mm/gup: Fix some contiguous memmap assumptions
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
47e29d32
JH
32static void hpage_pincount_add(struct page *page, int refs)
33{
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38}
39
40static void hpage_pincount_sub(struct page *page, int refs)
41{
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46}
47
c24d3732
JH
48/* Equivalent to calling put_page() @refs times. */
49static void put_page_refs(struct page *page, int refs)
50{
51#ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 return;
54#endif
55
56 /*
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
59 */
60 if (refs > 1)
61 page_ref_sub(page, refs - 1);
62 put_page(page);
63}
64
cd1adf1b
LT
65/*
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
a707cdd5 68 */
cd1adf1b 69static inline struct page *try_get_compound_head(struct page *page, int refs)
a707cdd5
JH
70{
71 struct page *head = compound_head(page);
72
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 return NULL;
75 if (unlikely(!page_cache_add_speculative(head, refs)))
76 return NULL;
c24d3732
JH
77
78 /*
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
85 * belong together.
86 */
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
89 return NULL;
90 }
91
a707cdd5
JH
92 return head;
93}
94
3967db22 95/**
3faa52c0
JH
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
98 *
3967db22
JH
99 * Even though the name includes "compound_head", this function is still
100 * appropriate for callers that have a non-compound @page to get.
101 *
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the page's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0
JH
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
3967db22
JH
113 * FOLL_GET: page's refcount will be incremented by @refs.
114 *
115 * FOLL_PIN on compound pages that are > two pages long: page's refcount will
116 * be incremented by @refs, and page[2].hpage_pinned_refcount will be
117 * incremented by @refs * GUP_PIN_COUNTING_BIAS.
118 *
119 * FOLL_PIN on normal pages, or compound pages that are two pages long:
120 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0
JH
121 *
122 * Return: head page (with refcount appropriately incremented) for success, or
123 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124 * considered failure, and furthermore, a likely bug in the caller, so a warning
125 * is also emitted.
126 */
c36c04c2
JH
127__maybe_unused struct page *try_grab_compound_head(struct page *page,
128 int refs, unsigned int flags)
3faa52c0
JH
129{
130 if (flags & FOLL_GET)
131 return try_get_compound_head(page, refs);
132 else if (flags & FOLL_PIN) {
df3a0a21 133 /*
d1e153fe
PT
134 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 * right zone, so fail and let the caller fall back to the slow
136 * path.
df3a0a21 137 */
d1e153fe
PT
138 if (unlikely((flags & FOLL_LONGTERM) &&
139 !is_pinnable_page(page)))
df3a0a21
PL
140 return NULL;
141
c24d3732
JH
142 /*
143 * CAUTION: Don't use compound_head() on the page before this
144 * point, the result won't be stable.
145 */
146 page = try_get_compound_head(page, refs);
147 if (!page)
148 return NULL;
149
47e29d32
JH
150 /*
151 * When pinning a compound page of order > 1 (which is what
152 * hpage_pincount_available() checks for), use an exact count to
153 * track it, via hpage_pincount_add/_sub().
154 *
155 * However, be sure to *also* increment the normal page refcount
156 * field at least once, so that the page really is pinned.
3967db22
JH
157 * That's why the refcount from the earlier
158 * try_get_compound_head() is left intact.
47e29d32 159 */
47e29d32
JH
160 if (hpage_pincount_available(page))
161 hpage_pincount_add(page, refs);
c24d3732
JH
162 else
163 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
47e29d32 164
1970dc6f 165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
0fef147b 166 refs);
1970dc6f 167
47e29d32 168 return page;
3faa52c0
JH
169 }
170
171 WARN_ON_ONCE(1);
172 return NULL;
173}
174
4509b42c
JG
175static void put_compound_head(struct page *page, int refs, unsigned int flags)
176{
177 if (flags & FOLL_PIN) {
178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 refs);
180
181 if (hpage_pincount_available(page))
182 hpage_pincount_sub(page, refs);
183 else
184 refs *= GUP_PIN_COUNTING_BIAS;
185 }
186
c24d3732 187 put_page_refs(page, refs);
4509b42c
JG
188}
189
3faa52c0
JH
190/**
191 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192 *
193 * This might not do anything at all, depending on the flags argument.
194 *
195 * "grab" names in this file mean, "look at flags to decide whether to use
196 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197 *
198 * @page: pointer to page to be grabbed
199 * @flags: gup flags: these are the FOLL_* flag values.
200 *
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
3967db22
JH
202 * time. Cases: please see the try_grab_compound_head() documentation, with
203 * "refs=1".
3faa52c0
JH
204 *
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
208 */
209bool __must_check try_grab_page(struct page *page, unsigned int flags)
210{
c36c04c2 211 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
3faa52c0 212
c36c04c2
JH
213 if (flags & FOLL_GET)
214 return try_get_page(page);
215 else if (flags & FOLL_PIN) {
c36c04c2
JH
216 page = compound_head(page);
217
218 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
219 return false;
220
c36c04c2
JH
221 /*
222 * Similar to try_grab_compound_head(): even if using the
223 * hpage_pincount_add/_sub() routines, be sure to
224 * *also* increment the normal page refcount field at least
225 * once, so that the page really is pinned.
226 */
8ea2979c
MWO
227 if (hpage_pincount_available(page)) {
228 page_ref_add(page, 1);
229 hpage_pincount_add(page, 1);
230 } else {
231 page_ref_add(page, GUP_PIN_COUNTING_BIAS);
232 }
c36c04c2
JH
233
234 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
235 }
236
237 return true;
3faa52c0
JH
238}
239
3faa52c0
JH
240/**
241 * unpin_user_page() - release a dma-pinned page
242 * @page: pointer to page to be released
243 *
244 * Pages that were pinned via pin_user_pages*() must be released via either
245 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
246 * that such pages can be separately tracked and uniquely handled. In
247 * particular, interactions with RDMA and filesystems need special handling.
248 */
249void unpin_user_page(struct page *page)
250{
4509b42c 251 put_compound_head(compound_head(page), 1, FOLL_PIN);
3faa52c0
JH
252}
253EXPORT_SYMBOL(unpin_user_page);
254
8f39f5fc
MWO
255static inline struct page *compound_range_next(struct page *start,
256 unsigned long npages, unsigned long i, unsigned int *ntails)
458a4f78
JM
257{
258 struct page *next, *page;
259 unsigned int nr = 1;
260
c228afb1 261 next = nth_page(start, i);
458a4f78 262 page = compound_head(next);
0b046e12 263 if (PageHead(page))
458a4f78
JM
264 nr = min_t(unsigned int,
265 page + compound_nr(page) - next, npages - i);
266
458a4f78 267 *ntails = nr;
8f39f5fc 268 return page;
458a4f78
JM
269}
270
28297dbc
MWO
271static inline struct page *compound_next(struct page **list,
272 unsigned long npages, unsigned long i, unsigned int *ntails)
8745d7f6
JM
273{
274 struct page *page;
275 unsigned int nr;
276
8745d7f6
JM
277 page = compound_head(list[i]);
278 for (nr = i + 1; nr < npages; nr++) {
279 if (compound_head(list[nr]) != page)
280 break;
281 }
282
8745d7f6 283 *ntails = nr - i;
28297dbc 284 return page;
8745d7f6
JM
285}
286
fc1d8e7c 287/**
f1f6a7dd 288 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 289 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 290 * @npages: number of pages in the @pages array.
2d15eb31 291 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
292 *
293 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
294 * variants called on that page.
295 *
296 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 297 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
298 * listed as clean. In any case, releases all pages using unpin_user_page(),
299 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 300 *
f1f6a7dd 301 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 302 *
2d15eb31 303 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
304 * required, then the caller should a) verify that this is really correct,
305 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 306 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
307 *
308 */
f1f6a7dd
JH
309void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
310 bool make_dirty)
fc1d8e7c 311{
2d15eb31 312 unsigned long index;
31b912de
JM
313 struct page *head;
314 unsigned int ntails;
2d15eb31 315
316 if (!make_dirty) {
f1f6a7dd 317 unpin_user_pages(pages, npages);
2d15eb31 318 return;
319 }
320
e7602748 321 for (index = 0; index < npages; index += ntails) {
28297dbc 322 head = compound_next(pages, npages, index, &ntails);
2d15eb31 323 /*
324 * Checking PageDirty at this point may race with
325 * clear_page_dirty_for_io(), but that's OK. Two key
326 * cases:
327 *
328 * 1) This code sees the page as already dirty, so it
329 * skips the call to set_page_dirty(). That could happen
330 * because clear_page_dirty_for_io() called
331 * page_mkclean(), followed by set_page_dirty().
332 * However, now the page is going to get written back,
333 * which meets the original intention of setting it
334 * dirty, so all is well: clear_page_dirty_for_io() goes
335 * on to call TestClearPageDirty(), and write the page
336 * back.
337 *
338 * 2) This code sees the page as clean, so it calls
339 * set_page_dirty(). The page stays dirty, despite being
340 * written back, so it gets written back again in the
341 * next writeback cycle. This is harmless.
342 */
31b912de
JM
343 if (!PageDirty(head))
344 set_page_dirty_lock(head);
345 put_compound_head(head, ntails, FOLL_PIN);
2d15eb31 346 }
fc1d8e7c 347}
f1f6a7dd 348EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 349
458a4f78
JM
350/**
351 * unpin_user_page_range_dirty_lock() - release and optionally dirty
352 * gup-pinned page range
353 *
354 * @page: the starting page of a range maybe marked dirty, and definitely released.
355 * @npages: number of consecutive pages to release.
356 * @make_dirty: whether to mark the pages dirty
357 *
358 * "gup-pinned page range" refers to a range of pages that has had one of the
359 * pin_user_pages() variants called on that page.
360 *
361 * For the page ranges defined by [page .. page+npages], make that range (or
362 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
363 * page range was previously listed as clean.
364 *
365 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
366 * required, then the caller should a) verify that this is really correct,
367 * because _lock() is usually required, and b) hand code it:
368 * set_page_dirty_lock(), unpin_user_page().
369 *
370 */
371void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
372 bool make_dirty)
373{
374 unsigned long index;
375 struct page *head;
376 unsigned int ntails;
377
a5f100db 378 for (index = 0; index < npages; index += ntails) {
8f39f5fc 379 head = compound_range_next(page, npages, index, &ntails);
458a4f78
JM
380 if (make_dirty && !PageDirty(head))
381 set_page_dirty_lock(head);
382 put_compound_head(head, ntails, FOLL_PIN);
383 }
384}
385EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
386
fc1d8e7c 387/**
f1f6a7dd 388 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
389 * @pages: array of pages to be marked dirty and released.
390 * @npages: number of pages in the @pages array.
391 *
f1f6a7dd 392 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 393 *
f1f6a7dd 394 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 395 */
f1f6a7dd 396void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
397{
398 unsigned long index;
31b912de
JM
399 struct page *head;
400 unsigned int ntails;
fc1d8e7c 401
146608bb
JH
402 /*
403 * If this WARN_ON() fires, then the system *might* be leaking pages (by
404 * leaving them pinned), but probably not. More likely, gup/pup returned
405 * a hard -ERRNO error to the caller, who erroneously passed it here.
406 */
407 if (WARN_ON(IS_ERR_VALUE(npages)))
408 return;
31b912de 409
e7602748 410 for (index = 0; index < npages; index += ntails) {
28297dbc 411 head = compound_next(pages, npages, index, &ntails);
31b912de 412 put_compound_head(head, ntails, FOLL_PIN);
e7602748 413 }
fc1d8e7c 414}
f1f6a7dd 415EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 416
a458b76a
AA
417/*
418 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
419 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
420 * cache bouncing on large SMP machines for concurrent pinned gups.
421 */
422static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
423{
424 if (!test_bit(MMF_HAS_PINNED, mm_flags))
425 set_bit(MMF_HAS_PINNED, mm_flags);
426}
427
050a9adc 428#ifdef CONFIG_MMU
69e68b4f
KS
429static struct page *no_page_table(struct vm_area_struct *vma,
430 unsigned int flags)
4bbd4c77 431{
69e68b4f
KS
432 /*
433 * When core dumping an enormous anonymous area that nobody
434 * has touched so far, we don't want to allocate unnecessary pages or
435 * page tables. Return error instead of NULL to skip handle_mm_fault,
436 * then get_dump_page() will return NULL to leave a hole in the dump.
437 * But we can only make this optimization where a hole would surely
438 * be zero-filled if handle_mm_fault() actually did handle it.
439 */
a0137f16
AK
440 if ((flags & FOLL_DUMP) &&
441 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
442 return ERR_PTR(-EFAULT);
443 return NULL;
444}
4bbd4c77 445
1027e443
KS
446static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
447 pte_t *pte, unsigned int flags)
448{
449 /* No page to get reference */
450 if (flags & FOLL_GET)
451 return -EFAULT;
452
453 if (flags & FOLL_TOUCH) {
454 pte_t entry = *pte;
455
456 if (flags & FOLL_WRITE)
457 entry = pte_mkdirty(entry);
458 entry = pte_mkyoung(entry);
459
460 if (!pte_same(*pte, entry)) {
461 set_pte_at(vma->vm_mm, address, pte, entry);
462 update_mmu_cache(vma, address, pte);
463 }
464 }
465
466 /* Proper page table entry exists, but no corresponding struct page */
467 return -EEXIST;
468}
469
19be0eaf 470/*
a308c71b
PX
471 * FOLL_FORCE can write to even unwritable pte's, but only
472 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
473 */
474static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
475{
a308c71b
PX
476 return pte_write(pte) ||
477 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
478}
479
69e68b4f 480static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
481 unsigned long address, pmd_t *pmd, unsigned int flags,
482 struct dev_pagemap **pgmap)
69e68b4f
KS
483{
484 struct mm_struct *mm = vma->vm_mm;
485 struct page *page;
486 spinlock_t *ptl;
487 pte_t *ptep, pte;
f28d4363 488 int ret;
4bbd4c77 489
eddb1c22
JH
490 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
491 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
492 (FOLL_PIN | FOLL_GET)))
493 return ERR_PTR(-EINVAL);
69e68b4f 494retry:
4bbd4c77 495 if (unlikely(pmd_bad(*pmd)))
69e68b4f 496 return no_page_table(vma, flags);
4bbd4c77
KS
497
498 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
499 pte = *ptep;
500 if (!pte_present(pte)) {
501 swp_entry_t entry;
502 /*
503 * KSM's break_ksm() relies upon recognizing a ksm page
504 * even while it is being migrated, so for that case we
505 * need migration_entry_wait().
506 */
507 if (likely(!(flags & FOLL_MIGRATION)))
508 goto no_page;
0661a336 509 if (pte_none(pte))
4bbd4c77
KS
510 goto no_page;
511 entry = pte_to_swp_entry(pte);
512 if (!is_migration_entry(entry))
513 goto no_page;
514 pte_unmap_unlock(ptep, ptl);
515 migration_entry_wait(mm, pmd, address);
69e68b4f 516 goto retry;
4bbd4c77 517 }
8a0516ed 518 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 519 goto no_page;
19be0eaf 520 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
521 pte_unmap_unlock(ptep, ptl);
522 return NULL;
523 }
4bbd4c77
KS
524
525 page = vm_normal_page(vma, address, pte);
3faa52c0 526 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 527 /*
3faa52c0
JH
528 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
529 * case since they are only valid while holding the pgmap
530 * reference.
3565fce3 531 */
df06b37f
KB
532 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
533 if (*pgmap)
3565fce3
DW
534 page = pte_page(pte);
535 else
536 goto no_page;
537 } else if (unlikely(!page)) {
1027e443
KS
538 if (flags & FOLL_DUMP) {
539 /* Avoid special (like zero) pages in core dumps */
540 page = ERR_PTR(-EFAULT);
541 goto out;
542 }
543
544 if (is_zero_pfn(pte_pfn(pte))) {
545 page = pte_page(pte);
546 } else {
1027e443
KS
547 ret = follow_pfn_pte(vma, address, ptep, flags);
548 page = ERR_PTR(ret);
549 goto out;
550 }
4bbd4c77
KS
551 }
552
3faa52c0
JH
553 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
554 if (unlikely(!try_grab_page(page, flags))) {
555 page = ERR_PTR(-ENOMEM);
556 goto out;
8fde12ca 557 }
f28d4363
CI
558 /*
559 * We need to make the page accessible if and only if we are going
560 * to access its content (the FOLL_PIN case). Please see
561 * Documentation/core-api/pin_user_pages.rst for details.
562 */
563 if (flags & FOLL_PIN) {
564 ret = arch_make_page_accessible(page);
565 if (ret) {
566 unpin_user_page(page);
567 page = ERR_PTR(ret);
568 goto out;
569 }
570 }
4bbd4c77
KS
571 if (flags & FOLL_TOUCH) {
572 if ((flags & FOLL_WRITE) &&
573 !pte_dirty(pte) && !PageDirty(page))
574 set_page_dirty(page);
575 /*
576 * pte_mkyoung() would be more correct here, but atomic care
577 * is needed to avoid losing the dirty bit: it is easier to use
578 * mark_page_accessed().
579 */
580 mark_page_accessed(page);
581 }
1027e443 582out:
4bbd4c77 583 pte_unmap_unlock(ptep, ptl);
4bbd4c77 584 return page;
4bbd4c77
KS
585no_page:
586 pte_unmap_unlock(ptep, ptl);
587 if (!pte_none(pte))
69e68b4f
KS
588 return NULL;
589 return no_page_table(vma, flags);
590}
591
080dbb61
AK
592static struct page *follow_pmd_mask(struct vm_area_struct *vma,
593 unsigned long address, pud_t *pudp,
df06b37f
KB
594 unsigned int flags,
595 struct follow_page_context *ctx)
69e68b4f 596{
68827280 597 pmd_t *pmd, pmdval;
69e68b4f
KS
598 spinlock_t *ptl;
599 struct page *page;
600 struct mm_struct *mm = vma->vm_mm;
601
080dbb61 602 pmd = pmd_offset(pudp, address);
68827280
HY
603 /*
604 * The READ_ONCE() will stabilize the pmdval in a register or
605 * on the stack so that it will stop changing under the code.
606 */
607 pmdval = READ_ONCE(*pmd);
608 if (pmd_none(pmdval))
69e68b4f 609 return no_page_table(vma, flags);
be9d3045 610 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
611 page = follow_huge_pmd(mm, address, pmd, flags);
612 if (page)
613 return page;
614 return no_page_table(vma, flags);
69e68b4f 615 }
68827280 616 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 617 page = follow_huge_pd(vma, address,
68827280 618 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
619 PMD_SHIFT);
620 if (page)
621 return page;
622 return no_page_table(vma, flags);
623 }
84c3fc4e 624retry:
68827280 625 if (!pmd_present(pmdval)) {
28b0ee3f
LX
626 /*
627 * Should never reach here, if thp migration is not supported;
628 * Otherwise, it must be a thp migration entry.
629 */
630 VM_BUG_ON(!thp_migration_supported() ||
631 !is_pmd_migration_entry(pmdval));
632
84c3fc4e
ZY
633 if (likely(!(flags & FOLL_MIGRATION)))
634 return no_page_table(vma, flags);
28b0ee3f
LX
635
636 pmd_migration_entry_wait(mm, pmd);
68827280
HY
637 pmdval = READ_ONCE(*pmd);
638 /*
639 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 640 * mmap_lock is held in read mode
68827280
HY
641 */
642 if (pmd_none(pmdval))
643 return no_page_table(vma, flags);
84c3fc4e
ZY
644 goto retry;
645 }
68827280 646 if (pmd_devmap(pmdval)) {
3565fce3 647 ptl = pmd_lock(mm, pmd);
df06b37f 648 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
649 spin_unlock(ptl);
650 if (page)
651 return page;
652 }
68827280 653 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 654 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 655
68827280 656 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
657 return no_page_table(vma, flags);
658
84c3fc4e 659retry_locked:
6742d293 660 ptl = pmd_lock(mm, pmd);
68827280
HY
661 if (unlikely(pmd_none(*pmd))) {
662 spin_unlock(ptl);
663 return no_page_table(vma, flags);
664 }
84c3fc4e
ZY
665 if (unlikely(!pmd_present(*pmd))) {
666 spin_unlock(ptl);
667 if (likely(!(flags & FOLL_MIGRATION)))
668 return no_page_table(vma, flags);
669 pmd_migration_entry_wait(mm, pmd);
670 goto retry_locked;
671 }
6742d293
KS
672 if (unlikely(!pmd_trans_huge(*pmd))) {
673 spin_unlock(ptl);
df06b37f 674 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 675 }
4066c119 676 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
677 int ret;
678 page = pmd_page(*pmd);
679 if (is_huge_zero_page(page)) {
680 spin_unlock(ptl);
681 ret = 0;
78ddc534 682 split_huge_pmd(vma, pmd, address);
337d9abf
NH
683 if (pmd_trans_unstable(pmd))
684 ret = -EBUSY;
4066c119 685 } else {
bfe7b00d
SL
686 spin_unlock(ptl);
687 split_huge_pmd(vma, pmd, address);
688 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
689 }
690
691 return ret ? ERR_PTR(ret) :
df06b37f 692 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 693 }
6742d293
KS
694 page = follow_trans_huge_pmd(vma, address, pmd, flags);
695 spin_unlock(ptl);
df06b37f 696 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 697 return page;
4bbd4c77
KS
698}
699
080dbb61
AK
700static struct page *follow_pud_mask(struct vm_area_struct *vma,
701 unsigned long address, p4d_t *p4dp,
df06b37f
KB
702 unsigned int flags,
703 struct follow_page_context *ctx)
080dbb61
AK
704{
705 pud_t *pud;
706 spinlock_t *ptl;
707 struct page *page;
708 struct mm_struct *mm = vma->vm_mm;
709
710 pud = pud_offset(p4dp, address);
711 if (pud_none(*pud))
712 return no_page_table(vma, flags);
be9d3045 713 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
714 page = follow_huge_pud(mm, address, pud, flags);
715 if (page)
716 return page;
717 return no_page_table(vma, flags);
718 }
4dc71451
AK
719 if (is_hugepd(__hugepd(pud_val(*pud)))) {
720 page = follow_huge_pd(vma, address,
721 __hugepd(pud_val(*pud)), flags,
722 PUD_SHIFT);
723 if (page)
724 return page;
725 return no_page_table(vma, flags);
726 }
080dbb61
AK
727 if (pud_devmap(*pud)) {
728 ptl = pud_lock(mm, pud);
df06b37f 729 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
730 spin_unlock(ptl);
731 if (page)
732 return page;
733 }
734 if (unlikely(pud_bad(*pud)))
735 return no_page_table(vma, flags);
736
df06b37f 737 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
738}
739
080dbb61
AK
740static struct page *follow_p4d_mask(struct vm_area_struct *vma,
741 unsigned long address, pgd_t *pgdp,
df06b37f
KB
742 unsigned int flags,
743 struct follow_page_context *ctx)
080dbb61
AK
744{
745 p4d_t *p4d;
4dc71451 746 struct page *page;
080dbb61
AK
747
748 p4d = p4d_offset(pgdp, address);
749 if (p4d_none(*p4d))
750 return no_page_table(vma, flags);
751 BUILD_BUG_ON(p4d_huge(*p4d));
752 if (unlikely(p4d_bad(*p4d)))
753 return no_page_table(vma, flags);
754
4dc71451
AK
755 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
756 page = follow_huge_pd(vma, address,
757 __hugepd(p4d_val(*p4d)), flags,
758 P4D_SHIFT);
759 if (page)
760 return page;
761 return no_page_table(vma, flags);
762 }
df06b37f 763 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
764}
765
766/**
767 * follow_page_mask - look up a page descriptor from a user-virtual address
768 * @vma: vm_area_struct mapping @address
769 * @address: virtual address to look up
770 * @flags: flags modifying lookup behaviour
78179556
MR
771 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
772 * pointer to output page_mask
080dbb61
AK
773 *
774 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
775 *
78179556
MR
776 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
777 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
778 *
779 * On output, the @ctx->page_mask is set according to the size of the page.
780 *
781 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
782 * an error pointer if there is a mapping to something not represented
783 * by a page descriptor (see also vm_normal_page()).
784 */
a7030aea 785static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 786 unsigned long address, unsigned int flags,
df06b37f 787 struct follow_page_context *ctx)
080dbb61
AK
788{
789 pgd_t *pgd;
790 struct page *page;
791 struct mm_struct *mm = vma->vm_mm;
792
df06b37f 793 ctx->page_mask = 0;
080dbb61
AK
794
795 /* make this handle hugepd */
796 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
797 if (!IS_ERR(page)) {
3faa52c0 798 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
799 return page;
800 }
801
802 pgd = pgd_offset(mm, address);
803
804 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
805 return no_page_table(vma, flags);
806
faaa5b62
AK
807 if (pgd_huge(*pgd)) {
808 page = follow_huge_pgd(mm, address, pgd, flags);
809 if (page)
810 return page;
811 return no_page_table(vma, flags);
812 }
4dc71451
AK
813 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
814 page = follow_huge_pd(vma, address,
815 __hugepd(pgd_val(*pgd)), flags,
816 PGDIR_SHIFT);
817 if (page)
818 return page;
819 return no_page_table(vma, flags);
820 }
faaa5b62 821
df06b37f
KB
822 return follow_p4d_mask(vma, address, pgd, flags, ctx);
823}
824
825struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
826 unsigned int foll_flags)
827{
828 struct follow_page_context ctx = { NULL };
829 struct page *page;
830
1507f512
MR
831 if (vma_is_secretmem(vma))
832 return NULL;
833
df06b37f
KB
834 page = follow_page_mask(vma, address, foll_flags, &ctx);
835 if (ctx.pgmap)
836 put_dev_pagemap(ctx.pgmap);
837 return page;
080dbb61
AK
838}
839
f2b495ca
KS
840static int get_gate_page(struct mm_struct *mm, unsigned long address,
841 unsigned int gup_flags, struct vm_area_struct **vma,
842 struct page **page)
843{
844 pgd_t *pgd;
c2febafc 845 p4d_t *p4d;
f2b495ca
KS
846 pud_t *pud;
847 pmd_t *pmd;
848 pte_t *pte;
849 int ret = -EFAULT;
850
851 /* user gate pages are read-only */
852 if (gup_flags & FOLL_WRITE)
853 return -EFAULT;
854 if (address > TASK_SIZE)
855 pgd = pgd_offset_k(address);
856 else
857 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
858 if (pgd_none(*pgd))
859 return -EFAULT;
c2febafc 860 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
861 if (p4d_none(*p4d))
862 return -EFAULT;
c2febafc 863 pud = pud_offset(p4d, address);
b5d1c39f
AL
864 if (pud_none(*pud))
865 return -EFAULT;
f2b495ca 866 pmd = pmd_offset(pud, address);
84c3fc4e 867 if (!pmd_present(*pmd))
f2b495ca
KS
868 return -EFAULT;
869 VM_BUG_ON(pmd_trans_huge(*pmd));
870 pte = pte_offset_map(pmd, address);
871 if (pte_none(*pte))
872 goto unmap;
873 *vma = get_gate_vma(mm);
874 if (!page)
875 goto out;
876 *page = vm_normal_page(*vma, address, *pte);
877 if (!*page) {
878 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
879 goto unmap;
880 *page = pte_page(*pte);
881 }
9fa2dd94 882 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
883 ret = -ENOMEM;
884 goto unmap;
885 }
f2b495ca
KS
886out:
887 ret = 0;
888unmap:
889 pte_unmap(pte);
890 return ret;
891}
892
9a95f3cf 893/*
c1e8d7c6
ML
894 * mmap_lock must be held on entry. If @locked != NULL and *@flags
895 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 896 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 897 */
64019a2e 898static int faultin_page(struct vm_area_struct *vma,
4f6da934 899 unsigned long address, unsigned int *flags, int *locked)
16744483 900{
16744483 901 unsigned int fault_flags = 0;
2b740303 902 vm_fault_t ret;
16744483 903
55b8fe70
AG
904 if (*flags & FOLL_NOFAULT)
905 return -EFAULT;
16744483
KS
906 if (*flags & FOLL_WRITE)
907 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
908 if (*flags & FOLL_REMOTE)
909 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 910 if (locked)
71335f37 911 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
912 if (*flags & FOLL_NOWAIT)
913 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 914 if (*flags & FOLL_TRIED) {
4426e945
PX
915 /*
916 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
917 * can co-exist
918 */
234b239b
ALC
919 fault_flags |= FAULT_FLAG_TRIED;
920 }
16744483 921
bce617ed 922 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 923 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
924 int err = vm_fault_to_errno(ret, *flags);
925
926 if (err)
927 return err;
16744483
KS
928 BUG();
929 }
930
16744483 931 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
932 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
933 *locked = 0;
16744483
KS
934 return -EBUSY;
935 }
936
937 /*
938 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
939 * necessary, even if maybe_mkwrite decided not to set pte_write. We
940 * can thus safely do subsequent page lookups as if they were reads.
941 * But only do so when looping for pte_write is futile: in some cases
942 * userspace may also be wanting to write to the gotten user page,
943 * which a read fault here might prevent (a readonly page might get
944 * reCOWed by userspace write).
945 */
946 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 947 *flags |= FOLL_COW;
16744483
KS
948 return 0;
949}
950
fa5bb209
KS
951static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
952{
953 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
954 int write = (gup_flags & FOLL_WRITE);
955 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
956
957 if (vm_flags & (VM_IO | VM_PFNMAP))
958 return -EFAULT;
959
7f7ccc2c
WT
960 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
961 return -EFAULT;
962
52650c8b
JG
963 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
964 return -EOPNOTSUPP;
965
1507f512
MR
966 if (vma_is_secretmem(vma))
967 return -EFAULT;
968
1b2ee126 969 if (write) {
fa5bb209
KS
970 if (!(vm_flags & VM_WRITE)) {
971 if (!(gup_flags & FOLL_FORCE))
972 return -EFAULT;
973 /*
974 * We used to let the write,force case do COW in a
975 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
976 * set a breakpoint in a read-only mapping of an
977 * executable, without corrupting the file (yet only
978 * when that file had been opened for writing!).
979 * Anon pages in shared mappings are surprising: now
980 * just reject it.
981 */
46435364 982 if (!is_cow_mapping(vm_flags))
fa5bb209 983 return -EFAULT;
fa5bb209
KS
984 }
985 } else if (!(vm_flags & VM_READ)) {
986 if (!(gup_flags & FOLL_FORCE))
987 return -EFAULT;
988 /*
989 * Is there actually any vma we can reach here which does not
990 * have VM_MAYREAD set?
991 */
992 if (!(vm_flags & VM_MAYREAD))
993 return -EFAULT;
994 }
d61172b4
DH
995 /*
996 * gups are always data accesses, not instruction
997 * fetches, so execute=false here
998 */
999 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1000 return -EFAULT;
fa5bb209
KS
1001 return 0;
1002}
1003
4bbd4c77
KS
1004/**
1005 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1006 * @mm: mm_struct of target mm
1007 * @start: starting user address
1008 * @nr_pages: number of pages from start to pin
1009 * @gup_flags: flags modifying pin behaviour
1010 * @pages: array that receives pointers to the pages pinned.
1011 * Should be at least nr_pages long. Or NULL, if caller
1012 * only intends to ensure the pages are faulted in.
1013 * @vmas: array of pointers to vmas corresponding to each page.
1014 * Or NULL if the caller does not require them.
c1e8d7c6 1015 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1016 *
d2dfbe47
LX
1017 * Returns either number of pages pinned (which may be less than the
1018 * number requested), or an error. Details about the return value:
1019 *
1020 * -- If nr_pages is 0, returns 0.
1021 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1022 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1023 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1024 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1025 *
1026 * The caller is responsible for releasing returned @pages, via put_page().
1027 *
c1e8d7c6 1028 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1029 *
c1e8d7c6 1030 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1031 *
1032 * __get_user_pages walks a process's page tables and takes a reference to
1033 * each struct page that each user address corresponds to at a given
1034 * instant. That is, it takes the page that would be accessed if a user
1035 * thread accesses the given user virtual address at that instant.
1036 *
1037 * This does not guarantee that the page exists in the user mappings when
1038 * __get_user_pages returns, and there may even be a completely different
1039 * page there in some cases (eg. if mmapped pagecache has been invalidated
1040 * and subsequently re faulted). However it does guarantee that the page
1041 * won't be freed completely. And mostly callers simply care that the page
1042 * contains data that was valid *at some point in time*. Typically, an IO
1043 * or similar operation cannot guarantee anything stronger anyway because
1044 * locks can't be held over the syscall boundary.
1045 *
1046 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1047 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1048 * appropriate) must be called after the page is finished with, and
1049 * before put_page is called.
1050 *
c1e8d7c6 1051 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1052 * released by an up_read(). That can happen if @gup_flags does not
1053 * have FOLL_NOWAIT.
9a95f3cf 1054 *
4f6da934 1055 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1056 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1057 * when it's been released. Otherwise, it must be held for either
1058 * reading or writing and will not be released.
4bbd4c77
KS
1059 *
1060 * In most cases, get_user_pages or get_user_pages_fast should be used
1061 * instead of __get_user_pages. __get_user_pages should be used only if
1062 * you need some special @gup_flags.
1063 */
64019a2e 1064static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1065 unsigned long start, unsigned long nr_pages,
1066 unsigned int gup_flags, struct page **pages,
4f6da934 1067 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1068{
df06b37f 1069 long ret = 0, i = 0;
fa5bb209 1070 struct vm_area_struct *vma = NULL;
df06b37f 1071 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1072
1073 if (!nr_pages)
1074 return 0;
1075
f9652594
AK
1076 start = untagged_addr(start);
1077
eddb1c22 1078 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1079
1080 /*
1081 * If FOLL_FORCE is set then do not force a full fault as the hinting
1082 * fault information is unrelated to the reference behaviour of a task
1083 * using the address space
1084 */
1085 if (!(gup_flags & FOLL_FORCE))
1086 gup_flags |= FOLL_NUMA;
1087
4bbd4c77 1088 do {
fa5bb209
KS
1089 struct page *page;
1090 unsigned int foll_flags = gup_flags;
1091 unsigned int page_increm;
1092
1093 /* first iteration or cross vma bound */
1094 if (!vma || start >= vma->vm_end) {
1095 vma = find_extend_vma(mm, start);
1096 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1097 ret = get_gate_page(mm, start & PAGE_MASK,
1098 gup_flags, &vma,
1099 pages ? &pages[i] : NULL);
1100 if (ret)
08be37b7 1101 goto out;
df06b37f 1102 ctx.page_mask = 0;
fa5bb209
KS
1103 goto next_page;
1104 }
4bbd4c77 1105
52650c8b 1106 if (!vma) {
df06b37f
KB
1107 ret = -EFAULT;
1108 goto out;
1109 }
52650c8b
JG
1110 ret = check_vma_flags(vma, gup_flags);
1111 if (ret)
1112 goto out;
1113
fa5bb209
KS
1114 if (is_vm_hugetlb_page(vma)) {
1115 i = follow_hugetlb_page(mm, vma, pages, vmas,
1116 &start, &nr_pages, i,
a308c71b 1117 gup_flags, locked);
ad415db8
PX
1118 if (locked && *locked == 0) {
1119 /*
1120 * We've got a VM_FAULT_RETRY
c1e8d7c6 1121 * and we've lost mmap_lock.
ad415db8
PX
1122 * We must stop here.
1123 */
1124 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1125 goto out;
1126 }
fa5bb209 1127 continue;
4bbd4c77 1128 }
fa5bb209
KS
1129 }
1130retry:
1131 /*
1132 * If we have a pending SIGKILL, don't keep faulting pages and
1133 * potentially allocating memory.
1134 */
fa45f116 1135 if (fatal_signal_pending(current)) {
d180870d 1136 ret = -EINTR;
df06b37f
KB
1137 goto out;
1138 }
fa5bb209 1139 cond_resched();
df06b37f
KB
1140
1141 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1142 if (!page) {
64019a2e 1143 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1144 switch (ret) {
1145 case 0:
1146 goto retry;
df06b37f
KB
1147 case -EBUSY:
1148 ret = 0;
e4a9bc58 1149 fallthrough;
fa5bb209
KS
1150 case -EFAULT:
1151 case -ENOMEM:
1152 case -EHWPOISON:
df06b37f 1153 goto out;
4bbd4c77 1154 }
fa5bb209 1155 BUG();
1027e443
KS
1156 } else if (PTR_ERR(page) == -EEXIST) {
1157 /*
1158 * Proper page table entry exists, but no corresponding
1159 * struct page.
1160 */
1161 goto next_page;
1162 } else if (IS_ERR(page)) {
df06b37f
KB
1163 ret = PTR_ERR(page);
1164 goto out;
1027e443 1165 }
fa5bb209
KS
1166 if (pages) {
1167 pages[i] = page;
1168 flush_anon_page(vma, page, start);
1169 flush_dcache_page(page);
df06b37f 1170 ctx.page_mask = 0;
4bbd4c77 1171 }
4bbd4c77 1172next_page:
fa5bb209
KS
1173 if (vmas) {
1174 vmas[i] = vma;
df06b37f 1175 ctx.page_mask = 0;
fa5bb209 1176 }
df06b37f 1177 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1178 if (page_increm > nr_pages)
1179 page_increm = nr_pages;
1180 i += page_increm;
1181 start += page_increm * PAGE_SIZE;
1182 nr_pages -= page_increm;
4bbd4c77 1183 } while (nr_pages);
df06b37f
KB
1184out:
1185 if (ctx.pgmap)
1186 put_dev_pagemap(ctx.pgmap);
1187 return i ? i : ret;
4bbd4c77 1188}
4bbd4c77 1189
771ab430
TK
1190static bool vma_permits_fault(struct vm_area_struct *vma,
1191 unsigned int fault_flags)
d4925e00 1192{
1b2ee126
DH
1193 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1194 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1195 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1196
1197 if (!(vm_flags & vma->vm_flags))
1198 return false;
1199
33a709b2
DH
1200 /*
1201 * The architecture might have a hardware protection
1b2ee126 1202 * mechanism other than read/write that can deny access.
d61172b4
DH
1203 *
1204 * gup always represents data access, not instruction
1205 * fetches, so execute=false here:
33a709b2 1206 */
d61172b4 1207 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1208 return false;
1209
d4925e00
DH
1210 return true;
1211}
1212
adc8cb40 1213/**
4bbd4c77 1214 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1215 * @mm: mm_struct of target mm
1216 * @address: user address
1217 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1218 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1219 * does not allow retry. If NULL, the caller must guarantee
1220 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1221 *
1222 * This is meant to be called in the specific scenario where for locking reasons
1223 * we try to access user memory in atomic context (within a pagefault_disable()
1224 * section), this returns -EFAULT, and we want to resolve the user fault before
1225 * trying again.
1226 *
1227 * Typically this is meant to be used by the futex code.
1228 *
1229 * The main difference with get_user_pages() is that this function will
1230 * unconditionally call handle_mm_fault() which will in turn perform all the
1231 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1232 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1233 *
1234 * This is important for some architectures where those bits also gate the
1235 * access permission to the page because they are maintained in software. On
1236 * such architectures, gup() will not be enough to make a subsequent access
1237 * succeed.
1238 *
c1e8d7c6
ML
1239 * This function will not return with an unlocked mmap_lock. So it has not the
1240 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1241 */
64019a2e 1242int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1243 unsigned long address, unsigned int fault_flags,
1244 bool *unlocked)
4bbd4c77
KS
1245{
1246 struct vm_area_struct *vma;
8fed2f3c 1247 vm_fault_t ret;
4a9e1cda 1248
f9652594
AK
1249 address = untagged_addr(address);
1250
4a9e1cda 1251 if (unlocked)
71335f37 1252 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1253
4a9e1cda 1254retry:
4bbd4c77
KS
1255 vma = find_extend_vma(mm, address);
1256 if (!vma || address < vma->vm_start)
1257 return -EFAULT;
1258
d4925e00 1259 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1260 return -EFAULT;
1261
475f4dfc
PX
1262 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1263 fatal_signal_pending(current))
1264 return -EINTR;
1265
bce617ed 1266 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4bbd4c77 1267 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1268 int err = vm_fault_to_errno(ret, 0);
1269
1270 if (err)
1271 return err;
4bbd4c77
KS
1272 BUG();
1273 }
4a9e1cda
DD
1274
1275 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1276 mmap_read_lock(mm);
475f4dfc
PX
1277 *unlocked = true;
1278 fault_flags |= FAULT_FLAG_TRIED;
1279 goto retry;
4a9e1cda
DD
1280 }
1281
4bbd4c77
KS
1282 return 0;
1283}
add6a0cd 1284EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1285
2d3a36a4
MH
1286/*
1287 * Please note that this function, unlike __get_user_pages will not
1288 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1289 */
64019a2e 1290static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1291 unsigned long start,
1292 unsigned long nr_pages,
f0818f47
AA
1293 struct page **pages,
1294 struct vm_area_struct **vmas,
e716712f 1295 int *locked,
0fd71a56 1296 unsigned int flags)
f0818f47 1297{
f0818f47
AA
1298 long ret, pages_done;
1299 bool lock_dropped;
1300
1301 if (locked) {
1302 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1303 BUG_ON(vmas);
1304 /* check caller initialized locked */
1305 BUG_ON(*locked != 1);
1306 }
1307
a458b76a
AA
1308 if (flags & FOLL_PIN)
1309 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1310
eddb1c22
JH
1311 /*
1312 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1313 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1314 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1315 * for FOLL_GET, not for the newer FOLL_PIN.
1316 *
1317 * FOLL_PIN always expects pages to be non-null, but no need to assert
1318 * that here, as any failures will be obvious enough.
1319 */
1320 if (pages && !(flags & FOLL_PIN))
f0818f47 1321 flags |= FOLL_GET;
f0818f47
AA
1322
1323 pages_done = 0;
1324 lock_dropped = false;
1325 for (;;) {
64019a2e 1326 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1327 vmas, locked);
1328 if (!locked)
1329 /* VM_FAULT_RETRY couldn't trigger, bypass */
1330 return ret;
1331
1332 /* VM_FAULT_RETRY cannot return errors */
1333 if (!*locked) {
1334 BUG_ON(ret < 0);
1335 BUG_ON(ret >= nr_pages);
1336 }
1337
f0818f47
AA
1338 if (ret > 0) {
1339 nr_pages -= ret;
1340 pages_done += ret;
1341 if (!nr_pages)
1342 break;
1343 }
1344 if (*locked) {
96312e61
AA
1345 /*
1346 * VM_FAULT_RETRY didn't trigger or it was a
1347 * FOLL_NOWAIT.
1348 */
f0818f47
AA
1349 if (!pages_done)
1350 pages_done = ret;
1351 break;
1352 }
df17277b
MR
1353 /*
1354 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1355 * For the prefault case (!pages) we only update counts.
1356 */
1357 if (likely(pages))
1358 pages += ret;
f0818f47 1359 start += ret << PAGE_SHIFT;
4426e945 1360 lock_dropped = true;
f0818f47 1361
4426e945 1362retry:
f0818f47
AA
1363 /*
1364 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1365 * with both FAULT_FLAG_ALLOW_RETRY and
1366 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1367 * by fatal signals, so we need to check it before we
1368 * start trying again otherwise it can loop forever.
f0818f47 1369 */
4426e945 1370
ae46d2aa
HD
1371 if (fatal_signal_pending(current)) {
1372 if (!pages_done)
1373 pages_done = -EINTR;
4426e945 1374 break;
ae46d2aa 1375 }
4426e945 1376
d8ed45c5 1377 ret = mmap_read_lock_killable(mm);
71335f37
PX
1378 if (ret) {
1379 BUG_ON(ret > 0);
1380 if (!pages_done)
1381 pages_done = ret;
1382 break;
1383 }
4426e945 1384
c7b6a566 1385 *locked = 1;
64019a2e 1386 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1387 pages, NULL, locked);
1388 if (!*locked) {
1389 /* Continue to retry until we succeeded */
1390 BUG_ON(ret != 0);
1391 goto retry;
1392 }
f0818f47
AA
1393 if (ret != 1) {
1394 BUG_ON(ret > 1);
1395 if (!pages_done)
1396 pages_done = ret;
1397 break;
1398 }
1399 nr_pages--;
1400 pages_done++;
1401 if (!nr_pages)
1402 break;
df17277b
MR
1403 if (likely(pages))
1404 pages++;
f0818f47
AA
1405 start += PAGE_SIZE;
1406 }
e716712f 1407 if (lock_dropped && *locked) {
f0818f47
AA
1408 /*
1409 * We must let the caller know we temporarily dropped the lock
1410 * and so the critical section protected by it was lost.
1411 */
d8ed45c5 1412 mmap_read_unlock(mm);
f0818f47
AA
1413 *locked = 0;
1414 }
1415 return pages_done;
1416}
1417
d3649f68
CH
1418/**
1419 * populate_vma_page_range() - populate a range of pages in the vma.
1420 * @vma: target vma
1421 * @start: start address
1422 * @end: end address
c1e8d7c6 1423 * @locked: whether the mmap_lock is still held
d3649f68
CH
1424 *
1425 * This takes care of mlocking the pages too if VM_LOCKED is set.
1426 *
0a36f7f8
TY
1427 * Return either number of pages pinned in the vma, or a negative error
1428 * code on error.
d3649f68 1429 *
c1e8d7c6 1430 * vma->vm_mm->mmap_lock must be held.
d3649f68 1431 *
4f6da934 1432 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1433 * be unperturbed.
1434 *
4f6da934
PX
1435 * If @locked is non-NULL, it must held for read only and may be
1436 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1437 */
1438long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1439 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1440{
1441 struct mm_struct *mm = vma->vm_mm;
1442 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1443 int gup_flags;
1444
be51eb18
ML
1445 VM_BUG_ON(!PAGE_ALIGNED(start));
1446 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1447 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1448 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1449 mmap_assert_locked(mm);
d3649f68 1450
b67bf49c
HD
1451 /*
1452 * Rightly or wrongly, the VM_LOCKONFAULT case has never used
1453 * faultin_page() to break COW, so it has no work to do here.
1454 */
d3649f68 1455 if (vma->vm_flags & VM_LOCKONFAULT)
b67bf49c
HD
1456 return nr_pages;
1457
1458 gup_flags = FOLL_TOUCH;
d3649f68
CH
1459 /*
1460 * We want to touch writable mappings with a write fault in order
1461 * to break COW, except for shared mappings because these don't COW
1462 * and we would not want to dirty them for nothing.
1463 */
1464 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1465 gup_flags |= FOLL_WRITE;
1466
1467 /*
1468 * We want mlock to succeed for regions that have any permissions
1469 * other than PROT_NONE.
1470 */
3122e80e 1471 if (vma_is_accessible(vma))
d3649f68
CH
1472 gup_flags |= FOLL_FORCE;
1473
1474 /*
1475 * We made sure addr is within a VMA, so the following will
1476 * not result in a stack expansion that recurses back here.
1477 */
64019a2e 1478 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1479 NULL, NULL, locked);
d3649f68
CH
1480}
1481
4ca9b385
DH
1482/*
1483 * faultin_vma_page_range() - populate (prefault) page tables inside the
1484 * given VMA range readable/writable
1485 *
1486 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1487 *
1488 * @vma: target vma
1489 * @start: start address
1490 * @end: end address
1491 * @write: whether to prefault readable or writable
1492 * @locked: whether the mmap_lock is still held
1493 *
1494 * Returns either number of processed pages in the vma, or a negative error
1495 * code on error (see __get_user_pages()).
1496 *
1497 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1498 * covered by the VMA.
1499 *
1500 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1501 *
1502 * If @locked is non-NULL, it must held for read only and may be released. If
1503 * it's released, *@locked will be set to 0.
1504 */
1505long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1506 unsigned long end, bool write, int *locked)
1507{
1508 struct mm_struct *mm = vma->vm_mm;
1509 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1510 int gup_flags;
1511
1512 VM_BUG_ON(!PAGE_ALIGNED(start));
1513 VM_BUG_ON(!PAGE_ALIGNED(end));
1514 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1515 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1516 mmap_assert_locked(mm);
1517
1518 /*
1519 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1520 * the page dirty with FOLL_WRITE -- which doesn't make a
1521 * difference with !FOLL_FORCE, because the page is writable
1522 * in the page table.
1523 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1524 * a poisoned page.
4ca9b385
DH
1525 * !FOLL_FORCE: Require proper access permissions.
1526 */
b67bf49c 1527 gup_flags = FOLL_TOUCH | FOLL_HWPOISON;
4ca9b385
DH
1528 if (write)
1529 gup_flags |= FOLL_WRITE;
1530
1531 /*
eb2faa51
DH
1532 * We want to report -EINVAL instead of -EFAULT for any permission
1533 * problems or incompatible mappings.
4ca9b385 1534 */
eb2faa51
DH
1535 if (check_vma_flags(vma, gup_flags))
1536 return -EINVAL;
1537
4ca9b385
DH
1538 return __get_user_pages(mm, start, nr_pages, gup_flags,
1539 NULL, NULL, locked);
1540}
1541
d3649f68
CH
1542/*
1543 * __mm_populate - populate and/or mlock pages within a range of address space.
1544 *
1545 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1546 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1547 * mmap_lock must not be held.
d3649f68
CH
1548 */
1549int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1550{
1551 struct mm_struct *mm = current->mm;
1552 unsigned long end, nstart, nend;
1553 struct vm_area_struct *vma = NULL;
1554 int locked = 0;
1555 long ret = 0;
1556
1557 end = start + len;
1558
1559 for (nstart = start; nstart < end; nstart = nend) {
1560 /*
1561 * We want to fault in pages for [nstart; end) address range.
1562 * Find first corresponding VMA.
1563 */
1564 if (!locked) {
1565 locked = 1;
d8ed45c5 1566 mmap_read_lock(mm);
d3649f68
CH
1567 vma = find_vma(mm, nstart);
1568 } else if (nstart >= vma->vm_end)
1569 vma = vma->vm_next;
1570 if (!vma || vma->vm_start >= end)
1571 break;
1572 /*
1573 * Set [nstart; nend) to intersection of desired address
1574 * range with the first VMA. Also, skip undesirable VMA types.
1575 */
1576 nend = min(end, vma->vm_end);
1577 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1578 continue;
1579 if (nstart < vma->vm_start)
1580 nstart = vma->vm_start;
1581 /*
1582 * Now fault in a range of pages. populate_vma_page_range()
1583 * double checks the vma flags, so that it won't mlock pages
1584 * if the vma was already munlocked.
1585 */
1586 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1587 if (ret < 0) {
1588 if (ignore_errors) {
1589 ret = 0;
1590 continue; /* continue at next VMA */
1591 }
1592 break;
1593 }
1594 nend = nstart + ret * PAGE_SIZE;
1595 ret = 0;
1596 }
1597 if (locked)
d8ed45c5 1598 mmap_read_unlock(mm);
d3649f68
CH
1599 return ret; /* 0 or negative error code */
1600}
050a9adc 1601#else /* CONFIG_MMU */
64019a2e 1602static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1603 unsigned long nr_pages, struct page **pages,
1604 struct vm_area_struct **vmas, int *locked,
1605 unsigned int foll_flags)
1606{
1607 struct vm_area_struct *vma;
1608 unsigned long vm_flags;
24dc20c7 1609 long i;
050a9adc
CH
1610
1611 /* calculate required read or write permissions.
1612 * If FOLL_FORCE is set, we only require the "MAY" flags.
1613 */
1614 vm_flags = (foll_flags & FOLL_WRITE) ?
1615 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1616 vm_flags &= (foll_flags & FOLL_FORCE) ?
1617 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1618
1619 for (i = 0; i < nr_pages; i++) {
1620 vma = find_vma(mm, start);
1621 if (!vma)
1622 goto finish_or_fault;
1623
1624 /* protect what we can, including chardevs */
1625 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1626 !(vm_flags & vma->vm_flags))
1627 goto finish_or_fault;
1628
1629 if (pages) {
1630 pages[i] = virt_to_page(start);
1631 if (pages[i])
1632 get_page(pages[i]);
1633 }
1634 if (vmas)
1635 vmas[i] = vma;
1636 start = (start + PAGE_SIZE) & PAGE_MASK;
1637 }
1638
1639 return i;
1640
1641finish_or_fault:
1642 return i ? : -EFAULT;
1643}
1644#endif /* !CONFIG_MMU */
d3649f68 1645
bb523b40
AG
1646/**
1647 * fault_in_writeable - fault in userspace address range for writing
1648 * @uaddr: start of address range
1649 * @size: size of address range
1650 *
1651 * Returns the number of bytes not faulted in (like copy_to_user() and
1652 * copy_from_user()).
1653 */
1654size_t fault_in_writeable(char __user *uaddr, size_t size)
1655{
1656 char __user *start = uaddr, *end;
1657
1658 if (unlikely(size == 0))
1659 return 0;
677b2a8c
CL
1660 if (!user_write_access_begin(uaddr, size))
1661 return size;
bb523b40 1662 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1663 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1664 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1665 }
1666 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1667 if (unlikely(end < start))
1668 end = NULL;
1669 while (uaddr != end) {
677b2a8c 1670 unsafe_put_user(0, uaddr, out);
bb523b40
AG
1671 uaddr += PAGE_SIZE;
1672 }
1673
1674out:
677b2a8c 1675 user_write_access_end();
bb523b40
AG
1676 if (size > uaddr - start)
1677 return size - (uaddr - start);
1678 return 0;
1679}
1680EXPORT_SYMBOL(fault_in_writeable);
1681
cdd591fc
AG
1682/*
1683 * fault_in_safe_writeable - fault in an address range for writing
1684 * @uaddr: start of address range
1685 * @size: length of address range
1686 *
1687 * Faults in an address range using get_user_pages, i.e., without triggering
1688 * hardware page faults. This is primarily useful when we already know that
1689 * some or all of the pages in the address range aren't in memory.
1690 *
1691 * Other than fault_in_writeable(), this function is non-destructive.
1692 *
1693 * Note that we don't pin or otherwise hold the pages referenced that we fault
1694 * in. There's no guarantee that they'll stay in memory for any duration of
1695 * time.
1696 *
1697 * Returns the number of bytes not faulted in, like copy_to_user() and
1698 * copy_from_user().
1699 */
1700size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1701{
1702 unsigned long start = (unsigned long)untagged_addr(uaddr);
1703 unsigned long end, nstart, nend;
1704 struct mm_struct *mm = current->mm;
1705 struct vm_area_struct *vma = NULL;
1706 int locked = 0;
1707
1708 nstart = start & PAGE_MASK;
1709 end = PAGE_ALIGN(start + size);
1710 if (end < nstart)
1711 end = 0;
1712 for (; nstart != end; nstart = nend) {
1713 unsigned long nr_pages;
1714 long ret;
1715
1716 if (!locked) {
1717 locked = 1;
1718 mmap_read_lock(mm);
1719 vma = find_vma(mm, nstart);
1720 } else if (nstart >= vma->vm_end)
1721 vma = vma->vm_next;
1722 if (!vma || vma->vm_start >= end)
1723 break;
1724 nend = end ? min(end, vma->vm_end) : vma->vm_end;
1725 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1726 continue;
1727 if (nstart < vma->vm_start)
1728 nstart = vma->vm_start;
1729 nr_pages = (nend - nstart) / PAGE_SIZE;
1730 ret = __get_user_pages_locked(mm, nstart, nr_pages,
1731 NULL, NULL, &locked,
1732 FOLL_TOUCH | FOLL_WRITE);
1733 if (ret <= 0)
1734 break;
1735 nend = nstart + ret * PAGE_SIZE;
1736 }
1737 if (locked)
1738 mmap_read_unlock(mm);
1739 if (nstart == end)
1740 return 0;
1741 return size - min_t(size_t, nstart - start, size);
1742}
1743EXPORT_SYMBOL(fault_in_safe_writeable);
1744
bb523b40
AG
1745/**
1746 * fault_in_readable - fault in userspace address range for reading
1747 * @uaddr: start of user address range
1748 * @size: size of user address range
1749 *
1750 * Returns the number of bytes not faulted in (like copy_to_user() and
1751 * copy_from_user()).
1752 */
1753size_t fault_in_readable(const char __user *uaddr, size_t size)
1754{
1755 const char __user *start = uaddr, *end;
1756 volatile char c;
1757
1758 if (unlikely(size == 0))
1759 return 0;
677b2a8c
CL
1760 if (!user_read_access_begin(uaddr, size))
1761 return size;
bb523b40 1762 if (!PAGE_ALIGNED(uaddr)) {
677b2a8c 1763 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1764 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1765 }
1766 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1767 if (unlikely(end < start))
1768 end = NULL;
1769 while (uaddr != end) {
677b2a8c 1770 unsafe_get_user(c, uaddr, out);
bb523b40
AG
1771 uaddr += PAGE_SIZE;
1772 }
1773
1774out:
677b2a8c 1775 user_read_access_end();
bb523b40
AG
1776 (void)c;
1777 if (size > uaddr - start)
1778 return size - (uaddr - start);
1779 return 0;
1780}
1781EXPORT_SYMBOL(fault_in_readable);
1782
8f942eea
JH
1783/**
1784 * get_dump_page() - pin user page in memory while writing it to core dump
1785 * @addr: user address
1786 *
1787 * Returns struct page pointer of user page pinned for dump,
1788 * to be freed afterwards by put_page().
1789 *
1790 * Returns NULL on any kind of failure - a hole must then be inserted into
1791 * the corefile, to preserve alignment with its headers; and also returns
1792 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1793 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1794 *
7f3bfab5 1795 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1796 */
1797#ifdef CONFIG_ELF_CORE
1798struct page *get_dump_page(unsigned long addr)
1799{
7f3bfab5 1800 struct mm_struct *mm = current->mm;
8f942eea 1801 struct page *page;
7f3bfab5
JH
1802 int locked = 1;
1803 int ret;
8f942eea 1804
7f3bfab5 1805 if (mmap_read_lock_killable(mm))
8f942eea 1806 return NULL;
7f3bfab5
JH
1807 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1808 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1809 if (locked)
1810 mmap_read_unlock(mm);
1811 return (ret == 1) ? page : NULL;
8f942eea
JH
1812}
1813#endif /* CONFIG_ELF_CORE */
1814
d1e153fe 1815#ifdef CONFIG_MIGRATION
f68749ec
PT
1816/*
1817 * Check whether all pages are pinnable, if so return number of pages. If some
1818 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1819 * pages were migrated, or if some pages were not successfully isolated.
1820 * Return negative error if migration fails.
1821 */
1822static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1823 struct page **pages,
d1e153fe 1824 unsigned int gup_flags)
9a4e9f3b 1825{
f9f38f78 1826 unsigned long isolation_error_count = 0, i;
f68749ec 1827 struct page *prev_head = NULL;
f9f38f78
CH
1828 LIST_HEAD(movable_page_list);
1829 bool drain_allow = true;
1830 int ret = 0;
9a4e9f3b 1831
83c02c23 1832 for (i = 0; i < nr_pages; i++) {
f9f38f78
CH
1833 struct page *head = compound_head(pages[i]);
1834
83c02c23
PT
1835 if (head == prev_head)
1836 continue;
1837 prev_head = head;
f9f38f78
CH
1838
1839 if (is_pinnable_page(head))
1840 continue;
1841
9a4e9f3b 1842 /*
f9f38f78 1843 * Try to move out any movable page before pinning the range.
9a4e9f3b 1844 */
f9f38f78
CH
1845 if (PageHuge(head)) {
1846 if (!isolate_huge_page(head, &movable_page_list))
1847 isolation_error_count++;
1848 continue;
1849 }
9a4e9f3b 1850
f9f38f78
CH
1851 if (!PageLRU(head) && drain_allow) {
1852 lru_add_drain_all();
1853 drain_allow = false;
1854 }
1855
1856 if (isolate_lru_page(head)) {
1857 isolation_error_count++;
1858 continue;
9a4e9f3b 1859 }
f9f38f78
CH
1860 list_add_tail(&head->lru, &movable_page_list);
1861 mod_node_page_state(page_pgdat(head),
1862 NR_ISOLATED_ANON + page_is_file_lru(head),
1863 thp_nr_pages(head));
9a4e9f3b
AK
1864 }
1865
f9f38f78
CH
1866 if (!list_empty(&movable_page_list) || isolation_error_count)
1867 goto unpin_pages;
1868
6e7f34eb
PT
1869 /*
1870 * If list is empty, and no isolation errors, means that all pages are
1871 * in the correct zone.
1872 */
f9f38f78 1873 return nr_pages;
6e7f34eb 1874
f9f38f78 1875unpin_pages:
f68749ec
PT
1876 if (gup_flags & FOLL_PIN) {
1877 unpin_user_pages(pages, nr_pages);
1878 } else {
1879 for (i = 0; i < nr_pages; i++)
1880 put_page(pages[i]);
1881 }
f9f38f78 1882
d1e153fe 1883 if (!list_empty(&movable_page_list)) {
f9f38f78
CH
1884 struct migration_target_control mtc = {
1885 .nid = NUMA_NO_NODE,
1886 .gfp_mask = GFP_USER | __GFP_NOWARN,
1887 };
1888
d1e153fe 1889 ret = migrate_pages(&movable_page_list, alloc_migration_target,
f0f44638 1890 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
5ac95884 1891 MR_LONGTERM_PIN, NULL);
f9f38f78
CH
1892 if (ret > 0) /* number of pages not migrated */
1893 ret = -ENOMEM;
9a4e9f3b
AK
1894 }
1895
f9f38f78
CH
1896 if (ret && !list_empty(&movable_page_list))
1897 putback_movable_pages(&movable_page_list);
1898 return ret;
9a4e9f3b
AK
1899}
1900#else
f68749ec 1901static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1902 struct page **pages,
d1e153fe 1903 unsigned int gup_flags)
9a4e9f3b
AK
1904{
1905 return nr_pages;
1906}
d1e153fe 1907#endif /* CONFIG_MIGRATION */
9a4e9f3b 1908
2bb6d283 1909/*
932f4a63
IW
1910 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1911 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1912 */
64019a2e 1913static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1914 unsigned long start,
1915 unsigned long nr_pages,
1916 struct page **pages,
1917 struct vm_area_struct **vmas,
1918 unsigned int gup_flags)
2bb6d283 1919{
f68749ec 1920 unsigned int flags;
52650c8b 1921 long rc;
2bb6d283 1922
f68749ec
PT
1923 if (!(gup_flags & FOLL_LONGTERM))
1924 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1925 NULL, gup_flags);
1926 flags = memalloc_pin_save();
1927 do {
1928 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1929 NULL, gup_flags);
1930 if (rc <= 0)
1931 break;
1932 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1933 } while (!rc);
1934 memalloc_pin_restore(flags);
2bb6d283 1935
2bb6d283
DW
1936 return rc;
1937}
932f4a63 1938
447f3e45
BS
1939static bool is_valid_gup_flags(unsigned int gup_flags)
1940{
1941 /*
1942 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1943 * never directly by the caller, so enforce that with an assertion:
1944 */
1945 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1946 return false;
1947 /*
1948 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1949 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1950 * FOLL_PIN.
1951 */
1952 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1953 return false;
1954
1955 return true;
1956}
1957
22bf29b6 1958#ifdef CONFIG_MMU
64019a2e 1959static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1960 unsigned long start, unsigned long nr_pages,
1961 unsigned int gup_flags, struct page **pages,
1962 struct vm_area_struct **vmas, int *locked)
1963{
1964 /*
1965 * Parts of FOLL_LONGTERM behavior are incompatible with
1966 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1967 * vmas. However, this only comes up if locked is set, and there are
1968 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1969 * allow what we can.
1970 */
1971 if (gup_flags & FOLL_LONGTERM) {
1972 if (WARN_ON_ONCE(locked))
1973 return -EINVAL;
1974 /*
1975 * This will check the vmas (even if our vmas arg is NULL)
1976 * and return -ENOTSUPP if DAX isn't allowed in this case:
1977 */
64019a2e 1978 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1979 vmas, gup_flags | FOLL_TOUCH |
1980 FOLL_REMOTE);
1981 }
1982
64019a2e 1983 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1984 locked,
1985 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1986}
1987
adc8cb40 1988/**
c4237f8b 1989 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1990 * @mm: mm_struct of target mm
1991 * @start: starting user address
1992 * @nr_pages: number of pages from start to pin
1993 * @gup_flags: flags modifying lookup behaviour
1994 * @pages: array that receives pointers to the pages pinned.
1995 * Should be at least nr_pages long. Or NULL, if caller
1996 * only intends to ensure the pages are faulted in.
1997 * @vmas: array of pointers to vmas corresponding to each page.
1998 * Or NULL if the caller does not require them.
1999 * @locked: pointer to lock flag indicating whether lock is held and
2000 * subsequently whether VM_FAULT_RETRY functionality can be
2001 * utilised. Lock must initially be held.
2002 *
2003 * Returns either number of pages pinned (which may be less than the
2004 * number requested), or an error. Details about the return value:
2005 *
2006 * -- If nr_pages is 0, returns 0.
2007 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2008 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2009 * pages pinned. Again, this may be less than nr_pages.
2010 *
2011 * The caller is responsible for releasing returned @pages, via put_page().
2012 *
c1e8d7c6 2013 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 2014 *
c1e8d7c6 2015 * Must be called with mmap_lock held for read or write.
c4237f8b 2016 *
adc8cb40
SJ
2017 * get_user_pages_remote walks a process's page tables and takes a reference
2018 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2019 * instant. That is, it takes the page that would be accessed if a user
2020 * thread accesses the given user virtual address at that instant.
2021 *
2022 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2023 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
2024 * page there in some cases (eg. if mmapped pagecache has been invalidated
2025 * and subsequently re faulted). However it does guarantee that the page
2026 * won't be freed completely. And mostly callers simply care that the page
2027 * contains data that was valid *at some point in time*. Typically, an IO
2028 * or similar operation cannot guarantee anything stronger anyway because
2029 * locks can't be held over the syscall boundary.
2030 *
2031 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2032 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2033 * be called after the page is finished with, and before put_page is called.
2034 *
adc8cb40
SJ
2035 * get_user_pages_remote is typically used for fewer-copy IO operations,
2036 * to get a handle on the memory by some means other than accesses
2037 * via the user virtual addresses. The pages may be submitted for
2038 * DMA to devices or accessed via their kernel linear mapping (via the
2039 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2040 *
2041 * See also get_user_pages_fast, for performance critical applications.
2042 *
adc8cb40 2043 * get_user_pages_remote should be phased out in favor of
c4237f8b 2044 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2045 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2046 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2047 */
64019a2e 2048long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2049 unsigned long start, unsigned long nr_pages,
2050 unsigned int gup_flags, struct page **pages,
2051 struct vm_area_struct **vmas, int *locked)
2052{
447f3e45 2053 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2054 return -EINVAL;
2055
64019a2e 2056 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 2057 pages, vmas, locked);
c4237f8b
JH
2058}
2059EXPORT_SYMBOL(get_user_pages_remote);
2060
eddb1c22 2061#else /* CONFIG_MMU */
64019a2e 2062long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2063 unsigned long start, unsigned long nr_pages,
2064 unsigned int gup_flags, struct page **pages,
2065 struct vm_area_struct **vmas, int *locked)
2066{
2067 return 0;
2068}
3faa52c0 2069
64019a2e 2070static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
2071 unsigned long start, unsigned long nr_pages,
2072 unsigned int gup_flags, struct page **pages,
2073 struct vm_area_struct **vmas, int *locked)
2074{
2075 return 0;
2076}
eddb1c22
JH
2077#endif /* !CONFIG_MMU */
2078
adc8cb40
SJ
2079/**
2080 * get_user_pages() - pin user pages in memory
2081 * @start: starting user address
2082 * @nr_pages: number of pages from start to pin
2083 * @gup_flags: flags modifying lookup behaviour
2084 * @pages: array that receives pointers to the pages pinned.
2085 * Should be at least nr_pages long. Or NULL, if caller
2086 * only intends to ensure the pages are faulted in.
2087 * @vmas: array of pointers to vmas corresponding to each page.
2088 * Or NULL if the caller does not require them.
2089 *
64019a2e
PX
2090 * This is the same as get_user_pages_remote(), just with a less-flexible
2091 * calling convention where we assume that the mm being operated on belongs to
2092 * the current task, and doesn't allow passing of a locked parameter. We also
2093 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2094 */
2095long get_user_pages(unsigned long start, unsigned long nr_pages,
2096 unsigned int gup_flags, struct page **pages,
2097 struct vm_area_struct **vmas)
2098{
447f3e45 2099 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2100 return -EINVAL;
2101
64019a2e 2102 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
2103 pages, vmas, gup_flags | FOLL_TOUCH);
2104}
2105EXPORT_SYMBOL(get_user_pages);
2bb6d283 2106
adc8cb40 2107/**
a00cda3f
MCC
2108 * get_user_pages_locked() - variant of get_user_pages()
2109 *
2110 * @start: starting user address
2111 * @nr_pages: number of pages from start to pin
2112 * @gup_flags: flags modifying lookup behaviour
2113 * @pages: array that receives pointers to the pages pinned.
2114 * Should be at least nr_pages long. Or NULL, if caller
2115 * only intends to ensure the pages are faulted in.
2116 * @locked: pointer to lock flag indicating whether lock is held and
2117 * subsequently whether VM_FAULT_RETRY functionality can be
2118 * utilised. Lock must initially be held.
2119 *
2120 * It is suitable to replace the form:
acc3c8d1 2121 *
3e4e28c5 2122 * mmap_read_lock(mm);
d3649f68 2123 * do_something()
64019a2e 2124 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2125 * mmap_read_unlock(mm);
acc3c8d1 2126 *
d3649f68 2127 * to:
acc3c8d1 2128 *
d3649f68 2129 * int locked = 1;
3e4e28c5 2130 * mmap_read_lock(mm);
d3649f68 2131 * do_something()
64019a2e 2132 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 2133 * if (locked)
3e4e28c5 2134 * mmap_read_unlock(mm);
adc8cb40 2135 *
adc8cb40
SJ
2136 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2137 * paths better by using either get_user_pages_locked() or
2138 * get_user_pages_unlocked().
2139 *
acc3c8d1 2140 */
d3649f68
CH
2141long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2142 unsigned int gup_flags, struct page **pages,
2143 int *locked)
acc3c8d1 2144{
acc3c8d1 2145 /*
d3649f68
CH
2146 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2147 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2148 * vmas. As there are no users of this flag in this call we simply
2149 * disallow this option for now.
acc3c8d1 2150 */
d3649f68
CH
2151 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2152 return -EINVAL;
420c2091
JH
2153 /*
2154 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2155 * never directly by the caller, so enforce that:
2156 */
2157 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2158 return -EINVAL;
acc3c8d1 2159
64019a2e 2160 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
2161 pages, NULL, locked,
2162 gup_flags | FOLL_TOUCH);
acc3c8d1 2163}
d3649f68 2164EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
2165
2166/*
d3649f68 2167 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2168 *
3e4e28c5 2169 * mmap_read_lock(mm);
64019a2e 2170 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2171 * mmap_read_unlock(mm);
d3649f68
CH
2172 *
2173 * with:
2174 *
64019a2e 2175 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2176 *
2177 * It is functionally equivalent to get_user_pages_fast so
2178 * get_user_pages_fast should be used instead if specific gup_flags
2179 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2180 */
d3649f68
CH
2181long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2182 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2183{
2184 struct mm_struct *mm = current->mm;
d3649f68
CH
2185 int locked = 1;
2186 long ret;
acc3c8d1 2187
d3649f68
CH
2188 /*
2189 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2190 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2191 * vmas. As there are no users of this flag in this call we simply
2192 * disallow this option for now.
2193 */
2194 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2195 return -EINVAL;
acc3c8d1 2196
d8ed45c5 2197 mmap_read_lock(mm);
64019a2e 2198 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2199 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2200 if (locked)
d8ed45c5 2201 mmap_read_unlock(mm);
d3649f68 2202 return ret;
4bbd4c77 2203}
d3649f68 2204EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2205
2206/*
67a929e0 2207 * Fast GUP
2667f50e
SC
2208 *
2209 * get_user_pages_fast attempts to pin user pages by walking the page
2210 * tables directly and avoids taking locks. Thus the walker needs to be
2211 * protected from page table pages being freed from under it, and should
2212 * block any THP splits.
2213 *
2214 * One way to achieve this is to have the walker disable interrupts, and
2215 * rely on IPIs from the TLB flushing code blocking before the page table
2216 * pages are freed. This is unsuitable for architectures that do not need
2217 * to broadcast an IPI when invalidating TLBs.
2218 *
2219 * Another way to achieve this is to batch up page table containing pages
2220 * belonging to more than one mm_user, then rcu_sched a callback to free those
2221 * pages. Disabling interrupts will allow the fast_gup walker to both block
2222 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2223 * (which is a relatively rare event). The code below adopts this strategy.
2224 *
2225 * Before activating this code, please be aware that the following assumptions
2226 * are currently made:
2227 *
ff2e6d72 2228 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2229 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2230 *
2667f50e
SC
2231 * *) ptes can be read atomically by the architecture.
2232 *
2233 * *) access_ok is sufficient to validate userspace address ranges.
2234 *
2235 * The last two assumptions can be relaxed by the addition of helper functions.
2236 *
2237 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2238 */
67a929e0 2239#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2240
790c7369 2241static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2242 unsigned int flags,
790c7369 2243 struct page **pages)
b59f65fa
KS
2244{
2245 while ((*nr) - nr_start) {
2246 struct page *page = pages[--(*nr)];
2247
2248 ClearPageReferenced(page);
3faa52c0
JH
2249 if (flags & FOLL_PIN)
2250 unpin_user_page(page);
2251 else
2252 put_page(page);
b59f65fa
KS
2253 }
2254}
2255
3010a5ea 2256#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2257static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2258 unsigned int flags, struct page **pages, int *nr)
2667f50e 2259{
b59f65fa
KS
2260 struct dev_pagemap *pgmap = NULL;
2261 int nr_start = *nr, ret = 0;
2667f50e 2262 pte_t *ptep, *ptem;
2667f50e
SC
2263
2264 ptem = ptep = pte_offset_map(&pmd, addr);
2265 do {
2a4a06da 2266 pte_t pte = ptep_get_lockless(ptep);
7aef4172 2267 struct page *head, *page;
2667f50e
SC
2268
2269 /*
2270 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2271 * path using the pte_protnone check.
2667f50e 2272 */
e7884f8e
KS
2273 if (pte_protnone(pte))
2274 goto pte_unmap;
2275
b798bec4 2276 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2277 goto pte_unmap;
2278
b59f65fa 2279 if (pte_devmap(pte)) {
7af75561
IW
2280 if (unlikely(flags & FOLL_LONGTERM))
2281 goto pte_unmap;
2282
b59f65fa
KS
2283 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2284 if (unlikely(!pgmap)) {
3b78d834 2285 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2286 goto pte_unmap;
2287 }
2288 } else if (pte_special(pte))
2667f50e
SC
2289 goto pte_unmap;
2290
2291 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2292 page = pte_page(pte);
2293
3faa52c0 2294 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2295 if (!head)
2667f50e
SC
2296 goto pte_unmap;
2297
1507f512
MR
2298 if (unlikely(page_is_secretmem(page))) {
2299 put_compound_head(head, 1, flags);
2300 goto pte_unmap;
2301 }
2302
2667f50e 2303 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2304 put_compound_head(head, 1, flags);
2667f50e
SC
2305 goto pte_unmap;
2306 }
2307
7aef4172 2308 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2309
f28d4363
CI
2310 /*
2311 * We need to make the page accessible if and only if we are
2312 * going to access its content (the FOLL_PIN case). Please
2313 * see Documentation/core-api/pin_user_pages.rst for
2314 * details.
2315 */
2316 if (flags & FOLL_PIN) {
2317 ret = arch_make_page_accessible(page);
2318 if (ret) {
2319 unpin_user_page(page);
2320 goto pte_unmap;
2321 }
2322 }
e9348053 2323 SetPageReferenced(page);
2667f50e
SC
2324 pages[*nr] = page;
2325 (*nr)++;
2326
2327 } while (ptep++, addr += PAGE_SIZE, addr != end);
2328
2329 ret = 1;
2330
2331pte_unmap:
832d7aa0
CH
2332 if (pgmap)
2333 put_dev_pagemap(pgmap);
2667f50e
SC
2334 pte_unmap(ptem);
2335 return ret;
2336}
2337#else
2338
2339/*
2340 * If we can't determine whether or not a pte is special, then fail immediately
2341 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2342 * to be special.
2343 *
2344 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2345 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2346 * useful to have gup_huge_pmd even if we can't operate on ptes.
2347 */
2348static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2349 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2350{
2351 return 0;
2352}
3010a5ea 2353#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2354
17596731 2355#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2356static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2357 unsigned long end, unsigned int flags,
2358 struct page **pages, int *nr)
b59f65fa
KS
2359{
2360 int nr_start = *nr;
2361 struct dev_pagemap *pgmap = NULL;
2362
2363 do {
2364 struct page *page = pfn_to_page(pfn);
2365
2366 pgmap = get_dev_pagemap(pfn, pgmap);
2367 if (unlikely(!pgmap)) {
3b78d834 2368 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2369 break;
b59f65fa
KS
2370 }
2371 SetPageReferenced(page);
2372 pages[*nr] = page;
3faa52c0
JH
2373 if (unlikely(!try_grab_page(page, flags))) {
2374 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb 2375 break;
3faa52c0 2376 }
b59f65fa
KS
2377 (*nr)++;
2378 pfn++;
2379 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2380
6401c4eb 2381 put_dev_pagemap(pgmap);
20b7fee7 2382 return addr == end;
b59f65fa
KS
2383}
2384
a9b6de77 2385static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2386 unsigned long end, unsigned int flags,
2387 struct page **pages, int *nr)
b59f65fa
KS
2388{
2389 unsigned long fault_pfn;
a9b6de77
DW
2390 int nr_start = *nr;
2391
2392 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2393 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2394 return 0;
b59f65fa 2395
a9b6de77 2396 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2397 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2398 return 0;
2399 }
2400 return 1;
b59f65fa
KS
2401}
2402
a9b6de77 2403static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2404 unsigned long end, unsigned int flags,
2405 struct page **pages, int *nr)
b59f65fa
KS
2406{
2407 unsigned long fault_pfn;
a9b6de77
DW
2408 int nr_start = *nr;
2409
2410 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2411 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2412 return 0;
b59f65fa 2413
a9b6de77 2414 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2415 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2416 return 0;
2417 }
2418 return 1;
b59f65fa
KS
2419}
2420#else
a9b6de77 2421static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2422 unsigned long end, unsigned int flags,
2423 struct page **pages, int *nr)
b59f65fa
KS
2424{
2425 BUILD_BUG();
2426 return 0;
2427}
2428
a9b6de77 2429static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2430 unsigned long end, unsigned int flags,
2431 struct page **pages, int *nr)
b59f65fa
KS
2432{
2433 BUILD_BUG();
2434 return 0;
2435}
2436#endif
2437
a43e9820
JH
2438static int record_subpages(struct page *page, unsigned long addr,
2439 unsigned long end, struct page **pages)
2440{
2441 int nr;
2442
c228afb1
MWO
2443 for (nr = 0; addr != end; nr++, addr += PAGE_SIZE)
2444 pages[nr] = nth_page(page, nr);
a43e9820
JH
2445
2446 return nr;
2447}
2448
cbd34da7
CH
2449#ifdef CONFIG_ARCH_HAS_HUGEPD
2450static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2451 unsigned long sz)
2452{
2453 unsigned long __boundary = (addr + sz) & ~(sz-1);
2454 return (__boundary - 1 < end - 1) ? __boundary : end;
2455}
2456
2457static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2458 unsigned long end, unsigned int flags,
2459 struct page **pages, int *nr)
cbd34da7
CH
2460{
2461 unsigned long pte_end;
2462 struct page *head, *page;
2463 pte_t pte;
2464 int refs;
2465
2466 pte_end = (addr + sz) & ~(sz-1);
2467 if (pte_end < end)
2468 end = pte_end;
2469
55ca2263 2470 pte = huge_ptep_get(ptep);
cbd34da7 2471
0cd22afd 2472 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2473 return 0;
2474
2475 /* hugepages are never "special" */
2476 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2477
cbd34da7 2478 head = pte_page(pte);
c228afb1 2479 page = nth_page(head, (addr & (sz - 1)) >> PAGE_SHIFT);
a43e9820 2480 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2481
3faa52c0 2482 head = try_grab_compound_head(head, refs, flags);
a43e9820 2483 if (!head)
cbd34da7 2484 return 0;
cbd34da7
CH
2485
2486 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2487 put_compound_head(head, refs, flags);
cbd34da7
CH
2488 return 0;
2489 }
2490
a43e9820 2491 *nr += refs;
520b4a44 2492 SetPageReferenced(head);
cbd34da7
CH
2493 return 1;
2494}
2495
2496static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2497 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2498 struct page **pages, int *nr)
2499{
2500 pte_t *ptep;
2501 unsigned long sz = 1UL << hugepd_shift(hugepd);
2502 unsigned long next;
2503
2504 ptep = hugepte_offset(hugepd, addr, pdshift);
2505 do {
2506 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2507 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2508 return 0;
2509 } while (ptep++, addr = next, addr != end);
2510
2511 return 1;
2512}
2513#else
2514static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2515 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2516 struct page **pages, int *nr)
2517{
2518 return 0;
2519}
2520#endif /* CONFIG_ARCH_HAS_HUGEPD */
2521
2667f50e 2522static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2523 unsigned long end, unsigned int flags,
2524 struct page **pages, int *nr)
2667f50e 2525{
ddc58f27 2526 struct page *head, *page;
2667f50e
SC
2527 int refs;
2528
b798bec4 2529 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2530 return 0;
2531
7af75561
IW
2532 if (pmd_devmap(orig)) {
2533 if (unlikely(flags & FOLL_LONGTERM))
2534 return 0;
86dfbed4
JH
2535 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2536 pages, nr);
7af75561 2537 }
b59f65fa 2538
c228afb1 2539 page = nth_page(pmd_page(orig), (addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2540 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2541
3faa52c0 2542 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2543 if (!head)
2667f50e 2544 return 0;
2667f50e
SC
2545
2546 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2547 put_compound_head(head, refs, flags);
2667f50e
SC
2548 return 0;
2549 }
2550
a43e9820 2551 *nr += refs;
e9348053 2552 SetPageReferenced(head);
2667f50e
SC
2553 return 1;
2554}
2555
2556static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2557 unsigned long end, unsigned int flags,
2558 struct page **pages, int *nr)
2667f50e 2559{
ddc58f27 2560 struct page *head, *page;
2667f50e
SC
2561 int refs;
2562
b798bec4 2563 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2564 return 0;
2565
7af75561
IW
2566 if (pud_devmap(orig)) {
2567 if (unlikely(flags & FOLL_LONGTERM))
2568 return 0;
86dfbed4
JH
2569 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2570 pages, nr);
7af75561 2571 }
b59f65fa 2572
c228afb1 2573 page = nth_page(pud_page(orig), (addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2574 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2575
3faa52c0 2576 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2577 if (!head)
2667f50e 2578 return 0;
2667f50e
SC
2579
2580 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2581 put_compound_head(head, refs, flags);
2667f50e
SC
2582 return 0;
2583 }
2584
a43e9820 2585 *nr += refs;
e9348053 2586 SetPageReferenced(head);
2667f50e
SC
2587 return 1;
2588}
2589
f30c59e9 2590static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2591 unsigned long end, unsigned int flags,
f30c59e9
AK
2592 struct page **pages, int *nr)
2593{
2594 int refs;
ddc58f27 2595 struct page *head, *page;
f30c59e9 2596
b798bec4 2597 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2598 return 0;
2599
b59f65fa 2600 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2601
c228afb1 2602 page = nth_page(pgd_page(orig), (addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2603 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2604
3faa52c0 2605 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2606 if (!head)
f30c59e9 2607 return 0;
f30c59e9
AK
2608
2609 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2610 put_compound_head(head, refs, flags);
f30c59e9
AK
2611 return 0;
2612 }
2613
a43e9820 2614 *nr += refs;
e9348053 2615 SetPageReferenced(head);
f30c59e9
AK
2616 return 1;
2617}
2618
d3f7b1bb 2619static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2620 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2621{
2622 unsigned long next;
2623 pmd_t *pmdp;
2624
d3f7b1bb 2625 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2626 do {
38c5ce93 2627 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2628
2629 next = pmd_addr_end(addr, end);
84c3fc4e 2630 if (!pmd_present(pmd))
2667f50e
SC
2631 return 0;
2632
414fd080
YZ
2633 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2634 pmd_devmap(pmd))) {
2667f50e
SC
2635 /*
2636 * NUMA hinting faults need to be handled in the GUP
2637 * slowpath for accounting purposes and so that they
2638 * can be serialised against THP migration.
2639 */
8a0516ed 2640 if (pmd_protnone(pmd))
2667f50e
SC
2641 return 0;
2642
b798bec4 2643 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2644 pages, nr))
2645 return 0;
2646
f30c59e9
AK
2647 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2648 /*
2649 * architecture have different format for hugetlbfs
2650 * pmd format and THP pmd format
2651 */
2652 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2653 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2654 return 0;
b798bec4 2655 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2656 return 0;
2667f50e
SC
2657 } while (pmdp++, addr = next, addr != end);
2658
2659 return 1;
2660}
2661
d3f7b1bb 2662static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2663 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2664{
2665 unsigned long next;
2666 pud_t *pudp;
2667
d3f7b1bb 2668 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2669 do {
e37c6982 2670 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2671
2672 next = pud_addr_end(addr, end);
15494520 2673 if (unlikely(!pud_present(pud)))
2667f50e 2674 return 0;
f30c59e9 2675 if (unlikely(pud_huge(pud))) {
b798bec4 2676 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2677 pages, nr))
2678 return 0;
2679 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2680 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2681 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2682 return 0;
d3f7b1bb 2683 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2684 return 0;
2685 } while (pudp++, addr = next, addr != end);
2686
2687 return 1;
2688}
2689
d3f7b1bb 2690static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2691 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2692{
2693 unsigned long next;
2694 p4d_t *p4dp;
2695
d3f7b1bb 2696 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2697 do {
2698 p4d_t p4d = READ_ONCE(*p4dp);
2699
2700 next = p4d_addr_end(addr, end);
2701 if (p4d_none(p4d))
2702 return 0;
2703 BUILD_BUG_ON(p4d_huge(p4d));
2704 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2705 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2706 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2707 return 0;
d3f7b1bb 2708 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2709 return 0;
2710 } while (p4dp++, addr = next, addr != end);
2711
2712 return 1;
2713}
2714
5b65c467 2715static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2716 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2717{
2718 unsigned long next;
2719 pgd_t *pgdp;
2720
2721 pgdp = pgd_offset(current->mm, addr);
2722 do {
2723 pgd_t pgd = READ_ONCE(*pgdp);
2724
2725 next = pgd_addr_end(addr, end);
2726 if (pgd_none(pgd))
2727 return;
2728 if (unlikely(pgd_huge(pgd))) {
b798bec4 2729 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2730 pages, nr))
2731 return;
2732 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2733 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2734 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2735 return;
d3f7b1bb 2736 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2737 return;
2738 } while (pgdp++, addr = next, addr != end);
2739}
050a9adc
CH
2740#else
2741static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2742 unsigned int flags, struct page **pages, int *nr)
2743{
2744}
2745#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2746
2747#ifndef gup_fast_permitted
2748/*
dadbb612 2749 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2750 * we need to fall back to the slow version:
2751 */
26f4c328 2752static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2753{
26f4c328 2754 return true;
5b65c467
KS
2755}
2756#endif
2757
7af75561
IW
2758static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2759 unsigned int gup_flags, struct page **pages)
2760{
2761 int ret;
2762
2763 /*
2764 * FIXME: FOLL_LONGTERM does not work with
2765 * get_user_pages_unlocked() (see comments in that function)
2766 */
2767 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2768 mmap_read_lock(current->mm);
64019a2e 2769 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2770 start, nr_pages,
2771 pages, NULL, gup_flags);
d8ed45c5 2772 mmap_read_unlock(current->mm);
7af75561
IW
2773 } else {
2774 ret = get_user_pages_unlocked(start, nr_pages,
2775 pages, gup_flags);
2776 }
2777
2778 return ret;
2779}
2780
c28b1fc7
JG
2781static unsigned long lockless_pages_from_mm(unsigned long start,
2782 unsigned long end,
2783 unsigned int gup_flags,
2784 struct page **pages)
2785{
2786 unsigned long flags;
2787 int nr_pinned = 0;
57efa1fe 2788 unsigned seq;
c28b1fc7
JG
2789
2790 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2791 !gup_fast_permitted(start, end))
2792 return 0;
2793
57efa1fe
JG
2794 if (gup_flags & FOLL_PIN) {
2795 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2796 if (seq & 1)
2797 return 0;
2798 }
2799
c28b1fc7
JG
2800 /*
2801 * Disable interrupts. The nested form is used, in order to allow full,
2802 * general purpose use of this routine.
2803 *
2804 * With interrupts disabled, we block page table pages from being freed
2805 * from under us. See struct mmu_table_batch comments in
2806 * include/asm-generic/tlb.h for more details.
2807 *
2808 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2809 * that come from THPs splitting.
2810 */
2811 local_irq_save(flags);
2812 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2813 local_irq_restore(flags);
57efa1fe
JG
2814
2815 /*
2816 * When pinning pages for DMA there could be a concurrent write protect
2817 * from fork() via copy_page_range(), in this case always fail fast GUP.
2818 */
2819 if (gup_flags & FOLL_PIN) {
2820 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2821 unpin_user_pages(pages, nr_pinned);
2822 return 0;
2823 }
2824 }
c28b1fc7
JG
2825 return nr_pinned;
2826}
2827
2828static int internal_get_user_pages_fast(unsigned long start,
2829 unsigned long nr_pages,
eddb1c22
JH
2830 unsigned int gup_flags,
2831 struct page **pages)
2667f50e 2832{
c28b1fc7
JG
2833 unsigned long len, end;
2834 unsigned long nr_pinned;
2835 int ret;
2667f50e 2836
f4000fdf 2837 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2838 FOLL_FORCE | FOLL_PIN | FOLL_GET |
55b8fe70 2839 FOLL_FAST_ONLY | FOLL_NOFAULT)))
817be129
CH
2840 return -EINVAL;
2841
a458b76a
AA
2842 if (gup_flags & FOLL_PIN)
2843 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2844
f81cd178 2845 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2846 might_lock_read(&current->mm->mmap_lock);
f81cd178 2847
f455c854 2848 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2849 len = nr_pages << PAGE_SHIFT;
2850 if (check_add_overflow(start, len, &end))
c61611f7 2851 return 0;
96d4f267 2852 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2853 return -EFAULT;
73e10a61 2854
c28b1fc7
JG
2855 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2856 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2857 return nr_pinned;
2667f50e 2858
c28b1fc7
JG
2859 /* Slow path: try to get the remaining pages with get_user_pages */
2860 start += nr_pinned << PAGE_SHIFT;
2861 pages += nr_pinned;
2862 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2863 pages);
2864 if (ret < 0) {
2865 /*
2866 * The caller has to unpin the pages we already pinned so
2867 * returning -errno is not an option
2868 */
2869 if (nr_pinned)
2870 return nr_pinned;
2871 return ret;
2667f50e 2872 }
c28b1fc7 2873 return ret + nr_pinned;
2667f50e 2874}
c28b1fc7 2875
dadbb612
SJ
2876/**
2877 * get_user_pages_fast_only() - pin user pages in memory
2878 * @start: starting user address
2879 * @nr_pages: number of pages from start to pin
2880 * @gup_flags: flags modifying pin behaviour
2881 * @pages: array that receives pointers to the pages pinned.
2882 * Should be at least nr_pages long.
2883 *
9e1f0580
JH
2884 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2885 * the regular GUP.
2886 * Note a difference with get_user_pages_fast: this always returns the
2887 * number of pages pinned, 0 if no pages were pinned.
2888 *
2889 * If the architecture does not support this function, simply return with no
2890 * pages pinned.
2891 *
2892 * Careful, careful! COW breaking can go either way, so a non-write
2893 * access can get ambiguous page results. If you call this function without
2894 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2895 */
dadbb612
SJ
2896int get_user_pages_fast_only(unsigned long start, int nr_pages,
2897 unsigned int gup_flags, struct page **pages)
9e1f0580 2898{
376a34ef 2899 int nr_pinned;
9e1f0580
JH
2900 /*
2901 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2902 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2903 *
2904 * FOLL_FAST_ONLY is required in order to match the API description of
2905 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2906 */
dadbb612 2907 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2908
376a34ef
JH
2909 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2910 pages);
9e1f0580
JH
2911
2912 /*
376a34ef
JH
2913 * As specified in the API description above, this routine is not
2914 * allowed to return negative values. However, the common core
2915 * routine internal_get_user_pages_fast() *can* return -errno.
2916 * Therefore, correct for that here:
9e1f0580 2917 */
376a34ef
JH
2918 if (nr_pinned < 0)
2919 nr_pinned = 0;
9e1f0580
JH
2920
2921 return nr_pinned;
2922}
dadbb612 2923EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2924
eddb1c22
JH
2925/**
2926 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2927 * @start: starting user address
2928 * @nr_pages: number of pages from start to pin
2929 * @gup_flags: flags modifying pin behaviour
2930 * @pages: array that receives pointers to the pages pinned.
2931 * Should be at least nr_pages long.
eddb1c22 2932 *
c1e8d7c6 2933 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2934 * If not successful, it will fall back to taking the lock and
2935 * calling get_user_pages().
2936 *
2937 * Returns number of pages pinned. This may be fewer than the number requested.
2938 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2939 * -errno.
2940 */
2941int get_user_pages_fast(unsigned long start, int nr_pages,
2942 unsigned int gup_flags, struct page **pages)
2943{
447f3e45 2944 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2945 return -EINVAL;
2946
94202f12
JH
2947 /*
2948 * The caller may or may not have explicitly set FOLL_GET; either way is
2949 * OK. However, internally (within mm/gup.c), gup fast variants must set
2950 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2951 * request.
2952 */
2953 gup_flags |= FOLL_GET;
eddb1c22
JH
2954 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2955}
050a9adc 2956EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2957
2958/**
2959 * pin_user_pages_fast() - pin user pages in memory without taking locks
2960 *
3faa52c0
JH
2961 * @start: starting user address
2962 * @nr_pages: number of pages from start to pin
2963 * @gup_flags: flags modifying pin behaviour
2964 * @pages: array that receives pointers to the pages pinned.
2965 * Should be at least nr_pages long.
2966 *
2967 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2968 * get_user_pages_fast() for documentation on the function arguments, because
2969 * the arguments here are identical.
2970 *
2971 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2972 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2973 */
2974int pin_user_pages_fast(unsigned long start, int nr_pages,
2975 unsigned int gup_flags, struct page **pages)
2976{
3faa52c0
JH
2977 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2978 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2979 return -EINVAL;
2980
2981 gup_flags |= FOLL_PIN;
2982 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2983}
2984EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2985
104acc32 2986/*
dadbb612
SJ
2987 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2988 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2989 *
2990 * The API rules are the same, too: no negative values may be returned.
2991 */
2992int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2993 unsigned int gup_flags, struct page **pages)
2994{
2995 int nr_pinned;
2996
2997 /*
2998 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2999 * rules require returning 0, rather than -errno:
3000 */
3001 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3002 return 0;
3003 /*
3004 * FOLL_FAST_ONLY is required in order to match the API description of
3005 * this routine: no fall back to regular ("slow") GUP.
3006 */
3007 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3008 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3009 pages);
3010 /*
3011 * This routine is not allowed to return negative values. However,
3012 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3013 * correct for that here:
3014 */
3015 if (nr_pinned < 0)
3016 nr_pinned = 0;
3017
3018 return nr_pinned;
3019}
3020EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3021
eddb1c22 3022/**
64019a2e 3023 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3024 *
3faa52c0
JH
3025 * @mm: mm_struct of target mm
3026 * @start: starting user address
3027 * @nr_pages: number of pages from start to pin
3028 * @gup_flags: flags modifying lookup behaviour
3029 * @pages: array that receives pointers to the pages pinned.
3030 * Should be at least nr_pages long. Or NULL, if caller
3031 * only intends to ensure the pages are faulted in.
3032 * @vmas: array of pointers to vmas corresponding to each page.
3033 * Or NULL if the caller does not require them.
3034 * @locked: pointer to lock flag indicating whether lock is held and
3035 * subsequently whether VM_FAULT_RETRY functionality can be
3036 * utilised. Lock must initially be held.
3037 *
3038 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3039 * get_user_pages_remote() for documentation on the function arguments, because
3040 * the arguments here are identical.
3041 *
3042 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3043 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3044 */
64019a2e 3045long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3046 unsigned long start, unsigned long nr_pages,
3047 unsigned int gup_flags, struct page **pages,
3048 struct vm_area_struct **vmas, int *locked)
3049{
3faa52c0
JH
3050 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3051 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3052 return -EINVAL;
3053
3054 gup_flags |= FOLL_PIN;
64019a2e 3055 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 3056 pages, vmas, locked);
eddb1c22
JH
3057}
3058EXPORT_SYMBOL(pin_user_pages_remote);
3059
3060/**
3061 * pin_user_pages() - pin user pages in memory for use by other devices
3062 *
3faa52c0
JH
3063 * @start: starting user address
3064 * @nr_pages: number of pages from start to pin
3065 * @gup_flags: flags modifying lookup behaviour
3066 * @pages: array that receives pointers to the pages pinned.
3067 * Should be at least nr_pages long. Or NULL, if caller
3068 * only intends to ensure the pages are faulted in.
3069 * @vmas: array of pointers to vmas corresponding to each page.
3070 * Or NULL if the caller does not require them.
3071 *
3072 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3073 * FOLL_PIN is set.
3074 *
3075 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3076 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3077 */
3078long pin_user_pages(unsigned long start, unsigned long nr_pages,
3079 unsigned int gup_flags, struct page **pages,
3080 struct vm_area_struct **vmas)
3081{
3faa52c0
JH
3082 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3083 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3084 return -EINVAL;
3085
3086 gup_flags |= FOLL_PIN;
64019a2e 3087 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 3088 pages, vmas, gup_flags);
eddb1c22
JH
3089}
3090EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3091
3092/*
3093 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3094 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3095 * FOLL_PIN and rejects FOLL_GET.
3096 */
3097long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3098 struct page **pages, unsigned int gup_flags)
3099{
3100 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3101 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3102 return -EINVAL;
3103
3104 gup_flags |= FOLL_PIN;
3105 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3106}
3107EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
3108
3109/*
3110 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3111 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3112 * FOLL_GET.
3113 */
3114long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3115 unsigned int gup_flags, struct page **pages,
3116 int *locked)
3117{
3118 /*
3119 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3120 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3121 * vmas. As there are no users of this flag in this call we simply
3122 * disallow this option for now.
3123 */
3124 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3125 return -EINVAL;
3126
3127 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3128 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3129 return -EINVAL;
3130
3131 gup_flags |= FOLL_PIN;
64019a2e 3132 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
3133 pages, NULL, locked,
3134 gup_flags | FOLL_TOUCH);
3135}
3136EXPORT_SYMBOL(pin_user_pages_locked);