mm: numa: Change page last {nid,pid} into {cpu,pid}
[linux-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
1da177e4 8#include <linux/gfp.h>
187f1882 9#include <linux/bug.h>
1da177e4
LT
10#include <linux/list.h>
11#include <linux/mmzone.h>
12#include <linux/rbtree.h>
83aeeada 13#include <linux/atomic.h>
9a11b49a 14#include <linux/debug_locks.h>
5b99cd0e 15#include <linux/mm_types.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
e9da73d6 18#include <linux/bit_spinlock.h>
b0d40c92 19#include <linux/shrinker.h>
1da177e4
LT
20
21struct mempolicy;
22struct anon_vma;
bf181b9f 23struct anon_vma_chain;
4e950f6f 24struct file_ra_state;
e8edc6e0 25struct user_struct;
4e950f6f 26struct writeback_control;
1da177e4 27
fccc9987 28#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 29extern unsigned long max_mapnr;
fccc9987
JL
30
31static inline void set_max_mapnr(unsigned long limit)
32{
33 max_mapnr = limit;
34}
35#else
36static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
37#endif
38
4481374c 39extern unsigned long totalram_pages;
1da177e4 40extern void * high_memory;
1da177e4
LT
41extern int page_cluster;
42
43#ifdef CONFIG_SYSCTL
44extern int sysctl_legacy_va_layout;
45#else
46#define sysctl_legacy_va_layout 0
47#endif
48
49#include <asm/page.h>
50#include <asm/pgtable.h>
51#include <asm/processor.h>
1da177e4 52
c9b1d098 53extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 54extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 55
1da177e4
LT
56#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
57
27ac792c
AR
58/* to align the pointer to the (next) page boundary */
59#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
60
0fa73b86
AM
61/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
62#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
63
1da177e4
LT
64/*
65 * Linux kernel virtual memory manager primitives.
66 * The idea being to have a "virtual" mm in the same way
67 * we have a virtual fs - giving a cleaner interface to the
68 * mm details, and allowing different kinds of memory mappings
69 * (from shared memory to executable loading to arbitrary
70 * mmap() functions).
71 */
72
c43692e8
CL
73extern struct kmem_cache *vm_area_cachep;
74
1da177e4 75#ifndef CONFIG_MMU
8feae131
DH
76extern struct rb_root nommu_region_tree;
77extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
78
79extern unsigned int kobjsize(const void *objp);
80#endif
81
82/*
605d9288 83 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 84 */
cc2383ec
KK
85#define VM_NONE 0x00000000
86
1da177e4
LT
87#define VM_READ 0x00000001 /* currently active flags */
88#define VM_WRITE 0x00000002
89#define VM_EXEC 0x00000004
90#define VM_SHARED 0x00000008
91
7e2cff42 92/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
93#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
94#define VM_MAYWRITE 0x00000020
95#define VM_MAYEXEC 0x00000040
96#define VM_MAYSHARE 0x00000080
97
98#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
6aab341e 99#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4
LT
100#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
101
1da177e4
LT
102#define VM_LOCKED 0x00002000
103#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
104
105 /* Used by sys_madvise() */
106#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
107#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
108
109#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
110#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
1da177e4 111#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 112#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4
LT
113#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
114#define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
cc2383ec 115#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
0103bd16 116#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 117
d9104d1c
CG
118#ifdef CONFIG_MEM_SOFT_DIRTY
119# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
120#else
121# define VM_SOFTDIRTY 0
122#endif
123
b379d790 124#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
125#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
126#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 127#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 128
cc2383ec
KK
129#if defined(CONFIG_X86)
130# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
131#elif defined(CONFIG_PPC)
132# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
133#elif defined(CONFIG_PARISC)
134# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
135#elif defined(CONFIG_METAG)
136# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
137#elif defined(CONFIG_IA64)
138# define VM_GROWSUP VM_ARCH_1
139#elif !defined(CONFIG_MMU)
140# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
141#endif
142
143#ifndef VM_GROWSUP
144# define VM_GROWSUP VM_NONE
145#endif
146
a8bef8ff
MG
147/* Bits set in the VMA until the stack is in its final location */
148#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
149
1da177e4
LT
150#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
151#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
152#endif
153
154#ifdef CONFIG_STACK_GROWSUP
155#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
156#else
157#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
158#endif
159
b291f000 160/*
78f11a25
AA
161 * Special vmas that are non-mergable, non-mlock()able.
162 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 163 */
314e51b9 164#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP)
b291f000 165
1da177e4
LT
166/*
167 * mapping from the currently active vm_flags protection bits (the
168 * low four bits) to a page protection mask..
169 */
170extern pgprot_t protection_map[16];
171
d0217ac0
NP
172#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
173#define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
c2ec175c 174#define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
d065bd81 175#define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */
318b275f 176#define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */
37b23e05 177#define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */
45cac65b 178#define FAULT_FLAG_TRIED 0x40 /* second try */
759496ba 179#define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */
d0217ac0 180
54cb8821 181/*
d0217ac0 182 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
183 * ->fault function. The vma's ->fault is responsible for returning a bitmask
184 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 185 *
d0217ac0 186 * pgoff should be used in favour of virtual_address, if possible. If pgoff
0b173bc4 187 * is used, one may implement ->remap_pages to get nonlinear mapping support.
54cb8821 188 */
d0217ac0
NP
189struct vm_fault {
190 unsigned int flags; /* FAULT_FLAG_xxx flags */
191 pgoff_t pgoff; /* Logical page offset based on vma */
192 void __user *virtual_address; /* Faulting virtual address */
193
194 struct page *page; /* ->fault handlers should return a
83c54070 195 * page here, unless VM_FAULT_NOPAGE
d0217ac0 196 * is set (which is also implied by
83c54070 197 * VM_FAULT_ERROR).
d0217ac0 198 */
54cb8821 199};
1da177e4
LT
200
201/*
202 * These are the virtual MM functions - opening of an area, closing and
203 * unmapping it (needed to keep files on disk up-to-date etc), pointer
204 * to the functions called when a no-page or a wp-page exception occurs.
205 */
206struct vm_operations_struct {
207 void (*open)(struct vm_area_struct * area);
208 void (*close)(struct vm_area_struct * area);
d0217ac0 209 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
210
211 /* notification that a previously read-only page is about to become
212 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 213 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20
RR
214
215 /* called by access_process_vm when get_user_pages() fails, typically
216 * for use by special VMAs that can switch between memory and hardware
217 */
218 int (*access)(struct vm_area_struct *vma, unsigned long addr,
219 void *buf, int len, int write);
1da177e4 220#ifdef CONFIG_NUMA
a6020ed7
LS
221 /*
222 * set_policy() op must add a reference to any non-NULL @new mempolicy
223 * to hold the policy upon return. Caller should pass NULL @new to
224 * remove a policy and fall back to surrounding context--i.e. do not
225 * install a MPOL_DEFAULT policy, nor the task or system default
226 * mempolicy.
227 */
1da177e4 228 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
229
230 /*
231 * get_policy() op must add reference [mpol_get()] to any policy at
232 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
233 * in mm/mempolicy.c will do this automatically.
234 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
235 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
236 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
237 * must return NULL--i.e., do not "fallback" to task or system default
238 * policy.
239 */
1da177e4
LT
240 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
241 unsigned long addr);
7b2259b3
CL
242 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
243 const nodemask_t *to, unsigned long flags);
1da177e4 244#endif
0b173bc4
KK
245 /* called by sys_remap_file_pages() to populate non-linear mapping */
246 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr,
247 unsigned long size, pgoff_t pgoff);
1da177e4
LT
248};
249
250struct mmu_gather;
251struct inode;
252
349aef0b
AM
253#define page_private(page) ((page)->private)
254#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 255
b12c4ad1
MK
256/* It's valid only if the page is free path or free_list */
257static inline void set_freepage_migratetype(struct page *page, int migratetype)
258{
95e34412 259 page->index = migratetype;
b12c4ad1
MK
260}
261
262/* It's valid only if the page is free path or free_list */
263static inline int get_freepage_migratetype(struct page *page)
264{
95e34412 265 return page->index;
b12c4ad1
MK
266}
267
1da177e4
LT
268/*
269 * FIXME: take this include out, include page-flags.h in
270 * files which need it (119 of them)
271 */
272#include <linux/page-flags.h>
71e3aac0 273#include <linux/huge_mm.h>
1da177e4
LT
274
275/*
276 * Methods to modify the page usage count.
277 *
278 * What counts for a page usage:
279 * - cache mapping (page->mapping)
280 * - private data (page->private)
281 * - page mapped in a task's page tables, each mapping
282 * is counted separately
283 *
284 * Also, many kernel routines increase the page count before a critical
285 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
286 */
287
288/*
da6052f7 289 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 290 */
7c8ee9a8
NP
291static inline int put_page_testzero(struct page *page)
292{
725d704e 293 VM_BUG_ON(atomic_read(&page->_count) == 0);
8dc04efb 294 return atomic_dec_and_test(&page->_count);
7c8ee9a8 295}
1da177e4
LT
296
297/*
7c8ee9a8
NP
298 * Try to grab a ref unless the page has a refcount of zero, return false if
299 * that is the case.
1da177e4 300 */
7c8ee9a8
NP
301static inline int get_page_unless_zero(struct page *page)
302{
8dc04efb 303 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 304}
1da177e4 305
53df8fdc
WF
306extern int page_is_ram(unsigned long pfn);
307
48667e7a 308/* Support for virtually mapped pages */
b3bdda02
CL
309struct page *vmalloc_to_page(const void *addr);
310unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 311
0738c4bb
PM
312/*
313 * Determine if an address is within the vmalloc range
314 *
315 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
316 * is no special casing required.
317 */
9e2779fa
CL
318static inline int is_vmalloc_addr(const void *x)
319{
0738c4bb 320#ifdef CONFIG_MMU
9e2779fa
CL
321 unsigned long addr = (unsigned long)x;
322
323 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
324#else
325 return 0;
8ca3ed87 326#endif
0738c4bb 327}
81ac3ad9
KH
328#ifdef CONFIG_MMU
329extern int is_vmalloc_or_module_addr(const void *x);
330#else
934831d0 331static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
332{
333 return 0;
334}
335#endif
9e2779fa 336
e9da73d6
AA
337static inline void compound_lock(struct page *page)
338{
339#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 340 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
341 bit_spin_lock(PG_compound_lock, &page->flags);
342#endif
343}
344
345static inline void compound_unlock(struct page *page)
346{
347#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5bf5f03c 348 VM_BUG_ON(PageSlab(page));
e9da73d6
AA
349 bit_spin_unlock(PG_compound_lock, &page->flags);
350#endif
351}
352
353static inline unsigned long compound_lock_irqsave(struct page *page)
354{
355 unsigned long uninitialized_var(flags);
356#ifdef CONFIG_TRANSPARENT_HUGEPAGE
357 local_irq_save(flags);
358 compound_lock(page);
359#endif
360 return flags;
361}
362
363static inline void compound_unlock_irqrestore(struct page *page,
364 unsigned long flags)
365{
366#ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 compound_unlock(page);
368 local_irq_restore(flags);
369#endif
370}
371
d85f3385
CL
372static inline struct page *compound_head(struct page *page)
373{
6d777953 374 if (unlikely(PageTail(page)))
d85f3385
CL
375 return page->first_page;
376 return page;
377}
378
70b50f94
AA
379/*
380 * The atomic page->_mapcount, starts from -1: so that transitions
381 * both from it and to it can be tracked, using atomic_inc_and_test
382 * and atomic_add_negative(-1).
383 */
22b751c3 384static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
385{
386 atomic_set(&(page)->_mapcount, -1);
387}
388
389static inline int page_mapcount(struct page *page)
390{
391 return atomic_read(&(page)->_mapcount) + 1;
392}
393
4c21e2f2 394static inline int page_count(struct page *page)
1da177e4 395{
d85f3385 396 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
397}
398
b35a35b5
AA
399static inline void get_huge_page_tail(struct page *page)
400{
401 /*
402 * __split_huge_page_refcount() cannot run
403 * from under us.
404 */
405 VM_BUG_ON(page_mapcount(page) < 0);
406 VM_BUG_ON(atomic_read(&page->_count) != 0);
407 atomic_inc(&page->_mapcount);
408}
409
70b50f94
AA
410extern bool __get_page_tail(struct page *page);
411
1da177e4
LT
412static inline void get_page(struct page *page)
413{
70b50f94
AA
414 if (unlikely(PageTail(page)))
415 if (likely(__get_page_tail(page)))
416 return;
91807063
AA
417 /*
418 * Getting a normal page or the head of a compound page
70b50f94 419 * requires to already have an elevated page->_count.
91807063 420 */
70b50f94 421 VM_BUG_ON(atomic_read(&page->_count) <= 0);
1da177e4
LT
422 atomic_inc(&page->_count);
423}
424
b49af68f
CL
425static inline struct page *virt_to_head_page(const void *x)
426{
427 struct page *page = virt_to_page(x);
428 return compound_head(page);
429}
430
7835e98b
NP
431/*
432 * Setup the page count before being freed into the page allocator for
433 * the first time (boot or memory hotplug)
434 */
435static inline void init_page_count(struct page *page)
436{
437 atomic_set(&page->_count, 1);
438}
439
5f24ce5f
AA
440/*
441 * PageBuddy() indicate that the page is free and in the buddy system
442 * (see mm/page_alloc.c).
ef2b4b95
AA
443 *
444 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to
445 * -2 so that an underflow of the page_mapcount() won't be mistaken
446 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very
447 * efficiently by most CPU architectures.
5f24ce5f 448 */
ef2b4b95
AA
449#define PAGE_BUDDY_MAPCOUNT_VALUE (-128)
450
5f24ce5f
AA
451static inline int PageBuddy(struct page *page)
452{
ef2b4b95 453 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE;
5f24ce5f
AA
454}
455
456static inline void __SetPageBuddy(struct page *page)
457{
458 VM_BUG_ON(atomic_read(&page->_mapcount) != -1);
ef2b4b95 459 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE);
5f24ce5f
AA
460}
461
462static inline void __ClearPageBuddy(struct page *page)
463{
464 VM_BUG_ON(!PageBuddy(page));
465 atomic_set(&page->_mapcount, -1);
466}
467
1da177e4 468void put_page(struct page *page);
1d7ea732 469void put_pages_list(struct list_head *pages);
1da177e4 470
8dfcc9ba 471void split_page(struct page *page, unsigned int order);
748446bb 472int split_free_page(struct page *page);
8dfcc9ba 473
33f2ef89
AW
474/*
475 * Compound pages have a destructor function. Provide a
476 * prototype for that function and accessor functions.
477 * These are _only_ valid on the head of a PG_compound page.
478 */
479typedef void compound_page_dtor(struct page *);
480
481static inline void set_compound_page_dtor(struct page *page,
482 compound_page_dtor *dtor)
483{
484 page[1].lru.next = (void *)dtor;
485}
486
487static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
488{
489 return (compound_page_dtor *)page[1].lru.next;
490}
491
d85f3385
CL
492static inline int compound_order(struct page *page)
493{
6d777953 494 if (!PageHead(page))
d85f3385
CL
495 return 0;
496 return (unsigned long)page[1].lru.prev;
497}
498
499static inline void set_compound_order(struct page *page, unsigned long order)
500{
501 page[1].lru.prev = (void *)order;
502}
503
3dece370 504#ifdef CONFIG_MMU
14fd403f
AA
505/*
506 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
507 * servicing faults for write access. In the normal case, do always want
508 * pte_mkwrite. But get_user_pages can cause write faults for mappings
509 * that do not have writing enabled, when used by access_process_vm.
510 */
511static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
512{
513 if (likely(vma->vm_flags & VM_WRITE))
514 pte = pte_mkwrite(pte);
515 return pte;
516}
3dece370 517#endif
14fd403f 518
1da177e4
LT
519/*
520 * Multiple processes may "see" the same page. E.g. for untouched
521 * mappings of /dev/null, all processes see the same page full of
522 * zeroes, and text pages of executables and shared libraries have
523 * only one copy in memory, at most, normally.
524 *
525 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
526 * page_count() == 0 means the page is free. page->lru is then used for
527 * freelist management in the buddy allocator.
da6052f7 528 * page_count() > 0 means the page has been allocated.
1da177e4 529 *
da6052f7
NP
530 * Pages are allocated by the slab allocator in order to provide memory
531 * to kmalloc and kmem_cache_alloc. In this case, the management of the
532 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
533 * unless a particular usage is carefully commented. (the responsibility of
534 * freeing the kmalloc memory is the caller's, of course).
1da177e4 535 *
da6052f7
NP
536 * A page may be used by anyone else who does a __get_free_page().
537 * In this case, page_count still tracks the references, and should only
538 * be used through the normal accessor functions. The top bits of page->flags
539 * and page->virtual store page management information, but all other fields
540 * are unused and could be used privately, carefully. The management of this
541 * page is the responsibility of the one who allocated it, and those who have
542 * subsequently been given references to it.
543 *
544 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
545 * managed by the Linux memory manager: I/O, buffers, swapping etc.
546 * The following discussion applies only to them.
547 *
da6052f7
NP
548 * A pagecache page contains an opaque `private' member, which belongs to the
549 * page's address_space. Usually, this is the address of a circular list of
550 * the page's disk buffers. PG_private must be set to tell the VM to call
551 * into the filesystem to release these pages.
1da177e4 552 *
da6052f7
NP
553 * A page may belong to an inode's memory mapping. In this case, page->mapping
554 * is the pointer to the inode, and page->index is the file offset of the page,
555 * in units of PAGE_CACHE_SIZE.
1da177e4 556 *
da6052f7
NP
557 * If pagecache pages are not associated with an inode, they are said to be
558 * anonymous pages. These may become associated with the swapcache, and in that
559 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 560 *
da6052f7
NP
561 * In either case (swapcache or inode backed), the pagecache itself holds one
562 * reference to the page. Setting PG_private should also increment the
563 * refcount. The each user mapping also has a reference to the page.
1da177e4 564 *
da6052f7
NP
565 * The pagecache pages are stored in a per-mapping radix tree, which is
566 * rooted at mapping->page_tree, and indexed by offset.
567 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
568 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 569 *
da6052f7 570 * All pagecache pages may be subject to I/O:
1da177e4
LT
571 * - inode pages may need to be read from disk,
572 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
573 * to be written back to the inode on disk,
574 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
575 * modified may need to be swapped out to swap space and (later) to be read
576 * back into memory.
1da177e4
LT
577 */
578
579/*
580 * The zone field is never updated after free_area_init_core()
581 * sets it, so none of the operations on it need to be atomic.
1da177e4 582 */
348f8b6c 583
90572890 584/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 585#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
586#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
587#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 588#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 589
348f8b6c 590/*
25985edc 591 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
592 * sections we define the shift as 0; that plus a 0 mask ensures
593 * the compiler will optimise away reference to them.
594 */
d41dee36
AW
595#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
596#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
597#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 598#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 599
bce54bbf
WD
600/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
601#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 602#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
603#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
604 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 605#else
89689ae7 606#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
607#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
608 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
609#endif
610
bd8029b6 611#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 612
9223b419
CL
613#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
614#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
615#endif
616
d41dee36
AW
617#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
618#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
619#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
90572890 620#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_WIDTH) - 1)
89689ae7 621#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 622
33dd4e0e 623static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 624{
348f8b6c 625 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 626}
1da177e4 627
9127ab4f
CS
628#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
629#define SECTION_IN_PAGE_FLAGS
630#endif
631
89689ae7 632/*
7a8010cd
VB
633 * The identification function is mainly used by the buddy allocator for
634 * determining if two pages could be buddies. We are not really identifying
635 * the zone since we could be using the section number id if we do not have
636 * node id available in page flags.
637 * We only guarantee that it will return the same value for two combinable
638 * pages in a zone.
89689ae7 639 */
cb2b95e1
AW
640static inline int page_zone_id(struct page *page)
641{
89689ae7 642 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
643}
644
25ba77c1 645static inline int zone_to_nid(struct zone *zone)
89fa3024 646{
d5f541ed
CL
647#ifdef CONFIG_NUMA
648 return zone->node;
649#else
650 return 0;
651#endif
89fa3024
CL
652}
653
89689ae7 654#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 655extern int page_to_nid(const struct page *page);
89689ae7 656#else
33dd4e0e 657static inline int page_to_nid(const struct page *page)
d41dee36 658{
89689ae7 659 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 660}
89689ae7
CL
661#endif
662
57e0a030 663#ifdef CONFIG_NUMA_BALANCING
90572890 664static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 665{
90572890 666 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
667}
668
90572890 669static inline int cpupid_to_pid(int cpupid)
57e0a030 670{
90572890 671 return cpupid & LAST__PID_MASK;
57e0a030 672}
b795854b 673
90572890 674static inline int cpupid_to_cpu(int cpupid)
b795854b 675{
90572890 676 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
677}
678
90572890 679static inline int cpupid_to_nid(int cpupid)
b795854b 680{
90572890 681 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
682}
683
90572890 684static inline bool cpupid_pid_unset(int cpupid)
57e0a030 685{
90572890 686 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
687}
688
90572890 689static inline bool cpupid_cpu_unset(int cpupid)
b795854b 690{
90572890 691 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
692}
693
90572890
PZ
694#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
695static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 696{
90572890 697 return xchg(&page->_last_cpupid, cpupid);
b795854b 698}
90572890
PZ
699
700static inline int page_cpupid_last(struct page *page)
701{
702 return page->_last_cpupid;
703}
704static inline void page_cpupid_reset_last(struct page *page)
b795854b 705{
90572890 706 page->_last_cpupid = -1;
57e0a030
MG
707}
708#else
90572890 709static inline int page_cpupid_last(struct page *page)
75980e97 710{
90572890 711 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
712}
713
90572890 714extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 715
90572890 716static inline void page_cpupid_reset_last(struct page *page)
75980e97 717{
90572890 718 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 719
90572890
PZ
720 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
721 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 722}
90572890
PZ
723#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
724#else /* !CONFIG_NUMA_BALANCING */
725static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 726{
90572890 727 return page_to_nid(page); /* XXX */
57e0a030
MG
728}
729
90572890 730static inline int page_cpupid_last(struct page *page)
57e0a030 731{
90572890 732 return page_to_nid(page); /* XXX */
57e0a030
MG
733}
734
90572890 735static inline int cpupid_to_nid(int cpupid)
b795854b
MG
736{
737 return -1;
738}
739
90572890 740static inline int cpupid_to_pid(int cpupid)
b795854b
MG
741{
742 return -1;
743}
744
90572890 745static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
746{
747 return -1;
748}
749
90572890
PZ
750static inline int cpu_pid_to_cpupid(int nid, int pid)
751{
752 return -1;
753}
754
755static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
756{
757 return 1;
758}
759
90572890 760static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
761{
762}
90572890 763#endif /* CONFIG_NUMA_BALANCING */
57e0a030 764
33dd4e0e 765static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
766{
767 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
768}
769
9127ab4f 770#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
771static inline void set_page_section(struct page *page, unsigned long section)
772{
773 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
774 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
775}
776
aa462abe 777static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
778{
779 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
780}
308c05e3 781#endif
d41dee36 782
2f1b6248 783static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
784{
785 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
786 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
787}
2f1b6248 788
348f8b6c
DH
789static inline void set_page_node(struct page *page, unsigned long node)
790{
791 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
792 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 793}
89689ae7 794
2f1b6248 795static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 796 unsigned long node, unsigned long pfn)
1da177e4 797{
348f8b6c
DH
798 set_page_zone(page, zone);
799 set_page_node(page, node);
9127ab4f 800#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 801 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 802#endif
1da177e4
LT
803}
804
f6ac2354
CL
805/*
806 * Some inline functions in vmstat.h depend on page_zone()
807 */
808#include <linux/vmstat.h>
809
33dd4e0e 810static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 811{
aa462abe 812 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
813}
814
815#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
816#define HASHED_PAGE_VIRTUAL
817#endif
818
819#if defined(WANT_PAGE_VIRTUAL)
820#define page_address(page) ((page)->virtual)
821#define set_page_address(page, address) \
822 do { \
823 (page)->virtual = (address); \
824 } while(0)
825#define page_address_init() do { } while(0)
826#endif
827
828#if defined(HASHED_PAGE_VIRTUAL)
f9918794 829void *page_address(const struct page *page);
1da177e4
LT
830void set_page_address(struct page *page, void *virtual);
831void page_address_init(void);
832#endif
833
834#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
835#define page_address(page) lowmem_page_address(page)
836#define set_page_address(page, address) do { } while(0)
837#define page_address_init() do { } while(0)
838#endif
839
840/*
841 * On an anonymous page mapped into a user virtual memory area,
842 * page->mapping points to its anon_vma, not to a struct address_space;
3ca7b3c5
HD
843 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h.
844 *
845 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled,
846 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit;
847 * and then page->mapping points, not to an anon_vma, but to a private
848 * structure which KSM associates with that merged page. See ksm.h.
849 *
850 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used.
1da177e4
LT
851 *
852 * Please note that, confusingly, "page_mapping" refers to the inode
853 * address_space which maps the page from disk; whereas "page_mapped"
854 * refers to user virtual address space into which the page is mapped.
855 */
856#define PAGE_MAPPING_ANON 1
3ca7b3c5
HD
857#define PAGE_MAPPING_KSM 2
858#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM)
1da177e4 859
9800339b 860extern struct address_space *page_mapping(struct page *page);
1da177e4 861
3ca7b3c5
HD
862/* Neutral page->mapping pointer to address_space or anon_vma or other */
863static inline void *page_rmapping(struct page *page)
864{
865 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS);
866}
867
f981c595
MG
868extern struct address_space *__page_file_mapping(struct page *);
869
870static inline
871struct address_space *page_file_mapping(struct page *page)
872{
873 if (unlikely(PageSwapCache(page)))
874 return __page_file_mapping(page);
875
876 return page->mapping;
877}
878
1da177e4
LT
879static inline int PageAnon(struct page *page)
880{
881 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
882}
883
884/*
885 * Return the pagecache index of the passed page. Regular pagecache pages
886 * use ->index whereas swapcache pages use ->private
887 */
888static inline pgoff_t page_index(struct page *page)
889{
890 if (unlikely(PageSwapCache(page)))
4c21e2f2 891 return page_private(page);
1da177e4
LT
892 return page->index;
893}
894
f981c595
MG
895extern pgoff_t __page_file_index(struct page *page);
896
897/*
898 * Return the file index of the page. Regular pagecache pages use ->index
899 * whereas swapcache pages use swp_offset(->private)
900 */
901static inline pgoff_t page_file_index(struct page *page)
902{
903 if (unlikely(PageSwapCache(page)))
904 return __page_file_index(page);
905
906 return page->index;
907}
908
1da177e4
LT
909/*
910 * Return true if this page is mapped into pagetables.
911 */
912static inline int page_mapped(struct page *page)
913{
914 return atomic_read(&(page)->_mapcount) >= 0;
915}
916
1da177e4
LT
917/*
918 * Different kinds of faults, as returned by handle_mm_fault().
919 * Used to decide whether a process gets delivered SIGBUS or
920 * just gets major/minor fault counters bumped up.
921 */
d0217ac0 922
83c54070 923#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 924
83c54070
NP
925#define VM_FAULT_OOM 0x0001
926#define VM_FAULT_SIGBUS 0x0002
927#define VM_FAULT_MAJOR 0x0004
928#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
929#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
930#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
f33ea7f4 931
83c54070
NP
932#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
933#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 934#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 935#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 936
aa50d3a7
AK
937#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
938
939#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \
c0292554 940 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE)
aa50d3a7
AK
941
942/* Encode hstate index for a hwpoisoned large page */
943#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
944#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 945
1c0fe6e3
NP
946/*
947 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
948 */
949extern void pagefault_out_of_memory(void);
950
1da177e4
LT
951#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
952
ddd588b5 953/*
7bf02ea2 954 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
955 * various contexts.
956 */
4b59e6c4
DR
957#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
958#define SHOW_MEM_FILTER_PAGE_COUNT (0x0002u) /* page type count */
ddd588b5 959
7bf02ea2
DR
960extern void show_free_areas(unsigned int flags);
961extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 962
1da177e4
LT
963int shmem_zero_setup(struct vm_area_struct *);
964
e8edc6e0 965extern int can_do_mlock(void);
1da177e4
LT
966extern int user_shm_lock(size_t, struct user_struct *);
967extern void user_shm_unlock(size_t, struct user_struct *);
968
969/*
970 * Parameter block passed down to zap_pte_range in exceptional cases.
971 */
972struct zap_details {
973 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
974 struct address_space *check_mapping; /* Check page->mapping if set */
975 pgoff_t first_index; /* Lowest page->index to unmap */
976 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
977};
978
7e675137
NP
979struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
980 pte_t pte);
981
c627f9cc
JS
982int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
983 unsigned long size);
14f5ff5d 984void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 985 unsigned long size, struct zap_details *);
4f74d2c8
LT
986void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
987 unsigned long start, unsigned long end);
e6473092
MM
988
989/**
990 * mm_walk - callbacks for walk_page_range
991 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
992 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
993 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
994 * this handler is required to be able to handle
995 * pmd_trans_huge() pmds. They may simply choose to
996 * split_huge_page() instead of handling it explicitly.
e6473092
MM
997 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
998 * @pte_hole: if set, called for each hole at all levels
5dc37642 999 * @hugetlb_entry: if set, called for each hugetlb entry
c27fe4c8
KM
1000 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry
1001 * is used.
e6473092
MM
1002 *
1003 * (see walk_page_range for more details)
1004 */
1005struct mm_walk {
0f157a5b
AM
1006 int (*pgd_entry)(pgd_t *pgd, unsigned long addr,
1007 unsigned long next, struct mm_walk *walk);
1008 int (*pud_entry)(pud_t *pud, unsigned long addr,
1009 unsigned long next, struct mm_walk *walk);
1010 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1011 unsigned long next, struct mm_walk *walk);
1012 int (*pte_entry)(pte_t *pte, unsigned long addr,
1013 unsigned long next, struct mm_walk *walk);
1014 int (*pte_hole)(unsigned long addr, unsigned long next,
1015 struct mm_walk *walk);
1016 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1017 unsigned long addr, unsigned long next,
1018 struct mm_walk *walk);
2165009b
DH
1019 struct mm_struct *mm;
1020 void *private;
e6473092
MM
1021};
1022
2165009b
DH
1023int walk_page_range(unsigned long addr, unsigned long end,
1024 struct mm_walk *walk);
42b77728 1025void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1026 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1027int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1028 struct vm_area_struct *vma);
1da177e4
LT
1029void unmap_mapping_range(struct address_space *mapping,
1030 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1031int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1032 unsigned long *pfn);
d87fe660 1033int follow_phys(struct vm_area_struct *vma, unsigned long address,
1034 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1035int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1036 void *buf, int len, int write);
1da177e4
LT
1037
1038static inline void unmap_shared_mapping_range(struct address_space *mapping,
1039 loff_t const holebegin, loff_t const holelen)
1040{
1041 unmap_mapping_range(mapping, holebegin, holelen, 0);
1042}
1043
7caef267 1044extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1045extern void truncate_setsize(struct inode *inode, loff_t newsize);
623e3db9 1046void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1047int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1048int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1049int invalidate_inode_page(struct page *page);
1050
7ee1dd3f 1051#ifdef CONFIG_MMU
83c54070 1052extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1053 unsigned long address, unsigned int flags);
5c723ba5
PZ
1054extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1055 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1056#else
1057static inline int handle_mm_fault(struct mm_struct *mm,
1058 struct vm_area_struct *vma, unsigned long address,
d06063cc 1059 unsigned int flags)
7ee1dd3f
DH
1060{
1061 /* should never happen if there's no MMU */
1062 BUG();
1063 return VM_FAULT_SIGBUS;
1064}
5c723ba5
PZ
1065static inline int fixup_user_fault(struct task_struct *tsk,
1066 struct mm_struct *mm, unsigned long address,
1067 unsigned int fault_flags)
1068{
1069 /* should never happen if there's no MMU */
1070 BUG();
1071 return -EFAULT;
1072}
7ee1dd3f 1073#endif
f33ea7f4 1074
1da177e4 1075extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1076extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1077 void *buf, int len, int write);
1da177e4 1078
28a35716
ML
1079long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1080 unsigned long start, unsigned long nr_pages,
1081 unsigned int foll_flags, struct page **pages,
1082 struct vm_area_struct **vmas, int *nonblocking);
1083long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1084 unsigned long start, unsigned long nr_pages,
1085 int write, int force, struct page **pages,
1086 struct vm_area_struct **vmas);
d2bf6be8
NP
1087int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1088 struct page **pages);
18022c5d
MG
1089struct kvec;
1090int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1091 struct page **pages);
1092int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1093struct page *get_dump_page(unsigned long addr);
1da177e4 1094
cf9a2ae8 1095extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1096extern void do_invalidatepage(struct page *page, unsigned int offset,
1097 unsigned int length);
cf9a2ae8 1098
1da177e4 1099int __set_page_dirty_nobuffers(struct page *page);
76719325 1100int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1101int redirty_page_for_writepage(struct writeback_control *wbc,
1102 struct page *page);
e3a7cca1 1103void account_page_dirtied(struct page *page, struct address_space *mapping);
f629d1c9 1104void account_page_writeback(struct page *page);
b3c97528 1105int set_page_dirty(struct page *page);
1da177e4
LT
1106int set_page_dirty_lock(struct page *page);
1107int clear_page_dirty_for_io(struct page *page);
1108
39aa3cb3 1109/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1110static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1111{
1112 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1113}
1114
a09a79f6
MP
1115static inline int stack_guard_page_start(struct vm_area_struct *vma,
1116 unsigned long addr)
1117{
1118 return (vma->vm_flags & VM_GROWSDOWN) &&
1119 (vma->vm_start == addr) &&
1120 !vma_growsdown(vma->vm_prev, addr);
1121}
1122
1123/* Is the vma a continuation of the stack vma below it? */
1124static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1125{
1126 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1127}
1128
1129static inline int stack_guard_page_end(struct vm_area_struct *vma,
1130 unsigned long addr)
1131{
1132 return (vma->vm_flags & VM_GROWSUP) &&
1133 (vma->vm_end == addr) &&
1134 !vma_growsup(vma->vm_next, addr);
1135}
1136
b7643757
SP
1137extern pid_t
1138vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group);
1139
b6a2fea3
OW
1140extern unsigned long move_page_tables(struct vm_area_struct *vma,
1141 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1142 unsigned long new_addr, unsigned long len,
1143 bool need_rmap_locks);
7da4d641
PZ
1144extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1145 unsigned long end, pgprot_t newprot,
4b10e7d5 1146 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1147extern int mprotect_fixup(struct vm_area_struct *vma,
1148 struct vm_area_struct **pprev, unsigned long start,
1149 unsigned long end, unsigned long newflags);
1da177e4 1150
465a454f
PZ
1151/*
1152 * doesn't attempt to fault and will return short.
1153 */
1154int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1155 struct page **pages);
d559db08
KH
1156/*
1157 * per-process(per-mm_struct) statistics.
1158 */
d559db08
KH
1159static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1160{
69c97823
KK
1161 long val = atomic_long_read(&mm->rss_stat.count[member]);
1162
1163#ifdef SPLIT_RSS_COUNTING
1164 /*
1165 * counter is updated in asynchronous manner and may go to minus.
1166 * But it's never be expected number for users.
1167 */
1168 if (val < 0)
1169 val = 0;
172703b0 1170#endif
69c97823
KK
1171 return (unsigned long)val;
1172}
d559db08
KH
1173
1174static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1175{
172703b0 1176 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1177}
1178
1179static inline void inc_mm_counter(struct mm_struct *mm, int member)
1180{
172703b0 1181 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1182}
1183
1184static inline void dec_mm_counter(struct mm_struct *mm, int member)
1185{
172703b0 1186 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1187}
1188
d559db08
KH
1189static inline unsigned long get_mm_rss(struct mm_struct *mm)
1190{
1191 return get_mm_counter(mm, MM_FILEPAGES) +
1192 get_mm_counter(mm, MM_ANONPAGES);
1193}
1194
1195static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1196{
1197 return max(mm->hiwater_rss, get_mm_rss(mm));
1198}
1199
1200static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1201{
1202 return max(mm->hiwater_vm, mm->total_vm);
1203}
1204
1205static inline void update_hiwater_rss(struct mm_struct *mm)
1206{
1207 unsigned long _rss = get_mm_rss(mm);
1208
1209 if ((mm)->hiwater_rss < _rss)
1210 (mm)->hiwater_rss = _rss;
1211}
1212
1213static inline void update_hiwater_vm(struct mm_struct *mm)
1214{
1215 if (mm->hiwater_vm < mm->total_vm)
1216 mm->hiwater_vm = mm->total_vm;
1217}
1218
1219static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1220 struct mm_struct *mm)
1221{
1222 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1223
1224 if (*maxrss < hiwater_rss)
1225 *maxrss = hiwater_rss;
1226}
1227
53bddb4e 1228#if defined(SPLIT_RSS_COUNTING)
05af2e10 1229void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1230#else
05af2e10 1231static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1232{
1233}
1234#endif
465a454f 1235
4e950f6f 1236int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1237
25ca1d6c
NK
1238extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1239 spinlock_t **ptl);
1240static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1241 spinlock_t **ptl)
1242{
1243 pte_t *ptep;
1244 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1245 return ptep;
1246}
c9cfcddf 1247
5f22df00
NP
1248#ifdef __PAGETABLE_PUD_FOLDED
1249static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1250 unsigned long address)
1251{
1252 return 0;
1253}
1254#else
1bb3630e 1255int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1256#endif
1257
1258#ifdef __PAGETABLE_PMD_FOLDED
1259static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1260 unsigned long address)
1261{
1262 return 0;
1263}
1264#else
1bb3630e 1265int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
5f22df00
NP
1266#endif
1267
8ac1f832
AA
1268int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1269 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1270int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1271
1da177e4
LT
1272/*
1273 * The following ifdef needed to get the 4level-fixup.h header to work.
1274 * Remove it when 4level-fixup.h has been removed.
1275 */
1bb3630e 1276#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1277static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1278{
1bb3630e
HD
1279 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1280 NULL: pud_offset(pgd, address);
1da177e4
LT
1281}
1282
1283static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1284{
1bb3630e
HD
1285 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1286 NULL: pmd_offset(pud, address);
1da177e4 1287}
1bb3630e
HD
1288#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1289
f7d0b926 1290#if USE_SPLIT_PTLOCKS
4c21e2f2
HD
1291/*
1292 * We tuck a spinlock to guard each pagetable page into its struct page,
1293 * at page->private, with BUILD_BUG_ON to make sure that this will not
1294 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
1295 * When freeing, reset page->mapping so free_pages_check won't complain.
1296 */
349aef0b 1297#define __pte_lockptr(page) &((page)->ptl)
4c21e2f2
HD
1298#define pte_lock_init(_page) do { \
1299 spin_lock_init(__pte_lockptr(_page)); \
1300} while (0)
1301#define pte_lock_deinit(page) ((page)->mapping = NULL)
1302#define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
f7d0b926 1303#else /* !USE_SPLIT_PTLOCKS */
4c21e2f2
HD
1304/*
1305 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1306 */
1307#define pte_lock_init(page) do {} while (0)
1308#define pte_lock_deinit(page) do {} while (0)
1309#define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
f7d0b926 1310#endif /* USE_SPLIT_PTLOCKS */
4c21e2f2 1311
2f569afd
MS
1312static inline void pgtable_page_ctor(struct page *page)
1313{
1314 pte_lock_init(page);
1315 inc_zone_page_state(page, NR_PAGETABLE);
1316}
1317
1318static inline void pgtable_page_dtor(struct page *page)
1319{
1320 pte_lock_deinit(page);
1321 dec_zone_page_state(page, NR_PAGETABLE);
1322}
1323
c74df32c
HD
1324#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1325({ \
4c21e2f2 1326 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1327 pte_t *__pte = pte_offset_map(pmd, address); \
1328 *(ptlp) = __ptl; \
1329 spin_lock(__ptl); \
1330 __pte; \
1331})
1332
1333#define pte_unmap_unlock(pte, ptl) do { \
1334 spin_unlock(ptl); \
1335 pte_unmap(pte); \
1336} while (0)
1337
8ac1f832
AA
1338#define pte_alloc_map(mm, vma, pmd, address) \
1339 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1340 pmd, address))? \
1341 NULL: pte_offset_map(pmd, address))
1bb3630e 1342
c74df32c 1343#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1344 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1345 pmd, address))? \
c74df32c
HD
1346 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1347
1bb3630e 1348#define pte_alloc_kernel(pmd, address) \
8ac1f832 1349 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1350 NULL: pte_offset_kernel(pmd, address))
1da177e4
LT
1351
1352extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1353extern void free_area_init_node(int nid, unsigned long * zones_size,
1354 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1355extern void free_initmem(void);
1356
69afade7
JL
1357/*
1358 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1359 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1360 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1361 * Return pages freed into the buddy system.
1362 */
11199692 1363extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1364 int poison, char *s);
c3d5f5f0 1365
cfa11e08
JL
1366#ifdef CONFIG_HIGHMEM
1367/*
1368 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1369 * and totalram_pages.
1370 */
1371extern void free_highmem_page(struct page *page);
1372#endif
69afade7 1373
c3d5f5f0 1374extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1375extern void mem_init_print_info(const char *str);
69afade7
JL
1376
1377/* Free the reserved page into the buddy system, so it gets managed. */
1378static inline void __free_reserved_page(struct page *page)
1379{
1380 ClearPageReserved(page);
1381 init_page_count(page);
1382 __free_page(page);
1383}
1384
1385static inline void free_reserved_page(struct page *page)
1386{
1387 __free_reserved_page(page);
1388 adjust_managed_page_count(page, 1);
1389}
1390
1391static inline void mark_page_reserved(struct page *page)
1392{
1393 SetPageReserved(page);
1394 adjust_managed_page_count(page, -1);
1395}
1396
1397/*
1398 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1399 * The freed pages will be poisoned with pattern "poison" if it's within
1400 * range [0, UCHAR_MAX].
1401 * Return pages freed into the buddy system.
69afade7
JL
1402 */
1403static inline unsigned long free_initmem_default(int poison)
1404{
1405 extern char __init_begin[], __init_end[];
1406
11199692 1407 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1408 poison, "unused kernel");
1409}
1410
7ee3d4e8
JL
1411static inline unsigned long get_num_physpages(void)
1412{
1413 int nid;
1414 unsigned long phys_pages = 0;
1415
1416 for_each_online_node(nid)
1417 phys_pages += node_present_pages(nid);
1418
1419 return phys_pages;
1420}
1421
0ee332c1 1422#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1423/*
0ee332c1 1424 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1425 * zones, allocate the backing mem_map and account for memory holes in a more
1426 * architecture independent manner. This is a substitute for creating the
1427 * zone_sizes[] and zholes_size[] arrays and passing them to
1428 * free_area_init_node()
1429 *
1430 * An architecture is expected to register range of page frames backed by
0ee332c1 1431 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1432 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1433 * usage, an architecture is expected to do something like
1434 *
1435 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1436 * max_highmem_pfn};
1437 * for_each_valid_physical_page_range()
0ee332c1 1438 * memblock_add_node(base, size, nid)
c713216d
MG
1439 * free_area_init_nodes(max_zone_pfns);
1440 *
0ee332c1
TH
1441 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1442 * registered physical page range. Similarly
1443 * sparse_memory_present_with_active_regions() calls memory_present() for
1444 * each range when SPARSEMEM is enabled.
c713216d
MG
1445 *
1446 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1447 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1448 */
1449extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1450unsigned long node_map_pfn_alignment(void);
32996250
YL
1451unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1452 unsigned long end_pfn);
c713216d
MG
1453extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1454 unsigned long end_pfn);
1455extern void get_pfn_range_for_nid(unsigned int nid,
1456 unsigned long *start_pfn, unsigned long *end_pfn);
1457extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1458extern void free_bootmem_with_active_regions(int nid,
1459 unsigned long max_low_pfn);
1460extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1461
0ee332c1 1462#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1463
0ee332c1 1464#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7
KH
1465 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1466static inline int __early_pfn_to_nid(unsigned long pfn)
1467{
1468 return 0;
1469}
1470#else
1471/* please see mm/page_alloc.c */
1472extern int __meminit early_pfn_to_nid(unsigned long pfn);
1473#ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1474/* there is a per-arch backend function. */
1475extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1476#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1477#endif
1478
0e0b864e 1479extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1480extern void memmap_init_zone(unsigned long, int, unsigned long,
1481 unsigned long, enum memmap_context);
bc75d33f 1482extern void setup_per_zone_wmarks(void);
1b79acc9 1483extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1484extern void mem_init(void);
8feae131 1485extern void __init mmap_init(void);
b2b755b5 1486extern void show_mem(unsigned int flags);
1da177e4
LT
1487extern void si_meminfo(struct sysinfo * val);
1488extern void si_meminfo_node(struct sysinfo *val, int nid);
1489
3ee9a4f0
JP
1490extern __printf(3, 4)
1491void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
a238ab5b 1492
e7c8d5c9 1493extern void setup_per_cpu_pageset(void);
e7c8d5c9 1494
112067f0 1495extern void zone_pcp_update(struct zone *zone);
340175b7 1496extern void zone_pcp_reset(struct zone *zone);
112067f0 1497
75f7ad8e
PS
1498/* page_alloc.c */
1499extern int min_free_kbytes;
1500
8feae131 1501/* nommu.c */
33e5d769 1502extern atomic_long_t mmap_pages_allocated;
7e660872 1503extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1504
6b2dbba8 1505/* interval_tree.c */
6b2dbba8
ML
1506void vma_interval_tree_insert(struct vm_area_struct *node,
1507 struct rb_root *root);
9826a516
ML
1508void vma_interval_tree_insert_after(struct vm_area_struct *node,
1509 struct vm_area_struct *prev,
1510 struct rb_root *root);
6b2dbba8
ML
1511void vma_interval_tree_remove(struct vm_area_struct *node,
1512 struct rb_root *root);
1513struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1514 unsigned long start, unsigned long last);
1515struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1516 unsigned long start, unsigned long last);
1517
1518#define vma_interval_tree_foreach(vma, root, start, last) \
1519 for (vma = vma_interval_tree_iter_first(root, start, last); \
1520 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4
LT
1521
1522static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1523 struct list_head *list)
1524{
6b2dbba8 1525 list_add_tail(&vma->shared.nonlinear, list);
1da177e4
LT
1526}
1527
bf181b9f
ML
1528void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1529 struct rb_root *root);
1530void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1531 struct rb_root *root);
1532struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1533 struct rb_root *root, unsigned long start, unsigned long last);
1534struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1535 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1536#ifdef CONFIG_DEBUG_VM_RB
1537void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1538#endif
bf181b9f
ML
1539
1540#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1541 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1542 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1543
1da177e4 1544/* mmap.c */
34b4e4aa 1545extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1546extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1547 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1548extern struct vm_area_struct *vma_merge(struct mm_struct *,
1549 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1550 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1551 struct mempolicy *);
1552extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1553extern int split_vma(struct mm_struct *,
1554 struct vm_area_struct *, unsigned long addr, int new_below);
1555extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1556extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1557 struct rb_node **, struct rb_node *);
a8fb5618 1558extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1559extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1560 unsigned long addr, unsigned long len, pgoff_t pgoff,
1561 bool *need_rmap_locks);
1da177e4 1562extern void exit_mmap(struct mm_struct *);
925d1c40 1563
7906d00c
AA
1564extern int mm_take_all_locks(struct mm_struct *mm);
1565extern void mm_drop_all_locks(struct mm_struct *mm);
1566
38646013
JS
1567extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1568extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1569
119f657c 1570extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
fa5dc22f
RM
1571extern int install_special_mapping(struct mm_struct *mm,
1572 unsigned long addr, unsigned long len,
1573 unsigned long flags, struct page **pages);
1da177e4
LT
1574
1575extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1576
0165ab44 1577extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1578 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
bebeb3d6
ML
1579extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1580 unsigned long len, unsigned long prot, unsigned long flags,
41badc15 1581 unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1582extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1583
bebeb3d6
ML
1584#ifdef CONFIG_MMU
1585extern int __mm_populate(unsigned long addr, unsigned long len,
1586 int ignore_errors);
1587static inline void mm_populate(unsigned long addr, unsigned long len)
1588{
1589 /* Ignore errors */
1590 (void) __mm_populate(addr, len, 1);
1591}
1592#else
1593static inline void mm_populate(unsigned long addr, unsigned long len) {}
1594#endif
1595
e4eb1ff6
LT
1596/* These take the mm semaphore themselves */
1597extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1598extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1599extern unsigned long vm_mmap(struct file *, unsigned long,
1600 unsigned long, unsigned long,
1601 unsigned long, unsigned long);
1da177e4 1602
db4fbfb9
ML
1603struct vm_unmapped_area_info {
1604#define VM_UNMAPPED_AREA_TOPDOWN 1
1605 unsigned long flags;
1606 unsigned long length;
1607 unsigned long low_limit;
1608 unsigned long high_limit;
1609 unsigned long align_mask;
1610 unsigned long align_offset;
1611};
1612
1613extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1614extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1615
1616/*
1617 * Search for an unmapped address range.
1618 *
1619 * We are looking for a range that:
1620 * - does not intersect with any VMA;
1621 * - is contained within the [low_limit, high_limit) interval;
1622 * - is at least the desired size.
1623 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1624 */
1625static inline unsigned long
1626vm_unmapped_area(struct vm_unmapped_area_info *info)
1627{
1628 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN))
1629 return unmapped_area(info);
1630 else
1631 return unmapped_area_topdown(info);
1632}
1633
85821aab 1634/* truncate.c */
1da177e4 1635extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1636extern void truncate_inode_pages_range(struct address_space *,
1637 loff_t lstart, loff_t lend);
1da177e4
LT
1638
1639/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1640extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
4fcf1c62 1641extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1642
1643/* mm/page-writeback.c */
1644int write_one_page(struct page *page, int wait);
1cf6e7d8 1645void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1646
1647/* readahead.c */
1648#define VM_MAX_READAHEAD 128 /* kbytes */
1649#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 1650
1da177e4 1651int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 1652 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
1653
1654void page_cache_sync_readahead(struct address_space *mapping,
1655 struct file_ra_state *ra,
1656 struct file *filp,
1657 pgoff_t offset,
1658 unsigned long size);
1659
1660void page_cache_async_readahead(struct address_space *mapping,
1661 struct file_ra_state *ra,
1662 struct file *filp,
1663 struct page *pg,
1664 pgoff_t offset,
1665 unsigned long size);
1666
1da177e4 1667unsigned long max_sane_readahead(unsigned long nr);
d30a1100
WF
1668unsigned long ra_submit(struct file_ra_state *ra,
1669 struct address_space *mapping,
1670 struct file *filp);
1da177e4 1671
d05f3169 1672/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 1673extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
1674
1675/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1676extern int expand_downwards(struct vm_area_struct *vma,
1677 unsigned long address);
8ca3eb08 1678#if VM_GROWSUP
46dea3d0 1679extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08
LT
1680#else
1681 #define expand_upwards(vma, address) do { } while (0)
9ab88515 1682#endif
1da177e4
LT
1683
1684/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1685extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1686extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1687 struct vm_area_struct **pprev);
1688
1689/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1690 NULL if none. Assume start_addr < end_addr. */
1691static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1692{
1693 struct vm_area_struct * vma = find_vma(mm,start_addr);
1694
1695 if (vma && end_addr <= vma->vm_start)
1696 vma = NULL;
1697 return vma;
1698}
1699
1700static inline unsigned long vma_pages(struct vm_area_struct *vma)
1701{
1702 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1703}
1704
640708a2
PE
1705/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
1706static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
1707 unsigned long vm_start, unsigned long vm_end)
1708{
1709 struct vm_area_struct *vma = find_vma(mm, vm_start);
1710
1711 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
1712 vma = NULL;
1713
1714 return vma;
1715}
1716
bad849b3 1717#ifdef CONFIG_MMU
804af2cf 1718pgprot_t vm_get_page_prot(unsigned long vm_flags);
bad849b3
DH
1719#else
1720static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
1721{
1722 return __pgprot(0);
1723}
1724#endif
1725
b24f53a0 1726#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
4b10e7d5 1727unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
1728 unsigned long start, unsigned long end);
1729#endif
1730
deceb6cd 1731struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
1732int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1733 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 1734int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
1735int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1736 unsigned long pfn);
423bad60
NP
1737int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1738 unsigned long pfn);
b4cbb197
LT
1739int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
1740
deceb6cd 1741
240aadee
ML
1742struct page *follow_page_mask(struct vm_area_struct *vma,
1743 unsigned long address, unsigned int foll_flags,
1744 unsigned int *page_mask);
1745
1746static inline struct page *follow_page(struct vm_area_struct *vma,
1747 unsigned long address, unsigned int foll_flags)
1748{
1749 unsigned int unused_page_mask;
1750 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
1751}
1752
deceb6cd
HD
1753#define FOLL_WRITE 0x01 /* check pte is writable */
1754#define FOLL_TOUCH 0x02 /* mark page accessed */
1755#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 1756#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 1757#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
1758#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
1759 * and return without waiting upon it */
110d74a9 1760#define FOLL_MLOCK 0x40 /* mark page as mlocked */
500d65d4 1761#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 1762#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 1763#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 1764#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
1da177e4 1765
2f569afd 1766typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
1767 void *data);
1768extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1769 unsigned long size, pte_fn_t fn, void *data);
1770
1da177e4 1771#ifdef CONFIG_PROC_FS
ab50b8ed 1772void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1da177e4 1773#else
ab50b8ed 1774static inline void vm_stat_account(struct mm_struct *mm,
1da177e4
LT
1775 unsigned long flags, struct file *file, long pages)
1776{
44de9d0c 1777 mm->total_vm += pages;
1da177e4
LT
1778}
1779#endif /* CONFIG_PROC_FS */
1780
12d6f21e 1781#ifdef CONFIG_DEBUG_PAGEALLOC
12d6f21e 1782extern void kernel_map_pages(struct page *page, int numpages, int enable);
8a235efa
RW
1783#ifdef CONFIG_HIBERNATION
1784extern bool kernel_page_present(struct page *page);
1785#endif /* CONFIG_HIBERNATION */
12d6f21e 1786#else
1da177e4 1787static inline void
9858db50 1788kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
1789#ifdef CONFIG_HIBERNATION
1790static inline bool kernel_page_present(struct page *page) { return true; }
1791#endif /* CONFIG_HIBERNATION */
1da177e4
LT
1792#endif
1793
31db58b3 1794extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
1da177e4 1795#ifdef __HAVE_ARCH_GATE_AREA
cae5d390 1796int in_gate_area_no_mm(unsigned long addr);
83b964bb 1797int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 1798#else
cae5d390
SW
1799int in_gate_area_no_mm(unsigned long addr);
1800#define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);})
1da177e4
LT
1801#endif /* __HAVE_ARCH_GATE_AREA */
1802
146732ce
JT
1803#ifdef CONFIG_SYSCTL
1804extern int sysctl_drop_caches;
8d65af78 1805int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 1806 void __user *, size_t *, loff_t *);
146732ce
JT
1807#endif
1808
a09ed5e0 1809unsigned long shrink_slab(struct shrink_control *shrink,
1495f230
YH
1810 unsigned long nr_pages_scanned,
1811 unsigned long lru_pages);
9d0243bc 1812
7a9166e3
LY
1813#ifndef CONFIG_MMU
1814#define randomize_va_space 0
1815#else
a62eaf15 1816extern int randomize_va_space;
7a9166e3 1817#endif
a62eaf15 1818
045e72ac 1819const char * arch_vma_name(struct vm_area_struct *vma);
03252919 1820void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 1821
9bdac914
YL
1822void sparse_mem_maps_populate_node(struct page **map_map,
1823 unsigned long pnum_begin,
1824 unsigned long pnum_end,
1825 unsigned long map_count,
1826 int nodeid);
1827
98f3cfc1 1828struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
1829pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1830pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1831pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1832pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 1833void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 1834void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 1835void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
1836int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1837 int node);
1838int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 1839void vmemmap_populate_print_last(void);
0197518c 1840#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 1841void vmemmap_free(unsigned long start, unsigned long end);
0197518c 1842#endif
46723bfa
YI
1843void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
1844 unsigned long size);
6a46079c 1845
82ba011b
AK
1846enum mf_flags {
1847 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 1848 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 1849 MF_MUST_KILL = 1 << 2,
cf870c70 1850 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 1851};
cd42f4a3 1852extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 1853extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 1854extern int unpoison_memory(unsigned long pfn);
6a46079c
AK
1855extern int sysctl_memory_failure_early_kill;
1856extern int sysctl_memory_failure_recovery;
facb6011 1857extern void shake_page(struct page *p, int access);
293c07e3 1858extern atomic_long_t num_poisoned_pages;
facb6011 1859extern int soft_offline_page(struct page *page, int flags);
6a46079c 1860
718a3821
WF
1861extern void dump_page(struct page *page);
1862
47ad8475
AA
1863#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
1864extern void clear_huge_page(struct page *page,
1865 unsigned long addr,
1866 unsigned int pages_per_huge_page);
1867extern void copy_user_huge_page(struct page *dst, struct page *src,
1868 unsigned long addr, struct vm_area_struct *vma,
1869 unsigned int pages_per_huge_page);
1870#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
1871
c0a32fc5
SG
1872#ifdef CONFIG_DEBUG_PAGEALLOC
1873extern unsigned int _debug_guardpage_minorder;
1874
1875static inline unsigned int debug_guardpage_minorder(void)
1876{
1877 return _debug_guardpage_minorder;
1878}
1879
1880static inline bool page_is_guard(struct page *page)
1881{
1882 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
1883}
1884#else
1885static inline unsigned int debug_guardpage_minorder(void) { return 0; }
1886static inline bool page_is_guard(struct page *page) { return false; }
1887#endif /* CONFIG_DEBUG_PAGEALLOC */
1888
f9872caf
CS
1889#if MAX_NUMNODES > 1
1890void __init setup_nr_node_ids(void);
1891#else
1892static inline void setup_nr_node_ids(void) {}
1893#endif
1894
1da177e4
LT
1895#endif /* __KERNEL__ */
1896#endif /* _LINUX_MM_H */