Merge tag 'tpmdd-next-6.10-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / mm / util.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
16d69265 2#include <linux/mm.h>
30992c97
MM
3#include <linux/slab.h>
4#include <linux/string.h>
3b32123d 5#include <linux/compiler.h>
b95f1b31 6#include <linux/export.h>
96840aa0 7#include <linux/err.h>
3b8f14b4 8#include <linux/sched.h>
6e84f315 9#include <linux/sched/mm.h>
79eb597c 10#include <linux/sched/signal.h>
68db0cf1 11#include <linux/sched/task_stack.h>
eb36c587 12#include <linux/security.h>
9800339b 13#include <linux/swap.h>
33806f06 14#include <linux/swapops.h>
00619bcc
JM
15#include <linux/mman.h>
16#include <linux/hugetlb.h>
39f1f78d 17#include <linux/vmalloc.h>
897ab3e0 18#include <linux/userfaultfd_k.h>
649775be 19#include <linux/elf.h>
67f3977f
AG
20#include <linux/elf-randomize.h>
21#include <linux/personality.h>
649775be 22#include <linux/random.h>
67f3977f
AG
23#include <linux/processor.h>
24#include <linux/sizes.h>
25#include <linux/compat.h>
00619bcc 26
7c0f6ba6 27#include <linux/uaccess.h>
30992c97 28
6038def0 29#include "internal.h"
014bb1de 30#include "swap.h"
6038def0 31
a4bb1e43
AH
32/**
33 * kfree_const - conditionally free memory
34 * @x: pointer to the memory
35 *
36 * Function calls kfree only if @x is not in .rodata section.
37 */
38void kfree_const(const void *x)
39{
40 if (!is_kernel_rodata((unsigned long)x))
41 kfree(x);
42}
43EXPORT_SYMBOL(kfree_const);
44
30992c97 45/**
30992c97 46 * kstrdup - allocate space for and copy an existing string
30992c97
MM
47 * @s: the string to duplicate
48 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
49 *
50 * Return: newly allocated copy of @s or %NULL in case of error
30992c97 51 */
2a6772eb 52noinline
30992c97
MM
53char *kstrdup(const char *s, gfp_t gfp)
54{
55 size_t len;
56 char *buf;
57
58 if (!s)
59 return NULL;
60
61 len = strlen(s) + 1;
1d2c8eea 62 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
63 if (buf)
64 memcpy(buf, s, len);
65 return buf;
66}
67EXPORT_SYMBOL(kstrdup);
96840aa0 68
a4bb1e43
AH
69/**
70 * kstrdup_const - conditionally duplicate an existing const string
71 * @s: the string to duplicate
72 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
73 *
295a1730
BG
74 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
75 * must not be passed to krealloc().
a862f68a
MR
76 *
77 * Return: source string if it is in .rodata section otherwise
78 * fallback to kstrdup.
a4bb1e43
AH
79 */
80const char *kstrdup_const(const char *s, gfp_t gfp)
81{
82 if (is_kernel_rodata((unsigned long)s))
83 return s;
84
85 return kstrdup(s, gfp);
86}
87EXPORT_SYMBOL(kstrdup_const);
88
1e66df3e
JF
89/**
90 * kstrndup - allocate space for and copy an existing string
91 * @s: the string to duplicate
92 * @max: read at most @max chars from @s
93 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
f3515741
DH
94 *
95 * Note: Use kmemdup_nul() instead if the size is known exactly.
a862f68a
MR
96 *
97 * Return: newly allocated copy of @s or %NULL in case of error
1e66df3e
JF
98 */
99char *kstrndup(const char *s, size_t max, gfp_t gfp)
100{
101 size_t len;
102 char *buf;
103
104 if (!s)
105 return NULL;
106
107 len = strnlen(s, max);
108 buf = kmalloc_track_caller(len+1, gfp);
109 if (buf) {
110 memcpy(buf, s, len);
111 buf[len] = '\0';
112 }
113 return buf;
114}
115EXPORT_SYMBOL(kstrndup);
116
1a2f67b4
AD
117/**
118 * kmemdup - duplicate region of memory
119 *
120 * @src: memory region to duplicate
121 * @len: memory region length
122 * @gfp: GFP mask to use
a862f68a 123 *
0b7b8704
HS
124 * Return: newly allocated copy of @src or %NULL in case of error,
125 * result is physically contiguous. Use kfree() to free.
1a2f67b4 126 */
7bd230a2 127void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
1a2f67b4
AD
128{
129 void *p;
130
7bd230a2 131 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
1a2f67b4
AD
132 if (p)
133 memcpy(p, src, len);
134 return p;
135}
7bd230a2 136EXPORT_SYMBOL(kmemdup_noprof);
1a2f67b4 137
7092e9b3
K
138/**
139 * kmemdup_array - duplicate a given array.
140 *
141 * @src: array to duplicate.
142 * @element_size: size of each element of array.
143 * @count: number of elements to duplicate from array.
144 * @gfp: GFP mask to use.
145 *
146 * Return: duplicated array of @src or %NULL in case of error,
147 * result is physically contiguous. Use kfree() to free.
148 */
149void *kmemdup_array(const void *src, size_t element_size, size_t count, gfp_t gfp)
150{
151 return kmemdup(src, size_mul(element_size, count), gfp);
152}
153EXPORT_SYMBOL(kmemdup_array);
154
0b7b8704
HS
155/**
156 * kvmemdup - duplicate region of memory
157 *
158 * @src: memory region to duplicate
159 * @len: memory region length
160 * @gfp: GFP mask to use
161 *
162 * Return: newly allocated copy of @src or %NULL in case of error,
163 * result may be not physically contiguous. Use kvfree() to free.
164 */
165void *kvmemdup(const void *src, size_t len, gfp_t gfp)
166{
167 void *p;
168
169 p = kvmalloc(len, gfp);
170 if (p)
171 memcpy(p, src, len);
172 return p;
173}
174EXPORT_SYMBOL(kvmemdup);
175
f3515741
DH
176/**
177 * kmemdup_nul - Create a NUL-terminated string from unterminated data
178 * @s: The data to stringify
179 * @len: The size of the data
180 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
a862f68a
MR
181 *
182 * Return: newly allocated copy of @s with NUL-termination or %NULL in
183 * case of error
f3515741
DH
184 */
185char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
186{
187 char *buf;
188
189 if (!s)
190 return NULL;
191
192 buf = kmalloc_track_caller(len + 1, gfp);
193 if (buf) {
194 memcpy(buf, s, len);
195 buf[len] = '\0';
196 }
197 return buf;
198}
199EXPORT_SYMBOL(kmemdup_nul);
200
610a77e0
LZ
201/**
202 * memdup_user - duplicate memory region from user space
203 *
204 * @src: source address in user space
205 * @len: number of bytes to copy
206 *
a862f68a 207 * Return: an ERR_PTR() on failure. Result is physically
50fd2f29 208 * contiguous, to be freed by kfree().
610a77e0
LZ
209 */
210void *memdup_user(const void __user *src, size_t len)
211{
212 void *p;
213
6c8fcc09 214 p = kmalloc_track_caller(len, GFP_USER | __GFP_NOWARN);
610a77e0
LZ
215 if (!p)
216 return ERR_PTR(-ENOMEM);
217
218 if (copy_from_user(p, src, len)) {
219 kfree(p);
220 return ERR_PTR(-EFAULT);
221 }
222
223 return p;
224}
225EXPORT_SYMBOL(memdup_user);
226
50fd2f29
AV
227/**
228 * vmemdup_user - duplicate memory region from user space
229 *
230 * @src: source address in user space
231 * @len: number of bytes to copy
232 *
a862f68a 233 * Return: an ERR_PTR() on failure. Result may be not
50fd2f29
AV
234 * physically contiguous. Use kvfree() to free.
235 */
236void *vmemdup_user(const void __user *src, size_t len)
237{
238 void *p;
239
240 p = kvmalloc(len, GFP_USER);
241 if (!p)
242 return ERR_PTR(-ENOMEM);
243
244 if (copy_from_user(p, src, len)) {
245 kvfree(p);
246 return ERR_PTR(-EFAULT);
247 }
248
249 return p;
250}
251EXPORT_SYMBOL(vmemdup_user);
252
b86181f1 253/**
96840aa0 254 * strndup_user - duplicate an existing string from user space
96840aa0
DA
255 * @s: The string to duplicate
256 * @n: Maximum number of bytes to copy, including the trailing NUL.
a862f68a 257 *
e9145521 258 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
96840aa0
DA
259 */
260char *strndup_user(const char __user *s, long n)
261{
262 char *p;
263 long length;
264
265 length = strnlen_user(s, n);
266
267 if (!length)
268 return ERR_PTR(-EFAULT);
269
270 if (length > n)
271 return ERR_PTR(-EINVAL);
272
90d74045 273 p = memdup_user(s, length);
96840aa0 274
90d74045
JL
275 if (IS_ERR(p))
276 return p;
96840aa0
DA
277
278 p[length - 1] = '\0';
279
280 return p;
281}
282EXPORT_SYMBOL(strndup_user);
16d69265 283
e9d408e1
AV
284/**
285 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
286 *
287 * @src: source address in user space
288 * @len: number of bytes to copy
289 *
a862f68a 290 * Return: an ERR_PTR() on failure.
e9d408e1
AV
291 */
292void *memdup_user_nul(const void __user *src, size_t len)
293{
294 char *p;
295
296 /*
297 * Always use GFP_KERNEL, since copy_from_user() can sleep and
298 * cause pagefault, which makes it pointless to use GFP_NOFS
299 * or GFP_ATOMIC.
300 */
301 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
302 if (!p)
303 return ERR_PTR(-ENOMEM);
304
305 if (copy_from_user(p, src, len)) {
306 kfree(p);
307 return ERR_PTR(-EFAULT);
308 }
309 p[len] = '\0';
310
311 return p;
312}
313EXPORT_SYMBOL(memdup_user_nul);
314
b7643757 315/* Check if the vma is being used as a stack by this task */
d17af505 316int vma_is_stack_for_current(struct vm_area_struct *vma)
b7643757 317{
d17af505
AL
318 struct task_struct * __maybe_unused t = current;
319
b7643757
SP
320 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
321}
322
295992fb
CK
323/*
324 * Change backing file, only valid to use during initial VMA setup.
325 */
326void vma_set_file(struct vm_area_struct *vma, struct file *file)
327{
328 /* Changing an anonymous vma with this is illegal */
329 get_file(file);
330 swap(vma->vm_file, file);
331 fput(file);
332}
333EXPORT_SYMBOL(vma_set_file);
334
649775be
AG
335#ifndef STACK_RND_MASK
336#define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
337#endif
338
339unsigned long randomize_stack_top(unsigned long stack_top)
340{
341 unsigned long random_variable = 0;
342
343 if (current->flags & PF_RANDOMIZE) {
344 random_variable = get_random_long();
345 random_variable &= STACK_RND_MASK;
346 random_variable <<= PAGE_SHIFT;
347 }
348#ifdef CONFIG_STACK_GROWSUP
349 return PAGE_ALIGN(stack_top) + random_variable;
350#else
351 return PAGE_ALIGN(stack_top) - random_variable;
352#endif
353}
354
5ad7dd88
JD
355/**
356 * randomize_page - Generate a random, page aligned address
357 * @start: The smallest acceptable address the caller will take.
358 * @range: The size of the area, starting at @start, within which the
359 * random address must fall.
360 *
361 * If @start + @range would overflow, @range is capped.
362 *
363 * NOTE: Historical use of randomize_range, which this replaces, presumed that
364 * @start was already page aligned. We now align it regardless.
365 *
366 * Return: A page aligned address within [start, start + range). On error,
367 * @start is returned.
368 */
369unsigned long randomize_page(unsigned long start, unsigned long range)
370{
371 if (!PAGE_ALIGNED(start)) {
372 range -= PAGE_ALIGN(start) - start;
373 start = PAGE_ALIGN(start);
374 }
375
376 if (start > ULONG_MAX - range)
377 range = ULONG_MAX - start;
378
379 range >>= PAGE_SHIFT;
380
381 if (range == 0)
382 return start;
383
384 return start + (get_random_long() % range << PAGE_SHIFT);
385}
386
67f3977f 387#ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
723820f3 388unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
e7142bf5
AG
389{
390 /* Is the current task 32bit ? */
391 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
392 return randomize_page(mm->brk, SZ_32M);
393
394 return randomize_page(mm->brk, SZ_1G);
395}
396
67f3977f
AG
397unsigned long arch_mmap_rnd(void)
398{
399 unsigned long rnd;
400
401#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
402 if (is_compat_task())
403 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
404 else
405#endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
406 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
407
408 return rnd << PAGE_SHIFT;
409}
67f3977f
AG
410
411static int mmap_is_legacy(struct rlimit *rlim_stack)
412{
413 if (current->personality & ADDR_COMPAT_LAYOUT)
414 return 1;
415
3033cd43
HD
416 /* On parisc the stack always grows up - so a unlimited stack should
417 * not be an indicator to use the legacy memory layout. */
418 if (rlim_stack->rlim_cur == RLIM_INFINITY &&
419 !IS_ENABLED(CONFIG_STACK_GROWSUP))
67f3977f
AG
420 return 1;
421
422 return sysctl_legacy_va_layout;
423}
424
425/*
426 * Leave enough space between the mmap area and the stack to honour ulimit in
427 * the face of randomisation.
428 */
429#define MIN_GAP (SZ_128M)
430#define MAX_GAP (STACK_TOP / 6 * 5)
431
432static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
433{
5f74f820
HD
434#ifdef CONFIG_STACK_GROWSUP
435 /*
436 * For an upwards growing stack the calculation is much simpler.
437 * Memory for the maximum stack size is reserved at the top of the
438 * task. mmap_base starts directly below the stack and grows
439 * downwards.
440 */
441 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
442#else
67f3977f
AG
443 unsigned long gap = rlim_stack->rlim_cur;
444 unsigned long pad = stack_guard_gap;
445
446 /* Account for stack randomization if necessary */
447 if (current->flags & PF_RANDOMIZE)
448 pad += (STACK_RND_MASK << PAGE_SHIFT);
449
450 /* Values close to RLIM_INFINITY can overflow. */
451 if (gap + pad > gap)
452 gap += pad;
453
454 if (gap < MIN_GAP)
455 gap = MIN_GAP;
456 else if (gap > MAX_GAP)
457 gap = MAX_GAP;
458
459 return PAGE_ALIGN(STACK_TOP - gap - rnd);
5f74f820 460#endif
67f3977f
AG
461}
462
463void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
464{
465 unsigned long random_factor = 0UL;
466
467 if (current->flags & PF_RANDOMIZE)
468 random_factor = arch_mmap_rnd();
469
470 if (mmap_is_legacy(rlim_stack)) {
471 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
529ce23a 472 clear_bit(MMF_TOPDOWN, &mm->flags);
67f3977f
AG
473 } else {
474 mm->mmap_base = mmap_base(random_factor, rlim_stack);
529ce23a 475 set_bit(MMF_TOPDOWN, &mm->flags);
67f3977f
AG
476 }
477}
478#elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
8f2af155 479void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
16d69265
AM
480{
481 mm->mmap_base = TASK_UNMAPPED_BASE;
529ce23a 482 clear_bit(MMF_TOPDOWN, &mm->flags);
16d69265
AM
483}
484#endif
912985dc 485
79eb597c
DJ
486/**
487 * __account_locked_vm - account locked pages to an mm's locked_vm
488 * @mm: mm to account against
489 * @pages: number of pages to account
490 * @inc: %true if @pages should be considered positive, %false if not
491 * @task: task used to check RLIMIT_MEMLOCK
492 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
493 *
494 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
c1e8d7c6 495 * that mmap_lock is held as writer.
79eb597c
DJ
496 *
497 * Return:
498 * * 0 on success
499 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
500 */
501int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
502 struct task_struct *task, bool bypass_rlim)
503{
504 unsigned long locked_vm, limit;
505 int ret = 0;
506
42fc5414 507 mmap_assert_write_locked(mm);
79eb597c
DJ
508
509 locked_vm = mm->locked_vm;
510 if (inc) {
511 if (!bypass_rlim) {
512 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
513 if (locked_vm + pages > limit)
514 ret = -ENOMEM;
515 }
516 if (!ret)
517 mm->locked_vm = locked_vm + pages;
518 } else {
519 WARN_ON_ONCE(pages > locked_vm);
520 mm->locked_vm = locked_vm - pages;
521 }
522
523 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
524 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
525 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
526 ret ? " - exceeded" : "");
527
528 return ret;
529}
530EXPORT_SYMBOL_GPL(__account_locked_vm);
531
532/**
533 * account_locked_vm - account locked pages to an mm's locked_vm
534 * @mm: mm to account against, may be NULL
535 * @pages: number of pages to account
536 * @inc: %true if @pages should be considered positive, %false if not
537 *
538 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
539 *
540 * Return:
541 * * 0 on success, or if mm is NULL
542 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
543 */
544int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
545{
546 int ret;
547
548 if (pages == 0 || !mm)
549 return 0;
550
d8ed45c5 551 mmap_write_lock(mm);
79eb597c
DJ
552 ret = __account_locked_vm(mm, pages, inc, current,
553 capable(CAP_IPC_LOCK));
d8ed45c5 554 mmap_write_unlock(mm);
79eb597c
DJ
555
556 return ret;
557}
558EXPORT_SYMBOL_GPL(account_locked_vm);
559
eb36c587
AV
560unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
561 unsigned long len, unsigned long prot,
9fbeb5ab 562 unsigned long flag, unsigned long pgoff)
eb36c587
AV
563{
564 unsigned long ret;
565 struct mm_struct *mm = current->mm;
41badc15 566 unsigned long populate;
897ab3e0 567 LIST_HEAD(uf);
eb36c587
AV
568
569 ret = security_mmap_file(file, prot, flag);
570 if (!ret) {
d8ed45c5 571 if (mmap_write_lock_killable(mm))
9fbeb5ab 572 return -EINTR;
592b5fad 573 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
45e55300 574 &uf);
d8ed45c5 575 mmap_write_unlock(mm);
897ab3e0 576 userfaultfd_unmap_complete(mm, &uf);
41badc15
ML
577 if (populate)
578 mm_populate(ret, populate);
eb36c587
AV
579 }
580 return ret;
581}
582
583unsigned long vm_mmap(struct file *file, unsigned long addr,
584 unsigned long len, unsigned long prot,
585 unsigned long flag, unsigned long offset)
586{
587 if (unlikely(offset + PAGE_ALIGN(len) < offset))
588 return -EINVAL;
ea53cde0 589 if (unlikely(offset_in_page(offset)))
eb36c587
AV
590 return -EINVAL;
591
9fbeb5ab 592 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
eb36c587
AV
593}
594EXPORT_SYMBOL(vm_mmap);
595
a7c3e901
MH
596/**
597 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
598 * failure, fall back to non-contiguous (vmalloc) allocation.
599 * @size: size of the request.
600 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
601 * @node: numa node to allocate from
602 *
603 * Uses kmalloc to get the memory but if the allocation fails then falls back
604 * to the vmalloc allocator. Use kvfree for freeing the memory.
605 *
a421ef30 606 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
cc965a29
MH
607 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
608 * preferable to the vmalloc fallback, due to visible performance drawbacks.
a7c3e901 609 *
a862f68a 610 * Return: pointer to the allocated memory of %NULL in case of failure
a7c3e901 611 */
7bd230a2 612void *kvmalloc_node_noprof(size_t size, gfp_t flags, int node)
a7c3e901
MH
613{
614 gfp_t kmalloc_flags = flags;
615 void *ret;
616
a7c3e901 617 /*
4f4f2ba9
MH
618 * We want to attempt a large physically contiguous block first because
619 * it is less likely to fragment multiple larger blocks and therefore
620 * contribute to a long term fragmentation less than vmalloc fallback.
621 * However make sure that larger requests are not too disruptive - no
622 * OOM killer and no allocation failure warnings as we have a fallback.
a7c3e901 623 */
6c5ab651
MH
624 if (size > PAGE_SIZE) {
625 kmalloc_flags |= __GFP_NOWARN;
626
cc965a29 627 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
6c5ab651 628 kmalloc_flags |= __GFP_NORETRY;
a421ef30
MH
629
630 /* nofail semantic is implemented by the vmalloc fallback */
631 kmalloc_flags &= ~__GFP_NOFAIL;
6c5ab651 632 }
a7c3e901 633
7bd230a2 634 ret = kmalloc_node_noprof(size, kmalloc_flags, node);
a7c3e901
MH
635
636 /*
637 * It doesn't really make sense to fallback to vmalloc for sub page
638 * requests
639 */
640 if (ret || size <= PAGE_SIZE)
641 return ret;
642
30c19366
FW
643 /* non-sleeping allocations are not supported by vmalloc */
644 if (!gfpflags_allow_blocking(flags))
645 return NULL;
646
7661809d 647 /* Don't even allow crazy sizes */
0708a0af
DB
648 if (unlikely(size > INT_MAX)) {
649 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
7661809d 650 return NULL;
0708a0af 651 }
7661809d 652
9becb688
LT
653 /*
654 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
655 * since the callers already cannot assume anything
656 * about the resulting pointer, and cannot play
657 * protection games.
658 */
88ae5fb7 659 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
9becb688
LT
660 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
661 node, __builtin_return_address(0));
a7c3e901 662}
7bd230a2 663EXPORT_SYMBOL(kvmalloc_node_noprof);
a7c3e901 664
ff4dc772 665/**
04b8e946
AM
666 * kvfree() - Free memory.
667 * @addr: Pointer to allocated memory.
ff4dc772 668 *
04b8e946
AM
669 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
670 * It is slightly more efficient to use kfree() or vfree() if you are certain
671 * that you know which one to use.
672 *
52414d33 673 * Context: Either preemptible task context or not-NMI interrupt.
ff4dc772 674 */
39f1f78d
AV
675void kvfree(const void *addr)
676{
677 if (is_vmalloc_addr(addr))
678 vfree(addr);
679 else
680 kfree(addr);
681}
682EXPORT_SYMBOL(kvfree);
683
d4eaa283
WL
684/**
685 * kvfree_sensitive - Free a data object containing sensitive information.
686 * @addr: address of the data object to be freed.
687 * @len: length of the data object.
688 *
689 * Use the special memzero_explicit() function to clear the content of a
690 * kvmalloc'ed object containing sensitive data to make sure that the
691 * compiler won't optimize out the data clearing.
692 */
693void kvfree_sensitive(const void *addr, size_t len)
694{
695 if (likely(!ZERO_OR_NULL_PTR(addr))) {
696 memzero_explicit((void *)addr, len);
697 kvfree(addr);
698 }
699}
700EXPORT_SYMBOL(kvfree_sensitive);
701
7bd230a2 702void *kvrealloc_noprof(const void *p, size_t oldsize, size_t newsize, gfp_t flags)
de2860f4
DC
703{
704 void *newp;
705
706 if (oldsize >= newsize)
707 return (void *)p;
708 newp = kvmalloc(newsize, flags);
709 if (!newp)
710 return NULL;
711 memcpy(newp, p, oldsize);
712 kvfree(p);
713 return newp;
714}
7bd230a2 715EXPORT_SYMBOL(kvrealloc_noprof);
de2860f4 716
a8749a35
PB
717/**
718 * __vmalloc_array - allocate memory for a virtually contiguous array.
719 * @n: number of elements.
720 * @size: element size.
721 * @flags: the type of memory to allocate (see kmalloc).
722 */
88ae5fb7 723void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
a8749a35
PB
724{
725 size_t bytes;
726
727 if (unlikely(check_mul_overflow(n, size, &bytes)))
728 return NULL;
729 return __vmalloc(bytes, flags);
730}
88ae5fb7 731EXPORT_SYMBOL(__vmalloc_array_noprof);
a8749a35
PB
732
733/**
734 * vmalloc_array - allocate memory for a virtually contiguous array.
735 * @n: number of elements.
736 * @size: element size.
737 */
88ae5fb7 738void *vmalloc_array_noprof(size_t n, size_t size)
a8749a35
PB
739{
740 return __vmalloc_array(n, size, GFP_KERNEL);
741}
88ae5fb7 742EXPORT_SYMBOL(vmalloc_array_noprof);
a8749a35
PB
743
744/**
745 * __vcalloc - allocate and zero memory for a virtually contiguous array.
746 * @n: number of elements.
747 * @size: element size.
748 * @flags: the type of memory to allocate (see kmalloc).
749 */
88ae5fb7 750void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
a8749a35
PB
751{
752 return __vmalloc_array(n, size, flags | __GFP_ZERO);
753}
88ae5fb7 754EXPORT_SYMBOL(__vcalloc_noprof);
a8749a35
PB
755
756/**
757 * vcalloc - allocate and zero memory for a virtually contiguous array.
758 * @n: number of elements.
759 * @size: element size.
760 */
88ae5fb7 761void *vcalloc_noprof(size_t n, size_t size)
a8749a35
PB
762{
763 return __vmalloc_array(n, size, GFP_KERNEL | __GFP_ZERO);
764}
88ae5fb7 765EXPORT_SYMBOL(vcalloc_noprof);
a8749a35 766
e05b3453 767struct anon_vma *folio_anon_vma(struct folio *folio)
e39155ea 768{
64601000 769 unsigned long mapping = (unsigned long)folio->mapping;
e39155ea 770
e39155ea
KS
771 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
772 return NULL;
64601000 773 return (void *)(mapping - PAGE_MAPPING_ANON);
e39155ea
KS
774}
775
2f52578f
MWO
776/**
777 * folio_mapping - Find the mapping where this folio is stored.
778 * @folio: The folio.
779 *
780 * For folios which are in the page cache, return the mapping that this
781 * page belongs to. Folios in the swap cache return the swap mapping
782 * this page is stored in (which is different from the mapping for the
783 * swap file or swap device where the data is stored).
784 *
785 * You can call this for folios which aren't in the swap cache or page
786 * cache and it will return NULL.
787 */
788struct address_space *folio_mapping(struct folio *folio)
9800339b 789{
1c290f64
KS
790 struct address_space *mapping;
791
03e5ac2f 792 /* This happens if someone calls flush_dcache_page on slab page */
2f52578f 793 if (unlikely(folio_test_slab(folio)))
03e5ac2f
MP
794 return NULL;
795
2f52578f 796 if (unlikely(folio_test_swapcache(folio)))
3d2c9087 797 return swap_address_space(folio->swap);
e39155ea 798
2f52578f 799 mapping = folio->mapping;
68f2736a 800 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
e39155ea 801 return NULL;
bda807d4 802
68f2736a 803 return mapping;
9800339b 804}
2f52578f 805EXPORT_SYMBOL(folio_mapping);
9800339b 806
715cbfd6
MWO
807/**
808 * folio_copy - Copy the contents of one folio to another.
809 * @dst: Folio to copy to.
810 * @src: Folio to copy from.
811 *
812 * The bytes in the folio represented by @src are copied to @dst.
813 * Assumes the caller has validated that @dst is at least as large as @src.
814 * Can be called in atomic context for order-0 folios, but if the folio is
815 * larger, it may sleep.
816 */
817void folio_copy(struct folio *dst, struct folio *src)
79789db0 818{
715cbfd6
MWO
819 long i = 0;
820 long nr = folio_nr_pages(src);
79789db0 821
715cbfd6
MWO
822 for (;;) {
823 copy_highpage(folio_page(dst, i), folio_page(src, i));
824 if (++i == nr)
825 break;
79789db0 826 cond_resched();
79789db0
MWO
827 }
828}
4093602d 829EXPORT_SYMBOL(folio_copy);
79789db0 830
39a1aa8e
AR
831int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
832int sysctl_overcommit_ratio __read_mostly = 50;
833unsigned long sysctl_overcommit_kbytes __read_mostly;
834int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
835unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
836unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
837
32927393
CH
838int overcommit_ratio_handler(struct ctl_table *table, int write, void *buffer,
839 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
840{
841 int ret;
842
843 ret = proc_dointvec(table, write, buffer, lenp, ppos);
844 if (ret == 0 && write)
845 sysctl_overcommit_kbytes = 0;
846 return ret;
847}
848
56f3547b
FT
849static void sync_overcommit_as(struct work_struct *dummy)
850{
851 percpu_counter_sync(&vm_committed_as);
852}
853
854int overcommit_policy_handler(struct ctl_table *table, int write, void *buffer,
855 size_t *lenp, loff_t *ppos)
856{
857 struct ctl_table t;
bcbda810 858 int new_policy = -1;
56f3547b
FT
859 int ret;
860
861 /*
862 * The deviation of sync_overcommit_as could be big with loose policy
863 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
864 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
31454980 865 * with the strict "NEVER", and to avoid possible race condition (even
56f3547b
FT
866 * though user usually won't too frequently do the switching to policy
867 * OVERCOMMIT_NEVER), the switch is done in the following order:
868 * 1. changing the batch
869 * 2. sync percpu count on each CPU
870 * 3. switch the policy
871 */
872 if (write) {
873 t = *table;
874 t.data = &new_policy;
875 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
bcbda810 876 if (ret || new_policy == -1)
56f3547b
FT
877 return ret;
878
879 mm_compute_batch(new_policy);
880 if (new_policy == OVERCOMMIT_NEVER)
881 schedule_on_each_cpu(sync_overcommit_as);
882 sysctl_overcommit_memory = new_policy;
883 } else {
884 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
885 }
886
887 return ret;
888}
889
32927393
CH
890int overcommit_kbytes_handler(struct ctl_table *table, int write, void *buffer,
891 size_t *lenp, loff_t *ppos)
49f0ce5f
JM
892{
893 int ret;
894
895 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
896 if (ret == 0 && write)
897 sysctl_overcommit_ratio = 0;
898 return ret;
899}
900
00619bcc
JM
901/*
902 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
903 */
904unsigned long vm_commit_limit(void)
905{
49f0ce5f
JM
906 unsigned long allowed;
907
908 if (sysctl_overcommit_kbytes)
909 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
910 else
ca79b0c2 911 allowed = ((totalram_pages() - hugetlb_total_pages())
49f0ce5f
JM
912 * sysctl_overcommit_ratio / 100);
913 allowed += total_swap_pages;
914
915 return allowed;
00619bcc
JM
916}
917
39a1aa8e
AR
918/*
919 * Make sure vm_committed_as in one cacheline and not cacheline shared with
920 * other variables. It can be updated by several CPUs frequently.
921 */
922struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
923
924/*
925 * The global memory commitment made in the system can be a metric
926 * that can be used to drive ballooning decisions when Linux is hosted
927 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
928 * balancing memory across competing virtual machines that are hosted.
929 * Several metrics drive this policy engine including the guest reported
930 * memory commitment.
4e2ee51e
FT
931 *
932 * The time cost of this is very low for small platforms, and for big
933 * platform like a 2S/36C/72T Skylake server, in worst case where
934 * vm_committed_as's spinlock is under severe contention, the time cost
935 * could be about 30~40 microseconds.
39a1aa8e
AR
936 */
937unsigned long vm_memory_committed(void)
938{
4e2ee51e 939 return percpu_counter_sum_positive(&vm_committed_as);
39a1aa8e
AR
940}
941EXPORT_SYMBOL_GPL(vm_memory_committed);
942
943/*
944 * Check that a process has enough memory to allocate a new virtual
945 * mapping. 0 means there is enough memory for the allocation to
946 * succeed and -ENOMEM implies there is not.
947 *
948 * We currently support three overcommit policies, which are set via the
ee65728e 949 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
39a1aa8e
AR
950 *
951 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
952 * Additional code 2002 Jul 20 by Robert Love.
953 *
954 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
955 *
956 * Note this is a helper function intended to be used by LSMs which
957 * wish to use this logic.
958 */
959int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
960{
8c7829b0 961 long allowed;
f5eec036 962 unsigned long bytes_failed;
39a1aa8e 963
39a1aa8e
AR
964 vm_acct_memory(pages);
965
966 /*
967 * Sometimes we want to use more memory than we have
968 */
969 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
970 return 0;
971
972 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
8c7829b0 973 if (pages > totalram_pages() + total_swap_pages)
39a1aa8e 974 goto error;
8c7829b0 975 return 0;
39a1aa8e
AR
976 }
977
978 allowed = vm_commit_limit();
979 /*
980 * Reserve some for root
981 */
982 if (!cap_sys_admin)
983 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
984
985 /*
986 * Don't let a single process grow so big a user can't recover
987 */
988 if (mm) {
8c7829b0
JW
989 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
990
39a1aa8e
AR
991 allowed -= min_t(long, mm->total_vm / 32, reserve);
992 }
993
994 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
995 return 0;
996error:
f5eec036
MC
997 bytes_failed = pages << PAGE_SHIFT;
998 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
999 __func__, current->pid, current->comm, bytes_failed);
39a1aa8e
AR
1000 vm_unacct_memory(pages);
1001
1002 return -ENOMEM;
1003}
1004
a9090253
WR
1005/**
1006 * get_cmdline() - copy the cmdline value to a buffer.
1007 * @task: the task whose cmdline value to copy.
1008 * @buffer: the buffer to copy to.
1009 * @buflen: the length of the buffer. Larger cmdline values are truncated
1010 * to this length.
a862f68a
MR
1011 *
1012 * Return: the size of the cmdline field copied. Note that the copy does
a9090253
WR
1013 * not guarantee an ending NULL byte.
1014 */
1015int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1016{
1017 int res = 0;
1018 unsigned int len;
1019 struct mm_struct *mm = get_task_mm(task);
a3b609ef 1020 unsigned long arg_start, arg_end, env_start, env_end;
a9090253
WR
1021 if (!mm)
1022 goto out;
1023 if (!mm->arg_end)
1024 goto out_mm; /* Shh! No looking before we're done */
1025
bc81426f 1026 spin_lock(&mm->arg_lock);
a3b609ef
MG
1027 arg_start = mm->arg_start;
1028 arg_end = mm->arg_end;
1029 env_start = mm->env_start;
1030 env_end = mm->env_end;
bc81426f 1031 spin_unlock(&mm->arg_lock);
a3b609ef
MG
1032
1033 len = arg_end - arg_start;
a9090253
WR
1034
1035 if (len > buflen)
1036 len = buflen;
1037
f307ab6d 1038 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
a9090253
WR
1039
1040 /*
1041 * If the nul at the end of args has been overwritten, then
1042 * assume application is using setproctitle(3).
1043 */
1044 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1045 len = strnlen(buffer, res);
1046 if (len < res) {
1047 res = len;
1048 } else {
a3b609ef 1049 len = env_end - env_start;
a9090253
WR
1050 if (len > buflen - res)
1051 len = buflen - res;
a3b609ef 1052 res += access_process_vm(task, env_start,
f307ab6d
LS
1053 buffer+res, len,
1054 FOLL_FORCE);
a9090253
WR
1055 res = strnlen(buffer, res);
1056 }
1057 }
1058out_mm:
1059 mmput(mm);
1060out:
1061 return res;
1062}
010c164a 1063
4d1a8a2d 1064int __weak memcmp_pages(struct page *page1, struct page *page2)
010c164a
SL
1065{
1066 char *addr1, *addr2;
1067 int ret;
1068
2f753762
FDF
1069 addr1 = kmap_local_page(page1);
1070 addr2 = kmap_local_page(page2);
010c164a 1071 ret = memcmp(addr1, addr2, PAGE_SIZE);
2f753762
FDF
1072 kunmap_local(addr2);
1073 kunmap_local(addr1);
010c164a
SL
1074 return ret;
1075}
8e7f37f2 1076
5bb1bb35 1077#ifdef CONFIG_PRINTK
8e7f37f2
PM
1078/**
1079 * mem_dump_obj - Print available provenance information
1080 * @object: object for which to find provenance information.
1081 *
1082 * This function uses pr_cont(), so that the caller is expected to have
1083 * printed out whatever preamble is appropriate. The provenance information
1084 * depends on the type of object and on how much debugging is enabled.
1085 * For example, for a slab-cache object, the slab name is printed, and,
1086 * if available, the return address and stack trace from the allocation
e548eaa1 1087 * and last free path of that object.
8e7f37f2
PM
1088 */
1089void mem_dump_obj(void *object)
1090{
2521781c
JP
1091 const char *type;
1092
6e284c55 1093 if (kmem_dump_obj(object))
98f18083 1094 return;
2521781c 1095
98f18083
PM
1096 if (vmalloc_dump_obj(object))
1097 return;
2521781c 1098
c83ad36a
Z
1099 if (is_vmalloc_addr(object))
1100 type = "vmalloc memory";
1101 else if (virt_addr_valid(object))
2521781c
JP
1102 type = "non-slab/vmalloc memory";
1103 else if (object == NULL)
1104 type = "NULL pointer";
1105 else if (object == ZERO_SIZE_PTR)
1106 type = "zero-size pointer";
1107 else
1108 type = "non-paged memory";
1109
1110 pr_cont(" %s\n", type);
8e7f37f2 1111}
0d3dd2c8 1112EXPORT_SYMBOL_GPL(mem_dump_obj);
5bb1bb35 1113#endif
82840451
DH
1114
1115/*
1116 * A driver might set a page logically offline -- PageOffline() -- and
1117 * turn the page inaccessible in the hypervisor; after that, access to page
1118 * content can be fatal.
1119 *
1120 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1121 * pages after checking PageOffline(); however, these PFN walkers can race
1122 * with drivers that set PageOffline().
1123 *
1124 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1125 * synchronize with such drivers, achieving that a page cannot be set
1126 * PageOffline() while frozen.
1127 *
1128 * page_offline_begin()/page_offline_end() is used by drivers that care about
1129 * such races when setting a page PageOffline().
1130 */
1131static DECLARE_RWSEM(page_offline_rwsem);
1132
1133void page_offline_freeze(void)
1134{
1135 down_read(&page_offline_rwsem);
1136}
1137
1138void page_offline_thaw(void)
1139{
1140 up_read(&page_offline_rwsem);
1141}
1142
1143void page_offline_begin(void)
1144{
1145 down_write(&page_offline_rwsem);
1146}
1147EXPORT_SYMBOL(page_offline_begin);
1148
1149void page_offline_end(void)
1150{
1151 up_write(&page_offline_rwsem);
1152}
1153EXPORT_SYMBOL(page_offline_end);
08b0b005 1154
29d26f12 1155#ifndef flush_dcache_folio
08b0b005
MWO
1156void flush_dcache_folio(struct folio *folio)
1157{
1158 long i, nr = folio_nr_pages(folio);
1159
1160 for (i = 0; i < nr; i++)
1161 flush_dcache_page(folio_page(folio, i));
1162}
1163EXPORT_SYMBOL(flush_dcache_folio);
1164#endif