mm/gup: return an error on migration failure
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
1027e443 22#include <asm/tlbflush.h>
2667f50e 23
4bbd4c77
KS
24#include "internal.h"
25
df06b37f
KB
26struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
47e29d32
JH
31static void hpage_pincount_add(struct page *page, int refs)
32{
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37}
38
39static void hpage_pincount_sub(struct page *page, int refs)
40{
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45}
46
a707cdd5
JH
47/*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51static inline struct page *try_get_compound_head(struct page *page, int refs)
52{
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60}
61
3faa52c0
JH
62/*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
0fa5bc40
JM
81__maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs, unsigned int flags)
3faa52c0
JH
83{
84 if (flags & FOLL_GET)
85 return try_get_compound_head(page, refs);
86 else if (flags & FOLL_PIN) {
1970dc6f
JH
87 int orig_refs = refs;
88
df3a0a21
PL
89 /*
90 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
91 * path, so fail and let the caller fall back to the slow path.
92 */
93 if (unlikely(flags & FOLL_LONGTERM) &&
94 is_migrate_cma_page(page))
95 return NULL;
96
47e29d32
JH
97 /*
98 * When pinning a compound page of order > 1 (which is what
99 * hpage_pincount_available() checks for), use an exact count to
100 * track it, via hpage_pincount_add/_sub().
101 *
102 * However, be sure to *also* increment the normal page refcount
103 * field at least once, so that the page really is pinned.
104 */
105 if (!hpage_pincount_available(page))
106 refs *= GUP_PIN_COUNTING_BIAS;
107
108 page = try_get_compound_head(page, refs);
109 if (!page)
110 return NULL;
111
112 if (hpage_pincount_available(page))
113 hpage_pincount_add(page, refs);
114
1970dc6f
JH
115 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
116 orig_refs);
117
47e29d32 118 return page;
3faa52c0
JH
119 }
120
121 WARN_ON_ONCE(1);
122 return NULL;
123}
124
4509b42c
JG
125static void put_compound_head(struct page *page, int refs, unsigned int flags)
126{
127 if (flags & FOLL_PIN) {
128 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
129 refs);
130
131 if (hpage_pincount_available(page))
132 hpage_pincount_sub(page, refs);
133 else
134 refs *= GUP_PIN_COUNTING_BIAS;
135 }
136
137 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
138 /*
139 * Calling put_page() for each ref is unnecessarily slow. Only the last
140 * ref needs a put_page().
141 */
142 if (refs > 1)
143 page_ref_sub(page, refs - 1);
144 put_page(page);
145}
146
3faa52c0
JH
147/**
148 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
149 *
150 * This might not do anything at all, depending on the flags argument.
151 *
152 * "grab" names in this file mean, "look at flags to decide whether to use
153 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
154 *
155 * @page: pointer to page to be grabbed
156 * @flags: gup flags: these are the FOLL_* flag values.
157 *
158 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
159 * time. Cases:
160 *
161 * FOLL_GET: page's refcount will be incremented by 1.
162 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
163 *
164 * Return: true for success, or if no action was required (if neither FOLL_PIN
165 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
166 * FOLL_PIN was set, but the page could not be grabbed.
167 */
168bool __must_check try_grab_page(struct page *page, unsigned int flags)
169{
170 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
171
172 if (flags & FOLL_GET)
173 return try_get_page(page);
174 else if (flags & FOLL_PIN) {
47e29d32
JH
175 int refs = 1;
176
3faa52c0
JH
177 page = compound_head(page);
178
179 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
180 return false;
181
47e29d32
JH
182 if (hpage_pincount_available(page))
183 hpage_pincount_add(page, 1);
184 else
185 refs = GUP_PIN_COUNTING_BIAS;
186
187 /*
188 * Similar to try_grab_compound_head(): even if using the
189 * hpage_pincount_add/_sub() routines, be sure to
190 * *also* increment the normal page refcount field at least
191 * once, so that the page really is pinned.
192 */
193 page_ref_add(page, refs);
1970dc6f
JH
194
195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
196 }
197
198 return true;
199}
200
3faa52c0
JH
201/**
202 * unpin_user_page() - release a dma-pinned page
203 * @page: pointer to page to be released
204 *
205 * Pages that were pinned via pin_user_pages*() must be released via either
206 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
207 * that such pages can be separately tracked and uniquely handled. In
208 * particular, interactions with RDMA and filesystems need special handling.
209 */
210void unpin_user_page(struct page *page)
211{
4509b42c 212 put_compound_head(compound_head(page), 1, FOLL_PIN);
3faa52c0
JH
213}
214EXPORT_SYMBOL(unpin_user_page);
215
458a4f78
JM
216static inline void compound_range_next(unsigned long i, unsigned long npages,
217 struct page **list, struct page **head,
218 unsigned int *ntails)
219{
220 struct page *next, *page;
221 unsigned int nr = 1;
222
223 if (i >= npages)
224 return;
225
226 next = *list + i;
227 page = compound_head(next);
228 if (PageCompound(page) && compound_order(page) >= 1)
229 nr = min_t(unsigned int,
230 page + compound_nr(page) - next, npages - i);
231
232 *head = page;
233 *ntails = nr;
234}
235
236#define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
237 for (__i = 0, \
238 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
239 __i < __npages; __i += __ntails, \
240 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
241
8745d7f6
JM
242static inline void compound_next(unsigned long i, unsigned long npages,
243 struct page **list, struct page **head,
244 unsigned int *ntails)
245{
246 struct page *page;
247 unsigned int nr;
248
249 if (i >= npages)
250 return;
251
252 page = compound_head(list[i]);
253 for (nr = i + 1; nr < npages; nr++) {
254 if (compound_head(list[nr]) != page)
255 break;
256 }
257
258 *head = page;
259 *ntails = nr - i;
260}
261
262#define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
263 for (__i = 0, \
264 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
265 __i < __npages; __i += __ntails, \
266 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
267
fc1d8e7c 268/**
f1f6a7dd 269 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 270 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 271 * @npages: number of pages in the @pages array.
2d15eb31 272 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
273 *
274 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
275 * variants called on that page.
276 *
277 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 278 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
279 * listed as clean. In any case, releases all pages using unpin_user_page(),
280 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 281 *
f1f6a7dd 282 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 283 *
2d15eb31 284 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
285 * required, then the caller should a) verify that this is really correct,
286 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 287 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
288 *
289 */
f1f6a7dd
JH
290void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
291 bool make_dirty)
fc1d8e7c 292{
2d15eb31 293 unsigned long index;
31b912de
JM
294 struct page *head;
295 unsigned int ntails;
2d15eb31 296
297 if (!make_dirty) {
f1f6a7dd 298 unpin_user_pages(pages, npages);
2d15eb31 299 return;
300 }
301
31b912de 302 for_each_compound_head(index, pages, npages, head, ntails) {
2d15eb31 303 /*
304 * Checking PageDirty at this point may race with
305 * clear_page_dirty_for_io(), but that's OK. Two key
306 * cases:
307 *
308 * 1) This code sees the page as already dirty, so it
309 * skips the call to set_page_dirty(). That could happen
310 * because clear_page_dirty_for_io() called
311 * page_mkclean(), followed by set_page_dirty().
312 * However, now the page is going to get written back,
313 * which meets the original intention of setting it
314 * dirty, so all is well: clear_page_dirty_for_io() goes
315 * on to call TestClearPageDirty(), and write the page
316 * back.
317 *
318 * 2) This code sees the page as clean, so it calls
319 * set_page_dirty(). The page stays dirty, despite being
320 * written back, so it gets written back again in the
321 * next writeback cycle. This is harmless.
322 */
31b912de
JM
323 if (!PageDirty(head))
324 set_page_dirty_lock(head);
325 put_compound_head(head, ntails, FOLL_PIN);
2d15eb31 326 }
fc1d8e7c 327}
f1f6a7dd 328EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 329
458a4f78
JM
330/**
331 * unpin_user_page_range_dirty_lock() - release and optionally dirty
332 * gup-pinned page range
333 *
334 * @page: the starting page of a range maybe marked dirty, and definitely released.
335 * @npages: number of consecutive pages to release.
336 * @make_dirty: whether to mark the pages dirty
337 *
338 * "gup-pinned page range" refers to a range of pages that has had one of the
339 * pin_user_pages() variants called on that page.
340 *
341 * For the page ranges defined by [page .. page+npages], make that range (or
342 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
343 * page range was previously listed as clean.
344 *
345 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
346 * required, then the caller should a) verify that this is really correct,
347 * because _lock() is usually required, and b) hand code it:
348 * set_page_dirty_lock(), unpin_user_page().
349 *
350 */
351void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
352 bool make_dirty)
353{
354 unsigned long index;
355 struct page *head;
356 unsigned int ntails;
357
358 for_each_compound_range(index, &page, npages, head, ntails) {
359 if (make_dirty && !PageDirty(head))
360 set_page_dirty_lock(head);
361 put_compound_head(head, ntails, FOLL_PIN);
362 }
363}
364EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
365
fc1d8e7c 366/**
f1f6a7dd 367 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
368 * @pages: array of pages to be marked dirty and released.
369 * @npages: number of pages in the @pages array.
370 *
f1f6a7dd 371 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 372 *
f1f6a7dd 373 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 374 */
f1f6a7dd 375void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
376{
377 unsigned long index;
31b912de
JM
378 struct page *head;
379 unsigned int ntails;
fc1d8e7c 380
146608bb
JH
381 /*
382 * If this WARN_ON() fires, then the system *might* be leaking pages (by
383 * leaving them pinned), but probably not. More likely, gup/pup returned
384 * a hard -ERRNO error to the caller, who erroneously passed it here.
385 */
386 if (WARN_ON(IS_ERR_VALUE(npages)))
387 return;
31b912de
JM
388
389 for_each_compound_head(index, pages, npages, head, ntails)
390 put_compound_head(head, ntails, FOLL_PIN);
fc1d8e7c 391}
f1f6a7dd 392EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 393
050a9adc 394#ifdef CONFIG_MMU
69e68b4f
KS
395static struct page *no_page_table(struct vm_area_struct *vma,
396 unsigned int flags)
4bbd4c77 397{
69e68b4f
KS
398 /*
399 * When core dumping an enormous anonymous area that nobody
400 * has touched so far, we don't want to allocate unnecessary pages or
401 * page tables. Return error instead of NULL to skip handle_mm_fault,
402 * then get_dump_page() will return NULL to leave a hole in the dump.
403 * But we can only make this optimization where a hole would surely
404 * be zero-filled if handle_mm_fault() actually did handle it.
405 */
a0137f16
AK
406 if ((flags & FOLL_DUMP) &&
407 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
408 return ERR_PTR(-EFAULT);
409 return NULL;
410}
4bbd4c77 411
1027e443
KS
412static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
413 pte_t *pte, unsigned int flags)
414{
415 /* No page to get reference */
416 if (flags & FOLL_GET)
417 return -EFAULT;
418
419 if (flags & FOLL_TOUCH) {
420 pte_t entry = *pte;
421
422 if (flags & FOLL_WRITE)
423 entry = pte_mkdirty(entry);
424 entry = pte_mkyoung(entry);
425
426 if (!pte_same(*pte, entry)) {
427 set_pte_at(vma->vm_mm, address, pte, entry);
428 update_mmu_cache(vma, address, pte);
429 }
430 }
431
432 /* Proper page table entry exists, but no corresponding struct page */
433 return -EEXIST;
434}
435
19be0eaf 436/*
a308c71b
PX
437 * FOLL_FORCE can write to even unwritable pte's, but only
438 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
439 */
440static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
441{
a308c71b
PX
442 return pte_write(pte) ||
443 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
444}
445
69e68b4f 446static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
447 unsigned long address, pmd_t *pmd, unsigned int flags,
448 struct dev_pagemap **pgmap)
69e68b4f
KS
449{
450 struct mm_struct *mm = vma->vm_mm;
451 struct page *page;
452 spinlock_t *ptl;
453 pte_t *ptep, pte;
f28d4363 454 int ret;
4bbd4c77 455
eddb1c22
JH
456 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
457 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
458 (FOLL_PIN | FOLL_GET)))
459 return ERR_PTR(-EINVAL);
69e68b4f 460retry:
4bbd4c77 461 if (unlikely(pmd_bad(*pmd)))
69e68b4f 462 return no_page_table(vma, flags);
4bbd4c77
KS
463
464 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
465 pte = *ptep;
466 if (!pte_present(pte)) {
467 swp_entry_t entry;
468 /*
469 * KSM's break_ksm() relies upon recognizing a ksm page
470 * even while it is being migrated, so for that case we
471 * need migration_entry_wait().
472 */
473 if (likely(!(flags & FOLL_MIGRATION)))
474 goto no_page;
0661a336 475 if (pte_none(pte))
4bbd4c77
KS
476 goto no_page;
477 entry = pte_to_swp_entry(pte);
478 if (!is_migration_entry(entry))
479 goto no_page;
480 pte_unmap_unlock(ptep, ptl);
481 migration_entry_wait(mm, pmd, address);
69e68b4f 482 goto retry;
4bbd4c77 483 }
8a0516ed 484 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 485 goto no_page;
19be0eaf 486 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
487 pte_unmap_unlock(ptep, ptl);
488 return NULL;
489 }
4bbd4c77
KS
490
491 page = vm_normal_page(vma, address, pte);
3faa52c0 492 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 493 /*
3faa52c0
JH
494 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
495 * case since they are only valid while holding the pgmap
496 * reference.
3565fce3 497 */
df06b37f
KB
498 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
499 if (*pgmap)
3565fce3
DW
500 page = pte_page(pte);
501 else
502 goto no_page;
503 } else if (unlikely(!page)) {
1027e443
KS
504 if (flags & FOLL_DUMP) {
505 /* Avoid special (like zero) pages in core dumps */
506 page = ERR_PTR(-EFAULT);
507 goto out;
508 }
509
510 if (is_zero_pfn(pte_pfn(pte))) {
511 page = pte_page(pte);
512 } else {
1027e443
KS
513 ret = follow_pfn_pte(vma, address, ptep, flags);
514 page = ERR_PTR(ret);
515 goto out;
516 }
4bbd4c77
KS
517 }
518
3faa52c0
JH
519 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
520 if (unlikely(!try_grab_page(page, flags))) {
521 page = ERR_PTR(-ENOMEM);
522 goto out;
8fde12ca 523 }
f28d4363
CI
524 /*
525 * We need to make the page accessible if and only if we are going
526 * to access its content (the FOLL_PIN case). Please see
527 * Documentation/core-api/pin_user_pages.rst for details.
528 */
529 if (flags & FOLL_PIN) {
530 ret = arch_make_page_accessible(page);
531 if (ret) {
532 unpin_user_page(page);
533 page = ERR_PTR(ret);
534 goto out;
535 }
536 }
4bbd4c77
KS
537 if (flags & FOLL_TOUCH) {
538 if ((flags & FOLL_WRITE) &&
539 !pte_dirty(pte) && !PageDirty(page))
540 set_page_dirty(page);
541 /*
542 * pte_mkyoung() would be more correct here, but atomic care
543 * is needed to avoid losing the dirty bit: it is easier to use
544 * mark_page_accessed().
545 */
546 mark_page_accessed(page);
547 }
de60f5f1 548 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
549 /* Do not mlock pte-mapped THP */
550 if (PageTransCompound(page))
551 goto out;
552
4bbd4c77
KS
553 /*
554 * The preliminary mapping check is mainly to avoid the
555 * pointless overhead of lock_page on the ZERO_PAGE
556 * which might bounce very badly if there is contention.
557 *
558 * If the page is already locked, we don't need to
559 * handle it now - vmscan will handle it later if and
560 * when it attempts to reclaim the page.
561 */
562 if (page->mapping && trylock_page(page)) {
563 lru_add_drain(); /* push cached pages to LRU */
564 /*
565 * Because we lock page here, and migration is
566 * blocked by the pte's page reference, and we
567 * know the page is still mapped, we don't even
568 * need to check for file-cache page truncation.
569 */
570 mlock_vma_page(page);
571 unlock_page(page);
572 }
573 }
1027e443 574out:
4bbd4c77 575 pte_unmap_unlock(ptep, ptl);
4bbd4c77 576 return page;
4bbd4c77
KS
577no_page:
578 pte_unmap_unlock(ptep, ptl);
579 if (!pte_none(pte))
69e68b4f
KS
580 return NULL;
581 return no_page_table(vma, flags);
582}
583
080dbb61
AK
584static struct page *follow_pmd_mask(struct vm_area_struct *vma,
585 unsigned long address, pud_t *pudp,
df06b37f
KB
586 unsigned int flags,
587 struct follow_page_context *ctx)
69e68b4f 588{
68827280 589 pmd_t *pmd, pmdval;
69e68b4f
KS
590 spinlock_t *ptl;
591 struct page *page;
592 struct mm_struct *mm = vma->vm_mm;
593
080dbb61 594 pmd = pmd_offset(pudp, address);
68827280
HY
595 /*
596 * The READ_ONCE() will stabilize the pmdval in a register or
597 * on the stack so that it will stop changing under the code.
598 */
599 pmdval = READ_ONCE(*pmd);
600 if (pmd_none(pmdval))
69e68b4f 601 return no_page_table(vma, flags);
be9d3045 602 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
603 page = follow_huge_pmd(mm, address, pmd, flags);
604 if (page)
605 return page;
606 return no_page_table(vma, flags);
69e68b4f 607 }
68827280 608 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 609 page = follow_huge_pd(vma, address,
68827280 610 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
611 PMD_SHIFT);
612 if (page)
613 return page;
614 return no_page_table(vma, flags);
615 }
84c3fc4e 616retry:
68827280 617 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
618 if (likely(!(flags & FOLL_MIGRATION)))
619 return no_page_table(vma, flags);
620 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
621 !is_pmd_migration_entry(pmdval));
622 if (is_pmd_migration_entry(pmdval))
84c3fc4e 623 pmd_migration_entry_wait(mm, pmd);
68827280
HY
624 pmdval = READ_ONCE(*pmd);
625 /*
626 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 627 * mmap_lock is held in read mode
68827280
HY
628 */
629 if (pmd_none(pmdval))
630 return no_page_table(vma, flags);
84c3fc4e
ZY
631 goto retry;
632 }
68827280 633 if (pmd_devmap(pmdval)) {
3565fce3 634 ptl = pmd_lock(mm, pmd);
df06b37f 635 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
636 spin_unlock(ptl);
637 if (page)
638 return page;
639 }
68827280 640 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 641 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 642
68827280 643 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
644 return no_page_table(vma, flags);
645
84c3fc4e 646retry_locked:
6742d293 647 ptl = pmd_lock(mm, pmd);
68827280
HY
648 if (unlikely(pmd_none(*pmd))) {
649 spin_unlock(ptl);
650 return no_page_table(vma, flags);
651 }
84c3fc4e
ZY
652 if (unlikely(!pmd_present(*pmd))) {
653 spin_unlock(ptl);
654 if (likely(!(flags & FOLL_MIGRATION)))
655 return no_page_table(vma, flags);
656 pmd_migration_entry_wait(mm, pmd);
657 goto retry_locked;
658 }
6742d293
KS
659 if (unlikely(!pmd_trans_huge(*pmd))) {
660 spin_unlock(ptl);
df06b37f 661 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 662 }
4066c119 663 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
664 int ret;
665 page = pmd_page(*pmd);
666 if (is_huge_zero_page(page)) {
667 spin_unlock(ptl);
668 ret = 0;
78ddc534 669 split_huge_pmd(vma, pmd, address);
337d9abf
NH
670 if (pmd_trans_unstable(pmd))
671 ret = -EBUSY;
4066c119 672 } else {
bfe7b00d
SL
673 spin_unlock(ptl);
674 split_huge_pmd(vma, pmd, address);
675 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
676 }
677
678 return ret ? ERR_PTR(ret) :
df06b37f 679 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 680 }
6742d293
KS
681 page = follow_trans_huge_pmd(vma, address, pmd, flags);
682 spin_unlock(ptl);
df06b37f 683 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 684 return page;
4bbd4c77
KS
685}
686
080dbb61
AK
687static struct page *follow_pud_mask(struct vm_area_struct *vma,
688 unsigned long address, p4d_t *p4dp,
df06b37f
KB
689 unsigned int flags,
690 struct follow_page_context *ctx)
080dbb61
AK
691{
692 pud_t *pud;
693 spinlock_t *ptl;
694 struct page *page;
695 struct mm_struct *mm = vma->vm_mm;
696
697 pud = pud_offset(p4dp, address);
698 if (pud_none(*pud))
699 return no_page_table(vma, flags);
be9d3045 700 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
701 page = follow_huge_pud(mm, address, pud, flags);
702 if (page)
703 return page;
704 return no_page_table(vma, flags);
705 }
4dc71451
AK
706 if (is_hugepd(__hugepd(pud_val(*pud)))) {
707 page = follow_huge_pd(vma, address,
708 __hugepd(pud_val(*pud)), flags,
709 PUD_SHIFT);
710 if (page)
711 return page;
712 return no_page_table(vma, flags);
713 }
080dbb61
AK
714 if (pud_devmap(*pud)) {
715 ptl = pud_lock(mm, pud);
df06b37f 716 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
717 spin_unlock(ptl);
718 if (page)
719 return page;
720 }
721 if (unlikely(pud_bad(*pud)))
722 return no_page_table(vma, flags);
723
df06b37f 724 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
725}
726
080dbb61
AK
727static struct page *follow_p4d_mask(struct vm_area_struct *vma,
728 unsigned long address, pgd_t *pgdp,
df06b37f
KB
729 unsigned int flags,
730 struct follow_page_context *ctx)
080dbb61
AK
731{
732 p4d_t *p4d;
4dc71451 733 struct page *page;
080dbb61
AK
734
735 p4d = p4d_offset(pgdp, address);
736 if (p4d_none(*p4d))
737 return no_page_table(vma, flags);
738 BUILD_BUG_ON(p4d_huge(*p4d));
739 if (unlikely(p4d_bad(*p4d)))
740 return no_page_table(vma, flags);
741
4dc71451
AK
742 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
743 page = follow_huge_pd(vma, address,
744 __hugepd(p4d_val(*p4d)), flags,
745 P4D_SHIFT);
746 if (page)
747 return page;
748 return no_page_table(vma, flags);
749 }
df06b37f 750 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
751}
752
753/**
754 * follow_page_mask - look up a page descriptor from a user-virtual address
755 * @vma: vm_area_struct mapping @address
756 * @address: virtual address to look up
757 * @flags: flags modifying lookup behaviour
78179556
MR
758 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
759 * pointer to output page_mask
080dbb61
AK
760 *
761 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
762 *
78179556
MR
763 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
764 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
765 *
766 * On output, the @ctx->page_mask is set according to the size of the page.
767 *
768 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
769 * an error pointer if there is a mapping to something not represented
770 * by a page descriptor (see also vm_normal_page()).
771 */
a7030aea 772static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 773 unsigned long address, unsigned int flags,
df06b37f 774 struct follow_page_context *ctx)
080dbb61
AK
775{
776 pgd_t *pgd;
777 struct page *page;
778 struct mm_struct *mm = vma->vm_mm;
779
df06b37f 780 ctx->page_mask = 0;
080dbb61
AK
781
782 /* make this handle hugepd */
783 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
784 if (!IS_ERR(page)) {
3faa52c0 785 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
786 return page;
787 }
788
789 pgd = pgd_offset(mm, address);
790
791 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
792 return no_page_table(vma, flags);
793
faaa5b62
AK
794 if (pgd_huge(*pgd)) {
795 page = follow_huge_pgd(mm, address, pgd, flags);
796 if (page)
797 return page;
798 return no_page_table(vma, flags);
799 }
4dc71451
AK
800 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
801 page = follow_huge_pd(vma, address,
802 __hugepd(pgd_val(*pgd)), flags,
803 PGDIR_SHIFT);
804 if (page)
805 return page;
806 return no_page_table(vma, flags);
807 }
faaa5b62 808
df06b37f
KB
809 return follow_p4d_mask(vma, address, pgd, flags, ctx);
810}
811
812struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
813 unsigned int foll_flags)
814{
815 struct follow_page_context ctx = { NULL };
816 struct page *page;
817
818 page = follow_page_mask(vma, address, foll_flags, &ctx);
819 if (ctx.pgmap)
820 put_dev_pagemap(ctx.pgmap);
821 return page;
080dbb61
AK
822}
823
f2b495ca
KS
824static int get_gate_page(struct mm_struct *mm, unsigned long address,
825 unsigned int gup_flags, struct vm_area_struct **vma,
826 struct page **page)
827{
828 pgd_t *pgd;
c2febafc 829 p4d_t *p4d;
f2b495ca
KS
830 pud_t *pud;
831 pmd_t *pmd;
832 pte_t *pte;
833 int ret = -EFAULT;
834
835 /* user gate pages are read-only */
836 if (gup_flags & FOLL_WRITE)
837 return -EFAULT;
838 if (address > TASK_SIZE)
839 pgd = pgd_offset_k(address);
840 else
841 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
842 if (pgd_none(*pgd))
843 return -EFAULT;
c2febafc 844 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
845 if (p4d_none(*p4d))
846 return -EFAULT;
c2febafc 847 pud = pud_offset(p4d, address);
b5d1c39f
AL
848 if (pud_none(*pud))
849 return -EFAULT;
f2b495ca 850 pmd = pmd_offset(pud, address);
84c3fc4e 851 if (!pmd_present(*pmd))
f2b495ca
KS
852 return -EFAULT;
853 VM_BUG_ON(pmd_trans_huge(*pmd));
854 pte = pte_offset_map(pmd, address);
855 if (pte_none(*pte))
856 goto unmap;
857 *vma = get_gate_vma(mm);
858 if (!page)
859 goto out;
860 *page = vm_normal_page(*vma, address, *pte);
861 if (!*page) {
862 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
863 goto unmap;
864 *page = pte_page(*pte);
865 }
9fa2dd94 866 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
867 ret = -ENOMEM;
868 goto unmap;
869 }
f2b495ca
KS
870out:
871 ret = 0;
872unmap:
873 pte_unmap(pte);
874 return ret;
875}
876
9a95f3cf 877/*
c1e8d7c6
ML
878 * mmap_lock must be held on entry. If @locked != NULL and *@flags
879 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 880 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 881 */
64019a2e 882static int faultin_page(struct vm_area_struct *vma,
4f6da934 883 unsigned long address, unsigned int *flags, int *locked)
16744483 884{
16744483 885 unsigned int fault_flags = 0;
2b740303 886 vm_fault_t ret;
16744483 887
de60f5f1
EM
888 /* mlock all present pages, but do not fault in new pages */
889 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
890 return -ENOENT;
16744483
KS
891 if (*flags & FOLL_WRITE)
892 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
893 if (*flags & FOLL_REMOTE)
894 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 895 if (locked)
71335f37 896 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
897 if (*flags & FOLL_NOWAIT)
898 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 899 if (*flags & FOLL_TRIED) {
4426e945
PX
900 /*
901 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
902 * can co-exist
903 */
234b239b
ALC
904 fault_flags |= FAULT_FLAG_TRIED;
905 }
16744483 906
bce617ed 907 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 908 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
909 int err = vm_fault_to_errno(ret, *flags);
910
911 if (err)
912 return err;
16744483
KS
913 BUG();
914 }
915
16744483 916 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
917 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
918 *locked = 0;
16744483
KS
919 return -EBUSY;
920 }
921
922 /*
923 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
924 * necessary, even if maybe_mkwrite decided not to set pte_write. We
925 * can thus safely do subsequent page lookups as if they were reads.
926 * But only do so when looping for pte_write is futile: in some cases
927 * userspace may also be wanting to write to the gotten user page,
928 * which a read fault here might prevent (a readonly page might get
929 * reCOWed by userspace write).
930 */
931 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 932 *flags |= FOLL_COW;
16744483
KS
933 return 0;
934}
935
fa5bb209
KS
936static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
937{
938 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
939 int write = (gup_flags & FOLL_WRITE);
940 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
941
942 if (vm_flags & (VM_IO | VM_PFNMAP))
943 return -EFAULT;
944
7f7ccc2c
WT
945 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
946 return -EFAULT;
947
52650c8b
JG
948 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
949 return -EOPNOTSUPP;
950
1b2ee126 951 if (write) {
fa5bb209
KS
952 if (!(vm_flags & VM_WRITE)) {
953 if (!(gup_flags & FOLL_FORCE))
954 return -EFAULT;
955 /*
956 * We used to let the write,force case do COW in a
957 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
958 * set a breakpoint in a read-only mapping of an
959 * executable, without corrupting the file (yet only
960 * when that file had been opened for writing!).
961 * Anon pages in shared mappings are surprising: now
962 * just reject it.
963 */
46435364 964 if (!is_cow_mapping(vm_flags))
fa5bb209 965 return -EFAULT;
fa5bb209
KS
966 }
967 } else if (!(vm_flags & VM_READ)) {
968 if (!(gup_flags & FOLL_FORCE))
969 return -EFAULT;
970 /*
971 * Is there actually any vma we can reach here which does not
972 * have VM_MAYREAD set?
973 */
974 if (!(vm_flags & VM_MAYREAD))
975 return -EFAULT;
976 }
d61172b4
DH
977 /*
978 * gups are always data accesses, not instruction
979 * fetches, so execute=false here
980 */
981 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 982 return -EFAULT;
fa5bb209
KS
983 return 0;
984}
985
4bbd4c77
KS
986/**
987 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
988 * @mm: mm_struct of target mm
989 * @start: starting user address
990 * @nr_pages: number of pages from start to pin
991 * @gup_flags: flags modifying pin behaviour
992 * @pages: array that receives pointers to the pages pinned.
993 * Should be at least nr_pages long. Or NULL, if caller
994 * only intends to ensure the pages are faulted in.
995 * @vmas: array of pointers to vmas corresponding to each page.
996 * Or NULL if the caller does not require them.
c1e8d7c6 997 * @locked: whether we're still with the mmap_lock held
4bbd4c77 998 *
d2dfbe47
LX
999 * Returns either number of pages pinned (which may be less than the
1000 * number requested), or an error. Details about the return value:
1001 *
1002 * -- If nr_pages is 0, returns 0.
1003 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1004 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1005 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1006 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1007 *
1008 * The caller is responsible for releasing returned @pages, via put_page().
1009 *
c1e8d7c6 1010 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1011 *
c1e8d7c6 1012 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1013 *
1014 * __get_user_pages walks a process's page tables and takes a reference to
1015 * each struct page that each user address corresponds to at a given
1016 * instant. That is, it takes the page that would be accessed if a user
1017 * thread accesses the given user virtual address at that instant.
1018 *
1019 * This does not guarantee that the page exists in the user mappings when
1020 * __get_user_pages returns, and there may even be a completely different
1021 * page there in some cases (eg. if mmapped pagecache has been invalidated
1022 * and subsequently re faulted). However it does guarantee that the page
1023 * won't be freed completely. And mostly callers simply care that the page
1024 * contains data that was valid *at some point in time*. Typically, an IO
1025 * or similar operation cannot guarantee anything stronger anyway because
1026 * locks can't be held over the syscall boundary.
1027 *
1028 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1029 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1030 * appropriate) must be called after the page is finished with, and
1031 * before put_page is called.
1032 *
c1e8d7c6 1033 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1034 * released by an up_read(). That can happen if @gup_flags does not
1035 * have FOLL_NOWAIT.
9a95f3cf 1036 *
4f6da934 1037 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1038 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1039 * when it's been released. Otherwise, it must be held for either
1040 * reading or writing and will not be released.
4bbd4c77
KS
1041 *
1042 * In most cases, get_user_pages or get_user_pages_fast should be used
1043 * instead of __get_user_pages. __get_user_pages should be used only if
1044 * you need some special @gup_flags.
1045 */
64019a2e 1046static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1047 unsigned long start, unsigned long nr_pages,
1048 unsigned int gup_flags, struct page **pages,
4f6da934 1049 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1050{
df06b37f 1051 long ret = 0, i = 0;
fa5bb209 1052 struct vm_area_struct *vma = NULL;
df06b37f 1053 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1054
1055 if (!nr_pages)
1056 return 0;
1057
f9652594
AK
1058 start = untagged_addr(start);
1059
eddb1c22 1060 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1061
1062 /*
1063 * If FOLL_FORCE is set then do not force a full fault as the hinting
1064 * fault information is unrelated to the reference behaviour of a task
1065 * using the address space
1066 */
1067 if (!(gup_flags & FOLL_FORCE))
1068 gup_flags |= FOLL_NUMA;
1069
4bbd4c77 1070 do {
fa5bb209
KS
1071 struct page *page;
1072 unsigned int foll_flags = gup_flags;
1073 unsigned int page_increm;
1074
1075 /* first iteration or cross vma bound */
1076 if (!vma || start >= vma->vm_end) {
1077 vma = find_extend_vma(mm, start);
1078 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1079 ret = get_gate_page(mm, start & PAGE_MASK,
1080 gup_flags, &vma,
1081 pages ? &pages[i] : NULL);
1082 if (ret)
08be37b7 1083 goto out;
df06b37f 1084 ctx.page_mask = 0;
fa5bb209
KS
1085 goto next_page;
1086 }
4bbd4c77 1087
52650c8b 1088 if (!vma) {
df06b37f
KB
1089 ret = -EFAULT;
1090 goto out;
1091 }
52650c8b
JG
1092 ret = check_vma_flags(vma, gup_flags);
1093 if (ret)
1094 goto out;
1095
fa5bb209
KS
1096 if (is_vm_hugetlb_page(vma)) {
1097 i = follow_hugetlb_page(mm, vma, pages, vmas,
1098 &start, &nr_pages, i,
a308c71b 1099 gup_flags, locked);
ad415db8
PX
1100 if (locked && *locked == 0) {
1101 /*
1102 * We've got a VM_FAULT_RETRY
c1e8d7c6 1103 * and we've lost mmap_lock.
ad415db8
PX
1104 * We must stop here.
1105 */
1106 BUG_ON(gup_flags & FOLL_NOWAIT);
1107 BUG_ON(ret != 0);
1108 goto out;
1109 }
fa5bb209 1110 continue;
4bbd4c77 1111 }
fa5bb209
KS
1112 }
1113retry:
1114 /*
1115 * If we have a pending SIGKILL, don't keep faulting pages and
1116 * potentially allocating memory.
1117 */
fa45f116 1118 if (fatal_signal_pending(current)) {
d180870d 1119 ret = -EINTR;
df06b37f
KB
1120 goto out;
1121 }
fa5bb209 1122 cond_resched();
df06b37f
KB
1123
1124 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1125 if (!page) {
64019a2e 1126 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1127 switch (ret) {
1128 case 0:
1129 goto retry;
df06b37f
KB
1130 case -EBUSY:
1131 ret = 0;
e4a9bc58 1132 fallthrough;
fa5bb209
KS
1133 case -EFAULT:
1134 case -ENOMEM:
1135 case -EHWPOISON:
df06b37f 1136 goto out;
fa5bb209
KS
1137 case -ENOENT:
1138 goto next_page;
4bbd4c77 1139 }
fa5bb209 1140 BUG();
1027e443
KS
1141 } else if (PTR_ERR(page) == -EEXIST) {
1142 /*
1143 * Proper page table entry exists, but no corresponding
1144 * struct page.
1145 */
1146 goto next_page;
1147 } else if (IS_ERR(page)) {
df06b37f
KB
1148 ret = PTR_ERR(page);
1149 goto out;
1027e443 1150 }
fa5bb209
KS
1151 if (pages) {
1152 pages[i] = page;
1153 flush_anon_page(vma, page, start);
1154 flush_dcache_page(page);
df06b37f 1155 ctx.page_mask = 0;
4bbd4c77 1156 }
4bbd4c77 1157next_page:
fa5bb209
KS
1158 if (vmas) {
1159 vmas[i] = vma;
df06b37f 1160 ctx.page_mask = 0;
fa5bb209 1161 }
df06b37f 1162 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1163 if (page_increm > nr_pages)
1164 page_increm = nr_pages;
1165 i += page_increm;
1166 start += page_increm * PAGE_SIZE;
1167 nr_pages -= page_increm;
4bbd4c77 1168 } while (nr_pages);
df06b37f
KB
1169out:
1170 if (ctx.pgmap)
1171 put_dev_pagemap(ctx.pgmap);
1172 return i ? i : ret;
4bbd4c77 1173}
4bbd4c77 1174
771ab430
TK
1175static bool vma_permits_fault(struct vm_area_struct *vma,
1176 unsigned int fault_flags)
d4925e00 1177{
1b2ee126
DH
1178 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1179 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1180 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1181
1182 if (!(vm_flags & vma->vm_flags))
1183 return false;
1184
33a709b2
DH
1185 /*
1186 * The architecture might have a hardware protection
1b2ee126 1187 * mechanism other than read/write that can deny access.
d61172b4
DH
1188 *
1189 * gup always represents data access, not instruction
1190 * fetches, so execute=false here:
33a709b2 1191 */
d61172b4 1192 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1193 return false;
1194
d4925e00
DH
1195 return true;
1196}
1197
adc8cb40 1198/**
4bbd4c77 1199 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1200 * @mm: mm_struct of target mm
1201 * @address: user address
1202 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1203 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1204 * does not allow retry. If NULL, the caller must guarantee
1205 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1206 *
1207 * This is meant to be called in the specific scenario where for locking reasons
1208 * we try to access user memory in atomic context (within a pagefault_disable()
1209 * section), this returns -EFAULT, and we want to resolve the user fault before
1210 * trying again.
1211 *
1212 * Typically this is meant to be used by the futex code.
1213 *
1214 * The main difference with get_user_pages() is that this function will
1215 * unconditionally call handle_mm_fault() which will in turn perform all the
1216 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1217 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1218 *
1219 * This is important for some architectures where those bits also gate the
1220 * access permission to the page because they are maintained in software. On
1221 * such architectures, gup() will not be enough to make a subsequent access
1222 * succeed.
1223 *
c1e8d7c6
ML
1224 * This function will not return with an unlocked mmap_lock. So it has not the
1225 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1226 */
64019a2e 1227int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1228 unsigned long address, unsigned int fault_flags,
1229 bool *unlocked)
4bbd4c77
KS
1230{
1231 struct vm_area_struct *vma;
2b740303 1232 vm_fault_t ret, major = 0;
4a9e1cda 1233
f9652594
AK
1234 address = untagged_addr(address);
1235
4a9e1cda 1236 if (unlocked)
71335f37 1237 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1238
4a9e1cda 1239retry:
4bbd4c77
KS
1240 vma = find_extend_vma(mm, address);
1241 if (!vma || address < vma->vm_start)
1242 return -EFAULT;
1243
d4925e00 1244 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1245 return -EFAULT;
1246
475f4dfc
PX
1247 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1248 fatal_signal_pending(current))
1249 return -EINTR;
1250
bce617ed 1251 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4a9e1cda 1252 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1253 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1254 int err = vm_fault_to_errno(ret, 0);
1255
1256 if (err)
1257 return err;
4bbd4c77
KS
1258 BUG();
1259 }
4a9e1cda
DD
1260
1261 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1262 mmap_read_lock(mm);
475f4dfc
PX
1263 *unlocked = true;
1264 fault_flags |= FAULT_FLAG_TRIED;
1265 goto retry;
4a9e1cda
DD
1266 }
1267
4bbd4c77
KS
1268 return 0;
1269}
add6a0cd 1270EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1271
2d3a36a4
MH
1272/*
1273 * Please note that this function, unlike __get_user_pages will not
1274 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1275 */
64019a2e 1276static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1277 unsigned long start,
1278 unsigned long nr_pages,
f0818f47
AA
1279 struct page **pages,
1280 struct vm_area_struct **vmas,
e716712f 1281 int *locked,
0fd71a56 1282 unsigned int flags)
f0818f47 1283{
f0818f47
AA
1284 long ret, pages_done;
1285 bool lock_dropped;
1286
1287 if (locked) {
1288 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1289 BUG_ON(vmas);
1290 /* check caller initialized locked */
1291 BUG_ON(*locked != 1);
1292 }
1293
008cfe44 1294 if (flags & FOLL_PIN)
a4d63c37 1295 atomic_set(&mm->has_pinned, 1);
008cfe44 1296
eddb1c22
JH
1297 /*
1298 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1299 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1300 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1301 * for FOLL_GET, not for the newer FOLL_PIN.
1302 *
1303 * FOLL_PIN always expects pages to be non-null, but no need to assert
1304 * that here, as any failures will be obvious enough.
1305 */
1306 if (pages && !(flags & FOLL_PIN))
f0818f47 1307 flags |= FOLL_GET;
f0818f47
AA
1308
1309 pages_done = 0;
1310 lock_dropped = false;
1311 for (;;) {
64019a2e 1312 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1313 vmas, locked);
1314 if (!locked)
1315 /* VM_FAULT_RETRY couldn't trigger, bypass */
1316 return ret;
1317
1318 /* VM_FAULT_RETRY cannot return errors */
1319 if (!*locked) {
1320 BUG_ON(ret < 0);
1321 BUG_ON(ret >= nr_pages);
1322 }
1323
f0818f47
AA
1324 if (ret > 0) {
1325 nr_pages -= ret;
1326 pages_done += ret;
1327 if (!nr_pages)
1328 break;
1329 }
1330 if (*locked) {
96312e61
AA
1331 /*
1332 * VM_FAULT_RETRY didn't trigger or it was a
1333 * FOLL_NOWAIT.
1334 */
f0818f47
AA
1335 if (!pages_done)
1336 pages_done = ret;
1337 break;
1338 }
df17277b
MR
1339 /*
1340 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1341 * For the prefault case (!pages) we only update counts.
1342 */
1343 if (likely(pages))
1344 pages += ret;
f0818f47 1345 start += ret << PAGE_SHIFT;
4426e945 1346 lock_dropped = true;
f0818f47 1347
4426e945 1348retry:
f0818f47
AA
1349 /*
1350 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1351 * with both FAULT_FLAG_ALLOW_RETRY and
1352 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1353 * by fatal signals, so we need to check it before we
1354 * start trying again otherwise it can loop forever.
f0818f47 1355 */
4426e945 1356
ae46d2aa
HD
1357 if (fatal_signal_pending(current)) {
1358 if (!pages_done)
1359 pages_done = -EINTR;
4426e945 1360 break;
ae46d2aa 1361 }
4426e945 1362
d8ed45c5 1363 ret = mmap_read_lock_killable(mm);
71335f37
PX
1364 if (ret) {
1365 BUG_ON(ret > 0);
1366 if (!pages_done)
1367 pages_done = ret;
1368 break;
1369 }
4426e945 1370
c7b6a566 1371 *locked = 1;
64019a2e 1372 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1373 pages, NULL, locked);
1374 if (!*locked) {
1375 /* Continue to retry until we succeeded */
1376 BUG_ON(ret != 0);
1377 goto retry;
1378 }
f0818f47
AA
1379 if (ret != 1) {
1380 BUG_ON(ret > 1);
1381 if (!pages_done)
1382 pages_done = ret;
1383 break;
1384 }
1385 nr_pages--;
1386 pages_done++;
1387 if (!nr_pages)
1388 break;
df17277b
MR
1389 if (likely(pages))
1390 pages++;
f0818f47
AA
1391 start += PAGE_SIZE;
1392 }
e716712f 1393 if (lock_dropped && *locked) {
f0818f47
AA
1394 /*
1395 * We must let the caller know we temporarily dropped the lock
1396 * and so the critical section protected by it was lost.
1397 */
d8ed45c5 1398 mmap_read_unlock(mm);
f0818f47
AA
1399 *locked = 0;
1400 }
1401 return pages_done;
1402}
1403
d3649f68
CH
1404/**
1405 * populate_vma_page_range() - populate a range of pages in the vma.
1406 * @vma: target vma
1407 * @start: start address
1408 * @end: end address
c1e8d7c6 1409 * @locked: whether the mmap_lock is still held
d3649f68
CH
1410 *
1411 * This takes care of mlocking the pages too if VM_LOCKED is set.
1412 *
0a36f7f8
TY
1413 * Return either number of pages pinned in the vma, or a negative error
1414 * code on error.
d3649f68 1415 *
c1e8d7c6 1416 * vma->vm_mm->mmap_lock must be held.
d3649f68 1417 *
4f6da934 1418 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1419 * be unperturbed.
1420 *
4f6da934
PX
1421 * If @locked is non-NULL, it must held for read only and may be
1422 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1423 */
1424long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1425 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1426{
1427 struct mm_struct *mm = vma->vm_mm;
1428 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1429 int gup_flags;
1430
1431 VM_BUG_ON(start & ~PAGE_MASK);
1432 VM_BUG_ON(end & ~PAGE_MASK);
1433 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1434 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1435 mmap_assert_locked(mm);
d3649f68
CH
1436
1437 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1438 if (vma->vm_flags & VM_LOCKONFAULT)
1439 gup_flags &= ~FOLL_POPULATE;
1440 /*
1441 * We want to touch writable mappings with a write fault in order
1442 * to break COW, except for shared mappings because these don't COW
1443 * and we would not want to dirty them for nothing.
1444 */
1445 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1446 gup_flags |= FOLL_WRITE;
1447
1448 /*
1449 * We want mlock to succeed for regions that have any permissions
1450 * other than PROT_NONE.
1451 */
3122e80e 1452 if (vma_is_accessible(vma))
d3649f68
CH
1453 gup_flags |= FOLL_FORCE;
1454
1455 /*
1456 * We made sure addr is within a VMA, so the following will
1457 * not result in a stack expansion that recurses back here.
1458 */
64019a2e 1459 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1460 NULL, NULL, locked);
d3649f68
CH
1461}
1462
1463/*
1464 * __mm_populate - populate and/or mlock pages within a range of address space.
1465 *
1466 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1467 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1468 * mmap_lock must not be held.
d3649f68
CH
1469 */
1470int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1471{
1472 struct mm_struct *mm = current->mm;
1473 unsigned long end, nstart, nend;
1474 struct vm_area_struct *vma = NULL;
1475 int locked = 0;
1476 long ret = 0;
1477
1478 end = start + len;
1479
1480 for (nstart = start; nstart < end; nstart = nend) {
1481 /*
1482 * We want to fault in pages for [nstart; end) address range.
1483 * Find first corresponding VMA.
1484 */
1485 if (!locked) {
1486 locked = 1;
d8ed45c5 1487 mmap_read_lock(mm);
d3649f68
CH
1488 vma = find_vma(mm, nstart);
1489 } else if (nstart >= vma->vm_end)
1490 vma = vma->vm_next;
1491 if (!vma || vma->vm_start >= end)
1492 break;
1493 /*
1494 * Set [nstart; nend) to intersection of desired address
1495 * range with the first VMA. Also, skip undesirable VMA types.
1496 */
1497 nend = min(end, vma->vm_end);
1498 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1499 continue;
1500 if (nstart < vma->vm_start)
1501 nstart = vma->vm_start;
1502 /*
1503 * Now fault in a range of pages. populate_vma_page_range()
1504 * double checks the vma flags, so that it won't mlock pages
1505 * if the vma was already munlocked.
1506 */
1507 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1508 if (ret < 0) {
1509 if (ignore_errors) {
1510 ret = 0;
1511 continue; /* continue at next VMA */
1512 }
1513 break;
1514 }
1515 nend = nstart + ret * PAGE_SIZE;
1516 ret = 0;
1517 }
1518 if (locked)
d8ed45c5 1519 mmap_read_unlock(mm);
d3649f68
CH
1520 return ret; /* 0 or negative error code */
1521}
050a9adc 1522#else /* CONFIG_MMU */
64019a2e 1523static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1524 unsigned long nr_pages, struct page **pages,
1525 struct vm_area_struct **vmas, int *locked,
1526 unsigned int foll_flags)
1527{
1528 struct vm_area_struct *vma;
1529 unsigned long vm_flags;
1530 int i;
1531
1532 /* calculate required read or write permissions.
1533 * If FOLL_FORCE is set, we only require the "MAY" flags.
1534 */
1535 vm_flags = (foll_flags & FOLL_WRITE) ?
1536 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1537 vm_flags &= (foll_flags & FOLL_FORCE) ?
1538 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1539
1540 for (i = 0; i < nr_pages; i++) {
1541 vma = find_vma(mm, start);
1542 if (!vma)
1543 goto finish_or_fault;
1544
1545 /* protect what we can, including chardevs */
1546 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1547 !(vm_flags & vma->vm_flags))
1548 goto finish_or_fault;
1549
1550 if (pages) {
1551 pages[i] = virt_to_page(start);
1552 if (pages[i])
1553 get_page(pages[i]);
1554 }
1555 if (vmas)
1556 vmas[i] = vma;
1557 start = (start + PAGE_SIZE) & PAGE_MASK;
1558 }
1559
1560 return i;
1561
1562finish_or_fault:
1563 return i ? : -EFAULT;
1564}
1565#endif /* !CONFIG_MMU */
d3649f68 1566
8f942eea
JH
1567/**
1568 * get_dump_page() - pin user page in memory while writing it to core dump
1569 * @addr: user address
1570 *
1571 * Returns struct page pointer of user page pinned for dump,
1572 * to be freed afterwards by put_page().
1573 *
1574 * Returns NULL on any kind of failure - a hole must then be inserted into
1575 * the corefile, to preserve alignment with its headers; and also returns
1576 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1577 * allowing a hole to be left in the corefile to save diskspace.
1578 *
7f3bfab5 1579 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1580 */
1581#ifdef CONFIG_ELF_CORE
1582struct page *get_dump_page(unsigned long addr)
1583{
7f3bfab5 1584 struct mm_struct *mm = current->mm;
8f942eea 1585 struct page *page;
7f3bfab5
JH
1586 int locked = 1;
1587 int ret;
8f942eea 1588
7f3bfab5 1589 if (mmap_read_lock_killable(mm))
8f942eea 1590 return NULL;
7f3bfab5
JH
1591 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1592 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1593 if (locked)
1594 mmap_read_unlock(mm);
d3378e86
AY
1595
1596 if (ret == 1 && is_page_poisoned(page))
1597 return NULL;
1598
7f3bfab5 1599 return (ret == 1) ? page : NULL;
8f942eea
JH
1600}
1601#endif /* CONFIG_ELF_CORE */
1602
9a4e9f3b 1603#ifdef CONFIG_CMA
64019a2e 1604static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1605 unsigned long start,
1606 unsigned long nr_pages,
9a4e9f3b 1607 struct page **pages,
932f4a63
IW
1608 struct vm_area_struct **vmas,
1609 unsigned int gup_flags)
9a4e9f3b 1610{
aa712399 1611 unsigned long i;
9a4e9f3b 1612 bool drain_allow = true;
9a4e9f3b 1613 LIST_HEAD(cma_page_list);
b96cc655 1614 long ret = nr_pages;
83c02c23 1615 struct page *prev_head, *head;
ed03d924
JK
1616 struct migration_target_control mtc = {
1617 .nid = NUMA_NO_NODE,
c991ffef 1618 .gfp_mask = GFP_USER | __GFP_NOWARN,
ed03d924 1619 };
9a4e9f3b
AK
1620
1621check_again:
83c02c23
PT
1622 prev_head = NULL;
1623 for (i = 0; i < nr_pages; i++) {
1624 head = compound_head(pages[i]);
1625 if (head == prev_head)
1626 continue;
1627 prev_head = head;
9a4e9f3b
AK
1628 /*
1629 * If we get a page from the CMA zone, since we are going to
1630 * be pinning these entries, we might as well move them out
1631 * of the CMA zone if possible.
1632 */
aa712399
PL
1633 if (is_migrate_cma_page(head)) {
1634 if (PageHuge(head))
9a4e9f3b 1635 isolate_huge_page(head, &cma_page_list);
aa712399 1636 else {
9a4e9f3b
AK
1637 if (!PageLRU(head) && drain_allow) {
1638 lru_add_drain_all();
1639 drain_allow = false;
1640 }
1641
1642 if (!isolate_lru_page(head)) {
1643 list_add_tail(&head->lru, &cma_page_list);
1644 mod_node_page_state(page_pgdat(head),
1645 NR_ISOLATED_ANON +
9de4f22a 1646 page_is_file_lru(head),
6c357848 1647 thp_nr_pages(head));
9a4e9f3b
AK
1648 }
1649 }
1650 }
1651 }
1652
1653 if (!list_empty(&cma_page_list)) {
1654 /*
1655 * drop the above get_user_pages reference.
1656 */
96e1fac1
JG
1657 if (gup_flags & FOLL_PIN)
1658 unpin_user_pages(pages, nr_pages);
1659 else
1660 for (i = 0; i < nr_pages; i++)
1661 put_page(pages[i]);
9a4e9f3b 1662
f0f44638
PT
1663 ret = migrate_pages(&cma_page_list, alloc_migration_target,
1664 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
1665 MR_CONTIG_RANGE);
1666 if (ret) {
9a4e9f3b
AK
1667 if (!list_empty(&cma_page_list))
1668 putback_movable_pages(&cma_page_list);
f0f44638 1669 return ret > 0 ? -ENOMEM : ret;
9a4e9f3b 1670 }
f0f44638 1671
9a4e9f3b 1672 /*
932f4a63
IW
1673 * We did migrate all the pages, Try to get the page references
1674 * again migrating any new CMA pages which we failed to isolate
1675 * earlier.
9a4e9f3b 1676 */
64019a2e 1677 ret = __get_user_pages_locked(mm, start, nr_pages,
932f4a63
IW
1678 pages, vmas, NULL,
1679 gup_flags);
1680
f0f44638 1681 if (ret > 0) {
b96cc655 1682 nr_pages = ret;
9a4e9f3b
AK
1683 drain_allow = true;
1684 goto check_again;
1685 }
1686 }
1687
b96cc655 1688 return ret;
9a4e9f3b
AK
1689}
1690#else
64019a2e 1691static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1692 unsigned long start,
1693 unsigned long nr_pages,
1694 struct page **pages,
1695 struct vm_area_struct **vmas,
1696 unsigned int gup_flags)
9a4e9f3b
AK
1697{
1698 return nr_pages;
1699}
050a9adc 1700#endif /* CONFIG_CMA */
9a4e9f3b 1701
2bb6d283 1702/*
932f4a63
IW
1703 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1704 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1705 */
64019a2e 1706static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1707 unsigned long start,
1708 unsigned long nr_pages,
1709 struct page **pages,
1710 struct vm_area_struct **vmas,
1711 unsigned int gup_flags)
2bb6d283 1712{
932f4a63 1713 unsigned long flags = 0;
52650c8b 1714 long rc;
2bb6d283 1715
52650c8b 1716 if (gup_flags & FOLL_LONGTERM)
932f4a63 1717 flags = memalloc_nocma_save();
2bb6d283 1718
52650c8b
JG
1719 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1720 gup_flags);
2bb6d283 1721
932f4a63 1722 if (gup_flags & FOLL_LONGTERM) {
52650c8b
JG
1723 if (rc > 0)
1724 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1725 vmas, gup_flags);
41b4dc14 1726 memalloc_nocma_restore(flags);
9a4e9f3b 1727 }
2bb6d283
DW
1728 return rc;
1729}
932f4a63 1730
447f3e45
BS
1731static bool is_valid_gup_flags(unsigned int gup_flags)
1732{
1733 /*
1734 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1735 * never directly by the caller, so enforce that with an assertion:
1736 */
1737 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1738 return false;
1739 /*
1740 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1741 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1742 * FOLL_PIN.
1743 */
1744 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1745 return false;
1746
1747 return true;
1748}
1749
22bf29b6 1750#ifdef CONFIG_MMU
64019a2e 1751static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1752 unsigned long start, unsigned long nr_pages,
1753 unsigned int gup_flags, struct page **pages,
1754 struct vm_area_struct **vmas, int *locked)
1755{
1756 /*
1757 * Parts of FOLL_LONGTERM behavior are incompatible with
1758 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1759 * vmas. However, this only comes up if locked is set, and there are
1760 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1761 * allow what we can.
1762 */
1763 if (gup_flags & FOLL_LONGTERM) {
1764 if (WARN_ON_ONCE(locked))
1765 return -EINVAL;
1766 /*
1767 * This will check the vmas (even if our vmas arg is NULL)
1768 * and return -ENOTSUPP if DAX isn't allowed in this case:
1769 */
64019a2e 1770 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1771 vmas, gup_flags | FOLL_TOUCH |
1772 FOLL_REMOTE);
1773 }
1774
64019a2e 1775 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1776 locked,
1777 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1778}
1779
adc8cb40 1780/**
c4237f8b 1781 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1782 * @mm: mm_struct of target mm
1783 * @start: starting user address
1784 * @nr_pages: number of pages from start to pin
1785 * @gup_flags: flags modifying lookup behaviour
1786 * @pages: array that receives pointers to the pages pinned.
1787 * Should be at least nr_pages long. Or NULL, if caller
1788 * only intends to ensure the pages are faulted in.
1789 * @vmas: array of pointers to vmas corresponding to each page.
1790 * Or NULL if the caller does not require them.
1791 * @locked: pointer to lock flag indicating whether lock is held and
1792 * subsequently whether VM_FAULT_RETRY functionality can be
1793 * utilised. Lock must initially be held.
1794 *
1795 * Returns either number of pages pinned (which may be less than the
1796 * number requested), or an error. Details about the return value:
1797 *
1798 * -- If nr_pages is 0, returns 0.
1799 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1800 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1801 * pages pinned. Again, this may be less than nr_pages.
1802 *
1803 * The caller is responsible for releasing returned @pages, via put_page().
1804 *
c1e8d7c6 1805 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1806 *
c1e8d7c6 1807 * Must be called with mmap_lock held for read or write.
c4237f8b 1808 *
adc8cb40
SJ
1809 * get_user_pages_remote walks a process's page tables and takes a reference
1810 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1811 * instant. That is, it takes the page that would be accessed if a user
1812 * thread accesses the given user virtual address at that instant.
1813 *
1814 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1815 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1816 * page there in some cases (eg. if mmapped pagecache has been invalidated
1817 * and subsequently re faulted). However it does guarantee that the page
1818 * won't be freed completely. And mostly callers simply care that the page
1819 * contains data that was valid *at some point in time*. Typically, an IO
1820 * or similar operation cannot guarantee anything stronger anyway because
1821 * locks can't be held over the syscall boundary.
1822 *
1823 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1824 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1825 * be called after the page is finished with, and before put_page is called.
1826 *
adc8cb40
SJ
1827 * get_user_pages_remote is typically used for fewer-copy IO operations,
1828 * to get a handle on the memory by some means other than accesses
1829 * via the user virtual addresses. The pages may be submitted for
1830 * DMA to devices or accessed via their kernel linear mapping (via the
1831 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1832 *
1833 * See also get_user_pages_fast, for performance critical applications.
1834 *
adc8cb40 1835 * get_user_pages_remote should be phased out in favor of
c4237f8b 1836 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1837 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1838 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1839 */
64019a2e 1840long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
1841 unsigned long start, unsigned long nr_pages,
1842 unsigned int gup_flags, struct page **pages,
1843 struct vm_area_struct **vmas, int *locked)
1844{
447f3e45 1845 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1846 return -EINVAL;
1847
64019a2e 1848 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 1849 pages, vmas, locked);
c4237f8b
JH
1850}
1851EXPORT_SYMBOL(get_user_pages_remote);
1852
eddb1c22 1853#else /* CONFIG_MMU */
64019a2e 1854long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1855 unsigned long start, unsigned long nr_pages,
1856 unsigned int gup_flags, struct page **pages,
1857 struct vm_area_struct **vmas, int *locked)
1858{
1859 return 0;
1860}
3faa52c0 1861
64019a2e 1862static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
1863 unsigned long start, unsigned long nr_pages,
1864 unsigned int gup_flags, struct page **pages,
1865 struct vm_area_struct **vmas, int *locked)
1866{
1867 return 0;
1868}
eddb1c22
JH
1869#endif /* !CONFIG_MMU */
1870
adc8cb40
SJ
1871/**
1872 * get_user_pages() - pin user pages in memory
1873 * @start: starting user address
1874 * @nr_pages: number of pages from start to pin
1875 * @gup_flags: flags modifying lookup behaviour
1876 * @pages: array that receives pointers to the pages pinned.
1877 * Should be at least nr_pages long. Or NULL, if caller
1878 * only intends to ensure the pages are faulted in.
1879 * @vmas: array of pointers to vmas corresponding to each page.
1880 * Or NULL if the caller does not require them.
1881 *
64019a2e
PX
1882 * This is the same as get_user_pages_remote(), just with a less-flexible
1883 * calling convention where we assume that the mm being operated on belongs to
1884 * the current task, and doesn't allow passing of a locked parameter. We also
1885 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
1886 */
1887long get_user_pages(unsigned long start, unsigned long nr_pages,
1888 unsigned int gup_flags, struct page **pages,
1889 struct vm_area_struct **vmas)
1890{
447f3e45 1891 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1892 return -EINVAL;
1893
64019a2e 1894 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
1895 pages, vmas, gup_flags | FOLL_TOUCH);
1896}
1897EXPORT_SYMBOL(get_user_pages);
2bb6d283 1898
adc8cb40 1899/**
a00cda3f
MCC
1900 * get_user_pages_locked() - variant of get_user_pages()
1901 *
1902 * @start: starting user address
1903 * @nr_pages: number of pages from start to pin
1904 * @gup_flags: flags modifying lookup behaviour
1905 * @pages: array that receives pointers to the pages pinned.
1906 * Should be at least nr_pages long. Or NULL, if caller
1907 * only intends to ensure the pages are faulted in.
1908 * @locked: pointer to lock flag indicating whether lock is held and
1909 * subsequently whether VM_FAULT_RETRY functionality can be
1910 * utilised. Lock must initially be held.
1911 *
1912 * It is suitable to replace the form:
acc3c8d1 1913 *
3e4e28c5 1914 * mmap_read_lock(mm);
d3649f68 1915 * do_something()
64019a2e 1916 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1917 * mmap_read_unlock(mm);
acc3c8d1 1918 *
d3649f68 1919 * to:
acc3c8d1 1920 *
d3649f68 1921 * int locked = 1;
3e4e28c5 1922 * mmap_read_lock(mm);
d3649f68 1923 * do_something()
64019a2e 1924 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 1925 * if (locked)
3e4e28c5 1926 * mmap_read_unlock(mm);
adc8cb40 1927 *
adc8cb40
SJ
1928 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1929 * paths better by using either get_user_pages_locked() or
1930 * get_user_pages_unlocked().
1931 *
acc3c8d1 1932 */
d3649f68
CH
1933long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1934 unsigned int gup_flags, struct page **pages,
1935 int *locked)
acc3c8d1 1936{
acc3c8d1 1937 /*
d3649f68
CH
1938 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1939 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1940 * vmas. As there are no users of this flag in this call we simply
1941 * disallow this option for now.
acc3c8d1 1942 */
d3649f68
CH
1943 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1944 return -EINVAL;
420c2091
JH
1945 /*
1946 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1947 * never directly by the caller, so enforce that:
1948 */
1949 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1950 return -EINVAL;
acc3c8d1 1951
64019a2e 1952 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
1953 pages, NULL, locked,
1954 gup_flags | FOLL_TOUCH);
acc3c8d1 1955}
d3649f68 1956EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1957
1958/*
d3649f68 1959 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1960 *
3e4e28c5 1961 * mmap_read_lock(mm);
64019a2e 1962 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1963 * mmap_read_unlock(mm);
d3649f68
CH
1964 *
1965 * with:
1966 *
64019a2e 1967 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
1968 *
1969 * It is functionally equivalent to get_user_pages_fast so
1970 * get_user_pages_fast should be used instead if specific gup_flags
1971 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1972 */
d3649f68
CH
1973long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1974 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1975{
1976 struct mm_struct *mm = current->mm;
d3649f68
CH
1977 int locked = 1;
1978 long ret;
acc3c8d1 1979
d3649f68
CH
1980 /*
1981 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1982 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1983 * vmas. As there are no users of this flag in this call we simply
1984 * disallow this option for now.
1985 */
1986 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1987 return -EINVAL;
acc3c8d1 1988
d8ed45c5 1989 mmap_read_lock(mm);
64019a2e 1990 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 1991 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 1992 if (locked)
d8ed45c5 1993 mmap_read_unlock(mm);
d3649f68 1994 return ret;
4bbd4c77 1995}
d3649f68 1996EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
1997
1998/*
67a929e0 1999 * Fast GUP
2667f50e
SC
2000 *
2001 * get_user_pages_fast attempts to pin user pages by walking the page
2002 * tables directly and avoids taking locks. Thus the walker needs to be
2003 * protected from page table pages being freed from under it, and should
2004 * block any THP splits.
2005 *
2006 * One way to achieve this is to have the walker disable interrupts, and
2007 * rely on IPIs from the TLB flushing code blocking before the page table
2008 * pages are freed. This is unsuitable for architectures that do not need
2009 * to broadcast an IPI when invalidating TLBs.
2010 *
2011 * Another way to achieve this is to batch up page table containing pages
2012 * belonging to more than one mm_user, then rcu_sched a callback to free those
2013 * pages. Disabling interrupts will allow the fast_gup walker to both block
2014 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2015 * (which is a relatively rare event). The code below adopts this strategy.
2016 *
2017 * Before activating this code, please be aware that the following assumptions
2018 * are currently made:
2019 *
ff2e6d72 2020 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2021 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2022 *
2667f50e
SC
2023 * *) ptes can be read atomically by the architecture.
2024 *
2025 * *) access_ok is sufficient to validate userspace address ranges.
2026 *
2027 * The last two assumptions can be relaxed by the addition of helper functions.
2028 *
2029 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2030 */
67a929e0 2031#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2032
790c7369 2033static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2034 unsigned int flags,
790c7369 2035 struct page **pages)
b59f65fa
KS
2036{
2037 while ((*nr) - nr_start) {
2038 struct page *page = pages[--(*nr)];
2039
2040 ClearPageReferenced(page);
3faa52c0
JH
2041 if (flags & FOLL_PIN)
2042 unpin_user_page(page);
2043 else
2044 put_page(page);
b59f65fa
KS
2045 }
2046}
2047
3010a5ea 2048#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2049static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2050 unsigned int flags, struct page **pages, int *nr)
2667f50e 2051{
b59f65fa
KS
2052 struct dev_pagemap *pgmap = NULL;
2053 int nr_start = *nr, ret = 0;
2667f50e 2054 pte_t *ptep, *ptem;
2667f50e
SC
2055
2056 ptem = ptep = pte_offset_map(&pmd, addr);
2057 do {
2a4a06da 2058 pte_t pte = ptep_get_lockless(ptep);
7aef4172 2059 struct page *head, *page;
2667f50e
SC
2060
2061 /*
2062 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2063 * path using the pte_protnone check.
2667f50e 2064 */
e7884f8e
KS
2065 if (pte_protnone(pte))
2066 goto pte_unmap;
2067
b798bec4 2068 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2069 goto pte_unmap;
2070
b59f65fa 2071 if (pte_devmap(pte)) {
7af75561
IW
2072 if (unlikely(flags & FOLL_LONGTERM))
2073 goto pte_unmap;
2074
b59f65fa
KS
2075 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2076 if (unlikely(!pgmap)) {
3b78d834 2077 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2078 goto pte_unmap;
2079 }
2080 } else if (pte_special(pte))
2667f50e
SC
2081 goto pte_unmap;
2082
2083 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2084 page = pte_page(pte);
2085
3faa52c0 2086 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2087 if (!head)
2667f50e
SC
2088 goto pte_unmap;
2089
2090 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2091 put_compound_head(head, 1, flags);
2667f50e
SC
2092 goto pte_unmap;
2093 }
2094
7aef4172 2095 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2096
f28d4363
CI
2097 /*
2098 * We need to make the page accessible if and only if we are
2099 * going to access its content (the FOLL_PIN case). Please
2100 * see Documentation/core-api/pin_user_pages.rst for
2101 * details.
2102 */
2103 if (flags & FOLL_PIN) {
2104 ret = arch_make_page_accessible(page);
2105 if (ret) {
2106 unpin_user_page(page);
2107 goto pte_unmap;
2108 }
2109 }
e9348053 2110 SetPageReferenced(page);
2667f50e
SC
2111 pages[*nr] = page;
2112 (*nr)++;
2113
2114 } while (ptep++, addr += PAGE_SIZE, addr != end);
2115
2116 ret = 1;
2117
2118pte_unmap:
832d7aa0
CH
2119 if (pgmap)
2120 put_dev_pagemap(pgmap);
2667f50e
SC
2121 pte_unmap(ptem);
2122 return ret;
2123}
2124#else
2125
2126/*
2127 * If we can't determine whether or not a pte is special, then fail immediately
2128 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2129 * to be special.
2130 *
2131 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2132 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2133 * useful to have gup_huge_pmd even if we can't operate on ptes.
2134 */
2135static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2136 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2137{
2138 return 0;
2139}
3010a5ea 2140#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2141
17596731 2142#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2143static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2144 unsigned long end, unsigned int flags,
2145 struct page **pages, int *nr)
b59f65fa
KS
2146{
2147 int nr_start = *nr;
2148 struct dev_pagemap *pgmap = NULL;
2149
2150 do {
2151 struct page *page = pfn_to_page(pfn);
2152
2153 pgmap = get_dev_pagemap(pfn, pgmap);
2154 if (unlikely(!pgmap)) {
3b78d834 2155 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2156 return 0;
2157 }
2158 SetPageReferenced(page);
2159 pages[*nr] = page;
3faa52c0
JH
2160 if (unlikely(!try_grab_page(page, flags))) {
2161 undo_dev_pagemap(nr, nr_start, flags, pages);
2162 return 0;
2163 }
b59f65fa
KS
2164 (*nr)++;
2165 pfn++;
2166 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2167
2168 if (pgmap)
2169 put_dev_pagemap(pgmap);
b59f65fa
KS
2170 return 1;
2171}
2172
a9b6de77 2173static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2174 unsigned long end, unsigned int flags,
2175 struct page **pages, int *nr)
b59f65fa
KS
2176{
2177 unsigned long fault_pfn;
a9b6de77
DW
2178 int nr_start = *nr;
2179
2180 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2181 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2182 return 0;
b59f65fa 2183
a9b6de77 2184 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2185 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2186 return 0;
2187 }
2188 return 1;
b59f65fa
KS
2189}
2190
a9b6de77 2191static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2192 unsigned long end, unsigned int flags,
2193 struct page **pages, int *nr)
b59f65fa
KS
2194{
2195 unsigned long fault_pfn;
a9b6de77
DW
2196 int nr_start = *nr;
2197
2198 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2199 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2200 return 0;
b59f65fa 2201
a9b6de77 2202 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2203 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2204 return 0;
2205 }
2206 return 1;
b59f65fa
KS
2207}
2208#else
a9b6de77 2209static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2210 unsigned long end, unsigned int flags,
2211 struct page **pages, int *nr)
b59f65fa
KS
2212{
2213 BUILD_BUG();
2214 return 0;
2215}
2216
a9b6de77 2217static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2218 unsigned long end, unsigned int flags,
2219 struct page **pages, int *nr)
b59f65fa
KS
2220{
2221 BUILD_BUG();
2222 return 0;
2223}
2224#endif
2225
a43e9820
JH
2226static int record_subpages(struct page *page, unsigned long addr,
2227 unsigned long end, struct page **pages)
2228{
2229 int nr;
2230
2231 for (nr = 0; addr != end; addr += PAGE_SIZE)
2232 pages[nr++] = page++;
2233
2234 return nr;
2235}
2236
cbd34da7
CH
2237#ifdef CONFIG_ARCH_HAS_HUGEPD
2238static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2239 unsigned long sz)
2240{
2241 unsigned long __boundary = (addr + sz) & ~(sz-1);
2242 return (__boundary - 1 < end - 1) ? __boundary : end;
2243}
2244
2245static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2246 unsigned long end, unsigned int flags,
2247 struct page **pages, int *nr)
cbd34da7
CH
2248{
2249 unsigned long pte_end;
2250 struct page *head, *page;
2251 pte_t pte;
2252 int refs;
2253
2254 pte_end = (addr + sz) & ~(sz-1);
2255 if (pte_end < end)
2256 end = pte_end;
2257
55ca2263 2258 pte = huge_ptep_get(ptep);
cbd34da7 2259
0cd22afd 2260 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2261 return 0;
2262
2263 /* hugepages are never "special" */
2264 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2265
cbd34da7 2266 head = pte_page(pte);
cbd34da7 2267 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2268 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2269
3faa52c0 2270 head = try_grab_compound_head(head, refs, flags);
a43e9820 2271 if (!head)
cbd34da7 2272 return 0;
cbd34da7
CH
2273
2274 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2275 put_compound_head(head, refs, flags);
cbd34da7
CH
2276 return 0;
2277 }
2278
a43e9820 2279 *nr += refs;
520b4a44 2280 SetPageReferenced(head);
cbd34da7
CH
2281 return 1;
2282}
2283
2284static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2285 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2286 struct page **pages, int *nr)
2287{
2288 pte_t *ptep;
2289 unsigned long sz = 1UL << hugepd_shift(hugepd);
2290 unsigned long next;
2291
2292 ptep = hugepte_offset(hugepd, addr, pdshift);
2293 do {
2294 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2295 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2296 return 0;
2297 } while (ptep++, addr = next, addr != end);
2298
2299 return 1;
2300}
2301#else
2302static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2303 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2304 struct page **pages, int *nr)
2305{
2306 return 0;
2307}
2308#endif /* CONFIG_ARCH_HAS_HUGEPD */
2309
2667f50e 2310static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2311 unsigned long end, unsigned int flags,
2312 struct page **pages, int *nr)
2667f50e 2313{
ddc58f27 2314 struct page *head, *page;
2667f50e
SC
2315 int refs;
2316
b798bec4 2317 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2318 return 0;
2319
7af75561
IW
2320 if (pmd_devmap(orig)) {
2321 if (unlikely(flags & FOLL_LONGTERM))
2322 return 0;
86dfbed4
JH
2323 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2324 pages, nr);
7af75561 2325 }
b59f65fa 2326
d63206ee 2327 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2328 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2329
3faa52c0 2330 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2331 if (!head)
2667f50e 2332 return 0;
2667f50e
SC
2333
2334 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2335 put_compound_head(head, refs, flags);
2667f50e
SC
2336 return 0;
2337 }
2338
a43e9820 2339 *nr += refs;
e9348053 2340 SetPageReferenced(head);
2667f50e
SC
2341 return 1;
2342}
2343
2344static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2345 unsigned long end, unsigned int flags,
2346 struct page **pages, int *nr)
2667f50e 2347{
ddc58f27 2348 struct page *head, *page;
2667f50e
SC
2349 int refs;
2350
b798bec4 2351 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2352 return 0;
2353
7af75561
IW
2354 if (pud_devmap(orig)) {
2355 if (unlikely(flags & FOLL_LONGTERM))
2356 return 0;
86dfbed4
JH
2357 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2358 pages, nr);
7af75561 2359 }
b59f65fa 2360
d63206ee 2361 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2362 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2363
3faa52c0 2364 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2365 if (!head)
2667f50e 2366 return 0;
2667f50e
SC
2367
2368 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2369 put_compound_head(head, refs, flags);
2667f50e
SC
2370 return 0;
2371 }
2372
a43e9820 2373 *nr += refs;
e9348053 2374 SetPageReferenced(head);
2667f50e
SC
2375 return 1;
2376}
2377
f30c59e9 2378static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2379 unsigned long end, unsigned int flags,
f30c59e9
AK
2380 struct page **pages, int *nr)
2381{
2382 int refs;
ddc58f27 2383 struct page *head, *page;
f30c59e9 2384
b798bec4 2385 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2386 return 0;
2387
b59f65fa 2388 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2389
d63206ee 2390 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2391 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2392
3faa52c0 2393 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2394 if (!head)
f30c59e9 2395 return 0;
f30c59e9
AK
2396
2397 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2398 put_compound_head(head, refs, flags);
f30c59e9
AK
2399 return 0;
2400 }
2401
a43e9820 2402 *nr += refs;
e9348053 2403 SetPageReferenced(head);
f30c59e9
AK
2404 return 1;
2405}
2406
d3f7b1bb 2407static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2408 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2409{
2410 unsigned long next;
2411 pmd_t *pmdp;
2412
d3f7b1bb 2413 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2414 do {
38c5ce93 2415 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2416
2417 next = pmd_addr_end(addr, end);
84c3fc4e 2418 if (!pmd_present(pmd))
2667f50e
SC
2419 return 0;
2420
414fd080
YZ
2421 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2422 pmd_devmap(pmd))) {
2667f50e
SC
2423 /*
2424 * NUMA hinting faults need to be handled in the GUP
2425 * slowpath for accounting purposes and so that they
2426 * can be serialised against THP migration.
2427 */
8a0516ed 2428 if (pmd_protnone(pmd))
2667f50e
SC
2429 return 0;
2430
b798bec4 2431 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2432 pages, nr))
2433 return 0;
2434
f30c59e9
AK
2435 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2436 /*
2437 * architecture have different format for hugetlbfs
2438 * pmd format and THP pmd format
2439 */
2440 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2441 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2442 return 0;
b798bec4 2443 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2444 return 0;
2667f50e
SC
2445 } while (pmdp++, addr = next, addr != end);
2446
2447 return 1;
2448}
2449
d3f7b1bb 2450static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2451 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2452{
2453 unsigned long next;
2454 pud_t *pudp;
2455
d3f7b1bb 2456 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2457 do {
e37c6982 2458 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2459
2460 next = pud_addr_end(addr, end);
15494520 2461 if (unlikely(!pud_present(pud)))
2667f50e 2462 return 0;
f30c59e9 2463 if (unlikely(pud_huge(pud))) {
b798bec4 2464 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2465 pages, nr))
2466 return 0;
2467 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2468 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2469 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2470 return 0;
d3f7b1bb 2471 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2472 return 0;
2473 } while (pudp++, addr = next, addr != end);
2474
2475 return 1;
2476}
2477
d3f7b1bb 2478static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2479 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2480{
2481 unsigned long next;
2482 p4d_t *p4dp;
2483
d3f7b1bb 2484 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2485 do {
2486 p4d_t p4d = READ_ONCE(*p4dp);
2487
2488 next = p4d_addr_end(addr, end);
2489 if (p4d_none(p4d))
2490 return 0;
2491 BUILD_BUG_ON(p4d_huge(p4d));
2492 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2493 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2494 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2495 return 0;
d3f7b1bb 2496 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2497 return 0;
2498 } while (p4dp++, addr = next, addr != end);
2499
2500 return 1;
2501}
2502
5b65c467 2503static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2504 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2505{
2506 unsigned long next;
2507 pgd_t *pgdp;
2508
2509 pgdp = pgd_offset(current->mm, addr);
2510 do {
2511 pgd_t pgd = READ_ONCE(*pgdp);
2512
2513 next = pgd_addr_end(addr, end);
2514 if (pgd_none(pgd))
2515 return;
2516 if (unlikely(pgd_huge(pgd))) {
b798bec4 2517 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2518 pages, nr))
2519 return;
2520 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2521 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2522 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2523 return;
d3f7b1bb 2524 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2525 return;
2526 } while (pgdp++, addr = next, addr != end);
2527}
050a9adc
CH
2528#else
2529static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2530 unsigned int flags, struct page **pages, int *nr)
2531{
2532}
2533#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2534
2535#ifndef gup_fast_permitted
2536/*
dadbb612 2537 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2538 * we need to fall back to the slow version:
2539 */
26f4c328 2540static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2541{
26f4c328 2542 return true;
5b65c467
KS
2543}
2544#endif
2545
7af75561
IW
2546static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2547 unsigned int gup_flags, struct page **pages)
2548{
2549 int ret;
2550
2551 /*
2552 * FIXME: FOLL_LONGTERM does not work with
2553 * get_user_pages_unlocked() (see comments in that function)
2554 */
2555 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2556 mmap_read_lock(current->mm);
64019a2e 2557 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2558 start, nr_pages,
2559 pages, NULL, gup_flags);
d8ed45c5 2560 mmap_read_unlock(current->mm);
7af75561
IW
2561 } else {
2562 ret = get_user_pages_unlocked(start, nr_pages,
2563 pages, gup_flags);
2564 }
2565
2566 return ret;
2567}
2568
c28b1fc7
JG
2569static unsigned long lockless_pages_from_mm(unsigned long start,
2570 unsigned long end,
2571 unsigned int gup_flags,
2572 struct page **pages)
2573{
2574 unsigned long flags;
2575 int nr_pinned = 0;
57efa1fe 2576 unsigned seq;
c28b1fc7
JG
2577
2578 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2579 !gup_fast_permitted(start, end))
2580 return 0;
2581
57efa1fe
JG
2582 if (gup_flags & FOLL_PIN) {
2583 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2584 if (seq & 1)
2585 return 0;
2586 }
2587
c28b1fc7
JG
2588 /*
2589 * Disable interrupts. The nested form is used, in order to allow full,
2590 * general purpose use of this routine.
2591 *
2592 * With interrupts disabled, we block page table pages from being freed
2593 * from under us. See struct mmu_table_batch comments in
2594 * include/asm-generic/tlb.h for more details.
2595 *
2596 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2597 * that come from THPs splitting.
2598 */
2599 local_irq_save(flags);
2600 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2601 local_irq_restore(flags);
57efa1fe
JG
2602
2603 /*
2604 * When pinning pages for DMA there could be a concurrent write protect
2605 * from fork() via copy_page_range(), in this case always fail fast GUP.
2606 */
2607 if (gup_flags & FOLL_PIN) {
2608 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2609 unpin_user_pages(pages, nr_pinned);
2610 return 0;
2611 }
2612 }
c28b1fc7
JG
2613 return nr_pinned;
2614}
2615
2616static int internal_get_user_pages_fast(unsigned long start,
2617 unsigned long nr_pages,
eddb1c22
JH
2618 unsigned int gup_flags,
2619 struct page **pages)
2667f50e 2620{
c28b1fc7
JG
2621 unsigned long len, end;
2622 unsigned long nr_pinned;
2623 int ret;
2667f50e 2624
f4000fdf 2625 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2626 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2627 FOLL_FAST_ONLY)))
817be129
CH
2628 return -EINVAL;
2629
008cfe44
PX
2630 if (gup_flags & FOLL_PIN)
2631 atomic_set(&current->mm->has_pinned, 1);
2632
f81cd178 2633 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2634 might_lock_read(&current->mm->mmap_lock);
f81cd178 2635
f455c854 2636 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2637 len = nr_pages << PAGE_SHIFT;
2638 if (check_add_overflow(start, len, &end))
c61611f7 2639 return 0;
96d4f267 2640 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2641 return -EFAULT;
73e10a61 2642
c28b1fc7
JG
2643 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2644 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2645 return nr_pinned;
2667f50e 2646
c28b1fc7
JG
2647 /* Slow path: try to get the remaining pages with get_user_pages */
2648 start += nr_pinned << PAGE_SHIFT;
2649 pages += nr_pinned;
2650 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2651 pages);
2652 if (ret < 0) {
2653 /*
2654 * The caller has to unpin the pages we already pinned so
2655 * returning -errno is not an option
2656 */
2657 if (nr_pinned)
2658 return nr_pinned;
2659 return ret;
2667f50e 2660 }
c28b1fc7 2661 return ret + nr_pinned;
2667f50e 2662}
c28b1fc7 2663
dadbb612
SJ
2664/**
2665 * get_user_pages_fast_only() - pin user pages in memory
2666 * @start: starting user address
2667 * @nr_pages: number of pages from start to pin
2668 * @gup_flags: flags modifying pin behaviour
2669 * @pages: array that receives pointers to the pages pinned.
2670 * Should be at least nr_pages long.
2671 *
9e1f0580
JH
2672 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2673 * the regular GUP.
2674 * Note a difference with get_user_pages_fast: this always returns the
2675 * number of pages pinned, 0 if no pages were pinned.
2676 *
2677 * If the architecture does not support this function, simply return with no
2678 * pages pinned.
2679 *
2680 * Careful, careful! COW breaking can go either way, so a non-write
2681 * access can get ambiguous page results. If you call this function without
2682 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2683 */
dadbb612
SJ
2684int get_user_pages_fast_only(unsigned long start, int nr_pages,
2685 unsigned int gup_flags, struct page **pages)
9e1f0580 2686{
376a34ef 2687 int nr_pinned;
9e1f0580
JH
2688 /*
2689 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2690 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2691 *
2692 * FOLL_FAST_ONLY is required in order to match the API description of
2693 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2694 */
dadbb612 2695 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2696
376a34ef
JH
2697 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2698 pages);
9e1f0580
JH
2699
2700 /*
376a34ef
JH
2701 * As specified in the API description above, this routine is not
2702 * allowed to return negative values. However, the common core
2703 * routine internal_get_user_pages_fast() *can* return -errno.
2704 * Therefore, correct for that here:
9e1f0580 2705 */
376a34ef
JH
2706 if (nr_pinned < 0)
2707 nr_pinned = 0;
9e1f0580
JH
2708
2709 return nr_pinned;
2710}
dadbb612 2711EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2712
eddb1c22
JH
2713/**
2714 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2715 * @start: starting user address
2716 * @nr_pages: number of pages from start to pin
2717 * @gup_flags: flags modifying pin behaviour
2718 * @pages: array that receives pointers to the pages pinned.
2719 * Should be at least nr_pages long.
eddb1c22 2720 *
c1e8d7c6 2721 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2722 * If not successful, it will fall back to taking the lock and
2723 * calling get_user_pages().
2724 *
2725 * Returns number of pages pinned. This may be fewer than the number requested.
2726 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2727 * -errno.
2728 */
2729int get_user_pages_fast(unsigned long start, int nr_pages,
2730 unsigned int gup_flags, struct page **pages)
2731{
447f3e45 2732 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2733 return -EINVAL;
2734
94202f12
JH
2735 /*
2736 * The caller may or may not have explicitly set FOLL_GET; either way is
2737 * OK. However, internally (within mm/gup.c), gup fast variants must set
2738 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2739 * request.
2740 */
2741 gup_flags |= FOLL_GET;
eddb1c22
JH
2742 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2743}
050a9adc 2744EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2745
2746/**
2747 * pin_user_pages_fast() - pin user pages in memory without taking locks
2748 *
3faa52c0
JH
2749 * @start: starting user address
2750 * @nr_pages: number of pages from start to pin
2751 * @gup_flags: flags modifying pin behaviour
2752 * @pages: array that receives pointers to the pages pinned.
2753 * Should be at least nr_pages long.
2754 *
2755 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2756 * get_user_pages_fast() for documentation on the function arguments, because
2757 * the arguments here are identical.
2758 *
2759 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2760 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2761 */
2762int pin_user_pages_fast(unsigned long start, int nr_pages,
2763 unsigned int gup_flags, struct page **pages)
2764{
3faa52c0
JH
2765 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2766 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2767 return -EINVAL;
2768
2769 gup_flags |= FOLL_PIN;
2770 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2771}
2772EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2773
104acc32 2774/*
dadbb612
SJ
2775 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2776 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2777 *
2778 * The API rules are the same, too: no negative values may be returned.
2779 */
2780int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2781 unsigned int gup_flags, struct page **pages)
2782{
2783 int nr_pinned;
2784
2785 /*
2786 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2787 * rules require returning 0, rather than -errno:
2788 */
2789 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2790 return 0;
2791 /*
2792 * FOLL_FAST_ONLY is required in order to match the API description of
2793 * this routine: no fall back to regular ("slow") GUP.
2794 */
2795 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2796 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2797 pages);
2798 /*
2799 * This routine is not allowed to return negative values. However,
2800 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2801 * correct for that here:
2802 */
2803 if (nr_pinned < 0)
2804 nr_pinned = 0;
2805
2806 return nr_pinned;
2807}
2808EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2809
eddb1c22 2810/**
64019a2e 2811 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2812 *
3faa52c0
JH
2813 * @mm: mm_struct of target mm
2814 * @start: starting user address
2815 * @nr_pages: number of pages from start to pin
2816 * @gup_flags: flags modifying lookup behaviour
2817 * @pages: array that receives pointers to the pages pinned.
2818 * Should be at least nr_pages long. Or NULL, if caller
2819 * only intends to ensure the pages are faulted in.
2820 * @vmas: array of pointers to vmas corresponding to each page.
2821 * Or NULL if the caller does not require them.
2822 * @locked: pointer to lock flag indicating whether lock is held and
2823 * subsequently whether VM_FAULT_RETRY functionality can be
2824 * utilised. Lock must initially be held.
2825 *
2826 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2827 * get_user_pages_remote() for documentation on the function arguments, because
2828 * the arguments here are identical.
2829 *
2830 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2831 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2832 */
64019a2e 2833long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2834 unsigned long start, unsigned long nr_pages,
2835 unsigned int gup_flags, struct page **pages,
2836 struct vm_area_struct **vmas, int *locked)
2837{
3faa52c0
JH
2838 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2839 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2840 return -EINVAL;
2841
2842 gup_flags |= FOLL_PIN;
64019a2e 2843 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2844 pages, vmas, locked);
eddb1c22
JH
2845}
2846EXPORT_SYMBOL(pin_user_pages_remote);
2847
2848/**
2849 * pin_user_pages() - pin user pages in memory for use by other devices
2850 *
3faa52c0
JH
2851 * @start: starting user address
2852 * @nr_pages: number of pages from start to pin
2853 * @gup_flags: flags modifying lookup behaviour
2854 * @pages: array that receives pointers to the pages pinned.
2855 * Should be at least nr_pages long. Or NULL, if caller
2856 * only intends to ensure the pages are faulted in.
2857 * @vmas: array of pointers to vmas corresponding to each page.
2858 * Or NULL if the caller does not require them.
2859 *
2860 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2861 * FOLL_PIN is set.
2862 *
2863 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2864 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2865 */
2866long pin_user_pages(unsigned long start, unsigned long nr_pages,
2867 unsigned int gup_flags, struct page **pages,
2868 struct vm_area_struct **vmas)
2869{
3faa52c0
JH
2870 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2871 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2872 return -EINVAL;
2873
2874 gup_flags |= FOLL_PIN;
64019a2e 2875 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2876 pages, vmas, gup_flags);
eddb1c22
JH
2877}
2878EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2879
2880/*
2881 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2882 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2883 * FOLL_PIN and rejects FOLL_GET.
2884 */
2885long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2886 struct page **pages, unsigned int gup_flags)
2887{
2888 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2889 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2890 return -EINVAL;
2891
2892 gup_flags |= FOLL_PIN;
2893 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2894}
2895EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
2896
2897/*
2898 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2899 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2900 * FOLL_GET.
2901 */
2902long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2903 unsigned int gup_flags, struct page **pages,
2904 int *locked)
2905{
2906 /*
2907 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2908 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2909 * vmas. As there are no users of this flag in this call we simply
2910 * disallow this option for now.
2911 */
2912 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2913 return -EINVAL;
2914
2915 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2916 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2917 return -EINVAL;
2918
2919 gup_flags |= FOLL_PIN;
64019a2e 2920 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
2921 pages, NULL, locked,
2922 gup_flags | FOLL_TOUCH);
2923}
2924EXPORT_SYMBOL(pin_user_pages_locked);