Merge remote-tracking branch 'riscv/riscv-fix-32bit' into fixes
[linux-block.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
47e29d32
JH
32static void hpage_pincount_add(struct page *page, int refs)
33{
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38}
39
40static void hpage_pincount_sub(struct page *page, int refs)
41{
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46}
47
c24d3732
JH
48/* Equivalent to calling put_page() @refs times. */
49static void put_page_refs(struct page *page, int refs)
50{
51#ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 return;
54#endif
55
56 /*
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
59 */
60 if (refs > 1)
61 page_ref_sub(page, refs - 1);
62 put_page(page);
63}
64
a707cdd5
JH
65/*
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
68 */
69static inline struct page *try_get_compound_head(struct page *page, int refs)
70{
71 struct page *head = compound_head(page);
72
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 return NULL;
75 if (unlikely(!page_cache_add_speculative(head, refs)))
76 return NULL;
c24d3732
JH
77
78 /*
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
85 * belong together.
86 */
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
89 return NULL;
90 }
91
a707cdd5
JH
92 return head;
93}
94
3faa52c0
JH
95/*
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
98 *
99 * "grab" names in this file mean, "look at flags to decide whether to use
100 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
101 *
102 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
103 * same time. (That's true throughout the get_user_pages*() and
104 * pin_user_pages*() APIs.) Cases:
105 *
106 * FOLL_GET: page's refcount will be incremented by 1.
107 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
108 *
109 * Return: head page (with refcount appropriately incremented) for success, or
110 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
111 * considered failure, and furthermore, a likely bug in the caller, so a warning
112 * is also emitted.
113 */
0fa5bc40
JM
114__maybe_unused struct page *try_grab_compound_head(struct page *page,
115 int refs, unsigned int flags)
3faa52c0
JH
116{
117 if (flags & FOLL_GET)
118 return try_get_compound_head(page, refs);
119 else if (flags & FOLL_PIN) {
1970dc6f
JH
120 int orig_refs = refs;
121
df3a0a21 122 /*
d1e153fe
PT
123 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
124 * right zone, so fail and let the caller fall back to the slow
125 * path.
df3a0a21 126 */
d1e153fe
PT
127 if (unlikely((flags & FOLL_LONGTERM) &&
128 !is_pinnable_page(page)))
df3a0a21
PL
129 return NULL;
130
c24d3732
JH
131 /*
132 * CAUTION: Don't use compound_head() on the page before this
133 * point, the result won't be stable.
134 */
135 page = try_get_compound_head(page, refs);
136 if (!page)
137 return NULL;
138
47e29d32
JH
139 /*
140 * When pinning a compound page of order > 1 (which is what
141 * hpage_pincount_available() checks for), use an exact count to
142 * track it, via hpage_pincount_add/_sub().
143 *
144 * However, be sure to *also* increment the normal page refcount
145 * field at least once, so that the page really is pinned.
146 */
47e29d32
JH
147 if (hpage_pincount_available(page))
148 hpage_pincount_add(page, refs);
c24d3732
JH
149 else
150 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
47e29d32 151
1970dc6f
JH
152 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
153 orig_refs);
154
47e29d32 155 return page;
3faa52c0
JH
156 }
157
158 WARN_ON_ONCE(1);
159 return NULL;
160}
161
4509b42c
JG
162static void put_compound_head(struct page *page, int refs, unsigned int flags)
163{
164 if (flags & FOLL_PIN) {
165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
166 refs);
167
168 if (hpage_pincount_available(page))
169 hpage_pincount_sub(page, refs);
170 else
171 refs *= GUP_PIN_COUNTING_BIAS;
172 }
173
c24d3732 174 put_page_refs(page, refs);
4509b42c
JG
175}
176
3faa52c0
JH
177/**
178 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
179 *
180 * This might not do anything at all, depending on the flags argument.
181 *
182 * "grab" names in this file mean, "look at flags to decide whether to use
183 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
184 *
185 * @page: pointer to page to be grabbed
186 * @flags: gup flags: these are the FOLL_* flag values.
187 *
188 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
189 * time. Cases:
190 *
191 * FOLL_GET: page's refcount will be incremented by 1.
192 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
193 *
194 * Return: true for success, or if no action was required (if neither FOLL_PIN
195 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
196 * FOLL_PIN was set, but the page could not be grabbed.
197 */
198bool __must_check try_grab_page(struct page *page, unsigned int flags)
199{
200 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
201
202 if (flags & FOLL_GET)
203 return try_get_page(page);
204 else if (flags & FOLL_PIN) {
47e29d32
JH
205 int refs = 1;
206
3faa52c0
JH
207 page = compound_head(page);
208
209 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
210 return false;
211
47e29d32
JH
212 if (hpage_pincount_available(page))
213 hpage_pincount_add(page, 1);
214 else
215 refs = GUP_PIN_COUNTING_BIAS;
216
217 /*
218 * Similar to try_grab_compound_head(): even if using the
219 * hpage_pincount_add/_sub() routines, be sure to
220 * *also* increment the normal page refcount field at least
221 * once, so that the page really is pinned.
222 */
223 page_ref_add(page, refs);
1970dc6f
JH
224
225 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
226 }
227
228 return true;
229}
230
3faa52c0
JH
231/**
232 * unpin_user_page() - release a dma-pinned page
233 * @page: pointer to page to be released
234 *
235 * Pages that were pinned via pin_user_pages*() must be released via either
236 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
237 * that such pages can be separately tracked and uniquely handled. In
238 * particular, interactions with RDMA and filesystems need special handling.
239 */
240void unpin_user_page(struct page *page)
241{
4509b42c 242 put_compound_head(compound_head(page), 1, FOLL_PIN);
3faa52c0
JH
243}
244EXPORT_SYMBOL(unpin_user_page);
245
458a4f78
JM
246static inline void compound_range_next(unsigned long i, unsigned long npages,
247 struct page **list, struct page **head,
248 unsigned int *ntails)
249{
250 struct page *next, *page;
251 unsigned int nr = 1;
252
253 if (i >= npages)
254 return;
255
256 next = *list + i;
257 page = compound_head(next);
258 if (PageCompound(page) && compound_order(page) >= 1)
259 nr = min_t(unsigned int,
260 page + compound_nr(page) - next, npages - i);
261
262 *head = page;
263 *ntails = nr;
264}
265
266#define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
267 for (__i = 0, \
268 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
269 __i < __npages; __i += __ntails, \
270 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
271
8745d7f6
JM
272static inline void compound_next(unsigned long i, unsigned long npages,
273 struct page **list, struct page **head,
274 unsigned int *ntails)
275{
276 struct page *page;
277 unsigned int nr;
278
279 if (i >= npages)
280 return;
281
282 page = compound_head(list[i]);
283 for (nr = i + 1; nr < npages; nr++) {
284 if (compound_head(list[nr]) != page)
285 break;
286 }
287
288 *head = page;
289 *ntails = nr - i;
290}
291
292#define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
293 for (__i = 0, \
294 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
295 __i < __npages; __i += __ntails, \
296 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
297
fc1d8e7c 298/**
f1f6a7dd 299 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 300 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 301 * @npages: number of pages in the @pages array.
2d15eb31 302 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
303 *
304 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
305 * variants called on that page.
306 *
307 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 308 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
309 * listed as clean. In any case, releases all pages using unpin_user_page(),
310 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 311 *
f1f6a7dd 312 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 313 *
2d15eb31 314 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
315 * required, then the caller should a) verify that this is really correct,
316 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 317 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
318 *
319 */
f1f6a7dd
JH
320void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
321 bool make_dirty)
fc1d8e7c 322{
2d15eb31 323 unsigned long index;
31b912de
JM
324 struct page *head;
325 unsigned int ntails;
2d15eb31 326
327 if (!make_dirty) {
f1f6a7dd 328 unpin_user_pages(pages, npages);
2d15eb31 329 return;
330 }
331
31b912de 332 for_each_compound_head(index, pages, npages, head, ntails) {
2d15eb31 333 /*
334 * Checking PageDirty at this point may race with
335 * clear_page_dirty_for_io(), but that's OK. Two key
336 * cases:
337 *
338 * 1) This code sees the page as already dirty, so it
339 * skips the call to set_page_dirty(). That could happen
340 * because clear_page_dirty_for_io() called
341 * page_mkclean(), followed by set_page_dirty().
342 * However, now the page is going to get written back,
343 * which meets the original intention of setting it
344 * dirty, so all is well: clear_page_dirty_for_io() goes
345 * on to call TestClearPageDirty(), and write the page
346 * back.
347 *
348 * 2) This code sees the page as clean, so it calls
349 * set_page_dirty(). The page stays dirty, despite being
350 * written back, so it gets written back again in the
351 * next writeback cycle. This is harmless.
352 */
31b912de
JM
353 if (!PageDirty(head))
354 set_page_dirty_lock(head);
355 put_compound_head(head, ntails, FOLL_PIN);
2d15eb31 356 }
fc1d8e7c 357}
f1f6a7dd 358EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 359
458a4f78
JM
360/**
361 * unpin_user_page_range_dirty_lock() - release and optionally dirty
362 * gup-pinned page range
363 *
364 * @page: the starting page of a range maybe marked dirty, and definitely released.
365 * @npages: number of consecutive pages to release.
366 * @make_dirty: whether to mark the pages dirty
367 *
368 * "gup-pinned page range" refers to a range of pages that has had one of the
369 * pin_user_pages() variants called on that page.
370 *
371 * For the page ranges defined by [page .. page+npages], make that range (or
372 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
373 * page range was previously listed as clean.
374 *
375 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
376 * required, then the caller should a) verify that this is really correct,
377 * because _lock() is usually required, and b) hand code it:
378 * set_page_dirty_lock(), unpin_user_page().
379 *
380 */
381void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
382 bool make_dirty)
383{
384 unsigned long index;
385 struct page *head;
386 unsigned int ntails;
387
388 for_each_compound_range(index, &page, npages, head, ntails) {
389 if (make_dirty && !PageDirty(head))
390 set_page_dirty_lock(head);
391 put_compound_head(head, ntails, FOLL_PIN);
392 }
393}
394EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
395
fc1d8e7c 396/**
f1f6a7dd 397 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
398 * @pages: array of pages to be marked dirty and released.
399 * @npages: number of pages in the @pages array.
400 *
f1f6a7dd 401 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 402 *
f1f6a7dd 403 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 404 */
f1f6a7dd 405void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
406{
407 unsigned long index;
31b912de
JM
408 struct page *head;
409 unsigned int ntails;
fc1d8e7c 410
146608bb
JH
411 /*
412 * If this WARN_ON() fires, then the system *might* be leaking pages (by
413 * leaving them pinned), but probably not. More likely, gup/pup returned
414 * a hard -ERRNO error to the caller, who erroneously passed it here.
415 */
416 if (WARN_ON(IS_ERR_VALUE(npages)))
417 return;
31b912de
JM
418
419 for_each_compound_head(index, pages, npages, head, ntails)
420 put_compound_head(head, ntails, FOLL_PIN);
fc1d8e7c 421}
f1f6a7dd 422EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 423
a458b76a
AA
424/*
425 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
426 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
427 * cache bouncing on large SMP machines for concurrent pinned gups.
428 */
429static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
430{
431 if (!test_bit(MMF_HAS_PINNED, mm_flags))
432 set_bit(MMF_HAS_PINNED, mm_flags);
433}
434
050a9adc 435#ifdef CONFIG_MMU
69e68b4f
KS
436static struct page *no_page_table(struct vm_area_struct *vma,
437 unsigned int flags)
4bbd4c77 438{
69e68b4f
KS
439 /*
440 * When core dumping an enormous anonymous area that nobody
441 * has touched so far, we don't want to allocate unnecessary pages or
442 * page tables. Return error instead of NULL to skip handle_mm_fault,
443 * then get_dump_page() will return NULL to leave a hole in the dump.
444 * But we can only make this optimization where a hole would surely
445 * be zero-filled if handle_mm_fault() actually did handle it.
446 */
a0137f16
AK
447 if ((flags & FOLL_DUMP) &&
448 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
449 return ERR_PTR(-EFAULT);
450 return NULL;
451}
4bbd4c77 452
1027e443
KS
453static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
454 pte_t *pte, unsigned int flags)
455{
456 /* No page to get reference */
457 if (flags & FOLL_GET)
458 return -EFAULT;
459
460 if (flags & FOLL_TOUCH) {
461 pte_t entry = *pte;
462
463 if (flags & FOLL_WRITE)
464 entry = pte_mkdirty(entry);
465 entry = pte_mkyoung(entry);
466
467 if (!pte_same(*pte, entry)) {
468 set_pte_at(vma->vm_mm, address, pte, entry);
469 update_mmu_cache(vma, address, pte);
470 }
471 }
472
473 /* Proper page table entry exists, but no corresponding struct page */
474 return -EEXIST;
475}
476
19be0eaf 477/*
a308c71b
PX
478 * FOLL_FORCE can write to even unwritable pte's, but only
479 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
480 */
481static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
482{
a308c71b
PX
483 return pte_write(pte) ||
484 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
485}
486
69e68b4f 487static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
488 unsigned long address, pmd_t *pmd, unsigned int flags,
489 struct dev_pagemap **pgmap)
69e68b4f
KS
490{
491 struct mm_struct *mm = vma->vm_mm;
492 struct page *page;
493 spinlock_t *ptl;
494 pte_t *ptep, pte;
f28d4363 495 int ret;
4bbd4c77 496
eddb1c22
JH
497 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
498 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
499 (FOLL_PIN | FOLL_GET)))
500 return ERR_PTR(-EINVAL);
69e68b4f 501retry:
4bbd4c77 502 if (unlikely(pmd_bad(*pmd)))
69e68b4f 503 return no_page_table(vma, flags);
4bbd4c77
KS
504
505 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
506 pte = *ptep;
507 if (!pte_present(pte)) {
508 swp_entry_t entry;
509 /*
510 * KSM's break_ksm() relies upon recognizing a ksm page
511 * even while it is being migrated, so for that case we
512 * need migration_entry_wait().
513 */
514 if (likely(!(flags & FOLL_MIGRATION)))
515 goto no_page;
0661a336 516 if (pte_none(pte))
4bbd4c77
KS
517 goto no_page;
518 entry = pte_to_swp_entry(pte);
519 if (!is_migration_entry(entry))
520 goto no_page;
521 pte_unmap_unlock(ptep, ptl);
522 migration_entry_wait(mm, pmd, address);
69e68b4f 523 goto retry;
4bbd4c77 524 }
8a0516ed 525 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 526 goto no_page;
19be0eaf 527 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
528 pte_unmap_unlock(ptep, ptl);
529 return NULL;
530 }
4bbd4c77
KS
531
532 page = vm_normal_page(vma, address, pte);
3faa52c0 533 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 534 /*
3faa52c0
JH
535 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
536 * case since they are only valid while holding the pgmap
537 * reference.
3565fce3 538 */
df06b37f
KB
539 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
540 if (*pgmap)
3565fce3
DW
541 page = pte_page(pte);
542 else
543 goto no_page;
544 } else if (unlikely(!page)) {
1027e443
KS
545 if (flags & FOLL_DUMP) {
546 /* Avoid special (like zero) pages in core dumps */
547 page = ERR_PTR(-EFAULT);
548 goto out;
549 }
550
551 if (is_zero_pfn(pte_pfn(pte))) {
552 page = pte_page(pte);
553 } else {
1027e443
KS
554 ret = follow_pfn_pte(vma, address, ptep, flags);
555 page = ERR_PTR(ret);
556 goto out;
557 }
4bbd4c77
KS
558 }
559
3faa52c0
JH
560 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
561 if (unlikely(!try_grab_page(page, flags))) {
562 page = ERR_PTR(-ENOMEM);
563 goto out;
8fde12ca 564 }
f28d4363
CI
565 /*
566 * We need to make the page accessible if and only if we are going
567 * to access its content (the FOLL_PIN case). Please see
568 * Documentation/core-api/pin_user_pages.rst for details.
569 */
570 if (flags & FOLL_PIN) {
571 ret = arch_make_page_accessible(page);
572 if (ret) {
573 unpin_user_page(page);
574 page = ERR_PTR(ret);
575 goto out;
576 }
577 }
4bbd4c77
KS
578 if (flags & FOLL_TOUCH) {
579 if ((flags & FOLL_WRITE) &&
580 !pte_dirty(pte) && !PageDirty(page))
581 set_page_dirty(page);
582 /*
583 * pte_mkyoung() would be more correct here, but atomic care
584 * is needed to avoid losing the dirty bit: it is easier to use
585 * mark_page_accessed().
586 */
587 mark_page_accessed(page);
588 }
de60f5f1 589 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
590 /* Do not mlock pte-mapped THP */
591 if (PageTransCompound(page))
592 goto out;
593
4bbd4c77
KS
594 /*
595 * The preliminary mapping check is mainly to avoid the
596 * pointless overhead of lock_page on the ZERO_PAGE
597 * which might bounce very badly if there is contention.
598 *
599 * If the page is already locked, we don't need to
600 * handle it now - vmscan will handle it later if and
601 * when it attempts to reclaim the page.
602 */
603 if (page->mapping && trylock_page(page)) {
604 lru_add_drain(); /* push cached pages to LRU */
605 /*
606 * Because we lock page here, and migration is
607 * blocked by the pte's page reference, and we
608 * know the page is still mapped, we don't even
609 * need to check for file-cache page truncation.
610 */
611 mlock_vma_page(page);
612 unlock_page(page);
613 }
614 }
1027e443 615out:
4bbd4c77 616 pte_unmap_unlock(ptep, ptl);
4bbd4c77 617 return page;
4bbd4c77
KS
618no_page:
619 pte_unmap_unlock(ptep, ptl);
620 if (!pte_none(pte))
69e68b4f
KS
621 return NULL;
622 return no_page_table(vma, flags);
623}
624
080dbb61
AK
625static struct page *follow_pmd_mask(struct vm_area_struct *vma,
626 unsigned long address, pud_t *pudp,
df06b37f
KB
627 unsigned int flags,
628 struct follow_page_context *ctx)
69e68b4f 629{
68827280 630 pmd_t *pmd, pmdval;
69e68b4f
KS
631 spinlock_t *ptl;
632 struct page *page;
633 struct mm_struct *mm = vma->vm_mm;
634
080dbb61 635 pmd = pmd_offset(pudp, address);
68827280
HY
636 /*
637 * The READ_ONCE() will stabilize the pmdval in a register or
638 * on the stack so that it will stop changing under the code.
639 */
640 pmdval = READ_ONCE(*pmd);
641 if (pmd_none(pmdval))
69e68b4f 642 return no_page_table(vma, flags);
be9d3045 643 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
644 page = follow_huge_pmd(mm, address, pmd, flags);
645 if (page)
646 return page;
647 return no_page_table(vma, flags);
69e68b4f 648 }
68827280 649 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 650 page = follow_huge_pd(vma, address,
68827280 651 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
652 PMD_SHIFT);
653 if (page)
654 return page;
655 return no_page_table(vma, flags);
656 }
84c3fc4e 657retry:
68827280 658 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
659 if (likely(!(flags & FOLL_MIGRATION)))
660 return no_page_table(vma, flags);
661 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
662 !is_pmd_migration_entry(pmdval));
663 if (is_pmd_migration_entry(pmdval))
84c3fc4e 664 pmd_migration_entry_wait(mm, pmd);
68827280
HY
665 pmdval = READ_ONCE(*pmd);
666 /*
667 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 668 * mmap_lock is held in read mode
68827280
HY
669 */
670 if (pmd_none(pmdval))
671 return no_page_table(vma, flags);
84c3fc4e
ZY
672 goto retry;
673 }
68827280 674 if (pmd_devmap(pmdval)) {
3565fce3 675 ptl = pmd_lock(mm, pmd);
df06b37f 676 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
677 spin_unlock(ptl);
678 if (page)
679 return page;
680 }
68827280 681 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 682 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 683
68827280 684 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
685 return no_page_table(vma, flags);
686
84c3fc4e 687retry_locked:
6742d293 688 ptl = pmd_lock(mm, pmd);
68827280
HY
689 if (unlikely(pmd_none(*pmd))) {
690 spin_unlock(ptl);
691 return no_page_table(vma, flags);
692 }
84c3fc4e
ZY
693 if (unlikely(!pmd_present(*pmd))) {
694 spin_unlock(ptl);
695 if (likely(!(flags & FOLL_MIGRATION)))
696 return no_page_table(vma, flags);
697 pmd_migration_entry_wait(mm, pmd);
698 goto retry_locked;
699 }
6742d293
KS
700 if (unlikely(!pmd_trans_huge(*pmd))) {
701 spin_unlock(ptl);
df06b37f 702 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 703 }
4066c119 704 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
705 int ret;
706 page = pmd_page(*pmd);
707 if (is_huge_zero_page(page)) {
708 spin_unlock(ptl);
709 ret = 0;
78ddc534 710 split_huge_pmd(vma, pmd, address);
337d9abf
NH
711 if (pmd_trans_unstable(pmd))
712 ret = -EBUSY;
4066c119 713 } else {
bfe7b00d
SL
714 spin_unlock(ptl);
715 split_huge_pmd(vma, pmd, address);
716 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
717 }
718
719 return ret ? ERR_PTR(ret) :
df06b37f 720 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 721 }
6742d293
KS
722 page = follow_trans_huge_pmd(vma, address, pmd, flags);
723 spin_unlock(ptl);
df06b37f 724 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 725 return page;
4bbd4c77
KS
726}
727
080dbb61
AK
728static struct page *follow_pud_mask(struct vm_area_struct *vma,
729 unsigned long address, p4d_t *p4dp,
df06b37f
KB
730 unsigned int flags,
731 struct follow_page_context *ctx)
080dbb61
AK
732{
733 pud_t *pud;
734 spinlock_t *ptl;
735 struct page *page;
736 struct mm_struct *mm = vma->vm_mm;
737
738 pud = pud_offset(p4dp, address);
739 if (pud_none(*pud))
740 return no_page_table(vma, flags);
be9d3045 741 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
742 page = follow_huge_pud(mm, address, pud, flags);
743 if (page)
744 return page;
745 return no_page_table(vma, flags);
746 }
4dc71451
AK
747 if (is_hugepd(__hugepd(pud_val(*pud)))) {
748 page = follow_huge_pd(vma, address,
749 __hugepd(pud_val(*pud)), flags,
750 PUD_SHIFT);
751 if (page)
752 return page;
753 return no_page_table(vma, flags);
754 }
080dbb61
AK
755 if (pud_devmap(*pud)) {
756 ptl = pud_lock(mm, pud);
df06b37f 757 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
758 spin_unlock(ptl);
759 if (page)
760 return page;
761 }
762 if (unlikely(pud_bad(*pud)))
763 return no_page_table(vma, flags);
764
df06b37f 765 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
766}
767
080dbb61
AK
768static struct page *follow_p4d_mask(struct vm_area_struct *vma,
769 unsigned long address, pgd_t *pgdp,
df06b37f
KB
770 unsigned int flags,
771 struct follow_page_context *ctx)
080dbb61
AK
772{
773 p4d_t *p4d;
4dc71451 774 struct page *page;
080dbb61
AK
775
776 p4d = p4d_offset(pgdp, address);
777 if (p4d_none(*p4d))
778 return no_page_table(vma, flags);
779 BUILD_BUG_ON(p4d_huge(*p4d));
780 if (unlikely(p4d_bad(*p4d)))
781 return no_page_table(vma, flags);
782
4dc71451
AK
783 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
784 page = follow_huge_pd(vma, address,
785 __hugepd(p4d_val(*p4d)), flags,
786 P4D_SHIFT);
787 if (page)
788 return page;
789 return no_page_table(vma, flags);
790 }
df06b37f 791 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
792}
793
794/**
795 * follow_page_mask - look up a page descriptor from a user-virtual address
796 * @vma: vm_area_struct mapping @address
797 * @address: virtual address to look up
798 * @flags: flags modifying lookup behaviour
78179556
MR
799 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
800 * pointer to output page_mask
080dbb61
AK
801 *
802 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
803 *
78179556
MR
804 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
805 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
806 *
807 * On output, the @ctx->page_mask is set according to the size of the page.
808 *
809 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
810 * an error pointer if there is a mapping to something not represented
811 * by a page descriptor (see also vm_normal_page()).
812 */
a7030aea 813static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 814 unsigned long address, unsigned int flags,
df06b37f 815 struct follow_page_context *ctx)
080dbb61
AK
816{
817 pgd_t *pgd;
818 struct page *page;
819 struct mm_struct *mm = vma->vm_mm;
820
df06b37f 821 ctx->page_mask = 0;
080dbb61
AK
822
823 /* make this handle hugepd */
824 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
825 if (!IS_ERR(page)) {
3faa52c0 826 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
827 return page;
828 }
829
830 pgd = pgd_offset(mm, address);
831
832 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
833 return no_page_table(vma, flags);
834
faaa5b62
AK
835 if (pgd_huge(*pgd)) {
836 page = follow_huge_pgd(mm, address, pgd, flags);
837 if (page)
838 return page;
839 return no_page_table(vma, flags);
840 }
4dc71451
AK
841 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
842 page = follow_huge_pd(vma, address,
843 __hugepd(pgd_val(*pgd)), flags,
844 PGDIR_SHIFT);
845 if (page)
846 return page;
847 return no_page_table(vma, flags);
848 }
faaa5b62 849
df06b37f
KB
850 return follow_p4d_mask(vma, address, pgd, flags, ctx);
851}
852
853struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
854 unsigned int foll_flags)
855{
856 struct follow_page_context ctx = { NULL };
857 struct page *page;
858
1507f512
MR
859 if (vma_is_secretmem(vma))
860 return NULL;
861
df06b37f
KB
862 page = follow_page_mask(vma, address, foll_flags, &ctx);
863 if (ctx.pgmap)
864 put_dev_pagemap(ctx.pgmap);
865 return page;
080dbb61
AK
866}
867
f2b495ca
KS
868static int get_gate_page(struct mm_struct *mm, unsigned long address,
869 unsigned int gup_flags, struct vm_area_struct **vma,
870 struct page **page)
871{
872 pgd_t *pgd;
c2febafc 873 p4d_t *p4d;
f2b495ca
KS
874 pud_t *pud;
875 pmd_t *pmd;
876 pte_t *pte;
877 int ret = -EFAULT;
878
879 /* user gate pages are read-only */
880 if (gup_flags & FOLL_WRITE)
881 return -EFAULT;
882 if (address > TASK_SIZE)
883 pgd = pgd_offset_k(address);
884 else
885 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
886 if (pgd_none(*pgd))
887 return -EFAULT;
c2febafc 888 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
889 if (p4d_none(*p4d))
890 return -EFAULT;
c2febafc 891 pud = pud_offset(p4d, address);
b5d1c39f
AL
892 if (pud_none(*pud))
893 return -EFAULT;
f2b495ca 894 pmd = pmd_offset(pud, address);
84c3fc4e 895 if (!pmd_present(*pmd))
f2b495ca
KS
896 return -EFAULT;
897 VM_BUG_ON(pmd_trans_huge(*pmd));
898 pte = pte_offset_map(pmd, address);
899 if (pte_none(*pte))
900 goto unmap;
901 *vma = get_gate_vma(mm);
902 if (!page)
903 goto out;
904 *page = vm_normal_page(*vma, address, *pte);
905 if (!*page) {
906 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
907 goto unmap;
908 *page = pte_page(*pte);
909 }
9fa2dd94 910 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
911 ret = -ENOMEM;
912 goto unmap;
913 }
f2b495ca
KS
914out:
915 ret = 0;
916unmap:
917 pte_unmap(pte);
918 return ret;
919}
920
9a95f3cf 921/*
c1e8d7c6
ML
922 * mmap_lock must be held on entry. If @locked != NULL and *@flags
923 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 924 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 925 */
64019a2e 926static int faultin_page(struct vm_area_struct *vma,
4f6da934 927 unsigned long address, unsigned int *flags, int *locked)
16744483 928{
16744483 929 unsigned int fault_flags = 0;
2b740303 930 vm_fault_t ret;
16744483 931
de60f5f1
EM
932 /* mlock all present pages, but do not fault in new pages */
933 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
934 return -ENOENT;
16744483
KS
935 if (*flags & FOLL_WRITE)
936 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
937 if (*flags & FOLL_REMOTE)
938 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 939 if (locked)
71335f37 940 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
941 if (*flags & FOLL_NOWAIT)
942 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 943 if (*flags & FOLL_TRIED) {
4426e945
PX
944 /*
945 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
946 * can co-exist
947 */
234b239b
ALC
948 fault_flags |= FAULT_FLAG_TRIED;
949 }
16744483 950
bce617ed 951 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 952 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
953 int err = vm_fault_to_errno(ret, *flags);
954
955 if (err)
956 return err;
16744483
KS
957 BUG();
958 }
959
16744483 960 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
961 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
962 *locked = 0;
16744483
KS
963 return -EBUSY;
964 }
965
966 /*
967 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
968 * necessary, even if maybe_mkwrite decided not to set pte_write. We
969 * can thus safely do subsequent page lookups as if they were reads.
970 * But only do so when looping for pte_write is futile: in some cases
971 * userspace may also be wanting to write to the gotten user page,
972 * which a read fault here might prevent (a readonly page might get
973 * reCOWed by userspace write).
974 */
975 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 976 *flags |= FOLL_COW;
16744483
KS
977 return 0;
978}
979
fa5bb209
KS
980static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
981{
982 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
983 int write = (gup_flags & FOLL_WRITE);
984 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
985
986 if (vm_flags & (VM_IO | VM_PFNMAP))
987 return -EFAULT;
988
7f7ccc2c
WT
989 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
990 return -EFAULT;
991
52650c8b
JG
992 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
993 return -EOPNOTSUPP;
994
1507f512
MR
995 if (vma_is_secretmem(vma))
996 return -EFAULT;
997
1b2ee126 998 if (write) {
fa5bb209
KS
999 if (!(vm_flags & VM_WRITE)) {
1000 if (!(gup_flags & FOLL_FORCE))
1001 return -EFAULT;
1002 /*
1003 * We used to let the write,force case do COW in a
1004 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1005 * set a breakpoint in a read-only mapping of an
1006 * executable, without corrupting the file (yet only
1007 * when that file had been opened for writing!).
1008 * Anon pages in shared mappings are surprising: now
1009 * just reject it.
1010 */
46435364 1011 if (!is_cow_mapping(vm_flags))
fa5bb209 1012 return -EFAULT;
fa5bb209
KS
1013 }
1014 } else if (!(vm_flags & VM_READ)) {
1015 if (!(gup_flags & FOLL_FORCE))
1016 return -EFAULT;
1017 /*
1018 * Is there actually any vma we can reach here which does not
1019 * have VM_MAYREAD set?
1020 */
1021 if (!(vm_flags & VM_MAYREAD))
1022 return -EFAULT;
1023 }
d61172b4
DH
1024 /*
1025 * gups are always data accesses, not instruction
1026 * fetches, so execute=false here
1027 */
1028 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1029 return -EFAULT;
fa5bb209
KS
1030 return 0;
1031}
1032
4bbd4c77
KS
1033/**
1034 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1035 * @mm: mm_struct of target mm
1036 * @start: starting user address
1037 * @nr_pages: number of pages from start to pin
1038 * @gup_flags: flags modifying pin behaviour
1039 * @pages: array that receives pointers to the pages pinned.
1040 * Should be at least nr_pages long. Or NULL, if caller
1041 * only intends to ensure the pages are faulted in.
1042 * @vmas: array of pointers to vmas corresponding to each page.
1043 * Or NULL if the caller does not require them.
c1e8d7c6 1044 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1045 *
d2dfbe47
LX
1046 * Returns either number of pages pinned (which may be less than the
1047 * number requested), or an error. Details about the return value:
1048 *
1049 * -- If nr_pages is 0, returns 0.
1050 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1051 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1052 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1053 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1054 *
1055 * The caller is responsible for releasing returned @pages, via put_page().
1056 *
c1e8d7c6 1057 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1058 *
c1e8d7c6 1059 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1060 *
1061 * __get_user_pages walks a process's page tables and takes a reference to
1062 * each struct page that each user address corresponds to at a given
1063 * instant. That is, it takes the page that would be accessed if a user
1064 * thread accesses the given user virtual address at that instant.
1065 *
1066 * This does not guarantee that the page exists in the user mappings when
1067 * __get_user_pages returns, and there may even be a completely different
1068 * page there in some cases (eg. if mmapped pagecache has been invalidated
1069 * and subsequently re faulted). However it does guarantee that the page
1070 * won't be freed completely. And mostly callers simply care that the page
1071 * contains data that was valid *at some point in time*. Typically, an IO
1072 * or similar operation cannot guarantee anything stronger anyway because
1073 * locks can't be held over the syscall boundary.
1074 *
1075 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1076 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1077 * appropriate) must be called after the page is finished with, and
1078 * before put_page is called.
1079 *
c1e8d7c6 1080 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1081 * released by an up_read(). That can happen if @gup_flags does not
1082 * have FOLL_NOWAIT.
9a95f3cf 1083 *
4f6da934 1084 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1085 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1086 * when it's been released. Otherwise, it must be held for either
1087 * reading or writing and will not be released.
4bbd4c77
KS
1088 *
1089 * In most cases, get_user_pages or get_user_pages_fast should be used
1090 * instead of __get_user_pages. __get_user_pages should be used only if
1091 * you need some special @gup_flags.
1092 */
64019a2e 1093static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1094 unsigned long start, unsigned long nr_pages,
1095 unsigned int gup_flags, struct page **pages,
4f6da934 1096 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1097{
df06b37f 1098 long ret = 0, i = 0;
fa5bb209 1099 struct vm_area_struct *vma = NULL;
df06b37f 1100 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1101
1102 if (!nr_pages)
1103 return 0;
1104
f9652594
AK
1105 start = untagged_addr(start);
1106
eddb1c22 1107 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1108
1109 /*
1110 * If FOLL_FORCE is set then do not force a full fault as the hinting
1111 * fault information is unrelated to the reference behaviour of a task
1112 * using the address space
1113 */
1114 if (!(gup_flags & FOLL_FORCE))
1115 gup_flags |= FOLL_NUMA;
1116
4bbd4c77 1117 do {
fa5bb209
KS
1118 struct page *page;
1119 unsigned int foll_flags = gup_flags;
1120 unsigned int page_increm;
1121
1122 /* first iteration or cross vma bound */
1123 if (!vma || start >= vma->vm_end) {
1124 vma = find_extend_vma(mm, start);
1125 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1126 ret = get_gate_page(mm, start & PAGE_MASK,
1127 gup_flags, &vma,
1128 pages ? &pages[i] : NULL);
1129 if (ret)
08be37b7 1130 goto out;
df06b37f 1131 ctx.page_mask = 0;
fa5bb209
KS
1132 goto next_page;
1133 }
4bbd4c77 1134
52650c8b 1135 if (!vma) {
df06b37f
KB
1136 ret = -EFAULT;
1137 goto out;
1138 }
52650c8b
JG
1139 ret = check_vma_flags(vma, gup_flags);
1140 if (ret)
1141 goto out;
1142
fa5bb209
KS
1143 if (is_vm_hugetlb_page(vma)) {
1144 i = follow_hugetlb_page(mm, vma, pages, vmas,
1145 &start, &nr_pages, i,
a308c71b 1146 gup_flags, locked);
ad415db8
PX
1147 if (locked && *locked == 0) {
1148 /*
1149 * We've got a VM_FAULT_RETRY
c1e8d7c6 1150 * and we've lost mmap_lock.
ad415db8
PX
1151 * We must stop here.
1152 */
1153 BUG_ON(gup_flags & FOLL_NOWAIT);
1154 BUG_ON(ret != 0);
1155 goto out;
1156 }
fa5bb209 1157 continue;
4bbd4c77 1158 }
fa5bb209
KS
1159 }
1160retry:
1161 /*
1162 * If we have a pending SIGKILL, don't keep faulting pages and
1163 * potentially allocating memory.
1164 */
fa45f116 1165 if (fatal_signal_pending(current)) {
d180870d 1166 ret = -EINTR;
df06b37f
KB
1167 goto out;
1168 }
fa5bb209 1169 cond_resched();
df06b37f
KB
1170
1171 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1172 if (!page) {
64019a2e 1173 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1174 switch (ret) {
1175 case 0:
1176 goto retry;
df06b37f
KB
1177 case -EBUSY:
1178 ret = 0;
e4a9bc58 1179 fallthrough;
fa5bb209
KS
1180 case -EFAULT:
1181 case -ENOMEM:
1182 case -EHWPOISON:
df06b37f 1183 goto out;
fa5bb209
KS
1184 case -ENOENT:
1185 goto next_page;
4bbd4c77 1186 }
fa5bb209 1187 BUG();
1027e443
KS
1188 } else if (PTR_ERR(page) == -EEXIST) {
1189 /*
1190 * Proper page table entry exists, but no corresponding
1191 * struct page.
1192 */
1193 goto next_page;
1194 } else if (IS_ERR(page)) {
df06b37f
KB
1195 ret = PTR_ERR(page);
1196 goto out;
1027e443 1197 }
fa5bb209
KS
1198 if (pages) {
1199 pages[i] = page;
1200 flush_anon_page(vma, page, start);
1201 flush_dcache_page(page);
df06b37f 1202 ctx.page_mask = 0;
4bbd4c77 1203 }
4bbd4c77 1204next_page:
fa5bb209
KS
1205 if (vmas) {
1206 vmas[i] = vma;
df06b37f 1207 ctx.page_mask = 0;
fa5bb209 1208 }
df06b37f 1209 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1210 if (page_increm > nr_pages)
1211 page_increm = nr_pages;
1212 i += page_increm;
1213 start += page_increm * PAGE_SIZE;
1214 nr_pages -= page_increm;
4bbd4c77 1215 } while (nr_pages);
df06b37f
KB
1216out:
1217 if (ctx.pgmap)
1218 put_dev_pagemap(ctx.pgmap);
1219 return i ? i : ret;
4bbd4c77 1220}
4bbd4c77 1221
771ab430
TK
1222static bool vma_permits_fault(struct vm_area_struct *vma,
1223 unsigned int fault_flags)
d4925e00 1224{
1b2ee126
DH
1225 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1226 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1227 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1228
1229 if (!(vm_flags & vma->vm_flags))
1230 return false;
1231
33a709b2
DH
1232 /*
1233 * The architecture might have a hardware protection
1b2ee126 1234 * mechanism other than read/write that can deny access.
d61172b4
DH
1235 *
1236 * gup always represents data access, not instruction
1237 * fetches, so execute=false here:
33a709b2 1238 */
d61172b4 1239 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1240 return false;
1241
d4925e00
DH
1242 return true;
1243}
1244
adc8cb40 1245/**
4bbd4c77 1246 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1247 * @mm: mm_struct of target mm
1248 * @address: user address
1249 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1250 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1251 * does not allow retry. If NULL, the caller must guarantee
1252 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1253 *
1254 * This is meant to be called in the specific scenario where for locking reasons
1255 * we try to access user memory in atomic context (within a pagefault_disable()
1256 * section), this returns -EFAULT, and we want to resolve the user fault before
1257 * trying again.
1258 *
1259 * Typically this is meant to be used by the futex code.
1260 *
1261 * The main difference with get_user_pages() is that this function will
1262 * unconditionally call handle_mm_fault() which will in turn perform all the
1263 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1264 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1265 *
1266 * This is important for some architectures where those bits also gate the
1267 * access permission to the page because they are maintained in software. On
1268 * such architectures, gup() will not be enough to make a subsequent access
1269 * succeed.
1270 *
c1e8d7c6
ML
1271 * This function will not return with an unlocked mmap_lock. So it has not the
1272 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1273 */
64019a2e 1274int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1275 unsigned long address, unsigned int fault_flags,
1276 bool *unlocked)
4bbd4c77
KS
1277{
1278 struct vm_area_struct *vma;
2b740303 1279 vm_fault_t ret, major = 0;
4a9e1cda 1280
f9652594
AK
1281 address = untagged_addr(address);
1282
4a9e1cda 1283 if (unlocked)
71335f37 1284 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1285
4a9e1cda 1286retry:
4bbd4c77
KS
1287 vma = find_extend_vma(mm, address);
1288 if (!vma || address < vma->vm_start)
1289 return -EFAULT;
1290
d4925e00 1291 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1292 return -EFAULT;
1293
475f4dfc
PX
1294 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1295 fatal_signal_pending(current))
1296 return -EINTR;
1297
bce617ed 1298 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4a9e1cda 1299 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1300 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1301 int err = vm_fault_to_errno(ret, 0);
1302
1303 if (err)
1304 return err;
4bbd4c77
KS
1305 BUG();
1306 }
4a9e1cda
DD
1307
1308 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1309 mmap_read_lock(mm);
475f4dfc
PX
1310 *unlocked = true;
1311 fault_flags |= FAULT_FLAG_TRIED;
1312 goto retry;
4a9e1cda
DD
1313 }
1314
4bbd4c77
KS
1315 return 0;
1316}
add6a0cd 1317EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1318
2d3a36a4
MH
1319/*
1320 * Please note that this function, unlike __get_user_pages will not
1321 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1322 */
64019a2e 1323static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1324 unsigned long start,
1325 unsigned long nr_pages,
f0818f47
AA
1326 struct page **pages,
1327 struct vm_area_struct **vmas,
e716712f 1328 int *locked,
0fd71a56 1329 unsigned int flags)
f0818f47 1330{
f0818f47
AA
1331 long ret, pages_done;
1332 bool lock_dropped;
1333
1334 if (locked) {
1335 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1336 BUG_ON(vmas);
1337 /* check caller initialized locked */
1338 BUG_ON(*locked != 1);
1339 }
1340
a458b76a
AA
1341 if (flags & FOLL_PIN)
1342 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1343
eddb1c22
JH
1344 /*
1345 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1346 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1347 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1348 * for FOLL_GET, not for the newer FOLL_PIN.
1349 *
1350 * FOLL_PIN always expects pages to be non-null, but no need to assert
1351 * that here, as any failures will be obvious enough.
1352 */
1353 if (pages && !(flags & FOLL_PIN))
f0818f47 1354 flags |= FOLL_GET;
f0818f47
AA
1355
1356 pages_done = 0;
1357 lock_dropped = false;
1358 for (;;) {
64019a2e 1359 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1360 vmas, locked);
1361 if (!locked)
1362 /* VM_FAULT_RETRY couldn't trigger, bypass */
1363 return ret;
1364
1365 /* VM_FAULT_RETRY cannot return errors */
1366 if (!*locked) {
1367 BUG_ON(ret < 0);
1368 BUG_ON(ret >= nr_pages);
1369 }
1370
f0818f47
AA
1371 if (ret > 0) {
1372 nr_pages -= ret;
1373 pages_done += ret;
1374 if (!nr_pages)
1375 break;
1376 }
1377 if (*locked) {
96312e61
AA
1378 /*
1379 * VM_FAULT_RETRY didn't trigger or it was a
1380 * FOLL_NOWAIT.
1381 */
f0818f47
AA
1382 if (!pages_done)
1383 pages_done = ret;
1384 break;
1385 }
df17277b
MR
1386 /*
1387 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1388 * For the prefault case (!pages) we only update counts.
1389 */
1390 if (likely(pages))
1391 pages += ret;
f0818f47 1392 start += ret << PAGE_SHIFT;
4426e945 1393 lock_dropped = true;
f0818f47 1394
4426e945 1395retry:
f0818f47
AA
1396 /*
1397 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1398 * with both FAULT_FLAG_ALLOW_RETRY and
1399 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1400 * by fatal signals, so we need to check it before we
1401 * start trying again otherwise it can loop forever.
f0818f47 1402 */
4426e945 1403
ae46d2aa
HD
1404 if (fatal_signal_pending(current)) {
1405 if (!pages_done)
1406 pages_done = -EINTR;
4426e945 1407 break;
ae46d2aa 1408 }
4426e945 1409
d8ed45c5 1410 ret = mmap_read_lock_killable(mm);
71335f37
PX
1411 if (ret) {
1412 BUG_ON(ret > 0);
1413 if (!pages_done)
1414 pages_done = ret;
1415 break;
1416 }
4426e945 1417
c7b6a566 1418 *locked = 1;
64019a2e 1419 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1420 pages, NULL, locked);
1421 if (!*locked) {
1422 /* Continue to retry until we succeeded */
1423 BUG_ON(ret != 0);
1424 goto retry;
1425 }
f0818f47
AA
1426 if (ret != 1) {
1427 BUG_ON(ret > 1);
1428 if (!pages_done)
1429 pages_done = ret;
1430 break;
1431 }
1432 nr_pages--;
1433 pages_done++;
1434 if (!nr_pages)
1435 break;
df17277b
MR
1436 if (likely(pages))
1437 pages++;
f0818f47
AA
1438 start += PAGE_SIZE;
1439 }
e716712f 1440 if (lock_dropped && *locked) {
f0818f47
AA
1441 /*
1442 * We must let the caller know we temporarily dropped the lock
1443 * and so the critical section protected by it was lost.
1444 */
d8ed45c5 1445 mmap_read_unlock(mm);
f0818f47
AA
1446 *locked = 0;
1447 }
1448 return pages_done;
1449}
1450
d3649f68
CH
1451/**
1452 * populate_vma_page_range() - populate a range of pages in the vma.
1453 * @vma: target vma
1454 * @start: start address
1455 * @end: end address
c1e8d7c6 1456 * @locked: whether the mmap_lock is still held
d3649f68
CH
1457 *
1458 * This takes care of mlocking the pages too if VM_LOCKED is set.
1459 *
0a36f7f8
TY
1460 * Return either number of pages pinned in the vma, or a negative error
1461 * code on error.
d3649f68 1462 *
c1e8d7c6 1463 * vma->vm_mm->mmap_lock must be held.
d3649f68 1464 *
4f6da934 1465 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1466 * be unperturbed.
1467 *
4f6da934
PX
1468 * If @locked is non-NULL, it must held for read only and may be
1469 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1470 */
1471long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1472 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1473{
1474 struct mm_struct *mm = vma->vm_mm;
1475 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1476 int gup_flags;
1477
1478 VM_BUG_ON(start & ~PAGE_MASK);
1479 VM_BUG_ON(end & ~PAGE_MASK);
1480 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1481 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1482 mmap_assert_locked(mm);
d3649f68
CH
1483
1484 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1485 if (vma->vm_flags & VM_LOCKONFAULT)
1486 gup_flags &= ~FOLL_POPULATE;
1487 /*
1488 * We want to touch writable mappings with a write fault in order
1489 * to break COW, except for shared mappings because these don't COW
1490 * and we would not want to dirty them for nothing.
1491 */
1492 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1493 gup_flags |= FOLL_WRITE;
1494
1495 /*
1496 * We want mlock to succeed for regions that have any permissions
1497 * other than PROT_NONE.
1498 */
3122e80e 1499 if (vma_is_accessible(vma))
d3649f68
CH
1500 gup_flags |= FOLL_FORCE;
1501
1502 /*
1503 * We made sure addr is within a VMA, so the following will
1504 * not result in a stack expansion that recurses back here.
1505 */
64019a2e 1506 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1507 NULL, NULL, locked);
d3649f68
CH
1508}
1509
4ca9b385
DH
1510/*
1511 * faultin_vma_page_range() - populate (prefault) page tables inside the
1512 * given VMA range readable/writable
1513 *
1514 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1515 *
1516 * @vma: target vma
1517 * @start: start address
1518 * @end: end address
1519 * @write: whether to prefault readable or writable
1520 * @locked: whether the mmap_lock is still held
1521 *
1522 * Returns either number of processed pages in the vma, or a negative error
1523 * code on error (see __get_user_pages()).
1524 *
1525 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1526 * covered by the VMA.
1527 *
1528 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1529 *
1530 * If @locked is non-NULL, it must held for read only and may be released. If
1531 * it's released, *@locked will be set to 0.
1532 */
1533long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1534 unsigned long end, bool write, int *locked)
1535{
1536 struct mm_struct *mm = vma->vm_mm;
1537 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1538 int gup_flags;
1539
1540 VM_BUG_ON(!PAGE_ALIGNED(start));
1541 VM_BUG_ON(!PAGE_ALIGNED(end));
1542 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1543 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1544 mmap_assert_locked(mm);
1545
1546 /*
1547 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1548 * the page dirty with FOLL_WRITE -- which doesn't make a
1549 * difference with !FOLL_FORCE, because the page is writable
1550 * in the page table.
1551 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1552 * a poisoned page.
1553 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1554 * !FOLL_FORCE: Require proper access permissions.
1555 */
1556 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1557 if (write)
1558 gup_flags |= FOLL_WRITE;
1559
1560 /*
1561 * See check_vma_flags(): Will return -EFAULT on incompatible mappings
1562 * or with insufficient permissions.
1563 */
1564 return __get_user_pages(mm, start, nr_pages, gup_flags,
1565 NULL, NULL, locked);
1566}
1567
d3649f68
CH
1568/*
1569 * __mm_populate - populate and/or mlock pages within a range of address space.
1570 *
1571 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1572 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1573 * mmap_lock must not be held.
d3649f68
CH
1574 */
1575int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1576{
1577 struct mm_struct *mm = current->mm;
1578 unsigned long end, nstart, nend;
1579 struct vm_area_struct *vma = NULL;
1580 int locked = 0;
1581 long ret = 0;
1582
1583 end = start + len;
1584
1585 for (nstart = start; nstart < end; nstart = nend) {
1586 /*
1587 * We want to fault in pages for [nstart; end) address range.
1588 * Find first corresponding VMA.
1589 */
1590 if (!locked) {
1591 locked = 1;
d8ed45c5 1592 mmap_read_lock(mm);
d3649f68
CH
1593 vma = find_vma(mm, nstart);
1594 } else if (nstart >= vma->vm_end)
1595 vma = vma->vm_next;
1596 if (!vma || vma->vm_start >= end)
1597 break;
1598 /*
1599 * Set [nstart; nend) to intersection of desired address
1600 * range with the first VMA. Also, skip undesirable VMA types.
1601 */
1602 nend = min(end, vma->vm_end);
1603 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1604 continue;
1605 if (nstart < vma->vm_start)
1606 nstart = vma->vm_start;
1607 /*
1608 * Now fault in a range of pages. populate_vma_page_range()
1609 * double checks the vma flags, so that it won't mlock pages
1610 * if the vma was already munlocked.
1611 */
1612 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1613 if (ret < 0) {
1614 if (ignore_errors) {
1615 ret = 0;
1616 continue; /* continue at next VMA */
1617 }
1618 break;
1619 }
1620 nend = nstart + ret * PAGE_SIZE;
1621 ret = 0;
1622 }
1623 if (locked)
d8ed45c5 1624 mmap_read_unlock(mm);
d3649f68
CH
1625 return ret; /* 0 or negative error code */
1626}
050a9adc 1627#else /* CONFIG_MMU */
64019a2e 1628static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1629 unsigned long nr_pages, struct page **pages,
1630 struct vm_area_struct **vmas, int *locked,
1631 unsigned int foll_flags)
1632{
1633 struct vm_area_struct *vma;
1634 unsigned long vm_flags;
24dc20c7 1635 long i;
050a9adc
CH
1636
1637 /* calculate required read or write permissions.
1638 * If FOLL_FORCE is set, we only require the "MAY" flags.
1639 */
1640 vm_flags = (foll_flags & FOLL_WRITE) ?
1641 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1642 vm_flags &= (foll_flags & FOLL_FORCE) ?
1643 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1644
1645 for (i = 0; i < nr_pages; i++) {
1646 vma = find_vma(mm, start);
1647 if (!vma)
1648 goto finish_or_fault;
1649
1650 /* protect what we can, including chardevs */
1651 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1652 !(vm_flags & vma->vm_flags))
1653 goto finish_or_fault;
1654
1655 if (pages) {
1656 pages[i] = virt_to_page(start);
1657 if (pages[i])
1658 get_page(pages[i]);
1659 }
1660 if (vmas)
1661 vmas[i] = vma;
1662 start = (start + PAGE_SIZE) & PAGE_MASK;
1663 }
1664
1665 return i;
1666
1667finish_or_fault:
1668 return i ? : -EFAULT;
1669}
1670#endif /* !CONFIG_MMU */
d3649f68 1671
8f942eea
JH
1672/**
1673 * get_dump_page() - pin user page in memory while writing it to core dump
1674 * @addr: user address
1675 *
1676 * Returns struct page pointer of user page pinned for dump,
1677 * to be freed afterwards by put_page().
1678 *
1679 * Returns NULL on any kind of failure - a hole must then be inserted into
1680 * the corefile, to preserve alignment with its headers; and also returns
1681 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1682 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1683 *
7f3bfab5 1684 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1685 */
1686#ifdef CONFIG_ELF_CORE
1687struct page *get_dump_page(unsigned long addr)
1688{
7f3bfab5 1689 struct mm_struct *mm = current->mm;
8f942eea 1690 struct page *page;
7f3bfab5
JH
1691 int locked = 1;
1692 int ret;
8f942eea 1693
7f3bfab5 1694 if (mmap_read_lock_killable(mm))
8f942eea 1695 return NULL;
7f3bfab5
JH
1696 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1697 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1698 if (locked)
1699 mmap_read_unlock(mm);
1700 return (ret == 1) ? page : NULL;
8f942eea
JH
1701}
1702#endif /* CONFIG_ELF_CORE */
1703
d1e153fe 1704#ifdef CONFIG_MIGRATION
f68749ec
PT
1705/*
1706 * Check whether all pages are pinnable, if so return number of pages. If some
1707 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1708 * pages were migrated, or if some pages were not successfully isolated.
1709 * Return negative error if migration fails.
1710 */
1711static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1712 struct page **pages,
d1e153fe 1713 unsigned int gup_flags)
9a4e9f3b 1714{
f68749ec
PT
1715 unsigned long i;
1716 unsigned long isolation_error_count = 0;
1717 bool drain_allow = true;
d1e153fe 1718 LIST_HEAD(movable_page_list);
f68749ec
PT
1719 long ret = 0;
1720 struct page *prev_head = NULL;
1721 struct page *head;
ed03d924
JK
1722 struct migration_target_control mtc = {
1723 .nid = NUMA_NO_NODE,
c991ffef 1724 .gfp_mask = GFP_USER | __GFP_NOWARN,
ed03d924 1725 };
9a4e9f3b 1726
83c02c23
PT
1727 for (i = 0; i < nr_pages; i++) {
1728 head = compound_head(pages[i]);
1729 if (head == prev_head)
1730 continue;
1731 prev_head = head;
9a4e9f3b 1732 /*
d1e153fe
PT
1733 * If we get a movable page, since we are going to be pinning
1734 * these entries, try to move them out if possible.
9a4e9f3b 1735 */
d1e153fe 1736 if (!is_pinnable_page(head)) {
6e7f34eb 1737 if (PageHuge(head)) {
d1e153fe 1738 if (!isolate_huge_page(head, &movable_page_list))
6e7f34eb
PT
1739 isolation_error_count++;
1740 } else {
9a4e9f3b
AK
1741 if (!PageLRU(head) && drain_allow) {
1742 lru_add_drain_all();
1743 drain_allow = false;
1744 }
1745
6e7f34eb
PT
1746 if (isolate_lru_page(head)) {
1747 isolation_error_count++;
1748 continue;
9a4e9f3b 1749 }
d1e153fe 1750 list_add_tail(&head->lru, &movable_page_list);
6e7f34eb
PT
1751 mod_node_page_state(page_pgdat(head),
1752 NR_ISOLATED_ANON +
1753 page_is_file_lru(head),
1754 thp_nr_pages(head));
9a4e9f3b
AK
1755 }
1756 }
1757 }
1758
6e7f34eb
PT
1759 /*
1760 * If list is empty, and no isolation errors, means that all pages are
1761 * in the correct zone.
1762 */
d1e153fe 1763 if (list_empty(&movable_page_list) && !isolation_error_count)
f68749ec 1764 return nr_pages;
6e7f34eb 1765
f68749ec
PT
1766 if (gup_flags & FOLL_PIN) {
1767 unpin_user_pages(pages, nr_pages);
1768 } else {
1769 for (i = 0; i < nr_pages; i++)
1770 put_page(pages[i]);
1771 }
d1e153fe 1772 if (!list_empty(&movable_page_list)) {
d1e153fe 1773 ret = migrate_pages(&movable_page_list, alloc_migration_target,
f0f44638 1774 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
d1e153fe 1775 MR_LONGTERM_PIN);
f68749ec
PT
1776 if (ret && !list_empty(&movable_page_list))
1777 putback_movable_pages(&movable_page_list);
9a4e9f3b
AK
1778 }
1779
f68749ec 1780 return ret > 0 ? -ENOMEM : ret;
9a4e9f3b
AK
1781}
1782#else
f68749ec 1783static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1784 struct page **pages,
d1e153fe 1785 unsigned int gup_flags)
9a4e9f3b
AK
1786{
1787 return nr_pages;
1788}
d1e153fe 1789#endif /* CONFIG_MIGRATION */
9a4e9f3b 1790
2bb6d283 1791/*
932f4a63
IW
1792 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1793 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1794 */
64019a2e 1795static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1796 unsigned long start,
1797 unsigned long nr_pages,
1798 struct page **pages,
1799 struct vm_area_struct **vmas,
1800 unsigned int gup_flags)
2bb6d283 1801{
f68749ec 1802 unsigned int flags;
52650c8b 1803 long rc;
2bb6d283 1804
f68749ec
PT
1805 if (!(gup_flags & FOLL_LONGTERM))
1806 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1807 NULL, gup_flags);
1808 flags = memalloc_pin_save();
1809 do {
1810 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1811 NULL, gup_flags);
1812 if (rc <= 0)
1813 break;
1814 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1815 } while (!rc);
1816 memalloc_pin_restore(flags);
2bb6d283 1817
2bb6d283
DW
1818 return rc;
1819}
932f4a63 1820
447f3e45
BS
1821static bool is_valid_gup_flags(unsigned int gup_flags)
1822{
1823 /*
1824 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1825 * never directly by the caller, so enforce that with an assertion:
1826 */
1827 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1828 return false;
1829 /*
1830 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1831 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1832 * FOLL_PIN.
1833 */
1834 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1835 return false;
1836
1837 return true;
1838}
1839
22bf29b6 1840#ifdef CONFIG_MMU
64019a2e 1841static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1842 unsigned long start, unsigned long nr_pages,
1843 unsigned int gup_flags, struct page **pages,
1844 struct vm_area_struct **vmas, int *locked)
1845{
1846 /*
1847 * Parts of FOLL_LONGTERM behavior are incompatible with
1848 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1849 * vmas. However, this only comes up if locked is set, and there are
1850 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1851 * allow what we can.
1852 */
1853 if (gup_flags & FOLL_LONGTERM) {
1854 if (WARN_ON_ONCE(locked))
1855 return -EINVAL;
1856 /*
1857 * This will check the vmas (even if our vmas arg is NULL)
1858 * and return -ENOTSUPP if DAX isn't allowed in this case:
1859 */
64019a2e 1860 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1861 vmas, gup_flags | FOLL_TOUCH |
1862 FOLL_REMOTE);
1863 }
1864
64019a2e 1865 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1866 locked,
1867 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1868}
1869
adc8cb40 1870/**
c4237f8b 1871 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1872 * @mm: mm_struct of target mm
1873 * @start: starting user address
1874 * @nr_pages: number of pages from start to pin
1875 * @gup_flags: flags modifying lookup behaviour
1876 * @pages: array that receives pointers to the pages pinned.
1877 * Should be at least nr_pages long. Or NULL, if caller
1878 * only intends to ensure the pages are faulted in.
1879 * @vmas: array of pointers to vmas corresponding to each page.
1880 * Or NULL if the caller does not require them.
1881 * @locked: pointer to lock flag indicating whether lock is held and
1882 * subsequently whether VM_FAULT_RETRY functionality can be
1883 * utilised. Lock must initially be held.
1884 *
1885 * Returns either number of pages pinned (which may be less than the
1886 * number requested), or an error. Details about the return value:
1887 *
1888 * -- If nr_pages is 0, returns 0.
1889 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1890 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1891 * pages pinned. Again, this may be less than nr_pages.
1892 *
1893 * The caller is responsible for releasing returned @pages, via put_page().
1894 *
c1e8d7c6 1895 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1896 *
c1e8d7c6 1897 * Must be called with mmap_lock held for read or write.
c4237f8b 1898 *
adc8cb40
SJ
1899 * get_user_pages_remote walks a process's page tables and takes a reference
1900 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1901 * instant. That is, it takes the page that would be accessed if a user
1902 * thread accesses the given user virtual address at that instant.
1903 *
1904 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1905 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1906 * page there in some cases (eg. if mmapped pagecache has been invalidated
1907 * and subsequently re faulted). However it does guarantee that the page
1908 * won't be freed completely. And mostly callers simply care that the page
1909 * contains data that was valid *at some point in time*. Typically, an IO
1910 * or similar operation cannot guarantee anything stronger anyway because
1911 * locks can't be held over the syscall boundary.
1912 *
1913 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1914 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1915 * be called after the page is finished with, and before put_page is called.
1916 *
adc8cb40
SJ
1917 * get_user_pages_remote is typically used for fewer-copy IO operations,
1918 * to get a handle on the memory by some means other than accesses
1919 * via the user virtual addresses. The pages may be submitted for
1920 * DMA to devices or accessed via their kernel linear mapping (via the
1921 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1922 *
1923 * See also get_user_pages_fast, for performance critical applications.
1924 *
adc8cb40 1925 * get_user_pages_remote should be phased out in favor of
c4237f8b 1926 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1927 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1928 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1929 */
64019a2e 1930long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
1931 unsigned long start, unsigned long nr_pages,
1932 unsigned int gup_flags, struct page **pages,
1933 struct vm_area_struct **vmas, int *locked)
1934{
447f3e45 1935 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1936 return -EINVAL;
1937
64019a2e 1938 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 1939 pages, vmas, locked);
c4237f8b
JH
1940}
1941EXPORT_SYMBOL(get_user_pages_remote);
1942
eddb1c22 1943#else /* CONFIG_MMU */
64019a2e 1944long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1945 unsigned long start, unsigned long nr_pages,
1946 unsigned int gup_flags, struct page **pages,
1947 struct vm_area_struct **vmas, int *locked)
1948{
1949 return 0;
1950}
3faa52c0 1951
64019a2e 1952static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
1953 unsigned long start, unsigned long nr_pages,
1954 unsigned int gup_flags, struct page **pages,
1955 struct vm_area_struct **vmas, int *locked)
1956{
1957 return 0;
1958}
eddb1c22
JH
1959#endif /* !CONFIG_MMU */
1960
adc8cb40
SJ
1961/**
1962 * get_user_pages() - pin user pages in memory
1963 * @start: starting user address
1964 * @nr_pages: number of pages from start to pin
1965 * @gup_flags: flags modifying lookup behaviour
1966 * @pages: array that receives pointers to the pages pinned.
1967 * Should be at least nr_pages long. Or NULL, if caller
1968 * only intends to ensure the pages are faulted in.
1969 * @vmas: array of pointers to vmas corresponding to each page.
1970 * Or NULL if the caller does not require them.
1971 *
64019a2e
PX
1972 * This is the same as get_user_pages_remote(), just with a less-flexible
1973 * calling convention where we assume that the mm being operated on belongs to
1974 * the current task, and doesn't allow passing of a locked parameter. We also
1975 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
1976 */
1977long get_user_pages(unsigned long start, unsigned long nr_pages,
1978 unsigned int gup_flags, struct page **pages,
1979 struct vm_area_struct **vmas)
1980{
447f3e45 1981 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1982 return -EINVAL;
1983
64019a2e 1984 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
1985 pages, vmas, gup_flags | FOLL_TOUCH);
1986}
1987EXPORT_SYMBOL(get_user_pages);
2bb6d283 1988
adc8cb40 1989/**
a00cda3f
MCC
1990 * get_user_pages_locked() - variant of get_user_pages()
1991 *
1992 * @start: starting user address
1993 * @nr_pages: number of pages from start to pin
1994 * @gup_flags: flags modifying lookup behaviour
1995 * @pages: array that receives pointers to the pages pinned.
1996 * Should be at least nr_pages long. Or NULL, if caller
1997 * only intends to ensure the pages are faulted in.
1998 * @locked: pointer to lock flag indicating whether lock is held and
1999 * subsequently whether VM_FAULT_RETRY functionality can be
2000 * utilised. Lock must initially be held.
2001 *
2002 * It is suitable to replace the form:
acc3c8d1 2003 *
3e4e28c5 2004 * mmap_read_lock(mm);
d3649f68 2005 * do_something()
64019a2e 2006 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2007 * mmap_read_unlock(mm);
acc3c8d1 2008 *
d3649f68 2009 * to:
acc3c8d1 2010 *
d3649f68 2011 * int locked = 1;
3e4e28c5 2012 * mmap_read_lock(mm);
d3649f68 2013 * do_something()
64019a2e 2014 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 2015 * if (locked)
3e4e28c5 2016 * mmap_read_unlock(mm);
adc8cb40 2017 *
adc8cb40
SJ
2018 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2019 * paths better by using either get_user_pages_locked() or
2020 * get_user_pages_unlocked().
2021 *
acc3c8d1 2022 */
d3649f68
CH
2023long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2024 unsigned int gup_flags, struct page **pages,
2025 int *locked)
acc3c8d1 2026{
acc3c8d1 2027 /*
d3649f68
CH
2028 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2029 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2030 * vmas. As there are no users of this flag in this call we simply
2031 * disallow this option for now.
acc3c8d1 2032 */
d3649f68
CH
2033 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2034 return -EINVAL;
420c2091
JH
2035 /*
2036 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2037 * never directly by the caller, so enforce that:
2038 */
2039 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2040 return -EINVAL;
acc3c8d1 2041
64019a2e 2042 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
2043 pages, NULL, locked,
2044 gup_flags | FOLL_TOUCH);
acc3c8d1 2045}
d3649f68 2046EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
2047
2048/*
d3649f68 2049 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2050 *
3e4e28c5 2051 * mmap_read_lock(mm);
64019a2e 2052 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2053 * mmap_read_unlock(mm);
d3649f68
CH
2054 *
2055 * with:
2056 *
64019a2e 2057 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2058 *
2059 * It is functionally equivalent to get_user_pages_fast so
2060 * get_user_pages_fast should be used instead if specific gup_flags
2061 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2062 */
d3649f68
CH
2063long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2064 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2065{
2066 struct mm_struct *mm = current->mm;
d3649f68
CH
2067 int locked = 1;
2068 long ret;
acc3c8d1 2069
d3649f68
CH
2070 /*
2071 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2072 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2073 * vmas. As there are no users of this flag in this call we simply
2074 * disallow this option for now.
2075 */
2076 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2077 return -EINVAL;
acc3c8d1 2078
d8ed45c5 2079 mmap_read_lock(mm);
64019a2e 2080 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2081 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2082 if (locked)
d8ed45c5 2083 mmap_read_unlock(mm);
d3649f68 2084 return ret;
4bbd4c77 2085}
d3649f68 2086EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2087
2088/*
67a929e0 2089 * Fast GUP
2667f50e
SC
2090 *
2091 * get_user_pages_fast attempts to pin user pages by walking the page
2092 * tables directly and avoids taking locks. Thus the walker needs to be
2093 * protected from page table pages being freed from under it, and should
2094 * block any THP splits.
2095 *
2096 * One way to achieve this is to have the walker disable interrupts, and
2097 * rely on IPIs from the TLB flushing code blocking before the page table
2098 * pages are freed. This is unsuitable for architectures that do not need
2099 * to broadcast an IPI when invalidating TLBs.
2100 *
2101 * Another way to achieve this is to batch up page table containing pages
2102 * belonging to more than one mm_user, then rcu_sched a callback to free those
2103 * pages. Disabling interrupts will allow the fast_gup walker to both block
2104 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2105 * (which is a relatively rare event). The code below adopts this strategy.
2106 *
2107 * Before activating this code, please be aware that the following assumptions
2108 * are currently made:
2109 *
ff2e6d72 2110 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2111 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2112 *
2667f50e
SC
2113 * *) ptes can be read atomically by the architecture.
2114 *
2115 * *) access_ok is sufficient to validate userspace address ranges.
2116 *
2117 * The last two assumptions can be relaxed by the addition of helper functions.
2118 *
2119 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2120 */
67a929e0 2121#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2122
790c7369 2123static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2124 unsigned int flags,
790c7369 2125 struct page **pages)
b59f65fa
KS
2126{
2127 while ((*nr) - nr_start) {
2128 struct page *page = pages[--(*nr)];
2129
2130 ClearPageReferenced(page);
3faa52c0
JH
2131 if (flags & FOLL_PIN)
2132 unpin_user_page(page);
2133 else
2134 put_page(page);
b59f65fa
KS
2135 }
2136}
2137
3010a5ea 2138#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2139static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2140 unsigned int flags, struct page **pages, int *nr)
2667f50e 2141{
b59f65fa
KS
2142 struct dev_pagemap *pgmap = NULL;
2143 int nr_start = *nr, ret = 0;
2667f50e 2144 pte_t *ptep, *ptem;
2667f50e
SC
2145
2146 ptem = ptep = pte_offset_map(&pmd, addr);
2147 do {
2a4a06da 2148 pte_t pte = ptep_get_lockless(ptep);
7aef4172 2149 struct page *head, *page;
2667f50e
SC
2150
2151 /*
2152 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2153 * path using the pte_protnone check.
2667f50e 2154 */
e7884f8e
KS
2155 if (pte_protnone(pte))
2156 goto pte_unmap;
2157
b798bec4 2158 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2159 goto pte_unmap;
2160
b59f65fa 2161 if (pte_devmap(pte)) {
7af75561
IW
2162 if (unlikely(flags & FOLL_LONGTERM))
2163 goto pte_unmap;
2164
b59f65fa
KS
2165 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2166 if (unlikely(!pgmap)) {
3b78d834 2167 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2168 goto pte_unmap;
2169 }
2170 } else if (pte_special(pte))
2667f50e
SC
2171 goto pte_unmap;
2172
2173 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2174 page = pte_page(pte);
2175
3faa52c0 2176 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2177 if (!head)
2667f50e
SC
2178 goto pte_unmap;
2179
1507f512
MR
2180 if (unlikely(page_is_secretmem(page))) {
2181 put_compound_head(head, 1, flags);
2182 goto pte_unmap;
2183 }
2184
2667f50e 2185 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2186 put_compound_head(head, 1, flags);
2667f50e
SC
2187 goto pte_unmap;
2188 }
2189
7aef4172 2190 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2191
f28d4363
CI
2192 /*
2193 * We need to make the page accessible if and only if we are
2194 * going to access its content (the FOLL_PIN case). Please
2195 * see Documentation/core-api/pin_user_pages.rst for
2196 * details.
2197 */
2198 if (flags & FOLL_PIN) {
2199 ret = arch_make_page_accessible(page);
2200 if (ret) {
2201 unpin_user_page(page);
2202 goto pte_unmap;
2203 }
2204 }
e9348053 2205 SetPageReferenced(page);
2667f50e
SC
2206 pages[*nr] = page;
2207 (*nr)++;
2208
2209 } while (ptep++, addr += PAGE_SIZE, addr != end);
2210
2211 ret = 1;
2212
2213pte_unmap:
832d7aa0
CH
2214 if (pgmap)
2215 put_dev_pagemap(pgmap);
2667f50e
SC
2216 pte_unmap(ptem);
2217 return ret;
2218}
2219#else
2220
2221/*
2222 * If we can't determine whether or not a pte is special, then fail immediately
2223 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2224 * to be special.
2225 *
2226 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2227 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2228 * useful to have gup_huge_pmd even if we can't operate on ptes.
2229 */
2230static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2231 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2232{
2233 return 0;
2234}
3010a5ea 2235#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2236
17596731 2237#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2238static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2239 unsigned long end, unsigned int flags,
2240 struct page **pages, int *nr)
b59f65fa
KS
2241{
2242 int nr_start = *nr;
2243 struct dev_pagemap *pgmap = NULL;
2244
2245 do {
2246 struct page *page = pfn_to_page(pfn);
2247
2248 pgmap = get_dev_pagemap(pfn, pgmap);
2249 if (unlikely(!pgmap)) {
3b78d834 2250 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2251 return 0;
2252 }
2253 SetPageReferenced(page);
2254 pages[*nr] = page;
3faa52c0
JH
2255 if (unlikely(!try_grab_page(page, flags))) {
2256 undo_dev_pagemap(nr, nr_start, flags, pages);
2257 return 0;
2258 }
b59f65fa
KS
2259 (*nr)++;
2260 pfn++;
2261 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2262
2263 if (pgmap)
2264 put_dev_pagemap(pgmap);
b59f65fa
KS
2265 return 1;
2266}
2267
a9b6de77 2268static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2269 unsigned long end, unsigned int flags,
2270 struct page **pages, int *nr)
b59f65fa
KS
2271{
2272 unsigned long fault_pfn;
a9b6de77
DW
2273 int nr_start = *nr;
2274
2275 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2276 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2277 return 0;
b59f65fa 2278
a9b6de77 2279 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2280 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2281 return 0;
2282 }
2283 return 1;
b59f65fa
KS
2284}
2285
a9b6de77 2286static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2287 unsigned long end, unsigned int flags,
2288 struct page **pages, int *nr)
b59f65fa
KS
2289{
2290 unsigned long fault_pfn;
a9b6de77
DW
2291 int nr_start = *nr;
2292
2293 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2294 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2295 return 0;
b59f65fa 2296
a9b6de77 2297 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2298 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2299 return 0;
2300 }
2301 return 1;
b59f65fa
KS
2302}
2303#else
a9b6de77 2304static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2305 unsigned long end, unsigned int flags,
2306 struct page **pages, int *nr)
b59f65fa
KS
2307{
2308 BUILD_BUG();
2309 return 0;
2310}
2311
a9b6de77 2312static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2313 unsigned long end, unsigned int flags,
2314 struct page **pages, int *nr)
b59f65fa
KS
2315{
2316 BUILD_BUG();
2317 return 0;
2318}
2319#endif
2320
a43e9820
JH
2321static int record_subpages(struct page *page, unsigned long addr,
2322 unsigned long end, struct page **pages)
2323{
2324 int nr;
2325
2326 for (nr = 0; addr != end; addr += PAGE_SIZE)
2327 pages[nr++] = page++;
2328
2329 return nr;
2330}
2331
cbd34da7
CH
2332#ifdef CONFIG_ARCH_HAS_HUGEPD
2333static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2334 unsigned long sz)
2335{
2336 unsigned long __boundary = (addr + sz) & ~(sz-1);
2337 return (__boundary - 1 < end - 1) ? __boundary : end;
2338}
2339
2340static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2341 unsigned long end, unsigned int flags,
2342 struct page **pages, int *nr)
cbd34da7
CH
2343{
2344 unsigned long pte_end;
2345 struct page *head, *page;
2346 pte_t pte;
2347 int refs;
2348
2349 pte_end = (addr + sz) & ~(sz-1);
2350 if (pte_end < end)
2351 end = pte_end;
2352
55ca2263 2353 pte = huge_ptep_get(ptep);
cbd34da7 2354
0cd22afd 2355 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2356 return 0;
2357
2358 /* hugepages are never "special" */
2359 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2360
cbd34da7 2361 head = pte_page(pte);
cbd34da7 2362 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2363 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2364
3faa52c0 2365 head = try_grab_compound_head(head, refs, flags);
a43e9820 2366 if (!head)
cbd34da7 2367 return 0;
cbd34da7
CH
2368
2369 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2370 put_compound_head(head, refs, flags);
cbd34da7
CH
2371 return 0;
2372 }
2373
a43e9820 2374 *nr += refs;
520b4a44 2375 SetPageReferenced(head);
cbd34da7
CH
2376 return 1;
2377}
2378
2379static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2380 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2381 struct page **pages, int *nr)
2382{
2383 pte_t *ptep;
2384 unsigned long sz = 1UL << hugepd_shift(hugepd);
2385 unsigned long next;
2386
2387 ptep = hugepte_offset(hugepd, addr, pdshift);
2388 do {
2389 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2390 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2391 return 0;
2392 } while (ptep++, addr = next, addr != end);
2393
2394 return 1;
2395}
2396#else
2397static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2398 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2399 struct page **pages, int *nr)
2400{
2401 return 0;
2402}
2403#endif /* CONFIG_ARCH_HAS_HUGEPD */
2404
2667f50e 2405static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2406 unsigned long end, unsigned int flags,
2407 struct page **pages, int *nr)
2667f50e 2408{
ddc58f27 2409 struct page *head, *page;
2667f50e
SC
2410 int refs;
2411
b798bec4 2412 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2413 return 0;
2414
7af75561
IW
2415 if (pmd_devmap(orig)) {
2416 if (unlikely(flags & FOLL_LONGTERM))
2417 return 0;
86dfbed4
JH
2418 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2419 pages, nr);
7af75561 2420 }
b59f65fa 2421
d63206ee 2422 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2423 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2424
3faa52c0 2425 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2426 if (!head)
2667f50e 2427 return 0;
2667f50e
SC
2428
2429 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2430 put_compound_head(head, refs, flags);
2667f50e
SC
2431 return 0;
2432 }
2433
a43e9820 2434 *nr += refs;
e9348053 2435 SetPageReferenced(head);
2667f50e
SC
2436 return 1;
2437}
2438
2439static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2440 unsigned long end, unsigned int flags,
2441 struct page **pages, int *nr)
2667f50e 2442{
ddc58f27 2443 struct page *head, *page;
2667f50e
SC
2444 int refs;
2445
b798bec4 2446 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2447 return 0;
2448
7af75561
IW
2449 if (pud_devmap(orig)) {
2450 if (unlikely(flags & FOLL_LONGTERM))
2451 return 0;
86dfbed4
JH
2452 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2453 pages, nr);
7af75561 2454 }
b59f65fa 2455
d63206ee 2456 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2457 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2458
3faa52c0 2459 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2460 if (!head)
2667f50e 2461 return 0;
2667f50e
SC
2462
2463 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2464 put_compound_head(head, refs, flags);
2667f50e
SC
2465 return 0;
2466 }
2467
a43e9820 2468 *nr += refs;
e9348053 2469 SetPageReferenced(head);
2667f50e
SC
2470 return 1;
2471}
2472
f30c59e9 2473static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2474 unsigned long end, unsigned int flags,
f30c59e9
AK
2475 struct page **pages, int *nr)
2476{
2477 int refs;
ddc58f27 2478 struct page *head, *page;
f30c59e9 2479
b798bec4 2480 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2481 return 0;
2482
b59f65fa 2483 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2484
d63206ee 2485 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2486 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2487
3faa52c0 2488 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2489 if (!head)
f30c59e9 2490 return 0;
f30c59e9
AK
2491
2492 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2493 put_compound_head(head, refs, flags);
f30c59e9
AK
2494 return 0;
2495 }
2496
a43e9820 2497 *nr += refs;
e9348053 2498 SetPageReferenced(head);
f30c59e9
AK
2499 return 1;
2500}
2501
d3f7b1bb 2502static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2503 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2504{
2505 unsigned long next;
2506 pmd_t *pmdp;
2507
d3f7b1bb 2508 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2509 do {
38c5ce93 2510 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2511
2512 next = pmd_addr_end(addr, end);
84c3fc4e 2513 if (!pmd_present(pmd))
2667f50e
SC
2514 return 0;
2515
414fd080
YZ
2516 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2517 pmd_devmap(pmd))) {
2667f50e
SC
2518 /*
2519 * NUMA hinting faults need to be handled in the GUP
2520 * slowpath for accounting purposes and so that they
2521 * can be serialised against THP migration.
2522 */
8a0516ed 2523 if (pmd_protnone(pmd))
2667f50e
SC
2524 return 0;
2525
b798bec4 2526 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2527 pages, nr))
2528 return 0;
2529
f30c59e9
AK
2530 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2531 /*
2532 * architecture have different format for hugetlbfs
2533 * pmd format and THP pmd format
2534 */
2535 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2536 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2537 return 0;
b798bec4 2538 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2539 return 0;
2667f50e
SC
2540 } while (pmdp++, addr = next, addr != end);
2541
2542 return 1;
2543}
2544
d3f7b1bb 2545static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2546 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2547{
2548 unsigned long next;
2549 pud_t *pudp;
2550
d3f7b1bb 2551 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2552 do {
e37c6982 2553 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2554
2555 next = pud_addr_end(addr, end);
15494520 2556 if (unlikely(!pud_present(pud)))
2667f50e 2557 return 0;
f30c59e9 2558 if (unlikely(pud_huge(pud))) {
b798bec4 2559 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2560 pages, nr))
2561 return 0;
2562 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2563 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2564 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2565 return 0;
d3f7b1bb 2566 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2567 return 0;
2568 } while (pudp++, addr = next, addr != end);
2569
2570 return 1;
2571}
2572
d3f7b1bb 2573static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2574 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2575{
2576 unsigned long next;
2577 p4d_t *p4dp;
2578
d3f7b1bb 2579 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2580 do {
2581 p4d_t p4d = READ_ONCE(*p4dp);
2582
2583 next = p4d_addr_end(addr, end);
2584 if (p4d_none(p4d))
2585 return 0;
2586 BUILD_BUG_ON(p4d_huge(p4d));
2587 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2588 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2589 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2590 return 0;
d3f7b1bb 2591 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2592 return 0;
2593 } while (p4dp++, addr = next, addr != end);
2594
2595 return 1;
2596}
2597
5b65c467 2598static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2599 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2600{
2601 unsigned long next;
2602 pgd_t *pgdp;
2603
2604 pgdp = pgd_offset(current->mm, addr);
2605 do {
2606 pgd_t pgd = READ_ONCE(*pgdp);
2607
2608 next = pgd_addr_end(addr, end);
2609 if (pgd_none(pgd))
2610 return;
2611 if (unlikely(pgd_huge(pgd))) {
b798bec4 2612 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2613 pages, nr))
2614 return;
2615 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2616 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2617 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2618 return;
d3f7b1bb 2619 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2620 return;
2621 } while (pgdp++, addr = next, addr != end);
2622}
050a9adc
CH
2623#else
2624static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2625 unsigned int flags, struct page **pages, int *nr)
2626{
2627}
2628#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2629
2630#ifndef gup_fast_permitted
2631/*
dadbb612 2632 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2633 * we need to fall back to the slow version:
2634 */
26f4c328 2635static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2636{
26f4c328 2637 return true;
5b65c467
KS
2638}
2639#endif
2640
7af75561
IW
2641static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2642 unsigned int gup_flags, struct page **pages)
2643{
2644 int ret;
2645
2646 /*
2647 * FIXME: FOLL_LONGTERM does not work with
2648 * get_user_pages_unlocked() (see comments in that function)
2649 */
2650 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2651 mmap_read_lock(current->mm);
64019a2e 2652 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2653 start, nr_pages,
2654 pages, NULL, gup_flags);
d8ed45c5 2655 mmap_read_unlock(current->mm);
7af75561
IW
2656 } else {
2657 ret = get_user_pages_unlocked(start, nr_pages,
2658 pages, gup_flags);
2659 }
2660
2661 return ret;
2662}
2663
c28b1fc7
JG
2664static unsigned long lockless_pages_from_mm(unsigned long start,
2665 unsigned long end,
2666 unsigned int gup_flags,
2667 struct page **pages)
2668{
2669 unsigned long flags;
2670 int nr_pinned = 0;
57efa1fe 2671 unsigned seq;
c28b1fc7
JG
2672
2673 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2674 !gup_fast_permitted(start, end))
2675 return 0;
2676
57efa1fe
JG
2677 if (gup_flags & FOLL_PIN) {
2678 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2679 if (seq & 1)
2680 return 0;
2681 }
2682
c28b1fc7
JG
2683 /*
2684 * Disable interrupts. The nested form is used, in order to allow full,
2685 * general purpose use of this routine.
2686 *
2687 * With interrupts disabled, we block page table pages from being freed
2688 * from under us. See struct mmu_table_batch comments in
2689 * include/asm-generic/tlb.h for more details.
2690 *
2691 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2692 * that come from THPs splitting.
2693 */
2694 local_irq_save(flags);
2695 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2696 local_irq_restore(flags);
57efa1fe
JG
2697
2698 /*
2699 * When pinning pages for DMA there could be a concurrent write protect
2700 * from fork() via copy_page_range(), in this case always fail fast GUP.
2701 */
2702 if (gup_flags & FOLL_PIN) {
2703 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2704 unpin_user_pages(pages, nr_pinned);
2705 return 0;
2706 }
2707 }
c28b1fc7
JG
2708 return nr_pinned;
2709}
2710
2711static int internal_get_user_pages_fast(unsigned long start,
2712 unsigned long nr_pages,
eddb1c22
JH
2713 unsigned int gup_flags,
2714 struct page **pages)
2667f50e 2715{
c28b1fc7
JG
2716 unsigned long len, end;
2717 unsigned long nr_pinned;
2718 int ret;
2667f50e 2719
f4000fdf 2720 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2721 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2722 FOLL_FAST_ONLY)))
817be129
CH
2723 return -EINVAL;
2724
a458b76a
AA
2725 if (gup_flags & FOLL_PIN)
2726 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2727
f81cd178 2728 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2729 might_lock_read(&current->mm->mmap_lock);
f81cd178 2730
f455c854 2731 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2732 len = nr_pages << PAGE_SHIFT;
2733 if (check_add_overflow(start, len, &end))
c61611f7 2734 return 0;
96d4f267 2735 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2736 return -EFAULT;
73e10a61 2737
c28b1fc7
JG
2738 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2739 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2740 return nr_pinned;
2667f50e 2741
c28b1fc7
JG
2742 /* Slow path: try to get the remaining pages with get_user_pages */
2743 start += nr_pinned << PAGE_SHIFT;
2744 pages += nr_pinned;
2745 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2746 pages);
2747 if (ret < 0) {
2748 /*
2749 * The caller has to unpin the pages we already pinned so
2750 * returning -errno is not an option
2751 */
2752 if (nr_pinned)
2753 return nr_pinned;
2754 return ret;
2667f50e 2755 }
c28b1fc7 2756 return ret + nr_pinned;
2667f50e 2757}
c28b1fc7 2758
dadbb612
SJ
2759/**
2760 * get_user_pages_fast_only() - pin user pages in memory
2761 * @start: starting user address
2762 * @nr_pages: number of pages from start to pin
2763 * @gup_flags: flags modifying pin behaviour
2764 * @pages: array that receives pointers to the pages pinned.
2765 * Should be at least nr_pages long.
2766 *
9e1f0580
JH
2767 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2768 * the regular GUP.
2769 * Note a difference with get_user_pages_fast: this always returns the
2770 * number of pages pinned, 0 if no pages were pinned.
2771 *
2772 * If the architecture does not support this function, simply return with no
2773 * pages pinned.
2774 *
2775 * Careful, careful! COW breaking can go either way, so a non-write
2776 * access can get ambiguous page results. If you call this function without
2777 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2778 */
dadbb612
SJ
2779int get_user_pages_fast_only(unsigned long start, int nr_pages,
2780 unsigned int gup_flags, struct page **pages)
9e1f0580 2781{
376a34ef 2782 int nr_pinned;
9e1f0580
JH
2783 /*
2784 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2785 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2786 *
2787 * FOLL_FAST_ONLY is required in order to match the API description of
2788 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2789 */
dadbb612 2790 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2791
376a34ef
JH
2792 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2793 pages);
9e1f0580
JH
2794
2795 /*
376a34ef
JH
2796 * As specified in the API description above, this routine is not
2797 * allowed to return negative values. However, the common core
2798 * routine internal_get_user_pages_fast() *can* return -errno.
2799 * Therefore, correct for that here:
9e1f0580 2800 */
376a34ef
JH
2801 if (nr_pinned < 0)
2802 nr_pinned = 0;
9e1f0580
JH
2803
2804 return nr_pinned;
2805}
dadbb612 2806EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2807
eddb1c22
JH
2808/**
2809 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2810 * @start: starting user address
2811 * @nr_pages: number of pages from start to pin
2812 * @gup_flags: flags modifying pin behaviour
2813 * @pages: array that receives pointers to the pages pinned.
2814 * Should be at least nr_pages long.
eddb1c22 2815 *
c1e8d7c6 2816 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2817 * If not successful, it will fall back to taking the lock and
2818 * calling get_user_pages().
2819 *
2820 * Returns number of pages pinned. This may be fewer than the number requested.
2821 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2822 * -errno.
2823 */
2824int get_user_pages_fast(unsigned long start, int nr_pages,
2825 unsigned int gup_flags, struct page **pages)
2826{
447f3e45 2827 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2828 return -EINVAL;
2829
94202f12
JH
2830 /*
2831 * The caller may or may not have explicitly set FOLL_GET; either way is
2832 * OK. However, internally (within mm/gup.c), gup fast variants must set
2833 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2834 * request.
2835 */
2836 gup_flags |= FOLL_GET;
eddb1c22
JH
2837 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2838}
050a9adc 2839EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2840
2841/**
2842 * pin_user_pages_fast() - pin user pages in memory without taking locks
2843 *
3faa52c0
JH
2844 * @start: starting user address
2845 * @nr_pages: number of pages from start to pin
2846 * @gup_flags: flags modifying pin behaviour
2847 * @pages: array that receives pointers to the pages pinned.
2848 * Should be at least nr_pages long.
2849 *
2850 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2851 * get_user_pages_fast() for documentation on the function arguments, because
2852 * the arguments here are identical.
2853 *
2854 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2855 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2856 */
2857int pin_user_pages_fast(unsigned long start, int nr_pages,
2858 unsigned int gup_flags, struct page **pages)
2859{
3faa52c0
JH
2860 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2861 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2862 return -EINVAL;
2863
2864 gup_flags |= FOLL_PIN;
2865 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2866}
2867EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2868
104acc32 2869/*
dadbb612
SJ
2870 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2871 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2872 *
2873 * The API rules are the same, too: no negative values may be returned.
2874 */
2875int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2876 unsigned int gup_flags, struct page **pages)
2877{
2878 int nr_pinned;
2879
2880 /*
2881 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2882 * rules require returning 0, rather than -errno:
2883 */
2884 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2885 return 0;
2886 /*
2887 * FOLL_FAST_ONLY is required in order to match the API description of
2888 * this routine: no fall back to regular ("slow") GUP.
2889 */
2890 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2891 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2892 pages);
2893 /*
2894 * This routine is not allowed to return negative values. However,
2895 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2896 * correct for that here:
2897 */
2898 if (nr_pinned < 0)
2899 nr_pinned = 0;
2900
2901 return nr_pinned;
2902}
2903EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2904
eddb1c22 2905/**
64019a2e 2906 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2907 *
3faa52c0
JH
2908 * @mm: mm_struct of target mm
2909 * @start: starting user address
2910 * @nr_pages: number of pages from start to pin
2911 * @gup_flags: flags modifying lookup behaviour
2912 * @pages: array that receives pointers to the pages pinned.
2913 * Should be at least nr_pages long. Or NULL, if caller
2914 * only intends to ensure the pages are faulted in.
2915 * @vmas: array of pointers to vmas corresponding to each page.
2916 * Or NULL if the caller does not require them.
2917 * @locked: pointer to lock flag indicating whether lock is held and
2918 * subsequently whether VM_FAULT_RETRY functionality can be
2919 * utilised. Lock must initially be held.
2920 *
2921 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2922 * get_user_pages_remote() for documentation on the function arguments, because
2923 * the arguments here are identical.
2924 *
2925 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2926 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2927 */
64019a2e 2928long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2929 unsigned long start, unsigned long nr_pages,
2930 unsigned int gup_flags, struct page **pages,
2931 struct vm_area_struct **vmas, int *locked)
2932{
3faa52c0
JH
2933 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2934 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2935 return -EINVAL;
2936
2937 gup_flags |= FOLL_PIN;
64019a2e 2938 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2939 pages, vmas, locked);
eddb1c22
JH
2940}
2941EXPORT_SYMBOL(pin_user_pages_remote);
2942
2943/**
2944 * pin_user_pages() - pin user pages in memory for use by other devices
2945 *
3faa52c0
JH
2946 * @start: starting user address
2947 * @nr_pages: number of pages from start to pin
2948 * @gup_flags: flags modifying lookup behaviour
2949 * @pages: array that receives pointers to the pages pinned.
2950 * Should be at least nr_pages long. Or NULL, if caller
2951 * only intends to ensure the pages are faulted in.
2952 * @vmas: array of pointers to vmas corresponding to each page.
2953 * Or NULL if the caller does not require them.
2954 *
2955 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2956 * FOLL_PIN is set.
2957 *
2958 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2959 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2960 */
2961long pin_user_pages(unsigned long start, unsigned long nr_pages,
2962 unsigned int gup_flags, struct page **pages,
2963 struct vm_area_struct **vmas)
2964{
3faa52c0
JH
2965 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2966 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2967 return -EINVAL;
2968
2969 gup_flags |= FOLL_PIN;
64019a2e 2970 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2971 pages, vmas, gup_flags);
eddb1c22
JH
2972}
2973EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2974
2975/*
2976 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2977 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2978 * FOLL_PIN and rejects FOLL_GET.
2979 */
2980long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2981 struct page **pages, unsigned int gup_flags)
2982{
2983 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2984 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2985 return -EINVAL;
2986
2987 gup_flags |= FOLL_PIN;
2988 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2989}
2990EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
2991
2992/*
2993 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2994 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2995 * FOLL_GET.
2996 */
2997long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2998 unsigned int gup_flags, struct page **pages,
2999 int *locked)
3000{
3001 /*
3002 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3003 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3004 * vmas. As there are no users of this flag in this call we simply
3005 * disallow this option for now.
3006 */
3007 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3008 return -EINVAL;
3009
3010 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3011 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3012 return -EINVAL;
3013
3014 gup_flags |= FOLL_PIN;
64019a2e 3015 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
3016 pages, NULL, locked,
3017 gup_flags | FOLL_TOUCH);
3018}
3019EXPORT_SYMBOL(pin_user_pages_locked);