Enable request flow under Poisson process
[fio.git] / backend.c
... / ...
CommitLineData
1/*
2 * fio - the flexible io tester
3 *
4 * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5 * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6 *
7 * The license below covers all files distributed with fio unless otherwise
8 * noted in the file itself.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 */
24#include <unistd.h>
25#include <fcntl.h>
26#include <string.h>
27#include <limits.h>
28#include <signal.h>
29#include <time.h>
30#include <locale.h>
31#include <assert.h>
32#include <time.h>
33#include <inttypes.h>
34#include <sys/stat.h>
35#include <sys/wait.h>
36#include <sys/ipc.h>
37#include <sys/mman.h>
38#include <math.h>
39
40#include "fio.h"
41#ifndef FIO_NO_HAVE_SHM_H
42#include <sys/shm.h>
43#endif
44#include "hash.h"
45#include "smalloc.h"
46#include "verify.h"
47#include "trim.h"
48#include "diskutil.h"
49#include "cgroup.h"
50#include "profile.h"
51#include "lib/rand.h"
52#include "memalign.h"
53#include "server.h"
54#include "lib/getrusage.h"
55#include "idletime.h"
56#include "err.h"
57#include "lib/tp.h"
58#include "workqueue.h"
59#include "lib/mountcheck.h"
60
61static pthread_t helper_thread;
62static pthread_mutex_t helper_lock;
63pthread_cond_t helper_cond;
64int helper_do_stat = 0;
65
66static struct fio_mutex *startup_mutex;
67static struct flist_head *cgroup_list;
68static char *cgroup_mnt;
69static int exit_value;
70static volatile int fio_abort;
71static unsigned int nr_process = 0;
72static unsigned int nr_thread = 0;
73
74struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76int groupid = 0;
77unsigned int thread_number = 0;
78unsigned int stat_number = 0;
79int shm_id = 0;
80int temp_stall_ts;
81unsigned long done_secs = 0;
82volatile int helper_exit = 0;
83
84#define PAGE_ALIGN(buf) \
85 (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87#define JOB_START_TIMEOUT (5 * 1000)
88
89static void sig_int(int sig)
90{
91 if (threads) {
92 if (is_backend)
93 fio_server_got_signal(sig);
94 else {
95 log_info("\nfio: terminating on signal %d\n", sig);
96 log_info_flush();
97 exit_value = 128;
98 }
99
100 fio_terminate_threads(TERMINATE_ALL);
101 }
102}
103
104void sig_show_status(int sig)
105{
106 show_running_run_stats();
107}
108
109static void set_sig_handlers(void)
110{
111 struct sigaction act;
112
113 memset(&act, 0, sizeof(act));
114 act.sa_handler = sig_int;
115 act.sa_flags = SA_RESTART;
116 sigaction(SIGINT, &act, NULL);
117
118 memset(&act, 0, sizeof(act));
119 act.sa_handler = sig_int;
120 act.sa_flags = SA_RESTART;
121 sigaction(SIGTERM, &act, NULL);
122
123/* Windows uses SIGBREAK as a quit signal from other applications */
124#ifdef WIN32
125 memset(&act, 0, sizeof(act));
126 act.sa_handler = sig_int;
127 act.sa_flags = SA_RESTART;
128 sigaction(SIGBREAK, &act, NULL);
129#endif
130
131 memset(&act, 0, sizeof(act));
132 act.sa_handler = sig_show_status;
133 act.sa_flags = SA_RESTART;
134 sigaction(SIGUSR1, &act, NULL);
135
136 if (is_backend) {
137 memset(&act, 0, sizeof(act));
138 act.sa_handler = sig_int;
139 act.sa_flags = SA_RESTART;
140 sigaction(SIGPIPE, &act, NULL);
141 }
142}
143
144/*
145 * Check if we are above the minimum rate given.
146 */
147static int __check_min_rate(struct thread_data *td, struct timeval *now,
148 enum fio_ddir ddir)
149{
150 unsigned long long bytes = 0;
151 unsigned long iops = 0;
152 unsigned long spent;
153 unsigned long rate;
154 unsigned int ratemin = 0;
155 unsigned int rate_iops = 0;
156 unsigned int rate_iops_min = 0;
157
158 assert(ddir_rw(ddir));
159
160 if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161 return 0;
162
163 /*
164 * allow a 2 second settle period in the beginning
165 */
166 if (mtime_since(&td->start, now) < 2000)
167 return 0;
168
169 iops += td->this_io_blocks[ddir];
170 bytes += td->this_io_bytes[ddir];
171 ratemin += td->o.ratemin[ddir];
172 rate_iops += td->o.rate_iops[ddir];
173 rate_iops_min += td->o.rate_iops_min[ddir];
174
175 /*
176 * if rate blocks is set, sample is running
177 */
178 if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179 spent = mtime_since(&td->lastrate[ddir], now);
180 if (spent < td->o.ratecycle)
181 return 0;
182
183 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184 /*
185 * check bandwidth specified rate
186 */
187 if (bytes < td->rate_bytes[ddir]) {
188 log_err("%s: min rate %u not met\n", td->o.name,
189 ratemin);
190 return 1;
191 } else {
192 if (spent)
193 rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194 else
195 rate = 0;
196
197 if (rate < ratemin ||
198 bytes < td->rate_bytes[ddir]) {
199 log_err("%s: min rate %u not met, got"
200 " %luKB/sec\n", td->o.name,
201 ratemin, rate);
202 return 1;
203 }
204 }
205 } else {
206 /*
207 * checks iops specified rate
208 */
209 if (iops < rate_iops) {
210 log_err("%s: min iops rate %u not met\n",
211 td->o.name, rate_iops);
212 return 1;
213 } else {
214 if (spent)
215 rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216 else
217 rate = 0;
218
219 if (rate < rate_iops_min ||
220 iops < td->rate_blocks[ddir]) {
221 log_err("%s: min iops rate %u not met,"
222 " got %lu\n", td->o.name,
223 rate_iops_min, rate);
224 return 1;
225 }
226 }
227 }
228 }
229
230 td->rate_bytes[ddir] = bytes;
231 td->rate_blocks[ddir] = iops;
232 memcpy(&td->lastrate[ddir], now, sizeof(*now));
233 return 0;
234}
235
236static int check_min_rate(struct thread_data *td, struct timeval *now)
237{
238 int ret = 0;
239
240 if (td->bytes_done[DDIR_READ])
241 ret |= __check_min_rate(td, now, DDIR_READ);
242 if (td->bytes_done[DDIR_WRITE])
243 ret |= __check_min_rate(td, now, DDIR_WRITE);
244 if (td->bytes_done[DDIR_TRIM])
245 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247 return ret;
248}
249
250/*
251 * When job exits, we can cancel the in-flight IO if we are using async
252 * io. Attempt to do so.
253 */
254static void cleanup_pending_aio(struct thread_data *td)
255{
256 int r;
257
258 /*
259 * get immediately available events, if any
260 */
261 r = io_u_queued_complete(td, 0);
262 if (r < 0)
263 return;
264
265 /*
266 * now cancel remaining active events
267 */
268 if (td->io_ops->cancel) {
269 struct io_u *io_u;
270 int i;
271
272 io_u_qiter(&td->io_u_all, io_u, i) {
273 if (io_u->flags & IO_U_F_FLIGHT) {
274 r = td->io_ops->cancel(td, io_u);
275 if (!r)
276 put_io_u(td, io_u);
277 }
278 }
279 }
280
281 if (td->cur_depth)
282 r = io_u_queued_complete(td, td->cur_depth);
283}
284
285/*
286 * Helper to handle the final sync of a file. Works just like the normal
287 * io path, just does everything sync.
288 */
289static int fio_io_sync(struct thread_data *td, struct fio_file *f)
290{
291 struct io_u *io_u = __get_io_u(td);
292 int ret;
293
294 if (!io_u)
295 return 1;
296
297 io_u->ddir = DDIR_SYNC;
298 io_u->file = f;
299
300 if (td_io_prep(td, io_u)) {
301 put_io_u(td, io_u);
302 return 1;
303 }
304
305requeue:
306 ret = td_io_queue(td, io_u);
307 if (ret < 0) {
308 td_verror(td, io_u->error, "td_io_queue");
309 put_io_u(td, io_u);
310 return 1;
311 } else if (ret == FIO_Q_QUEUED) {
312 if (io_u_queued_complete(td, 1) < 0)
313 return 1;
314 } else if (ret == FIO_Q_COMPLETED) {
315 if (io_u->error) {
316 td_verror(td, io_u->error, "td_io_queue");
317 return 1;
318 }
319
320 if (io_u_sync_complete(td, io_u) < 0)
321 return 1;
322 } else if (ret == FIO_Q_BUSY) {
323 if (td_io_commit(td))
324 return 1;
325 goto requeue;
326 }
327
328 return 0;
329}
330
331static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
332{
333 int ret;
334
335 if (fio_file_open(f))
336 return fio_io_sync(td, f);
337
338 if (td_io_open_file(td, f))
339 return 1;
340
341 ret = fio_io_sync(td, f);
342 td_io_close_file(td, f);
343 return ret;
344}
345
346static inline void __update_tv_cache(struct thread_data *td)
347{
348 fio_gettime(&td->tv_cache, NULL);
349}
350
351static inline void update_tv_cache(struct thread_data *td)
352{
353 if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
354 __update_tv_cache(td);
355}
356
357static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
358{
359 if (in_ramp_time(td))
360 return 0;
361 if (!td->o.timeout)
362 return 0;
363 if (utime_since(&td->epoch, t) >= td->o.timeout)
364 return 1;
365
366 return 0;
367}
368
369/*
370 * We need to update the runtime consistently in ms, but keep a running
371 * tally of the current elapsed time in microseconds for sub millisecond
372 * updates.
373 */
374static inline void update_runtime(struct thread_data *td,
375 unsigned long long *elapsed_us,
376 const enum fio_ddir ddir)
377{
378 if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
379 return;
380
381 td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
382 elapsed_us[ddir] += utime_since_now(&td->start);
383 td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
384}
385
386static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
387 int *retptr)
388{
389 int ret = *retptr;
390
391 if (ret < 0 || td->error) {
392 int err = td->error;
393 enum error_type_bit eb;
394
395 if (ret < 0)
396 err = -ret;
397
398 eb = td_error_type(ddir, err);
399 if (!(td->o.continue_on_error & (1 << eb)))
400 return 1;
401
402 if (td_non_fatal_error(td, eb, err)) {
403 /*
404 * Continue with the I/Os in case of
405 * a non fatal error.
406 */
407 update_error_count(td, err);
408 td_clear_error(td);
409 *retptr = 0;
410 return 0;
411 } else if (td->o.fill_device && err == ENOSPC) {
412 /*
413 * We expect to hit this error if
414 * fill_device option is set.
415 */
416 td_clear_error(td);
417 fio_mark_td_terminate(td);
418 return 1;
419 } else {
420 /*
421 * Stop the I/O in case of a fatal
422 * error.
423 */
424 update_error_count(td, err);
425 return 1;
426 }
427 }
428
429 return 0;
430}
431
432static void check_update_rusage(struct thread_data *td)
433{
434 if (td->update_rusage) {
435 td->update_rusage = 0;
436 update_rusage_stat(td);
437 fio_mutex_up(td->rusage_sem);
438 }
439}
440
441static int wait_for_completions(struct thread_data *td, struct timeval *time)
442{
443 const int full = queue_full(td);
444 int min_evts = 0;
445 int ret;
446
447 /*
448 * if the queue is full, we MUST reap at least 1 event
449 */
450 min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451 if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452 min_evts = 1;
453
454 if (time && (__should_check_rate(td, DDIR_READ) ||
455 __should_check_rate(td, DDIR_WRITE) ||
456 __should_check_rate(td, DDIR_TRIM)))
457 fio_gettime(time, NULL);
458
459 do {
460 ret = io_u_queued_complete(td, min_evts);
461 if (ret < 0)
462 break;
463 } while (full && (td->cur_depth > td->o.iodepth_low));
464
465 return ret;
466}
467
468int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469 enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470 struct timeval *comp_time)
471{
472 int ret2;
473
474 switch (*ret) {
475 case FIO_Q_COMPLETED:
476 if (io_u->error) {
477 *ret = -io_u->error;
478 clear_io_u(td, io_u);
479 } else if (io_u->resid) {
480 int bytes = io_u->xfer_buflen - io_u->resid;
481 struct fio_file *f = io_u->file;
482
483 if (bytes_issued)
484 *bytes_issued += bytes;
485
486 if (!from_verify)
487 trim_io_piece(td, io_u);
488
489 /*
490 * zero read, fail
491 */
492 if (!bytes) {
493 if (!from_verify)
494 unlog_io_piece(td, io_u);
495 td_verror(td, EIO, "full resid");
496 put_io_u(td, io_u);
497 break;
498 }
499
500 io_u->xfer_buflen = io_u->resid;
501 io_u->xfer_buf += bytes;
502 io_u->offset += bytes;
503
504 if (ddir_rw(io_u->ddir))
505 td->ts.short_io_u[io_u->ddir]++;
506
507 f = io_u->file;
508 if (io_u->offset == f->real_file_size)
509 goto sync_done;
510
511 requeue_io_u(td, &io_u);
512 } else {
513sync_done:
514 if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515 __should_check_rate(td, DDIR_WRITE) ||
516 __should_check_rate(td, DDIR_TRIM)))
517 fio_gettime(comp_time, NULL);
518
519 *ret = io_u_sync_complete(td, io_u);
520 if (*ret < 0)
521 break;
522 }
523 return 0;
524 case FIO_Q_QUEUED:
525 /*
526 * if the engine doesn't have a commit hook,
527 * the io_u is really queued. if it does have such
528 * a hook, it has to call io_u_queued() itself.
529 */
530 if (td->io_ops->commit == NULL)
531 io_u_queued(td, io_u);
532 if (bytes_issued)
533 *bytes_issued += io_u->xfer_buflen;
534 break;
535 case FIO_Q_BUSY:
536 if (!from_verify)
537 unlog_io_piece(td, io_u);
538 requeue_io_u(td, &io_u);
539 ret2 = td_io_commit(td);
540 if (ret2 < 0)
541 *ret = ret2;
542 break;
543 default:
544 assert(*ret < 0);
545 td_verror(td, -(*ret), "td_io_queue");
546 break;
547 }
548
549 if (break_on_this_error(td, ddir, ret))
550 return 1;
551
552 return 0;
553}
554
555static inline int io_in_polling(struct thread_data *td)
556{
557 return !td->o.iodepth_batch_complete_min &&
558 !td->o.iodepth_batch_complete_max;
559}
560
561/*
562 * The main verify engine. Runs over the writes we previously submitted,
563 * reads the blocks back in, and checks the crc/md5 of the data.
564 */
565static void do_verify(struct thread_data *td, uint64_t verify_bytes)
566{
567 struct fio_file *f;
568 struct io_u *io_u;
569 int ret, min_events;
570 unsigned int i;
571
572 dprint(FD_VERIFY, "starting loop\n");
573
574 /*
575 * sync io first and invalidate cache, to make sure we really
576 * read from disk.
577 */
578 for_each_file(td, f, i) {
579 if (!fio_file_open(f))
580 continue;
581 if (fio_io_sync(td, f))
582 break;
583 if (file_invalidate_cache(td, f))
584 break;
585 }
586
587 check_update_rusage(td);
588
589 if (td->error)
590 return;
591
592 td_set_runstate(td, TD_VERIFYING);
593
594 io_u = NULL;
595 while (!td->terminate) {
596 enum fio_ddir ddir;
597 int full;
598
599 update_tv_cache(td);
600 check_update_rusage(td);
601
602 if (runtime_exceeded(td, &td->tv_cache)) {
603 __update_tv_cache(td);
604 if (runtime_exceeded(td, &td->tv_cache)) {
605 fio_mark_td_terminate(td);
606 break;
607 }
608 }
609
610 if (flow_threshold_exceeded(td))
611 continue;
612
613 if (!td->o.experimental_verify) {
614 io_u = __get_io_u(td);
615 if (!io_u)
616 break;
617
618 if (get_next_verify(td, io_u)) {
619 put_io_u(td, io_u);
620 break;
621 }
622
623 if (td_io_prep(td, io_u)) {
624 put_io_u(td, io_u);
625 break;
626 }
627 } else {
628 if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
629 break;
630
631 while ((io_u = get_io_u(td)) != NULL) {
632 if (IS_ERR(io_u)) {
633 io_u = NULL;
634 ret = FIO_Q_BUSY;
635 goto reap;
636 }
637
638 /*
639 * We are only interested in the places where
640 * we wrote or trimmed IOs. Turn those into
641 * reads for verification purposes.
642 */
643 if (io_u->ddir == DDIR_READ) {
644 /*
645 * Pretend we issued it for rwmix
646 * accounting
647 */
648 td->io_issues[DDIR_READ]++;
649 put_io_u(td, io_u);
650 continue;
651 } else if (io_u->ddir == DDIR_TRIM) {
652 io_u->ddir = DDIR_READ;
653 io_u_set(io_u, IO_U_F_TRIMMED);
654 break;
655 } else if (io_u->ddir == DDIR_WRITE) {
656 io_u->ddir = DDIR_READ;
657 break;
658 } else {
659 put_io_u(td, io_u);
660 continue;
661 }
662 }
663
664 if (!io_u)
665 break;
666 }
667
668 if (verify_state_should_stop(td, io_u)) {
669 put_io_u(td, io_u);
670 break;
671 }
672
673 if (td->o.verify_async)
674 io_u->end_io = verify_io_u_async;
675 else
676 io_u->end_io = verify_io_u;
677
678 ddir = io_u->ddir;
679 if (!td->o.disable_slat)
680 fio_gettime(&io_u->start_time, NULL);
681
682 ret = td_io_queue(td, io_u);
683
684 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
685 break;
686
687 /*
688 * if we can queue more, do so. but check if there are
689 * completed io_u's first. Note that we can get BUSY even
690 * without IO queued, if the system is resource starved.
691 */
692reap:
693 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
694 if (full || io_in_polling(td))
695 ret = wait_for_completions(td, NULL);
696
697 if (ret < 0)
698 break;
699 }
700
701 check_update_rusage(td);
702
703 if (!td->error) {
704 min_events = td->cur_depth;
705
706 if (min_events)
707 ret = io_u_queued_complete(td, min_events);
708 } else
709 cleanup_pending_aio(td);
710
711 td_set_runstate(td, TD_RUNNING);
712
713 dprint(FD_VERIFY, "exiting loop\n");
714}
715
716static unsigned int exceeds_number_ios(struct thread_data *td)
717{
718 unsigned long long number_ios;
719
720 if (!td->o.number_ios)
721 return 0;
722
723 number_ios = ddir_rw_sum(td->io_blocks);
724 number_ios += td->io_u_queued + td->io_u_in_flight;
725
726 return number_ios >= (td->o.number_ios * td->loops);
727}
728
729static int io_issue_bytes_exceeded(struct thread_data *td)
730{
731 unsigned long long bytes, limit;
732
733 if (td_rw(td))
734 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
735 else if (td_write(td))
736 bytes = td->io_issue_bytes[DDIR_WRITE];
737 else if (td_read(td))
738 bytes = td->io_issue_bytes[DDIR_READ];
739 else
740 bytes = td->io_issue_bytes[DDIR_TRIM];
741
742 if (td->o.io_limit)
743 limit = td->o.io_limit;
744 else
745 limit = td->o.size;
746
747 limit *= td->loops;
748 return bytes >= limit || exceeds_number_ios(td);
749}
750
751static int io_complete_bytes_exceeded(struct thread_data *td)
752{
753 unsigned long long bytes, limit;
754
755 if (td_rw(td))
756 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
757 else if (td_write(td))
758 bytes = td->this_io_bytes[DDIR_WRITE];
759 else if (td_read(td))
760 bytes = td->this_io_bytes[DDIR_READ];
761 else
762 bytes = td->this_io_bytes[DDIR_TRIM];
763
764 if (td->o.io_limit)
765 limit = td->o.io_limit;
766 else
767 limit = td->o.size;
768
769 limit *= td->loops;
770 return bytes >= limit || exceeds_number_ios(td);
771}
772
773/*
774 * used to calculate the next io time for rate control
775 *
776 */
777static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
778{
779 uint64_t secs, remainder, bps, bytes, iops;
780
781 assert(!(td->flags & TD_F_CHILD));
782 bytes = td->rate_io_issue_bytes[ddir];
783 bps = td->rate_bps[ddir];
784
785 if (td->o.poisson_request) {
786 iops = bps / td->o.bs[ddir];
787 td->last_usec += (long long)(1000000 / iops) *
788 (-logf(((float)rand() + 1) / ((float)RAND_MAX + 1)));
789 return td->last_usec;
790 } else if (bps) {
791 secs = bytes / bps;
792 remainder = bytes % bps;
793 return remainder * 1000000 / bps + secs * 1000000;
794 } else
795 return 0;
796}
797
798/*
799 * Main IO worker function. It retrieves io_u's to process and queues
800 * and reaps them, checking for rate and errors along the way.
801 *
802 * Returns number of bytes written and trimmed.
803 */
804static uint64_t do_io(struct thread_data *td)
805{
806 unsigned int i;
807 int ret = 0;
808 uint64_t total_bytes, bytes_issued = 0;
809
810 if (in_ramp_time(td))
811 td_set_runstate(td, TD_RAMP);
812 else
813 td_set_runstate(td, TD_RUNNING);
814
815 lat_target_init(td);
816
817 total_bytes = td->o.size;
818 /*
819 * Allow random overwrite workloads to write up to io_limit
820 * before starting verification phase as 'size' doesn't apply.
821 */
822 if (td_write(td) && td_random(td) && td->o.norandommap)
823 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
824 /*
825 * If verify_backlog is enabled, we'll run the verify in this
826 * handler as well. For that case, we may need up to twice the
827 * amount of bytes.
828 */
829 if (td->o.verify != VERIFY_NONE &&
830 (td_write(td) && td->o.verify_backlog))
831 total_bytes += td->o.size;
832
833 /* In trimwrite mode, each byte is trimmed and then written, so
834 * allow total_bytes to be twice as big */
835 if (td_trimwrite(td))
836 total_bytes += td->total_io_size;
837
838 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
839 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
840 td->o.time_based) {
841 struct timeval comp_time;
842 struct io_u *io_u;
843 int full;
844 enum fio_ddir ddir;
845
846 check_update_rusage(td);
847
848 if (td->terminate || td->done)
849 break;
850
851 update_tv_cache(td);
852
853 if (runtime_exceeded(td, &td->tv_cache)) {
854 __update_tv_cache(td);
855 if (runtime_exceeded(td, &td->tv_cache)) {
856 fio_mark_td_terminate(td);
857 break;
858 }
859 }
860
861 if (flow_threshold_exceeded(td))
862 continue;
863
864 if (bytes_issued >= total_bytes)
865 break;
866
867 io_u = get_io_u(td);
868 if (IS_ERR_OR_NULL(io_u)) {
869 int err = PTR_ERR(io_u);
870
871 io_u = NULL;
872 if (err == -EBUSY) {
873 ret = FIO_Q_BUSY;
874 goto reap;
875 }
876 if (td->o.latency_target)
877 goto reap;
878 break;
879 }
880
881 ddir = io_u->ddir;
882
883 /*
884 * Add verification end_io handler if:
885 * - Asked to verify (!td_rw(td))
886 * - Or the io_u is from our verify list (mixed write/ver)
887 */
888 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
889 ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
890
891 if (!td->o.verify_pattern_bytes) {
892 io_u->rand_seed = __rand(&td->verify_state);
893 if (sizeof(int) != sizeof(long *))
894 io_u->rand_seed *= __rand(&td->verify_state);
895 }
896
897 if (verify_state_should_stop(td, io_u)) {
898 put_io_u(td, io_u);
899 break;
900 }
901
902 if (td->o.verify_async)
903 io_u->end_io = verify_io_u_async;
904 else
905 io_u->end_io = verify_io_u;
906 td_set_runstate(td, TD_VERIFYING);
907 } else if (in_ramp_time(td))
908 td_set_runstate(td, TD_RAMP);
909 else
910 td_set_runstate(td, TD_RUNNING);
911
912 /*
913 * Always log IO before it's issued, so we know the specific
914 * order of it. The logged unit will track when the IO has
915 * completed.
916 */
917 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
918 td->o.do_verify &&
919 td->o.verify != VERIFY_NONE &&
920 !td->o.experimental_verify)
921 log_io_piece(td, io_u);
922
923 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
924 if (td->error)
925 break;
926 ret = workqueue_enqueue(&td->io_wq, io_u);
927
928 if (should_check_rate(td))
929 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
930
931 } else {
932 ret = td_io_queue(td, io_u);
933
934 if (should_check_rate(td))
935 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
936
937 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
938 break;
939
940 /*
941 * See if we need to complete some commands. Note that
942 * we can get BUSY even without IO queued, if the
943 * system is resource starved.
944 */
945reap:
946 full = queue_full(td) ||
947 (ret == FIO_Q_BUSY && td->cur_depth);
948 if (full || io_in_polling(td))
949 ret = wait_for_completions(td, &comp_time);
950 }
951 if (ret < 0)
952 break;
953 if (!ddir_rw_sum(td->bytes_done) &&
954 !(td->io_ops->flags & FIO_NOIO))
955 continue;
956
957 if (!in_ramp_time(td) && should_check_rate(td)) {
958 if (check_min_rate(td, &comp_time)) {
959 if (exitall_on_terminate)
960 fio_terminate_threads(td->groupid);
961 td_verror(td, EIO, "check_min_rate");
962 break;
963 }
964 }
965 if (!in_ramp_time(td) && td->o.latency_target)
966 lat_target_check(td);
967
968 if (td->o.thinktime) {
969 unsigned long long b;
970
971 b = ddir_rw_sum(td->io_blocks);
972 if (!(b % td->o.thinktime_blocks)) {
973 int left;
974
975 io_u_quiesce(td);
976
977 if (td->o.thinktime_spin)
978 usec_spin(td->o.thinktime_spin);
979
980 left = td->o.thinktime - td->o.thinktime_spin;
981 if (left)
982 usec_sleep(td, left);
983 }
984 }
985 }
986
987 check_update_rusage(td);
988
989 if (td->trim_entries)
990 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
991
992 if (td->o.fill_device && td->error == ENOSPC) {
993 td->error = 0;
994 fio_mark_td_terminate(td);
995 }
996 if (!td->error) {
997 struct fio_file *f;
998
999 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1000 workqueue_flush(&td->io_wq);
1001 i = 0;
1002 } else
1003 i = td->cur_depth;
1004
1005 if (i) {
1006 ret = io_u_queued_complete(td, i);
1007 if (td->o.fill_device && td->error == ENOSPC)
1008 td->error = 0;
1009 }
1010
1011 if (should_fsync(td) && td->o.end_fsync) {
1012 td_set_runstate(td, TD_FSYNCING);
1013
1014 for_each_file(td, f, i) {
1015 if (!fio_file_fsync(td, f))
1016 continue;
1017
1018 log_err("fio: end_fsync failed for file %s\n",
1019 f->file_name);
1020 }
1021 }
1022 } else
1023 cleanup_pending_aio(td);
1024
1025 /*
1026 * stop job if we failed doing any IO
1027 */
1028 if (!ddir_rw_sum(td->this_io_bytes))
1029 td->done = 1;
1030
1031 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1032}
1033
1034static void cleanup_io_u(struct thread_data *td)
1035{
1036 struct io_u *io_u;
1037
1038 while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1039
1040 if (td->io_ops->io_u_free)
1041 td->io_ops->io_u_free(td, io_u);
1042
1043 fio_memfree(io_u, sizeof(*io_u));
1044 }
1045
1046 free_io_mem(td);
1047
1048 io_u_rexit(&td->io_u_requeues);
1049 io_u_qexit(&td->io_u_freelist);
1050 io_u_qexit(&td->io_u_all);
1051
1052 if (td->last_write_comp)
1053 sfree(td->last_write_comp);
1054}
1055
1056static int init_io_u(struct thread_data *td)
1057{
1058 struct io_u *io_u;
1059 unsigned int max_bs, min_write;
1060 int cl_align, i, max_units;
1061 int data_xfer = 1, err;
1062 char *p;
1063
1064 max_units = td->o.iodepth;
1065 max_bs = td_max_bs(td);
1066 min_write = td->o.min_bs[DDIR_WRITE];
1067 td->orig_buffer_size = (unsigned long long) max_bs
1068 * (unsigned long long) max_units;
1069
1070 if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1071 data_xfer = 0;
1072
1073 err = 0;
1074 err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1075 err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1076 err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1077
1078 if (err) {
1079 log_err("fio: failed setting up IO queues\n");
1080 return 1;
1081 }
1082
1083 /*
1084 * if we may later need to do address alignment, then add any
1085 * possible adjustment here so that we don't cause a buffer
1086 * overflow later. this adjustment may be too much if we get
1087 * lucky and the allocator gives us an aligned address.
1088 */
1089 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1090 (td->io_ops->flags & FIO_RAWIO))
1091 td->orig_buffer_size += page_mask + td->o.mem_align;
1092
1093 if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1094 unsigned long bs;
1095
1096 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1097 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1098 }
1099
1100 if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1101 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1102 return 1;
1103 }
1104
1105 if (data_xfer && allocate_io_mem(td))
1106 return 1;
1107
1108 if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1109 (td->io_ops->flags & FIO_RAWIO))
1110 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1111 else
1112 p = td->orig_buffer;
1113
1114 cl_align = os_cache_line_size();
1115
1116 for (i = 0; i < max_units; i++) {
1117 void *ptr;
1118
1119 if (td->terminate)
1120 return 1;
1121
1122 ptr = fio_memalign(cl_align, sizeof(*io_u));
1123 if (!ptr) {
1124 log_err("fio: unable to allocate aligned memory\n");
1125 break;
1126 }
1127
1128 io_u = ptr;
1129 memset(io_u, 0, sizeof(*io_u));
1130 INIT_FLIST_HEAD(&io_u->verify_list);
1131 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1132
1133 if (data_xfer) {
1134 io_u->buf = p;
1135 dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1136
1137 if (td_write(td))
1138 io_u_fill_buffer(td, io_u, min_write, max_bs);
1139 if (td_write(td) && td->o.verify_pattern_bytes) {
1140 /*
1141 * Fill the buffer with the pattern if we are
1142 * going to be doing writes.
1143 */
1144 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1145 }
1146 }
1147
1148 io_u->index = i;
1149 io_u->flags = IO_U_F_FREE;
1150 io_u_qpush(&td->io_u_freelist, io_u);
1151
1152 /*
1153 * io_u never leaves this stack, used for iteration of all
1154 * io_u buffers.
1155 */
1156 io_u_qpush(&td->io_u_all, io_u);
1157
1158 if (td->io_ops->io_u_init) {
1159 int ret = td->io_ops->io_u_init(td, io_u);
1160
1161 if (ret) {
1162 log_err("fio: failed to init engine data: %d\n", ret);
1163 return 1;
1164 }
1165 }
1166
1167 p += max_bs;
1168 }
1169
1170 if (td->o.verify != VERIFY_NONE) {
1171 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1172 if (!td->last_write_comp) {
1173 log_err("fio: failed to alloc write comp data\n");
1174 return 1;
1175 }
1176 }
1177
1178 return 0;
1179}
1180
1181static int switch_ioscheduler(struct thread_data *td)
1182{
1183 char tmp[256], tmp2[128];
1184 FILE *f;
1185 int ret;
1186
1187 if (td->io_ops->flags & FIO_DISKLESSIO)
1188 return 0;
1189
1190 sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1191
1192 f = fopen(tmp, "r+");
1193 if (!f) {
1194 if (errno == ENOENT) {
1195 log_err("fio: os or kernel doesn't support IO scheduler"
1196 " switching\n");
1197 return 0;
1198 }
1199 td_verror(td, errno, "fopen iosched");
1200 return 1;
1201 }
1202
1203 /*
1204 * Set io scheduler.
1205 */
1206 ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1207 if (ferror(f) || ret != 1) {
1208 td_verror(td, errno, "fwrite");
1209 fclose(f);
1210 return 1;
1211 }
1212
1213 rewind(f);
1214
1215 /*
1216 * Read back and check that the selected scheduler is now the default.
1217 */
1218 memset(tmp, 0, sizeof(tmp));
1219 ret = fread(tmp, sizeof(tmp), 1, f);
1220 if (ferror(f) || ret < 0) {
1221 td_verror(td, errno, "fread");
1222 fclose(f);
1223 return 1;
1224 }
1225 /*
1226 * either a list of io schedulers or "none\n" is expected.
1227 */
1228 tmp[strlen(tmp) - 1] = '\0';
1229
1230
1231 sprintf(tmp2, "[%s]", td->o.ioscheduler);
1232 if (!strstr(tmp, tmp2)) {
1233 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1234 td_verror(td, EINVAL, "iosched_switch");
1235 fclose(f);
1236 return 1;
1237 }
1238
1239 fclose(f);
1240 return 0;
1241}
1242
1243static int keep_running(struct thread_data *td)
1244{
1245 unsigned long long limit;
1246
1247 if (td->done)
1248 return 0;
1249 if (td->o.time_based)
1250 return 1;
1251 if (td->o.loops) {
1252 td->o.loops--;
1253 return 1;
1254 }
1255 if (exceeds_number_ios(td))
1256 return 0;
1257
1258 if (td->o.io_limit)
1259 limit = td->o.io_limit;
1260 else
1261 limit = td->o.size;
1262
1263 if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1264 uint64_t diff;
1265
1266 /*
1267 * If the difference is less than the minimum IO size, we
1268 * are done.
1269 */
1270 diff = limit - ddir_rw_sum(td->io_bytes);
1271 if (diff < td_max_bs(td))
1272 return 0;
1273
1274 if (fio_files_done(td))
1275 return 0;
1276
1277 return 1;
1278 }
1279
1280 return 0;
1281}
1282
1283static int exec_string(struct thread_options *o, const char *string, const char *mode)
1284{
1285 size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1286 int ret;
1287 char *str;
1288
1289 str = malloc(newlen);
1290 sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1291
1292 log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1293 ret = system(str);
1294 if (ret == -1)
1295 log_err("fio: exec of cmd <%s> failed\n", str);
1296
1297 free(str);
1298 return ret;
1299}
1300
1301/*
1302 * Dry run to compute correct state of numberio for verification.
1303 */
1304static uint64_t do_dry_run(struct thread_data *td)
1305{
1306 td_set_runstate(td, TD_RUNNING);
1307
1308 while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1309 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1310 struct io_u *io_u;
1311 int ret;
1312
1313 if (td->terminate || td->done)
1314 break;
1315
1316 io_u = get_io_u(td);
1317 if (!io_u)
1318 break;
1319
1320 io_u_set(io_u, IO_U_F_FLIGHT);
1321 io_u->error = 0;
1322 io_u->resid = 0;
1323 if (ddir_rw(acct_ddir(io_u)))
1324 td->io_issues[acct_ddir(io_u)]++;
1325 if (ddir_rw(io_u->ddir)) {
1326 io_u_mark_depth(td, 1);
1327 td->ts.total_io_u[io_u->ddir]++;
1328 }
1329
1330 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1331 td->o.do_verify &&
1332 td->o.verify != VERIFY_NONE &&
1333 !td->o.experimental_verify)
1334 log_io_piece(td, io_u);
1335
1336 ret = io_u_sync_complete(td, io_u);
1337 (void) ret;
1338 }
1339
1340 return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1341}
1342
1343static void io_workqueue_fn(struct thread_data *td, struct io_u *io_u)
1344{
1345 const enum fio_ddir ddir = io_u->ddir;
1346 int ret;
1347
1348 dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1349
1350 io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1351
1352 td->cur_depth++;
1353
1354 ret = td_io_queue(td, io_u);
1355
1356 dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1357
1358 io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1359
1360 if (ret == FIO_Q_QUEUED)
1361 ret = io_u_queued_complete(td, 1);
1362
1363 td->cur_depth--;
1364}
1365
1366/*
1367 * Entry point for the thread based jobs. The process based jobs end up
1368 * here as well, after a little setup.
1369 */
1370static void *thread_main(void *data)
1371{
1372 unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1373 struct thread_data *td = data;
1374 struct thread_options *o = &td->o;
1375 pthread_condattr_t attr;
1376 int clear_state;
1377 int ret;
1378
1379 if (!o->use_thread) {
1380 setsid();
1381 td->pid = getpid();
1382 } else
1383 td->pid = gettid();
1384
1385 fio_local_clock_init(o->use_thread);
1386
1387 dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1388
1389 if (is_backend)
1390 fio_server_send_start(td);
1391
1392 INIT_FLIST_HEAD(&td->io_log_list);
1393 INIT_FLIST_HEAD(&td->io_hist_list);
1394 INIT_FLIST_HEAD(&td->verify_list);
1395 INIT_FLIST_HEAD(&td->trim_list);
1396 INIT_FLIST_HEAD(&td->next_rand_list);
1397 pthread_mutex_init(&td->io_u_lock, NULL);
1398 td->io_hist_tree = RB_ROOT;
1399
1400 pthread_condattr_init(&attr);
1401 pthread_cond_init(&td->verify_cond, &attr);
1402 pthread_cond_init(&td->free_cond, &attr);
1403
1404 td_set_runstate(td, TD_INITIALIZED);
1405 dprint(FD_MUTEX, "up startup_mutex\n");
1406 fio_mutex_up(startup_mutex);
1407 dprint(FD_MUTEX, "wait on td->mutex\n");
1408 fio_mutex_down(td->mutex);
1409 dprint(FD_MUTEX, "done waiting on td->mutex\n");
1410
1411 /*
1412 * A new gid requires privilege, so we need to do this before setting
1413 * the uid.
1414 */
1415 if (o->gid != -1U && setgid(o->gid)) {
1416 td_verror(td, errno, "setgid");
1417 goto err;
1418 }
1419 if (o->uid != -1U && setuid(o->uid)) {
1420 td_verror(td, errno, "setuid");
1421 goto err;
1422 }
1423
1424 /*
1425 * If we have a gettimeofday() thread, make sure we exclude that
1426 * thread from this job
1427 */
1428 if (o->gtod_cpu)
1429 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1430
1431 /*
1432 * Set affinity first, in case it has an impact on the memory
1433 * allocations.
1434 */
1435 if (fio_option_is_set(o, cpumask)) {
1436 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1437 ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1438 if (!ret) {
1439 log_err("fio: no CPUs set\n");
1440 log_err("fio: Try increasing number of available CPUs\n");
1441 td_verror(td, EINVAL, "cpus_split");
1442 goto err;
1443 }
1444 }
1445 ret = fio_setaffinity(td->pid, o->cpumask);
1446 if (ret == -1) {
1447 td_verror(td, errno, "cpu_set_affinity");
1448 goto err;
1449 }
1450 }
1451
1452#ifdef CONFIG_LIBNUMA
1453 /* numa node setup */
1454 if (fio_option_is_set(o, numa_cpunodes) ||
1455 fio_option_is_set(o, numa_memnodes)) {
1456 struct bitmask *mask;
1457
1458 if (numa_available() < 0) {
1459 td_verror(td, errno, "Does not support NUMA API\n");
1460 goto err;
1461 }
1462
1463 if (fio_option_is_set(o, numa_cpunodes)) {
1464 mask = numa_parse_nodestring(o->numa_cpunodes);
1465 ret = numa_run_on_node_mask(mask);
1466 numa_free_nodemask(mask);
1467 if (ret == -1) {
1468 td_verror(td, errno, \
1469 "numa_run_on_node_mask failed\n");
1470 goto err;
1471 }
1472 }
1473
1474 if (fio_option_is_set(o, numa_memnodes)) {
1475 mask = NULL;
1476 if (o->numa_memnodes)
1477 mask = numa_parse_nodestring(o->numa_memnodes);
1478
1479 switch (o->numa_mem_mode) {
1480 case MPOL_INTERLEAVE:
1481 numa_set_interleave_mask(mask);
1482 break;
1483 case MPOL_BIND:
1484 numa_set_membind(mask);
1485 break;
1486 case MPOL_LOCAL:
1487 numa_set_localalloc();
1488 break;
1489 case MPOL_PREFERRED:
1490 numa_set_preferred(o->numa_mem_prefer_node);
1491 break;
1492 case MPOL_DEFAULT:
1493 default:
1494 break;
1495 }
1496
1497 if (mask)
1498 numa_free_nodemask(mask);
1499
1500 }
1501 }
1502#endif
1503
1504 if (fio_pin_memory(td))
1505 goto err;
1506
1507 /*
1508 * May alter parameters that init_io_u() will use, so we need to
1509 * do this first.
1510 */
1511 if (init_iolog(td))
1512 goto err;
1513
1514 if (init_io_u(td))
1515 goto err;
1516
1517 if (o->verify_async && verify_async_init(td))
1518 goto err;
1519
1520 if (fio_option_is_set(o, ioprio) ||
1521 fio_option_is_set(o, ioprio_class)) {
1522 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1523 if (ret == -1) {
1524 td_verror(td, errno, "ioprio_set");
1525 goto err;
1526 }
1527 }
1528
1529 if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1530 goto err;
1531
1532 errno = 0;
1533 if (nice(o->nice) == -1 && errno != 0) {
1534 td_verror(td, errno, "nice");
1535 goto err;
1536 }
1537
1538 if (o->ioscheduler && switch_ioscheduler(td))
1539 goto err;
1540
1541 if (!o->create_serialize && setup_files(td))
1542 goto err;
1543
1544 if (td_io_init(td))
1545 goto err;
1546
1547 if (init_random_map(td))
1548 goto err;
1549
1550 if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1551 goto err;
1552
1553 if (o->pre_read) {
1554 if (pre_read_files(td) < 0)
1555 goto err;
1556 }
1557
1558 if (td->flags & TD_F_COMPRESS_LOG)
1559 tp_init(&td->tp_data);
1560
1561 fio_verify_init(td);
1562
1563 if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1564 workqueue_init(td, &td->io_wq, io_workqueue_fn, td->o.iodepth))
1565 goto err;
1566
1567 fio_gettime(&td->epoch, NULL);
1568 fio_getrusage(&td->ru_start);
1569 memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1570 memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1571
1572 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1573 o->ratemin[DDIR_TRIM]) {
1574 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1575 sizeof(td->bw_sample_time));
1576 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1577 sizeof(td->bw_sample_time));
1578 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1579 sizeof(td->bw_sample_time));
1580 }
1581
1582 clear_state = 0;
1583 while (keep_running(td)) {
1584 uint64_t verify_bytes;
1585
1586 fio_gettime(&td->start, NULL);
1587 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1588
1589 if (clear_state)
1590 clear_io_state(td, 0);
1591
1592 prune_io_piece_log(td);
1593
1594 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1595 verify_bytes = do_dry_run(td);
1596 else
1597 verify_bytes = do_io(td);
1598
1599 clear_state = 1;
1600
1601 /*
1602 * Make sure we've successfully updated the rusage stats
1603 * before waiting on the stat mutex. Otherwise we could have
1604 * the stat thread holding stat mutex and waiting for
1605 * the rusage_sem, which would never get upped because
1606 * this thread is waiting for the stat mutex.
1607 */
1608 check_update_rusage(td);
1609
1610 fio_mutex_down(stat_mutex);
1611 if (td_read(td) && td->io_bytes[DDIR_READ])
1612 update_runtime(td, elapsed_us, DDIR_READ);
1613 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1614 update_runtime(td, elapsed_us, DDIR_WRITE);
1615 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1616 update_runtime(td, elapsed_us, DDIR_TRIM);
1617 fio_gettime(&td->start, NULL);
1618 fio_mutex_up(stat_mutex);
1619
1620 if (td->error || td->terminate)
1621 break;
1622
1623 if (!o->do_verify ||
1624 o->verify == VERIFY_NONE ||
1625 (td->io_ops->flags & FIO_UNIDIR))
1626 continue;
1627
1628 clear_io_state(td, 0);
1629
1630 fio_gettime(&td->start, NULL);
1631
1632 do_verify(td, verify_bytes);
1633
1634 /*
1635 * See comment further up for why this is done here.
1636 */
1637 check_update_rusage(td);
1638
1639 fio_mutex_down(stat_mutex);
1640 update_runtime(td, elapsed_us, DDIR_READ);
1641 fio_gettime(&td->start, NULL);
1642 fio_mutex_up(stat_mutex);
1643
1644 if (td->error || td->terminate)
1645 break;
1646 }
1647
1648 update_rusage_stat(td);
1649 td->ts.total_run_time = mtime_since_now(&td->epoch);
1650 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1651 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1652 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1653
1654 if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1655 (td->o.verify != VERIFY_NONE && td_write(td)))
1656 verify_save_state(td->thread_number);
1657
1658 fio_unpin_memory(td);
1659
1660 fio_writeout_logs(td);
1661
1662 if (o->io_submit_mode == IO_MODE_OFFLOAD)
1663 workqueue_exit(&td->io_wq);
1664
1665 if (td->flags & TD_F_COMPRESS_LOG)
1666 tp_exit(&td->tp_data);
1667
1668 if (o->exec_postrun)
1669 exec_string(o, o->exec_postrun, (const char *)"postrun");
1670
1671 if (exitall_on_terminate)
1672 fio_terminate_threads(td->groupid);
1673
1674err:
1675 if (td->error)
1676 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1677 td->verror);
1678
1679 if (o->verify_async)
1680 verify_async_exit(td);
1681
1682 close_and_free_files(td);
1683 cleanup_io_u(td);
1684 close_ioengine(td);
1685 cgroup_shutdown(td, &cgroup_mnt);
1686 verify_free_state(td);
1687
1688 if (fio_option_is_set(o, cpumask)) {
1689 ret = fio_cpuset_exit(&o->cpumask);
1690 if (ret)
1691 td_verror(td, ret, "fio_cpuset_exit");
1692 }
1693
1694 /*
1695 * do this very late, it will log file closing as well
1696 */
1697 if (o->write_iolog_file)
1698 write_iolog_close(td);
1699
1700 fio_mutex_remove(td->mutex);
1701 td->mutex = NULL;
1702
1703 td_set_runstate(td, TD_EXITED);
1704
1705 /*
1706 * Do this last after setting our runstate to exited, so we
1707 * know that the stat thread is signaled.
1708 */
1709 check_update_rusage(td);
1710
1711 return (void *) (uintptr_t) td->error;
1712}
1713
1714
1715/*
1716 * We cannot pass the td data into a forked process, so attach the td and
1717 * pass it to the thread worker.
1718 */
1719static int fork_main(int shmid, int offset)
1720{
1721 struct thread_data *td;
1722 void *data, *ret;
1723
1724#if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1725 data = shmat(shmid, NULL, 0);
1726 if (data == (void *) -1) {
1727 int __err = errno;
1728
1729 perror("shmat");
1730 return __err;
1731 }
1732#else
1733 /*
1734 * HP-UX inherits shm mappings?
1735 */
1736 data = threads;
1737#endif
1738
1739 td = data + offset * sizeof(struct thread_data);
1740 ret = thread_main(td);
1741 shmdt(data);
1742 return (int) (uintptr_t) ret;
1743}
1744
1745static void dump_td_info(struct thread_data *td)
1746{
1747 log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1748 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1749 (unsigned long) time_since_now(&td->terminate_time));
1750}
1751
1752/*
1753 * Run over the job map and reap the threads that have exited, if any.
1754 */
1755static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1756 unsigned int *m_rate)
1757{
1758 struct thread_data *td;
1759 unsigned int cputhreads, realthreads, pending;
1760 int i, status, ret;
1761
1762 /*
1763 * reap exited threads (TD_EXITED -> TD_REAPED)
1764 */
1765 realthreads = pending = cputhreads = 0;
1766 for_each_td(td, i) {
1767 int flags = 0;
1768
1769 /*
1770 * ->io_ops is NULL for a thread that has closed its
1771 * io engine
1772 */
1773 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1774 cputhreads++;
1775 else
1776 realthreads++;
1777
1778 if (!td->pid) {
1779 pending++;
1780 continue;
1781 }
1782 if (td->runstate == TD_REAPED)
1783 continue;
1784 if (td->o.use_thread) {
1785 if (td->runstate == TD_EXITED) {
1786 td_set_runstate(td, TD_REAPED);
1787 goto reaped;
1788 }
1789 continue;
1790 }
1791
1792 flags = WNOHANG;
1793 if (td->runstate == TD_EXITED)
1794 flags = 0;
1795
1796 /*
1797 * check if someone quit or got killed in an unusual way
1798 */
1799 ret = waitpid(td->pid, &status, flags);
1800 if (ret < 0) {
1801 if (errno == ECHILD) {
1802 log_err("fio: pid=%d disappeared %d\n",
1803 (int) td->pid, td->runstate);
1804 td->sig = ECHILD;
1805 td_set_runstate(td, TD_REAPED);
1806 goto reaped;
1807 }
1808 perror("waitpid");
1809 } else if (ret == td->pid) {
1810 if (WIFSIGNALED(status)) {
1811 int sig = WTERMSIG(status);
1812
1813 if (sig != SIGTERM && sig != SIGUSR2)
1814 log_err("fio: pid=%d, got signal=%d\n",
1815 (int) td->pid, sig);
1816 td->sig = sig;
1817 td_set_runstate(td, TD_REAPED);
1818 goto reaped;
1819 }
1820 if (WIFEXITED(status)) {
1821 if (WEXITSTATUS(status) && !td->error)
1822 td->error = WEXITSTATUS(status);
1823
1824 td_set_runstate(td, TD_REAPED);
1825 goto reaped;
1826 }
1827 }
1828
1829 /*
1830 * If the job is stuck, do a forceful timeout of it and
1831 * move on.
1832 */
1833 if (td->terminate &&
1834 time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1835 dump_td_info(td);
1836 td_set_runstate(td, TD_REAPED);
1837 goto reaped;
1838 }
1839
1840 /*
1841 * thread is not dead, continue
1842 */
1843 pending++;
1844 continue;
1845reaped:
1846 (*nr_running)--;
1847 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1848 (*t_rate) -= ddir_rw_sum(td->o.rate);
1849 if (!td->pid)
1850 pending--;
1851
1852 if (td->error)
1853 exit_value++;
1854
1855 done_secs += mtime_since_now(&td->epoch) / 1000;
1856 profile_td_exit(td);
1857 }
1858
1859 if (*nr_running == cputhreads && !pending && realthreads)
1860 fio_terminate_threads(TERMINATE_ALL);
1861}
1862
1863static int __check_trigger_file(void)
1864{
1865 struct stat sb;
1866
1867 if (!trigger_file)
1868 return 0;
1869
1870 if (stat(trigger_file, &sb))
1871 return 0;
1872
1873 if (unlink(trigger_file) < 0)
1874 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1875 strerror(errno));
1876
1877 return 1;
1878}
1879
1880static int trigger_timedout(void)
1881{
1882 if (trigger_timeout)
1883 return time_since_genesis() >= trigger_timeout;
1884
1885 return 0;
1886}
1887
1888void exec_trigger(const char *cmd)
1889{
1890 int ret;
1891
1892 if (!cmd)
1893 return;
1894
1895 ret = system(cmd);
1896 if (ret == -1)
1897 log_err("fio: failed executing %s trigger\n", cmd);
1898}
1899
1900void check_trigger_file(void)
1901{
1902 if (__check_trigger_file() || trigger_timedout()) {
1903 if (nr_clients)
1904 fio_clients_send_trigger(trigger_remote_cmd);
1905 else {
1906 verify_save_state(IO_LIST_ALL);
1907 fio_terminate_threads(TERMINATE_ALL);
1908 exec_trigger(trigger_cmd);
1909 }
1910 }
1911}
1912
1913static int fio_verify_load_state(struct thread_data *td)
1914{
1915 int ret;
1916
1917 if (!td->o.verify_state)
1918 return 0;
1919
1920 if (is_backend) {
1921 void *data;
1922 int ver;
1923
1924 ret = fio_server_get_verify_state(td->o.name,
1925 td->thread_number - 1, &data, &ver);
1926 if (!ret)
1927 verify_convert_assign_state(td, data, ver);
1928 } else
1929 ret = verify_load_state(td, "local");
1930
1931 return ret;
1932}
1933
1934static void do_usleep(unsigned int usecs)
1935{
1936 check_for_running_stats();
1937 check_trigger_file();
1938 usleep(usecs);
1939}
1940
1941static int check_mount_writes(struct thread_data *td)
1942{
1943 struct fio_file *f;
1944 unsigned int i;
1945
1946 if (!td_write(td) || td->o.allow_mounted_write)
1947 return 0;
1948
1949 for_each_file(td, f, i) {
1950 if (f->filetype != FIO_TYPE_BD)
1951 continue;
1952 if (device_is_mounted(f->file_name))
1953 goto mounted;
1954 }
1955
1956 return 0;
1957mounted:
1958 log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1959 return 1;
1960}
1961
1962/*
1963 * Main function for kicking off and reaping jobs, as needed.
1964 */
1965static void run_threads(void)
1966{
1967 struct thread_data *td;
1968 unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1969 uint64_t spent;
1970
1971 if (fio_gtod_offload && fio_start_gtod_thread())
1972 return;
1973
1974 fio_idle_prof_init();
1975
1976 set_sig_handlers();
1977
1978 nr_thread = nr_process = 0;
1979 for_each_td(td, i) {
1980 if (check_mount_writes(td))
1981 return;
1982 if (td->o.use_thread)
1983 nr_thread++;
1984 else
1985 nr_process++;
1986 }
1987
1988 if (output_format & FIO_OUTPUT_NORMAL) {
1989 log_info("Starting ");
1990 if (nr_thread)
1991 log_info("%d thread%s", nr_thread,
1992 nr_thread > 1 ? "s" : "");
1993 if (nr_process) {
1994 if (nr_thread)
1995 log_info(" and ");
1996 log_info("%d process%s", nr_process,
1997 nr_process > 1 ? "es" : "");
1998 }
1999 log_info("\n");
2000 log_info_flush();
2001 }
2002
2003 todo = thread_number;
2004 nr_running = 0;
2005 nr_started = 0;
2006 m_rate = t_rate = 0;
2007
2008 for_each_td(td, i) {
2009 print_status_init(td->thread_number - 1);
2010
2011 if (!td->o.create_serialize)
2012 continue;
2013
2014 if (fio_verify_load_state(td))
2015 goto reap;
2016
2017 /*
2018 * do file setup here so it happens sequentially,
2019 * we don't want X number of threads getting their
2020 * client data interspersed on disk
2021 */
2022 if (setup_files(td)) {
2023reap:
2024 exit_value++;
2025 if (td->error)
2026 log_err("fio: pid=%d, err=%d/%s\n",
2027 (int) td->pid, td->error, td->verror);
2028 td_set_runstate(td, TD_REAPED);
2029 todo--;
2030 } else {
2031 struct fio_file *f;
2032 unsigned int j;
2033
2034 /*
2035 * for sharing to work, each job must always open
2036 * its own files. so close them, if we opened them
2037 * for creation
2038 */
2039 for_each_file(td, f, j) {
2040 if (fio_file_open(f))
2041 td_io_close_file(td, f);
2042 }
2043 }
2044 }
2045
2046 /* start idle threads before io threads start to run */
2047 fio_idle_prof_start();
2048
2049 set_genesis_time();
2050
2051 while (todo) {
2052 struct thread_data *map[REAL_MAX_JOBS];
2053 struct timeval this_start;
2054 int this_jobs = 0, left;
2055
2056 /*
2057 * create threads (TD_NOT_CREATED -> TD_CREATED)
2058 */
2059 for_each_td(td, i) {
2060 if (td->runstate != TD_NOT_CREATED)
2061 continue;
2062
2063 /*
2064 * never got a chance to start, killed by other
2065 * thread for some reason
2066 */
2067 if (td->terminate) {
2068 todo--;
2069 continue;
2070 }
2071
2072 if (td->o.start_delay) {
2073 spent = utime_since_genesis();
2074
2075 if (td->o.start_delay > spent)
2076 continue;
2077 }
2078
2079 if (td->o.stonewall && (nr_started || nr_running)) {
2080 dprint(FD_PROCESS, "%s: stonewall wait\n",
2081 td->o.name);
2082 break;
2083 }
2084
2085 init_disk_util(td);
2086
2087 td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2088 td->update_rusage = 0;
2089
2090 /*
2091 * Set state to created. Thread will transition
2092 * to TD_INITIALIZED when it's done setting up.
2093 */
2094 td_set_runstate(td, TD_CREATED);
2095 map[this_jobs++] = td;
2096 nr_started++;
2097
2098 if (td->o.use_thread) {
2099 int ret;
2100
2101 dprint(FD_PROCESS, "will pthread_create\n");
2102 ret = pthread_create(&td->thread, NULL,
2103 thread_main, td);
2104 if (ret) {
2105 log_err("pthread_create: %s\n",
2106 strerror(ret));
2107 nr_started--;
2108 break;
2109 }
2110 ret = pthread_detach(td->thread);
2111 if (ret)
2112 log_err("pthread_detach: %s",
2113 strerror(ret));
2114 } else {
2115 pid_t pid;
2116 dprint(FD_PROCESS, "will fork\n");
2117 pid = fork();
2118 if (!pid) {
2119 int ret = fork_main(shm_id, i);
2120
2121 _exit(ret);
2122 } else if (i == fio_debug_jobno)
2123 *fio_debug_jobp = pid;
2124 }
2125 dprint(FD_MUTEX, "wait on startup_mutex\n");
2126 if (fio_mutex_down_timeout(startup_mutex, 10)) {
2127 log_err("fio: job startup hung? exiting.\n");
2128 fio_terminate_threads(TERMINATE_ALL);
2129 fio_abort = 1;
2130 nr_started--;
2131 break;
2132 }
2133 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2134 }
2135
2136 /*
2137 * Wait for the started threads to transition to
2138 * TD_INITIALIZED.
2139 */
2140 fio_gettime(&this_start, NULL);
2141 left = this_jobs;
2142 while (left && !fio_abort) {
2143 if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2144 break;
2145
2146 do_usleep(100000);
2147
2148 for (i = 0; i < this_jobs; i++) {
2149 td = map[i];
2150 if (!td)
2151 continue;
2152 if (td->runstate == TD_INITIALIZED) {
2153 map[i] = NULL;
2154 left--;
2155 } else if (td->runstate >= TD_EXITED) {
2156 map[i] = NULL;
2157 left--;
2158 todo--;
2159 nr_running++; /* work-around... */
2160 }
2161 }
2162 }
2163
2164 if (left) {
2165 log_err("fio: %d job%s failed to start\n", left,
2166 left > 1 ? "s" : "");
2167 for (i = 0; i < this_jobs; i++) {
2168 td = map[i];
2169 if (!td)
2170 continue;
2171 kill(td->pid, SIGTERM);
2172 }
2173 break;
2174 }
2175
2176 /*
2177 * start created threads (TD_INITIALIZED -> TD_RUNNING).
2178 */
2179 for_each_td(td, i) {
2180 if (td->runstate != TD_INITIALIZED)
2181 continue;
2182
2183 if (in_ramp_time(td))
2184 td_set_runstate(td, TD_RAMP);
2185 else
2186 td_set_runstate(td, TD_RUNNING);
2187 nr_running++;
2188 nr_started--;
2189 m_rate += ddir_rw_sum(td->o.ratemin);
2190 t_rate += ddir_rw_sum(td->o.rate);
2191 todo--;
2192 fio_mutex_up(td->mutex);
2193 }
2194
2195 reap_threads(&nr_running, &t_rate, &m_rate);
2196
2197 if (todo)
2198 do_usleep(100000);
2199 }
2200
2201 while (nr_running) {
2202 reap_threads(&nr_running, &t_rate, &m_rate);
2203 do_usleep(10000);
2204 }
2205
2206 fio_idle_prof_stop();
2207
2208 update_io_ticks();
2209}
2210
2211static void wait_for_helper_thread_exit(void)
2212{
2213 void *ret;
2214
2215 helper_exit = 1;
2216 pthread_cond_signal(&helper_cond);
2217 pthread_join(helper_thread, &ret);
2218}
2219
2220static void free_disk_util(void)
2221{
2222 disk_util_prune_entries();
2223
2224 pthread_cond_destroy(&helper_cond);
2225}
2226
2227static void *helper_thread_main(void *data)
2228{
2229 int ret = 0;
2230
2231 fio_mutex_up(startup_mutex);
2232
2233 while (!ret) {
2234 uint64_t sec = DISK_UTIL_MSEC / 1000;
2235 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2236 struct timespec ts;
2237 struct timeval tv;
2238
2239 gettimeofday(&tv, NULL);
2240 ts.tv_sec = tv.tv_sec + sec;
2241 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2242
2243 if (ts.tv_nsec >= 1000000000ULL) {
2244 ts.tv_nsec -= 1000000000ULL;
2245 ts.tv_sec++;
2246 }
2247
2248 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2249
2250 ret = update_io_ticks();
2251
2252 if (helper_do_stat) {
2253 helper_do_stat = 0;
2254 __show_running_run_stats();
2255 }
2256
2257 if (!is_backend)
2258 print_thread_status();
2259 }
2260
2261 return NULL;
2262}
2263
2264static int create_helper_thread(void)
2265{
2266 int ret;
2267
2268 setup_disk_util();
2269
2270 pthread_cond_init(&helper_cond, NULL);
2271 pthread_mutex_init(&helper_lock, NULL);
2272
2273 ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2274 if (ret) {
2275 log_err("Can't create helper thread: %s\n", strerror(ret));
2276 return 1;
2277 }
2278
2279 dprint(FD_MUTEX, "wait on startup_mutex\n");
2280 fio_mutex_down(startup_mutex);
2281 dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2282 return 0;
2283}
2284
2285int fio_backend(void)
2286{
2287 struct thread_data *td;
2288 int i;
2289
2290 if (exec_profile) {
2291 if (load_profile(exec_profile))
2292 return 1;
2293 free(exec_profile);
2294 exec_profile = NULL;
2295 }
2296 if (!thread_number)
2297 return 0;
2298
2299 if (write_bw_log) {
2300 struct log_params p = {
2301 .log_type = IO_LOG_TYPE_BW,
2302 };
2303
2304 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2305 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2306 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2307 }
2308
2309 startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2310 if (startup_mutex == NULL)
2311 return 1;
2312
2313 set_genesis_time();
2314 stat_init();
2315 create_helper_thread();
2316
2317 cgroup_list = smalloc(sizeof(*cgroup_list));
2318 INIT_FLIST_HEAD(cgroup_list);
2319
2320 run_threads();
2321
2322 wait_for_helper_thread_exit();
2323
2324 if (!fio_abort) {
2325 __show_run_stats();
2326 if (write_bw_log) {
2327 for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2328 struct io_log *log = agg_io_log[i];
2329
2330 flush_log(log, 0);
2331 free_log(log);
2332 }
2333 }
2334 }
2335
2336 for_each_td(td, i) {
2337 fio_options_free(td);
2338 if (td->rusage_sem) {
2339 fio_mutex_remove(td->rusage_sem);
2340 td->rusage_sem = NULL;
2341 }
2342 }
2343
2344 free_disk_util();
2345 cgroup_kill(cgroup_list);
2346 sfree(cgroup_list);
2347 sfree(cgroup_mnt);
2348
2349 fio_mutex_remove(startup_mutex);
2350 stat_exit();
2351 return exit_value;
2352}