Enable request flow under Poisson process
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "lib/tp.h"
58 #include "workqueue.h"
59 #include "lib/mountcheck.h"
60
61 static pthread_t helper_thread;
62 static pthread_mutex_t helper_lock;
63 pthread_cond_t helper_cond;
64 int helper_do_stat = 0;
65
66 static struct fio_mutex *startup_mutex;
67 static struct flist_head *cgroup_list;
68 static char *cgroup_mnt;
69 static int exit_value;
70 static volatile int fio_abort;
71 static unsigned int nr_process = 0;
72 static unsigned int nr_thread = 0;
73
74 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76 int groupid = 0;
77 unsigned int thread_number = 0;
78 unsigned int stat_number = 0;
79 int shm_id = 0;
80 int temp_stall_ts;
81 unsigned long done_secs = 0;
82 volatile int helper_exit = 0;
83
84 #define PAGE_ALIGN(buf) \
85         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87 #define JOB_START_TIMEOUT       (5 * 1000)
88
89 static void sig_int(int sig)
90 {
91         if (threads) {
92                 if (is_backend)
93                         fio_server_got_signal(sig);
94                 else {
95                         log_info("\nfio: terminating on signal %d\n", sig);
96                         log_info_flush();
97                         exit_value = 128;
98                 }
99
100                 fio_terminate_threads(TERMINATE_ALL);
101         }
102 }
103
104 void sig_show_status(int sig)
105 {
106         show_running_run_stats();
107 }
108
109 static void set_sig_handlers(void)
110 {
111         struct sigaction act;
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGINT, &act, NULL);
117
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGTERM, &act, NULL);
122
123 /* Windows uses SIGBREAK as a quit signal from other applications */
124 #ifdef WIN32
125         memset(&act, 0, sizeof(act));
126         act.sa_handler = sig_int;
127         act.sa_flags = SA_RESTART;
128         sigaction(SIGBREAK, &act, NULL);
129 #endif
130
131         memset(&act, 0, sizeof(act));
132         act.sa_handler = sig_show_status;
133         act.sa_flags = SA_RESTART;
134         sigaction(SIGUSR1, &act, NULL);
135
136         if (is_backend) {
137                 memset(&act, 0, sizeof(act));
138                 act.sa_handler = sig_int;
139                 act.sa_flags = SA_RESTART;
140                 sigaction(SIGPIPE, &act, NULL);
141         }
142 }
143
144 /*
145  * Check if we are above the minimum rate given.
146  */
147 static int __check_min_rate(struct thread_data *td, struct timeval *now,
148                             enum fio_ddir ddir)
149 {
150         unsigned long long bytes = 0;
151         unsigned long iops = 0;
152         unsigned long spent;
153         unsigned long rate;
154         unsigned int ratemin = 0;
155         unsigned int rate_iops = 0;
156         unsigned int rate_iops_min = 0;
157
158         assert(ddir_rw(ddir));
159
160         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161                 return 0;
162
163         /*
164          * allow a 2 second settle period in the beginning
165          */
166         if (mtime_since(&td->start, now) < 2000)
167                 return 0;
168
169         iops += td->this_io_blocks[ddir];
170         bytes += td->this_io_bytes[ddir];
171         ratemin += td->o.ratemin[ddir];
172         rate_iops += td->o.rate_iops[ddir];
173         rate_iops_min += td->o.rate_iops_min[ddir];
174
175         /*
176          * if rate blocks is set, sample is running
177          */
178         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179                 spent = mtime_since(&td->lastrate[ddir], now);
180                 if (spent < td->o.ratecycle)
181                         return 0;
182
183                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184                         /*
185                          * check bandwidth specified rate
186                          */
187                         if (bytes < td->rate_bytes[ddir]) {
188                                 log_err("%s: min rate %u not met\n", td->o.name,
189                                                                 ratemin);
190                                 return 1;
191                         } else {
192                                 if (spent)
193                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194                                 else
195                                         rate = 0;
196
197                                 if (rate < ratemin ||
198                                     bytes < td->rate_bytes[ddir]) {
199                                         log_err("%s: min rate %u not met, got"
200                                                 " %luKB/sec\n", td->o.name,
201                                                         ratemin, rate);
202                                         return 1;
203                                 }
204                         }
205                 } else {
206                         /*
207                          * checks iops specified rate
208                          */
209                         if (iops < rate_iops) {
210                                 log_err("%s: min iops rate %u not met\n",
211                                                 td->o.name, rate_iops);
212                                 return 1;
213                         } else {
214                                 if (spent)
215                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216                                 else
217                                         rate = 0;
218
219                                 if (rate < rate_iops_min ||
220                                     iops < td->rate_blocks[ddir]) {
221                                         log_err("%s: min iops rate %u not met,"
222                                                 " got %lu\n", td->o.name,
223                                                         rate_iops_min, rate);
224                                         return 1;
225                                 }
226                         }
227                 }
228         }
229
230         td->rate_bytes[ddir] = bytes;
231         td->rate_blocks[ddir] = iops;
232         memcpy(&td->lastrate[ddir], now, sizeof(*now));
233         return 0;
234 }
235
236 static int check_min_rate(struct thread_data *td, struct timeval *now)
237 {
238         int ret = 0;
239
240         if (td->bytes_done[DDIR_READ])
241                 ret |= __check_min_rate(td, now, DDIR_READ);
242         if (td->bytes_done[DDIR_WRITE])
243                 ret |= __check_min_rate(td, now, DDIR_WRITE);
244         if (td->bytes_done[DDIR_TRIM])
245                 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247         return ret;
248 }
249
250 /*
251  * When job exits, we can cancel the in-flight IO if we are using async
252  * io. Attempt to do so.
253  */
254 static void cleanup_pending_aio(struct thread_data *td)
255 {
256         int r;
257
258         /*
259          * get immediately available events, if any
260          */
261         r = io_u_queued_complete(td, 0);
262         if (r < 0)
263                 return;
264
265         /*
266          * now cancel remaining active events
267          */
268         if (td->io_ops->cancel) {
269                 struct io_u *io_u;
270                 int i;
271
272                 io_u_qiter(&td->io_u_all, io_u, i) {
273                         if (io_u->flags & IO_U_F_FLIGHT) {
274                                 r = td->io_ops->cancel(td, io_u);
275                                 if (!r)
276                                         put_io_u(td, io_u);
277                         }
278                 }
279         }
280
281         if (td->cur_depth)
282                 r = io_u_queued_complete(td, td->cur_depth);
283 }
284
285 /*
286  * Helper to handle the final sync of a file. Works just like the normal
287  * io path, just does everything sync.
288  */
289 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
290 {
291         struct io_u *io_u = __get_io_u(td);
292         int ret;
293
294         if (!io_u)
295                 return 1;
296
297         io_u->ddir = DDIR_SYNC;
298         io_u->file = f;
299
300         if (td_io_prep(td, io_u)) {
301                 put_io_u(td, io_u);
302                 return 1;
303         }
304
305 requeue:
306         ret = td_io_queue(td, io_u);
307         if (ret < 0) {
308                 td_verror(td, io_u->error, "td_io_queue");
309                 put_io_u(td, io_u);
310                 return 1;
311         } else if (ret == FIO_Q_QUEUED) {
312                 if (io_u_queued_complete(td, 1) < 0)
313                         return 1;
314         } else if (ret == FIO_Q_COMPLETED) {
315                 if (io_u->error) {
316                         td_verror(td, io_u->error, "td_io_queue");
317                         return 1;
318                 }
319
320                 if (io_u_sync_complete(td, io_u) < 0)
321                         return 1;
322         } else if (ret == FIO_Q_BUSY) {
323                 if (td_io_commit(td))
324                         return 1;
325                 goto requeue;
326         }
327
328         return 0;
329 }
330
331 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
332 {
333         int ret;
334
335         if (fio_file_open(f))
336                 return fio_io_sync(td, f);
337
338         if (td_io_open_file(td, f))
339                 return 1;
340
341         ret = fio_io_sync(td, f);
342         td_io_close_file(td, f);
343         return ret;
344 }
345
346 static inline void __update_tv_cache(struct thread_data *td)
347 {
348         fio_gettime(&td->tv_cache, NULL);
349 }
350
351 static inline void update_tv_cache(struct thread_data *td)
352 {
353         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
354                 __update_tv_cache(td);
355 }
356
357 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
358 {
359         if (in_ramp_time(td))
360                 return 0;
361         if (!td->o.timeout)
362                 return 0;
363         if (utime_since(&td->epoch, t) >= td->o.timeout)
364                 return 1;
365
366         return 0;
367 }
368
369 /*
370  * We need to update the runtime consistently in ms, but keep a running
371  * tally of the current elapsed time in microseconds for sub millisecond
372  * updates.
373  */
374 static inline void update_runtime(struct thread_data *td,
375                                   unsigned long long *elapsed_us,
376                                   const enum fio_ddir ddir)
377 {
378         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
379                 return;
380
381         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
382         elapsed_us[ddir] += utime_since_now(&td->start);
383         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
384 }
385
386 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
387                                int *retptr)
388 {
389         int ret = *retptr;
390
391         if (ret < 0 || td->error) {
392                 int err = td->error;
393                 enum error_type_bit eb;
394
395                 if (ret < 0)
396                         err = -ret;
397
398                 eb = td_error_type(ddir, err);
399                 if (!(td->o.continue_on_error & (1 << eb)))
400                         return 1;
401
402                 if (td_non_fatal_error(td, eb, err)) {
403                         /*
404                          * Continue with the I/Os in case of
405                          * a non fatal error.
406                          */
407                         update_error_count(td, err);
408                         td_clear_error(td);
409                         *retptr = 0;
410                         return 0;
411                 } else if (td->o.fill_device && err == ENOSPC) {
412                         /*
413                          * We expect to hit this error if
414                          * fill_device option is set.
415                          */
416                         td_clear_error(td);
417                         fio_mark_td_terminate(td);
418                         return 1;
419                 } else {
420                         /*
421                          * Stop the I/O in case of a fatal
422                          * error.
423                          */
424                         update_error_count(td, err);
425                         return 1;
426                 }
427         }
428
429         return 0;
430 }
431
432 static void check_update_rusage(struct thread_data *td)
433 {
434         if (td->update_rusage) {
435                 td->update_rusage = 0;
436                 update_rusage_stat(td);
437                 fio_mutex_up(td->rusage_sem);
438         }
439 }
440
441 static int wait_for_completions(struct thread_data *td, struct timeval *time)
442 {
443         const int full = queue_full(td);
444         int min_evts = 0;
445         int ret;
446
447         /*
448          * if the queue is full, we MUST reap at least 1 event
449          */
450         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451     if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452                 min_evts = 1;
453
454         if (time && (__should_check_rate(td, DDIR_READ) ||
455             __should_check_rate(td, DDIR_WRITE) ||
456             __should_check_rate(td, DDIR_TRIM)))
457                 fio_gettime(time, NULL);
458
459         do {
460                 ret = io_u_queued_complete(td, min_evts);
461                 if (ret < 0)
462                         break;
463         } while (full && (td->cur_depth > td->o.iodepth_low));
464
465         return ret;
466 }
467
468 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470                    struct timeval *comp_time)
471 {
472         int ret2;
473
474         switch (*ret) {
475         case FIO_Q_COMPLETED:
476                 if (io_u->error) {
477                         *ret = -io_u->error;
478                         clear_io_u(td, io_u);
479                 } else if (io_u->resid) {
480                         int bytes = io_u->xfer_buflen - io_u->resid;
481                         struct fio_file *f = io_u->file;
482
483                         if (bytes_issued)
484                                 *bytes_issued += bytes;
485
486                         if (!from_verify)
487                                 trim_io_piece(td, io_u);
488
489                         /*
490                          * zero read, fail
491                          */
492                         if (!bytes) {
493                                 if (!from_verify)
494                                         unlog_io_piece(td, io_u);
495                                 td_verror(td, EIO, "full resid");
496                                 put_io_u(td, io_u);
497                                 break;
498                         }
499
500                         io_u->xfer_buflen = io_u->resid;
501                         io_u->xfer_buf += bytes;
502                         io_u->offset += bytes;
503
504                         if (ddir_rw(io_u->ddir))
505                                 td->ts.short_io_u[io_u->ddir]++;
506
507                         f = io_u->file;
508                         if (io_u->offset == f->real_file_size)
509                                 goto sync_done;
510
511                         requeue_io_u(td, &io_u);
512                 } else {
513 sync_done:
514                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515                             __should_check_rate(td, DDIR_WRITE) ||
516                             __should_check_rate(td, DDIR_TRIM)))
517                                 fio_gettime(comp_time, NULL);
518
519                         *ret = io_u_sync_complete(td, io_u);
520                         if (*ret < 0)
521                                 break;
522                 }
523                 return 0;
524         case FIO_Q_QUEUED:
525                 /*
526                  * if the engine doesn't have a commit hook,
527                  * the io_u is really queued. if it does have such
528                  * a hook, it has to call io_u_queued() itself.
529                  */
530                 if (td->io_ops->commit == NULL)
531                         io_u_queued(td, io_u);
532                 if (bytes_issued)
533                         *bytes_issued += io_u->xfer_buflen;
534                 break;
535         case FIO_Q_BUSY:
536                 if (!from_verify)
537                         unlog_io_piece(td, io_u);
538                 requeue_io_u(td, &io_u);
539                 ret2 = td_io_commit(td);
540                 if (ret2 < 0)
541                         *ret = ret2;
542                 break;
543         default:
544                 assert(*ret < 0);
545                 td_verror(td, -(*ret), "td_io_queue");
546                 break;
547         }
548
549         if (break_on_this_error(td, ddir, ret))
550                 return 1;
551
552         return 0;
553 }
554
555 static inline int io_in_polling(struct thread_data *td)
556 {
557         return !td->o.iodepth_batch_complete_min &&
558                    !td->o.iodepth_batch_complete_max;
559 }
560
561 /*
562  * The main verify engine. Runs over the writes we previously submitted,
563  * reads the blocks back in, and checks the crc/md5 of the data.
564  */
565 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
566 {
567         struct fio_file *f;
568         struct io_u *io_u;
569         int ret, min_events;
570         unsigned int i;
571
572         dprint(FD_VERIFY, "starting loop\n");
573
574         /*
575          * sync io first and invalidate cache, to make sure we really
576          * read from disk.
577          */
578         for_each_file(td, f, i) {
579                 if (!fio_file_open(f))
580                         continue;
581                 if (fio_io_sync(td, f))
582                         break;
583                 if (file_invalidate_cache(td, f))
584                         break;
585         }
586
587         check_update_rusage(td);
588
589         if (td->error)
590                 return;
591
592         td_set_runstate(td, TD_VERIFYING);
593
594         io_u = NULL;
595         while (!td->terminate) {
596                 enum fio_ddir ddir;
597                 int full;
598
599                 update_tv_cache(td);
600                 check_update_rusage(td);
601
602                 if (runtime_exceeded(td, &td->tv_cache)) {
603                         __update_tv_cache(td);
604                         if (runtime_exceeded(td, &td->tv_cache)) {
605                                 fio_mark_td_terminate(td);
606                                 break;
607                         }
608                 }
609
610                 if (flow_threshold_exceeded(td))
611                         continue;
612
613                 if (!td->o.experimental_verify) {
614                         io_u = __get_io_u(td);
615                         if (!io_u)
616                                 break;
617
618                         if (get_next_verify(td, io_u)) {
619                                 put_io_u(td, io_u);
620                                 break;
621                         }
622
623                         if (td_io_prep(td, io_u)) {
624                                 put_io_u(td, io_u);
625                                 break;
626                         }
627                 } else {
628                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
629                                 break;
630
631                         while ((io_u = get_io_u(td)) != NULL) {
632                                 if (IS_ERR(io_u)) {
633                                         io_u = NULL;
634                                         ret = FIO_Q_BUSY;
635                                         goto reap;
636                                 }
637
638                                 /*
639                                  * We are only interested in the places where
640                                  * we wrote or trimmed IOs. Turn those into
641                                  * reads for verification purposes.
642                                  */
643                                 if (io_u->ddir == DDIR_READ) {
644                                         /*
645                                          * Pretend we issued it for rwmix
646                                          * accounting
647                                          */
648                                         td->io_issues[DDIR_READ]++;
649                                         put_io_u(td, io_u);
650                                         continue;
651                                 } else if (io_u->ddir == DDIR_TRIM) {
652                                         io_u->ddir = DDIR_READ;
653                                         io_u_set(io_u, IO_U_F_TRIMMED);
654                                         break;
655                                 } else if (io_u->ddir == DDIR_WRITE) {
656                                         io_u->ddir = DDIR_READ;
657                                         break;
658                                 } else {
659                                         put_io_u(td, io_u);
660                                         continue;
661                                 }
662                         }
663
664                         if (!io_u)
665                                 break;
666                 }
667
668                 if (verify_state_should_stop(td, io_u)) {
669                         put_io_u(td, io_u);
670                         break;
671                 }
672
673                 if (td->o.verify_async)
674                         io_u->end_io = verify_io_u_async;
675                 else
676                         io_u->end_io = verify_io_u;
677
678                 ddir = io_u->ddir;
679                 if (!td->o.disable_slat)
680                         fio_gettime(&io_u->start_time, NULL);
681
682                 ret = td_io_queue(td, io_u);
683
684                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
685                         break;
686
687                 /*
688                  * if we can queue more, do so. but check if there are
689                  * completed io_u's first. Note that we can get BUSY even
690                  * without IO queued, if the system is resource starved.
691                  */
692 reap:
693                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
694                 if (full || io_in_polling(td))
695                         ret = wait_for_completions(td, NULL);
696
697                 if (ret < 0)
698                         break;
699         }
700
701         check_update_rusage(td);
702
703         if (!td->error) {
704                 min_events = td->cur_depth;
705
706                 if (min_events)
707                         ret = io_u_queued_complete(td, min_events);
708         } else
709                 cleanup_pending_aio(td);
710
711         td_set_runstate(td, TD_RUNNING);
712
713         dprint(FD_VERIFY, "exiting loop\n");
714 }
715
716 static unsigned int exceeds_number_ios(struct thread_data *td)
717 {
718         unsigned long long number_ios;
719
720         if (!td->o.number_ios)
721                 return 0;
722
723         number_ios = ddir_rw_sum(td->io_blocks);
724         number_ios += td->io_u_queued + td->io_u_in_flight;
725
726         return number_ios >= (td->o.number_ios * td->loops);
727 }
728
729 static int io_issue_bytes_exceeded(struct thread_data *td)
730 {
731         unsigned long long bytes, limit;
732
733         if (td_rw(td))
734                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
735         else if (td_write(td))
736                 bytes = td->io_issue_bytes[DDIR_WRITE];
737         else if (td_read(td))
738                 bytes = td->io_issue_bytes[DDIR_READ];
739         else
740                 bytes = td->io_issue_bytes[DDIR_TRIM];
741
742         if (td->o.io_limit)
743                 limit = td->o.io_limit;
744         else
745                 limit = td->o.size;
746
747         limit *= td->loops;
748         return bytes >= limit || exceeds_number_ios(td);
749 }
750
751 static int io_complete_bytes_exceeded(struct thread_data *td)
752 {
753         unsigned long long bytes, limit;
754
755         if (td_rw(td))
756                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
757         else if (td_write(td))
758                 bytes = td->this_io_bytes[DDIR_WRITE];
759         else if (td_read(td))
760                 bytes = td->this_io_bytes[DDIR_READ];
761         else
762                 bytes = td->this_io_bytes[DDIR_TRIM];
763
764         if (td->o.io_limit)
765                 limit = td->o.io_limit;
766         else
767                 limit = td->o.size;
768
769         limit *= td->loops;
770         return bytes >= limit || exceeds_number_ios(td);
771 }
772
773 /*
774  * used to calculate the next io time for rate control
775  *
776  */
777 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
778 {
779         uint64_t secs, remainder, bps, bytes, iops;
780
781         assert(!(td->flags & TD_F_CHILD));
782         bytes = td->rate_io_issue_bytes[ddir];
783         bps = td->rate_bps[ddir];
784
785         if (td->o.poisson_request) {
786                 iops = bps / td->o.bs[ddir];
787                 td->last_usec += (long long)(1000000 / iops) *
788                         (-logf(((float)rand() + 1) / ((float)RAND_MAX + 1)));
789                 return td->last_usec;
790         } else if (bps) {
791                 secs = bytes / bps;
792                 remainder = bytes % bps;
793                 return remainder * 1000000 / bps + secs * 1000000;
794         } else
795                 return 0;
796 }
797
798 /*
799  * Main IO worker function. It retrieves io_u's to process and queues
800  * and reaps them, checking for rate and errors along the way.
801  *
802  * Returns number of bytes written and trimmed.
803  */
804 static uint64_t do_io(struct thread_data *td)
805 {
806         unsigned int i;
807         int ret = 0;
808         uint64_t total_bytes, bytes_issued = 0;
809
810         if (in_ramp_time(td))
811                 td_set_runstate(td, TD_RAMP);
812         else
813                 td_set_runstate(td, TD_RUNNING);
814
815         lat_target_init(td);
816
817         total_bytes = td->o.size;
818         /*
819         * Allow random overwrite workloads to write up to io_limit
820         * before starting verification phase as 'size' doesn't apply.
821         */
822         if (td_write(td) && td_random(td) && td->o.norandommap)
823                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
824         /*
825          * If verify_backlog is enabled, we'll run the verify in this
826          * handler as well. For that case, we may need up to twice the
827          * amount of bytes.
828          */
829         if (td->o.verify != VERIFY_NONE &&
830            (td_write(td) && td->o.verify_backlog))
831                 total_bytes += td->o.size;
832
833         /* In trimwrite mode, each byte is trimmed and then written, so
834          * allow total_bytes to be twice as big */
835         if (td_trimwrite(td))
836                 total_bytes += td->total_io_size;
837
838         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
839                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
840                 td->o.time_based) {
841                 struct timeval comp_time;
842                 struct io_u *io_u;
843                 int full;
844                 enum fio_ddir ddir;
845
846                 check_update_rusage(td);
847
848                 if (td->terminate || td->done)
849                         break;
850
851                 update_tv_cache(td);
852
853                 if (runtime_exceeded(td, &td->tv_cache)) {
854                         __update_tv_cache(td);
855                         if (runtime_exceeded(td, &td->tv_cache)) {
856                                 fio_mark_td_terminate(td);
857                                 break;
858                         }
859                 }
860
861                 if (flow_threshold_exceeded(td))
862                         continue;
863
864                 if (bytes_issued >= total_bytes)
865                         break;
866
867                 io_u = get_io_u(td);
868                 if (IS_ERR_OR_NULL(io_u)) {
869                         int err = PTR_ERR(io_u);
870
871                         io_u = NULL;
872                         if (err == -EBUSY) {
873                                 ret = FIO_Q_BUSY;
874                                 goto reap;
875                         }
876                         if (td->o.latency_target)
877                                 goto reap;
878                         break;
879                 }
880
881                 ddir = io_u->ddir;
882
883                 /*
884                  * Add verification end_io handler if:
885                  *      - Asked to verify (!td_rw(td))
886                  *      - Or the io_u is from our verify list (mixed write/ver)
887                  */
888                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
889                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
890
891                         if (!td->o.verify_pattern_bytes) {
892                                 io_u->rand_seed = __rand(&td->verify_state);
893                                 if (sizeof(int) != sizeof(long *))
894                                         io_u->rand_seed *= __rand(&td->verify_state);
895                         }
896
897                         if (verify_state_should_stop(td, io_u)) {
898                                 put_io_u(td, io_u);
899                                 break;
900                         }
901
902                         if (td->o.verify_async)
903                                 io_u->end_io = verify_io_u_async;
904                         else
905                                 io_u->end_io = verify_io_u;
906                         td_set_runstate(td, TD_VERIFYING);
907                 } else if (in_ramp_time(td))
908                         td_set_runstate(td, TD_RAMP);
909                 else
910                         td_set_runstate(td, TD_RUNNING);
911
912                 /*
913                  * Always log IO before it's issued, so we know the specific
914                  * order of it. The logged unit will track when the IO has
915                  * completed.
916                  */
917                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
918                     td->o.do_verify &&
919                     td->o.verify != VERIFY_NONE &&
920                     !td->o.experimental_verify)
921                         log_io_piece(td, io_u);
922
923                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
924                         if (td->error)
925                                 break;
926                         ret = workqueue_enqueue(&td->io_wq, io_u);
927
928                         if (should_check_rate(td))
929                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
930
931                 } else {
932                         ret = td_io_queue(td, io_u);
933
934                         if (should_check_rate(td))
935                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
936
937                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
938                                 break;
939
940                         /*
941                          * See if we need to complete some commands. Note that
942                          * we can get BUSY even without IO queued, if the
943                          * system is resource starved.
944                          */
945 reap:
946                         full = queue_full(td) ||
947                                 (ret == FIO_Q_BUSY && td->cur_depth);
948                         if (full || io_in_polling(td))
949                                 ret = wait_for_completions(td, &comp_time);
950                 }
951                 if (ret < 0)
952                         break;
953                 if (!ddir_rw_sum(td->bytes_done) &&
954                     !(td->io_ops->flags & FIO_NOIO))
955                         continue;
956
957                 if (!in_ramp_time(td) && should_check_rate(td)) {
958                         if (check_min_rate(td, &comp_time)) {
959                                 if (exitall_on_terminate)
960                                         fio_terminate_threads(td->groupid);
961                                 td_verror(td, EIO, "check_min_rate");
962                                 break;
963                         }
964                 }
965                 if (!in_ramp_time(td) && td->o.latency_target)
966                         lat_target_check(td);
967
968                 if (td->o.thinktime) {
969                         unsigned long long b;
970
971                         b = ddir_rw_sum(td->io_blocks);
972                         if (!(b % td->o.thinktime_blocks)) {
973                                 int left;
974
975                                 io_u_quiesce(td);
976
977                                 if (td->o.thinktime_spin)
978                                         usec_spin(td->o.thinktime_spin);
979
980                                 left = td->o.thinktime - td->o.thinktime_spin;
981                                 if (left)
982                                         usec_sleep(td, left);
983                         }
984                 }
985         }
986
987         check_update_rusage(td);
988
989         if (td->trim_entries)
990                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
991
992         if (td->o.fill_device && td->error == ENOSPC) {
993                 td->error = 0;
994                 fio_mark_td_terminate(td);
995         }
996         if (!td->error) {
997                 struct fio_file *f;
998
999                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1000                         workqueue_flush(&td->io_wq);
1001                         i = 0;
1002                 } else
1003                         i = td->cur_depth;
1004
1005                 if (i) {
1006                         ret = io_u_queued_complete(td, i);
1007                         if (td->o.fill_device && td->error == ENOSPC)
1008                                 td->error = 0;
1009                 }
1010
1011                 if (should_fsync(td) && td->o.end_fsync) {
1012                         td_set_runstate(td, TD_FSYNCING);
1013
1014                         for_each_file(td, f, i) {
1015                                 if (!fio_file_fsync(td, f))
1016                                         continue;
1017
1018                                 log_err("fio: end_fsync failed for file %s\n",
1019                                                                 f->file_name);
1020                         }
1021                 }
1022         } else
1023                 cleanup_pending_aio(td);
1024
1025         /*
1026          * stop job if we failed doing any IO
1027          */
1028         if (!ddir_rw_sum(td->this_io_bytes))
1029                 td->done = 1;
1030
1031         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1032 }
1033
1034 static void cleanup_io_u(struct thread_data *td)
1035 {
1036         struct io_u *io_u;
1037
1038         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1039
1040                 if (td->io_ops->io_u_free)
1041                         td->io_ops->io_u_free(td, io_u);
1042
1043                 fio_memfree(io_u, sizeof(*io_u));
1044         }
1045
1046         free_io_mem(td);
1047
1048         io_u_rexit(&td->io_u_requeues);
1049         io_u_qexit(&td->io_u_freelist);
1050         io_u_qexit(&td->io_u_all);
1051
1052         if (td->last_write_comp)
1053                 sfree(td->last_write_comp);
1054 }
1055
1056 static int init_io_u(struct thread_data *td)
1057 {
1058         struct io_u *io_u;
1059         unsigned int max_bs, min_write;
1060         int cl_align, i, max_units;
1061         int data_xfer = 1, err;
1062         char *p;
1063
1064         max_units = td->o.iodepth;
1065         max_bs = td_max_bs(td);
1066         min_write = td->o.min_bs[DDIR_WRITE];
1067         td->orig_buffer_size = (unsigned long long) max_bs
1068                                         * (unsigned long long) max_units;
1069
1070         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1071                 data_xfer = 0;
1072
1073         err = 0;
1074         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1075         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1076         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1077
1078         if (err) {
1079                 log_err("fio: failed setting up IO queues\n");
1080                 return 1;
1081         }
1082
1083         /*
1084          * if we may later need to do address alignment, then add any
1085          * possible adjustment here so that we don't cause a buffer
1086          * overflow later. this adjustment may be too much if we get
1087          * lucky and the allocator gives us an aligned address.
1088          */
1089         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1090             (td->io_ops->flags & FIO_RAWIO))
1091                 td->orig_buffer_size += page_mask + td->o.mem_align;
1092
1093         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1094                 unsigned long bs;
1095
1096                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1097                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1098         }
1099
1100         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1101                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1102                 return 1;
1103         }
1104
1105         if (data_xfer && allocate_io_mem(td))
1106                 return 1;
1107
1108         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1109             (td->io_ops->flags & FIO_RAWIO))
1110                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1111         else
1112                 p = td->orig_buffer;
1113
1114         cl_align = os_cache_line_size();
1115
1116         for (i = 0; i < max_units; i++) {
1117                 void *ptr;
1118
1119                 if (td->terminate)
1120                         return 1;
1121
1122                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1123                 if (!ptr) {
1124                         log_err("fio: unable to allocate aligned memory\n");
1125                         break;
1126                 }
1127
1128                 io_u = ptr;
1129                 memset(io_u, 0, sizeof(*io_u));
1130                 INIT_FLIST_HEAD(&io_u->verify_list);
1131                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1132
1133                 if (data_xfer) {
1134                         io_u->buf = p;
1135                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1136
1137                         if (td_write(td))
1138                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1139                         if (td_write(td) && td->o.verify_pattern_bytes) {
1140                                 /*
1141                                  * Fill the buffer with the pattern if we are
1142                                  * going to be doing writes.
1143                                  */
1144                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1145                         }
1146                 }
1147
1148                 io_u->index = i;
1149                 io_u->flags = IO_U_F_FREE;
1150                 io_u_qpush(&td->io_u_freelist, io_u);
1151
1152                 /*
1153                  * io_u never leaves this stack, used for iteration of all
1154                  * io_u buffers.
1155                  */
1156                 io_u_qpush(&td->io_u_all, io_u);
1157
1158                 if (td->io_ops->io_u_init) {
1159                         int ret = td->io_ops->io_u_init(td, io_u);
1160
1161                         if (ret) {
1162                                 log_err("fio: failed to init engine data: %d\n", ret);
1163                                 return 1;
1164                         }
1165                 }
1166
1167                 p += max_bs;
1168         }
1169
1170         if (td->o.verify != VERIFY_NONE) {
1171                 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1172                 if (!td->last_write_comp) {
1173                         log_err("fio: failed to alloc write comp data\n");
1174                         return 1;
1175                 }
1176         }
1177
1178         return 0;
1179 }
1180
1181 static int switch_ioscheduler(struct thread_data *td)
1182 {
1183         char tmp[256], tmp2[128];
1184         FILE *f;
1185         int ret;
1186
1187         if (td->io_ops->flags & FIO_DISKLESSIO)
1188                 return 0;
1189
1190         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1191
1192         f = fopen(tmp, "r+");
1193         if (!f) {
1194                 if (errno == ENOENT) {
1195                         log_err("fio: os or kernel doesn't support IO scheduler"
1196                                 " switching\n");
1197                         return 0;
1198                 }
1199                 td_verror(td, errno, "fopen iosched");
1200                 return 1;
1201         }
1202
1203         /*
1204          * Set io scheduler.
1205          */
1206         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1207         if (ferror(f) || ret != 1) {
1208                 td_verror(td, errno, "fwrite");
1209                 fclose(f);
1210                 return 1;
1211         }
1212
1213         rewind(f);
1214
1215         /*
1216          * Read back and check that the selected scheduler is now the default.
1217          */
1218         memset(tmp, 0, sizeof(tmp));
1219         ret = fread(tmp, sizeof(tmp), 1, f);
1220         if (ferror(f) || ret < 0) {
1221                 td_verror(td, errno, "fread");
1222                 fclose(f);
1223                 return 1;
1224         }
1225         /*
1226          * either a list of io schedulers or "none\n" is expected.
1227          */
1228         tmp[strlen(tmp) - 1] = '\0';
1229
1230
1231         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1232         if (!strstr(tmp, tmp2)) {
1233                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1234                 td_verror(td, EINVAL, "iosched_switch");
1235                 fclose(f);
1236                 return 1;
1237         }
1238
1239         fclose(f);
1240         return 0;
1241 }
1242
1243 static int keep_running(struct thread_data *td)
1244 {
1245         unsigned long long limit;
1246
1247         if (td->done)
1248                 return 0;
1249         if (td->o.time_based)
1250                 return 1;
1251         if (td->o.loops) {
1252                 td->o.loops--;
1253                 return 1;
1254         }
1255         if (exceeds_number_ios(td))
1256                 return 0;
1257
1258         if (td->o.io_limit)
1259                 limit = td->o.io_limit;
1260         else
1261                 limit = td->o.size;
1262
1263         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1264                 uint64_t diff;
1265
1266                 /*
1267                  * If the difference is less than the minimum IO size, we
1268                  * are done.
1269                  */
1270                 diff = limit - ddir_rw_sum(td->io_bytes);
1271                 if (diff < td_max_bs(td))
1272                         return 0;
1273
1274                 if (fio_files_done(td))
1275                         return 0;
1276
1277                 return 1;
1278         }
1279
1280         return 0;
1281 }
1282
1283 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1284 {
1285         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1286         int ret;
1287         char *str;
1288
1289         str = malloc(newlen);
1290         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1291
1292         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1293         ret = system(str);
1294         if (ret == -1)
1295                 log_err("fio: exec of cmd <%s> failed\n", str);
1296
1297         free(str);
1298         return ret;
1299 }
1300
1301 /*
1302  * Dry run to compute correct state of numberio for verification.
1303  */
1304 static uint64_t do_dry_run(struct thread_data *td)
1305 {
1306         td_set_runstate(td, TD_RUNNING);
1307
1308         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1309                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1310                 struct io_u *io_u;
1311                 int ret;
1312
1313                 if (td->terminate || td->done)
1314                         break;
1315
1316                 io_u = get_io_u(td);
1317                 if (!io_u)
1318                         break;
1319
1320                 io_u_set(io_u, IO_U_F_FLIGHT);
1321                 io_u->error = 0;
1322                 io_u->resid = 0;
1323                 if (ddir_rw(acct_ddir(io_u)))
1324                         td->io_issues[acct_ddir(io_u)]++;
1325                 if (ddir_rw(io_u->ddir)) {
1326                         io_u_mark_depth(td, 1);
1327                         td->ts.total_io_u[io_u->ddir]++;
1328                 }
1329
1330                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1331                     td->o.do_verify &&
1332                     td->o.verify != VERIFY_NONE &&
1333                     !td->o.experimental_verify)
1334                         log_io_piece(td, io_u);
1335
1336                 ret = io_u_sync_complete(td, io_u);
1337                 (void) ret;
1338         }
1339
1340         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1341 }
1342
1343 static void io_workqueue_fn(struct thread_data *td, struct io_u *io_u)
1344 {
1345         const enum fio_ddir ddir = io_u->ddir;
1346         int ret;
1347
1348         dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1349
1350         io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1351
1352         td->cur_depth++;
1353
1354         ret = td_io_queue(td, io_u);
1355
1356         dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1357
1358         io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1359
1360         if (ret == FIO_Q_QUEUED)
1361                 ret = io_u_queued_complete(td, 1);
1362
1363         td->cur_depth--;
1364 }
1365
1366 /*
1367  * Entry point for the thread based jobs. The process based jobs end up
1368  * here as well, after a little setup.
1369  */
1370 static void *thread_main(void *data)
1371 {
1372         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1373         struct thread_data *td = data;
1374         struct thread_options *o = &td->o;
1375         pthread_condattr_t attr;
1376         int clear_state;
1377         int ret;
1378
1379         if (!o->use_thread) {
1380                 setsid();
1381                 td->pid = getpid();
1382         } else
1383                 td->pid = gettid();
1384
1385         fio_local_clock_init(o->use_thread);
1386
1387         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1388
1389         if (is_backend)
1390                 fio_server_send_start(td);
1391
1392         INIT_FLIST_HEAD(&td->io_log_list);
1393         INIT_FLIST_HEAD(&td->io_hist_list);
1394         INIT_FLIST_HEAD(&td->verify_list);
1395         INIT_FLIST_HEAD(&td->trim_list);
1396         INIT_FLIST_HEAD(&td->next_rand_list);
1397         pthread_mutex_init(&td->io_u_lock, NULL);
1398         td->io_hist_tree = RB_ROOT;
1399
1400         pthread_condattr_init(&attr);
1401         pthread_cond_init(&td->verify_cond, &attr);
1402         pthread_cond_init(&td->free_cond, &attr);
1403
1404         td_set_runstate(td, TD_INITIALIZED);
1405         dprint(FD_MUTEX, "up startup_mutex\n");
1406         fio_mutex_up(startup_mutex);
1407         dprint(FD_MUTEX, "wait on td->mutex\n");
1408         fio_mutex_down(td->mutex);
1409         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1410
1411         /*
1412          * A new gid requires privilege, so we need to do this before setting
1413          * the uid.
1414          */
1415         if (o->gid != -1U && setgid(o->gid)) {
1416                 td_verror(td, errno, "setgid");
1417                 goto err;
1418         }
1419         if (o->uid != -1U && setuid(o->uid)) {
1420                 td_verror(td, errno, "setuid");
1421                 goto err;
1422         }
1423
1424         /*
1425          * If we have a gettimeofday() thread, make sure we exclude that
1426          * thread from this job
1427          */
1428         if (o->gtod_cpu)
1429                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1430
1431         /*
1432          * Set affinity first, in case it has an impact on the memory
1433          * allocations.
1434          */
1435         if (fio_option_is_set(o, cpumask)) {
1436                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1437                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1438                         if (!ret) {
1439                                 log_err("fio: no CPUs set\n");
1440                                 log_err("fio: Try increasing number of available CPUs\n");
1441                                 td_verror(td, EINVAL, "cpus_split");
1442                                 goto err;
1443                         }
1444                 }
1445                 ret = fio_setaffinity(td->pid, o->cpumask);
1446                 if (ret == -1) {
1447                         td_verror(td, errno, "cpu_set_affinity");
1448                         goto err;
1449                 }
1450         }
1451
1452 #ifdef CONFIG_LIBNUMA
1453         /* numa node setup */
1454         if (fio_option_is_set(o, numa_cpunodes) ||
1455             fio_option_is_set(o, numa_memnodes)) {
1456                 struct bitmask *mask;
1457
1458                 if (numa_available() < 0) {
1459                         td_verror(td, errno, "Does not support NUMA API\n");
1460                         goto err;
1461                 }
1462
1463                 if (fio_option_is_set(o, numa_cpunodes)) {
1464                         mask = numa_parse_nodestring(o->numa_cpunodes);
1465                         ret = numa_run_on_node_mask(mask);
1466                         numa_free_nodemask(mask);
1467                         if (ret == -1) {
1468                                 td_verror(td, errno, \
1469                                         "numa_run_on_node_mask failed\n");
1470                                 goto err;
1471                         }
1472                 }
1473
1474                 if (fio_option_is_set(o, numa_memnodes)) {
1475                         mask = NULL;
1476                         if (o->numa_memnodes)
1477                                 mask = numa_parse_nodestring(o->numa_memnodes);
1478
1479                         switch (o->numa_mem_mode) {
1480                         case MPOL_INTERLEAVE:
1481                                 numa_set_interleave_mask(mask);
1482                                 break;
1483                         case MPOL_BIND:
1484                                 numa_set_membind(mask);
1485                                 break;
1486                         case MPOL_LOCAL:
1487                                 numa_set_localalloc();
1488                                 break;
1489                         case MPOL_PREFERRED:
1490                                 numa_set_preferred(o->numa_mem_prefer_node);
1491                                 break;
1492                         case MPOL_DEFAULT:
1493                         default:
1494                                 break;
1495                         }
1496
1497                         if (mask)
1498                                 numa_free_nodemask(mask);
1499
1500                 }
1501         }
1502 #endif
1503
1504         if (fio_pin_memory(td))
1505                 goto err;
1506
1507         /*
1508          * May alter parameters that init_io_u() will use, so we need to
1509          * do this first.
1510          */
1511         if (init_iolog(td))
1512                 goto err;
1513
1514         if (init_io_u(td))
1515                 goto err;
1516
1517         if (o->verify_async && verify_async_init(td))
1518                 goto err;
1519
1520         if (fio_option_is_set(o, ioprio) ||
1521             fio_option_is_set(o, ioprio_class)) {
1522                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1523                 if (ret == -1) {
1524                         td_verror(td, errno, "ioprio_set");
1525                         goto err;
1526                 }
1527         }
1528
1529         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1530                 goto err;
1531
1532         errno = 0;
1533         if (nice(o->nice) == -1 && errno != 0) {
1534                 td_verror(td, errno, "nice");
1535                 goto err;
1536         }
1537
1538         if (o->ioscheduler && switch_ioscheduler(td))
1539                 goto err;
1540
1541         if (!o->create_serialize && setup_files(td))
1542                 goto err;
1543
1544         if (td_io_init(td))
1545                 goto err;
1546
1547         if (init_random_map(td))
1548                 goto err;
1549
1550         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1551                 goto err;
1552
1553         if (o->pre_read) {
1554                 if (pre_read_files(td) < 0)
1555                         goto err;
1556         }
1557
1558         if (td->flags & TD_F_COMPRESS_LOG)
1559                 tp_init(&td->tp_data);
1560
1561         fio_verify_init(td);
1562
1563         if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1564             workqueue_init(td, &td->io_wq, io_workqueue_fn, td->o.iodepth))
1565                 goto err;
1566
1567         fio_gettime(&td->epoch, NULL);
1568         fio_getrusage(&td->ru_start);
1569         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1570         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1571
1572         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1573                         o->ratemin[DDIR_TRIM]) {
1574                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1575                                         sizeof(td->bw_sample_time));
1576                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1577                                         sizeof(td->bw_sample_time));
1578                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1579                                         sizeof(td->bw_sample_time));
1580         }
1581
1582         clear_state = 0;
1583         while (keep_running(td)) {
1584                 uint64_t verify_bytes;
1585
1586                 fio_gettime(&td->start, NULL);
1587                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1588
1589                 if (clear_state)
1590                         clear_io_state(td, 0);
1591
1592                 prune_io_piece_log(td);
1593
1594                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1595                         verify_bytes = do_dry_run(td);
1596                 else
1597                         verify_bytes = do_io(td);
1598
1599                 clear_state = 1;
1600
1601                 /*
1602                  * Make sure we've successfully updated the rusage stats
1603                  * before waiting on the stat mutex. Otherwise we could have
1604                  * the stat thread holding stat mutex and waiting for
1605                  * the rusage_sem, which would never get upped because
1606                  * this thread is waiting for the stat mutex.
1607                  */
1608                 check_update_rusage(td);
1609
1610                 fio_mutex_down(stat_mutex);
1611                 if (td_read(td) && td->io_bytes[DDIR_READ])
1612                         update_runtime(td, elapsed_us, DDIR_READ);
1613                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1614                         update_runtime(td, elapsed_us, DDIR_WRITE);
1615                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1616                         update_runtime(td, elapsed_us, DDIR_TRIM);
1617                 fio_gettime(&td->start, NULL);
1618                 fio_mutex_up(stat_mutex);
1619
1620                 if (td->error || td->terminate)
1621                         break;
1622
1623                 if (!o->do_verify ||
1624                     o->verify == VERIFY_NONE ||
1625                     (td->io_ops->flags & FIO_UNIDIR))
1626                         continue;
1627
1628                 clear_io_state(td, 0);
1629
1630                 fio_gettime(&td->start, NULL);
1631
1632                 do_verify(td, verify_bytes);
1633
1634                 /*
1635                  * See comment further up for why this is done here.
1636                  */
1637                 check_update_rusage(td);
1638
1639                 fio_mutex_down(stat_mutex);
1640                 update_runtime(td, elapsed_us, DDIR_READ);
1641                 fio_gettime(&td->start, NULL);
1642                 fio_mutex_up(stat_mutex);
1643
1644                 if (td->error || td->terminate)
1645                         break;
1646         }
1647
1648         update_rusage_stat(td);
1649         td->ts.total_run_time = mtime_since_now(&td->epoch);
1650         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1651         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1652         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1653
1654         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1655             (td->o.verify != VERIFY_NONE && td_write(td)))
1656                 verify_save_state(td->thread_number);
1657
1658         fio_unpin_memory(td);
1659
1660         fio_writeout_logs(td);
1661
1662         if (o->io_submit_mode == IO_MODE_OFFLOAD)
1663                 workqueue_exit(&td->io_wq);
1664
1665         if (td->flags & TD_F_COMPRESS_LOG)
1666                 tp_exit(&td->tp_data);
1667
1668         if (o->exec_postrun)
1669                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1670
1671         if (exitall_on_terminate)
1672                 fio_terminate_threads(td->groupid);
1673
1674 err:
1675         if (td->error)
1676                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1677                                                         td->verror);
1678
1679         if (o->verify_async)
1680                 verify_async_exit(td);
1681
1682         close_and_free_files(td);
1683         cleanup_io_u(td);
1684         close_ioengine(td);
1685         cgroup_shutdown(td, &cgroup_mnt);
1686         verify_free_state(td);
1687
1688         if (fio_option_is_set(o, cpumask)) {
1689                 ret = fio_cpuset_exit(&o->cpumask);
1690                 if (ret)
1691                         td_verror(td, ret, "fio_cpuset_exit");
1692         }
1693
1694         /*
1695          * do this very late, it will log file closing as well
1696          */
1697         if (o->write_iolog_file)
1698                 write_iolog_close(td);
1699
1700         fio_mutex_remove(td->mutex);
1701         td->mutex = NULL;
1702
1703         td_set_runstate(td, TD_EXITED);
1704
1705         /*
1706          * Do this last after setting our runstate to exited, so we
1707          * know that the stat thread is signaled.
1708          */
1709         check_update_rusage(td);
1710
1711         return (void *) (uintptr_t) td->error;
1712 }
1713
1714
1715 /*
1716  * We cannot pass the td data into a forked process, so attach the td and
1717  * pass it to the thread worker.
1718  */
1719 static int fork_main(int shmid, int offset)
1720 {
1721         struct thread_data *td;
1722         void *data, *ret;
1723
1724 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1725         data = shmat(shmid, NULL, 0);
1726         if (data == (void *) -1) {
1727                 int __err = errno;
1728
1729                 perror("shmat");
1730                 return __err;
1731         }
1732 #else
1733         /*
1734          * HP-UX inherits shm mappings?
1735          */
1736         data = threads;
1737 #endif
1738
1739         td = data + offset * sizeof(struct thread_data);
1740         ret = thread_main(td);
1741         shmdt(data);
1742         return (int) (uintptr_t) ret;
1743 }
1744
1745 static void dump_td_info(struct thread_data *td)
1746 {
1747         log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1748                 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1749                         (unsigned long) time_since_now(&td->terminate_time));
1750 }
1751
1752 /*
1753  * Run over the job map and reap the threads that have exited, if any.
1754  */
1755 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1756                          unsigned int *m_rate)
1757 {
1758         struct thread_data *td;
1759         unsigned int cputhreads, realthreads, pending;
1760         int i, status, ret;
1761
1762         /*
1763          * reap exited threads (TD_EXITED -> TD_REAPED)
1764          */
1765         realthreads = pending = cputhreads = 0;
1766         for_each_td(td, i) {
1767                 int flags = 0;
1768
1769                 /*
1770                  * ->io_ops is NULL for a thread that has closed its
1771                  * io engine
1772                  */
1773                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1774                         cputhreads++;
1775                 else
1776                         realthreads++;
1777
1778                 if (!td->pid) {
1779                         pending++;
1780                         continue;
1781                 }
1782                 if (td->runstate == TD_REAPED)
1783                         continue;
1784                 if (td->o.use_thread) {
1785                         if (td->runstate == TD_EXITED) {
1786                                 td_set_runstate(td, TD_REAPED);
1787                                 goto reaped;
1788                         }
1789                         continue;
1790                 }
1791
1792                 flags = WNOHANG;
1793                 if (td->runstate == TD_EXITED)
1794                         flags = 0;
1795
1796                 /*
1797                  * check if someone quit or got killed in an unusual way
1798                  */
1799                 ret = waitpid(td->pid, &status, flags);
1800                 if (ret < 0) {
1801                         if (errno == ECHILD) {
1802                                 log_err("fio: pid=%d disappeared %d\n",
1803                                                 (int) td->pid, td->runstate);
1804                                 td->sig = ECHILD;
1805                                 td_set_runstate(td, TD_REAPED);
1806                                 goto reaped;
1807                         }
1808                         perror("waitpid");
1809                 } else if (ret == td->pid) {
1810                         if (WIFSIGNALED(status)) {
1811                                 int sig = WTERMSIG(status);
1812
1813                                 if (sig != SIGTERM && sig != SIGUSR2)
1814                                         log_err("fio: pid=%d, got signal=%d\n",
1815                                                         (int) td->pid, sig);
1816                                 td->sig = sig;
1817                                 td_set_runstate(td, TD_REAPED);
1818                                 goto reaped;
1819                         }
1820                         if (WIFEXITED(status)) {
1821                                 if (WEXITSTATUS(status) && !td->error)
1822                                         td->error = WEXITSTATUS(status);
1823
1824                                 td_set_runstate(td, TD_REAPED);
1825                                 goto reaped;
1826                         }
1827                 }
1828
1829                 /*
1830                  * If the job is stuck, do a forceful timeout of it and
1831                  * move on.
1832                  */
1833                 if (td->terminate &&
1834                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1835                         dump_td_info(td);
1836                         td_set_runstate(td, TD_REAPED);
1837                         goto reaped;
1838                 }
1839
1840                 /*
1841                  * thread is not dead, continue
1842                  */
1843                 pending++;
1844                 continue;
1845 reaped:
1846                 (*nr_running)--;
1847                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1848                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1849                 if (!td->pid)
1850                         pending--;
1851
1852                 if (td->error)
1853                         exit_value++;
1854
1855                 done_secs += mtime_since_now(&td->epoch) / 1000;
1856                 profile_td_exit(td);
1857         }
1858
1859         if (*nr_running == cputhreads && !pending && realthreads)
1860                 fio_terminate_threads(TERMINATE_ALL);
1861 }
1862
1863 static int __check_trigger_file(void)
1864 {
1865         struct stat sb;
1866
1867         if (!trigger_file)
1868                 return 0;
1869
1870         if (stat(trigger_file, &sb))
1871                 return 0;
1872
1873         if (unlink(trigger_file) < 0)
1874                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1875                                                         strerror(errno));
1876
1877         return 1;
1878 }
1879
1880 static int trigger_timedout(void)
1881 {
1882         if (trigger_timeout)
1883                 return time_since_genesis() >= trigger_timeout;
1884
1885         return 0;
1886 }
1887
1888 void exec_trigger(const char *cmd)
1889 {
1890         int ret;
1891
1892         if (!cmd)
1893                 return;
1894
1895         ret = system(cmd);
1896         if (ret == -1)
1897                 log_err("fio: failed executing %s trigger\n", cmd);
1898 }
1899
1900 void check_trigger_file(void)
1901 {
1902         if (__check_trigger_file() || trigger_timedout()) {
1903                 if (nr_clients)
1904                         fio_clients_send_trigger(trigger_remote_cmd);
1905                 else {
1906                         verify_save_state(IO_LIST_ALL);
1907                         fio_terminate_threads(TERMINATE_ALL);
1908                         exec_trigger(trigger_cmd);
1909                 }
1910         }
1911 }
1912
1913 static int fio_verify_load_state(struct thread_data *td)
1914 {
1915         int ret;
1916
1917         if (!td->o.verify_state)
1918                 return 0;
1919
1920         if (is_backend) {
1921                 void *data;
1922                 int ver;
1923
1924                 ret = fio_server_get_verify_state(td->o.name,
1925                                         td->thread_number - 1, &data, &ver);
1926                 if (!ret)
1927                         verify_convert_assign_state(td, data, ver);
1928         } else
1929                 ret = verify_load_state(td, "local");
1930
1931         return ret;
1932 }
1933
1934 static void do_usleep(unsigned int usecs)
1935 {
1936         check_for_running_stats();
1937         check_trigger_file();
1938         usleep(usecs);
1939 }
1940
1941 static int check_mount_writes(struct thread_data *td)
1942 {
1943         struct fio_file *f;
1944         unsigned int i;
1945
1946         if (!td_write(td) || td->o.allow_mounted_write)
1947                 return 0;
1948
1949         for_each_file(td, f, i) {
1950                 if (f->filetype != FIO_TYPE_BD)
1951                         continue;
1952                 if (device_is_mounted(f->file_name))
1953                         goto mounted;
1954         }
1955
1956         return 0;
1957 mounted:
1958         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1959         return 1;
1960 }
1961
1962 /*
1963  * Main function for kicking off and reaping jobs, as needed.
1964  */
1965 static void run_threads(void)
1966 {
1967         struct thread_data *td;
1968         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1969         uint64_t spent;
1970
1971         if (fio_gtod_offload && fio_start_gtod_thread())
1972                 return;
1973
1974         fio_idle_prof_init();
1975
1976         set_sig_handlers();
1977
1978         nr_thread = nr_process = 0;
1979         for_each_td(td, i) {
1980                 if (check_mount_writes(td))
1981                         return;
1982                 if (td->o.use_thread)
1983                         nr_thread++;
1984                 else
1985                         nr_process++;
1986         }
1987
1988         if (output_format & FIO_OUTPUT_NORMAL) {
1989                 log_info("Starting ");
1990                 if (nr_thread)
1991                         log_info("%d thread%s", nr_thread,
1992                                                 nr_thread > 1 ? "s" : "");
1993                 if (nr_process) {
1994                         if (nr_thread)
1995                                 log_info(" and ");
1996                         log_info("%d process%s", nr_process,
1997                                                 nr_process > 1 ? "es" : "");
1998                 }
1999                 log_info("\n");
2000                 log_info_flush();
2001         }
2002
2003         todo = thread_number;
2004         nr_running = 0;
2005         nr_started = 0;
2006         m_rate = t_rate = 0;
2007
2008         for_each_td(td, i) {
2009                 print_status_init(td->thread_number - 1);
2010
2011                 if (!td->o.create_serialize)
2012                         continue;
2013
2014                 if (fio_verify_load_state(td))
2015                         goto reap;
2016
2017                 /*
2018                  * do file setup here so it happens sequentially,
2019                  * we don't want X number of threads getting their
2020                  * client data interspersed on disk
2021                  */
2022                 if (setup_files(td)) {
2023 reap:
2024                         exit_value++;
2025                         if (td->error)
2026                                 log_err("fio: pid=%d, err=%d/%s\n",
2027                                         (int) td->pid, td->error, td->verror);
2028                         td_set_runstate(td, TD_REAPED);
2029                         todo--;
2030                 } else {
2031                         struct fio_file *f;
2032                         unsigned int j;
2033
2034                         /*
2035                          * for sharing to work, each job must always open
2036                          * its own files. so close them, if we opened them
2037                          * for creation
2038                          */
2039                         for_each_file(td, f, j) {
2040                                 if (fio_file_open(f))
2041                                         td_io_close_file(td, f);
2042                         }
2043                 }
2044         }
2045
2046         /* start idle threads before io threads start to run */
2047         fio_idle_prof_start();
2048
2049         set_genesis_time();
2050
2051         while (todo) {
2052                 struct thread_data *map[REAL_MAX_JOBS];
2053                 struct timeval this_start;
2054                 int this_jobs = 0, left;
2055
2056                 /*
2057                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2058                  */
2059                 for_each_td(td, i) {
2060                         if (td->runstate != TD_NOT_CREATED)
2061                                 continue;
2062
2063                         /*
2064                          * never got a chance to start, killed by other
2065                          * thread for some reason
2066                          */
2067                         if (td->terminate) {
2068                                 todo--;
2069                                 continue;
2070                         }
2071
2072                         if (td->o.start_delay) {
2073                                 spent = utime_since_genesis();
2074
2075                                 if (td->o.start_delay > spent)
2076                                         continue;
2077                         }
2078
2079                         if (td->o.stonewall && (nr_started || nr_running)) {
2080                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2081                                                         td->o.name);
2082                                 break;
2083                         }
2084
2085                         init_disk_util(td);
2086
2087                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2088                         td->update_rusage = 0;
2089
2090                         /*
2091                          * Set state to created. Thread will transition
2092                          * to TD_INITIALIZED when it's done setting up.
2093                          */
2094                         td_set_runstate(td, TD_CREATED);
2095                         map[this_jobs++] = td;
2096                         nr_started++;
2097
2098                         if (td->o.use_thread) {
2099                                 int ret;
2100
2101                                 dprint(FD_PROCESS, "will pthread_create\n");
2102                                 ret = pthread_create(&td->thread, NULL,
2103                                                         thread_main, td);
2104                                 if (ret) {
2105                                         log_err("pthread_create: %s\n",
2106                                                         strerror(ret));
2107                                         nr_started--;
2108                                         break;
2109                                 }
2110                                 ret = pthread_detach(td->thread);
2111                                 if (ret)
2112                                         log_err("pthread_detach: %s",
2113                                                         strerror(ret));
2114                         } else {
2115                                 pid_t pid;
2116                                 dprint(FD_PROCESS, "will fork\n");
2117                                 pid = fork();
2118                                 if (!pid) {
2119                                         int ret = fork_main(shm_id, i);
2120
2121                                         _exit(ret);
2122                                 } else if (i == fio_debug_jobno)
2123                                         *fio_debug_jobp = pid;
2124                         }
2125                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2126                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
2127                                 log_err("fio: job startup hung? exiting.\n");
2128                                 fio_terminate_threads(TERMINATE_ALL);
2129                                 fio_abort = 1;
2130                                 nr_started--;
2131                                 break;
2132                         }
2133                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2134                 }
2135
2136                 /*
2137                  * Wait for the started threads to transition to
2138                  * TD_INITIALIZED.
2139                  */
2140                 fio_gettime(&this_start, NULL);
2141                 left = this_jobs;
2142                 while (left && !fio_abort) {
2143                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2144                                 break;
2145
2146                         do_usleep(100000);
2147
2148                         for (i = 0; i < this_jobs; i++) {
2149                                 td = map[i];
2150                                 if (!td)
2151                                         continue;
2152                                 if (td->runstate == TD_INITIALIZED) {
2153                                         map[i] = NULL;
2154                                         left--;
2155                                 } else if (td->runstate >= TD_EXITED) {
2156                                         map[i] = NULL;
2157                                         left--;
2158                                         todo--;
2159                                         nr_running++; /* work-around... */
2160                                 }
2161                         }
2162                 }
2163
2164                 if (left) {
2165                         log_err("fio: %d job%s failed to start\n", left,
2166                                         left > 1 ? "s" : "");
2167                         for (i = 0; i < this_jobs; i++) {
2168                                 td = map[i];
2169                                 if (!td)
2170                                         continue;
2171                                 kill(td->pid, SIGTERM);
2172                         }
2173                         break;
2174                 }
2175
2176                 /*
2177                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2178                  */
2179                 for_each_td(td, i) {
2180                         if (td->runstate != TD_INITIALIZED)
2181                                 continue;
2182
2183                         if (in_ramp_time(td))
2184                                 td_set_runstate(td, TD_RAMP);
2185                         else
2186                                 td_set_runstate(td, TD_RUNNING);
2187                         nr_running++;
2188                         nr_started--;
2189                         m_rate += ddir_rw_sum(td->o.ratemin);
2190                         t_rate += ddir_rw_sum(td->o.rate);
2191                         todo--;
2192                         fio_mutex_up(td->mutex);
2193                 }
2194
2195                 reap_threads(&nr_running, &t_rate, &m_rate);
2196
2197                 if (todo)
2198                         do_usleep(100000);
2199         }
2200
2201         while (nr_running) {
2202                 reap_threads(&nr_running, &t_rate, &m_rate);
2203                 do_usleep(10000);
2204         }
2205
2206         fio_idle_prof_stop();
2207
2208         update_io_ticks();
2209 }
2210
2211 static void wait_for_helper_thread_exit(void)
2212 {
2213         void *ret;
2214
2215         helper_exit = 1;
2216         pthread_cond_signal(&helper_cond);
2217         pthread_join(helper_thread, &ret);
2218 }
2219
2220 static void free_disk_util(void)
2221 {
2222         disk_util_prune_entries();
2223
2224         pthread_cond_destroy(&helper_cond);
2225 }
2226
2227 static void *helper_thread_main(void *data)
2228 {
2229         int ret = 0;
2230
2231         fio_mutex_up(startup_mutex);
2232
2233         while (!ret) {
2234                 uint64_t sec = DISK_UTIL_MSEC / 1000;
2235                 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2236                 struct timespec ts;
2237                 struct timeval tv;
2238
2239                 gettimeofday(&tv, NULL);
2240                 ts.tv_sec = tv.tv_sec + sec;
2241                 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2242
2243                 if (ts.tv_nsec >= 1000000000ULL) {
2244                         ts.tv_nsec -= 1000000000ULL;
2245                         ts.tv_sec++;
2246                 }
2247
2248                 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2249
2250                 ret = update_io_ticks();
2251
2252                 if (helper_do_stat) {
2253                         helper_do_stat = 0;
2254                         __show_running_run_stats();
2255                 }
2256
2257                 if (!is_backend)
2258                         print_thread_status();
2259         }
2260
2261         return NULL;
2262 }
2263
2264 static int create_helper_thread(void)
2265 {
2266         int ret;
2267
2268         setup_disk_util();
2269
2270         pthread_cond_init(&helper_cond, NULL);
2271         pthread_mutex_init(&helper_lock, NULL);
2272
2273         ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2274         if (ret) {
2275                 log_err("Can't create helper thread: %s\n", strerror(ret));
2276                 return 1;
2277         }
2278
2279         dprint(FD_MUTEX, "wait on startup_mutex\n");
2280         fio_mutex_down(startup_mutex);
2281         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2282         return 0;
2283 }
2284
2285 int fio_backend(void)
2286 {
2287         struct thread_data *td;
2288         int i;
2289
2290         if (exec_profile) {
2291                 if (load_profile(exec_profile))
2292                         return 1;
2293                 free(exec_profile);
2294                 exec_profile = NULL;
2295         }
2296         if (!thread_number)
2297                 return 0;
2298
2299         if (write_bw_log) {
2300                 struct log_params p = {
2301                         .log_type = IO_LOG_TYPE_BW,
2302                 };
2303
2304                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2305                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2306                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2307         }
2308
2309         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2310         if (startup_mutex == NULL)
2311                 return 1;
2312
2313         set_genesis_time();
2314         stat_init();
2315         create_helper_thread();
2316
2317         cgroup_list = smalloc(sizeof(*cgroup_list));
2318         INIT_FLIST_HEAD(cgroup_list);
2319
2320         run_threads();
2321
2322         wait_for_helper_thread_exit();
2323
2324         if (!fio_abort) {
2325                 __show_run_stats();
2326                 if (write_bw_log) {
2327                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2328                                 struct io_log *log = agg_io_log[i];
2329
2330                                 flush_log(log, 0);
2331                                 free_log(log);
2332                         }
2333                 }
2334         }
2335
2336         for_each_td(td, i) {
2337                 fio_options_free(td);
2338                 if (td->rusage_sem) {
2339                         fio_mutex_remove(td->rusage_sem);
2340                         td->rusage_sem = NULL;
2341                 }
2342         }
2343
2344         free_disk_util();
2345         cgroup_kill(cgroup_list);
2346         sfree(cgroup_list);
2347         sfree(cgroup_mnt);
2348
2349         fio_mutex_remove(startup_mutex);
2350         stat_exit();
2351         return exit_value;
2352 }