mm/gup: remove the vma allocation from gup_longterm_locked()
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
1027e443 22#include <asm/tlbflush.h>
2667f50e 23
4bbd4c77
KS
24#include "internal.h"
25
df06b37f
KB
26struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
47e29d32
JH
31static void hpage_pincount_add(struct page *page, int refs)
32{
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37}
38
39static void hpage_pincount_sub(struct page *page, int refs)
40{
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45}
46
a707cdd5
JH
47/*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51static inline struct page *try_get_compound_head(struct page *page, int refs)
52{
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60}
61
3faa52c0
JH
62/*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
81static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs,
83 unsigned int flags)
84{
85 if (flags & FOLL_GET)
86 return try_get_compound_head(page, refs);
87 else if (flags & FOLL_PIN) {
1970dc6f
JH
88 int orig_refs = refs;
89
df3a0a21
PL
90 /*
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
93 */
94 if (unlikely(flags & FOLL_LONGTERM) &&
95 is_migrate_cma_page(page))
96 return NULL;
97
47e29d32
JH
98 /*
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
102 *
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
105 */
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
108
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
112
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
115
1970dc6f
JH
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
118
47e29d32 119 return page;
3faa52c0
JH
120 }
121
122 WARN_ON_ONCE(1);
123 return NULL;
124}
125
126/**
127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128 *
129 * This might not do anything at all, depending on the flags argument.
130 *
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133 *
134 * @page: pointer to page to be grabbed
135 * @flags: gup flags: these are the FOLL_* flag values.
136 *
137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138 * time. Cases:
139 *
140 * FOLL_GET: page's refcount will be incremented by 1.
141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142 *
143 * Return: true for success, or if no action was required (if neither FOLL_PIN
144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145 * FOLL_PIN was set, but the page could not be grabbed.
146 */
147bool __must_check try_grab_page(struct page *page, unsigned int flags)
148{
149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150
151 if (flags & FOLL_GET)
152 return try_get_page(page);
153 else if (flags & FOLL_PIN) {
47e29d32
JH
154 int refs = 1;
155
3faa52c0
JH
156 page = compound_head(page);
157
158 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 return false;
160
47e29d32
JH
161 if (hpage_pincount_available(page))
162 hpage_pincount_add(page, 1);
163 else
164 refs = GUP_PIN_COUNTING_BIAS;
165
166 /*
167 * Similar to try_grab_compound_head(): even if using the
168 * hpage_pincount_add/_sub() routines, be sure to
169 * *also* increment the normal page refcount field at least
170 * once, so that the page really is pinned.
171 */
172 page_ref_add(page, refs);
1970dc6f
JH
173
174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
175 }
176
177 return true;
178}
179
180#ifdef CONFIG_DEV_PAGEMAP_OPS
181static bool __unpin_devmap_managed_user_page(struct page *page)
182{
47e29d32 183 int count, refs = 1;
3faa52c0
JH
184
185 if (!page_is_devmap_managed(page))
186 return false;
187
47e29d32
JH
188 if (hpage_pincount_available(page))
189 hpage_pincount_sub(page, 1);
190 else
191 refs = GUP_PIN_COUNTING_BIAS;
192
193 count = page_ref_sub_return(page, refs);
3faa52c0 194
1970dc6f 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
196 /*
197 * devmap page refcounts are 1-based, rather than 0-based: if
198 * refcount is 1, then the page is free and the refcount is
199 * stable because nobody holds a reference on the page.
200 */
201 if (count == 1)
202 free_devmap_managed_page(page);
203 else if (!count)
204 __put_page(page);
205
206 return true;
207}
208#else
209static bool __unpin_devmap_managed_user_page(struct page *page)
210{
211 return false;
212}
213#endif /* CONFIG_DEV_PAGEMAP_OPS */
214
215/**
216 * unpin_user_page() - release a dma-pinned page
217 * @page: pointer to page to be released
218 *
219 * Pages that were pinned via pin_user_pages*() must be released via either
220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221 * that such pages can be separately tracked and uniquely handled. In
222 * particular, interactions with RDMA and filesystems need special handling.
223 */
224void unpin_user_page(struct page *page)
225{
47e29d32
JH
226 int refs = 1;
227
3faa52c0
JH
228 page = compound_head(page);
229
230 /*
231 * For devmap managed pages we need to catch refcount transition from
232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 * page is free and we need to inform the device driver through
234 * callback. See include/linux/memremap.h and HMM for details.
235 */
236 if (__unpin_devmap_managed_user_page(page))
237 return;
238
47e29d32
JH
239 if (hpage_pincount_available(page))
240 hpage_pincount_sub(page, 1);
241 else
242 refs = GUP_PIN_COUNTING_BIAS;
243
244 if (page_ref_sub_and_test(page, refs))
3faa52c0 245 __put_page(page);
1970dc6f
JH
246
247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
248}
249EXPORT_SYMBOL(unpin_user_page);
250
fc1d8e7c 251/**
f1f6a7dd 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 253 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 254 * @npages: number of pages in the @pages array.
2d15eb31 255 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
256 *
257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258 * variants called on that page.
259 *
260 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 261 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
262 * listed as clean. In any case, releases all pages using unpin_user_page(),
263 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 264 *
f1f6a7dd 265 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 266 *
2d15eb31 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268 * required, then the caller should a) verify that this is really correct,
269 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 270 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
271 *
272 */
f1f6a7dd
JH
273void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 bool make_dirty)
fc1d8e7c 275{
2d15eb31 276 unsigned long index;
fc1d8e7c 277
2d15eb31 278 /*
279 * TODO: this can be optimized for huge pages: if a series of pages is
280 * physically contiguous and part of the same compound page, then a
281 * single operation to the head page should suffice.
282 */
283
284 if (!make_dirty) {
f1f6a7dd 285 unpin_user_pages(pages, npages);
2d15eb31 286 return;
287 }
288
289 for (index = 0; index < npages; index++) {
290 struct page *page = compound_head(pages[index]);
291 /*
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
294 * cases:
295 *
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
304 * back.
305 *
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
310 */
311 if (!PageDirty(page))
312 set_page_dirty_lock(page);
f1f6a7dd 313 unpin_user_page(page);
2d15eb31 314 }
fc1d8e7c 315}
f1f6a7dd 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c
JH
317
318/**
f1f6a7dd 319 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
320 * @pages: array of pages to be marked dirty and released.
321 * @npages: number of pages in the @pages array.
322 *
f1f6a7dd 323 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 324 *
f1f6a7dd 325 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 326 */
f1f6a7dd 327void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
328{
329 unsigned long index;
330
146608bb
JH
331 /*
332 * If this WARN_ON() fires, then the system *might* be leaking pages (by
333 * leaving them pinned), but probably not. More likely, gup/pup returned
334 * a hard -ERRNO error to the caller, who erroneously passed it here.
335 */
336 if (WARN_ON(IS_ERR_VALUE(npages)))
337 return;
fc1d8e7c
JH
338 /*
339 * TODO: this can be optimized for huge pages: if a series of pages is
340 * physically contiguous and part of the same compound page, then a
341 * single operation to the head page should suffice.
342 */
343 for (index = 0; index < npages; index++)
f1f6a7dd 344 unpin_user_page(pages[index]);
fc1d8e7c 345}
f1f6a7dd 346EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 347
050a9adc 348#ifdef CONFIG_MMU
69e68b4f
KS
349static struct page *no_page_table(struct vm_area_struct *vma,
350 unsigned int flags)
4bbd4c77 351{
69e68b4f
KS
352 /*
353 * When core dumping an enormous anonymous area that nobody
354 * has touched so far, we don't want to allocate unnecessary pages or
355 * page tables. Return error instead of NULL to skip handle_mm_fault,
356 * then get_dump_page() will return NULL to leave a hole in the dump.
357 * But we can only make this optimization where a hole would surely
358 * be zero-filled if handle_mm_fault() actually did handle it.
359 */
a0137f16
AK
360 if ((flags & FOLL_DUMP) &&
361 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
362 return ERR_PTR(-EFAULT);
363 return NULL;
364}
4bbd4c77 365
1027e443
KS
366static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
367 pte_t *pte, unsigned int flags)
368{
369 /* No page to get reference */
370 if (flags & FOLL_GET)
371 return -EFAULT;
372
373 if (flags & FOLL_TOUCH) {
374 pte_t entry = *pte;
375
376 if (flags & FOLL_WRITE)
377 entry = pte_mkdirty(entry);
378 entry = pte_mkyoung(entry);
379
380 if (!pte_same(*pte, entry)) {
381 set_pte_at(vma->vm_mm, address, pte, entry);
382 update_mmu_cache(vma, address, pte);
383 }
384 }
385
386 /* Proper page table entry exists, but no corresponding struct page */
387 return -EEXIST;
388}
389
19be0eaf 390/*
a308c71b
PX
391 * FOLL_FORCE can write to even unwritable pte's, but only
392 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
393 */
394static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
395{
a308c71b
PX
396 return pte_write(pte) ||
397 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
398}
399
69e68b4f 400static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
401 unsigned long address, pmd_t *pmd, unsigned int flags,
402 struct dev_pagemap **pgmap)
69e68b4f
KS
403{
404 struct mm_struct *mm = vma->vm_mm;
405 struct page *page;
406 spinlock_t *ptl;
407 pte_t *ptep, pte;
f28d4363 408 int ret;
4bbd4c77 409
eddb1c22
JH
410 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
411 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
412 (FOLL_PIN | FOLL_GET)))
413 return ERR_PTR(-EINVAL);
69e68b4f 414retry:
4bbd4c77 415 if (unlikely(pmd_bad(*pmd)))
69e68b4f 416 return no_page_table(vma, flags);
4bbd4c77
KS
417
418 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
419 pte = *ptep;
420 if (!pte_present(pte)) {
421 swp_entry_t entry;
422 /*
423 * KSM's break_ksm() relies upon recognizing a ksm page
424 * even while it is being migrated, so for that case we
425 * need migration_entry_wait().
426 */
427 if (likely(!(flags & FOLL_MIGRATION)))
428 goto no_page;
0661a336 429 if (pte_none(pte))
4bbd4c77
KS
430 goto no_page;
431 entry = pte_to_swp_entry(pte);
432 if (!is_migration_entry(entry))
433 goto no_page;
434 pte_unmap_unlock(ptep, ptl);
435 migration_entry_wait(mm, pmd, address);
69e68b4f 436 goto retry;
4bbd4c77 437 }
8a0516ed 438 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 439 goto no_page;
19be0eaf 440 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
441 pte_unmap_unlock(ptep, ptl);
442 return NULL;
443 }
4bbd4c77
KS
444
445 page = vm_normal_page(vma, address, pte);
3faa52c0 446 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 447 /*
3faa52c0
JH
448 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
449 * case since they are only valid while holding the pgmap
450 * reference.
3565fce3 451 */
df06b37f
KB
452 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
453 if (*pgmap)
3565fce3
DW
454 page = pte_page(pte);
455 else
456 goto no_page;
457 } else if (unlikely(!page)) {
1027e443
KS
458 if (flags & FOLL_DUMP) {
459 /* Avoid special (like zero) pages in core dumps */
460 page = ERR_PTR(-EFAULT);
461 goto out;
462 }
463
464 if (is_zero_pfn(pte_pfn(pte))) {
465 page = pte_page(pte);
466 } else {
1027e443
KS
467 ret = follow_pfn_pte(vma, address, ptep, flags);
468 page = ERR_PTR(ret);
469 goto out;
470 }
4bbd4c77
KS
471 }
472
6742d293 473 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
6742d293
KS
474 get_page(page);
475 pte_unmap_unlock(ptep, ptl);
476 lock_page(page);
477 ret = split_huge_page(page);
478 unlock_page(page);
479 put_page(page);
480 if (ret)
481 return ERR_PTR(ret);
482 goto retry;
483 }
484
3faa52c0
JH
485 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
486 if (unlikely(!try_grab_page(page, flags))) {
487 page = ERR_PTR(-ENOMEM);
488 goto out;
8fde12ca 489 }
f28d4363
CI
490 /*
491 * We need to make the page accessible if and only if we are going
492 * to access its content (the FOLL_PIN case). Please see
493 * Documentation/core-api/pin_user_pages.rst for details.
494 */
495 if (flags & FOLL_PIN) {
496 ret = arch_make_page_accessible(page);
497 if (ret) {
498 unpin_user_page(page);
499 page = ERR_PTR(ret);
500 goto out;
501 }
502 }
4bbd4c77
KS
503 if (flags & FOLL_TOUCH) {
504 if ((flags & FOLL_WRITE) &&
505 !pte_dirty(pte) && !PageDirty(page))
506 set_page_dirty(page);
507 /*
508 * pte_mkyoung() would be more correct here, but atomic care
509 * is needed to avoid losing the dirty bit: it is easier to use
510 * mark_page_accessed().
511 */
512 mark_page_accessed(page);
513 }
de60f5f1 514 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
515 /* Do not mlock pte-mapped THP */
516 if (PageTransCompound(page))
517 goto out;
518
4bbd4c77
KS
519 /*
520 * The preliminary mapping check is mainly to avoid the
521 * pointless overhead of lock_page on the ZERO_PAGE
522 * which might bounce very badly if there is contention.
523 *
524 * If the page is already locked, we don't need to
525 * handle it now - vmscan will handle it later if and
526 * when it attempts to reclaim the page.
527 */
528 if (page->mapping && trylock_page(page)) {
529 lru_add_drain(); /* push cached pages to LRU */
530 /*
531 * Because we lock page here, and migration is
532 * blocked by the pte's page reference, and we
533 * know the page is still mapped, we don't even
534 * need to check for file-cache page truncation.
535 */
536 mlock_vma_page(page);
537 unlock_page(page);
538 }
539 }
1027e443 540out:
4bbd4c77 541 pte_unmap_unlock(ptep, ptl);
4bbd4c77 542 return page;
4bbd4c77
KS
543no_page:
544 pte_unmap_unlock(ptep, ptl);
545 if (!pte_none(pte))
69e68b4f
KS
546 return NULL;
547 return no_page_table(vma, flags);
548}
549
080dbb61
AK
550static struct page *follow_pmd_mask(struct vm_area_struct *vma,
551 unsigned long address, pud_t *pudp,
df06b37f
KB
552 unsigned int flags,
553 struct follow_page_context *ctx)
69e68b4f 554{
68827280 555 pmd_t *pmd, pmdval;
69e68b4f
KS
556 spinlock_t *ptl;
557 struct page *page;
558 struct mm_struct *mm = vma->vm_mm;
559
080dbb61 560 pmd = pmd_offset(pudp, address);
68827280
HY
561 /*
562 * The READ_ONCE() will stabilize the pmdval in a register or
563 * on the stack so that it will stop changing under the code.
564 */
565 pmdval = READ_ONCE(*pmd);
566 if (pmd_none(pmdval))
69e68b4f 567 return no_page_table(vma, flags);
be9d3045 568 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
569 page = follow_huge_pmd(mm, address, pmd, flags);
570 if (page)
571 return page;
572 return no_page_table(vma, flags);
69e68b4f 573 }
68827280 574 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 575 page = follow_huge_pd(vma, address,
68827280 576 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
577 PMD_SHIFT);
578 if (page)
579 return page;
580 return no_page_table(vma, flags);
581 }
84c3fc4e 582retry:
68827280 583 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
584 if (likely(!(flags & FOLL_MIGRATION)))
585 return no_page_table(vma, flags);
586 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
587 !is_pmd_migration_entry(pmdval));
588 if (is_pmd_migration_entry(pmdval))
84c3fc4e 589 pmd_migration_entry_wait(mm, pmd);
68827280
HY
590 pmdval = READ_ONCE(*pmd);
591 /*
592 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 593 * mmap_lock is held in read mode
68827280
HY
594 */
595 if (pmd_none(pmdval))
596 return no_page_table(vma, flags);
84c3fc4e
ZY
597 goto retry;
598 }
68827280 599 if (pmd_devmap(pmdval)) {
3565fce3 600 ptl = pmd_lock(mm, pmd);
df06b37f 601 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
602 spin_unlock(ptl);
603 if (page)
604 return page;
605 }
68827280 606 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 607 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 608
68827280 609 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
610 return no_page_table(vma, flags);
611
84c3fc4e 612retry_locked:
6742d293 613 ptl = pmd_lock(mm, pmd);
68827280
HY
614 if (unlikely(pmd_none(*pmd))) {
615 spin_unlock(ptl);
616 return no_page_table(vma, flags);
617 }
84c3fc4e
ZY
618 if (unlikely(!pmd_present(*pmd))) {
619 spin_unlock(ptl);
620 if (likely(!(flags & FOLL_MIGRATION)))
621 return no_page_table(vma, flags);
622 pmd_migration_entry_wait(mm, pmd);
623 goto retry_locked;
624 }
6742d293
KS
625 if (unlikely(!pmd_trans_huge(*pmd))) {
626 spin_unlock(ptl);
df06b37f 627 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 628 }
bfe7b00d 629 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
630 int ret;
631 page = pmd_page(*pmd);
632 if (is_huge_zero_page(page)) {
633 spin_unlock(ptl);
634 ret = 0;
78ddc534 635 split_huge_pmd(vma, pmd, address);
337d9abf
NH
636 if (pmd_trans_unstable(pmd))
637 ret = -EBUSY;
bfe7b00d 638 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
639 if (unlikely(!try_get_page(page))) {
640 spin_unlock(ptl);
641 return ERR_PTR(-ENOMEM);
642 }
69e68b4f 643 spin_unlock(ptl);
6742d293
KS
644 lock_page(page);
645 ret = split_huge_page(page);
646 unlock_page(page);
647 put_page(page);
baa355fd
KS
648 if (pmd_none(*pmd))
649 return no_page_table(vma, flags);
bfe7b00d
SL
650 } else { /* flags & FOLL_SPLIT_PMD */
651 spin_unlock(ptl);
652 split_huge_pmd(vma, pmd, address);
653 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
654 }
655
656 return ret ? ERR_PTR(ret) :
df06b37f 657 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 658 }
6742d293
KS
659 page = follow_trans_huge_pmd(vma, address, pmd, flags);
660 spin_unlock(ptl);
df06b37f 661 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 662 return page;
4bbd4c77
KS
663}
664
080dbb61
AK
665static struct page *follow_pud_mask(struct vm_area_struct *vma,
666 unsigned long address, p4d_t *p4dp,
df06b37f
KB
667 unsigned int flags,
668 struct follow_page_context *ctx)
080dbb61
AK
669{
670 pud_t *pud;
671 spinlock_t *ptl;
672 struct page *page;
673 struct mm_struct *mm = vma->vm_mm;
674
675 pud = pud_offset(p4dp, address);
676 if (pud_none(*pud))
677 return no_page_table(vma, flags);
be9d3045 678 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
679 page = follow_huge_pud(mm, address, pud, flags);
680 if (page)
681 return page;
682 return no_page_table(vma, flags);
683 }
4dc71451
AK
684 if (is_hugepd(__hugepd(pud_val(*pud)))) {
685 page = follow_huge_pd(vma, address,
686 __hugepd(pud_val(*pud)), flags,
687 PUD_SHIFT);
688 if (page)
689 return page;
690 return no_page_table(vma, flags);
691 }
080dbb61
AK
692 if (pud_devmap(*pud)) {
693 ptl = pud_lock(mm, pud);
df06b37f 694 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
695 spin_unlock(ptl);
696 if (page)
697 return page;
698 }
699 if (unlikely(pud_bad(*pud)))
700 return no_page_table(vma, flags);
701
df06b37f 702 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
703}
704
080dbb61
AK
705static struct page *follow_p4d_mask(struct vm_area_struct *vma,
706 unsigned long address, pgd_t *pgdp,
df06b37f
KB
707 unsigned int flags,
708 struct follow_page_context *ctx)
080dbb61
AK
709{
710 p4d_t *p4d;
4dc71451 711 struct page *page;
080dbb61
AK
712
713 p4d = p4d_offset(pgdp, address);
714 if (p4d_none(*p4d))
715 return no_page_table(vma, flags);
716 BUILD_BUG_ON(p4d_huge(*p4d));
717 if (unlikely(p4d_bad(*p4d)))
718 return no_page_table(vma, flags);
719
4dc71451
AK
720 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
721 page = follow_huge_pd(vma, address,
722 __hugepd(p4d_val(*p4d)), flags,
723 P4D_SHIFT);
724 if (page)
725 return page;
726 return no_page_table(vma, flags);
727 }
df06b37f 728 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
729}
730
731/**
732 * follow_page_mask - look up a page descriptor from a user-virtual address
733 * @vma: vm_area_struct mapping @address
734 * @address: virtual address to look up
735 * @flags: flags modifying lookup behaviour
78179556
MR
736 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
737 * pointer to output page_mask
080dbb61
AK
738 *
739 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
740 *
78179556
MR
741 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
742 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
743 *
744 * On output, the @ctx->page_mask is set according to the size of the page.
745 *
746 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
747 * an error pointer if there is a mapping to something not represented
748 * by a page descriptor (see also vm_normal_page()).
749 */
a7030aea 750static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 751 unsigned long address, unsigned int flags,
df06b37f 752 struct follow_page_context *ctx)
080dbb61
AK
753{
754 pgd_t *pgd;
755 struct page *page;
756 struct mm_struct *mm = vma->vm_mm;
757
df06b37f 758 ctx->page_mask = 0;
080dbb61
AK
759
760 /* make this handle hugepd */
761 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
762 if (!IS_ERR(page)) {
3faa52c0 763 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
764 return page;
765 }
766
767 pgd = pgd_offset(mm, address);
768
769 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
770 return no_page_table(vma, flags);
771
faaa5b62
AK
772 if (pgd_huge(*pgd)) {
773 page = follow_huge_pgd(mm, address, pgd, flags);
774 if (page)
775 return page;
776 return no_page_table(vma, flags);
777 }
4dc71451
AK
778 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
779 page = follow_huge_pd(vma, address,
780 __hugepd(pgd_val(*pgd)), flags,
781 PGDIR_SHIFT);
782 if (page)
783 return page;
784 return no_page_table(vma, flags);
785 }
faaa5b62 786
df06b37f
KB
787 return follow_p4d_mask(vma, address, pgd, flags, ctx);
788}
789
790struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
791 unsigned int foll_flags)
792{
793 struct follow_page_context ctx = { NULL };
794 struct page *page;
795
796 page = follow_page_mask(vma, address, foll_flags, &ctx);
797 if (ctx.pgmap)
798 put_dev_pagemap(ctx.pgmap);
799 return page;
080dbb61
AK
800}
801
f2b495ca
KS
802static int get_gate_page(struct mm_struct *mm, unsigned long address,
803 unsigned int gup_flags, struct vm_area_struct **vma,
804 struct page **page)
805{
806 pgd_t *pgd;
c2febafc 807 p4d_t *p4d;
f2b495ca
KS
808 pud_t *pud;
809 pmd_t *pmd;
810 pte_t *pte;
811 int ret = -EFAULT;
812
813 /* user gate pages are read-only */
814 if (gup_flags & FOLL_WRITE)
815 return -EFAULT;
816 if (address > TASK_SIZE)
817 pgd = pgd_offset_k(address);
818 else
819 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
820 if (pgd_none(*pgd))
821 return -EFAULT;
c2febafc 822 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
823 if (p4d_none(*p4d))
824 return -EFAULT;
c2febafc 825 pud = pud_offset(p4d, address);
b5d1c39f
AL
826 if (pud_none(*pud))
827 return -EFAULT;
f2b495ca 828 pmd = pmd_offset(pud, address);
84c3fc4e 829 if (!pmd_present(*pmd))
f2b495ca
KS
830 return -EFAULT;
831 VM_BUG_ON(pmd_trans_huge(*pmd));
832 pte = pte_offset_map(pmd, address);
833 if (pte_none(*pte))
834 goto unmap;
835 *vma = get_gate_vma(mm);
836 if (!page)
837 goto out;
838 *page = vm_normal_page(*vma, address, *pte);
839 if (!*page) {
840 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
841 goto unmap;
842 *page = pte_page(*pte);
843 }
9fa2dd94 844 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
845 ret = -ENOMEM;
846 goto unmap;
847 }
f2b495ca
KS
848out:
849 ret = 0;
850unmap:
851 pte_unmap(pte);
852 return ret;
853}
854
9a95f3cf 855/*
c1e8d7c6
ML
856 * mmap_lock must be held on entry. If @locked != NULL and *@flags
857 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 858 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 859 */
64019a2e 860static int faultin_page(struct vm_area_struct *vma,
4f6da934 861 unsigned long address, unsigned int *flags, int *locked)
16744483 862{
16744483 863 unsigned int fault_flags = 0;
2b740303 864 vm_fault_t ret;
16744483 865
de60f5f1
EM
866 /* mlock all present pages, but do not fault in new pages */
867 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
868 return -ENOENT;
16744483
KS
869 if (*flags & FOLL_WRITE)
870 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
871 if (*flags & FOLL_REMOTE)
872 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 873 if (locked)
71335f37 874 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
875 if (*flags & FOLL_NOWAIT)
876 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 877 if (*flags & FOLL_TRIED) {
4426e945
PX
878 /*
879 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
880 * can co-exist
881 */
234b239b
ALC
882 fault_flags |= FAULT_FLAG_TRIED;
883 }
16744483 884
bce617ed 885 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 886 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
887 int err = vm_fault_to_errno(ret, *flags);
888
889 if (err)
890 return err;
16744483
KS
891 BUG();
892 }
893
16744483 894 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
895 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
896 *locked = 0;
16744483
KS
897 return -EBUSY;
898 }
899
900 /*
901 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
902 * necessary, even if maybe_mkwrite decided not to set pte_write. We
903 * can thus safely do subsequent page lookups as if they were reads.
904 * But only do so when looping for pte_write is futile: in some cases
905 * userspace may also be wanting to write to the gotten user page,
906 * which a read fault here might prevent (a readonly page might get
907 * reCOWed by userspace write).
908 */
909 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 910 *flags |= FOLL_COW;
16744483
KS
911 return 0;
912}
913
fa5bb209
KS
914static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
915{
916 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
917 int write = (gup_flags & FOLL_WRITE);
918 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
919
920 if (vm_flags & (VM_IO | VM_PFNMAP))
921 return -EFAULT;
922
7f7ccc2c
WT
923 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
924 return -EFAULT;
925
52650c8b
JG
926 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
927 return -EOPNOTSUPP;
928
1b2ee126 929 if (write) {
fa5bb209
KS
930 if (!(vm_flags & VM_WRITE)) {
931 if (!(gup_flags & FOLL_FORCE))
932 return -EFAULT;
933 /*
934 * We used to let the write,force case do COW in a
935 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
936 * set a breakpoint in a read-only mapping of an
937 * executable, without corrupting the file (yet only
938 * when that file had been opened for writing!).
939 * Anon pages in shared mappings are surprising: now
940 * just reject it.
941 */
46435364 942 if (!is_cow_mapping(vm_flags))
fa5bb209 943 return -EFAULT;
fa5bb209
KS
944 }
945 } else if (!(vm_flags & VM_READ)) {
946 if (!(gup_flags & FOLL_FORCE))
947 return -EFAULT;
948 /*
949 * Is there actually any vma we can reach here which does not
950 * have VM_MAYREAD set?
951 */
952 if (!(vm_flags & VM_MAYREAD))
953 return -EFAULT;
954 }
d61172b4
DH
955 /*
956 * gups are always data accesses, not instruction
957 * fetches, so execute=false here
958 */
959 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 960 return -EFAULT;
fa5bb209
KS
961 return 0;
962}
963
4bbd4c77
KS
964/**
965 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
966 * @mm: mm_struct of target mm
967 * @start: starting user address
968 * @nr_pages: number of pages from start to pin
969 * @gup_flags: flags modifying pin behaviour
970 * @pages: array that receives pointers to the pages pinned.
971 * Should be at least nr_pages long. Or NULL, if caller
972 * only intends to ensure the pages are faulted in.
973 * @vmas: array of pointers to vmas corresponding to each page.
974 * Or NULL if the caller does not require them.
c1e8d7c6 975 * @locked: whether we're still with the mmap_lock held
4bbd4c77 976 *
d2dfbe47
LX
977 * Returns either number of pages pinned (which may be less than the
978 * number requested), or an error. Details about the return value:
979 *
980 * -- If nr_pages is 0, returns 0.
981 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
982 * -- If nr_pages is >0, and some pages were pinned, returns the number of
983 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 984 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
985 *
986 * The caller is responsible for releasing returned @pages, via put_page().
987 *
c1e8d7c6 988 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 989 *
c1e8d7c6 990 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
991 *
992 * __get_user_pages walks a process's page tables and takes a reference to
993 * each struct page that each user address corresponds to at a given
994 * instant. That is, it takes the page that would be accessed if a user
995 * thread accesses the given user virtual address at that instant.
996 *
997 * This does not guarantee that the page exists in the user mappings when
998 * __get_user_pages returns, and there may even be a completely different
999 * page there in some cases (eg. if mmapped pagecache has been invalidated
1000 * and subsequently re faulted). However it does guarantee that the page
1001 * won't be freed completely. And mostly callers simply care that the page
1002 * contains data that was valid *at some point in time*. Typically, an IO
1003 * or similar operation cannot guarantee anything stronger anyway because
1004 * locks can't be held over the syscall boundary.
1005 *
1006 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1007 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1008 * appropriate) must be called after the page is finished with, and
1009 * before put_page is called.
1010 *
c1e8d7c6 1011 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1012 * released by an up_read(). That can happen if @gup_flags does not
1013 * have FOLL_NOWAIT.
9a95f3cf 1014 *
4f6da934 1015 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1016 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1017 * when it's been released. Otherwise, it must be held for either
1018 * reading or writing and will not be released.
4bbd4c77
KS
1019 *
1020 * In most cases, get_user_pages or get_user_pages_fast should be used
1021 * instead of __get_user_pages. __get_user_pages should be used only if
1022 * you need some special @gup_flags.
1023 */
64019a2e 1024static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1025 unsigned long start, unsigned long nr_pages,
1026 unsigned int gup_flags, struct page **pages,
4f6da934 1027 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1028{
df06b37f 1029 long ret = 0, i = 0;
fa5bb209 1030 struct vm_area_struct *vma = NULL;
df06b37f 1031 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1032
1033 if (!nr_pages)
1034 return 0;
1035
f9652594
AK
1036 start = untagged_addr(start);
1037
eddb1c22 1038 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1039
1040 /*
1041 * If FOLL_FORCE is set then do not force a full fault as the hinting
1042 * fault information is unrelated to the reference behaviour of a task
1043 * using the address space
1044 */
1045 if (!(gup_flags & FOLL_FORCE))
1046 gup_flags |= FOLL_NUMA;
1047
4bbd4c77 1048 do {
fa5bb209
KS
1049 struct page *page;
1050 unsigned int foll_flags = gup_flags;
1051 unsigned int page_increm;
1052
1053 /* first iteration or cross vma bound */
1054 if (!vma || start >= vma->vm_end) {
1055 vma = find_extend_vma(mm, start);
1056 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1057 ret = get_gate_page(mm, start & PAGE_MASK,
1058 gup_flags, &vma,
1059 pages ? &pages[i] : NULL);
1060 if (ret)
08be37b7 1061 goto out;
df06b37f 1062 ctx.page_mask = 0;
fa5bb209
KS
1063 goto next_page;
1064 }
4bbd4c77 1065
52650c8b 1066 if (!vma) {
df06b37f
KB
1067 ret = -EFAULT;
1068 goto out;
1069 }
52650c8b
JG
1070 ret = check_vma_flags(vma, gup_flags);
1071 if (ret)
1072 goto out;
1073
fa5bb209
KS
1074 if (is_vm_hugetlb_page(vma)) {
1075 i = follow_hugetlb_page(mm, vma, pages, vmas,
1076 &start, &nr_pages, i,
a308c71b 1077 gup_flags, locked);
ad415db8
PX
1078 if (locked && *locked == 0) {
1079 /*
1080 * We've got a VM_FAULT_RETRY
c1e8d7c6 1081 * and we've lost mmap_lock.
ad415db8
PX
1082 * We must stop here.
1083 */
1084 BUG_ON(gup_flags & FOLL_NOWAIT);
1085 BUG_ON(ret != 0);
1086 goto out;
1087 }
fa5bb209 1088 continue;
4bbd4c77 1089 }
fa5bb209
KS
1090 }
1091retry:
1092 /*
1093 * If we have a pending SIGKILL, don't keep faulting pages and
1094 * potentially allocating memory.
1095 */
fa45f116 1096 if (fatal_signal_pending(current)) {
d180870d 1097 ret = -EINTR;
df06b37f
KB
1098 goto out;
1099 }
fa5bb209 1100 cond_resched();
df06b37f
KB
1101
1102 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1103 if (!page) {
64019a2e 1104 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1105 switch (ret) {
1106 case 0:
1107 goto retry;
df06b37f
KB
1108 case -EBUSY:
1109 ret = 0;
e4a9bc58 1110 fallthrough;
fa5bb209
KS
1111 case -EFAULT:
1112 case -ENOMEM:
1113 case -EHWPOISON:
df06b37f 1114 goto out;
fa5bb209
KS
1115 case -ENOENT:
1116 goto next_page;
4bbd4c77 1117 }
fa5bb209 1118 BUG();
1027e443
KS
1119 } else if (PTR_ERR(page) == -EEXIST) {
1120 /*
1121 * Proper page table entry exists, but no corresponding
1122 * struct page.
1123 */
1124 goto next_page;
1125 } else if (IS_ERR(page)) {
df06b37f
KB
1126 ret = PTR_ERR(page);
1127 goto out;
1027e443 1128 }
fa5bb209
KS
1129 if (pages) {
1130 pages[i] = page;
1131 flush_anon_page(vma, page, start);
1132 flush_dcache_page(page);
df06b37f 1133 ctx.page_mask = 0;
4bbd4c77 1134 }
4bbd4c77 1135next_page:
fa5bb209
KS
1136 if (vmas) {
1137 vmas[i] = vma;
df06b37f 1138 ctx.page_mask = 0;
fa5bb209 1139 }
df06b37f 1140 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1141 if (page_increm > nr_pages)
1142 page_increm = nr_pages;
1143 i += page_increm;
1144 start += page_increm * PAGE_SIZE;
1145 nr_pages -= page_increm;
4bbd4c77 1146 } while (nr_pages);
df06b37f
KB
1147out:
1148 if (ctx.pgmap)
1149 put_dev_pagemap(ctx.pgmap);
1150 return i ? i : ret;
4bbd4c77 1151}
4bbd4c77 1152
771ab430
TK
1153static bool vma_permits_fault(struct vm_area_struct *vma,
1154 unsigned int fault_flags)
d4925e00 1155{
1b2ee126
DH
1156 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1157 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1158 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1159
1160 if (!(vm_flags & vma->vm_flags))
1161 return false;
1162
33a709b2
DH
1163 /*
1164 * The architecture might have a hardware protection
1b2ee126 1165 * mechanism other than read/write that can deny access.
d61172b4
DH
1166 *
1167 * gup always represents data access, not instruction
1168 * fetches, so execute=false here:
33a709b2 1169 */
d61172b4 1170 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1171 return false;
1172
d4925e00
DH
1173 return true;
1174}
1175
adc8cb40 1176/**
4bbd4c77 1177 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1178 * @mm: mm_struct of target mm
1179 * @address: user address
1180 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1181 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1182 * does not allow retry. If NULL, the caller must guarantee
1183 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1184 *
1185 * This is meant to be called in the specific scenario where for locking reasons
1186 * we try to access user memory in atomic context (within a pagefault_disable()
1187 * section), this returns -EFAULT, and we want to resolve the user fault before
1188 * trying again.
1189 *
1190 * Typically this is meant to be used by the futex code.
1191 *
1192 * The main difference with get_user_pages() is that this function will
1193 * unconditionally call handle_mm_fault() which will in turn perform all the
1194 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1195 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1196 *
1197 * This is important for some architectures where those bits also gate the
1198 * access permission to the page because they are maintained in software. On
1199 * such architectures, gup() will not be enough to make a subsequent access
1200 * succeed.
1201 *
c1e8d7c6
ML
1202 * This function will not return with an unlocked mmap_lock. So it has not the
1203 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1204 */
64019a2e 1205int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1206 unsigned long address, unsigned int fault_flags,
1207 bool *unlocked)
4bbd4c77
KS
1208{
1209 struct vm_area_struct *vma;
2b740303 1210 vm_fault_t ret, major = 0;
4a9e1cda 1211
f9652594
AK
1212 address = untagged_addr(address);
1213
4a9e1cda 1214 if (unlocked)
71335f37 1215 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1216
4a9e1cda 1217retry:
4bbd4c77
KS
1218 vma = find_extend_vma(mm, address);
1219 if (!vma || address < vma->vm_start)
1220 return -EFAULT;
1221
d4925e00 1222 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1223 return -EFAULT;
1224
475f4dfc
PX
1225 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1226 fatal_signal_pending(current))
1227 return -EINTR;
1228
bce617ed 1229 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4a9e1cda 1230 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1231 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1232 int err = vm_fault_to_errno(ret, 0);
1233
1234 if (err)
1235 return err;
4bbd4c77
KS
1236 BUG();
1237 }
4a9e1cda
DD
1238
1239 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1240 mmap_read_lock(mm);
475f4dfc
PX
1241 *unlocked = true;
1242 fault_flags |= FAULT_FLAG_TRIED;
1243 goto retry;
4a9e1cda
DD
1244 }
1245
4bbd4c77
KS
1246 return 0;
1247}
add6a0cd 1248EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1249
2d3a36a4
MH
1250/*
1251 * Please note that this function, unlike __get_user_pages will not
1252 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1253 */
64019a2e 1254static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1255 unsigned long start,
1256 unsigned long nr_pages,
f0818f47
AA
1257 struct page **pages,
1258 struct vm_area_struct **vmas,
e716712f 1259 int *locked,
0fd71a56 1260 unsigned int flags)
f0818f47 1261{
f0818f47
AA
1262 long ret, pages_done;
1263 bool lock_dropped;
1264
1265 if (locked) {
1266 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1267 BUG_ON(vmas);
1268 /* check caller initialized locked */
1269 BUG_ON(*locked != 1);
1270 }
1271
008cfe44 1272 if (flags & FOLL_PIN)
a4d63c37 1273 atomic_set(&mm->has_pinned, 1);
008cfe44 1274
eddb1c22
JH
1275 /*
1276 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1277 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1278 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1279 * for FOLL_GET, not for the newer FOLL_PIN.
1280 *
1281 * FOLL_PIN always expects pages to be non-null, but no need to assert
1282 * that here, as any failures will be obvious enough.
1283 */
1284 if (pages && !(flags & FOLL_PIN))
f0818f47 1285 flags |= FOLL_GET;
f0818f47
AA
1286
1287 pages_done = 0;
1288 lock_dropped = false;
1289 for (;;) {
64019a2e 1290 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1291 vmas, locked);
1292 if (!locked)
1293 /* VM_FAULT_RETRY couldn't trigger, bypass */
1294 return ret;
1295
1296 /* VM_FAULT_RETRY cannot return errors */
1297 if (!*locked) {
1298 BUG_ON(ret < 0);
1299 BUG_ON(ret >= nr_pages);
1300 }
1301
f0818f47
AA
1302 if (ret > 0) {
1303 nr_pages -= ret;
1304 pages_done += ret;
1305 if (!nr_pages)
1306 break;
1307 }
1308 if (*locked) {
96312e61
AA
1309 /*
1310 * VM_FAULT_RETRY didn't trigger or it was a
1311 * FOLL_NOWAIT.
1312 */
f0818f47
AA
1313 if (!pages_done)
1314 pages_done = ret;
1315 break;
1316 }
df17277b
MR
1317 /*
1318 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1319 * For the prefault case (!pages) we only update counts.
1320 */
1321 if (likely(pages))
1322 pages += ret;
f0818f47 1323 start += ret << PAGE_SHIFT;
4426e945 1324 lock_dropped = true;
f0818f47 1325
4426e945 1326retry:
f0818f47
AA
1327 /*
1328 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1329 * with both FAULT_FLAG_ALLOW_RETRY and
1330 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1331 * by fatal signals, so we need to check it before we
1332 * start trying again otherwise it can loop forever.
f0818f47 1333 */
4426e945 1334
ae46d2aa
HD
1335 if (fatal_signal_pending(current)) {
1336 if (!pages_done)
1337 pages_done = -EINTR;
4426e945 1338 break;
ae46d2aa 1339 }
4426e945 1340
d8ed45c5 1341 ret = mmap_read_lock_killable(mm);
71335f37
PX
1342 if (ret) {
1343 BUG_ON(ret > 0);
1344 if (!pages_done)
1345 pages_done = ret;
1346 break;
1347 }
4426e945 1348
c7b6a566 1349 *locked = 1;
64019a2e 1350 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1351 pages, NULL, locked);
1352 if (!*locked) {
1353 /* Continue to retry until we succeeded */
1354 BUG_ON(ret != 0);
1355 goto retry;
1356 }
f0818f47
AA
1357 if (ret != 1) {
1358 BUG_ON(ret > 1);
1359 if (!pages_done)
1360 pages_done = ret;
1361 break;
1362 }
1363 nr_pages--;
1364 pages_done++;
1365 if (!nr_pages)
1366 break;
df17277b
MR
1367 if (likely(pages))
1368 pages++;
f0818f47
AA
1369 start += PAGE_SIZE;
1370 }
e716712f 1371 if (lock_dropped && *locked) {
f0818f47
AA
1372 /*
1373 * We must let the caller know we temporarily dropped the lock
1374 * and so the critical section protected by it was lost.
1375 */
d8ed45c5 1376 mmap_read_unlock(mm);
f0818f47
AA
1377 *locked = 0;
1378 }
1379 return pages_done;
1380}
1381
d3649f68
CH
1382/**
1383 * populate_vma_page_range() - populate a range of pages in the vma.
1384 * @vma: target vma
1385 * @start: start address
1386 * @end: end address
c1e8d7c6 1387 * @locked: whether the mmap_lock is still held
d3649f68
CH
1388 *
1389 * This takes care of mlocking the pages too if VM_LOCKED is set.
1390 *
0a36f7f8
TY
1391 * Return either number of pages pinned in the vma, or a negative error
1392 * code on error.
d3649f68 1393 *
c1e8d7c6 1394 * vma->vm_mm->mmap_lock must be held.
d3649f68 1395 *
4f6da934 1396 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1397 * be unperturbed.
1398 *
4f6da934
PX
1399 * If @locked is non-NULL, it must held for read only and may be
1400 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1401 */
1402long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1403 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1404{
1405 struct mm_struct *mm = vma->vm_mm;
1406 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1407 int gup_flags;
1408
1409 VM_BUG_ON(start & ~PAGE_MASK);
1410 VM_BUG_ON(end & ~PAGE_MASK);
1411 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1412 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1413 mmap_assert_locked(mm);
d3649f68
CH
1414
1415 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1416 if (vma->vm_flags & VM_LOCKONFAULT)
1417 gup_flags &= ~FOLL_POPULATE;
1418 /*
1419 * We want to touch writable mappings with a write fault in order
1420 * to break COW, except for shared mappings because these don't COW
1421 * and we would not want to dirty them for nothing.
1422 */
1423 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1424 gup_flags |= FOLL_WRITE;
1425
1426 /*
1427 * We want mlock to succeed for regions that have any permissions
1428 * other than PROT_NONE.
1429 */
3122e80e 1430 if (vma_is_accessible(vma))
d3649f68
CH
1431 gup_flags |= FOLL_FORCE;
1432
1433 /*
1434 * We made sure addr is within a VMA, so the following will
1435 * not result in a stack expansion that recurses back here.
1436 */
64019a2e 1437 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1438 NULL, NULL, locked);
d3649f68
CH
1439}
1440
1441/*
1442 * __mm_populate - populate and/or mlock pages within a range of address space.
1443 *
1444 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1445 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1446 * mmap_lock must not be held.
d3649f68
CH
1447 */
1448int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1449{
1450 struct mm_struct *mm = current->mm;
1451 unsigned long end, nstart, nend;
1452 struct vm_area_struct *vma = NULL;
1453 int locked = 0;
1454 long ret = 0;
1455
1456 end = start + len;
1457
1458 for (nstart = start; nstart < end; nstart = nend) {
1459 /*
1460 * We want to fault in pages for [nstart; end) address range.
1461 * Find first corresponding VMA.
1462 */
1463 if (!locked) {
1464 locked = 1;
d8ed45c5 1465 mmap_read_lock(mm);
d3649f68
CH
1466 vma = find_vma(mm, nstart);
1467 } else if (nstart >= vma->vm_end)
1468 vma = vma->vm_next;
1469 if (!vma || vma->vm_start >= end)
1470 break;
1471 /*
1472 * Set [nstart; nend) to intersection of desired address
1473 * range with the first VMA. Also, skip undesirable VMA types.
1474 */
1475 nend = min(end, vma->vm_end);
1476 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1477 continue;
1478 if (nstart < vma->vm_start)
1479 nstart = vma->vm_start;
1480 /*
1481 * Now fault in a range of pages. populate_vma_page_range()
1482 * double checks the vma flags, so that it won't mlock pages
1483 * if the vma was already munlocked.
1484 */
1485 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1486 if (ret < 0) {
1487 if (ignore_errors) {
1488 ret = 0;
1489 continue; /* continue at next VMA */
1490 }
1491 break;
1492 }
1493 nend = nstart + ret * PAGE_SIZE;
1494 ret = 0;
1495 }
1496 if (locked)
d8ed45c5 1497 mmap_read_unlock(mm);
d3649f68
CH
1498 return ret; /* 0 or negative error code */
1499}
050a9adc 1500#else /* CONFIG_MMU */
64019a2e 1501static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1502 unsigned long nr_pages, struct page **pages,
1503 struct vm_area_struct **vmas, int *locked,
1504 unsigned int foll_flags)
1505{
1506 struct vm_area_struct *vma;
1507 unsigned long vm_flags;
1508 int i;
1509
1510 /* calculate required read or write permissions.
1511 * If FOLL_FORCE is set, we only require the "MAY" flags.
1512 */
1513 vm_flags = (foll_flags & FOLL_WRITE) ?
1514 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1515 vm_flags &= (foll_flags & FOLL_FORCE) ?
1516 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1517
1518 for (i = 0; i < nr_pages; i++) {
1519 vma = find_vma(mm, start);
1520 if (!vma)
1521 goto finish_or_fault;
1522
1523 /* protect what we can, including chardevs */
1524 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1525 !(vm_flags & vma->vm_flags))
1526 goto finish_or_fault;
1527
1528 if (pages) {
1529 pages[i] = virt_to_page(start);
1530 if (pages[i])
1531 get_page(pages[i]);
1532 }
1533 if (vmas)
1534 vmas[i] = vma;
1535 start = (start + PAGE_SIZE) & PAGE_MASK;
1536 }
1537
1538 return i;
1539
1540finish_or_fault:
1541 return i ? : -EFAULT;
1542}
1543#endif /* !CONFIG_MMU */
d3649f68 1544
8f942eea
JH
1545/**
1546 * get_dump_page() - pin user page in memory while writing it to core dump
1547 * @addr: user address
1548 *
1549 * Returns struct page pointer of user page pinned for dump,
1550 * to be freed afterwards by put_page().
1551 *
1552 * Returns NULL on any kind of failure - a hole must then be inserted into
1553 * the corefile, to preserve alignment with its headers; and also returns
1554 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1555 * allowing a hole to be left in the corefile to save diskspace.
1556 *
7f3bfab5 1557 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1558 */
1559#ifdef CONFIG_ELF_CORE
1560struct page *get_dump_page(unsigned long addr)
1561{
7f3bfab5 1562 struct mm_struct *mm = current->mm;
8f942eea 1563 struct page *page;
7f3bfab5
JH
1564 int locked = 1;
1565 int ret;
8f942eea 1566
7f3bfab5 1567 if (mmap_read_lock_killable(mm))
8f942eea 1568 return NULL;
7f3bfab5
JH
1569 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1570 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1571 if (locked)
1572 mmap_read_unlock(mm);
1573 return (ret == 1) ? page : NULL;
8f942eea
JH
1574}
1575#endif /* CONFIG_ELF_CORE */
1576
9a4e9f3b 1577#ifdef CONFIG_CMA
64019a2e 1578static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1579 unsigned long start,
1580 unsigned long nr_pages,
9a4e9f3b 1581 struct page **pages,
932f4a63
IW
1582 struct vm_area_struct **vmas,
1583 unsigned int gup_flags)
9a4e9f3b 1584{
aa712399
PL
1585 unsigned long i;
1586 unsigned long step;
9a4e9f3b
AK
1587 bool drain_allow = true;
1588 bool migrate_allow = true;
1589 LIST_HEAD(cma_page_list);
b96cc655 1590 long ret = nr_pages;
ed03d924
JK
1591 struct migration_target_control mtc = {
1592 .nid = NUMA_NO_NODE,
1593 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1594 };
9a4e9f3b
AK
1595
1596check_again:
aa712399
PL
1597 for (i = 0; i < nr_pages;) {
1598
1599 struct page *head = compound_head(pages[i]);
1600
1601 /*
1602 * gup may start from a tail page. Advance step by the left
1603 * part.
1604 */
d8c6546b 1605 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1606 /*
1607 * If we get a page from the CMA zone, since we are going to
1608 * be pinning these entries, we might as well move them out
1609 * of the CMA zone if possible.
1610 */
aa712399
PL
1611 if (is_migrate_cma_page(head)) {
1612 if (PageHuge(head))
9a4e9f3b 1613 isolate_huge_page(head, &cma_page_list);
aa712399 1614 else {
9a4e9f3b
AK
1615 if (!PageLRU(head) && drain_allow) {
1616 lru_add_drain_all();
1617 drain_allow = false;
1618 }
1619
1620 if (!isolate_lru_page(head)) {
1621 list_add_tail(&head->lru, &cma_page_list);
1622 mod_node_page_state(page_pgdat(head),
1623 NR_ISOLATED_ANON +
9de4f22a 1624 page_is_file_lru(head),
6c357848 1625 thp_nr_pages(head));
9a4e9f3b
AK
1626 }
1627 }
1628 }
aa712399
PL
1629
1630 i += step;
9a4e9f3b
AK
1631 }
1632
1633 if (!list_empty(&cma_page_list)) {
1634 /*
1635 * drop the above get_user_pages reference.
1636 */
96e1fac1
JG
1637 if (gup_flags & FOLL_PIN)
1638 unpin_user_pages(pages, nr_pages);
1639 else
1640 for (i = 0; i < nr_pages; i++)
1641 put_page(pages[i]);
9a4e9f3b 1642
ed03d924
JK
1643 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1644 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
9a4e9f3b
AK
1645 /*
1646 * some of the pages failed migration. Do get_user_pages
1647 * without migration.
1648 */
1649 migrate_allow = false;
1650
1651 if (!list_empty(&cma_page_list))
1652 putback_movable_pages(&cma_page_list);
1653 }
1654 /*
932f4a63
IW
1655 * We did migrate all the pages, Try to get the page references
1656 * again migrating any new CMA pages which we failed to isolate
1657 * earlier.
9a4e9f3b 1658 */
64019a2e 1659 ret = __get_user_pages_locked(mm, start, nr_pages,
932f4a63
IW
1660 pages, vmas, NULL,
1661 gup_flags);
1662
b96cc655 1663 if ((ret > 0) && migrate_allow) {
1664 nr_pages = ret;
9a4e9f3b
AK
1665 drain_allow = true;
1666 goto check_again;
1667 }
1668 }
1669
b96cc655 1670 return ret;
9a4e9f3b
AK
1671}
1672#else
64019a2e 1673static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1674 unsigned long start,
1675 unsigned long nr_pages,
1676 struct page **pages,
1677 struct vm_area_struct **vmas,
1678 unsigned int gup_flags)
9a4e9f3b
AK
1679{
1680 return nr_pages;
1681}
050a9adc 1682#endif /* CONFIG_CMA */
9a4e9f3b 1683
2bb6d283 1684/*
932f4a63
IW
1685 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1686 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1687 */
64019a2e 1688static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1689 unsigned long start,
1690 unsigned long nr_pages,
1691 struct page **pages,
1692 struct vm_area_struct **vmas,
1693 unsigned int gup_flags)
2bb6d283 1694{
932f4a63 1695 unsigned long flags = 0;
52650c8b 1696 long rc;
2bb6d283 1697
52650c8b 1698 if (gup_flags & FOLL_LONGTERM)
932f4a63 1699 flags = memalloc_nocma_save();
2bb6d283 1700
52650c8b
JG
1701 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1702 gup_flags);
2bb6d283 1703
932f4a63 1704 if (gup_flags & FOLL_LONGTERM) {
52650c8b
JG
1705 if (rc > 0)
1706 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1707 vmas, gup_flags);
41b4dc14 1708 memalloc_nocma_restore(flags);
9a4e9f3b 1709 }
2bb6d283
DW
1710 return rc;
1711}
932f4a63 1712
447f3e45
BS
1713static bool is_valid_gup_flags(unsigned int gup_flags)
1714{
1715 /*
1716 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1717 * never directly by the caller, so enforce that with an assertion:
1718 */
1719 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1720 return false;
1721 /*
1722 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1723 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1724 * FOLL_PIN.
1725 */
1726 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1727 return false;
1728
1729 return true;
1730}
1731
22bf29b6 1732#ifdef CONFIG_MMU
64019a2e 1733static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1734 unsigned long start, unsigned long nr_pages,
1735 unsigned int gup_flags, struct page **pages,
1736 struct vm_area_struct **vmas, int *locked)
1737{
1738 /*
1739 * Parts of FOLL_LONGTERM behavior are incompatible with
1740 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1741 * vmas. However, this only comes up if locked is set, and there are
1742 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1743 * allow what we can.
1744 */
1745 if (gup_flags & FOLL_LONGTERM) {
1746 if (WARN_ON_ONCE(locked))
1747 return -EINVAL;
1748 /*
1749 * This will check the vmas (even if our vmas arg is NULL)
1750 * and return -ENOTSUPP if DAX isn't allowed in this case:
1751 */
64019a2e 1752 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1753 vmas, gup_flags | FOLL_TOUCH |
1754 FOLL_REMOTE);
1755 }
1756
64019a2e 1757 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1758 locked,
1759 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1760}
1761
adc8cb40 1762/**
c4237f8b 1763 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1764 * @mm: mm_struct of target mm
1765 * @start: starting user address
1766 * @nr_pages: number of pages from start to pin
1767 * @gup_flags: flags modifying lookup behaviour
1768 * @pages: array that receives pointers to the pages pinned.
1769 * Should be at least nr_pages long. Or NULL, if caller
1770 * only intends to ensure the pages are faulted in.
1771 * @vmas: array of pointers to vmas corresponding to each page.
1772 * Or NULL if the caller does not require them.
1773 * @locked: pointer to lock flag indicating whether lock is held and
1774 * subsequently whether VM_FAULT_RETRY functionality can be
1775 * utilised. Lock must initially be held.
1776 *
1777 * Returns either number of pages pinned (which may be less than the
1778 * number requested), or an error. Details about the return value:
1779 *
1780 * -- If nr_pages is 0, returns 0.
1781 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1782 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1783 * pages pinned. Again, this may be less than nr_pages.
1784 *
1785 * The caller is responsible for releasing returned @pages, via put_page().
1786 *
c1e8d7c6 1787 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1788 *
c1e8d7c6 1789 * Must be called with mmap_lock held for read or write.
c4237f8b 1790 *
adc8cb40
SJ
1791 * get_user_pages_remote walks a process's page tables and takes a reference
1792 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1793 * instant. That is, it takes the page that would be accessed if a user
1794 * thread accesses the given user virtual address at that instant.
1795 *
1796 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1797 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1798 * page there in some cases (eg. if mmapped pagecache has been invalidated
1799 * and subsequently re faulted). However it does guarantee that the page
1800 * won't be freed completely. And mostly callers simply care that the page
1801 * contains data that was valid *at some point in time*. Typically, an IO
1802 * or similar operation cannot guarantee anything stronger anyway because
1803 * locks can't be held over the syscall boundary.
1804 *
1805 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1806 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1807 * be called after the page is finished with, and before put_page is called.
1808 *
adc8cb40
SJ
1809 * get_user_pages_remote is typically used for fewer-copy IO operations,
1810 * to get a handle on the memory by some means other than accesses
1811 * via the user virtual addresses. The pages may be submitted for
1812 * DMA to devices or accessed via their kernel linear mapping (via the
1813 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1814 *
1815 * See also get_user_pages_fast, for performance critical applications.
1816 *
adc8cb40 1817 * get_user_pages_remote should be phased out in favor of
c4237f8b 1818 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1819 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1820 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1821 */
64019a2e 1822long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
1823 unsigned long start, unsigned long nr_pages,
1824 unsigned int gup_flags, struct page **pages,
1825 struct vm_area_struct **vmas, int *locked)
1826{
447f3e45 1827 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1828 return -EINVAL;
1829
64019a2e 1830 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 1831 pages, vmas, locked);
c4237f8b
JH
1832}
1833EXPORT_SYMBOL(get_user_pages_remote);
1834
eddb1c22 1835#else /* CONFIG_MMU */
64019a2e 1836long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1837 unsigned long start, unsigned long nr_pages,
1838 unsigned int gup_flags, struct page **pages,
1839 struct vm_area_struct **vmas, int *locked)
1840{
1841 return 0;
1842}
3faa52c0 1843
64019a2e 1844static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
1845 unsigned long start, unsigned long nr_pages,
1846 unsigned int gup_flags, struct page **pages,
1847 struct vm_area_struct **vmas, int *locked)
1848{
1849 return 0;
1850}
eddb1c22
JH
1851#endif /* !CONFIG_MMU */
1852
adc8cb40
SJ
1853/**
1854 * get_user_pages() - pin user pages in memory
1855 * @start: starting user address
1856 * @nr_pages: number of pages from start to pin
1857 * @gup_flags: flags modifying lookup behaviour
1858 * @pages: array that receives pointers to the pages pinned.
1859 * Should be at least nr_pages long. Or NULL, if caller
1860 * only intends to ensure the pages are faulted in.
1861 * @vmas: array of pointers to vmas corresponding to each page.
1862 * Or NULL if the caller does not require them.
1863 *
64019a2e
PX
1864 * This is the same as get_user_pages_remote(), just with a less-flexible
1865 * calling convention where we assume that the mm being operated on belongs to
1866 * the current task, and doesn't allow passing of a locked parameter. We also
1867 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
1868 */
1869long get_user_pages(unsigned long start, unsigned long nr_pages,
1870 unsigned int gup_flags, struct page **pages,
1871 struct vm_area_struct **vmas)
1872{
447f3e45 1873 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1874 return -EINVAL;
1875
64019a2e 1876 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
1877 pages, vmas, gup_flags | FOLL_TOUCH);
1878}
1879EXPORT_SYMBOL(get_user_pages);
2bb6d283 1880
adc8cb40 1881/**
d3649f68 1882 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1883 *
3e4e28c5 1884 * mmap_read_lock(mm);
d3649f68 1885 * do_something()
64019a2e 1886 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1887 * mmap_read_unlock(mm);
acc3c8d1 1888 *
d3649f68 1889 * to:
acc3c8d1 1890 *
d3649f68 1891 * int locked = 1;
3e4e28c5 1892 * mmap_read_lock(mm);
d3649f68 1893 * do_something()
64019a2e 1894 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 1895 * if (locked)
3e4e28c5 1896 * mmap_read_unlock(mm);
adc8cb40
SJ
1897 *
1898 * @start: starting user address
1899 * @nr_pages: number of pages from start to pin
1900 * @gup_flags: flags modifying lookup behaviour
1901 * @pages: array that receives pointers to the pages pinned.
1902 * Should be at least nr_pages long. Or NULL, if caller
1903 * only intends to ensure the pages are faulted in.
1904 * @locked: pointer to lock flag indicating whether lock is held and
1905 * subsequently whether VM_FAULT_RETRY functionality can be
1906 * utilised. Lock must initially be held.
1907 *
1908 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1909 * paths better by using either get_user_pages_locked() or
1910 * get_user_pages_unlocked().
1911 *
acc3c8d1 1912 */
d3649f68
CH
1913long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1914 unsigned int gup_flags, struct page **pages,
1915 int *locked)
acc3c8d1 1916{
acc3c8d1 1917 /*
d3649f68
CH
1918 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1919 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1920 * vmas. As there are no users of this flag in this call we simply
1921 * disallow this option for now.
acc3c8d1 1922 */
d3649f68
CH
1923 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1924 return -EINVAL;
420c2091
JH
1925 /*
1926 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1927 * never directly by the caller, so enforce that:
1928 */
1929 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1930 return -EINVAL;
acc3c8d1 1931
64019a2e 1932 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
1933 pages, NULL, locked,
1934 gup_flags | FOLL_TOUCH);
acc3c8d1 1935}
d3649f68 1936EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1937
1938/*
d3649f68 1939 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1940 *
3e4e28c5 1941 * mmap_read_lock(mm);
64019a2e 1942 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1943 * mmap_read_unlock(mm);
d3649f68
CH
1944 *
1945 * with:
1946 *
64019a2e 1947 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
1948 *
1949 * It is functionally equivalent to get_user_pages_fast so
1950 * get_user_pages_fast should be used instead if specific gup_flags
1951 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1952 */
d3649f68
CH
1953long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1954 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1955{
1956 struct mm_struct *mm = current->mm;
d3649f68
CH
1957 int locked = 1;
1958 long ret;
acc3c8d1 1959
d3649f68
CH
1960 /*
1961 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1962 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1963 * vmas. As there are no users of this flag in this call we simply
1964 * disallow this option for now.
1965 */
1966 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1967 return -EINVAL;
acc3c8d1 1968
d8ed45c5 1969 mmap_read_lock(mm);
64019a2e 1970 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 1971 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 1972 if (locked)
d8ed45c5 1973 mmap_read_unlock(mm);
d3649f68 1974 return ret;
4bbd4c77 1975}
d3649f68 1976EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
1977
1978/*
67a929e0 1979 * Fast GUP
2667f50e
SC
1980 *
1981 * get_user_pages_fast attempts to pin user pages by walking the page
1982 * tables directly and avoids taking locks. Thus the walker needs to be
1983 * protected from page table pages being freed from under it, and should
1984 * block any THP splits.
1985 *
1986 * One way to achieve this is to have the walker disable interrupts, and
1987 * rely on IPIs from the TLB flushing code blocking before the page table
1988 * pages are freed. This is unsuitable for architectures that do not need
1989 * to broadcast an IPI when invalidating TLBs.
1990 *
1991 * Another way to achieve this is to batch up page table containing pages
1992 * belonging to more than one mm_user, then rcu_sched a callback to free those
1993 * pages. Disabling interrupts will allow the fast_gup walker to both block
1994 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1995 * (which is a relatively rare event). The code below adopts this strategy.
1996 *
1997 * Before activating this code, please be aware that the following assumptions
1998 * are currently made:
1999 *
ff2e6d72 2000 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2001 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2002 *
2667f50e
SC
2003 * *) ptes can be read atomically by the architecture.
2004 *
2005 * *) access_ok is sufficient to validate userspace address ranges.
2006 *
2007 * The last two assumptions can be relaxed by the addition of helper functions.
2008 *
2009 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2010 */
67a929e0 2011#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0
JH
2012
2013static void put_compound_head(struct page *page, int refs, unsigned int flags)
2014{
47e29d32 2015 if (flags & FOLL_PIN) {
1970dc6f
JH
2016 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2017 refs);
2018
47e29d32
JH
2019 if (hpage_pincount_available(page))
2020 hpage_pincount_sub(page, refs);
2021 else
2022 refs *= GUP_PIN_COUNTING_BIAS;
2023 }
3faa52c0
JH
2024
2025 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2026 /*
2027 * Calling put_page() for each ref is unnecessarily slow. Only the last
2028 * ref needs a put_page().
2029 */
2030 if (refs > 1)
2031 page_ref_sub(page, refs - 1);
2032 put_page(page);
2033}
2034
39656e83 2035#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
3faa52c0 2036
39656e83
CH
2037/*
2038 * WARNING: only to be used in the get_user_pages_fast() implementation.
2039 *
2040 * With get_user_pages_fast(), we walk down the pagetables without taking any
2041 * locks. For this we would like to load the pointers atomically, but sometimes
2042 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2043 * we do have is the guarantee that a PTE will only either go from not present
2044 * to present, or present to not present or both -- it will not switch to a
2045 * completely different present page without a TLB flush in between; something
2046 * that we are blocking by holding interrupts off.
2047 *
2048 * Setting ptes from not present to present goes:
2049 *
2050 * ptep->pte_high = h;
2051 * smp_wmb();
2052 * ptep->pte_low = l;
2053 *
2054 * And present to not present goes:
2055 *
2056 * ptep->pte_low = 0;
2057 * smp_wmb();
2058 * ptep->pte_high = 0;
2059 *
2060 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2061 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2062 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2063 * picked up a changed pte high. We might have gotten rubbish values from
2064 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2065 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2066 * operates on present ptes we're safe.
2067 */
2068static inline pte_t gup_get_pte(pte_t *ptep)
2069{
2070 pte_t pte;
2667f50e 2071
39656e83
CH
2072 do {
2073 pte.pte_low = ptep->pte_low;
2074 smp_rmb();
2075 pte.pte_high = ptep->pte_high;
2076 smp_rmb();
2077 } while (unlikely(pte.pte_low != ptep->pte_low));
2078
2079 return pte;
2080}
2081#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2082/*
39656e83 2083 * We require that the PTE can be read atomically.
0005d20b
KS
2084 */
2085static inline pte_t gup_get_pte(pte_t *ptep)
2086{
481e980a 2087 return ptep_get(ptep);
0005d20b 2088}
39656e83 2089#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2090
790c7369 2091static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2092 unsigned int flags,
790c7369 2093 struct page **pages)
b59f65fa
KS
2094{
2095 while ((*nr) - nr_start) {
2096 struct page *page = pages[--(*nr)];
2097
2098 ClearPageReferenced(page);
3faa52c0
JH
2099 if (flags & FOLL_PIN)
2100 unpin_user_page(page);
2101 else
2102 put_page(page);
b59f65fa
KS
2103 }
2104}
2105
3010a5ea 2106#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2107static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2108 unsigned int flags, struct page **pages, int *nr)
2667f50e 2109{
b59f65fa
KS
2110 struct dev_pagemap *pgmap = NULL;
2111 int nr_start = *nr, ret = 0;
2667f50e 2112 pte_t *ptep, *ptem;
2667f50e
SC
2113
2114 ptem = ptep = pte_offset_map(&pmd, addr);
2115 do {
0005d20b 2116 pte_t pte = gup_get_pte(ptep);
7aef4172 2117 struct page *head, *page;
2667f50e
SC
2118
2119 /*
2120 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2121 * path using the pte_protnone check.
2667f50e 2122 */
e7884f8e
KS
2123 if (pte_protnone(pte))
2124 goto pte_unmap;
2125
b798bec4 2126 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2127 goto pte_unmap;
2128
b59f65fa 2129 if (pte_devmap(pte)) {
7af75561
IW
2130 if (unlikely(flags & FOLL_LONGTERM))
2131 goto pte_unmap;
2132
b59f65fa
KS
2133 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2134 if (unlikely(!pgmap)) {
3b78d834 2135 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2136 goto pte_unmap;
2137 }
2138 } else if (pte_special(pte))
2667f50e
SC
2139 goto pte_unmap;
2140
2141 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2142 page = pte_page(pte);
2143
3faa52c0 2144 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2145 if (!head)
2667f50e
SC
2146 goto pte_unmap;
2147
2148 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2149 put_compound_head(head, 1, flags);
2667f50e
SC
2150 goto pte_unmap;
2151 }
2152
7aef4172 2153 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2154
f28d4363
CI
2155 /*
2156 * We need to make the page accessible if and only if we are
2157 * going to access its content (the FOLL_PIN case). Please
2158 * see Documentation/core-api/pin_user_pages.rst for
2159 * details.
2160 */
2161 if (flags & FOLL_PIN) {
2162 ret = arch_make_page_accessible(page);
2163 if (ret) {
2164 unpin_user_page(page);
2165 goto pte_unmap;
2166 }
2167 }
e9348053 2168 SetPageReferenced(page);
2667f50e
SC
2169 pages[*nr] = page;
2170 (*nr)++;
2171
2172 } while (ptep++, addr += PAGE_SIZE, addr != end);
2173
2174 ret = 1;
2175
2176pte_unmap:
832d7aa0
CH
2177 if (pgmap)
2178 put_dev_pagemap(pgmap);
2667f50e
SC
2179 pte_unmap(ptem);
2180 return ret;
2181}
2182#else
2183
2184/*
2185 * If we can't determine whether or not a pte is special, then fail immediately
2186 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2187 * to be special.
2188 *
2189 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2190 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2191 * useful to have gup_huge_pmd even if we can't operate on ptes.
2192 */
2193static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2194 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2195{
2196 return 0;
2197}
3010a5ea 2198#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2199
17596731 2200#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2201static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2202 unsigned long end, unsigned int flags,
2203 struct page **pages, int *nr)
b59f65fa
KS
2204{
2205 int nr_start = *nr;
2206 struct dev_pagemap *pgmap = NULL;
2207
2208 do {
2209 struct page *page = pfn_to_page(pfn);
2210
2211 pgmap = get_dev_pagemap(pfn, pgmap);
2212 if (unlikely(!pgmap)) {
3b78d834 2213 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2214 return 0;
2215 }
2216 SetPageReferenced(page);
2217 pages[*nr] = page;
3faa52c0
JH
2218 if (unlikely(!try_grab_page(page, flags))) {
2219 undo_dev_pagemap(nr, nr_start, flags, pages);
2220 return 0;
2221 }
b59f65fa
KS
2222 (*nr)++;
2223 pfn++;
2224 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2225
2226 if (pgmap)
2227 put_dev_pagemap(pgmap);
b59f65fa
KS
2228 return 1;
2229}
2230
a9b6de77 2231static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2232 unsigned long end, unsigned int flags,
2233 struct page **pages, int *nr)
b59f65fa
KS
2234{
2235 unsigned long fault_pfn;
a9b6de77
DW
2236 int nr_start = *nr;
2237
2238 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2239 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2240 return 0;
b59f65fa 2241
a9b6de77 2242 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2243 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2244 return 0;
2245 }
2246 return 1;
b59f65fa
KS
2247}
2248
a9b6de77 2249static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2250 unsigned long end, unsigned int flags,
2251 struct page **pages, int *nr)
b59f65fa
KS
2252{
2253 unsigned long fault_pfn;
a9b6de77
DW
2254 int nr_start = *nr;
2255
2256 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2257 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2258 return 0;
b59f65fa 2259
a9b6de77 2260 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2261 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2262 return 0;
2263 }
2264 return 1;
b59f65fa
KS
2265}
2266#else
a9b6de77 2267static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2268 unsigned long end, unsigned int flags,
2269 struct page **pages, int *nr)
b59f65fa
KS
2270{
2271 BUILD_BUG();
2272 return 0;
2273}
2274
a9b6de77 2275static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2276 unsigned long end, unsigned int flags,
2277 struct page **pages, int *nr)
b59f65fa
KS
2278{
2279 BUILD_BUG();
2280 return 0;
2281}
2282#endif
2283
a43e9820
JH
2284static int record_subpages(struct page *page, unsigned long addr,
2285 unsigned long end, struct page **pages)
2286{
2287 int nr;
2288
2289 for (nr = 0; addr != end; addr += PAGE_SIZE)
2290 pages[nr++] = page++;
2291
2292 return nr;
2293}
2294
cbd34da7
CH
2295#ifdef CONFIG_ARCH_HAS_HUGEPD
2296static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2297 unsigned long sz)
2298{
2299 unsigned long __boundary = (addr + sz) & ~(sz-1);
2300 return (__boundary - 1 < end - 1) ? __boundary : end;
2301}
2302
2303static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2304 unsigned long end, unsigned int flags,
2305 struct page **pages, int *nr)
cbd34da7
CH
2306{
2307 unsigned long pte_end;
2308 struct page *head, *page;
2309 pte_t pte;
2310 int refs;
2311
2312 pte_end = (addr + sz) & ~(sz-1);
2313 if (pte_end < end)
2314 end = pte_end;
2315
55ca2263 2316 pte = huge_ptep_get(ptep);
cbd34da7 2317
0cd22afd 2318 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2319 return 0;
2320
2321 /* hugepages are never "special" */
2322 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2323
cbd34da7 2324 head = pte_page(pte);
cbd34da7 2325 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2326 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2327
3faa52c0 2328 head = try_grab_compound_head(head, refs, flags);
a43e9820 2329 if (!head)
cbd34da7 2330 return 0;
cbd34da7
CH
2331
2332 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2333 put_compound_head(head, refs, flags);
cbd34da7
CH
2334 return 0;
2335 }
2336
a43e9820 2337 *nr += refs;
520b4a44 2338 SetPageReferenced(head);
cbd34da7
CH
2339 return 1;
2340}
2341
2342static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2343 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2344 struct page **pages, int *nr)
2345{
2346 pte_t *ptep;
2347 unsigned long sz = 1UL << hugepd_shift(hugepd);
2348 unsigned long next;
2349
2350 ptep = hugepte_offset(hugepd, addr, pdshift);
2351 do {
2352 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2353 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2354 return 0;
2355 } while (ptep++, addr = next, addr != end);
2356
2357 return 1;
2358}
2359#else
2360static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2361 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2362 struct page **pages, int *nr)
2363{
2364 return 0;
2365}
2366#endif /* CONFIG_ARCH_HAS_HUGEPD */
2367
2667f50e 2368static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2369 unsigned long end, unsigned int flags,
2370 struct page **pages, int *nr)
2667f50e 2371{
ddc58f27 2372 struct page *head, *page;
2667f50e
SC
2373 int refs;
2374
b798bec4 2375 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2376 return 0;
2377
7af75561
IW
2378 if (pmd_devmap(orig)) {
2379 if (unlikely(flags & FOLL_LONGTERM))
2380 return 0;
86dfbed4
JH
2381 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2382 pages, nr);
7af75561 2383 }
b59f65fa 2384
d63206ee 2385 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2386 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2387
3faa52c0 2388 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2389 if (!head)
2667f50e 2390 return 0;
2667f50e
SC
2391
2392 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2393 put_compound_head(head, refs, flags);
2667f50e
SC
2394 return 0;
2395 }
2396
a43e9820 2397 *nr += refs;
e9348053 2398 SetPageReferenced(head);
2667f50e
SC
2399 return 1;
2400}
2401
2402static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2403 unsigned long end, unsigned int flags,
2404 struct page **pages, int *nr)
2667f50e 2405{
ddc58f27 2406 struct page *head, *page;
2667f50e
SC
2407 int refs;
2408
b798bec4 2409 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2410 return 0;
2411
7af75561
IW
2412 if (pud_devmap(orig)) {
2413 if (unlikely(flags & FOLL_LONGTERM))
2414 return 0;
86dfbed4
JH
2415 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2416 pages, nr);
7af75561 2417 }
b59f65fa 2418
d63206ee 2419 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2420 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2421
3faa52c0 2422 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2423 if (!head)
2667f50e 2424 return 0;
2667f50e
SC
2425
2426 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2427 put_compound_head(head, refs, flags);
2667f50e
SC
2428 return 0;
2429 }
2430
a43e9820 2431 *nr += refs;
e9348053 2432 SetPageReferenced(head);
2667f50e
SC
2433 return 1;
2434}
2435
f30c59e9 2436static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2437 unsigned long end, unsigned int flags,
f30c59e9
AK
2438 struct page **pages, int *nr)
2439{
2440 int refs;
ddc58f27 2441 struct page *head, *page;
f30c59e9 2442
b798bec4 2443 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2444 return 0;
2445
b59f65fa 2446 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2447
d63206ee 2448 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2449 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2450
3faa52c0 2451 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2452 if (!head)
f30c59e9 2453 return 0;
f30c59e9
AK
2454
2455 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2456 put_compound_head(head, refs, flags);
f30c59e9
AK
2457 return 0;
2458 }
2459
a43e9820 2460 *nr += refs;
e9348053 2461 SetPageReferenced(head);
f30c59e9
AK
2462 return 1;
2463}
2464
d3f7b1bb 2465static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2466 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2467{
2468 unsigned long next;
2469 pmd_t *pmdp;
2470
d3f7b1bb 2471 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2472 do {
38c5ce93 2473 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2474
2475 next = pmd_addr_end(addr, end);
84c3fc4e 2476 if (!pmd_present(pmd))
2667f50e
SC
2477 return 0;
2478
414fd080
YZ
2479 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2480 pmd_devmap(pmd))) {
2667f50e
SC
2481 /*
2482 * NUMA hinting faults need to be handled in the GUP
2483 * slowpath for accounting purposes and so that they
2484 * can be serialised against THP migration.
2485 */
8a0516ed 2486 if (pmd_protnone(pmd))
2667f50e
SC
2487 return 0;
2488
b798bec4 2489 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2490 pages, nr))
2491 return 0;
2492
f30c59e9
AK
2493 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2494 /*
2495 * architecture have different format for hugetlbfs
2496 * pmd format and THP pmd format
2497 */
2498 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2499 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2500 return 0;
b798bec4 2501 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2502 return 0;
2667f50e
SC
2503 } while (pmdp++, addr = next, addr != end);
2504
2505 return 1;
2506}
2507
d3f7b1bb 2508static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2509 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2510{
2511 unsigned long next;
2512 pud_t *pudp;
2513
d3f7b1bb 2514 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2515 do {
e37c6982 2516 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2517
2518 next = pud_addr_end(addr, end);
15494520 2519 if (unlikely(!pud_present(pud)))
2667f50e 2520 return 0;
f30c59e9 2521 if (unlikely(pud_huge(pud))) {
b798bec4 2522 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2523 pages, nr))
2524 return 0;
2525 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2526 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2527 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2528 return 0;
d3f7b1bb 2529 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2530 return 0;
2531 } while (pudp++, addr = next, addr != end);
2532
2533 return 1;
2534}
2535
d3f7b1bb 2536static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2537 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2538{
2539 unsigned long next;
2540 p4d_t *p4dp;
2541
d3f7b1bb 2542 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2543 do {
2544 p4d_t p4d = READ_ONCE(*p4dp);
2545
2546 next = p4d_addr_end(addr, end);
2547 if (p4d_none(p4d))
2548 return 0;
2549 BUILD_BUG_ON(p4d_huge(p4d));
2550 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2551 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2552 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2553 return 0;
d3f7b1bb 2554 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2555 return 0;
2556 } while (p4dp++, addr = next, addr != end);
2557
2558 return 1;
2559}
2560
5b65c467 2561static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2562 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2563{
2564 unsigned long next;
2565 pgd_t *pgdp;
2566
2567 pgdp = pgd_offset(current->mm, addr);
2568 do {
2569 pgd_t pgd = READ_ONCE(*pgdp);
2570
2571 next = pgd_addr_end(addr, end);
2572 if (pgd_none(pgd))
2573 return;
2574 if (unlikely(pgd_huge(pgd))) {
b798bec4 2575 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2576 pages, nr))
2577 return;
2578 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2579 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2580 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2581 return;
d3f7b1bb 2582 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2583 return;
2584 } while (pgdp++, addr = next, addr != end);
2585}
050a9adc
CH
2586#else
2587static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2588 unsigned int flags, struct page **pages, int *nr)
2589{
2590}
2591#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2592
2593#ifndef gup_fast_permitted
2594/*
dadbb612 2595 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2596 * we need to fall back to the slow version:
2597 */
26f4c328 2598static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2599{
26f4c328 2600 return true;
5b65c467
KS
2601}
2602#endif
2603
7af75561
IW
2604static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2605 unsigned int gup_flags, struct page **pages)
2606{
2607 int ret;
2608
2609 /*
2610 * FIXME: FOLL_LONGTERM does not work with
2611 * get_user_pages_unlocked() (see comments in that function)
2612 */
2613 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2614 mmap_read_lock(current->mm);
64019a2e 2615 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2616 start, nr_pages,
2617 pages, NULL, gup_flags);
d8ed45c5 2618 mmap_read_unlock(current->mm);
7af75561
IW
2619 } else {
2620 ret = get_user_pages_unlocked(start, nr_pages,
2621 pages, gup_flags);
2622 }
2623
2624 return ret;
2625}
2626
c28b1fc7
JG
2627static unsigned long lockless_pages_from_mm(unsigned long start,
2628 unsigned long end,
2629 unsigned int gup_flags,
2630 struct page **pages)
2631{
2632 unsigned long flags;
2633 int nr_pinned = 0;
57efa1fe 2634 unsigned seq;
c28b1fc7
JG
2635
2636 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2637 !gup_fast_permitted(start, end))
2638 return 0;
2639
57efa1fe
JG
2640 if (gup_flags & FOLL_PIN) {
2641 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2642 if (seq & 1)
2643 return 0;
2644 }
2645
c28b1fc7
JG
2646 /*
2647 * Disable interrupts. The nested form is used, in order to allow full,
2648 * general purpose use of this routine.
2649 *
2650 * With interrupts disabled, we block page table pages from being freed
2651 * from under us. See struct mmu_table_batch comments in
2652 * include/asm-generic/tlb.h for more details.
2653 *
2654 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2655 * that come from THPs splitting.
2656 */
2657 local_irq_save(flags);
2658 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2659 local_irq_restore(flags);
57efa1fe
JG
2660
2661 /*
2662 * When pinning pages for DMA there could be a concurrent write protect
2663 * from fork() via copy_page_range(), in this case always fail fast GUP.
2664 */
2665 if (gup_flags & FOLL_PIN) {
2666 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2667 unpin_user_pages(pages, nr_pinned);
2668 return 0;
2669 }
2670 }
c28b1fc7
JG
2671 return nr_pinned;
2672}
2673
2674static int internal_get_user_pages_fast(unsigned long start,
2675 unsigned long nr_pages,
eddb1c22
JH
2676 unsigned int gup_flags,
2677 struct page **pages)
2667f50e 2678{
c28b1fc7
JG
2679 unsigned long len, end;
2680 unsigned long nr_pinned;
2681 int ret;
2667f50e 2682
f4000fdf 2683 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2684 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2685 FOLL_FAST_ONLY)))
817be129
CH
2686 return -EINVAL;
2687
008cfe44
PX
2688 if (gup_flags & FOLL_PIN)
2689 atomic_set(&current->mm->has_pinned, 1);
2690
f81cd178 2691 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2692 might_lock_read(&current->mm->mmap_lock);
f81cd178 2693
f455c854 2694 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2695 len = nr_pages << PAGE_SHIFT;
2696 if (check_add_overflow(start, len, &end))
c61611f7 2697 return 0;
96d4f267 2698 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2699 return -EFAULT;
73e10a61 2700
c28b1fc7
JG
2701 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2702 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2703 return nr_pinned;
2667f50e 2704
c28b1fc7
JG
2705 /* Slow path: try to get the remaining pages with get_user_pages */
2706 start += nr_pinned << PAGE_SHIFT;
2707 pages += nr_pinned;
2708 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2709 pages);
2710 if (ret < 0) {
2711 /*
2712 * The caller has to unpin the pages we already pinned so
2713 * returning -errno is not an option
2714 */
2715 if (nr_pinned)
2716 return nr_pinned;
2717 return ret;
2667f50e 2718 }
c28b1fc7 2719 return ret + nr_pinned;
2667f50e 2720}
c28b1fc7 2721
dadbb612
SJ
2722/**
2723 * get_user_pages_fast_only() - pin user pages in memory
2724 * @start: starting user address
2725 * @nr_pages: number of pages from start to pin
2726 * @gup_flags: flags modifying pin behaviour
2727 * @pages: array that receives pointers to the pages pinned.
2728 * Should be at least nr_pages long.
2729 *
9e1f0580
JH
2730 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2731 * the regular GUP.
2732 * Note a difference with get_user_pages_fast: this always returns the
2733 * number of pages pinned, 0 if no pages were pinned.
2734 *
2735 * If the architecture does not support this function, simply return with no
2736 * pages pinned.
2737 *
2738 * Careful, careful! COW breaking can go either way, so a non-write
2739 * access can get ambiguous page results. If you call this function without
2740 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2741 */
dadbb612
SJ
2742int get_user_pages_fast_only(unsigned long start, int nr_pages,
2743 unsigned int gup_flags, struct page **pages)
9e1f0580 2744{
376a34ef 2745 int nr_pinned;
9e1f0580
JH
2746 /*
2747 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2748 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2749 *
2750 * FOLL_FAST_ONLY is required in order to match the API description of
2751 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2752 */
dadbb612 2753 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2754
376a34ef
JH
2755 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2756 pages);
9e1f0580
JH
2757
2758 /*
376a34ef
JH
2759 * As specified in the API description above, this routine is not
2760 * allowed to return negative values. However, the common core
2761 * routine internal_get_user_pages_fast() *can* return -errno.
2762 * Therefore, correct for that here:
9e1f0580 2763 */
376a34ef
JH
2764 if (nr_pinned < 0)
2765 nr_pinned = 0;
9e1f0580
JH
2766
2767 return nr_pinned;
2768}
dadbb612 2769EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2770
eddb1c22
JH
2771/**
2772 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2773 * @start: starting user address
2774 * @nr_pages: number of pages from start to pin
2775 * @gup_flags: flags modifying pin behaviour
2776 * @pages: array that receives pointers to the pages pinned.
2777 * Should be at least nr_pages long.
eddb1c22 2778 *
c1e8d7c6 2779 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2780 * If not successful, it will fall back to taking the lock and
2781 * calling get_user_pages().
2782 *
2783 * Returns number of pages pinned. This may be fewer than the number requested.
2784 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2785 * -errno.
2786 */
2787int get_user_pages_fast(unsigned long start, int nr_pages,
2788 unsigned int gup_flags, struct page **pages)
2789{
447f3e45 2790 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2791 return -EINVAL;
2792
94202f12
JH
2793 /*
2794 * The caller may or may not have explicitly set FOLL_GET; either way is
2795 * OK. However, internally (within mm/gup.c), gup fast variants must set
2796 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2797 * request.
2798 */
2799 gup_flags |= FOLL_GET;
eddb1c22
JH
2800 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2801}
050a9adc 2802EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2803
2804/**
2805 * pin_user_pages_fast() - pin user pages in memory without taking locks
2806 *
3faa52c0
JH
2807 * @start: starting user address
2808 * @nr_pages: number of pages from start to pin
2809 * @gup_flags: flags modifying pin behaviour
2810 * @pages: array that receives pointers to the pages pinned.
2811 * Should be at least nr_pages long.
2812 *
2813 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2814 * get_user_pages_fast() for documentation on the function arguments, because
2815 * the arguments here are identical.
2816 *
2817 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2818 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2819 */
2820int pin_user_pages_fast(unsigned long start, int nr_pages,
2821 unsigned int gup_flags, struct page **pages)
2822{
3faa52c0
JH
2823 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2824 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2825 return -EINVAL;
2826
2827 gup_flags |= FOLL_PIN;
2828 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2829}
2830EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2831
104acc32 2832/*
dadbb612
SJ
2833 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2834 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2835 *
2836 * The API rules are the same, too: no negative values may be returned.
2837 */
2838int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2839 unsigned int gup_flags, struct page **pages)
2840{
2841 int nr_pinned;
2842
2843 /*
2844 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2845 * rules require returning 0, rather than -errno:
2846 */
2847 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2848 return 0;
2849 /*
2850 * FOLL_FAST_ONLY is required in order to match the API description of
2851 * this routine: no fall back to regular ("slow") GUP.
2852 */
2853 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2854 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2855 pages);
2856 /*
2857 * This routine is not allowed to return negative values. However,
2858 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2859 * correct for that here:
2860 */
2861 if (nr_pinned < 0)
2862 nr_pinned = 0;
2863
2864 return nr_pinned;
2865}
2866EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2867
eddb1c22 2868/**
64019a2e 2869 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2870 *
3faa52c0
JH
2871 * @mm: mm_struct of target mm
2872 * @start: starting user address
2873 * @nr_pages: number of pages from start to pin
2874 * @gup_flags: flags modifying lookup behaviour
2875 * @pages: array that receives pointers to the pages pinned.
2876 * Should be at least nr_pages long. Or NULL, if caller
2877 * only intends to ensure the pages are faulted in.
2878 * @vmas: array of pointers to vmas corresponding to each page.
2879 * Or NULL if the caller does not require them.
2880 * @locked: pointer to lock flag indicating whether lock is held and
2881 * subsequently whether VM_FAULT_RETRY functionality can be
2882 * utilised. Lock must initially be held.
2883 *
2884 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2885 * get_user_pages_remote() for documentation on the function arguments, because
2886 * the arguments here are identical.
2887 *
2888 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2889 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2890 */
64019a2e 2891long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2892 unsigned long start, unsigned long nr_pages,
2893 unsigned int gup_flags, struct page **pages,
2894 struct vm_area_struct **vmas, int *locked)
2895{
3faa52c0
JH
2896 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2897 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2898 return -EINVAL;
2899
2900 gup_flags |= FOLL_PIN;
64019a2e 2901 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2902 pages, vmas, locked);
eddb1c22
JH
2903}
2904EXPORT_SYMBOL(pin_user_pages_remote);
2905
2906/**
2907 * pin_user_pages() - pin user pages in memory for use by other devices
2908 *
3faa52c0
JH
2909 * @start: starting user address
2910 * @nr_pages: number of pages from start to pin
2911 * @gup_flags: flags modifying lookup behaviour
2912 * @pages: array that receives pointers to the pages pinned.
2913 * Should be at least nr_pages long. Or NULL, if caller
2914 * only intends to ensure the pages are faulted in.
2915 * @vmas: array of pointers to vmas corresponding to each page.
2916 * Or NULL if the caller does not require them.
2917 *
2918 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2919 * FOLL_PIN is set.
2920 *
2921 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2922 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2923 */
2924long pin_user_pages(unsigned long start, unsigned long nr_pages,
2925 unsigned int gup_flags, struct page **pages,
2926 struct vm_area_struct **vmas)
2927{
3faa52c0
JH
2928 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2929 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2930 return -EINVAL;
2931
2932 gup_flags |= FOLL_PIN;
64019a2e 2933 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2934 pages, vmas, gup_flags);
eddb1c22
JH
2935}
2936EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2937
2938/*
2939 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2940 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2941 * FOLL_PIN and rejects FOLL_GET.
2942 */
2943long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2944 struct page **pages, unsigned int gup_flags)
2945{
2946 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2947 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2948 return -EINVAL;
2949
2950 gup_flags |= FOLL_PIN;
2951 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2952}
2953EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
2954
2955/*
2956 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2957 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2958 * FOLL_GET.
2959 */
2960long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2961 unsigned int gup_flags, struct page **pages,
2962 int *locked)
2963{
2964 /*
2965 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2966 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2967 * vmas. As there are no users of this flag in this call we simply
2968 * disallow this option for now.
2969 */
2970 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2971 return -EINVAL;
2972
2973 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2974 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2975 return -EINVAL;
2976
2977 gup_flags |= FOLL_PIN;
64019a2e 2978 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
2979 pages, NULL, locked,
2980 gup_flags | FOLL_TOUCH);
2981}
2982EXPORT_SYMBOL(pin_user_pages_locked);