it
3428 fio_sem_down(stat_sem);
3429 fio_sem_remove(stat_sem);
3433 * Called from signal handler. Wake up status thread.
3435 void show_running_run_stats(void)
3440 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
3442 /* Ignore io_u's which span multiple blocks--they will just get
3443 * inaccurate counts. */
3444 int idx = (io_u->offset - io_u->file->file_offset)
3445 / td->o.bs[DDIR_TRIM];
3446 uint32_t *info = &td->ts.block_infos[idx];
3447 assert(idx < td->ts.nr_block_infos);