mm/gup: rename nr as nr_pinned in get_user_pages_fast()
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
2667f50e 22#include <asm/pgtable.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
47e29d32
JH
32static void hpage_pincount_add(struct page *page, int refs)
33{
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38}
39
40static void hpage_pincount_sub(struct page *page, int refs)
41{
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46}
47
a707cdd5
JH
48/*
49 * Return the compound head page with ref appropriately incremented,
50 * or NULL if that failed.
51 */
52static inline struct page *try_get_compound_head(struct page *page, int refs)
53{
54 struct page *head = compound_head(page);
55
56 if (WARN_ON_ONCE(page_ref_count(head) < 0))
57 return NULL;
58 if (unlikely(!page_cache_add_speculative(head, refs)))
59 return NULL;
60 return head;
61}
62
3faa52c0
JH
63/*
64 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
65 * flags-dependent amount.
66 *
67 * "grab" names in this file mean, "look at flags to decide whether to use
68 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
69 *
70 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
71 * same time. (That's true throughout the get_user_pages*() and
72 * pin_user_pages*() APIs.) Cases:
73 *
74 * FOLL_GET: page's refcount will be incremented by 1.
75 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
76 *
77 * Return: head page (with refcount appropriately incremented) for success, or
78 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
79 * considered failure, and furthermore, a likely bug in the caller, so a warning
80 * is also emitted.
81 */
82static __maybe_unused struct page *try_grab_compound_head(struct page *page,
83 int refs,
84 unsigned int flags)
85{
86 if (flags & FOLL_GET)
87 return try_get_compound_head(page, refs);
88 else if (flags & FOLL_PIN) {
1970dc6f
JH
89 int orig_refs = refs;
90
47e29d32
JH
91 /*
92 * When pinning a compound page of order > 1 (which is what
93 * hpage_pincount_available() checks for), use an exact count to
94 * track it, via hpage_pincount_add/_sub().
95 *
96 * However, be sure to *also* increment the normal page refcount
97 * field at least once, so that the page really is pinned.
98 */
99 if (!hpage_pincount_available(page))
100 refs *= GUP_PIN_COUNTING_BIAS;
101
102 page = try_get_compound_head(page, refs);
103 if (!page)
104 return NULL;
105
106 if (hpage_pincount_available(page))
107 hpage_pincount_add(page, refs);
108
1970dc6f
JH
109 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
110 orig_refs);
111
47e29d32 112 return page;
3faa52c0
JH
113 }
114
115 WARN_ON_ONCE(1);
116 return NULL;
117}
118
119/**
120 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
121 *
122 * This might not do anything at all, depending on the flags argument.
123 *
124 * "grab" names in this file mean, "look at flags to decide whether to use
125 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
126 *
127 * @page: pointer to page to be grabbed
128 * @flags: gup flags: these are the FOLL_* flag values.
129 *
130 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
131 * time. Cases:
132 *
133 * FOLL_GET: page's refcount will be incremented by 1.
134 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
135 *
136 * Return: true for success, or if no action was required (if neither FOLL_PIN
137 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
138 * FOLL_PIN was set, but the page could not be grabbed.
139 */
140bool __must_check try_grab_page(struct page *page, unsigned int flags)
141{
142 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
143
144 if (flags & FOLL_GET)
145 return try_get_page(page);
146 else if (flags & FOLL_PIN) {
47e29d32
JH
147 int refs = 1;
148
3faa52c0
JH
149 page = compound_head(page);
150
151 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
152 return false;
153
47e29d32
JH
154 if (hpage_pincount_available(page))
155 hpage_pincount_add(page, 1);
156 else
157 refs = GUP_PIN_COUNTING_BIAS;
158
159 /*
160 * Similar to try_grab_compound_head(): even if using the
161 * hpage_pincount_add/_sub() routines, be sure to
162 * *also* increment the normal page refcount field at least
163 * once, so that the page really is pinned.
164 */
165 page_ref_add(page, refs);
1970dc6f
JH
166
167 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
168 }
169
170 return true;
171}
172
173#ifdef CONFIG_DEV_PAGEMAP_OPS
174static bool __unpin_devmap_managed_user_page(struct page *page)
175{
47e29d32 176 int count, refs = 1;
3faa52c0
JH
177
178 if (!page_is_devmap_managed(page))
179 return false;
180
47e29d32
JH
181 if (hpage_pincount_available(page))
182 hpage_pincount_sub(page, 1);
183 else
184 refs = GUP_PIN_COUNTING_BIAS;
185
186 count = page_ref_sub_return(page, refs);
3faa52c0 187
1970dc6f 188 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
189 /*
190 * devmap page refcounts are 1-based, rather than 0-based: if
191 * refcount is 1, then the page is free and the refcount is
192 * stable because nobody holds a reference on the page.
193 */
194 if (count == 1)
195 free_devmap_managed_page(page);
196 else if (!count)
197 __put_page(page);
198
199 return true;
200}
201#else
202static bool __unpin_devmap_managed_user_page(struct page *page)
203{
204 return false;
205}
206#endif /* CONFIG_DEV_PAGEMAP_OPS */
207
208/**
209 * unpin_user_page() - release a dma-pinned page
210 * @page: pointer to page to be released
211 *
212 * Pages that were pinned via pin_user_pages*() must be released via either
213 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
214 * that such pages can be separately tracked and uniquely handled. In
215 * particular, interactions with RDMA and filesystems need special handling.
216 */
217void unpin_user_page(struct page *page)
218{
47e29d32
JH
219 int refs = 1;
220
3faa52c0
JH
221 page = compound_head(page);
222
223 /*
224 * For devmap managed pages we need to catch refcount transition from
225 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
226 * page is free and we need to inform the device driver through
227 * callback. See include/linux/memremap.h and HMM for details.
228 */
229 if (__unpin_devmap_managed_user_page(page))
230 return;
231
47e29d32
JH
232 if (hpage_pincount_available(page))
233 hpage_pincount_sub(page, 1);
234 else
235 refs = GUP_PIN_COUNTING_BIAS;
236
237 if (page_ref_sub_and_test(page, refs))
3faa52c0 238 __put_page(page);
1970dc6f
JH
239
240 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
241}
242EXPORT_SYMBOL(unpin_user_page);
243
fc1d8e7c 244/**
f1f6a7dd 245 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 246 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 247 * @npages: number of pages in the @pages array.
2d15eb31 248 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
249 *
250 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
251 * variants called on that page.
252 *
253 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 254 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
255 * listed as clean. In any case, releases all pages using unpin_user_page(),
256 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 257 *
f1f6a7dd 258 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 259 *
2d15eb31 260 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
261 * required, then the caller should a) verify that this is really correct,
262 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 263 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
264 *
265 */
f1f6a7dd
JH
266void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
267 bool make_dirty)
fc1d8e7c 268{
2d15eb31 269 unsigned long index;
fc1d8e7c 270
2d15eb31 271 /*
272 * TODO: this can be optimized for huge pages: if a series of pages is
273 * physically contiguous and part of the same compound page, then a
274 * single operation to the head page should suffice.
275 */
276
277 if (!make_dirty) {
f1f6a7dd 278 unpin_user_pages(pages, npages);
2d15eb31 279 return;
280 }
281
282 for (index = 0; index < npages; index++) {
283 struct page *page = compound_head(pages[index]);
284 /*
285 * Checking PageDirty at this point may race with
286 * clear_page_dirty_for_io(), but that's OK. Two key
287 * cases:
288 *
289 * 1) This code sees the page as already dirty, so it
290 * skips the call to set_page_dirty(). That could happen
291 * because clear_page_dirty_for_io() called
292 * page_mkclean(), followed by set_page_dirty().
293 * However, now the page is going to get written back,
294 * which meets the original intention of setting it
295 * dirty, so all is well: clear_page_dirty_for_io() goes
296 * on to call TestClearPageDirty(), and write the page
297 * back.
298 *
299 * 2) This code sees the page as clean, so it calls
300 * set_page_dirty(). The page stays dirty, despite being
301 * written back, so it gets written back again in the
302 * next writeback cycle. This is harmless.
303 */
304 if (!PageDirty(page))
305 set_page_dirty_lock(page);
f1f6a7dd 306 unpin_user_page(page);
2d15eb31 307 }
fc1d8e7c 308}
f1f6a7dd 309EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c
JH
310
311/**
f1f6a7dd 312 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
313 * @pages: array of pages to be marked dirty and released.
314 * @npages: number of pages in the @pages array.
315 *
f1f6a7dd 316 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 317 *
f1f6a7dd 318 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 319 */
f1f6a7dd 320void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
321{
322 unsigned long index;
323
324 /*
325 * TODO: this can be optimized for huge pages: if a series of pages is
326 * physically contiguous and part of the same compound page, then a
327 * single operation to the head page should suffice.
328 */
329 for (index = 0; index < npages; index++)
f1f6a7dd 330 unpin_user_page(pages[index]);
fc1d8e7c 331}
f1f6a7dd 332EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 333
050a9adc 334#ifdef CONFIG_MMU
69e68b4f
KS
335static struct page *no_page_table(struct vm_area_struct *vma,
336 unsigned int flags)
4bbd4c77 337{
69e68b4f
KS
338 /*
339 * When core dumping an enormous anonymous area that nobody
340 * has touched so far, we don't want to allocate unnecessary pages or
341 * page tables. Return error instead of NULL to skip handle_mm_fault,
342 * then get_dump_page() will return NULL to leave a hole in the dump.
343 * But we can only make this optimization where a hole would surely
344 * be zero-filled if handle_mm_fault() actually did handle it.
345 */
346 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
347 return ERR_PTR(-EFAULT);
348 return NULL;
349}
4bbd4c77 350
1027e443
KS
351static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
352 pte_t *pte, unsigned int flags)
353{
354 /* No page to get reference */
355 if (flags & FOLL_GET)
356 return -EFAULT;
357
358 if (flags & FOLL_TOUCH) {
359 pte_t entry = *pte;
360
361 if (flags & FOLL_WRITE)
362 entry = pte_mkdirty(entry);
363 entry = pte_mkyoung(entry);
364
365 if (!pte_same(*pte, entry)) {
366 set_pte_at(vma->vm_mm, address, pte, entry);
367 update_mmu_cache(vma, address, pte);
368 }
369 }
370
371 /* Proper page table entry exists, but no corresponding struct page */
372 return -EEXIST;
373}
374
19be0eaf
LT
375/*
376 * FOLL_FORCE can write to even unwritable pte's, but only
377 * after we've gone through a COW cycle and they are dirty.
378 */
379static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
380{
f6f37321 381 return pte_write(pte) ||
19be0eaf
LT
382 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
383}
384
69e68b4f 385static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
386 unsigned long address, pmd_t *pmd, unsigned int flags,
387 struct dev_pagemap **pgmap)
69e68b4f
KS
388{
389 struct mm_struct *mm = vma->vm_mm;
390 struct page *page;
391 spinlock_t *ptl;
392 pte_t *ptep, pte;
f28d4363 393 int ret;
4bbd4c77 394
eddb1c22
JH
395 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
396 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
397 (FOLL_PIN | FOLL_GET)))
398 return ERR_PTR(-EINVAL);
69e68b4f 399retry:
4bbd4c77 400 if (unlikely(pmd_bad(*pmd)))
69e68b4f 401 return no_page_table(vma, flags);
4bbd4c77
KS
402
403 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
404 pte = *ptep;
405 if (!pte_present(pte)) {
406 swp_entry_t entry;
407 /*
408 * KSM's break_ksm() relies upon recognizing a ksm page
409 * even while it is being migrated, so for that case we
410 * need migration_entry_wait().
411 */
412 if (likely(!(flags & FOLL_MIGRATION)))
413 goto no_page;
0661a336 414 if (pte_none(pte))
4bbd4c77
KS
415 goto no_page;
416 entry = pte_to_swp_entry(pte);
417 if (!is_migration_entry(entry))
418 goto no_page;
419 pte_unmap_unlock(ptep, ptl);
420 migration_entry_wait(mm, pmd, address);
69e68b4f 421 goto retry;
4bbd4c77 422 }
8a0516ed 423 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 424 goto no_page;
19be0eaf 425 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
426 pte_unmap_unlock(ptep, ptl);
427 return NULL;
428 }
4bbd4c77
KS
429
430 page = vm_normal_page(vma, address, pte);
3faa52c0 431 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 432 /*
3faa52c0
JH
433 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
434 * case since they are only valid while holding the pgmap
435 * reference.
3565fce3 436 */
df06b37f
KB
437 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
438 if (*pgmap)
3565fce3
DW
439 page = pte_page(pte);
440 else
441 goto no_page;
442 } else if (unlikely(!page)) {
1027e443
KS
443 if (flags & FOLL_DUMP) {
444 /* Avoid special (like zero) pages in core dumps */
445 page = ERR_PTR(-EFAULT);
446 goto out;
447 }
448
449 if (is_zero_pfn(pte_pfn(pte))) {
450 page = pte_page(pte);
451 } else {
1027e443
KS
452 ret = follow_pfn_pte(vma, address, ptep, flags);
453 page = ERR_PTR(ret);
454 goto out;
455 }
4bbd4c77
KS
456 }
457
6742d293 458 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
6742d293
KS
459 get_page(page);
460 pte_unmap_unlock(ptep, ptl);
461 lock_page(page);
462 ret = split_huge_page(page);
463 unlock_page(page);
464 put_page(page);
465 if (ret)
466 return ERR_PTR(ret);
467 goto retry;
468 }
469
3faa52c0
JH
470 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
471 if (unlikely(!try_grab_page(page, flags))) {
472 page = ERR_PTR(-ENOMEM);
473 goto out;
8fde12ca 474 }
f28d4363
CI
475 /*
476 * We need to make the page accessible if and only if we are going
477 * to access its content (the FOLL_PIN case). Please see
478 * Documentation/core-api/pin_user_pages.rst for details.
479 */
480 if (flags & FOLL_PIN) {
481 ret = arch_make_page_accessible(page);
482 if (ret) {
483 unpin_user_page(page);
484 page = ERR_PTR(ret);
485 goto out;
486 }
487 }
4bbd4c77
KS
488 if (flags & FOLL_TOUCH) {
489 if ((flags & FOLL_WRITE) &&
490 !pte_dirty(pte) && !PageDirty(page))
491 set_page_dirty(page);
492 /*
493 * pte_mkyoung() would be more correct here, but atomic care
494 * is needed to avoid losing the dirty bit: it is easier to use
495 * mark_page_accessed().
496 */
497 mark_page_accessed(page);
498 }
de60f5f1 499 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
500 /* Do not mlock pte-mapped THP */
501 if (PageTransCompound(page))
502 goto out;
503
4bbd4c77
KS
504 /*
505 * The preliminary mapping check is mainly to avoid the
506 * pointless overhead of lock_page on the ZERO_PAGE
507 * which might bounce very badly if there is contention.
508 *
509 * If the page is already locked, we don't need to
510 * handle it now - vmscan will handle it later if and
511 * when it attempts to reclaim the page.
512 */
513 if (page->mapping && trylock_page(page)) {
514 lru_add_drain(); /* push cached pages to LRU */
515 /*
516 * Because we lock page here, and migration is
517 * blocked by the pte's page reference, and we
518 * know the page is still mapped, we don't even
519 * need to check for file-cache page truncation.
520 */
521 mlock_vma_page(page);
522 unlock_page(page);
523 }
524 }
1027e443 525out:
4bbd4c77 526 pte_unmap_unlock(ptep, ptl);
4bbd4c77 527 return page;
4bbd4c77
KS
528no_page:
529 pte_unmap_unlock(ptep, ptl);
530 if (!pte_none(pte))
69e68b4f
KS
531 return NULL;
532 return no_page_table(vma, flags);
533}
534
080dbb61
AK
535static struct page *follow_pmd_mask(struct vm_area_struct *vma,
536 unsigned long address, pud_t *pudp,
df06b37f
KB
537 unsigned int flags,
538 struct follow_page_context *ctx)
69e68b4f 539{
68827280 540 pmd_t *pmd, pmdval;
69e68b4f
KS
541 spinlock_t *ptl;
542 struct page *page;
543 struct mm_struct *mm = vma->vm_mm;
544
080dbb61 545 pmd = pmd_offset(pudp, address);
68827280
HY
546 /*
547 * The READ_ONCE() will stabilize the pmdval in a register or
548 * on the stack so that it will stop changing under the code.
549 */
550 pmdval = READ_ONCE(*pmd);
551 if (pmd_none(pmdval))
69e68b4f 552 return no_page_table(vma, flags);
be9d3045 553 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
554 page = follow_huge_pmd(mm, address, pmd, flags);
555 if (page)
556 return page;
557 return no_page_table(vma, flags);
69e68b4f 558 }
68827280 559 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 560 page = follow_huge_pd(vma, address,
68827280 561 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
562 PMD_SHIFT);
563 if (page)
564 return page;
565 return no_page_table(vma, flags);
566 }
84c3fc4e 567retry:
68827280 568 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
569 if (likely(!(flags & FOLL_MIGRATION)))
570 return no_page_table(vma, flags);
571 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
572 !is_pmd_migration_entry(pmdval));
573 if (is_pmd_migration_entry(pmdval))
84c3fc4e 574 pmd_migration_entry_wait(mm, pmd);
68827280
HY
575 pmdval = READ_ONCE(*pmd);
576 /*
577 * MADV_DONTNEED may convert the pmd to null because
578 * mmap_sem is held in read mode
579 */
580 if (pmd_none(pmdval))
581 return no_page_table(vma, flags);
84c3fc4e
ZY
582 goto retry;
583 }
68827280 584 if (pmd_devmap(pmdval)) {
3565fce3 585 ptl = pmd_lock(mm, pmd);
df06b37f 586 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
587 spin_unlock(ptl);
588 if (page)
589 return page;
590 }
68827280 591 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 592 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 593
68827280 594 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
595 return no_page_table(vma, flags);
596
84c3fc4e 597retry_locked:
6742d293 598 ptl = pmd_lock(mm, pmd);
68827280
HY
599 if (unlikely(pmd_none(*pmd))) {
600 spin_unlock(ptl);
601 return no_page_table(vma, flags);
602 }
84c3fc4e
ZY
603 if (unlikely(!pmd_present(*pmd))) {
604 spin_unlock(ptl);
605 if (likely(!(flags & FOLL_MIGRATION)))
606 return no_page_table(vma, flags);
607 pmd_migration_entry_wait(mm, pmd);
608 goto retry_locked;
609 }
6742d293
KS
610 if (unlikely(!pmd_trans_huge(*pmd))) {
611 spin_unlock(ptl);
df06b37f 612 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 613 }
bfe7b00d 614 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
615 int ret;
616 page = pmd_page(*pmd);
617 if (is_huge_zero_page(page)) {
618 spin_unlock(ptl);
619 ret = 0;
78ddc534 620 split_huge_pmd(vma, pmd, address);
337d9abf
NH
621 if (pmd_trans_unstable(pmd))
622 ret = -EBUSY;
bfe7b00d 623 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
624 if (unlikely(!try_get_page(page))) {
625 spin_unlock(ptl);
626 return ERR_PTR(-ENOMEM);
627 }
69e68b4f 628 spin_unlock(ptl);
6742d293
KS
629 lock_page(page);
630 ret = split_huge_page(page);
631 unlock_page(page);
632 put_page(page);
baa355fd
KS
633 if (pmd_none(*pmd))
634 return no_page_table(vma, flags);
bfe7b00d
SL
635 } else { /* flags & FOLL_SPLIT_PMD */
636 spin_unlock(ptl);
637 split_huge_pmd(vma, pmd, address);
638 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
639 }
640
641 return ret ? ERR_PTR(ret) :
df06b37f 642 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 643 }
6742d293
KS
644 page = follow_trans_huge_pmd(vma, address, pmd, flags);
645 spin_unlock(ptl);
df06b37f 646 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 647 return page;
4bbd4c77
KS
648}
649
080dbb61
AK
650static struct page *follow_pud_mask(struct vm_area_struct *vma,
651 unsigned long address, p4d_t *p4dp,
df06b37f
KB
652 unsigned int flags,
653 struct follow_page_context *ctx)
080dbb61
AK
654{
655 pud_t *pud;
656 spinlock_t *ptl;
657 struct page *page;
658 struct mm_struct *mm = vma->vm_mm;
659
660 pud = pud_offset(p4dp, address);
661 if (pud_none(*pud))
662 return no_page_table(vma, flags);
be9d3045 663 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
664 page = follow_huge_pud(mm, address, pud, flags);
665 if (page)
666 return page;
667 return no_page_table(vma, flags);
668 }
4dc71451
AK
669 if (is_hugepd(__hugepd(pud_val(*pud)))) {
670 page = follow_huge_pd(vma, address,
671 __hugepd(pud_val(*pud)), flags,
672 PUD_SHIFT);
673 if (page)
674 return page;
675 return no_page_table(vma, flags);
676 }
080dbb61
AK
677 if (pud_devmap(*pud)) {
678 ptl = pud_lock(mm, pud);
df06b37f 679 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
680 spin_unlock(ptl);
681 if (page)
682 return page;
683 }
684 if (unlikely(pud_bad(*pud)))
685 return no_page_table(vma, flags);
686
df06b37f 687 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
688}
689
080dbb61
AK
690static struct page *follow_p4d_mask(struct vm_area_struct *vma,
691 unsigned long address, pgd_t *pgdp,
df06b37f
KB
692 unsigned int flags,
693 struct follow_page_context *ctx)
080dbb61
AK
694{
695 p4d_t *p4d;
4dc71451 696 struct page *page;
080dbb61
AK
697
698 p4d = p4d_offset(pgdp, address);
699 if (p4d_none(*p4d))
700 return no_page_table(vma, flags);
701 BUILD_BUG_ON(p4d_huge(*p4d));
702 if (unlikely(p4d_bad(*p4d)))
703 return no_page_table(vma, flags);
704
4dc71451
AK
705 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
706 page = follow_huge_pd(vma, address,
707 __hugepd(p4d_val(*p4d)), flags,
708 P4D_SHIFT);
709 if (page)
710 return page;
711 return no_page_table(vma, flags);
712 }
df06b37f 713 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
714}
715
716/**
717 * follow_page_mask - look up a page descriptor from a user-virtual address
718 * @vma: vm_area_struct mapping @address
719 * @address: virtual address to look up
720 * @flags: flags modifying lookup behaviour
78179556
MR
721 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
722 * pointer to output page_mask
080dbb61
AK
723 *
724 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
725 *
78179556
MR
726 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
727 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
728 *
729 * On output, the @ctx->page_mask is set according to the size of the page.
730 *
731 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
732 * an error pointer if there is a mapping to something not represented
733 * by a page descriptor (see also vm_normal_page()).
734 */
a7030aea 735static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 736 unsigned long address, unsigned int flags,
df06b37f 737 struct follow_page_context *ctx)
080dbb61
AK
738{
739 pgd_t *pgd;
740 struct page *page;
741 struct mm_struct *mm = vma->vm_mm;
742
df06b37f 743 ctx->page_mask = 0;
080dbb61
AK
744
745 /* make this handle hugepd */
746 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
747 if (!IS_ERR(page)) {
3faa52c0 748 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
749 return page;
750 }
751
752 pgd = pgd_offset(mm, address);
753
754 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
755 return no_page_table(vma, flags);
756
faaa5b62
AK
757 if (pgd_huge(*pgd)) {
758 page = follow_huge_pgd(mm, address, pgd, flags);
759 if (page)
760 return page;
761 return no_page_table(vma, flags);
762 }
4dc71451
AK
763 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
764 page = follow_huge_pd(vma, address,
765 __hugepd(pgd_val(*pgd)), flags,
766 PGDIR_SHIFT);
767 if (page)
768 return page;
769 return no_page_table(vma, flags);
770 }
faaa5b62 771
df06b37f
KB
772 return follow_p4d_mask(vma, address, pgd, flags, ctx);
773}
774
775struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
776 unsigned int foll_flags)
777{
778 struct follow_page_context ctx = { NULL };
779 struct page *page;
780
781 page = follow_page_mask(vma, address, foll_flags, &ctx);
782 if (ctx.pgmap)
783 put_dev_pagemap(ctx.pgmap);
784 return page;
080dbb61
AK
785}
786
f2b495ca
KS
787static int get_gate_page(struct mm_struct *mm, unsigned long address,
788 unsigned int gup_flags, struct vm_area_struct **vma,
789 struct page **page)
790{
791 pgd_t *pgd;
c2febafc 792 p4d_t *p4d;
f2b495ca
KS
793 pud_t *pud;
794 pmd_t *pmd;
795 pte_t *pte;
796 int ret = -EFAULT;
797
798 /* user gate pages are read-only */
799 if (gup_flags & FOLL_WRITE)
800 return -EFAULT;
801 if (address > TASK_SIZE)
802 pgd = pgd_offset_k(address);
803 else
804 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
805 if (pgd_none(*pgd))
806 return -EFAULT;
c2febafc 807 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
808 if (p4d_none(*p4d))
809 return -EFAULT;
c2febafc 810 pud = pud_offset(p4d, address);
b5d1c39f
AL
811 if (pud_none(*pud))
812 return -EFAULT;
f2b495ca 813 pmd = pmd_offset(pud, address);
84c3fc4e 814 if (!pmd_present(*pmd))
f2b495ca
KS
815 return -EFAULT;
816 VM_BUG_ON(pmd_trans_huge(*pmd));
817 pte = pte_offset_map(pmd, address);
818 if (pte_none(*pte))
819 goto unmap;
820 *vma = get_gate_vma(mm);
821 if (!page)
822 goto out;
823 *page = vm_normal_page(*vma, address, *pte);
824 if (!*page) {
825 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
826 goto unmap;
827 *page = pte_page(*pte);
828 }
8fde12ca
LT
829 if (unlikely(!try_get_page(*page))) {
830 ret = -ENOMEM;
831 goto unmap;
832 }
f2b495ca
KS
833out:
834 ret = 0;
835unmap:
836 pte_unmap(pte);
837 return ret;
838}
839
9a95f3cf
PC
840/*
841 * mmap_sem must be held on entry. If @nonblocking != NULL and
842 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
843 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
844 */
16744483
KS
845static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
846 unsigned long address, unsigned int *flags, int *nonblocking)
847{
16744483 848 unsigned int fault_flags = 0;
2b740303 849 vm_fault_t ret;
16744483 850
de60f5f1
EM
851 /* mlock all present pages, but do not fault in new pages */
852 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
853 return -ENOENT;
16744483
KS
854 if (*flags & FOLL_WRITE)
855 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
856 if (*flags & FOLL_REMOTE)
857 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
858 if (nonblocking)
859 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
860 if (*flags & FOLL_NOWAIT)
861 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
862 if (*flags & FOLL_TRIED) {
863 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
864 fault_flags |= FAULT_FLAG_TRIED;
865 }
16744483 866
dcddffd4 867 ret = handle_mm_fault(vma, address, fault_flags);
16744483 868 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
869 int err = vm_fault_to_errno(ret, *flags);
870
871 if (err)
872 return err;
16744483
KS
873 BUG();
874 }
875
876 if (tsk) {
877 if (ret & VM_FAULT_MAJOR)
878 tsk->maj_flt++;
879 else
880 tsk->min_flt++;
881 }
882
883 if (ret & VM_FAULT_RETRY) {
96312e61 884 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
885 *nonblocking = 0;
886 return -EBUSY;
887 }
888
889 /*
890 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
891 * necessary, even if maybe_mkwrite decided not to set pte_write. We
892 * can thus safely do subsequent page lookups as if they were reads.
893 * But only do so when looping for pte_write is futile: in some cases
894 * userspace may also be wanting to write to the gotten user page,
895 * which a read fault here might prevent (a readonly page might get
896 * reCOWed by userspace write).
897 */
898 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 899 *flags |= FOLL_COW;
16744483
KS
900 return 0;
901}
902
fa5bb209
KS
903static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
904{
905 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
906 int write = (gup_flags & FOLL_WRITE);
907 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
908
909 if (vm_flags & (VM_IO | VM_PFNMAP))
910 return -EFAULT;
911
7f7ccc2c
WT
912 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
913 return -EFAULT;
914
1b2ee126 915 if (write) {
fa5bb209
KS
916 if (!(vm_flags & VM_WRITE)) {
917 if (!(gup_flags & FOLL_FORCE))
918 return -EFAULT;
919 /*
920 * We used to let the write,force case do COW in a
921 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
922 * set a breakpoint in a read-only mapping of an
923 * executable, without corrupting the file (yet only
924 * when that file had been opened for writing!).
925 * Anon pages in shared mappings are surprising: now
926 * just reject it.
927 */
46435364 928 if (!is_cow_mapping(vm_flags))
fa5bb209 929 return -EFAULT;
fa5bb209
KS
930 }
931 } else if (!(vm_flags & VM_READ)) {
932 if (!(gup_flags & FOLL_FORCE))
933 return -EFAULT;
934 /*
935 * Is there actually any vma we can reach here which does not
936 * have VM_MAYREAD set?
937 */
938 if (!(vm_flags & VM_MAYREAD))
939 return -EFAULT;
940 }
d61172b4
DH
941 /*
942 * gups are always data accesses, not instruction
943 * fetches, so execute=false here
944 */
945 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 946 return -EFAULT;
fa5bb209
KS
947 return 0;
948}
949
4bbd4c77
KS
950/**
951 * __get_user_pages() - pin user pages in memory
952 * @tsk: task_struct of target task
953 * @mm: mm_struct of target mm
954 * @start: starting user address
955 * @nr_pages: number of pages from start to pin
956 * @gup_flags: flags modifying pin behaviour
957 * @pages: array that receives pointers to the pages pinned.
958 * Should be at least nr_pages long. Or NULL, if caller
959 * only intends to ensure the pages are faulted in.
960 * @vmas: array of pointers to vmas corresponding to each page.
961 * Or NULL if the caller does not require them.
962 * @nonblocking: whether waiting for disk IO or mmap_sem contention
963 *
d2dfbe47
LX
964 * Returns either number of pages pinned (which may be less than the
965 * number requested), or an error. Details about the return value:
966 *
967 * -- If nr_pages is 0, returns 0.
968 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
969 * -- If nr_pages is >0, and some pages were pinned, returns the number of
970 * pages pinned. Again, this may be less than nr_pages.
971 *
972 * The caller is responsible for releasing returned @pages, via put_page().
973 *
974 * @vmas are valid only as long as mmap_sem is held.
4bbd4c77 975 *
9a95f3cf 976 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
977 *
978 * __get_user_pages walks a process's page tables and takes a reference to
979 * each struct page that each user address corresponds to at a given
980 * instant. That is, it takes the page that would be accessed if a user
981 * thread accesses the given user virtual address at that instant.
982 *
983 * This does not guarantee that the page exists in the user mappings when
984 * __get_user_pages returns, and there may even be a completely different
985 * page there in some cases (eg. if mmapped pagecache has been invalidated
986 * and subsequently re faulted). However it does guarantee that the page
987 * won't be freed completely. And mostly callers simply care that the page
988 * contains data that was valid *at some point in time*. Typically, an IO
989 * or similar operation cannot guarantee anything stronger anyway because
990 * locks can't be held over the syscall boundary.
991 *
992 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
993 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
994 * appropriate) must be called after the page is finished with, and
995 * before put_page is called.
996 *
997 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
998 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
999 * *@nonblocking will be set to 0. Further, if @gup_flags does not
1000 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
1001 * this case.
1002 *
1003 * A caller using such a combination of @nonblocking and @gup_flags
1004 * must therefore hold the mmap_sem for reading only, and recognize
1005 * when it's been released. Otherwise, it must be held for either
1006 * reading or writing and will not be released.
4bbd4c77
KS
1007 *
1008 * In most cases, get_user_pages or get_user_pages_fast should be used
1009 * instead of __get_user_pages. __get_user_pages should be used only if
1010 * you need some special @gup_flags.
1011 */
0d731759 1012static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
1013 unsigned long start, unsigned long nr_pages,
1014 unsigned int gup_flags, struct page **pages,
1015 struct vm_area_struct **vmas, int *nonblocking)
1016{
df06b37f 1017 long ret = 0, i = 0;
fa5bb209 1018 struct vm_area_struct *vma = NULL;
df06b37f 1019 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1020
1021 if (!nr_pages)
1022 return 0;
1023
f9652594
AK
1024 start = untagged_addr(start);
1025
eddb1c22 1026 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1027
1028 /*
1029 * If FOLL_FORCE is set then do not force a full fault as the hinting
1030 * fault information is unrelated to the reference behaviour of a task
1031 * using the address space
1032 */
1033 if (!(gup_flags & FOLL_FORCE))
1034 gup_flags |= FOLL_NUMA;
1035
4bbd4c77 1036 do {
fa5bb209
KS
1037 struct page *page;
1038 unsigned int foll_flags = gup_flags;
1039 unsigned int page_increm;
1040
1041 /* first iteration or cross vma bound */
1042 if (!vma || start >= vma->vm_end) {
1043 vma = find_extend_vma(mm, start);
1044 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1045 ret = get_gate_page(mm, start & PAGE_MASK,
1046 gup_flags, &vma,
1047 pages ? &pages[i] : NULL);
1048 if (ret)
08be37b7 1049 goto out;
df06b37f 1050 ctx.page_mask = 0;
fa5bb209
KS
1051 goto next_page;
1052 }
4bbd4c77 1053
df06b37f
KB
1054 if (!vma || check_vma_flags(vma, gup_flags)) {
1055 ret = -EFAULT;
1056 goto out;
1057 }
fa5bb209
KS
1058 if (is_vm_hugetlb_page(vma)) {
1059 i = follow_hugetlb_page(mm, vma, pages, vmas,
1060 &start, &nr_pages, i,
87ffc118 1061 gup_flags, nonblocking);
fa5bb209 1062 continue;
4bbd4c77 1063 }
fa5bb209
KS
1064 }
1065retry:
1066 /*
1067 * If we have a pending SIGKILL, don't keep faulting pages and
1068 * potentially allocating memory.
1069 */
fa45f116 1070 if (fatal_signal_pending(current)) {
df06b37f
KB
1071 ret = -ERESTARTSYS;
1072 goto out;
1073 }
fa5bb209 1074 cond_resched();
df06b37f
KB
1075
1076 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1077 if (!page) {
fa5bb209
KS
1078 ret = faultin_page(tsk, vma, start, &foll_flags,
1079 nonblocking);
1080 switch (ret) {
1081 case 0:
1082 goto retry;
df06b37f
KB
1083 case -EBUSY:
1084 ret = 0;
1085 /* FALLTHRU */
fa5bb209
KS
1086 case -EFAULT:
1087 case -ENOMEM:
1088 case -EHWPOISON:
df06b37f 1089 goto out;
fa5bb209
KS
1090 case -ENOENT:
1091 goto next_page;
4bbd4c77 1092 }
fa5bb209 1093 BUG();
1027e443
KS
1094 } else if (PTR_ERR(page) == -EEXIST) {
1095 /*
1096 * Proper page table entry exists, but no corresponding
1097 * struct page.
1098 */
1099 goto next_page;
1100 } else if (IS_ERR(page)) {
df06b37f
KB
1101 ret = PTR_ERR(page);
1102 goto out;
1027e443 1103 }
fa5bb209
KS
1104 if (pages) {
1105 pages[i] = page;
1106 flush_anon_page(vma, page, start);
1107 flush_dcache_page(page);
df06b37f 1108 ctx.page_mask = 0;
4bbd4c77 1109 }
4bbd4c77 1110next_page:
fa5bb209
KS
1111 if (vmas) {
1112 vmas[i] = vma;
df06b37f 1113 ctx.page_mask = 0;
fa5bb209 1114 }
df06b37f 1115 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1116 if (page_increm > nr_pages)
1117 page_increm = nr_pages;
1118 i += page_increm;
1119 start += page_increm * PAGE_SIZE;
1120 nr_pages -= page_increm;
4bbd4c77 1121 } while (nr_pages);
df06b37f
KB
1122out:
1123 if (ctx.pgmap)
1124 put_dev_pagemap(ctx.pgmap);
1125 return i ? i : ret;
4bbd4c77 1126}
4bbd4c77 1127
771ab430
TK
1128static bool vma_permits_fault(struct vm_area_struct *vma,
1129 unsigned int fault_flags)
d4925e00 1130{
1b2ee126
DH
1131 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1132 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1133 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1134
1135 if (!(vm_flags & vma->vm_flags))
1136 return false;
1137
33a709b2
DH
1138 /*
1139 * The architecture might have a hardware protection
1b2ee126 1140 * mechanism other than read/write that can deny access.
d61172b4
DH
1141 *
1142 * gup always represents data access, not instruction
1143 * fetches, so execute=false here:
33a709b2 1144 */
d61172b4 1145 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1146 return false;
1147
d4925e00
DH
1148 return true;
1149}
1150
4bbd4c77
KS
1151/*
1152 * fixup_user_fault() - manually resolve a user page fault
1153 * @tsk: the task_struct to use for page fault accounting, or
1154 * NULL if faults are not to be recorded.
1155 * @mm: mm_struct of target mm
1156 * @address: user address
1157 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
1158 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
1159 * does not allow retry
4bbd4c77
KS
1160 *
1161 * This is meant to be called in the specific scenario where for locking reasons
1162 * we try to access user memory in atomic context (within a pagefault_disable()
1163 * section), this returns -EFAULT, and we want to resolve the user fault before
1164 * trying again.
1165 *
1166 * Typically this is meant to be used by the futex code.
1167 *
1168 * The main difference with get_user_pages() is that this function will
1169 * unconditionally call handle_mm_fault() which will in turn perform all the
1170 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1171 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1172 *
1173 * This is important for some architectures where those bits also gate the
1174 * access permission to the page because they are maintained in software. On
1175 * such architectures, gup() will not be enough to make a subsequent access
1176 * succeed.
1177 *
4a9e1cda
DD
1178 * This function will not return with an unlocked mmap_sem. So it has not the
1179 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
1180 */
1181int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1182 unsigned long address, unsigned int fault_flags,
1183 bool *unlocked)
4bbd4c77
KS
1184{
1185 struct vm_area_struct *vma;
2b740303 1186 vm_fault_t ret, major = 0;
4a9e1cda 1187
f9652594
AK
1188 address = untagged_addr(address);
1189
4a9e1cda
DD
1190 if (unlocked)
1191 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 1192
4a9e1cda 1193retry:
4bbd4c77
KS
1194 vma = find_extend_vma(mm, address);
1195 if (!vma || address < vma->vm_start)
1196 return -EFAULT;
1197
d4925e00 1198 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1199 return -EFAULT;
1200
dcddffd4 1201 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 1202 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1203 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1204 int err = vm_fault_to_errno(ret, 0);
1205
1206 if (err)
1207 return err;
4bbd4c77
KS
1208 BUG();
1209 }
4a9e1cda
DD
1210
1211 if (ret & VM_FAULT_RETRY) {
1212 down_read(&mm->mmap_sem);
1213 if (!(fault_flags & FAULT_FLAG_TRIED)) {
1214 *unlocked = true;
1215 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
1216 fault_flags |= FAULT_FLAG_TRIED;
1217 goto retry;
1218 }
1219 }
1220
4bbd4c77 1221 if (tsk) {
4a9e1cda 1222 if (major)
4bbd4c77
KS
1223 tsk->maj_flt++;
1224 else
1225 tsk->min_flt++;
1226 }
1227 return 0;
1228}
add6a0cd 1229EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1230
f0818f47
AA
1231static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1232 struct mm_struct *mm,
1233 unsigned long start,
1234 unsigned long nr_pages,
f0818f47
AA
1235 struct page **pages,
1236 struct vm_area_struct **vmas,
e716712f 1237 int *locked,
0fd71a56 1238 unsigned int flags)
f0818f47 1239{
f0818f47
AA
1240 long ret, pages_done;
1241 bool lock_dropped;
1242
1243 if (locked) {
1244 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1245 BUG_ON(vmas);
1246 /* check caller initialized locked */
1247 BUG_ON(*locked != 1);
1248 }
1249
eddb1c22
JH
1250 /*
1251 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1252 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1253 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1254 * for FOLL_GET, not for the newer FOLL_PIN.
1255 *
1256 * FOLL_PIN always expects pages to be non-null, but no need to assert
1257 * that here, as any failures will be obvious enough.
1258 */
1259 if (pages && !(flags & FOLL_PIN))
f0818f47 1260 flags |= FOLL_GET;
f0818f47
AA
1261
1262 pages_done = 0;
1263 lock_dropped = false;
1264 for (;;) {
1265 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1266 vmas, locked);
1267 if (!locked)
1268 /* VM_FAULT_RETRY couldn't trigger, bypass */
1269 return ret;
1270
1271 /* VM_FAULT_RETRY cannot return errors */
1272 if (!*locked) {
1273 BUG_ON(ret < 0);
1274 BUG_ON(ret >= nr_pages);
1275 }
1276
f0818f47
AA
1277 if (ret > 0) {
1278 nr_pages -= ret;
1279 pages_done += ret;
1280 if (!nr_pages)
1281 break;
1282 }
1283 if (*locked) {
96312e61
AA
1284 /*
1285 * VM_FAULT_RETRY didn't trigger or it was a
1286 * FOLL_NOWAIT.
1287 */
f0818f47
AA
1288 if (!pages_done)
1289 pages_done = ret;
1290 break;
1291 }
df17277b
MR
1292 /*
1293 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1294 * For the prefault case (!pages) we only update counts.
1295 */
1296 if (likely(pages))
1297 pages += ret;
f0818f47
AA
1298 start += ret << PAGE_SHIFT;
1299
1300 /*
1301 * Repeat on the address that fired VM_FAULT_RETRY
1302 * without FAULT_FLAG_ALLOW_RETRY but with
1303 * FAULT_FLAG_TRIED.
1304 */
1305 *locked = 1;
1306 lock_dropped = true;
1307 down_read(&mm->mmap_sem);
1308 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1309 pages, NULL, NULL);
1310 if (ret != 1) {
1311 BUG_ON(ret > 1);
1312 if (!pages_done)
1313 pages_done = ret;
1314 break;
1315 }
1316 nr_pages--;
1317 pages_done++;
1318 if (!nr_pages)
1319 break;
df17277b
MR
1320 if (likely(pages))
1321 pages++;
f0818f47
AA
1322 start += PAGE_SIZE;
1323 }
e716712f 1324 if (lock_dropped && *locked) {
f0818f47
AA
1325 /*
1326 * We must let the caller know we temporarily dropped the lock
1327 * and so the critical section protected by it was lost.
1328 */
1329 up_read(&mm->mmap_sem);
1330 *locked = 0;
1331 }
1332 return pages_done;
1333}
1334
d3649f68
CH
1335/**
1336 * populate_vma_page_range() - populate a range of pages in the vma.
1337 * @vma: target vma
1338 * @start: start address
1339 * @end: end address
1340 * @nonblocking:
1341 *
1342 * This takes care of mlocking the pages too if VM_LOCKED is set.
1343 *
1344 * return 0 on success, negative error code on error.
1345 *
1346 * vma->vm_mm->mmap_sem must be held.
1347 *
1348 * If @nonblocking is NULL, it may be held for read or write and will
1349 * be unperturbed.
1350 *
1351 * If @nonblocking is non-NULL, it must held for read only and may be
1352 * released. If it's released, *@nonblocking will be set to 0.
1353 */
1354long populate_vma_page_range(struct vm_area_struct *vma,
1355 unsigned long start, unsigned long end, int *nonblocking)
1356{
1357 struct mm_struct *mm = vma->vm_mm;
1358 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1359 int gup_flags;
1360
1361 VM_BUG_ON(start & ~PAGE_MASK);
1362 VM_BUG_ON(end & ~PAGE_MASK);
1363 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1364 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1365 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1366
1367 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1368 if (vma->vm_flags & VM_LOCKONFAULT)
1369 gup_flags &= ~FOLL_POPULATE;
1370 /*
1371 * We want to touch writable mappings with a write fault in order
1372 * to break COW, except for shared mappings because these don't COW
1373 * and we would not want to dirty them for nothing.
1374 */
1375 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1376 gup_flags |= FOLL_WRITE;
1377
1378 /*
1379 * We want mlock to succeed for regions that have any permissions
1380 * other than PROT_NONE.
1381 */
1382 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1383 gup_flags |= FOLL_FORCE;
1384
1385 /*
1386 * We made sure addr is within a VMA, so the following will
1387 * not result in a stack expansion that recurses back here.
1388 */
1389 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1390 NULL, NULL, nonblocking);
1391}
1392
1393/*
1394 * __mm_populate - populate and/or mlock pages within a range of address space.
1395 *
1396 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1397 * flags. VMAs must be already marked with the desired vm_flags, and
1398 * mmap_sem must not be held.
1399 */
1400int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1401{
1402 struct mm_struct *mm = current->mm;
1403 unsigned long end, nstart, nend;
1404 struct vm_area_struct *vma = NULL;
1405 int locked = 0;
1406 long ret = 0;
1407
1408 end = start + len;
1409
1410 for (nstart = start; nstart < end; nstart = nend) {
1411 /*
1412 * We want to fault in pages for [nstart; end) address range.
1413 * Find first corresponding VMA.
1414 */
1415 if (!locked) {
1416 locked = 1;
1417 down_read(&mm->mmap_sem);
1418 vma = find_vma(mm, nstart);
1419 } else if (nstart >= vma->vm_end)
1420 vma = vma->vm_next;
1421 if (!vma || vma->vm_start >= end)
1422 break;
1423 /*
1424 * Set [nstart; nend) to intersection of desired address
1425 * range with the first VMA. Also, skip undesirable VMA types.
1426 */
1427 nend = min(end, vma->vm_end);
1428 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1429 continue;
1430 if (nstart < vma->vm_start)
1431 nstart = vma->vm_start;
1432 /*
1433 * Now fault in a range of pages. populate_vma_page_range()
1434 * double checks the vma flags, so that it won't mlock pages
1435 * if the vma was already munlocked.
1436 */
1437 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1438 if (ret < 0) {
1439 if (ignore_errors) {
1440 ret = 0;
1441 continue; /* continue at next VMA */
1442 }
1443 break;
1444 }
1445 nend = nstart + ret * PAGE_SIZE;
1446 ret = 0;
1447 }
1448 if (locked)
1449 up_read(&mm->mmap_sem);
1450 return ret; /* 0 or negative error code */
1451}
1452
1453/**
1454 * get_dump_page() - pin user page in memory while writing it to core dump
1455 * @addr: user address
1456 *
1457 * Returns struct page pointer of user page pinned for dump,
1458 * to be freed afterwards by put_page().
1459 *
1460 * Returns NULL on any kind of failure - a hole must then be inserted into
1461 * the corefile, to preserve alignment with its headers; and also returns
1462 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1463 * allowing a hole to be left in the corefile to save diskspace.
1464 *
1465 * Called without mmap_sem, but after all other threads have been killed.
1466 */
1467#ifdef CONFIG_ELF_CORE
1468struct page *get_dump_page(unsigned long addr)
1469{
1470 struct vm_area_struct *vma;
1471 struct page *page;
1472
1473 if (__get_user_pages(current, current->mm, addr, 1,
1474 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1475 NULL) < 1)
1476 return NULL;
1477 flush_cache_page(vma, addr, page_to_pfn(page));
1478 return page;
1479}
1480#endif /* CONFIG_ELF_CORE */
050a9adc
CH
1481#else /* CONFIG_MMU */
1482static long __get_user_pages_locked(struct task_struct *tsk,
1483 struct mm_struct *mm, unsigned long start,
1484 unsigned long nr_pages, struct page **pages,
1485 struct vm_area_struct **vmas, int *locked,
1486 unsigned int foll_flags)
1487{
1488 struct vm_area_struct *vma;
1489 unsigned long vm_flags;
1490 int i;
1491
1492 /* calculate required read or write permissions.
1493 * If FOLL_FORCE is set, we only require the "MAY" flags.
1494 */
1495 vm_flags = (foll_flags & FOLL_WRITE) ?
1496 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1497 vm_flags &= (foll_flags & FOLL_FORCE) ?
1498 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1499
1500 for (i = 0; i < nr_pages; i++) {
1501 vma = find_vma(mm, start);
1502 if (!vma)
1503 goto finish_or_fault;
1504
1505 /* protect what we can, including chardevs */
1506 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1507 !(vm_flags & vma->vm_flags))
1508 goto finish_or_fault;
1509
1510 if (pages) {
1511 pages[i] = virt_to_page(start);
1512 if (pages[i])
1513 get_page(pages[i]);
1514 }
1515 if (vmas)
1516 vmas[i] = vma;
1517 start = (start + PAGE_SIZE) & PAGE_MASK;
1518 }
1519
1520 return i;
1521
1522finish_or_fault:
1523 return i ? : -EFAULT;
1524}
1525#endif /* !CONFIG_MMU */
d3649f68 1526
9a4e9f3b 1527#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1528static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1529{
1530 long i;
1531 struct vm_area_struct *vma_prev = NULL;
1532
1533 for (i = 0; i < nr_pages; i++) {
1534 struct vm_area_struct *vma = vmas[i];
1535
1536 if (vma == vma_prev)
1537 continue;
1538
1539 vma_prev = vma;
1540
1541 if (vma_is_fsdax(vma))
1542 return true;
1543 }
1544 return false;
1545}
9a4e9f3b
AK
1546
1547#ifdef CONFIG_CMA
1548static struct page *new_non_cma_page(struct page *page, unsigned long private)
1549{
1550 /*
1551 * We want to make sure we allocate the new page from the same node
1552 * as the source page.
1553 */
1554 int nid = page_to_nid(page);
1555 /*
1556 * Trying to allocate a page for migration. Ignore allocation
1557 * failure warnings. We don't force __GFP_THISNODE here because
1558 * this node here is the node where we have CMA reservation and
1559 * in some case these nodes will have really less non movable
1560 * allocation memory.
1561 */
1562 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1563
1564 if (PageHighMem(page))
1565 gfp_mask |= __GFP_HIGHMEM;
1566
1567#ifdef CONFIG_HUGETLB_PAGE
1568 if (PageHuge(page)) {
1569 struct hstate *h = page_hstate(page);
1570 /*
1571 * We don't want to dequeue from the pool because pool pages will
1572 * mostly be from the CMA region.
1573 */
1574 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1575 }
1576#endif
1577 if (PageTransHuge(page)) {
1578 struct page *thp;
1579 /*
1580 * ignore allocation failure warnings
1581 */
1582 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1583
1584 /*
1585 * Remove the movable mask so that we don't allocate from
1586 * CMA area again.
1587 */
1588 thp_gfpmask &= ~__GFP_MOVABLE;
1589 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1590 if (!thp)
1591 return NULL;
1592 prep_transhuge_page(thp);
1593 return thp;
1594 }
1595
1596 return __alloc_pages_node(nid, gfp_mask, 0);
1597}
1598
932f4a63
IW
1599static long check_and_migrate_cma_pages(struct task_struct *tsk,
1600 struct mm_struct *mm,
1601 unsigned long start,
1602 unsigned long nr_pages,
9a4e9f3b 1603 struct page **pages,
932f4a63
IW
1604 struct vm_area_struct **vmas,
1605 unsigned int gup_flags)
9a4e9f3b 1606{
aa712399
PL
1607 unsigned long i;
1608 unsigned long step;
9a4e9f3b
AK
1609 bool drain_allow = true;
1610 bool migrate_allow = true;
1611 LIST_HEAD(cma_page_list);
b96cc655 1612 long ret = nr_pages;
9a4e9f3b
AK
1613
1614check_again:
aa712399
PL
1615 for (i = 0; i < nr_pages;) {
1616
1617 struct page *head = compound_head(pages[i]);
1618
1619 /*
1620 * gup may start from a tail page. Advance step by the left
1621 * part.
1622 */
d8c6546b 1623 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1624 /*
1625 * If we get a page from the CMA zone, since we are going to
1626 * be pinning these entries, we might as well move them out
1627 * of the CMA zone if possible.
1628 */
aa712399
PL
1629 if (is_migrate_cma_page(head)) {
1630 if (PageHuge(head))
9a4e9f3b 1631 isolate_huge_page(head, &cma_page_list);
aa712399 1632 else {
9a4e9f3b
AK
1633 if (!PageLRU(head) && drain_allow) {
1634 lru_add_drain_all();
1635 drain_allow = false;
1636 }
1637
1638 if (!isolate_lru_page(head)) {
1639 list_add_tail(&head->lru, &cma_page_list);
1640 mod_node_page_state(page_pgdat(head),
1641 NR_ISOLATED_ANON +
1642 page_is_file_cache(head),
1643 hpage_nr_pages(head));
1644 }
1645 }
1646 }
aa712399
PL
1647
1648 i += step;
9a4e9f3b
AK
1649 }
1650
1651 if (!list_empty(&cma_page_list)) {
1652 /*
1653 * drop the above get_user_pages reference.
1654 */
1655 for (i = 0; i < nr_pages; i++)
1656 put_page(pages[i]);
1657
1658 if (migrate_pages(&cma_page_list, new_non_cma_page,
1659 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1660 /*
1661 * some of the pages failed migration. Do get_user_pages
1662 * without migration.
1663 */
1664 migrate_allow = false;
1665
1666 if (!list_empty(&cma_page_list))
1667 putback_movable_pages(&cma_page_list);
1668 }
1669 /*
932f4a63
IW
1670 * We did migrate all the pages, Try to get the page references
1671 * again migrating any new CMA pages which we failed to isolate
1672 * earlier.
9a4e9f3b 1673 */
b96cc655 1674 ret = __get_user_pages_locked(tsk, mm, start, nr_pages,
932f4a63
IW
1675 pages, vmas, NULL,
1676 gup_flags);
1677
b96cc655 1678 if ((ret > 0) && migrate_allow) {
1679 nr_pages = ret;
9a4e9f3b
AK
1680 drain_allow = true;
1681 goto check_again;
1682 }
1683 }
1684
b96cc655 1685 return ret;
9a4e9f3b
AK
1686}
1687#else
932f4a63
IW
1688static long check_and_migrate_cma_pages(struct task_struct *tsk,
1689 struct mm_struct *mm,
1690 unsigned long start,
1691 unsigned long nr_pages,
1692 struct page **pages,
1693 struct vm_area_struct **vmas,
1694 unsigned int gup_flags)
9a4e9f3b
AK
1695{
1696 return nr_pages;
1697}
050a9adc 1698#endif /* CONFIG_CMA */
9a4e9f3b 1699
2bb6d283 1700/*
932f4a63
IW
1701 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1702 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1703 */
932f4a63
IW
1704static long __gup_longterm_locked(struct task_struct *tsk,
1705 struct mm_struct *mm,
1706 unsigned long start,
1707 unsigned long nr_pages,
1708 struct page **pages,
1709 struct vm_area_struct **vmas,
1710 unsigned int gup_flags)
2bb6d283 1711{
932f4a63
IW
1712 struct vm_area_struct **vmas_tmp = vmas;
1713 unsigned long flags = 0;
2bb6d283
DW
1714 long rc, i;
1715
932f4a63
IW
1716 if (gup_flags & FOLL_LONGTERM) {
1717 if (!pages)
1718 return -EINVAL;
1719
1720 if (!vmas_tmp) {
1721 vmas_tmp = kcalloc(nr_pages,
1722 sizeof(struct vm_area_struct *),
1723 GFP_KERNEL);
1724 if (!vmas_tmp)
1725 return -ENOMEM;
1726 }
1727 flags = memalloc_nocma_save();
2bb6d283
DW
1728 }
1729
932f4a63
IW
1730 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1731 vmas_tmp, NULL, gup_flags);
2bb6d283 1732
932f4a63
IW
1733 if (gup_flags & FOLL_LONGTERM) {
1734 memalloc_nocma_restore(flags);
1735 if (rc < 0)
1736 goto out;
1737
1738 if (check_dax_vmas(vmas_tmp, rc)) {
1739 for (i = 0; i < rc; i++)
1740 put_page(pages[i]);
1741 rc = -EOPNOTSUPP;
1742 goto out;
1743 }
1744
1745 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1746 vmas_tmp, gup_flags);
9a4e9f3b 1747 }
2bb6d283 1748
2bb6d283 1749out:
932f4a63
IW
1750 if (vmas_tmp != vmas)
1751 kfree(vmas_tmp);
2bb6d283
DW
1752 return rc;
1753}
932f4a63
IW
1754#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1755static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1756 struct mm_struct *mm,
1757 unsigned long start,
1758 unsigned long nr_pages,
1759 struct page **pages,
1760 struct vm_area_struct **vmas,
1761 unsigned int flags)
1762{
1763 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1764 NULL, flags);
1765}
1766#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1767
22bf29b6
JH
1768#ifdef CONFIG_MMU
1769static long __get_user_pages_remote(struct task_struct *tsk,
1770 struct mm_struct *mm,
1771 unsigned long start, unsigned long nr_pages,
1772 unsigned int gup_flags, struct page **pages,
1773 struct vm_area_struct **vmas, int *locked)
1774{
1775 /*
1776 * Parts of FOLL_LONGTERM behavior are incompatible with
1777 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1778 * vmas. However, this only comes up if locked is set, and there are
1779 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1780 * allow what we can.
1781 */
1782 if (gup_flags & FOLL_LONGTERM) {
1783 if (WARN_ON_ONCE(locked))
1784 return -EINVAL;
1785 /*
1786 * This will check the vmas (even if our vmas arg is NULL)
1787 * and return -ENOTSUPP if DAX isn't allowed in this case:
1788 */
1789 return __gup_longterm_locked(tsk, mm, start, nr_pages, pages,
1790 vmas, gup_flags | FOLL_TOUCH |
1791 FOLL_REMOTE);
1792 }
1793
1794 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1795 locked,
1796 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1797}
1798
c4237f8b
JH
1799/*
1800 * get_user_pages_remote() - pin user pages in memory
1801 * @tsk: the task_struct to use for page fault accounting, or
1802 * NULL if faults are not to be recorded.
1803 * @mm: mm_struct of target mm
1804 * @start: starting user address
1805 * @nr_pages: number of pages from start to pin
1806 * @gup_flags: flags modifying lookup behaviour
1807 * @pages: array that receives pointers to the pages pinned.
1808 * Should be at least nr_pages long. Or NULL, if caller
1809 * only intends to ensure the pages are faulted in.
1810 * @vmas: array of pointers to vmas corresponding to each page.
1811 * Or NULL if the caller does not require them.
1812 * @locked: pointer to lock flag indicating whether lock is held and
1813 * subsequently whether VM_FAULT_RETRY functionality can be
1814 * utilised. Lock must initially be held.
1815 *
1816 * Returns either number of pages pinned (which may be less than the
1817 * number requested), or an error. Details about the return value:
1818 *
1819 * -- If nr_pages is 0, returns 0.
1820 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1821 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1822 * pages pinned. Again, this may be less than nr_pages.
1823 *
1824 * The caller is responsible for releasing returned @pages, via put_page().
1825 *
1826 * @vmas are valid only as long as mmap_sem is held.
1827 *
1828 * Must be called with mmap_sem held for read or write.
1829 *
1830 * get_user_pages walks a process's page tables and takes a reference to
1831 * each struct page that each user address corresponds to at a given
1832 * instant. That is, it takes the page that would be accessed if a user
1833 * thread accesses the given user virtual address at that instant.
1834 *
1835 * This does not guarantee that the page exists in the user mappings when
1836 * get_user_pages returns, and there may even be a completely different
1837 * page there in some cases (eg. if mmapped pagecache has been invalidated
1838 * and subsequently re faulted). However it does guarantee that the page
1839 * won't be freed completely. And mostly callers simply care that the page
1840 * contains data that was valid *at some point in time*. Typically, an IO
1841 * or similar operation cannot guarantee anything stronger anyway because
1842 * locks can't be held over the syscall boundary.
1843 *
1844 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1845 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1846 * be called after the page is finished with, and before put_page is called.
1847 *
1848 * get_user_pages is typically used for fewer-copy IO operations, to get a
1849 * handle on the memory by some means other than accesses via the user virtual
1850 * addresses. The pages may be submitted for DMA to devices or accessed via
1851 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1852 * use the correct cache flushing APIs.
1853 *
1854 * See also get_user_pages_fast, for performance critical applications.
1855 *
1856 * get_user_pages should be phased out in favor of
1857 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1858 * should use get_user_pages because it cannot pass
1859 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1860 */
1861long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1862 unsigned long start, unsigned long nr_pages,
1863 unsigned int gup_flags, struct page **pages,
1864 struct vm_area_struct **vmas, int *locked)
1865{
eddb1c22
JH
1866 /*
1867 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1868 * never directly by the caller, so enforce that with an assertion:
1869 */
1870 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1871 return -EINVAL;
1872
22bf29b6
JH
1873 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
1874 pages, vmas, locked);
c4237f8b
JH
1875}
1876EXPORT_SYMBOL(get_user_pages_remote);
1877
eddb1c22
JH
1878#else /* CONFIG_MMU */
1879long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1880 unsigned long start, unsigned long nr_pages,
1881 unsigned int gup_flags, struct page **pages,
1882 struct vm_area_struct **vmas, int *locked)
1883{
1884 return 0;
1885}
3faa52c0
JH
1886
1887static long __get_user_pages_remote(struct task_struct *tsk,
1888 struct mm_struct *mm,
1889 unsigned long start, unsigned long nr_pages,
1890 unsigned int gup_flags, struct page **pages,
1891 struct vm_area_struct **vmas, int *locked)
1892{
1893 return 0;
1894}
eddb1c22
JH
1895#endif /* !CONFIG_MMU */
1896
932f4a63
IW
1897/*
1898 * This is the same as get_user_pages_remote(), just with a
1899 * less-flexible calling convention where we assume that the task
1900 * and mm being operated on are the current task's and don't allow
1901 * passing of a locked parameter. We also obviously don't pass
1902 * FOLL_REMOTE in here.
1903 */
1904long get_user_pages(unsigned long start, unsigned long nr_pages,
1905 unsigned int gup_flags, struct page **pages,
1906 struct vm_area_struct **vmas)
1907{
eddb1c22
JH
1908 /*
1909 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1910 * never directly by the caller, so enforce that with an assertion:
1911 */
1912 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1913 return -EINVAL;
1914
932f4a63
IW
1915 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1916 pages, vmas, gup_flags | FOLL_TOUCH);
1917}
1918EXPORT_SYMBOL(get_user_pages);
2bb6d283 1919
d3649f68
CH
1920/*
1921 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1922 * paths better by using either get_user_pages_locked() or
1923 * get_user_pages_unlocked().
acc3c8d1 1924 *
d3649f68 1925 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1926 *
d3649f68
CH
1927 * down_read(&mm->mmap_sem);
1928 * do_something()
1929 * get_user_pages(tsk, mm, ..., pages, NULL);
1930 * up_read(&mm->mmap_sem);
acc3c8d1 1931 *
d3649f68 1932 * to:
acc3c8d1 1933 *
d3649f68
CH
1934 * int locked = 1;
1935 * down_read(&mm->mmap_sem);
1936 * do_something()
1937 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1938 * if (locked)
1939 * up_read(&mm->mmap_sem);
acc3c8d1 1940 */
d3649f68
CH
1941long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1942 unsigned int gup_flags, struct page **pages,
1943 int *locked)
acc3c8d1 1944{
acc3c8d1 1945 /*
d3649f68
CH
1946 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1947 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1948 * vmas. As there are no users of this flag in this call we simply
1949 * disallow this option for now.
acc3c8d1 1950 */
d3649f68
CH
1951 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1952 return -EINVAL;
acc3c8d1 1953
d3649f68
CH
1954 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1955 pages, NULL, locked,
1956 gup_flags | FOLL_TOUCH);
acc3c8d1 1957}
d3649f68 1958EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1959
1960/*
d3649f68 1961 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1962 *
d3649f68
CH
1963 * down_read(&mm->mmap_sem);
1964 * get_user_pages(tsk, mm, ..., pages, NULL);
1965 * up_read(&mm->mmap_sem);
1966 *
1967 * with:
1968 *
1969 * get_user_pages_unlocked(tsk, mm, ..., pages);
1970 *
1971 * It is functionally equivalent to get_user_pages_fast so
1972 * get_user_pages_fast should be used instead if specific gup_flags
1973 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1974 */
d3649f68
CH
1975long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1976 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1977{
1978 struct mm_struct *mm = current->mm;
d3649f68
CH
1979 int locked = 1;
1980 long ret;
acc3c8d1 1981
d3649f68
CH
1982 /*
1983 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1984 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1985 * vmas. As there are no users of this flag in this call we simply
1986 * disallow this option for now.
1987 */
1988 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1989 return -EINVAL;
acc3c8d1 1990
d3649f68
CH
1991 down_read(&mm->mmap_sem);
1992 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1993 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1
KS
1994 if (locked)
1995 up_read(&mm->mmap_sem);
d3649f68 1996 return ret;
4bbd4c77 1997}
d3649f68 1998EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
1999
2000/*
67a929e0 2001 * Fast GUP
2667f50e
SC
2002 *
2003 * get_user_pages_fast attempts to pin user pages by walking the page
2004 * tables directly and avoids taking locks. Thus the walker needs to be
2005 * protected from page table pages being freed from under it, and should
2006 * block any THP splits.
2007 *
2008 * One way to achieve this is to have the walker disable interrupts, and
2009 * rely on IPIs from the TLB flushing code blocking before the page table
2010 * pages are freed. This is unsuitable for architectures that do not need
2011 * to broadcast an IPI when invalidating TLBs.
2012 *
2013 * Another way to achieve this is to batch up page table containing pages
2014 * belonging to more than one mm_user, then rcu_sched a callback to free those
2015 * pages. Disabling interrupts will allow the fast_gup walker to both block
2016 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2017 * (which is a relatively rare event). The code below adopts this strategy.
2018 *
2019 * Before activating this code, please be aware that the following assumptions
2020 * are currently made:
2021 *
ff2e6d72 2022 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2023 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2024 *
2667f50e
SC
2025 * *) ptes can be read atomically by the architecture.
2026 *
2027 * *) access_ok is sufficient to validate userspace address ranges.
2028 *
2029 * The last two assumptions can be relaxed by the addition of helper functions.
2030 *
2031 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2032 */
67a929e0 2033#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0
JH
2034
2035static void put_compound_head(struct page *page, int refs, unsigned int flags)
2036{
47e29d32 2037 if (flags & FOLL_PIN) {
1970dc6f
JH
2038 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2039 refs);
2040
47e29d32
JH
2041 if (hpage_pincount_available(page))
2042 hpage_pincount_sub(page, refs);
2043 else
2044 refs *= GUP_PIN_COUNTING_BIAS;
2045 }
3faa52c0
JH
2046
2047 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2048 /*
2049 * Calling put_page() for each ref is unnecessarily slow. Only the last
2050 * ref needs a put_page().
2051 */
2052 if (refs > 1)
2053 page_ref_sub(page, refs - 1);
2054 put_page(page);
2055}
2056
39656e83 2057#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
3faa52c0 2058
39656e83
CH
2059/*
2060 * WARNING: only to be used in the get_user_pages_fast() implementation.
2061 *
2062 * With get_user_pages_fast(), we walk down the pagetables without taking any
2063 * locks. For this we would like to load the pointers atomically, but sometimes
2064 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2065 * we do have is the guarantee that a PTE will only either go from not present
2066 * to present, or present to not present or both -- it will not switch to a
2067 * completely different present page without a TLB flush in between; something
2068 * that we are blocking by holding interrupts off.
2069 *
2070 * Setting ptes from not present to present goes:
2071 *
2072 * ptep->pte_high = h;
2073 * smp_wmb();
2074 * ptep->pte_low = l;
2075 *
2076 * And present to not present goes:
2077 *
2078 * ptep->pte_low = 0;
2079 * smp_wmb();
2080 * ptep->pte_high = 0;
2081 *
2082 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2083 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2084 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2085 * picked up a changed pte high. We might have gotten rubbish values from
2086 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2087 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2088 * operates on present ptes we're safe.
2089 */
2090static inline pte_t gup_get_pte(pte_t *ptep)
2091{
2092 pte_t pte;
2667f50e 2093
39656e83
CH
2094 do {
2095 pte.pte_low = ptep->pte_low;
2096 smp_rmb();
2097 pte.pte_high = ptep->pte_high;
2098 smp_rmb();
2099 } while (unlikely(pte.pte_low != ptep->pte_low));
2100
2101 return pte;
2102}
2103#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2104/*
39656e83 2105 * We require that the PTE can be read atomically.
0005d20b
KS
2106 */
2107static inline pte_t gup_get_pte(pte_t *ptep)
2108{
2109 return READ_ONCE(*ptep);
2110}
39656e83 2111#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2112
790c7369 2113static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2114 unsigned int flags,
790c7369 2115 struct page **pages)
b59f65fa
KS
2116{
2117 while ((*nr) - nr_start) {
2118 struct page *page = pages[--(*nr)];
2119
2120 ClearPageReferenced(page);
3faa52c0
JH
2121 if (flags & FOLL_PIN)
2122 unpin_user_page(page);
2123 else
2124 put_page(page);
b59f65fa
KS
2125 }
2126}
2127
3010a5ea 2128#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2129static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2130 unsigned int flags, struct page **pages, int *nr)
2667f50e 2131{
b59f65fa
KS
2132 struct dev_pagemap *pgmap = NULL;
2133 int nr_start = *nr, ret = 0;
2667f50e 2134 pte_t *ptep, *ptem;
2667f50e
SC
2135
2136 ptem = ptep = pte_offset_map(&pmd, addr);
2137 do {
0005d20b 2138 pte_t pte = gup_get_pte(ptep);
7aef4172 2139 struct page *head, *page;
2667f50e
SC
2140
2141 /*
2142 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2143 * path using the pte_protnone check.
2667f50e 2144 */
e7884f8e
KS
2145 if (pte_protnone(pte))
2146 goto pte_unmap;
2147
b798bec4 2148 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2149 goto pte_unmap;
2150
b59f65fa 2151 if (pte_devmap(pte)) {
7af75561
IW
2152 if (unlikely(flags & FOLL_LONGTERM))
2153 goto pte_unmap;
2154
b59f65fa
KS
2155 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2156 if (unlikely(!pgmap)) {
3b78d834 2157 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2158 goto pte_unmap;
2159 }
2160 } else if (pte_special(pte))
2667f50e
SC
2161 goto pte_unmap;
2162
2163 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2164 page = pte_page(pte);
2165
3faa52c0 2166 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2167 if (!head)
2667f50e
SC
2168 goto pte_unmap;
2169
2170 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2171 put_compound_head(head, 1, flags);
2667f50e
SC
2172 goto pte_unmap;
2173 }
2174
7aef4172 2175 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2176
f28d4363
CI
2177 /*
2178 * We need to make the page accessible if and only if we are
2179 * going to access its content (the FOLL_PIN case). Please
2180 * see Documentation/core-api/pin_user_pages.rst for
2181 * details.
2182 */
2183 if (flags & FOLL_PIN) {
2184 ret = arch_make_page_accessible(page);
2185 if (ret) {
2186 unpin_user_page(page);
2187 goto pte_unmap;
2188 }
2189 }
e9348053 2190 SetPageReferenced(page);
2667f50e
SC
2191 pages[*nr] = page;
2192 (*nr)++;
2193
2194 } while (ptep++, addr += PAGE_SIZE, addr != end);
2195
2196 ret = 1;
2197
2198pte_unmap:
832d7aa0
CH
2199 if (pgmap)
2200 put_dev_pagemap(pgmap);
2667f50e
SC
2201 pte_unmap(ptem);
2202 return ret;
2203}
2204#else
2205
2206/*
2207 * If we can't determine whether or not a pte is special, then fail immediately
2208 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2209 * to be special.
2210 *
2211 * For a futex to be placed on a THP tail page, get_futex_key requires a
2212 * __get_user_pages_fast implementation that can pin pages. Thus it's still
2213 * useful to have gup_huge_pmd even if we can't operate on ptes.
2214 */
2215static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2216 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2217{
2218 return 0;
2219}
3010a5ea 2220#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2221
17596731 2222#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2223static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2224 unsigned long end, unsigned int flags,
2225 struct page **pages, int *nr)
b59f65fa
KS
2226{
2227 int nr_start = *nr;
2228 struct dev_pagemap *pgmap = NULL;
2229
2230 do {
2231 struct page *page = pfn_to_page(pfn);
2232
2233 pgmap = get_dev_pagemap(pfn, pgmap);
2234 if (unlikely(!pgmap)) {
3b78d834 2235 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2236 return 0;
2237 }
2238 SetPageReferenced(page);
2239 pages[*nr] = page;
3faa52c0
JH
2240 if (unlikely(!try_grab_page(page, flags))) {
2241 undo_dev_pagemap(nr, nr_start, flags, pages);
2242 return 0;
2243 }
b59f65fa
KS
2244 (*nr)++;
2245 pfn++;
2246 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2247
2248 if (pgmap)
2249 put_dev_pagemap(pgmap);
b59f65fa
KS
2250 return 1;
2251}
2252
a9b6de77 2253static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2254 unsigned long end, unsigned int flags,
2255 struct page **pages, int *nr)
b59f65fa
KS
2256{
2257 unsigned long fault_pfn;
a9b6de77
DW
2258 int nr_start = *nr;
2259
2260 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2261 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2262 return 0;
b59f65fa 2263
a9b6de77 2264 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2265 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2266 return 0;
2267 }
2268 return 1;
b59f65fa
KS
2269}
2270
a9b6de77 2271static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2272 unsigned long end, unsigned int flags,
2273 struct page **pages, int *nr)
b59f65fa
KS
2274{
2275 unsigned long fault_pfn;
a9b6de77
DW
2276 int nr_start = *nr;
2277
2278 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2279 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2280 return 0;
b59f65fa 2281
a9b6de77 2282 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2283 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2284 return 0;
2285 }
2286 return 1;
b59f65fa
KS
2287}
2288#else
a9b6de77 2289static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2290 unsigned long end, unsigned int flags,
2291 struct page **pages, int *nr)
b59f65fa
KS
2292{
2293 BUILD_BUG();
2294 return 0;
2295}
2296
a9b6de77 2297static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2298 unsigned long end, unsigned int flags,
2299 struct page **pages, int *nr)
b59f65fa
KS
2300{
2301 BUILD_BUG();
2302 return 0;
2303}
2304#endif
2305
a43e9820
JH
2306static int record_subpages(struct page *page, unsigned long addr,
2307 unsigned long end, struct page **pages)
2308{
2309 int nr;
2310
2311 for (nr = 0; addr != end; addr += PAGE_SIZE)
2312 pages[nr++] = page++;
2313
2314 return nr;
2315}
2316
cbd34da7
CH
2317#ifdef CONFIG_ARCH_HAS_HUGEPD
2318static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2319 unsigned long sz)
2320{
2321 unsigned long __boundary = (addr + sz) & ~(sz-1);
2322 return (__boundary - 1 < end - 1) ? __boundary : end;
2323}
2324
2325static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2326 unsigned long end, unsigned int flags,
2327 struct page **pages, int *nr)
cbd34da7
CH
2328{
2329 unsigned long pte_end;
2330 struct page *head, *page;
2331 pte_t pte;
2332 int refs;
2333
2334 pte_end = (addr + sz) & ~(sz-1);
2335 if (pte_end < end)
2336 end = pte_end;
2337
2338 pte = READ_ONCE(*ptep);
2339
0cd22afd 2340 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2341 return 0;
2342
2343 /* hugepages are never "special" */
2344 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2345
cbd34da7 2346 head = pte_page(pte);
cbd34da7 2347 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2348 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2349
3faa52c0 2350 head = try_grab_compound_head(head, refs, flags);
a43e9820 2351 if (!head)
cbd34da7 2352 return 0;
cbd34da7
CH
2353
2354 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2355 put_compound_head(head, refs, flags);
cbd34da7
CH
2356 return 0;
2357 }
2358
a43e9820 2359 *nr += refs;
520b4a44 2360 SetPageReferenced(head);
cbd34da7
CH
2361 return 1;
2362}
2363
2364static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2365 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2366 struct page **pages, int *nr)
2367{
2368 pte_t *ptep;
2369 unsigned long sz = 1UL << hugepd_shift(hugepd);
2370 unsigned long next;
2371
2372 ptep = hugepte_offset(hugepd, addr, pdshift);
2373 do {
2374 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2375 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2376 return 0;
2377 } while (ptep++, addr = next, addr != end);
2378
2379 return 1;
2380}
2381#else
2382static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2383 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2384 struct page **pages, int *nr)
2385{
2386 return 0;
2387}
2388#endif /* CONFIG_ARCH_HAS_HUGEPD */
2389
2667f50e 2390static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2391 unsigned long end, unsigned int flags,
2392 struct page **pages, int *nr)
2667f50e 2393{
ddc58f27 2394 struct page *head, *page;
2667f50e
SC
2395 int refs;
2396
b798bec4 2397 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2398 return 0;
2399
7af75561
IW
2400 if (pmd_devmap(orig)) {
2401 if (unlikely(flags & FOLL_LONGTERM))
2402 return 0;
86dfbed4
JH
2403 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2404 pages, nr);
7af75561 2405 }
b59f65fa 2406
d63206ee 2407 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2408 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2409
3faa52c0 2410 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2411 if (!head)
2667f50e 2412 return 0;
2667f50e
SC
2413
2414 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2415 put_compound_head(head, refs, flags);
2667f50e
SC
2416 return 0;
2417 }
2418
a43e9820 2419 *nr += refs;
e9348053 2420 SetPageReferenced(head);
2667f50e
SC
2421 return 1;
2422}
2423
2424static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2425 unsigned long end, unsigned int flags,
2426 struct page **pages, int *nr)
2667f50e 2427{
ddc58f27 2428 struct page *head, *page;
2667f50e
SC
2429 int refs;
2430
b798bec4 2431 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2432 return 0;
2433
7af75561
IW
2434 if (pud_devmap(orig)) {
2435 if (unlikely(flags & FOLL_LONGTERM))
2436 return 0;
86dfbed4
JH
2437 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2438 pages, nr);
7af75561 2439 }
b59f65fa 2440
d63206ee 2441 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2442 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2443
3faa52c0 2444 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2445 if (!head)
2667f50e 2446 return 0;
2667f50e
SC
2447
2448 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2449 put_compound_head(head, refs, flags);
2667f50e
SC
2450 return 0;
2451 }
2452
a43e9820 2453 *nr += refs;
e9348053 2454 SetPageReferenced(head);
2667f50e
SC
2455 return 1;
2456}
2457
f30c59e9 2458static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2459 unsigned long end, unsigned int flags,
f30c59e9
AK
2460 struct page **pages, int *nr)
2461{
2462 int refs;
ddc58f27 2463 struct page *head, *page;
f30c59e9 2464
b798bec4 2465 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2466 return 0;
2467
b59f65fa 2468 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2469
d63206ee 2470 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2471 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2472
3faa52c0 2473 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2474 if (!head)
f30c59e9 2475 return 0;
f30c59e9
AK
2476
2477 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2478 put_compound_head(head, refs, flags);
f30c59e9
AK
2479 return 0;
2480 }
2481
a43e9820 2482 *nr += refs;
e9348053 2483 SetPageReferenced(head);
f30c59e9
AK
2484 return 1;
2485}
2486
2667f50e 2487static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2488 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2489{
2490 unsigned long next;
2491 pmd_t *pmdp;
2492
2493 pmdp = pmd_offset(&pud, addr);
2494 do {
38c5ce93 2495 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2496
2497 next = pmd_addr_end(addr, end);
84c3fc4e 2498 if (!pmd_present(pmd))
2667f50e
SC
2499 return 0;
2500
414fd080
YZ
2501 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2502 pmd_devmap(pmd))) {
2667f50e
SC
2503 /*
2504 * NUMA hinting faults need to be handled in the GUP
2505 * slowpath for accounting purposes and so that they
2506 * can be serialised against THP migration.
2507 */
8a0516ed 2508 if (pmd_protnone(pmd))
2667f50e
SC
2509 return 0;
2510
b798bec4 2511 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2512 pages, nr))
2513 return 0;
2514
f30c59e9
AK
2515 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2516 /*
2517 * architecture have different format for hugetlbfs
2518 * pmd format and THP pmd format
2519 */
2520 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2521 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2522 return 0;
b798bec4 2523 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2524 return 0;
2667f50e
SC
2525 } while (pmdp++, addr = next, addr != end);
2526
2527 return 1;
2528}
2529
c2febafc 2530static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2531 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2532{
2533 unsigned long next;
2534 pud_t *pudp;
2535
c2febafc 2536 pudp = pud_offset(&p4d, addr);
2667f50e 2537 do {
e37c6982 2538 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2539
2540 next = pud_addr_end(addr, end);
15494520 2541 if (unlikely(!pud_present(pud)))
2667f50e 2542 return 0;
f30c59e9 2543 if (unlikely(pud_huge(pud))) {
b798bec4 2544 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2545 pages, nr))
2546 return 0;
2547 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2548 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2549 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2550 return 0;
b798bec4 2551 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2667f50e
SC
2552 return 0;
2553 } while (pudp++, addr = next, addr != end);
2554
2555 return 1;
2556}
2557
c2febafc 2558static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2559 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2560{
2561 unsigned long next;
2562 p4d_t *p4dp;
2563
2564 p4dp = p4d_offset(&pgd, addr);
2565 do {
2566 p4d_t p4d = READ_ONCE(*p4dp);
2567
2568 next = p4d_addr_end(addr, end);
2569 if (p4d_none(p4d))
2570 return 0;
2571 BUILD_BUG_ON(p4d_huge(p4d));
2572 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2573 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2574 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2575 return 0;
b798bec4 2576 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
c2febafc
KS
2577 return 0;
2578 } while (p4dp++, addr = next, addr != end);
2579
2580 return 1;
2581}
2582
5b65c467 2583static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2584 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2585{
2586 unsigned long next;
2587 pgd_t *pgdp;
2588
2589 pgdp = pgd_offset(current->mm, addr);
2590 do {
2591 pgd_t pgd = READ_ONCE(*pgdp);
2592
2593 next = pgd_addr_end(addr, end);
2594 if (pgd_none(pgd))
2595 return;
2596 if (unlikely(pgd_huge(pgd))) {
b798bec4 2597 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2598 pages, nr))
2599 return;
2600 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2601 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2602 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2603 return;
b798bec4 2604 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
5b65c467
KS
2605 return;
2606 } while (pgdp++, addr = next, addr != end);
2607}
050a9adc
CH
2608#else
2609static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2610 unsigned int flags, struct page **pages, int *nr)
2611{
2612}
2613#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2614
2615#ifndef gup_fast_permitted
2616/*
2617 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2618 * we need to fall back to the slow version:
2619 */
26f4c328 2620static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2621{
26f4c328 2622 return true;
5b65c467
KS
2623}
2624#endif
2625
2667f50e
SC
2626/*
2627 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
2628 * the regular GUP.
2629 * Note a difference with get_user_pages_fast: this always returns the
2630 * number of pages pinned, 0 if no pages were pinned.
050a9adc
CH
2631 *
2632 * If the architecture does not support this function, simply return with no
2633 * pages pinned.
2667f50e
SC
2634 */
2635int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2636 struct page **pages)
2637{
d4faa402 2638 unsigned long len, end;
5b65c467 2639 unsigned long flags;
4628b063 2640 int nr_pinned = 0;
94202f12
JH
2641 /*
2642 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2643 * because gup fast is always a "pin with a +1 page refcount" request.
2644 */
2645 unsigned int gup_flags = FOLL_GET;
2646
2647 if (write)
2648 gup_flags |= FOLL_WRITE;
2667f50e 2649
f455c854 2650 start = untagged_addr(start) & PAGE_MASK;
2667f50e
SC
2651 len = (unsigned long) nr_pages << PAGE_SHIFT;
2652 end = start + len;
2653
26f4c328
CH
2654 if (end <= start)
2655 return 0;
96d4f267 2656 if (unlikely(!access_ok((void __user *)start, len)))
2667f50e
SC
2657 return 0;
2658
2659 /*
2660 * Disable interrupts. We use the nested form as we can already have
2661 * interrupts disabled by get_futex_key.
2662 *
2663 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
2664 * freed from under us. See struct mmu_table_batch comments in
2665 * include/asm-generic/tlb.h for more details.
2667f50e
SC
2666 *
2667 * We do not adopt an rcu_read_lock(.) here as we also want to
2668 * block IPIs that come from THPs splitting.
2669 */
2670
050a9adc
CH
2671 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2672 gup_fast_permitted(start, end)) {
5b65c467 2673 local_irq_save(flags);
4628b063 2674 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
5b65c467
KS
2675 local_irq_restore(flags);
2676 }
2667f50e 2677
4628b063 2678 return nr_pinned;
2667f50e 2679}
050a9adc 2680EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2667f50e 2681
7af75561
IW
2682static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2683 unsigned int gup_flags, struct page **pages)
2684{
2685 int ret;
2686
2687 /*
2688 * FIXME: FOLL_LONGTERM does not work with
2689 * get_user_pages_unlocked() (see comments in that function)
2690 */
2691 if (gup_flags & FOLL_LONGTERM) {
2692 down_read(&current->mm->mmap_sem);
2693 ret = __gup_longterm_locked(current, current->mm,
2694 start, nr_pages,
2695 pages, NULL, gup_flags);
2696 up_read(&current->mm->mmap_sem);
2697 } else {
2698 ret = get_user_pages_unlocked(start, nr_pages,
2699 pages, gup_flags);
2700 }
2701
2702 return ret;
2703}
2704
eddb1c22
JH
2705static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2706 unsigned int gup_flags,
2707 struct page **pages)
2667f50e 2708{
5b65c467 2709 unsigned long addr, len, end;
4628b063 2710 int nr_pinned = 0, ret = 0;
2667f50e 2711
f4000fdf 2712 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
94202f12 2713 FOLL_FORCE | FOLL_PIN | FOLL_GET)))
817be129
CH
2714 return -EINVAL;
2715
f455c854 2716 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2717 addr = start;
2718 len = (unsigned long) nr_pages << PAGE_SHIFT;
2719 end = start + len;
2720
26f4c328 2721 if (end <= start)
c61611f7 2722 return 0;
96d4f267 2723 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2724 return -EFAULT;
73e10a61 2725
050a9adc
CH
2726 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2727 gup_fast_permitted(start, end)) {
5b65c467 2728 local_irq_disable();
4628b063 2729 gup_pgd_range(addr, end, gup_flags, pages, &nr_pinned);
5b65c467 2730 local_irq_enable();
4628b063 2731 ret = nr_pinned;
73e10a61 2732 }
2667f50e 2733
4628b063 2734 if (nr_pinned < nr_pages) {
2667f50e 2735 /* Try to get the remaining pages with get_user_pages */
4628b063
PL
2736 start += nr_pinned << PAGE_SHIFT;
2737 pages += nr_pinned;
2667f50e 2738
4628b063 2739 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
7af75561 2740 gup_flags, pages);
2667f50e
SC
2741
2742 /* Have to be a bit careful with return values */
4628b063 2743 if (nr_pinned > 0) {
2667f50e 2744 if (ret < 0)
4628b063 2745 ret = nr_pinned;
2667f50e 2746 else
4628b063 2747 ret += nr_pinned;
2667f50e
SC
2748 }
2749 }
2750
2751 return ret;
2752}
eddb1c22
JH
2753
2754/**
2755 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2756 * @start: starting user address
2757 * @nr_pages: number of pages from start to pin
2758 * @gup_flags: flags modifying pin behaviour
2759 * @pages: array that receives pointers to the pages pinned.
2760 * Should be at least nr_pages long.
eddb1c22
JH
2761 *
2762 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2763 * If not successful, it will fall back to taking the lock and
2764 * calling get_user_pages().
2765 *
2766 * Returns number of pages pinned. This may be fewer than the number requested.
2767 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2768 * -errno.
2769 */
2770int get_user_pages_fast(unsigned long start, int nr_pages,
2771 unsigned int gup_flags, struct page **pages)
2772{
2773 /*
2774 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2775 * never directly by the caller, so enforce that:
2776 */
2777 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2778 return -EINVAL;
2779
94202f12
JH
2780 /*
2781 * The caller may or may not have explicitly set FOLL_GET; either way is
2782 * OK. However, internally (within mm/gup.c), gup fast variants must set
2783 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2784 * request.
2785 */
2786 gup_flags |= FOLL_GET;
eddb1c22
JH
2787 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2788}
050a9adc 2789EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2790
2791/**
2792 * pin_user_pages_fast() - pin user pages in memory without taking locks
2793 *
3faa52c0
JH
2794 * @start: starting user address
2795 * @nr_pages: number of pages from start to pin
2796 * @gup_flags: flags modifying pin behaviour
2797 * @pages: array that receives pointers to the pages pinned.
2798 * Should be at least nr_pages long.
2799 *
2800 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2801 * get_user_pages_fast() for documentation on the function arguments, because
2802 * the arguments here are identical.
2803 *
2804 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2805 * see Documentation/vm/pin_user_pages.rst for further details.
eddb1c22
JH
2806 *
2807 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2808 * is NOT intended for Case 2 (RDMA: long-term pins).
2809 */
2810int pin_user_pages_fast(unsigned long start, int nr_pages,
2811 unsigned int gup_flags, struct page **pages)
2812{
3faa52c0
JH
2813 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2814 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2815 return -EINVAL;
2816
2817 gup_flags |= FOLL_PIN;
2818 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2819}
2820EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2821
2822/**
2823 * pin_user_pages_remote() - pin pages of a remote process (task != current)
2824 *
3faa52c0
JH
2825 * @tsk: the task_struct to use for page fault accounting, or
2826 * NULL if faults are not to be recorded.
2827 * @mm: mm_struct of target mm
2828 * @start: starting user address
2829 * @nr_pages: number of pages from start to pin
2830 * @gup_flags: flags modifying lookup behaviour
2831 * @pages: array that receives pointers to the pages pinned.
2832 * Should be at least nr_pages long. Or NULL, if caller
2833 * only intends to ensure the pages are faulted in.
2834 * @vmas: array of pointers to vmas corresponding to each page.
2835 * Or NULL if the caller does not require them.
2836 * @locked: pointer to lock flag indicating whether lock is held and
2837 * subsequently whether VM_FAULT_RETRY functionality can be
2838 * utilised. Lock must initially be held.
2839 *
2840 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2841 * get_user_pages_remote() for documentation on the function arguments, because
2842 * the arguments here are identical.
2843 *
2844 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2845 * see Documentation/vm/pin_user_pages.rst for details.
eddb1c22
JH
2846 *
2847 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2848 * is NOT intended for Case 2 (RDMA: long-term pins).
2849 */
2850long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
2851 unsigned long start, unsigned long nr_pages,
2852 unsigned int gup_flags, struct page **pages,
2853 struct vm_area_struct **vmas, int *locked)
2854{
3faa52c0
JH
2855 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2856 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2857 return -EINVAL;
2858
2859 gup_flags |= FOLL_PIN;
2860 return __get_user_pages_remote(tsk, mm, start, nr_pages, gup_flags,
2861 pages, vmas, locked);
eddb1c22
JH
2862}
2863EXPORT_SYMBOL(pin_user_pages_remote);
2864
2865/**
2866 * pin_user_pages() - pin user pages in memory for use by other devices
2867 *
3faa52c0
JH
2868 * @start: starting user address
2869 * @nr_pages: number of pages from start to pin
2870 * @gup_flags: flags modifying lookup behaviour
2871 * @pages: array that receives pointers to the pages pinned.
2872 * Should be at least nr_pages long. Or NULL, if caller
2873 * only intends to ensure the pages are faulted in.
2874 * @vmas: array of pointers to vmas corresponding to each page.
2875 * Or NULL if the caller does not require them.
2876 *
2877 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2878 * FOLL_PIN is set.
2879 *
2880 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
2881 * see Documentation/vm/pin_user_pages.rst for details.
eddb1c22
JH
2882 *
2883 * This is intended for Case 1 (DIO) in Documentation/vm/pin_user_pages.rst. It
2884 * is NOT intended for Case 2 (RDMA: long-term pins).
2885 */
2886long pin_user_pages(unsigned long start, unsigned long nr_pages,
2887 unsigned int gup_flags, struct page **pages,
2888 struct vm_area_struct **vmas)
2889{
3faa52c0
JH
2890 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2891 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2892 return -EINVAL;
2893
2894 gup_flags |= FOLL_PIN;
2895 return __gup_longterm_locked(current, current->mm, start, nr_pages,
2896 pages, vmas, gup_flags);
eddb1c22
JH
2897}
2898EXPORT_SYMBOL(pin_user_pages);