mm: gup: remove set but unused local variable major
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
47e29d32
JH
32static void hpage_pincount_add(struct page *page, int refs)
33{
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38}
39
40static void hpage_pincount_sub(struct page *page, int refs)
41{
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46}
47
c24d3732
JH
48/* Equivalent to calling put_page() @refs times. */
49static void put_page_refs(struct page *page, int refs)
50{
51#ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 return;
54#endif
55
56 /*
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
59 */
60 if (refs > 1)
61 page_ref_sub(page, refs - 1);
62 put_page(page);
63}
64
a707cdd5
JH
65/*
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
68 */
69static inline struct page *try_get_compound_head(struct page *page, int refs)
70{
71 struct page *head = compound_head(page);
72
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 return NULL;
75 if (unlikely(!page_cache_add_speculative(head, refs)))
76 return NULL;
c24d3732
JH
77
78 /*
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
85 * belong together.
86 */
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
89 return NULL;
90 }
91
a707cdd5
JH
92 return head;
93}
94
3faa52c0
JH
95/*
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
98 *
99 * "grab" names in this file mean, "look at flags to decide whether to use
100 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
101 *
102 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
103 * same time. (That's true throughout the get_user_pages*() and
104 * pin_user_pages*() APIs.) Cases:
105 *
106 * FOLL_GET: page's refcount will be incremented by 1.
107 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
108 *
109 * Return: head page (with refcount appropriately incremented) for success, or
110 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
111 * considered failure, and furthermore, a likely bug in the caller, so a warning
112 * is also emitted.
113 */
0fa5bc40
JM
114__maybe_unused struct page *try_grab_compound_head(struct page *page,
115 int refs, unsigned int flags)
3faa52c0
JH
116{
117 if (flags & FOLL_GET)
118 return try_get_compound_head(page, refs);
119 else if (flags & FOLL_PIN) {
1970dc6f
JH
120 int orig_refs = refs;
121
df3a0a21 122 /*
d1e153fe
PT
123 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
124 * right zone, so fail and let the caller fall back to the slow
125 * path.
df3a0a21 126 */
d1e153fe
PT
127 if (unlikely((flags & FOLL_LONGTERM) &&
128 !is_pinnable_page(page)))
df3a0a21
PL
129 return NULL;
130
c24d3732
JH
131 /*
132 * CAUTION: Don't use compound_head() on the page before this
133 * point, the result won't be stable.
134 */
135 page = try_get_compound_head(page, refs);
136 if (!page)
137 return NULL;
138
47e29d32
JH
139 /*
140 * When pinning a compound page of order > 1 (which is what
141 * hpage_pincount_available() checks for), use an exact count to
142 * track it, via hpage_pincount_add/_sub().
143 *
144 * However, be sure to *also* increment the normal page refcount
145 * field at least once, so that the page really is pinned.
146 */
47e29d32
JH
147 if (hpage_pincount_available(page))
148 hpage_pincount_add(page, refs);
c24d3732
JH
149 else
150 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
47e29d32 151
1970dc6f
JH
152 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
153 orig_refs);
154
47e29d32 155 return page;
3faa52c0
JH
156 }
157
158 WARN_ON_ONCE(1);
159 return NULL;
160}
161
4509b42c
JG
162static void put_compound_head(struct page *page, int refs, unsigned int flags)
163{
164 if (flags & FOLL_PIN) {
165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
166 refs);
167
168 if (hpage_pincount_available(page))
169 hpage_pincount_sub(page, refs);
170 else
171 refs *= GUP_PIN_COUNTING_BIAS;
172 }
173
c24d3732 174 put_page_refs(page, refs);
4509b42c
JG
175}
176
3faa52c0
JH
177/**
178 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
179 *
180 * This might not do anything at all, depending on the flags argument.
181 *
182 * "grab" names in this file mean, "look at flags to decide whether to use
183 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
184 *
185 * @page: pointer to page to be grabbed
186 * @flags: gup flags: these are the FOLL_* flag values.
187 *
188 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
189 * time. Cases:
190 *
191 * FOLL_GET: page's refcount will be incremented by 1.
192 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
193 *
194 * Return: true for success, or if no action was required (if neither FOLL_PIN
195 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
196 * FOLL_PIN was set, but the page could not be grabbed.
197 */
198bool __must_check try_grab_page(struct page *page, unsigned int flags)
199{
200 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
201
202 if (flags & FOLL_GET)
203 return try_get_page(page);
204 else if (flags & FOLL_PIN) {
47e29d32
JH
205 int refs = 1;
206
3faa52c0
JH
207 page = compound_head(page);
208
209 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
210 return false;
211
47e29d32
JH
212 if (hpage_pincount_available(page))
213 hpage_pincount_add(page, 1);
214 else
215 refs = GUP_PIN_COUNTING_BIAS;
216
217 /*
218 * Similar to try_grab_compound_head(): even if using the
219 * hpage_pincount_add/_sub() routines, be sure to
220 * *also* increment the normal page refcount field at least
221 * once, so that the page really is pinned.
222 */
223 page_ref_add(page, refs);
1970dc6f
JH
224
225 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
226 }
227
228 return true;
229}
230
3faa52c0
JH
231/**
232 * unpin_user_page() - release a dma-pinned page
233 * @page: pointer to page to be released
234 *
235 * Pages that were pinned via pin_user_pages*() must be released via either
236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237 * that such pages can be separately tracked and uniquely handled. In
238 * particular, interactions with RDMA and filesystems need special handling.
239 */
240void unpin_user_page(struct page *page)
241{
4509b42c 242 put_compound_head(compound_head(page), 1, FOLL_PIN);
3faa52c0
JH
243}
244EXPORT_SYMBOL(unpin_user_page);
245
458a4f78
JM
246static inline void compound_range_next(unsigned long i, unsigned long npages,
247 struct page **list, struct page **head,
248 unsigned int *ntails)
249{
250 struct page *next, *page;
251 unsigned int nr = 1;
252
253 if (i >= npages)
254 return;
255
256 next = *list + i;
257 page = compound_head(next);
258 if (PageCompound(page) && compound_order(page) >= 1)
259 nr = min_t(unsigned int,
260 page + compound_nr(page) - next, npages - i);
261
262 *head = page;
263 *ntails = nr;
264}
265
266#define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
267 for (__i = 0, \
268 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
269 __i < __npages; __i += __ntails, \
270 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
271
8745d7f6
JM
272static inline void compound_next(unsigned long i, unsigned long npages,
273 struct page **list, struct page **head,
274 unsigned int *ntails)
275{
276 struct page *page;
277 unsigned int nr;
278
279 if (i >= npages)
280 return;
281
282 page = compound_head(list[i]);
283 for (nr = i + 1; nr < npages; nr++) {
284 if (compound_head(list[nr]) != page)
285 break;
286 }
287
288 *head = page;
289 *ntails = nr - i;
290}
291
292#define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
293 for (__i = 0, \
294 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
295 __i < __npages; __i += __ntails, \
296 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
297
fc1d8e7c 298/**
f1f6a7dd 299 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 300 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 301 * @npages: number of pages in the @pages array.
2d15eb31 302 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
303 *
304 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
305 * variants called on that page.
306 *
307 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 308 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
309 * listed as clean. In any case, releases all pages using unpin_user_page(),
310 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 311 *
f1f6a7dd 312 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 313 *
2d15eb31 314 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
315 * required, then the caller should a) verify that this is really correct,
316 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 317 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
318 *
319 */
f1f6a7dd
JH
320void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
321 bool make_dirty)
fc1d8e7c 322{
2d15eb31 323 unsigned long index;
31b912de
JM
324 struct page *head;
325 unsigned int ntails;
2d15eb31 326
327 if (!make_dirty) {
f1f6a7dd 328 unpin_user_pages(pages, npages);
2d15eb31 329 return;
330 }
331
31b912de 332 for_each_compound_head(index, pages, npages, head, ntails) {
2d15eb31 333 /*
334 * Checking PageDirty at this point may race with
335 * clear_page_dirty_for_io(), but that's OK. Two key
336 * cases:
337 *
338 * 1) This code sees the page as already dirty, so it
339 * skips the call to set_page_dirty(). That could happen
340 * because clear_page_dirty_for_io() called
341 * page_mkclean(), followed by set_page_dirty().
342 * However, now the page is going to get written back,
343 * which meets the original intention of setting it
344 * dirty, so all is well: clear_page_dirty_for_io() goes
345 * on to call TestClearPageDirty(), and write the page
346 * back.
347 *
348 * 2) This code sees the page as clean, so it calls
349 * set_page_dirty(). The page stays dirty, despite being
350 * written back, so it gets written back again in the
351 * next writeback cycle. This is harmless.
352 */
31b912de
JM
353 if (!PageDirty(head))
354 set_page_dirty_lock(head);
355 put_compound_head(head, ntails, FOLL_PIN);
2d15eb31 356 }
fc1d8e7c 357}
f1f6a7dd 358EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 359
458a4f78
JM
360/**
361 * unpin_user_page_range_dirty_lock() - release and optionally dirty
362 * gup-pinned page range
363 *
364 * @page: the starting page of a range maybe marked dirty, and definitely released.
365 * @npages: number of consecutive pages to release.
366 * @make_dirty: whether to mark the pages dirty
367 *
368 * "gup-pinned page range" refers to a range of pages that has had one of the
369 * pin_user_pages() variants called on that page.
370 *
371 * For the page ranges defined by [page .. page+npages], make that range (or
372 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
373 * page range was previously listed as clean.
374 *
375 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
376 * required, then the caller should a) verify that this is really correct,
377 * because _lock() is usually required, and b) hand code it:
378 * set_page_dirty_lock(), unpin_user_page().
379 *
380 */
381void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
382 bool make_dirty)
383{
384 unsigned long index;
385 struct page *head;
386 unsigned int ntails;
387
388 for_each_compound_range(index, &page, npages, head, ntails) {
389 if (make_dirty && !PageDirty(head))
390 set_page_dirty_lock(head);
391 put_compound_head(head, ntails, FOLL_PIN);
392 }
393}
394EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
395
fc1d8e7c 396/**
f1f6a7dd 397 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
398 * @pages: array of pages to be marked dirty and released.
399 * @npages: number of pages in the @pages array.
400 *
f1f6a7dd 401 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 402 *
f1f6a7dd 403 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 404 */
f1f6a7dd 405void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
406{
407 unsigned long index;
31b912de
JM
408 struct page *head;
409 unsigned int ntails;
fc1d8e7c 410
146608bb
JH
411 /*
412 * If this WARN_ON() fires, then the system *might* be leaking pages (by
413 * leaving them pinned), but probably not. More likely, gup/pup returned
414 * a hard -ERRNO error to the caller, who erroneously passed it here.
415 */
416 if (WARN_ON(IS_ERR_VALUE(npages)))
417 return;
31b912de
JM
418
419 for_each_compound_head(index, pages, npages, head, ntails)
420 put_compound_head(head, ntails, FOLL_PIN);
fc1d8e7c 421}
f1f6a7dd 422EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 423
a458b76a
AA
424/*
425 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
426 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
427 * cache bouncing on large SMP machines for concurrent pinned gups.
428 */
429static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
430{
431 if (!test_bit(MMF_HAS_PINNED, mm_flags))
432 set_bit(MMF_HAS_PINNED, mm_flags);
433}
434
050a9adc 435#ifdef CONFIG_MMU
69e68b4f
KS
436static struct page *no_page_table(struct vm_area_struct *vma,
437 unsigned int flags)
4bbd4c77 438{
69e68b4f
KS
439 /*
440 * When core dumping an enormous anonymous area that nobody
441 * has touched so far, we don't want to allocate unnecessary pages or
442 * page tables. Return error instead of NULL to skip handle_mm_fault,
443 * then get_dump_page() will return NULL to leave a hole in the dump.
444 * But we can only make this optimization where a hole would surely
445 * be zero-filled if handle_mm_fault() actually did handle it.
446 */
a0137f16
AK
447 if ((flags & FOLL_DUMP) &&
448 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
449 return ERR_PTR(-EFAULT);
450 return NULL;
451}
4bbd4c77 452
1027e443
KS
453static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
454 pte_t *pte, unsigned int flags)
455{
456 /* No page to get reference */
457 if (flags & FOLL_GET)
458 return -EFAULT;
459
460 if (flags & FOLL_TOUCH) {
461 pte_t entry = *pte;
462
463 if (flags & FOLL_WRITE)
464 entry = pte_mkdirty(entry);
465 entry = pte_mkyoung(entry);
466
467 if (!pte_same(*pte, entry)) {
468 set_pte_at(vma->vm_mm, address, pte, entry);
469 update_mmu_cache(vma, address, pte);
470 }
471 }
472
473 /* Proper page table entry exists, but no corresponding struct page */
474 return -EEXIST;
475}
476
19be0eaf 477/*
a308c71b
PX
478 * FOLL_FORCE can write to even unwritable pte's, but only
479 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
480 */
481static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
482{
a308c71b
PX
483 return pte_write(pte) ||
484 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
485}
486
69e68b4f 487static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
488 unsigned long address, pmd_t *pmd, unsigned int flags,
489 struct dev_pagemap **pgmap)
69e68b4f
KS
490{
491 struct mm_struct *mm = vma->vm_mm;
492 struct page *page;
493 spinlock_t *ptl;
494 pte_t *ptep, pte;
f28d4363 495 int ret;
4bbd4c77 496
eddb1c22
JH
497 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
498 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
499 (FOLL_PIN | FOLL_GET)))
500 return ERR_PTR(-EINVAL);
69e68b4f 501retry:
4bbd4c77 502 if (unlikely(pmd_bad(*pmd)))
69e68b4f 503 return no_page_table(vma, flags);
4bbd4c77
KS
504
505 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
506 pte = *ptep;
507 if (!pte_present(pte)) {
508 swp_entry_t entry;
509 /*
510 * KSM's break_ksm() relies upon recognizing a ksm page
511 * even while it is being migrated, so for that case we
512 * need migration_entry_wait().
513 */
514 if (likely(!(flags & FOLL_MIGRATION)))
515 goto no_page;
0661a336 516 if (pte_none(pte))
4bbd4c77
KS
517 goto no_page;
518 entry = pte_to_swp_entry(pte);
519 if (!is_migration_entry(entry))
520 goto no_page;
521 pte_unmap_unlock(ptep, ptl);
522 migration_entry_wait(mm, pmd, address);
69e68b4f 523 goto retry;
4bbd4c77 524 }
8a0516ed 525 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 526 goto no_page;
19be0eaf 527 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
528 pte_unmap_unlock(ptep, ptl);
529 return NULL;
530 }
4bbd4c77
KS
531
532 page = vm_normal_page(vma, address, pte);
3faa52c0 533 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 534 /*
3faa52c0
JH
535 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
536 * case since they are only valid while holding the pgmap
537 * reference.
3565fce3 538 */
df06b37f
KB
539 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
540 if (*pgmap)
3565fce3
DW
541 page = pte_page(pte);
542 else
543 goto no_page;
544 } else if (unlikely(!page)) {
1027e443
KS
545 if (flags & FOLL_DUMP) {
546 /* Avoid special (like zero) pages in core dumps */
547 page = ERR_PTR(-EFAULT);
548 goto out;
549 }
550
551 if (is_zero_pfn(pte_pfn(pte))) {
552 page = pte_page(pte);
553 } else {
1027e443
KS
554 ret = follow_pfn_pte(vma, address, ptep, flags);
555 page = ERR_PTR(ret);
556 goto out;
557 }
4bbd4c77
KS
558 }
559
3faa52c0
JH
560 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
561 if (unlikely(!try_grab_page(page, flags))) {
562 page = ERR_PTR(-ENOMEM);
563 goto out;
8fde12ca 564 }
f28d4363
CI
565 /*
566 * We need to make the page accessible if and only if we are going
567 * to access its content (the FOLL_PIN case). Please see
568 * Documentation/core-api/pin_user_pages.rst for details.
569 */
570 if (flags & FOLL_PIN) {
571 ret = arch_make_page_accessible(page);
572 if (ret) {
573 unpin_user_page(page);
574 page = ERR_PTR(ret);
575 goto out;
576 }
577 }
4bbd4c77
KS
578 if (flags & FOLL_TOUCH) {
579 if ((flags & FOLL_WRITE) &&
580 !pte_dirty(pte) && !PageDirty(page))
581 set_page_dirty(page);
582 /*
583 * pte_mkyoung() would be more correct here, but atomic care
584 * is needed to avoid losing the dirty bit: it is easier to use
585 * mark_page_accessed().
586 */
587 mark_page_accessed(page);
588 }
de60f5f1 589 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
590 /* Do not mlock pte-mapped THP */
591 if (PageTransCompound(page))
592 goto out;
593
4bbd4c77
KS
594 /*
595 * The preliminary mapping check is mainly to avoid the
596 * pointless overhead of lock_page on the ZERO_PAGE
597 * which might bounce very badly if there is contention.
598 *
599 * If the page is already locked, we don't need to
600 * handle it now - vmscan will handle it later if and
601 * when it attempts to reclaim the page.
602 */
603 if (page->mapping && trylock_page(page)) {
604 lru_add_drain(); /* push cached pages to LRU */
605 /*
606 * Because we lock page here, and migration is
607 * blocked by the pte's page reference, and we
608 * know the page is still mapped, we don't even
609 * need to check for file-cache page truncation.
610 */
611 mlock_vma_page(page);
612 unlock_page(page);
613 }
614 }
1027e443 615out:
4bbd4c77 616 pte_unmap_unlock(ptep, ptl);
4bbd4c77 617 return page;
4bbd4c77
KS
618no_page:
619 pte_unmap_unlock(ptep, ptl);
620 if (!pte_none(pte))
69e68b4f
KS
621 return NULL;
622 return no_page_table(vma, flags);
623}
624
080dbb61
AK
625static struct page *follow_pmd_mask(struct vm_area_struct *vma,
626 unsigned long address, pud_t *pudp,
df06b37f
KB
627 unsigned int flags,
628 struct follow_page_context *ctx)
69e68b4f 629{
68827280 630 pmd_t *pmd, pmdval;
69e68b4f
KS
631 spinlock_t *ptl;
632 struct page *page;
633 struct mm_struct *mm = vma->vm_mm;
634
080dbb61 635 pmd = pmd_offset(pudp, address);
68827280
HY
636 /*
637 * The READ_ONCE() will stabilize the pmdval in a register or
638 * on the stack so that it will stop changing under the code.
639 */
640 pmdval = READ_ONCE(*pmd);
641 if (pmd_none(pmdval))
69e68b4f 642 return no_page_table(vma, flags);
be9d3045 643 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
644 page = follow_huge_pmd(mm, address, pmd, flags);
645 if (page)
646 return page;
647 return no_page_table(vma, flags);
69e68b4f 648 }
68827280 649 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 650 page = follow_huge_pd(vma, address,
68827280 651 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
652 PMD_SHIFT);
653 if (page)
654 return page;
655 return no_page_table(vma, flags);
656 }
84c3fc4e 657retry:
68827280 658 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
659 if (likely(!(flags & FOLL_MIGRATION)))
660 return no_page_table(vma, flags);
661 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
662 !is_pmd_migration_entry(pmdval));
663 if (is_pmd_migration_entry(pmdval))
84c3fc4e 664 pmd_migration_entry_wait(mm, pmd);
68827280
HY
665 pmdval = READ_ONCE(*pmd);
666 /*
667 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 668 * mmap_lock is held in read mode
68827280
HY
669 */
670 if (pmd_none(pmdval))
671 return no_page_table(vma, flags);
84c3fc4e
ZY
672 goto retry;
673 }
68827280 674 if (pmd_devmap(pmdval)) {
3565fce3 675 ptl = pmd_lock(mm, pmd);
df06b37f 676 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
677 spin_unlock(ptl);
678 if (page)
679 return page;
680 }
68827280 681 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 682 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 683
68827280 684 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
685 return no_page_table(vma, flags);
686
84c3fc4e 687retry_locked:
6742d293 688 ptl = pmd_lock(mm, pmd);
68827280
HY
689 if (unlikely(pmd_none(*pmd))) {
690 spin_unlock(ptl);
691 return no_page_table(vma, flags);
692 }
84c3fc4e
ZY
693 if (unlikely(!pmd_present(*pmd))) {
694 spin_unlock(ptl);
695 if (likely(!(flags & FOLL_MIGRATION)))
696 return no_page_table(vma, flags);
697 pmd_migration_entry_wait(mm, pmd);
698 goto retry_locked;
699 }
6742d293
KS
700 if (unlikely(!pmd_trans_huge(*pmd))) {
701 spin_unlock(ptl);
df06b37f 702 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 703 }
4066c119 704 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
705 int ret;
706 page = pmd_page(*pmd);
707 if (is_huge_zero_page(page)) {
708 spin_unlock(ptl);
709 ret = 0;
78ddc534 710 split_huge_pmd(vma, pmd, address);
337d9abf
NH
711 if (pmd_trans_unstable(pmd))
712 ret = -EBUSY;
4066c119 713 } else {
bfe7b00d
SL
714 spin_unlock(ptl);
715 split_huge_pmd(vma, pmd, address);
716 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
717 }
718
719 return ret ? ERR_PTR(ret) :
df06b37f 720 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 721 }
6742d293
KS
722 page = follow_trans_huge_pmd(vma, address, pmd, flags);
723 spin_unlock(ptl);
df06b37f 724 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 725 return page;
4bbd4c77
KS
726}
727
080dbb61
AK
728static struct page *follow_pud_mask(struct vm_area_struct *vma,
729 unsigned long address, p4d_t *p4dp,
df06b37f
KB
730 unsigned int flags,
731 struct follow_page_context *ctx)
080dbb61
AK
732{
733 pud_t *pud;
734 spinlock_t *ptl;
735 struct page *page;
736 struct mm_struct *mm = vma->vm_mm;
737
738 pud = pud_offset(p4dp, address);
739 if (pud_none(*pud))
740 return no_page_table(vma, flags);
be9d3045 741 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
742 page = follow_huge_pud(mm, address, pud, flags);
743 if (page)
744 return page;
745 return no_page_table(vma, flags);
746 }
4dc71451
AK
747 if (is_hugepd(__hugepd(pud_val(*pud)))) {
748 page = follow_huge_pd(vma, address,
749 __hugepd(pud_val(*pud)), flags,
750 PUD_SHIFT);
751 if (page)
752 return page;
753 return no_page_table(vma, flags);
754 }
080dbb61
AK
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
df06b37f 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
df06b37f 765 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
766}
767
080dbb61
AK
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
df06b37f
KB
770 unsigned int flags,
771 struct follow_page_context *ctx)
080dbb61
AK
772{
773 p4d_t *p4d;
4dc71451 774 struct page *page;
080dbb61
AK
775
776 p4d = p4d_offset(pgdp, address);
777 if (p4d_none(*p4d))
778 return no_page_table(vma, flags);
779 BUILD_BUG_ON(p4d_huge(*p4d));
780 if (unlikely(p4d_bad(*p4d)))
781 return no_page_table(vma, flags);
782
4dc71451
AK
783 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
784 page = follow_huge_pd(vma, address,
785 __hugepd(p4d_val(*p4d)), flags,
786 P4D_SHIFT);
787 if (page)
788 return page;
789 return no_page_table(vma, flags);
790 }
df06b37f 791 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
792}
793
794/**
795 * follow_page_mask - look up a page descriptor from a user-virtual address
796 * @vma: vm_area_struct mapping @address
797 * @address: virtual address to look up
798 * @flags: flags modifying lookup behaviour
78179556
MR
799 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
800 * pointer to output page_mask
080dbb61
AK
801 *
802 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
803 *
78179556
MR
804 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
805 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
806 *
807 * On output, the @ctx->page_mask is set according to the size of the page.
808 *
809 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
810 * an error pointer if there is a mapping to something not represented
811 * by a page descriptor (see also vm_normal_page()).
812 */
a7030aea 813static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 814 unsigned long address, unsigned int flags,
df06b37f 815 struct follow_page_context *ctx)
080dbb61
AK
816{
817 pgd_t *pgd;
818 struct page *page;
819 struct mm_struct *mm = vma->vm_mm;
820
df06b37f 821 ctx->page_mask = 0;
080dbb61
AK
822
823 /* make this handle hugepd */
824 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
825 if (!IS_ERR(page)) {
3faa52c0 826 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
827 return page;
828 }
829
830 pgd = pgd_offset(mm, address);
831
832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 return no_page_table(vma, flags);
834
faaa5b62
AK
835 if (pgd_huge(*pgd)) {
836 page = follow_huge_pgd(mm, address, pgd, flags);
837 if (page)
838 return page;
839 return no_page_table(vma, flags);
840 }
4dc71451
AK
841 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
842 page = follow_huge_pd(vma, address,
843 __hugepd(pgd_val(*pgd)), flags,
844 PGDIR_SHIFT);
845 if (page)
846 return page;
847 return no_page_table(vma, flags);
848 }
faaa5b62 849
df06b37f
KB
850 return follow_p4d_mask(vma, address, pgd, flags, ctx);
851}
852
853struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
854 unsigned int foll_flags)
855{
856 struct follow_page_context ctx = { NULL };
857 struct page *page;
858
1507f512
MR
859 if (vma_is_secretmem(vma))
860 return NULL;
861
df06b37f
KB
862 page = follow_page_mask(vma, address, foll_flags, &ctx);
863 if (ctx.pgmap)
864 put_dev_pagemap(ctx.pgmap);
865 return page;
080dbb61
AK
866}
867
f2b495ca
KS
868static int get_gate_page(struct mm_struct *mm, unsigned long address,
869 unsigned int gup_flags, struct vm_area_struct **vma,
870 struct page **page)
871{
872 pgd_t *pgd;
c2febafc 873 p4d_t *p4d;
f2b495ca
KS
874 pud_t *pud;
875 pmd_t *pmd;
876 pte_t *pte;
877 int ret = -EFAULT;
878
879 /* user gate pages are read-only */
880 if (gup_flags & FOLL_WRITE)
881 return -EFAULT;
882 if (address > TASK_SIZE)
883 pgd = pgd_offset_k(address);
884 else
885 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
886 if (pgd_none(*pgd))
887 return -EFAULT;
c2febafc 888 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
889 if (p4d_none(*p4d))
890 return -EFAULT;
c2febafc 891 pud = pud_offset(p4d, address);
b5d1c39f
AL
892 if (pud_none(*pud))
893 return -EFAULT;
f2b495ca 894 pmd = pmd_offset(pud, address);
84c3fc4e 895 if (!pmd_present(*pmd))
f2b495ca
KS
896 return -EFAULT;
897 VM_BUG_ON(pmd_trans_huge(*pmd));
898 pte = pte_offset_map(pmd, address);
899 if (pte_none(*pte))
900 goto unmap;
901 *vma = get_gate_vma(mm);
902 if (!page)
903 goto out;
904 *page = vm_normal_page(*vma, address, *pte);
905 if (!*page) {
906 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
907 goto unmap;
908 *page = pte_page(*pte);
909 }
9fa2dd94 910 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
911 ret = -ENOMEM;
912 goto unmap;
913 }
f2b495ca
KS
914out:
915 ret = 0;
916unmap:
917 pte_unmap(pte);
918 return ret;
919}
920
9a95f3cf 921/*
c1e8d7c6
ML
922 * mmap_lock must be held on entry. If @locked != NULL and *@flags
923 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 924 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 925 */
64019a2e 926static int faultin_page(struct vm_area_struct *vma,
4f6da934 927 unsigned long address, unsigned int *flags, int *locked)
16744483 928{
16744483 929 unsigned int fault_flags = 0;
2b740303 930 vm_fault_t ret;
16744483 931
de60f5f1
EM
932 /* mlock all present pages, but do not fault in new pages */
933 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
934 return -ENOENT;
16744483
KS
935 if (*flags & FOLL_WRITE)
936 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
937 if (*flags & FOLL_REMOTE)
938 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 939 if (locked)
71335f37 940 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
941 if (*flags & FOLL_NOWAIT)
942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 943 if (*flags & FOLL_TRIED) {
4426e945
PX
944 /*
945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
946 * can co-exist
947 */
234b239b
ALC
948 fault_flags |= FAULT_FLAG_TRIED;
949 }
16744483 950
bce617ed 951 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 952 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
953 int err = vm_fault_to_errno(ret, *flags);
954
955 if (err)
956 return err;
16744483
KS
957 BUG();
958 }
959
16744483 960 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
961 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
962 *locked = 0;
16744483
KS
963 return -EBUSY;
964 }
965
966 /*
967 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
968 * necessary, even if maybe_mkwrite decided not to set pte_write. We
969 * can thus safely do subsequent page lookups as if they were reads.
970 * But only do so when looping for pte_write is futile: in some cases
971 * userspace may also be wanting to write to the gotten user page,
972 * which a read fault here might prevent (a readonly page might get
973 * reCOWed by userspace write).
974 */
975 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 976 *flags |= FOLL_COW;
16744483
KS
977 return 0;
978}
979
fa5bb209
KS
980static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
981{
982 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
983 int write = (gup_flags & FOLL_WRITE);
984 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
985
986 if (vm_flags & (VM_IO | VM_PFNMAP))
987 return -EFAULT;
988
7f7ccc2c
WT
989 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
990 return -EFAULT;
991
52650c8b
JG
992 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
993 return -EOPNOTSUPP;
994
1507f512
MR
995 if (vma_is_secretmem(vma))
996 return -EFAULT;
997
1b2ee126 998 if (write) {
fa5bb209
KS
999 if (!(vm_flags & VM_WRITE)) {
1000 if (!(gup_flags & FOLL_FORCE))
1001 return -EFAULT;
1002 /*
1003 * We used to let the write,force case do COW in a
1004 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1005 * set a breakpoint in a read-only mapping of an
1006 * executable, without corrupting the file (yet only
1007 * when that file had been opened for writing!).
1008 * Anon pages in shared mappings are surprising: now
1009 * just reject it.
1010 */
46435364 1011 if (!is_cow_mapping(vm_flags))
fa5bb209 1012 return -EFAULT;
fa5bb209
KS
1013 }
1014 } else if (!(vm_flags & VM_READ)) {
1015 if (!(gup_flags & FOLL_FORCE))
1016 return -EFAULT;
1017 /*
1018 * Is there actually any vma we can reach here which does not
1019 * have VM_MAYREAD set?
1020 */
1021 if (!(vm_flags & VM_MAYREAD))
1022 return -EFAULT;
1023 }
d61172b4
DH
1024 /*
1025 * gups are always data accesses, not instruction
1026 * fetches, so execute=false here
1027 */
1028 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1029 return -EFAULT;
fa5bb209
KS
1030 return 0;
1031}
1032
4bbd4c77
KS
1033/**
1034 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1035 * @mm: mm_struct of target mm
1036 * @start: starting user address
1037 * @nr_pages: number of pages from start to pin
1038 * @gup_flags: flags modifying pin behaviour
1039 * @pages: array that receives pointers to the pages pinned.
1040 * Should be at least nr_pages long. Or NULL, if caller
1041 * only intends to ensure the pages are faulted in.
1042 * @vmas: array of pointers to vmas corresponding to each page.
1043 * Or NULL if the caller does not require them.
c1e8d7c6 1044 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1045 *
d2dfbe47
LX
1046 * Returns either number of pages pinned (which may be less than the
1047 * number requested), or an error. Details about the return value:
1048 *
1049 * -- If nr_pages is 0, returns 0.
1050 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1051 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1052 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1053 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1054 *
1055 * The caller is responsible for releasing returned @pages, via put_page().
1056 *
c1e8d7c6 1057 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1058 *
c1e8d7c6 1059 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1060 *
1061 * __get_user_pages walks a process's page tables and takes a reference to
1062 * each struct page that each user address corresponds to at a given
1063 * instant. That is, it takes the page that would be accessed if a user
1064 * thread accesses the given user virtual address at that instant.
1065 *
1066 * This does not guarantee that the page exists in the user mappings when
1067 * __get_user_pages returns, and there may even be a completely different
1068 * page there in some cases (eg. if mmapped pagecache has been invalidated
1069 * and subsequently re faulted). However it does guarantee that the page
1070 * won't be freed completely. And mostly callers simply care that the page
1071 * contains data that was valid *at some point in time*. Typically, an IO
1072 * or similar operation cannot guarantee anything stronger anyway because
1073 * locks can't be held over the syscall boundary.
1074 *
1075 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1076 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1077 * appropriate) must be called after the page is finished with, and
1078 * before put_page is called.
1079 *
c1e8d7c6 1080 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1081 * released by an up_read(). That can happen if @gup_flags does not
1082 * have FOLL_NOWAIT.
9a95f3cf 1083 *
4f6da934 1084 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1085 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1086 * when it's been released. Otherwise, it must be held for either
1087 * reading or writing and will not be released.
4bbd4c77
KS
1088 *
1089 * In most cases, get_user_pages or get_user_pages_fast should be used
1090 * instead of __get_user_pages. __get_user_pages should be used only if
1091 * you need some special @gup_flags.
1092 */
64019a2e 1093static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1094 unsigned long start, unsigned long nr_pages,
1095 unsigned int gup_flags, struct page **pages,
4f6da934 1096 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1097{
df06b37f 1098 long ret = 0, i = 0;
fa5bb209 1099 struct vm_area_struct *vma = NULL;
df06b37f 1100 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1101
1102 if (!nr_pages)
1103 return 0;
1104
f9652594
AK
1105 start = untagged_addr(start);
1106
eddb1c22 1107 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1108
1109 /*
1110 * If FOLL_FORCE is set then do not force a full fault as the hinting
1111 * fault information is unrelated to the reference behaviour of a task
1112 * using the address space
1113 */
1114 if (!(gup_flags & FOLL_FORCE))
1115 gup_flags |= FOLL_NUMA;
1116
4bbd4c77 1117 do {
fa5bb209
KS
1118 struct page *page;
1119 unsigned int foll_flags = gup_flags;
1120 unsigned int page_increm;
1121
1122 /* first iteration or cross vma bound */
1123 if (!vma || start >= vma->vm_end) {
1124 vma = find_extend_vma(mm, start);
1125 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1126 ret = get_gate_page(mm, start & PAGE_MASK,
1127 gup_flags, &vma,
1128 pages ? &pages[i] : NULL);
1129 if (ret)
08be37b7 1130 goto out;
df06b37f 1131 ctx.page_mask = 0;
fa5bb209
KS
1132 goto next_page;
1133 }
4bbd4c77 1134
52650c8b 1135 if (!vma) {
df06b37f
KB
1136 ret = -EFAULT;
1137 goto out;
1138 }
52650c8b
JG
1139 ret = check_vma_flags(vma, gup_flags);
1140 if (ret)
1141 goto out;
1142
fa5bb209
KS
1143 if (is_vm_hugetlb_page(vma)) {
1144 i = follow_hugetlb_page(mm, vma, pages, vmas,
1145 &start, &nr_pages, i,
a308c71b 1146 gup_flags, locked);
ad415db8
PX
1147 if (locked && *locked == 0) {
1148 /*
1149 * We've got a VM_FAULT_RETRY
c1e8d7c6 1150 * and we've lost mmap_lock.
ad415db8
PX
1151 * We must stop here.
1152 */
1153 BUG_ON(gup_flags & FOLL_NOWAIT);
1154 BUG_ON(ret != 0);
1155 goto out;
1156 }
fa5bb209 1157 continue;
4bbd4c77 1158 }
fa5bb209
KS
1159 }
1160retry:
1161 /*
1162 * If we have a pending SIGKILL, don't keep faulting pages and
1163 * potentially allocating memory.
1164 */
fa45f116 1165 if (fatal_signal_pending(current)) {
d180870d 1166 ret = -EINTR;
df06b37f
KB
1167 goto out;
1168 }
fa5bb209 1169 cond_resched();
df06b37f
KB
1170
1171 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1172 if (!page) {
64019a2e 1173 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1174 switch (ret) {
1175 case 0:
1176 goto retry;
df06b37f
KB
1177 case -EBUSY:
1178 ret = 0;
e4a9bc58 1179 fallthrough;
fa5bb209
KS
1180 case -EFAULT:
1181 case -ENOMEM:
1182 case -EHWPOISON:
df06b37f 1183 goto out;
fa5bb209
KS
1184 case -ENOENT:
1185 goto next_page;
4bbd4c77 1186 }
fa5bb209 1187 BUG();
1027e443
KS
1188 } else if (PTR_ERR(page) == -EEXIST) {
1189 /*
1190 * Proper page table entry exists, but no corresponding
1191 * struct page.
1192 */
1193 goto next_page;
1194 } else if (IS_ERR(page)) {
df06b37f
KB
1195 ret = PTR_ERR(page);
1196 goto out;
1027e443 1197 }
fa5bb209
KS
1198 if (pages) {
1199 pages[i] = page;
1200 flush_anon_page(vma, page, start);
1201 flush_dcache_page(page);
df06b37f 1202 ctx.page_mask = 0;
4bbd4c77 1203 }
4bbd4c77 1204next_page:
fa5bb209
KS
1205 if (vmas) {
1206 vmas[i] = vma;
df06b37f 1207 ctx.page_mask = 0;
fa5bb209 1208 }
df06b37f 1209 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1210 if (page_increm > nr_pages)
1211 page_increm = nr_pages;
1212 i += page_increm;
1213 start += page_increm * PAGE_SIZE;
1214 nr_pages -= page_increm;
4bbd4c77 1215 } while (nr_pages);
df06b37f
KB
1216out:
1217 if (ctx.pgmap)
1218 put_dev_pagemap(ctx.pgmap);
1219 return i ? i : ret;
4bbd4c77 1220}
4bbd4c77 1221
771ab430
TK
1222static bool vma_permits_fault(struct vm_area_struct *vma,
1223 unsigned int fault_flags)
d4925e00 1224{
1b2ee126
DH
1225 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1226 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1227 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1228
1229 if (!(vm_flags & vma->vm_flags))
1230 return false;
1231
33a709b2
DH
1232 /*
1233 * The architecture might have a hardware protection
1b2ee126 1234 * mechanism other than read/write that can deny access.
d61172b4
DH
1235 *
1236 * gup always represents data access, not instruction
1237 * fetches, so execute=false here:
33a709b2 1238 */
d61172b4 1239 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1240 return false;
1241
d4925e00
DH
1242 return true;
1243}
1244
adc8cb40 1245/**
4bbd4c77 1246 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1247 * @mm: mm_struct of target mm
1248 * @address: user address
1249 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1250 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1251 * does not allow retry. If NULL, the caller must guarantee
1252 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1253 *
1254 * This is meant to be called in the specific scenario where for locking reasons
1255 * we try to access user memory in atomic context (within a pagefault_disable()
1256 * section), this returns -EFAULT, and we want to resolve the user fault before
1257 * trying again.
1258 *
1259 * Typically this is meant to be used by the futex code.
1260 *
1261 * The main difference with get_user_pages() is that this function will
1262 * unconditionally call handle_mm_fault() which will in turn perform all the
1263 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1264 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1265 *
1266 * This is important for some architectures where those bits also gate the
1267 * access permission to the page because they are maintained in software. On
1268 * such architectures, gup() will not be enough to make a subsequent access
1269 * succeed.
1270 *
c1e8d7c6
ML
1271 * This function will not return with an unlocked mmap_lock. So it has not the
1272 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1273 */
64019a2e 1274int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1275 unsigned long address, unsigned int fault_flags,
1276 bool *unlocked)
4bbd4c77
KS
1277{
1278 struct vm_area_struct *vma;
8fed2f3c 1279 vm_fault_t ret;
4a9e1cda 1280
f9652594
AK
1281 address = untagged_addr(address);
1282
4a9e1cda 1283 if (unlocked)
71335f37 1284 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1285
4a9e1cda 1286retry:
4bbd4c77
KS
1287 vma = find_extend_vma(mm, address);
1288 if (!vma || address < vma->vm_start)
1289 return -EFAULT;
1290
d4925e00 1291 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1292 return -EFAULT;
1293
475f4dfc
PX
1294 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1295 fatal_signal_pending(current))
1296 return -EINTR;
1297
bce617ed 1298 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4bbd4c77 1299 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1300 int err = vm_fault_to_errno(ret, 0);
1301
1302 if (err)
1303 return err;
4bbd4c77
KS
1304 BUG();
1305 }
4a9e1cda
DD
1306
1307 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1308 mmap_read_lock(mm);
475f4dfc
PX
1309 *unlocked = true;
1310 fault_flags |= FAULT_FLAG_TRIED;
1311 goto retry;
4a9e1cda
DD
1312 }
1313
4bbd4c77
KS
1314 return 0;
1315}
add6a0cd 1316EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1317
2d3a36a4
MH
1318/*
1319 * Please note that this function, unlike __get_user_pages will not
1320 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1321 */
64019a2e 1322static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1323 unsigned long start,
1324 unsigned long nr_pages,
f0818f47
AA
1325 struct page **pages,
1326 struct vm_area_struct **vmas,
e716712f 1327 int *locked,
0fd71a56 1328 unsigned int flags)
f0818f47 1329{
f0818f47
AA
1330 long ret, pages_done;
1331 bool lock_dropped;
1332
1333 if (locked) {
1334 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1335 BUG_ON(vmas);
1336 /* check caller initialized locked */
1337 BUG_ON(*locked != 1);
1338 }
1339
a458b76a
AA
1340 if (flags & FOLL_PIN)
1341 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1342
eddb1c22
JH
1343 /*
1344 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1345 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1346 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1347 * for FOLL_GET, not for the newer FOLL_PIN.
1348 *
1349 * FOLL_PIN always expects pages to be non-null, but no need to assert
1350 * that here, as any failures will be obvious enough.
1351 */
1352 if (pages && !(flags & FOLL_PIN))
f0818f47 1353 flags |= FOLL_GET;
f0818f47
AA
1354
1355 pages_done = 0;
1356 lock_dropped = false;
1357 for (;;) {
64019a2e 1358 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1359 vmas, locked);
1360 if (!locked)
1361 /* VM_FAULT_RETRY couldn't trigger, bypass */
1362 return ret;
1363
1364 /* VM_FAULT_RETRY cannot return errors */
1365 if (!*locked) {
1366 BUG_ON(ret < 0);
1367 BUG_ON(ret >= nr_pages);
1368 }
1369
f0818f47
AA
1370 if (ret > 0) {
1371 nr_pages -= ret;
1372 pages_done += ret;
1373 if (!nr_pages)
1374 break;
1375 }
1376 if (*locked) {
96312e61
AA
1377 /*
1378 * VM_FAULT_RETRY didn't trigger or it was a
1379 * FOLL_NOWAIT.
1380 */
f0818f47
AA
1381 if (!pages_done)
1382 pages_done = ret;
1383 break;
1384 }
df17277b
MR
1385 /*
1386 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1387 * For the prefault case (!pages) we only update counts.
1388 */
1389 if (likely(pages))
1390 pages += ret;
f0818f47 1391 start += ret << PAGE_SHIFT;
4426e945 1392 lock_dropped = true;
f0818f47 1393
4426e945 1394retry:
f0818f47
AA
1395 /*
1396 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1397 * with both FAULT_FLAG_ALLOW_RETRY and
1398 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1399 * by fatal signals, so we need to check it before we
1400 * start trying again otherwise it can loop forever.
f0818f47 1401 */
4426e945 1402
ae46d2aa
HD
1403 if (fatal_signal_pending(current)) {
1404 if (!pages_done)
1405 pages_done = -EINTR;
4426e945 1406 break;
ae46d2aa 1407 }
4426e945 1408
d8ed45c5 1409 ret = mmap_read_lock_killable(mm);
71335f37
PX
1410 if (ret) {
1411 BUG_ON(ret > 0);
1412 if (!pages_done)
1413 pages_done = ret;
1414 break;
1415 }
4426e945 1416
c7b6a566 1417 *locked = 1;
64019a2e 1418 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1419 pages, NULL, locked);
1420 if (!*locked) {
1421 /* Continue to retry until we succeeded */
1422 BUG_ON(ret != 0);
1423 goto retry;
1424 }
f0818f47
AA
1425 if (ret != 1) {
1426 BUG_ON(ret > 1);
1427 if (!pages_done)
1428 pages_done = ret;
1429 break;
1430 }
1431 nr_pages--;
1432 pages_done++;
1433 if (!nr_pages)
1434 break;
df17277b
MR
1435 if (likely(pages))
1436 pages++;
f0818f47
AA
1437 start += PAGE_SIZE;
1438 }
e716712f 1439 if (lock_dropped && *locked) {
f0818f47
AA
1440 /*
1441 * We must let the caller know we temporarily dropped the lock
1442 * and so the critical section protected by it was lost.
1443 */
d8ed45c5 1444 mmap_read_unlock(mm);
f0818f47
AA
1445 *locked = 0;
1446 }
1447 return pages_done;
1448}
1449
d3649f68
CH
1450/**
1451 * populate_vma_page_range() - populate a range of pages in the vma.
1452 * @vma: target vma
1453 * @start: start address
1454 * @end: end address
c1e8d7c6 1455 * @locked: whether the mmap_lock is still held
d3649f68
CH
1456 *
1457 * This takes care of mlocking the pages too if VM_LOCKED is set.
1458 *
0a36f7f8
TY
1459 * Return either number of pages pinned in the vma, or a negative error
1460 * code on error.
d3649f68 1461 *
c1e8d7c6 1462 * vma->vm_mm->mmap_lock must be held.
d3649f68 1463 *
4f6da934 1464 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1465 * be unperturbed.
1466 *
4f6da934
PX
1467 * If @locked is non-NULL, it must held for read only and may be
1468 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1469 */
1470long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1471 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1472{
1473 struct mm_struct *mm = vma->vm_mm;
1474 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1475 int gup_flags;
1476
1477 VM_BUG_ON(start & ~PAGE_MASK);
1478 VM_BUG_ON(end & ~PAGE_MASK);
1479 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1480 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1481 mmap_assert_locked(mm);
d3649f68
CH
1482
1483 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1484 if (vma->vm_flags & VM_LOCKONFAULT)
1485 gup_flags &= ~FOLL_POPULATE;
1486 /*
1487 * We want to touch writable mappings with a write fault in order
1488 * to break COW, except for shared mappings because these don't COW
1489 * and we would not want to dirty them for nothing.
1490 */
1491 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1492 gup_flags |= FOLL_WRITE;
1493
1494 /*
1495 * We want mlock to succeed for regions that have any permissions
1496 * other than PROT_NONE.
1497 */
3122e80e 1498 if (vma_is_accessible(vma))
d3649f68
CH
1499 gup_flags |= FOLL_FORCE;
1500
1501 /*
1502 * We made sure addr is within a VMA, so the following will
1503 * not result in a stack expansion that recurses back here.
1504 */
64019a2e 1505 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1506 NULL, NULL, locked);
d3649f68
CH
1507}
1508
4ca9b385
DH
1509/*
1510 * faultin_vma_page_range() - populate (prefault) page tables inside the
1511 * given VMA range readable/writable
1512 *
1513 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1514 *
1515 * @vma: target vma
1516 * @start: start address
1517 * @end: end address
1518 * @write: whether to prefault readable or writable
1519 * @locked: whether the mmap_lock is still held
1520 *
1521 * Returns either number of processed pages in the vma, or a negative error
1522 * code on error (see __get_user_pages()).
1523 *
1524 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1525 * covered by the VMA.
1526 *
1527 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1528 *
1529 * If @locked is non-NULL, it must held for read only and may be released. If
1530 * it's released, *@locked will be set to 0.
1531 */
1532long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1533 unsigned long end, bool write, int *locked)
1534{
1535 struct mm_struct *mm = vma->vm_mm;
1536 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1537 int gup_flags;
1538
1539 VM_BUG_ON(!PAGE_ALIGNED(start));
1540 VM_BUG_ON(!PAGE_ALIGNED(end));
1541 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1542 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1543 mmap_assert_locked(mm);
1544
1545 /*
1546 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1547 * the page dirty with FOLL_WRITE -- which doesn't make a
1548 * difference with !FOLL_FORCE, because the page is writable
1549 * in the page table.
1550 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1551 * a poisoned page.
1552 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1553 * !FOLL_FORCE: Require proper access permissions.
1554 */
1555 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1556 if (write)
1557 gup_flags |= FOLL_WRITE;
1558
1559 /*
eb2faa51
DH
1560 * We want to report -EINVAL instead of -EFAULT for any permission
1561 * problems or incompatible mappings.
4ca9b385 1562 */
eb2faa51
DH
1563 if (check_vma_flags(vma, gup_flags))
1564 return -EINVAL;
1565
4ca9b385
DH
1566 return __get_user_pages(mm, start, nr_pages, gup_flags,
1567 NULL, NULL, locked);
1568}
1569
d3649f68
CH
1570/*
1571 * __mm_populate - populate and/or mlock pages within a range of address space.
1572 *
1573 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1574 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1575 * mmap_lock must not be held.
d3649f68
CH
1576 */
1577int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1578{
1579 struct mm_struct *mm = current->mm;
1580 unsigned long end, nstart, nend;
1581 struct vm_area_struct *vma = NULL;
1582 int locked = 0;
1583 long ret = 0;
1584
1585 end = start + len;
1586
1587 for (nstart = start; nstart < end; nstart = nend) {
1588 /*
1589 * We want to fault in pages for [nstart; end) address range.
1590 * Find first corresponding VMA.
1591 */
1592 if (!locked) {
1593 locked = 1;
d8ed45c5 1594 mmap_read_lock(mm);
d3649f68
CH
1595 vma = find_vma(mm, nstart);
1596 } else if (nstart >= vma->vm_end)
1597 vma = vma->vm_next;
1598 if (!vma || vma->vm_start >= end)
1599 break;
1600 /*
1601 * Set [nstart; nend) to intersection of desired address
1602 * range with the first VMA. Also, skip undesirable VMA types.
1603 */
1604 nend = min(end, vma->vm_end);
1605 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1606 continue;
1607 if (nstart < vma->vm_start)
1608 nstart = vma->vm_start;
1609 /*
1610 * Now fault in a range of pages. populate_vma_page_range()
1611 * double checks the vma flags, so that it won't mlock pages
1612 * if the vma was already munlocked.
1613 */
1614 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1615 if (ret < 0) {
1616 if (ignore_errors) {
1617 ret = 0;
1618 continue; /* continue at next VMA */
1619 }
1620 break;
1621 }
1622 nend = nstart + ret * PAGE_SIZE;
1623 ret = 0;
1624 }
1625 if (locked)
d8ed45c5 1626 mmap_read_unlock(mm);
d3649f68
CH
1627 return ret; /* 0 or negative error code */
1628}
050a9adc 1629#else /* CONFIG_MMU */
64019a2e 1630static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1631 unsigned long nr_pages, struct page **pages,
1632 struct vm_area_struct **vmas, int *locked,
1633 unsigned int foll_flags)
1634{
1635 struct vm_area_struct *vma;
1636 unsigned long vm_flags;
24dc20c7 1637 long i;
050a9adc
CH
1638
1639 /* calculate required read or write permissions.
1640 * If FOLL_FORCE is set, we only require the "MAY" flags.
1641 */
1642 vm_flags = (foll_flags & FOLL_WRITE) ?
1643 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1644 vm_flags &= (foll_flags & FOLL_FORCE) ?
1645 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1646
1647 for (i = 0; i < nr_pages; i++) {
1648 vma = find_vma(mm, start);
1649 if (!vma)
1650 goto finish_or_fault;
1651
1652 /* protect what we can, including chardevs */
1653 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1654 !(vm_flags & vma->vm_flags))
1655 goto finish_or_fault;
1656
1657 if (pages) {
1658 pages[i] = virt_to_page(start);
1659 if (pages[i])
1660 get_page(pages[i]);
1661 }
1662 if (vmas)
1663 vmas[i] = vma;
1664 start = (start + PAGE_SIZE) & PAGE_MASK;
1665 }
1666
1667 return i;
1668
1669finish_or_fault:
1670 return i ? : -EFAULT;
1671}
1672#endif /* !CONFIG_MMU */
d3649f68 1673
8f942eea
JH
1674/**
1675 * get_dump_page() - pin user page in memory while writing it to core dump
1676 * @addr: user address
1677 *
1678 * Returns struct page pointer of user page pinned for dump,
1679 * to be freed afterwards by put_page().
1680 *
1681 * Returns NULL on any kind of failure - a hole must then be inserted into
1682 * the corefile, to preserve alignment with its headers; and also returns
1683 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1684 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1685 *
7f3bfab5 1686 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1687 */
1688#ifdef CONFIG_ELF_CORE
1689struct page *get_dump_page(unsigned long addr)
1690{
7f3bfab5 1691 struct mm_struct *mm = current->mm;
8f942eea 1692 struct page *page;
7f3bfab5
JH
1693 int locked = 1;
1694 int ret;
8f942eea 1695
7f3bfab5 1696 if (mmap_read_lock_killable(mm))
8f942eea 1697 return NULL;
7f3bfab5
JH
1698 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1699 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1700 if (locked)
1701 mmap_read_unlock(mm);
1702 return (ret == 1) ? page : NULL;
8f942eea
JH
1703}
1704#endif /* CONFIG_ELF_CORE */
1705
d1e153fe 1706#ifdef CONFIG_MIGRATION
f68749ec
PT
1707/*
1708 * Check whether all pages are pinnable, if so return number of pages. If some
1709 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1710 * pages were migrated, or if some pages were not successfully isolated.
1711 * Return negative error if migration fails.
1712 */
1713static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1714 struct page **pages,
d1e153fe 1715 unsigned int gup_flags)
9a4e9f3b 1716{
f68749ec
PT
1717 unsigned long i;
1718 unsigned long isolation_error_count = 0;
1719 bool drain_allow = true;
d1e153fe 1720 LIST_HEAD(movable_page_list);
f68749ec
PT
1721 long ret = 0;
1722 struct page *prev_head = NULL;
1723 struct page *head;
ed03d924
JK
1724 struct migration_target_control mtc = {
1725 .nid = NUMA_NO_NODE,
c991ffef 1726 .gfp_mask = GFP_USER | __GFP_NOWARN,
ed03d924 1727 };
9a4e9f3b 1728
83c02c23
PT
1729 for (i = 0; i < nr_pages; i++) {
1730 head = compound_head(pages[i]);
1731 if (head == prev_head)
1732 continue;
1733 prev_head = head;
9a4e9f3b 1734 /*
d1e153fe
PT
1735 * If we get a movable page, since we are going to be pinning
1736 * these entries, try to move them out if possible.
9a4e9f3b 1737 */
d1e153fe 1738 if (!is_pinnable_page(head)) {
6e7f34eb 1739 if (PageHuge(head)) {
d1e153fe 1740 if (!isolate_huge_page(head, &movable_page_list))
6e7f34eb
PT
1741 isolation_error_count++;
1742 } else {
9a4e9f3b
AK
1743 if (!PageLRU(head) && drain_allow) {
1744 lru_add_drain_all();
1745 drain_allow = false;
1746 }
1747
6e7f34eb
PT
1748 if (isolate_lru_page(head)) {
1749 isolation_error_count++;
1750 continue;
9a4e9f3b 1751 }
d1e153fe 1752 list_add_tail(&head->lru, &movable_page_list);
6e7f34eb
PT
1753 mod_node_page_state(page_pgdat(head),
1754 NR_ISOLATED_ANON +
1755 page_is_file_lru(head),
1756 thp_nr_pages(head));
9a4e9f3b
AK
1757 }
1758 }
1759 }
1760
6e7f34eb
PT
1761 /*
1762 * If list is empty, and no isolation errors, means that all pages are
1763 * in the correct zone.
1764 */
d1e153fe 1765 if (list_empty(&movable_page_list) && !isolation_error_count)
f68749ec 1766 return nr_pages;
6e7f34eb 1767
f68749ec
PT
1768 if (gup_flags & FOLL_PIN) {
1769 unpin_user_pages(pages, nr_pages);
1770 } else {
1771 for (i = 0; i < nr_pages; i++)
1772 put_page(pages[i]);
1773 }
d1e153fe 1774 if (!list_empty(&movable_page_list)) {
d1e153fe 1775 ret = migrate_pages(&movable_page_list, alloc_migration_target,
f0f44638 1776 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
d1e153fe 1777 MR_LONGTERM_PIN);
f68749ec
PT
1778 if (ret && !list_empty(&movable_page_list))
1779 putback_movable_pages(&movable_page_list);
9a4e9f3b
AK
1780 }
1781
f68749ec 1782 return ret > 0 ? -ENOMEM : ret;
9a4e9f3b
AK
1783}
1784#else
f68749ec 1785static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1786 struct page **pages,
d1e153fe 1787 unsigned int gup_flags)
9a4e9f3b
AK
1788{
1789 return nr_pages;
1790}
d1e153fe 1791#endif /* CONFIG_MIGRATION */
9a4e9f3b 1792
2bb6d283 1793/*
932f4a63
IW
1794 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1795 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1796 */
64019a2e 1797static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1798 unsigned long start,
1799 unsigned long nr_pages,
1800 struct page **pages,
1801 struct vm_area_struct **vmas,
1802 unsigned int gup_flags)
2bb6d283 1803{
f68749ec 1804 unsigned int flags;
52650c8b 1805 long rc;
2bb6d283 1806
f68749ec
PT
1807 if (!(gup_flags & FOLL_LONGTERM))
1808 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1809 NULL, gup_flags);
1810 flags = memalloc_pin_save();
1811 do {
1812 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1813 NULL, gup_flags);
1814 if (rc <= 0)
1815 break;
1816 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1817 } while (!rc);
1818 memalloc_pin_restore(flags);
2bb6d283 1819
2bb6d283
DW
1820 return rc;
1821}
932f4a63 1822
447f3e45
BS
1823static bool is_valid_gup_flags(unsigned int gup_flags)
1824{
1825 /*
1826 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1827 * never directly by the caller, so enforce that with an assertion:
1828 */
1829 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1830 return false;
1831 /*
1832 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1833 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1834 * FOLL_PIN.
1835 */
1836 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1837 return false;
1838
1839 return true;
1840}
1841
22bf29b6 1842#ifdef CONFIG_MMU
64019a2e 1843static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1844 unsigned long start, unsigned long nr_pages,
1845 unsigned int gup_flags, struct page **pages,
1846 struct vm_area_struct **vmas, int *locked)
1847{
1848 /*
1849 * Parts of FOLL_LONGTERM behavior are incompatible with
1850 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1851 * vmas. However, this only comes up if locked is set, and there are
1852 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1853 * allow what we can.
1854 */
1855 if (gup_flags & FOLL_LONGTERM) {
1856 if (WARN_ON_ONCE(locked))
1857 return -EINVAL;
1858 /*
1859 * This will check the vmas (even if our vmas arg is NULL)
1860 * and return -ENOTSUPP if DAX isn't allowed in this case:
1861 */
64019a2e 1862 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1863 vmas, gup_flags | FOLL_TOUCH |
1864 FOLL_REMOTE);
1865 }
1866
64019a2e 1867 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1868 locked,
1869 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1870}
1871
adc8cb40 1872/**
c4237f8b 1873 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1874 * @mm: mm_struct of target mm
1875 * @start: starting user address
1876 * @nr_pages: number of pages from start to pin
1877 * @gup_flags: flags modifying lookup behaviour
1878 * @pages: array that receives pointers to the pages pinned.
1879 * Should be at least nr_pages long. Or NULL, if caller
1880 * only intends to ensure the pages are faulted in.
1881 * @vmas: array of pointers to vmas corresponding to each page.
1882 * Or NULL if the caller does not require them.
1883 * @locked: pointer to lock flag indicating whether lock is held and
1884 * subsequently whether VM_FAULT_RETRY functionality can be
1885 * utilised. Lock must initially be held.
1886 *
1887 * Returns either number of pages pinned (which may be less than the
1888 * number requested), or an error. Details about the return value:
1889 *
1890 * -- If nr_pages is 0, returns 0.
1891 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1892 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1893 * pages pinned. Again, this may be less than nr_pages.
1894 *
1895 * The caller is responsible for releasing returned @pages, via put_page().
1896 *
c1e8d7c6 1897 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1898 *
c1e8d7c6 1899 * Must be called with mmap_lock held for read or write.
c4237f8b 1900 *
adc8cb40
SJ
1901 * get_user_pages_remote walks a process's page tables and takes a reference
1902 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1903 * instant. That is, it takes the page that would be accessed if a user
1904 * thread accesses the given user virtual address at that instant.
1905 *
1906 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1907 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1908 * page there in some cases (eg. if mmapped pagecache has been invalidated
1909 * and subsequently re faulted). However it does guarantee that the page
1910 * won't be freed completely. And mostly callers simply care that the page
1911 * contains data that was valid *at some point in time*. Typically, an IO
1912 * or similar operation cannot guarantee anything stronger anyway because
1913 * locks can't be held over the syscall boundary.
1914 *
1915 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1916 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1917 * be called after the page is finished with, and before put_page is called.
1918 *
adc8cb40
SJ
1919 * get_user_pages_remote is typically used for fewer-copy IO operations,
1920 * to get a handle on the memory by some means other than accesses
1921 * via the user virtual addresses. The pages may be submitted for
1922 * DMA to devices or accessed via their kernel linear mapping (via the
1923 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1924 *
1925 * See also get_user_pages_fast, for performance critical applications.
1926 *
adc8cb40 1927 * get_user_pages_remote should be phased out in favor of
c4237f8b 1928 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1929 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1930 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1931 */
64019a2e 1932long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
1933 unsigned long start, unsigned long nr_pages,
1934 unsigned int gup_flags, struct page **pages,
1935 struct vm_area_struct **vmas, int *locked)
1936{
447f3e45 1937 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1938 return -EINVAL;
1939
64019a2e 1940 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 1941 pages, vmas, locked);
c4237f8b
JH
1942}
1943EXPORT_SYMBOL(get_user_pages_remote);
1944
eddb1c22 1945#else /* CONFIG_MMU */
64019a2e 1946long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1947 unsigned long start, unsigned long nr_pages,
1948 unsigned int gup_flags, struct page **pages,
1949 struct vm_area_struct **vmas, int *locked)
1950{
1951 return 0;
1952}
3faa52c0 1953
64019a2e 1954static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
1955 unsigned long start, unsigned long nr_pages,
1956 unsigned int gup_flags, struct page **pages,
1957 struct vm_area_struct **vmas, int *locked)
1958{
1959 return 0;
1960}
eddb1c22
JH
1961#endif /* !CONFIG_MMU */
1962
adc8cb40
SJ
1963/**
1964 * get_user_pages() - pin user pages in memory
1965 * @start: starting user address
1966 * @nr_pages: number of pages from start to pin
1967 * @gup_flags: flags modifying lookup behaviour
1968 * @pages: array that receives pointers to the pages pinned.
1969 * Should be at least nr_pages long. Or NULL, if caller
1970 * only intends to ensure the pages are faulted in.
1971 * @vmas: array of pointers to vmas corresponding to each page.
1972 * Or NULL if the caller does not require them.
1973 *
64019a2e
PX
1974 * This is the same as get_user_pages_remote(), just with a less-flexible
1975 * calling convention where we assume that the mm being operated on belongs to
1976 * the current task, and doesn't allow passing of a locked parameter. We also
1977 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
1978 */
1979long get_user_pages(unsigned long start, unsigned long nr_pages,
1980 unsigned int gup_flags, struct page **pages,
1981 struct vm_area_struct **vmas)
1982{
447f3e45 1983 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1984 return -EINVAL;
1985
64019a2e 1986 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
1987 pages, vmas, gup_flags | FOLL_TOUCH);
1988}
1989EXPORT_SYMBOL(get_user_pages);
2bb6d283 1990
adc8cb40 1991/**
a00cda3f
MCC
1992 * get_user_pages_locked() - variant of get_user_pages()
1993 *
1994 * @start: starting user address
1995 * @nr_pages: number of pages from start to pin
1996 * @gup_flags: flags modifying lookup behaviour
1997 * @pages: array that receives pointers to the pages pinned.
1998 * Should be at least nr_pages long. Or NULL, if caller
1999 * only intends to ensure the pages are faulted in.
2000 * @locked: pointer to lock flag indicating whether lock is held and
2001 * subsequently whether VM_FAULT_RETRY functionality can be
2002 * utilised. Lock must initially be held.
2003 *
2004 * It is suitable to replace the form:
acc3c8d1 2005 *
3e4e28c5 2006 * mmap_read_lock(mm);
d3649f68 2007 * do_something()
64019a2e 2008 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2009 * mmap_read_unlock(mm);
acc3c8d1 2010 *
d3649f68 2011 * to:
acc3c8d1 2012 *
d3649f68 2013 * int locked = 1;
3e4e28c5 2014 * mmap_read_lock(mm);
d3649f68 2015 * do_something()
64019a2e 2016 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 2017 * if (locked)
3e4e28c5 2018 * mmap_read_unlock(mm);
adc8cb40 2019 *
adc8cb40
SJ
2020 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2021 * paths better by using either get_user_pages_locked() or
2022 * get_user_pages_unlocked().
2023 *
acc3c8d1 2024 */
d3649f68
CH
2025long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2026 unsigned int gup_flags, struct page **pages,
2027 int *locked)
acc3c8d1 2028{
acc3c8d1 2029 /*
d3649f68
CH
2030 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2031 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2032 * vmas. As there are no users of this flag in this call we simply
2033 * disallow this option for now.
acc3c8d1 2034 */
d3649f68
CH
2035 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2036 return -EINVAL;
420c2091
JH
2037 /*
2038 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2039 * never directly by the caller, so enforce that:
2040 */
2041 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2042 return -EINVAL;
acc3c8d1 2043
64019a2e 2044 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
2045 pages, NULL, locked,
2046 gup_flags | FOLL_TOUCH);
acc3c8d1 2047}
d3649f68 2048EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
2049
2050/*
d3649f68 2051 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2052 *
3e4e28c5 2053 * mmap_read_lock(mm);
64019a2e 2054 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2055 * mmap_read_unlock(mm);
d3649f68
CH
2056 *
2057 * with:
2058 *
64019a2e 2059 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2060 *
2061 * It is functionally equivalent to get_user_pages_fast so
2062 * get_user_pages_fast should be used instead if specific gup_flags
2063 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2064 */
d3649f68
CH
2065long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2066 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2067{
2068 struct mm_struct *mm = current->mm;
d3649f68
CH
2069 int locked = 1;
2070 long ret;
acc3c8d1 2071
d3649f68
CH
2072 /*
2073 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2074 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2075 * vmas. As there are no users of this flag in this call we simply
2076 * disallow this option for now.
2077 */
2078 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2079 return -EINVAL;
acc3c8d1 2080
d8ed45c5 2081 mmap_read_lock(mm);
64019a2e 2082 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2083 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2084 if (locked)
d8ed45c5 2085 mmap_read_unlock(mm);
d3649f68 2086 return ret;
4bbd4c77 2087}
d3649f68 2088EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2089
2090/*
67a929e0 2091 * Fast GUP
2667f50e
SC
2092 *
2093 * get_user_pages_fast attempts to pin user pages by walking the page
2094 * tables directly and avoids taking locks. Thus the walker needs to be
2095 * protected from page table pages being freed from under it, and should
2096 * block any THP splits.
2097 *
2098 * One way to achieve this is to have the walker disable interrupts, and
2099 * rely on IPIs from the TLB flushing code blocking before the page table
2100 * pages are freed. This is unsuitable for architectures that do not need
2101 * to broadcast an IPI when invalidating TLBs.
2102 *
2103 * Another way to achieve this is to batch up page table containing pages
2104 * belonging to more than one mm_user, then rcu_sched a callback to free those
2105 * pages. Disabling interrupts will allow the fast_gup walker to both block
2106 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2107 * (which is a relatively rare event). The code below adopts this strategy.
2108 *
2109 * Before activating this code, please be aware that the following assumptions
2110 * are currently made:
2111 *
ff2e6d72 2112 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2113 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2114 *
2667f50e
SC
2115 * *) ptes can be read atomically by the architecture.
2116 *
2117 * *) access_ok is sufficient to validate userspace address ranges.
2118 *
2119 * The last two assumptions can be relaxed by the addition of helper functions.
2120 *
2121 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2122 */
67a929e0 2123#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2124
790c7369 2125static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2126 unsigned int flags,
790c7369 2127 struct page **pages)
b59f65fa
KS
2128{
2129 while ((*nr) - nr_start) {
2130 struct page *page = pages[--(*nr)];
2131
2132 ClearPageReferenced(page);
3faa52c0
JH
2133 if (flags & FOLL_PIN)
2134 unpin_user_page(page);
2135 else
2136 put_page(page);
b59f65fa
KS
2137 }
2138}
2139
3010a5ea 2140#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2141static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2142 unsigned int flags, struct page **pages, int *nr)
2667f50e 2143{
b59f65fa
KS
2144 struct dev_pagemap *pgmap = NULL;
2145 int nr_start = *nr, ret = 0;
2667f50e 2146 pte_t *ptep, *ptem;
2667f50e
SC
2147
2148 ptem = ptep = pte_offset_map(&pmd, addr);
2149 do {
2a4a06da 2150 pte_t pte = ptep_get_lockless(ptep);
7aef4172 2151 struct page *head, *page;
2667f50e
SC
2152
2153 /*
2154 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2155 * path using the pte_protnone check.
2667f50e 2156 */
e7884f8e
KS
2157 if (pte_protnone(pte))
2158 goto pte_unmap;
2159
b798bec4 2160 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2161 goto pte_unmap;
2162
b59f65fa 2163 if (pte_devmap(pte)) {
7af75561
IW
2164 if (unlikely(flags & FOLL_LONGTERM))
2165 goto pte_unmap;
2166
b59f65fa
KS
2167 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2168 if (unlikely(!pgmap)) {
3b78d834 2169 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2170 goto pte_unmap;
2171 }
2172 } else if (pte_special(pte))
2667f50e
SC
2173 goto pte_unmap;
2174
2175 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2176 page = pte_page(pte);
2177
3faa52c0 2178 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2179 if (!head)
2667f50e
SC
2180 goto pte_unmap;
2181
1507f512
MR
2182 if (unlikely(page_is_secretmem(page))) {
2183 put_compound_head(head, 1, flags);
2184 goto pte_unmap;
2185 }
2186
2667f50e 2187 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2188 put_compound_head(head, 1, flags);
2667f50e
SC
2189 goto pte_unmap;
2190 }
2191
7aef4172 2192 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2193
f28d4363
CI
2194 /*
2195 * We need to make the page accessible if and only if we are
2196 * going to access its content (the FOLL_PIN case). Please
2197 * see Documentation/core-api/pin_user_pages.rst for
2198 * details.
2199 */
2200 if (flags & FOLL_PIN) {
2201 ret = arch_make_page_accessible(page);
2202 if (ret) {
2203 unpin_user_page(page);
2204 goto pte_unmap;
2205 }
2206 }
e9348053 2207 SetPageReferenced(page);
2667f50e
SC
2208 pages[*nr] = page;
2209 (*nr)++;
2210
2211 } while (ptep++, addr += PAGE_SIZE, addr != end);
2212
2213 ret = 1;
2214
2215pte_unmap:
832d7aa0
CH
2216 if (pgmap)
2217 put_dev_pagemap(pgmap);
2667f50e
SC
2218 pte_unmap(ptem);
2219 return ret;
2220}
2221#else
2222
2223/*
2224 * If we can't determine whether or not a pte is special, then fail immediately
2225 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2226 * to be special.
2227 *
2228 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2229 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2230 * useful to have gup_huge_pmd even if we can't operate on ptes.
2231 */
2232static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2233 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2234{
2235 return 0;
2236}
3010a5ea 2237#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2238
17596731 2239#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2240static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2241 unsigned long end, unsigned int flags,
2242 struct page **pages, int *nr)
b59f65fa
KS
2243{
2244 int nr_start = *nr;
2245 struct dev_pagemap *pgmap = NULL;
2246
2247 do {
2248 struct page *page = pfn_to_page(pfn);
2249
2250 pgmap = get_dev_pagemap(pfn, pgmap);
2251 if (unlikely(!pgmap)) {
3b78d834 2252 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2253 return 0;
2254 }
2255 SetPageReferenced(page);
2256 pages[*nr] = page;
3faa52c0
JH
2257 if (unlikely(!try_grab_page(page, flags))) {
2258 undo_dev_pagemap(nr, nr_start, flags, pages);
2259 return 0;
2260 }
b59f65fa
KS
2261 (*nr)++;
2262 pfn++;
2263 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2264
2265 if (pgmap)
2266 put_dev_pagemap(pgmap);
b59f65fa
KS
2267 return 1;
2268}
2269
a9b6de77 2270static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2271 unsigned long end, unsigned int flags,
2272 struct page **pages, int *nr)
b59f65fa
KS
2273{
2274 unsigned long fault_pfn;
a9b6de77
DW
2275 int nr_start = *nr;
2276
2277 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2278 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2279 return 0;
b59f65fa 2280
a9b6de77 2281 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2282 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2283 return 0;
2284 }
2285 return 1;
b59f65fa
KS
2286}
2287
a9b6de77 2288static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2289 unsigned long end, unsigned int flags,
2290 struct page **pages, int *nr)
b59f65fa
KS
2291{
2292 unsigned long fault_pfn;
a9b6de77
DW
2293 int nr_start = *nr;
2294
2295 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2296 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2297 return 0;
b59f65fa 2298
a9b6de77 2299 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2300 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2301 return 0;
2302 }
2303 return 1;
b59f65fa
KS
2304}
2305#else
a9b6de77 2306static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2307 unsigned long end, unsigned int flags,
2308 struct page **pages, int *nr)
b59f65fa
KS
2309{
2310 BUILD_BUG();
2311 return 0;
2312}
2313
a9b6de77 2314static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2315 unsigned long end, unsigned int flags,
2316 struct page **pages, int *nr)
b59f65fa
KS
2317{
2318 BUILD_BUG();
2319 return 0;
2320}
2321#endif
2322
a43e9820
JH
2323static int record_subpages(struct page *page, unsigned long addr,
2324 unsigned long end, struct page **pages)
2325{
2326 int nr;
2327
2328 for (nr = 0; addr != end; addr += PAGE_SIZE)
2329 pages[nr++] = page++;
2330
2331 return nr;
2332}
2333
cbd34da7
CH
2334#ifdef CONFIG_ARCH_HAS_HUGEPD
2335static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2336 unsigned long sz)
2337{
2338 unsigned long __boundary = (addr + sz) & ~(sz-1);
2339 return (__boundary - 1 < end - 1) ? __boundary : end;
2340}
2341
2342static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2343 unsigned long end, unsigned int flags,
2344 struct page **pages, int *nr)
cbd34da7
CH
2345{
2346 unsigned long pte_end;
2347 struct page *head, *page;
2348 pte_t pte;
2349 int refs;
2350
2351 pte_end = (addr + sz) & ~(sz-1);
2352 if (pte_end < end)
2353 end = pte_end;
2354
55ca2263 2355 pte = huge_ptep_get(ptep);
cbd34da7 2356
0cd22afd 2357 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2358 return 0;
2359
2360 /* hugepages are never "special" */
2361 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2362
cbd34da7 2363 head = pte_page(pte);
cbd34da7 2364 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2365 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2366
3faa52c0 2367 head = try_grab_compound_head(head, refs, flags);
a43e9820 2368 if (!head)
cbd34da7 2369 return 0;
cbd34da7
CH
2370
2371 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2372 put_compound_head(head, refs, flags);
cbd34da7
CH
2373 return 0;
2374 }
2375
a43e9820 2376 *nr += refs;
520b4a44 2377 SetPageReferenced(head);
cbd34da7
CH
2378 return 1;
2379}
2380
2381static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2382 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2383 struct page **pages, int *nr)
2384{
2385 pte_t *ptep;
2386 unsigned long sz = 1UL << hugepd_shift(hugepd);
2387 unsigned long next;
2388
2389 ptep = hugepte_offset(hugepd, addr, pdshift);
2390 do {
2391 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2392 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2393 return 0;
2394 } while (ptep++, addr = next, addr != end);
2395
2396 return 1;
2397}
2398#else
2399static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2400 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2401 struct page **pages, int *nr)
2402{
2403 return 0;
2404}
2405#endif /* CONFIG_ARCH_HAS_HUGEPD */
2406
2667f50e 2407static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2408 unsigned long end, unsigned int flags,
2409 struct page **pages, int *nr)
2667f50e 2410{
ddc58f27 2411 struct page *head, *page;
2667f50e
SC
2412 int refs;
2413
b798bec4 2414 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2415 return 0;
2416
7af75561
IW
2417 if (pmd_devmap(orig)) {
2418 if (unlikely(flags & FOLL_LONGTERM))
2419 return 0;
86dfbed4
JH
2420 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2421 pages, nr);
7af75561 2422 }
b59f65fa 2423
d63206ee 2424 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2425 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2426
3faa52c0 2427 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2428 if (!head)
2667f50e 2429 return 0;
2667f50e
SC
2430
2431 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2432 put_compound_head(head, refs, flags);
2667f50e
SC
2433 return 0;
2434 }
2435
a43e9820 2436 *nr += refs;
e9348053 2437 SetPageReferenced(head);
2667f50e
SC
2438 return 1;
2439}
2440
2441static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2442 unsigned long end, unsigned int flags,
2443 struct page **pages, int *nr)
2667f50e 2444{
ddc58f27 2445 struct page *head, *page;
2667f50e
SC
2446 int refs;
2447
b798bec4 2448 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2449 return 0;
2450
7af75561
IW
2451 if (pud_devmap(orig)) {
2452 if (unlikely(flags & FOLL_LONGTERM))
2453 return 0;
86dfbed4
JH
2454 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2455 pages, nr);
7af75561 2456 }
b59f65fa 2457
d63206ee 2458 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2459 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2460
3faa52c0 2461 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2462 if (!head)
2667f50e 2463 return 0;
2667f50e
SC
2464
2465 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2466 put_compound_head(head, refs, flags);
2667f50e
SC
2467 return 0;
2468 }
2469
a43e9820 2470 *nr += refs;
e9348053 2471 SetPageReferenced(head);
2667f50e
SC
2472 return 1;
2473}
2474
f30c59e9 2475static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2476 unsigned long end, unsigned int flags,
f30c59e9
AK
2477 struct page **pages, int *nr)
2478{
2479 int refs;
ddc58f27 2480 struct page *head, *page;
f30c59e9 2481
b798bec4 2482 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2483 return 0;
2484
b59f65fa 2485 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2486
d63206ee 2487 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2488 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2489
3faa52c0 2490 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2491 if (!head)
f30c59e9 2492 return 0;
f30c59e9
AK
2493
2494 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2495 put_compound_head(head, refs, flags);
f30c59e9
AK
2496 return 0;
2497 }
2498
a43e9820 2499 *nr += refs;
e9348053 2500 SetPageReferenced(head);
f30c59e9
AK
2501 return 1;
2502}
2503
d3f7b1bb 2504static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2505 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2506{
2507 unsigned long next;
2508 pmd_t *pmdp;
2509
d3f7b1bb 2510 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2511 do {
38c5ce93 2512 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2513
2514 next = pmd_addr_end(addr, end);
84c3fc4e 2515 if (!pmd_present(pmd))
2667f50e
SC
2516 return 0;
2517
414fd080
YZ
2518 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2519 pmd_devmap(pmd))) {
2667f50e
SC
2520 /*
2521 * NUMA hinting faults need to be handled in the GUP
2522 * slowpath for accounting purposes and so that they
2523 * can be serialised against THP migration.
2524 */
8a0516ed 2525 if (pmd_protnone(pmd))
2667f50e
SC
2526 return 0;
2527
b798bec4 2528 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2529 pages, nr))
2530 return 0;
2531
f30c59e9
AK
2532 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2533 /*
2534 * architecture have different format for hugetlbfs
2535 * pmd format and THP pmd format
2536 */
2537 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2538 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2539 return 0;
b798bec4 2540 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2541 return 0;
2667f50e
SC
2542 } while (pmdp++, addr = next, addr != end);
2543
2544 return 1;
2545}
2546
d3f7b1bb 2547static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2548 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2549{
2550 unsigned long next;
2551 pud_t *pudp;
2552
d3f7b1bb 2553 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2554 do {
e37c6982 2555 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2556
2557 next = pud_addr_end(addr, end);
15494520 2558 if (unlikely(!pud_present(pud)))
2667f50e 2559 return 0;
f30c59e9 2560 if (unlikely(pud_huge(pud))) {
b798bec4 2561 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2562 pages, nr))
2563 return 0;
2564 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2565 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2566 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2567 return 0;
d3f7b1bb 2568 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2569 return 0;
2570 } while (pudp++, addr = next, addr != end);
2571
2572 return 1;
2573}
2574
d3f7b1bb 2575static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2576 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2577{
2578 unsigned long next;
2579 p4d_t *p4dp;
2580
d3f7b1bb 2581 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2582 do {
2583 p4d_t p4d = READ_ONCE(*p4dp);
2584
2585 next = p4d_addr_end(addr, end);
2586 if (p4d_none(p4d))
2587 return 0;
2588 BUILD_BUG_ON(p4d_huge(p4d));
2589 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2590 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2591 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2592 return 0;
d3f7b1bb 2593 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2594 return 0;
2595 } while (p4dp++, addr = next, addr != end);
2596
2597 return 1;
2598}
2599
5b65c467 2600static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2601 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2602{
2603 unsigned long next;
2604 pgd_t *pgdp;
2605
2606 pgdp = pgd_offset(current->mm, addr);
2607 do {
2608 pgd_t pgd = READ_ONCE(*pgdp);
2609
2610 next = pgd_addr_end(addr, end);
2611 if (pgd_none(pgd))
2612 return;
2613 if (unlikely(pgd_huge(pgd))) {
b798bec4 2614 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2615 pages, nr))
2616 return;
2617 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2618 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2619 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2620 return;
d3f7b1bb 2621 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2622 return;
2623 } while (pgdp++, addr = next, addr != end);
2624}
050a9adc
CH
2625#else
2626static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2627 unsigned int flags, struct page **pages, int *nr)
2628{
2629}
2630#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2631
2632#ifndef gup_fast_permitted
2633/*
dadbb612 2634 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2635 * we need to fall back to the slow version:
2636 */
26f4c328 2637static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2638{
26f4c328 2639 return true;
5b65c467
KS
2640}
2641#endif
2642
7af75561
IW
2643static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2644 unsigned int gup_flags, struct page **pages)
2645{
2646 int ret;
2647
2648 /*
2649 * FIXME: FOLL_LONGTERM does not work with
2650 * get_user_pages_unlocked() (see comments in that function)
2651 */
2652 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2653 mmap_read_lock(current->mm);
64019a2e 2654 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2655 start, nr_pages,
2656 pages, NULL, gup_flags);
d8ed45c5 2657 mmap_read_unlock(current->mm);
7af75561
IW
2658 } else {
2659 ret = get_user_pages_unlocked(start, nr_pages,
2660 pages, gup_flags);
2661 }
2662
2663 return ret;
2664}
2665
c28b1fc7
JG
2666static unsigned long lockless_pages_from_mm(unsigned long start,
2667 unsigned long end,
2668 unsigned int gup_flags,
2669 struct page **pages)
2670{
2671 unsigned long flags;
2672 int nr_pinned = 0;
57efa1fe 2673 unsigned seq;
c28b1fc7
JG
2674
2675 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2676 !gup_fast_permitted(start, end))
2677 return 0;
2678
57efa1fe
JG
2679 if (gup_flags & FOLL_PIN) {
2680 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2681 if (seq & 1)
2682 return 0;
2683 }
2684
c28b1fc7
JG
2685 /*
2686 * Disable interrupts. The nested form is used, in order to allow full,
2687 * general purpose use of this routine.
2688 *
2689 * With interrupts disabled, we block page table pages from being freed
2690 * from under us. See struct mmu_table_batch comments in
2691 * include/asm-generic/tlb.h for more details.
2692 *
2693 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2694 * that come from THPs splitting.
2695 */
2696 local_irq_save(flags);
2697 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2698 local_irq_restore(flags);
57efa1fe
JG
2699
2700 /*
2701 * When pinning pages for DMA there could be a concurrent write protect
2702 * from fork() via copy_page_range(), in this case always fail fast GUP.
2703 */
2704 if (gup_flags & FOLL_PIN) {
2705 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2706 unpin_user_pages(pages, nr_pinned);
2707 return 0;
2708 }
2709 }
c28b1fc7
JG
2710 return nr_pinned;
2711}
2712
2713static int internal_get_user_pages_fast(unsigned long start,
2714 unsigned long nr_pages,
eddb1c22
JH
2715 unsigned int gup_flags,
2716 struct page **pages)
2667f50e 2717{
c28b1fc7
JG
2718 unsigned long len, end;
2719 unsigned long nr_pinned;
2720 int ret;
2667f50e 2721
f4000fdf 2722 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2723 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2724 FOLL_FAST_ONLY)))
817be129
CH
2725 return -EINVAL;
2726
a458b76a
AA
2727 if (gup_flags & FOLL_PIN)
2728 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2729
f81cd178 2730 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2731 might_lock_read(&current->mm->mmap_lock);
f81cd178 2732
f455c854 2733 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2734 len = nr_pages << PAGE_SHIFT;
2735 if (check_add_overflow(start, len, &end))
c61611f7 2736 return 0;
96d4f267 2737 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2738 return -EFAULT;
73e10a61 2739
c28b1fc7
JG
2740 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2741 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2742 return nr_pinned;
2667f50e 2743
c28b1fc7
JG
2744 /* Slow path: try to get the remaining pages with get_user_pages */
2745 start += nr_pinned << PAGE_SHIFT;
2746 pages += nr_pinned;
2747 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2748 pages);
2749 if (ret < 0) {
2750 /*
2751 * The caller has to unpin the pages we already pinned so
2752 * returning -errno is not an option
2753 */
2754 if (nr_pinned)
2755 return nr_pinned;
2756 return ret;
2667f50e 2757 }
c28b1fc7 2758 return ret + nr_pinned;
2667f50e 2759}
c28b1fc7 2760
dadbb612
SJ
2761/**
2762 * get_user_pages_fast_only() - pin user pages in memory
2763 * @start: starting user address
2764 * @nr_pages: number of pages from start to pin
2765 * @gup_flags: flags modifying pin behaviour
2766 * @pages: array that receives pointers to the pages pinned.
2767 * Should be at least nr_pages long.
2768 *
9e1f0580
JH
2769 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2770 * the regular GUP.
2771 * Note a difference with get_user_pages_fast: this always returns the
2772 * number of pages pinned, 0 if no pages were pinned.
2773 *
2774 * If the architecture does not support this function, simply return with no
2775 * pages pinned.
2776 *
2777 * Careful, careful! COW breaking can go either way, so a non-write
2778 * access can get ambiguous page results. If you call this function without
2779 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2780 */
dadbb612
SJ
2781int get_user_pages_fast_only(unsigned long start, int nr_pages,
2782 unsigned int gup_flags, struct page **pages)
9e1f0580 2783{
376a34ef 2784 int nr_pinned;
9e1f0580
JH
2785 /*
2786 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2787 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2788 *
2789 * FOLL_FAST_ONLY is required in order to match the API description of
2790 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2791 */
dadbb612 2792 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2793
376a34ef
JH
2794 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2795 pages);
9e1f0580
JH
2796
2797 /*
376a34ef
JH
2798 * As specified in the API description above, this routine is not
2799 * allowed to return negative values. However, the common core
2800 * routine internal_get_user_pages_fast() *can* return -errno.
2801 * Therefore, correct for that here:
9e1f0580 2802 */
376a34ef
JH
2803 if (nr_pinned < 0)
2804 nr_pinned = 0;
9e1f0580
JH
2805
2806 return nr_pinned;
2807}
dadbb612 2808EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2809
eddb1c22
JH
2810/**
2811 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2812 * @start: starting user address
2813 * @nr_pages: number of pages from start to pin
2814 * @gup_flags: flags modifying pin behaviour
2815 * @pages: array that receives pointers to the pages pinned.
2816 * Should be at least nr_pages long.
eddb1c22 2817 *
c1e8d7c6 2818 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2819 * If not successful, it will fall back to taking the lock and
2820 * calling get_user_pages().
2821 *
2822 * Returns number of pages pinned. This may be fewer than the number requested.
2823 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2824 * -errno.
2825 */
2826int get_user_pages_fast(unsigned long start, int nr_pages,
2827 unsigned int gup_flags, struct page **pages)
2828{
447f3e45 2829 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2830 return -EINVAL;
2831
94202f12
JH
2832 /*
2833 * The caller may or may not have explicitly set FOLL_GET; either way is
2834 * OK. However, internally (within mm/gup.c), gup fast variants must set
2835 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2836 * request.
2837 */
2838 gup_flags |= FOLL_GET;
eddb1c22
JH
2839 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2840}
050a9adc 2841EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2842
2843/**
2844 * pin_user_pages_fast() - pin user pages in memory without taking locks
2845 *
3faa52c0
JH
2846 * @start: starting user address
2847 * @nr_pages: number of pages from start to pin
2848 * @gup_flags: flags modifying pin behaviour
2849 * @pages: array that receives pointers to the pages pinned.
2850 * Should be at least nr_pages long.
2851 *
2852 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2853 * get_user_pages_fast() for documentation on the function arguments, because
2854 * the arguments here are identical.
2855 *
2856 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2857 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2858 */
2859int pin_user_pages_fast(unsigned long start, int nr_pages,
2860 unsigned int gup_flags, struct page **pages)
2861{
3faa52c0
JH
2862 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2863 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2864 return -EINVAL;
2865
2866 gup_flags |= FOLL_PIN;
2867 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2868}
2869EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2870
104acc32 2871/*
dadbb612
SJ
2872 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2873 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2874 *
2875 * The API rules are the same, too: no negative values may be returned.
2876 */
2877int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2878 unsigned int gup_flags, struct page **pages)
2879{
2880 int nr_pinned;
2881
2882 /*
2883 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2884 * rules require returning 0, rather than -errno:
2885 */
2886 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2887 return 0;
2888 /*
2889 * FOLL_FAST_ONLY is required in order to match the API description of
2890 * this routine: no fall back to regular ("slow") GUP.
2891 */
2892 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2893 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2894 pages);
2895 /*
2896 * This routine is not allowed to return negative values. However,
2897 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2898 * correct for that here:
2899 */
2900 if (nr_pinned < 0)
2901 nr_pinned = 0;
2902
2903 return nr_pinned;
2904}
2905EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2906
eddb1c22 2907/**
64019a2e 2908 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2909 *
3faa52c0
JH
2910 * @mm: mm_struct of target mm
2911 * @start: starting user address
2912 * @nr_pages: number of pages from start to pin
2913 * @gup_flags: flags modifying lookup behaviour
2914 * @pages: array that receives pointers to the pages pinned.
2915 * Should be at least nr_pages long. Or NULL, if caller
2916 * only intends to ensure the pages are faulted in.
2917 * @vmas: array of pointers to vmas corresponding to each page.
2918 * Or NULL if the caller does not require them.
2919 * @locked: pointer to lock flag indicating whether lock is held and
2920 * subsequently whether VM_FAULT_RETRY functionality can be
2921 * utilised. Lock must initially be held.
2922 *
2923 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2924 * get_user_pages_remote() for documentation on the function arguments, because
2925 * the arguments here are identical.
2926 *
2927 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2928 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2929 */
64019a2e 2930long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2931 unsigned long start, unsigned long nr_pages,
2932 unsigned int gup_flags, struct page **pages,
2933 struct vm_area_struct **vmas, int *locked)
2934{
3faa52c0
JH
2935 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2936 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2937 return -EINVAL;
2938
2939 gup_flags |= FOLL_PIN;
64019a2e 2940 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2941 pages, vmas, locked);
eddb1c22
JH
2942}
2943EXPORT_SYMBOL(pin_user_pages_remote);
2944
2945/**
2946 * pin_user_pages() - pin user pages in memory for use by other devices
2947 *
3faa52c0
JH
2948 * @start: starting user address
2949 * @nr_pages: number of pages from start to pin
2950 * @gup_flags: flags modifying lookup behaviour
2951 * @pages: array that receives pointers to the pages pinned.
2952 * Should be at least nr_pages long. Or NULL, if caller
2953 * only intends to ensure the pages are faulted in.
2954 * @vmas: array of pointers to vmas corresponding to each page.
2955 * Or NULL if the caller does not require them.
2956 *
2957 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2958 * FOLL_PIN is set.
2959 *
2960 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2961 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2962 */
2963long pin_user_pages(unsigned long start, unsigned long nr_pages,
2964 unsigned int gup_flags, struct page **pages,
2965 struct vm_area_struct **vmas)
2966{
3faa52c0
JH
2967 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2968 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2969 return -EINVAL;
2970
2971 gup_flags |= FOLL_PIN;
64019a2e 2972 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2973 pages, vmas, gup_flags);
eddb1c22
JH
2974}
2975EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2976
2977/*
2978 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2979 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2980 * FOLL_PIN and rejects FOLL_GET.
2981 */
2982long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2983 struct page **pages, unsigned int gup_flags)
2984{
2985 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2986 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2987 return -EINVAL;
2988
2989 gup_flags |= FOLL_PIN;
2990 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2991}
2992EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
2993
2994/*
2995 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2996 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2997 * FOLL_GET.
2998 */
2999long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3000 unsigned int gup_flags, struct page **pages,
3001 int *locked)
3002{
3003 /*
3004 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3005 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3006 * vmas. As there are no users of this flag in this call we simply
3007 * disallow this option for now.
3008 */
3009 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3010 return -EINVAL;
3011
3012 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3013 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3014 return -EINVAL;
3015
3016 gup_flags |= FOLL_PIN;
64019a2e 3017 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
3018 pages, NULL, locked,
3019 gup_flags | FOLL_TOUCH);
3020}
3021EXPORT_SYMBOL(pin_user_pages_locked);