ocfs2: fix disk file size and memory file size mismatch
[linux-2.6-block.git] / fs / ocfs2 / aops.c
CommitLineData
ccd979bd
MF
1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
9517bac6 27#include <linux/swap.h>
6af67d82 28#include <linux/pipe_fs_i.h>
628a24f5 29#include <linux/mpage.h>
a90714c1 30#include <linux/quotaops.h>
24c40b32 31#include <linux/blkdev.h>
e2e40f2c 32#include <linux/uio.h>
ccd979bd 33
ccd979bd
MF
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
9517bac6 45#include "suballoc.h"
ccd979bd
MF
46#include "super.h"
47#include "symlink.h"
293b2f70 48#include "refcounttree.h"
9558156b 49#include "ocfs2_trace.h"
ccd979bd
MF
50
51#include "buffer_head_io.h"
24c40b32
JQ
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
ccd979bd
MF
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57 struct buffer_head *bh_result, int create)
58{
59 int err = -EIO;
60 int status;
61 struct ocfs2_dinode *fe = NULL;
62 struct buffer_head *bh = NULL;
63 struct buffer_head *buffer_cache_bh = NULL;
64 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65 void *kaddr;
66
9558156b
TM
67 trace_ocfs2_symlink_get_block(
68 (unsigned long long)OCFS2_I(inode)->ip_blkno,
69 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
70
71 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75 (unsigned long long)iblock);
76 goto bail;
77 }
78
b657c95c 79 status = ocfs2_read_inode_block(inode, &bh);
ccd979bd
MF
80 if (status < 0) {
81 mlog_errno(status);
82 goto bail;
83 }
84 fe = (struct ocfs2_dinode *) bh->b_data;
85
ccd979bd
MF
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
7391a294 88 err = -ENOMEM;
ccd979bd
MF
89 mlog(ML_ERROR, "block offset is outside the allocated size: "
90 "%llu\n", (unsigned long long)iblock);
91 goto bail;
92 }
93
94 /* We don't use the page cache to create symlink data, so if
95 * need be, copy it over from the buffer cache. */
96 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 iblock;
99 buffer_cache_bh = sb_getblk(osb->sb, blkno);
100 if (!buffer_cache_bh) {
7391a294 101 err = -ENOMEM;
ccd979bd
MF
102 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103 goto bail;
104 }
105
106 /* we haven't locked out transactions, so a commit
107 * could've happened. Since we've got a reference on
108 * the bh, even if it commits while we're doing the
109 * copy, the data is still good. */
110 if (buffer_jbd(buffer_cache_bh)
111 && ocfs2_inode_is_new(inode)) {
c4bc8dcb 112 kaddr = kmap_atomic(bh_result->b_page);
ccd979bd
MF
113 if (!kaddr) {
114 mlog(ML_ERROR, "couldn't kmap!\n");
115 goto bail;
116 }
117 memcpy(kaddr + (bh_result->b_size * iblock),
118 buffer_cache_bh->b_data,
119 bh_result->b_size);
c4bc8dcb 120 kunmap_atomic(kaddr);
ccd979bd
MF
121 set_buffer_uptodate(bh_result);
122 }
123 brelse(buffer_cache_bh);
124 }
125
126 map_bh(bh_result, inode->i_sb,
127 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129 err = 0;
130
131bail:
a81cb88b 132 brelse(bh);
ccd979bd 133
ccd979bd
MF
134 return err;
135}
136
6f70fa51
TM
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
ccd979bd
MF
139{
140 int err = 0;
49cb8d2d 141 unsigned int ext_flags;
628a24f5
MF
142 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143 u64 p_blkno, count, past_eof;
25baf2da 144 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
ccd979bd 145
9558156b
TM
146 trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147 (unsigned long long)iblock, bh_result, create);
ccd979bd
MF
148
149 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151 inode, inode->i_ino);
152
153 if (S_ISLNK(inode->i_mode)) {
154 /* this always does I/O for some reason. */
155 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156 goto bail;
157 }
158
628a24f5 159 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
49cb8d2d 160 &ext_flags);
ccd979bd
MF
161 if (err) {
162 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
b0697053
MF
163 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164 (unsigned long long)p_blkno);
ccd979bd
MF
165 goto bail;
166 }
167
628a24f5
MF
168 if (max_blocks < count)
169 count = max_blocks;
170
25baf2da
MF
171 /*
172 * ocfs2 never allocates in this function - the only time we
173 * need to use BH_New is when we're extending i_size on a file
174 * system which doesn't support holes, in which case BH_New
ebdec241 175 * allows __block_write_begin() to zero.
c0420ad2
CL
176 *
177 * If we see this on a sparse file system, then a truncate has
178 * raced us and removed the cluster. In this case, we clear
179 * the buffers dirty and uptodate bits and let the buffer code
180 * ignore it as a hole.
25baf2da 181 */
c0420ad2
CL
182 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183 clear_buffer_dirty(bh_result);
184 clear_buffer_uptodate(bh_result);
185 goto bail;
186 }
25baf2da 187
49cb8d2d
MF
188 /* Treat the unwritten extent as a hole for zeroing purposes. */
189 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
25baf2da
MF
190 map_bh(bh_result, inode->i_sb, p_blkno);
191
628a24f5
MF
192 bh_result->b_size = count << inode->i_blkbits;
193
25baf2da
MF
194 if (!ocfs2_sparse_alloc(osb)) {
195 if (p_blkno == 0) {
196 err = -EIO;
197 mlog(ML_ERROR,
198 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199 (unsigned long long)iblock,
200 (unsigned long long)p_blkno,
201 (unsigned long long)OCFS2_I(inode)->ip_blkno);
202 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203 dump_stack();
1f4cea37 204 goto bail;
25baf2da 205 }
25baf2da 206 }
ccd979bd 207
5693486b 208 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
9558156b
TM
209
210 trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211 (unsigned long long)past_eof);
5693486b
JB
212 if (create && (iblock >= past_eof))
213 set_buffer_new(bh_result);
214
ccd979bd
MF
215bail:
216 if (err < 0)
217 err = -EIO;
218
ccd979bd
MF
219 return err;
220}
221
1afc32b9
MF
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223 struct buffer_head *di_bh)
6798d35a
MF
224{
225 void *kaddr;
d2849fb2 226 loff_t size;
6798d35a
MF
227 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
7ecef14a 230 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
6798d35a
MF
231 (unsigned long long)OCFS2_I(inode)->ip_blkno);
232 return -EROFS;
233 }
234
235 size = i_size_read(inode);
236
237 if (size > PAGE_CACHE_SIZE ||
d9ae49d6 238 size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
6798d35a 239 ocfs2_error(inode->i_sb,
7ecef14a 240 "Inode %llu has with inline data has bad size: %Lu\n",
d2849fb2
JK
241 (unsigned long long)OCFS2_I(inode)->ip_blkno,
242 (unsigned long long)size);
6798d35a
MF
243 return -EROFS;
244 }
245
c4bc8dcb 246 kaddr = kmap_atomic(page);
6798d35a
MF
247 if (size)
248 memcpy(kaddr, di->id2.i_data.id_data, size);
249 /* Clear the remaining part of the page */
250 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251 flush_dcache_page(page);
c4bc8dcb 252 kunmap_atomic(kaddr);
6798d35a
MF
253
254 SetPageUptodate(page);
255
256 return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261 int ret;
262 struct buffer_head *di_bh = NULL;
6798d35a
MF
263
264 BUG_ON(!PageLocked(page));
86c838b0 265 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
6798d35a 266
b657c95c 267 ret = ocfs2_read_inode_block(inode, &di_bh);
6798d35a
MF
268 if (ret) {
269 mlog_errno(ret);
270 goto out;
271 }
272
273 ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275 unlock_page(page);
276
277 brelse(di_bh);
278 return ret;
279}
280
ccd979bd
MF
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283 struct inode *inode = page->mapping->host;
6798d35a 284 struct ocfs2_inode_info *oi = OCFS2_I(inode);
ccd979bd
MF
285 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286 int ret, unlock = 1;
287
9558156b
TM
288 trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289 (page ? page->index : 0));
ccd979bd 290
e63aecb6 291 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
ccd979bd
MF
292 if (ret != 0) {
293 if (ret == AOP_TRUNCATED_PAGE)
294 unlock = 0;
295 mlog_errno(ret);
296 goto out;
297 }
298
6798d35a 299 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
c7e25e6e
JK
300 /*
301 * Unlock the page and cycle ip_alloc_sem so that we don't
302 * busyloop waiting for ip_alloc_sem to unlock
303 */
e9dfc0b2 304 ret = AOP_TRUNCATED_PAGE;
c7e25e6e
JK
305 unlock_page(page);
306 unlock = 0;
307 down_read(&oi->ip_alloc_sem);
308 up_read(&oi->ip_alloc_sem);
e63aecb6 309 goto out_inode_unlock;
e9dfc0b2 310 }
ccd979bd
MF
311
312 /*
313 * i_size might have just been updated as we grabed the meta lock. We
314 * might now be discovering a truncate that hit on another node.
315 * block_read_full_page->get_block freaks out if it is asked to read
316 * beyond the end of a file, so we check here. Callers
54cb8821 317 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
ccd979bd
MF
318 * and notice that the page they just read isn't needed.
319 *
320 * XXX sys_readahead() seems to get that wrong?
321 */
322 if (start >= i_size_read(inode)) {
eebd2aa3 323 zero_user(page, 0, PAGE_SIZE);
ccd979bd
MF
324 SetPageUptodate(page);
325 ret = 0;
326 goto out_alloc;
327 }
328
6798d35a
MF
329 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330 ret = ocfs2_readpage_inline(inode, page);
331 else
332 ret = block_read_full_page(page, ocfs2_get_block);
ccd979bd
MF
333 unlock = 0;
334
ccd979bd
MF
335out_alloc:
336 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6
MF
337out_inode_unlock:
338 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
339out:
340 if (unlock)
341 unlock_page(page);
ccd979bd
MF
342 return ret;
343}
344
628a24f5
MF
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355 struct list_head *pages, unsigned nr_pages)
356{
357 int ret, err = -EIO;
358 struct inode *inode = mapping->host;
359 struct ocfs2_inode_info *oi = OCFS2_I(inode);
360 loff_t start;
361 struct page *last;
362
363 /*
364 * Use the nonblocking flag for the dlm code to avoid page
365 * lock inversion, but don't bother with retrying.
366 */
367 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368 if (ret)
369 return err;
370
371 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372 ocfs2_inode_unlock(inode, 0);
373 return err;
374 }
375
376 /*
377 * Don't bother with inline-data. There isn't anything
378 * to read-ahead in that case anyway...
379 */
380 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381 goto out_unlock;
382
383 /*
384 * Check whether a remote node truncated this file - we just
385 * drop out in that case as it's not worth handling here.
386 */
387 last = list_entry(pages->prev, struct page, lru);
388 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389 if (start >= i_size_read(inode))
390 goto out_unlock;
391
392 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395 up_read(&oi->ip_alloc_sem);
396 ocfs2_inode_unlock(inode, 0);
397
398 return err;
399}
400
ccd979bd
MF
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing. It can't block on any cluster locks
408 * to during block mapping. It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
9558156b
TM
414 trace_ocfs2_writepage(
415 (unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416 page->index);
ccd979bd 417
9558156b 418 return block_write_full_page(page, ocfs2_get_block, wbc);
ccd979bd
MF
419}
420
ccd979bd
MF
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
60b11392
MF
425int walk_page_buffers( handle_t *handle,
426 struct buffer_head *head,
427 unsigned from,
428 unsigned to,
429 int *partial,
430 int (*fn)( handle_t *handle,
431 struct buffer_head *bh))
ccd979bd
MF
432{
433 struct buffer_head *bh;
434 unsigned block_start, block_end;
435 unsigned blocksize = head->b_size;
436 int err, ret = 0;
437 struct buffer_head *next;
438
439 for ( bh = head, block_start = 0;
440 ret == 0 && (bh != head || !block_start);
441 block_start = block_end, bh = next)
442 {
443 next = bh->b_this_page;
444 block_end = block_start + blocksize;
445 if (block_end <= from || block_start >= to) {
446 if (partial && !buffer_uptodate(bh))
447 *partial = 1;
448 continue;
449 }
450 err = (*fn)(handle, bh);
451 if (!ret)
452 ret = err;
453 }
454 return ret;
455}
456
ccd979bd
MF
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459 sector_t status;
460 u64 p_blkno = 0;
461 int err = 0;
462 struct inode *inode = mapping->host;
463
9558156b
TM
464 trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465 (unsigned long long)block);
ccd979bd
MF
466
467 /* We don't need to lock journal system files, since they aren't
468 * accessed concurrently from multiple nodes.
469 */
470 if (!INODE_JOURNAL(inode)) {
e63aecb6 471 err = ocfs2_inode_lock(inode, NULL, 0);
ccd979bd
MF
472 if (err) {
473 if (err != -ENOENT)
474 mlog_errno(err);
475 goto bail;
476 }
477 down_read(&OCFS2_I(inode)->ip_alloc_sem);
478 }
479
6798d35a
MF
480 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482 NULL);
ccd979bd
MF
483
484 if (!INODE_JOURNAL(inode)) {
485 up_read(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 486 ocfs2_inode_unlock(inode, 0);
ccd979bd
MF
487 }
488
489 if (err) {
490 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491 (unsigned long long)block);
492 mlog_errno(err);
493 goto bail;
494 }
495
ccd979bd
MF
496bail:
497 status = err ? 0 : p_blkno;
498
ccd979bd
MF
499 return status;
500}
501
03f981cf
JB
502static int ocfs2_releasepage(struct page *page, gfp_t wait)
503{
03f981cf
JB
504 if (!page_has_buffers(page))
505 return 0;
41ecc345 506 return try_to_free_buffers(page);
03f981cf
JB
507}
508
9517bac6
MF
509static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
510 u32 cpos,
511 unsigned int *start,
512 unsigned int *end)
513{
514 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
515
516 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
517 unsigned int cpp;
518
519 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
520
521 cluster_start = cpos % cpp;
522 cluster_start = cluster_start << osb->s_clustersize_bits;
523
524 cluster_end = cluster_start + osb->s_clustersize;
525 }
526
527 BUG_ON(cluster_start > PAGE_SIZE);
528 BUG_ON(cluster_end > PAGE_SIZE);
529
530 if (start)
531 *start = cluster_start;
532 if (end)
533 *end = cluster_end;
534}
535
536/*
537 * 'from' and 'to' are the region in the page to avoid zeroing.
538 *
539 * If pagesize > clustersize, this function will avoid zeroing outside
540 * of the cluster boundary.
541 *
542 * from == to == 0 is code for "zero the entire cluster region"
543 */
544static void ocfs2_clear_page_regions(struct page *page,
545 struct ocfs2_super *osb, u32 cpos,
546 unsigned from, unsigned to)
547{
548 void *kaddr;
549 unsigned int cluster_start, cluster_end;
550
551 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
552
c4bc8dcb 553 kaddr = kmap_atomic(page);
9517bac6
MF
554
555 if (from || to) {
556 if (from > cluster_start)
557 memset(kaddr + cluster_start, 0, from - cluster_start);
558 if (to < cluster_end)
559 memset(kaddr + to, 0, cluster_end - to);
560 } else {
561 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
562 }
563
c4bc8dcb 564 kunmap_atomic(kaddr);
9517bac6
MF
565}
566
4e9563fd
MF
567/*
568 * Nonsparse file systems fully allocate before we get to the write
569 * code. This prevents ocfs2_write() from tagging the write as an
570 * allocating one, which means ocfs2_map_page_blocks() might try to
571 * read-in the blocks at the tail of our file. Avoid reading them by
572 * testing i_size against each block offset.
573 */
574static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
575 unsigned int block_start)
576{
577 u64 offset = page_offset(page) + block_start;
578
579 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
580 return 1;
581
582 if (i_size_read(inode) > offset)
583 return 1;
584
585 return 0;
586}
587
9517bac6 588/*
ebdec241 589 * Some of this taken from __block_write_begin(). We already have our
9517bac6
MF
590 * mapping by now though, and the entire write will be allocating or
591 * it won't, so not much need to use BH_New.
592 *
593 * This will also skip zeroing, which is handled externally.
594 */
60b11392
MF
595int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
596 struct inode *inode, unsigned int from,
597 unsigned int to, int new)
9517bac6
MF
598{
599 int ret = 0;
600 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
601 unsigned int block_end, block_start;
602 unsigned int bsize = 1 << inode->i_blkbits;
603
604 if (!page_has_buffers(page))
605 create_empty_buffers(page, bsize, 0);
606
607 head = page_buffers(page);
608 for (bh = head, block_start = 0; bh != head || !block_start;
609 bh = bh->b_this_page, block_start += bsize) {
610 block_end = block_start + bsize;
611
3a307ffc
MF
612 clear_buffer_new(bh);
613
9517bac6
MF
614 /*
615 * Ignore blocks outside of our i/o range -
616 * they may belong to unallocated clusters.
617 */
60b11392 618 if (block_start >= to || block_end <= from) {
9517bac6
MF
619 if (PageUptodate(page))
620 set_buffer_uptodate(bh);
621 continue;
622 }
623
624 /*
625 * For an allocating write with cluster size >= page
626 * size, we always write the entire page.
627 */
3a307ffc
MF
628 if (new)
629 set_buffer_new(bh);
9517bac6
MF
630
631 if (!buffer_mapped(bh)) {
632 map_bh(bh, inode->i_sb, *p_blkno);
633 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
634 }
635
636 if (PageUptodate(page)) {
637 if (!buffer_uptodate(bh))
638 set_buffer_uptodate(bh);
639 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
bce99768 640 !buffer_new(bh) &&
4e9563fd 641 ocfs2_should_read_blk(inode, page, block_start) &&
bce99768 642 (block_start < from || block_end > to)) {
9517bac6
MF
643 ll_rw_block(READ, 1, &bh);
644 *wait_bh++=bh;
645 }
646
647 *p_blkno = *p_blkno + 1;
648 }
649
650 /*
651 * If we issued read requests - let them complete.
652 */
653 while(wait_bh > wait) {
654 wait_on_buffer(*--wait_bh);
655 if (!buffer_uptodate(*wait_bh))
656 ret = -EIO;
657 }
658
659 if (ret == 0 || !new)
660 return ret;
661
662 /*
663 * If we get -EIO above, zero out any newly allocated blocks
664 * to avoid exposing stale data.
665 */
666 bh = head;
667 block_start = 0;
668 do {
9517bac6
MF
669 block_end = block_start + bsize;
670 if (block_end <= from)
671 goto next_bh;
672 if (block_start >= to)
673 break;
674
eebd2aa3 675 zero_user(page, block_start, bh->b_size);
9517bac6
MF
676 set_buffer_uptodate(bh);
677 mark_buffer_dirty(bh);
678
679next_bh:
680 block_start = block_end;
681 bh = bh->b_this_page;
682 } while (bh != head);
683
684 return ret;
685}
686
3a307ffc
MF
687#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
688#define OCFS2_MAX_CTXT_PAGES 1
689#else
690#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
691#endif
692
693#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
694
4506cfb6
RD
695struct ocfs2_unwritten_extent {
696 struct list_head ue_node;
697 struct list_head ue_ip_node;
698 u32 ue_cpos;
699 u32 ue_phys;
700};
701
6af67d82 702/*
3a307ffc 703 * Describe the state of a single cluster to be written to.
6af67d82 704 */
3a307ffc
MF
705struct ocfs2_write_cluster_desc {
706 u32 c_cpos;
707 u32 c_phys;
708 /*
709 * Give this a unique field because c_phys eventually gets
710 * filled.
711 */
712 unsigned c_new;
b46637d5 713 unsigned c_clear_unwritten;
e7432675 714 unsigned c_needs_zero;
3a307ffc 715};
6af67d82 716
3a307ffc
MF
717struct ocfs2_write_ctxt {
718 /* Logical cluster position / len of write */
719 u32 w_cpos;
720 u32 w_clen;
6af67d82 721
e7432675
SM
722 /* First cluster allocated in a nonsparse extend */
723 u32 w_first_new_cpos;
724
c1ad1e3c
RD
725 /* Type of caller. Must be one of buffer, mmap, direct. */
726 ocfs2_write_type_t w_type;
727
3a307ffc 728 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
6af67d82 729
3a307ffc
MF
730 /*
731 * This is true if page_size > cluster_size.
732 *
733 * It triggers a set of special cases during write which might
734 * have to deal with allocating writes to partial pages.
735 */
736 unsigned int w_large_pages;
6af67d82 737
3a307ffc
MF
738 /*
739 * Pages involved in this write.
740 *
741 * w_target_page is the page being written to by the user.
742 *
743 * w_pages is an array of pages which always contains
744 * w_target_page, and in the case of an allocating write with
745 * page_size < cluster size, it will contain zero'd and mapped
746 * pages adjacent to w_target_page which need to be written
747 * out in so that future reads from that region will get
748 * zero's.
749 */
3a307ffc 750 unsigned int w_num_pages;
83fd9c7f 751 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
3a307ffc 752 struct page *w_target_page;
eeb47d12 753
5cffff9e
WW
754 /*
755 * w_target_locked is used for page_mkwrite path indicating no unlocking
756 * against w_target_page in ocfs2_write_end_nolock.
757 */
758 unsigned int w_target_locked:1;
759
3a307ffc
MF
760 /*
761 * ocfs2_write_end() uses this to know what the real range to
762 * write in the target should be.
763 */
764 unsigned int w_target_from;
765 unsigned int w_target_to;
766
767 /*
768 * We could use journal_current_handle() but this is cleaner,
769 * IMHO -Mark
770 */
771 handle_t *w_handle;
772
773 struct buffer_head *w_di_bh;
b27b7cbc
MF
774
775 struct ocfs2_cached_dealloc_ctxt w_dealloc;
4506cfb6
RD
776
777 struct list_head w_unwritten_list;
3a307ffc
MF
778};
779
1d410a6e 780void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
3a307ffc
MF
781{
782 int i;
783
1d410a6e
MF
784 for(i = 0; i < num_pages; i++) {
785 if (pages[i]) {
786 unlock_page(pages[i]);
787 mark_page_accessed(pages[i]);
788 page_cache_release(pages[i]);
789 }
6af67d82 790 }
1d410a6e
MF
791}
792
136f49b9 793static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1d410a6e 794{
5cffff9e
WW
795 int i;
796
797 /*
798 * w_target_locked is only set to true in the page_mkwrite() case.
799 * The intent is to allow us to lock the target page from write_begin()
800 * to write_end(). The caller must hold a ref on w_target_page.
801 */
802 if (wc->w_target_locked) {
803 BUG_ON(!wc->w_target_page);
804 for (i = 0; i < wc->w_num_pages; i++) {
805 if (wc->w_target_page == wc->w_pages[i]) {
806 wc->w_pages[i] = NULL;
807 break;
808 }
809 }
810 mark_page_accessed(wc->w_target_page);
811 page_cache_release(wc->w_target_page);
812 }
1d410a6e 813 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
136f49b9 814}
6af67d82 815
4506cfb6
RD
816static void ocfs2_free_unwritten_list(struct inode *inode,
817 struct list_head *head)
818{
819 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 820 struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
4506cfb6 821
c15471f7
RD
822 list_for_each_entry_safe(ue, tmp, head, ue_node) {
823 list_del(&ue->ue_node);
4506cfb6 824 spin_lock(&oi->ip_lock);
c15471f7 825 list_del(&ue->ue_ip_node);
4506cfb6 826 spin_unlock(&oi->ip_lock);
c15471f7 827 kfree(ue);
4506cfb6
RD
828 }
829}
830
831static void ocfs2_free_write_ctxt(struct inode *inode,
832 struct ocfs2_write_ctxt *wc)
136f49b9 833{
4506cfb6 834 ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
136f49b9 835 ocfs2_unlock_pages(wc);
3a307ffc
MF
836 brelse(wc->w_di_bh);
837 kfree(wc);
838}
839
840static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
841 struct ocfs2_super *osb, loff_t pos,
c1ad1e3c
RD
842 unsigned len, ocfs2_write_type_t type,
843 struct buffer_head *di_bh)
3a307ffc 844{
30b8548f 845 u32 cend;
3a307ffc
MF
846 struct ocfs2_write_ctxt *wc;
847
848 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
849 if (!wc)
850 return -ENOMEM;
6af67d82 851
3a307ffc 852 wc->w_cpos = pos >> osb->s_clustersize_bits;
e7432675 853 wc->w_first_new_cpos = UINT_MAX;
30b8548f 854 cend = (pos + len - 1) >> osb->s_clustersize_bits;
855 wc->w_clen = cend - wc->w_cpos + 1;
607d44aa
MF
856 get_bh(di_bh);
857 wc->w_di_bh = di_bh;
c1ad1e3c 858 wc->w_type = type;
6af67d82 859
3a307ffc
MF
860 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
861 wc->w_large_pages = 1;
862 else
863 wc->w_large_pages = 0;
864
b27b7cbc 865 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
4506cfb6 866 INIT_LIST_HEAD(&wc->w_unwritten_list);
b27b7cbc 867
3a307ffc 868 *wcp = wc;
6af67d82 869
3a307ffc 870 return 0;
6af67d82
MF
871}
872
9517bac6 873/*
3a307ffc
MF
874 * If a page has any new buffers, zero them out here, and mark them uptodate
875 * and dirty so they'll be written out (in order to prevent uninitialised
876 * block data from leaking). And clear the new bit.
9517bac6 877 */
3a307ffc 878static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
9517bac6 879{
3a307ffc
MF
880 unsigned int block_start, block_end;
881 struct buffer_head *head, *bh;
9517bac6 882
3a307ffc
MF
883 BUG_ON(!PageLocked(page));
884 if (!page_has_buffers(page))
885 return;
9517bac6 886
3a307ffc
MF
887 bh = head = page_buffers(page);
888 block_start = 0;
889 do {
890 block_end = block_start + bh->b_size;
891
892 if (buffer_new(bh)) {
893 if (block_end > from && block_start < to) {
894 if (!PageUptodate(page)) {
895 unsigned start, end;
3a307ffc
MF
896
897 start = max(from, block_start);
898 end = min(to, block_end);
899
eebd2aa3 900 zero_user_segment(page, start, end);
3a307ffc
MF
901 set_buffer_uptodate(bh);
902 }
903
904 clear_buffer_new(bh);
905 mark_buffer_dirty(bh);
906 }
907 }
9517bac6 908
3a307ffc
MF
909 block_start = block_end;
910 bh = bh->b_this_page;
911 } while (bh != head);
912}
913
914/*
915 * Only called when we have a failure during allocating write to write
916 * zero's to the newly allocated region.
917 */
918static void ocfs2_write_failure(struct inode *inode,
919 struct ocfs2_write_ctxt *wc,
920 loff_t user_pos, unsigned user_len)
921{
922 int i;
5c26a7b7
MF
923 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
924 to = user_pos + user_len;
3a307ffc
MF
925 struct page *tmppage;
926
65c4db8c
RD
927 if (wc->w_target_page)
928 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
9517bac6 929
3a307ffc
MF
930 for(i = 0; i < wc->w_num_pages; i++) {
931 tmppage = wc->w_pages[i];
9517bac6 932
65c4db8c 933 if (tmppage && page_has_buffers(tmppage)) {
53ef99ca 934 if (ocfs2_should_order_data(inode))
2b4e30fb 935 ocfs2_jbd2_file_inode(wc->w_handle, inode);
961cecbe
SM
936
937 block_commit_write(tmppage, from, to);
938 }
9517bac6 939 }
9517bac6
MF
940}
941
3a307ffc
MF
942static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
943 struct ocfs2_write_ctxt *wc,
944 struct page *page, u32 cpos,
945 loff_t user_pos, unsigned user_len,
946 int new)
9517bac6 947{
3a307ffc
MF
948 int ret;
949 unsigned int map_from = 0, map_to = 0;
9517bac6 950 unsigned int cluster_start, cluster_end;
3a307ffc 951 unsigned int user_data_from = 0, user_data_to = 0;
9517bac6 952
3a307ffc 953 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
9517bac6
MF
954 &cluster_start, &cluster_end);
955
272b62c1
GR
956 /* treat the write as new if the a hole/lseek spanned across
957 * the page boundary.
958 */
959 new = new | ((i_size_read(inode) <= page_offset(page)) &&
960 (page_offset(page) <= user_pos));
961
3a307ffc
MF
962 if (page == wc->w_target_page) {
963 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
964 map_to = map_from + user_len;
965
966 if (new)
967 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
968 cluster_start, cluster_end,
969 new);
970 else
971 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
972 map_from, map_to, new);
973 if (ret) {
9517bac6
MF
974 mlog_errno(ret);
975 goto out;
976 }
977
3a307ffc
MF
978 user_data_from = map_from;
979 user_data_to = map_to;
9517bac6 980 if (new) {
3a307ffc
MF
981 map_from = cluster_start;
982 map_to = cluster_end;
9517bac6
MF
983 }
984 } else {
985 /*
986 * If we haven't allocated the new page yet, we
987 * shouldn't be writing it out without copying user
988 * data. This is likely a math error from the caller.
989 */
990 BUG_ON(!new);
991
3a307ffc
MF
992 map_from = cluster_start;
993 map_to = cluster_end;
9517bac6
MF
994
995 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
3a307ffc 996 cluster_start, cluster_end, new);
9517bac6
MF
997 if (ret) {
998 mlog_errno(ret);
999 goto out;
1000 }
1001 }
1002
1003 /*
1004 * Parts of newly allocated pages need to be zero'd.
1005 *
1006 * Above, we have also rewritten 'to' and 'from' - as far as
1007 * the rest of the function is concerned, the entire cluster
1008 * range inside of a page needs to be written.
1009 *
1010 * We can skip this if the page is up to date - it's already
1011 * been zero'd from being read in as a hole.
1012 */
1013 if (new && !PageUptodate(page))
1014 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
3a307ffc 1015 cpos, user_data_from, user_data_to);
9517bac6
MF
1016
1017 flush_dcache_page(page);
1018
9517bac6 1019out:
3a307ffc 1020 return ret;
9517bac6
MF
1021}
1022
1023/*
3a307ffc 1024 * This function will only grab one clusters worth of pages.
9517bac6 1025 */
3a307ffc
MF
1026static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1027 struct ocfs2_write_ctxt *wc,
693c241a
JB
1028 u32 cpos, loff_t user_pos,
1029 unsigned user_len, int new,
7307de80 1030 struct page *mmap_page)
9517bac6 1031{
3a307ffc 1032 int ret = 0, i;
693c241a 1033 unsigned long start, target_index, end_index, index;
9517bac6 1034 struct inode *inode = mapping->host;
693c241a 1035 loff_t last_byte;
9517bac6 1036
3a307ffc 1037 target_index = user_pos >> PAGE_CACHE_SHIFT;
9517bac6
MF
1038
1039 /*
1040 * Figure out how many pages we'll be manipulating here. For
60b11392 1041 * non allocating write, we just change the one
693c241a
JB
1042 * page. Otherwise, we'll need a whole clusters worth. If we're
1043 * writing past i_size, we only need enough pages to cover the
1044 * last page of the write.
9517bac6 1045 */
9517bac6 1046 if (new) {
3a307ffc
MF
1047 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1048 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
693c241a
JB
1049 /*
1050 * We need the index *past* the last page we could possibly
1051 * touch. This is the page past the end of the write or
1052 * i_size, whichever is greater.
1053 */
1054 last_byte = max(user_pos + user_len, i_size_read(inode));
1055 BUG_ON(last_byte < 1);
1056 end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1057 if ((start + wc->w_num_pages) > end_index)
1058 wc->w_num_pages = end_index - start;
9517bac6 1059 } else {
3a307ffc
MF
1060 wc->w_num_pages = 1;
1061 start = target_index;
9517bac6 1062 }
65c4db8c 1063 end_index = (user_pos + user_len - 1) >> PAGE_CACHE_SHIFT;
9517bac6 1064
3a307ffc 1065 for(i = 0; i < wc->w_num_pages; i++) {
9517bac6
MF
1066 index = start + i;
1067
65c4db8c
RD
1068 if (index >= target_index && index <= end_index &&
1069 wc->w_type == OCFS2_WRITE_MMAP) {
7307de80
MF
1070 /*
1071 * ocfs2_pagemkwrite() is a little different
1072 * and wants us to directly use the page
1073 * passed in.
1074 */
1075 lock_page(mmap_page);
1076
5cffff9e 1077 /* Exit and let the caller retry */
7307de80 1078 if (mmap_page->mapping != mapping) {
5cffff9e 1079 WARN_ON(mmap_page->mapping);
7307de80 1080 unlock_page(mmap_page);
5cffff9e 1081 ret = -EAGAIN;
7307de80
MF
1082 goto out;
1083 }
1084
1085 page_cache_get(mmap_page);
1086 wc->w_pages[i] = mmap_page;
5cffff9e 1087 wc->w_target_locked = true;
65c4db8c
RD
1088 } else if (index >= target_index && index <= end_index &&
1089 wc->w_type == OCFS2_WRITE_DIRECT) {
1090 /* Direct write has no mapping page. */
1091 wc->w_pages[i] = NULL;
1092 continue;
7307de80
MF
1093 } else {
1094 wc->w_pages[i] = find_or_create_page(mapping, index,
1095 GFP_NOFS);
1096 if (!wc->w_pages[i]) {
1097 ret = -ENOMEM;
1098 mlog_errno(ret);
1099 goto out;
1100 }
9517bac6 1101 }
1269529b 1102 wait_for_stable_page(wc->w_pages[i]);
3a307ffc
MF
1103
1104 if (index == target_index)
1105 wc->w_target_page = wc->w_pages[i];
9517bac6 1106 }
3a307ffc 1107out:
5cffff9e
WW
1108 if (ret)
1109 wc->w_target_locked = false;
3a307ffc
MF
1110 return ret;
1111}
1112
1113/*
1114 * Prepare a single cluster for write one cluster into the file.
1115 */
1116static int ocfs2_write_cluster(struct address_space *mapping,
2de6a3c7 1117 u32 *phys, unsigned int new,
b46637d5 1118 unsigned int clear_unwritten,
e7432675 1119 unsigned int should_zero,
b27b7cbc 1120 struct ocfs2_alloc_context *data_ac,
3a307ffc
MF
1121 struct ocfs2_alloc_context *meta_ac,
1122 struct ocfs2_write_ctxt *wc, u32 cpos,
1123 loff_t user_pos, unsigned user_len)
1124{
b46637d5 1125 int ret, i;
2de6a3c7 1126 u64 p_blkno;
3a307ffc 1127 struct inode *inode = mapping->host;
f99b9b7c 1128 struct ocfs2_extent_tree et;
2de6a3c7 1129 int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
3a307ffc 1130
9517bac6 1131 if (new) {
3a307ffc
MF
1132 u32 tmp_pos;
1133
9517bac6
MF
1134 /*
1135 * This is safe to call with the page locks - it won't take
1136 * any additional semaphores or cluster locks.
1137 */
3a307ffc 1138 tmp_pos = cpos;
0eb8d47e 1139 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
b46637d5
RD
1140 &tmp_pos, 1, !clear_unwritten,
1141 wc->w_di_bh, wc->w_handle,
1142 data_ac, meta_ac, NULL);
9517bac6
MF
1143 /*
1144 * This shouldn't happen because we must have already
1145 * calculated the correct meta data allocation required. The
1146 * internal tree allocation code should know how to increase
1147 * transaction credits itself.
1148 *
1149 * If need be, we could handle -EAGAIN for a
1150 * RESTART_TRANS here.
1151 */
1152 mlog_bug_on_msg(ret == -EAGAIN,
1153 "Inode %llu: EAGAIN return during allocation.\n",
1154 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1155 if (ret < 0) {
1156 mlog_errno(ret);
1157 goto out;
1158 }
b46637d5 1159 } else if (clear_unwritten) {
5e404e9e
JB
1160 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1161 wc->w_di_bh);
f99b9b7c 1162 ret = ocfs2_mark_extent_written(inode, &et,
2de6a3c7 1163 wc->w_handle, cpos, 1, *phys,
f99b9b7c 1164 meta_ac, &wc->w_dealloc);
b27b7cbc
MF
1165 if (ret < 0) {
1166 mlog_errno(ret);
1167 goto out;
1168 }
1169 }
3a307ffc 1170
3a307ffc
MF
1171 /*
1172 * The only reason this should fail is due to an inability to
1173 * find the extent added.
1174 */
2de6a3c7 1175 ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
9517bac6 1176 if (ret < 0) {
61fb9ea4 1177 mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
2de6a3c7
RD
1178 "at logical cluster %u",
1179 (unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
9517bac6
MF
1180 goto out;
1181 }
1182
2de6a3c7
RD
1183 BUG_ON(*phys == 0);
1184
1185 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
1186 if (!should_zero)
1187 p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
9517bac6 1188
3a307ffc
MF
1189 for(i = 0; i < wc->w_num_pages; i++) {
1190 int tmpret;
9517bac6 1191
65c4db8c
RD
1192 /* This is the direct io target page. */
1193 if (wc->w_pages[i] == NULL) {
1194 p_blkno++;
1195 continue;
1196 }
1197
3a307ffc
MF
1198 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1199 wc->w_pages[i], cpos,
b27b7cbc
MF
1200 user_pos, user_len,
1201 should_zero);
3a307ffc
MF
1202 if (tmpret) {
1203 mlog_errno(tmpret);
1204 if (ret == 0)
cbfa9639 1205 ret = tmpret;
3a307ffc 1206 }
9517bac6
MF
1207 }
1208
3a307ffc
MF
1209 /*
1210 * We only have cleanup to do in case of allocating write.
1211 */
1212 if (ret && new)
1213 ocfs2_write_failure(inode, wc, user_pos, user_len);
1214
9517bac6 1215out:
9517bac6 1216
3a307ffc 1217 return ret;
9517bac6
MF
1218}
1219
0d172baa
MF
1220static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1221 struct ocfs2_alloc_context *data_ac,
1222 struct ocfs2_alloc_context *meta_ac,
1223 struct ocfs2_write_ctxt *wc,
1224 loff_t pos, unsigned len)
1225{
1226 int ret, i;
db56246c
MF
1227 loff_t cluster_off;
1228 unsigned int local_len = len;
0d172baa 1229 struct ocfs2_write_cluster_desc *desc;
db56246c 1230 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
0d172baa
MF
1231
1232 for (i = 0; i < wc->w_clen; i++) {
1233 desc = &wc->w_desc[i];
1234
db56246c
MF
1235 /*
1236 * We have to make sure that the total write passed in
1237 * doesn't extend past a single cluster.
1238 */
1239 local_len = len;
1240 cluster_off = pos & (osb->s_clustersize - 1);
1241 if ((cluster_off + local_len) > osb->s_clustersize)
1242 local_len = osb->s_clustersize - cluster_off;
1243
2de6a3c7 1244 ret = ocfs2_write_cluster(mapping, &desc->c_phys,
b46637d5
RD
1245 desc->c_new,
1246 desc->c_clear_unwritten,
e7432675
SM
1247 desc->c_needs_zero,
1248 data_ac, meta_ac,
db56246c 1249 wc, desc->c_cpos, pos, local_len);
0d172baa
MF
1250 if (ret) {
1251 mlog_errno(ret);
1252 goto out;
1253 }
db56246c
MF
1254
1255 len -= local_len;
1256 pos += local_len;
0d172baa
MF
1257 }
1258
1259 ret = 0;
1260out:
1261 return ret;
1262}
1263
3a307ffc
MF
1264/*
1265 * ocfs2_write_end() wants to know which parts of the target page it
1266 * should complete the write on. It's easiest to compute them ahead of
1267 * time when a more complete view of the write is available.
1268 */
1269static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1270 struct ocfs2_write_ctxt *wc,
1271 loff_t pos, unsigned len, int alloc)
9517bac6 1272{
3a307ffc 1273 struct ocfs2_write_cluster_desc *desc;
9517bac6 1274
3a307ffc
MF
1275 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1276 wc->w_target_to = wc->w_target_from + len;
1277
1278 if (alloc == 0)
1279 return;
1280
1281 /*
1282 * Allocating write - we may have different boundaries based
1283 * on page size and cluster size.
1284 *
1285 * NOTE: We can no longer compute one value from the other as
1286 * the actual write length and user provided length may be
1287 * different.
1288 */
9517bac6 1289
3a307ffc
MF
1290 if (wc->w_large_pages) {
1291 /*
1292 * We only care about the 1st and last cluster within
b27b7cbc 1293 * our range and whether they should be zero'd or not. Either
3a307ffc
MF
1294 * value may be extended out to the start/end of a
1295 * newly allocated cluster.
1296 */
1297 desc = &wc->w_desc[0];
e7432675 1298 if (desc->c_needs_zero)
3a307ffc
MF
1299 ocfs2_figure_cluster_boundaries(osb,
1300 desc->c_cpos,
1301 &wc->w_target_from,
1302 NULL);
1303
1304 desc = &wc->w_desc[wc->w_clen - 1];
e7432675 1305 if (desc->c_needs_zero)
3a307ffc
MF
1306 ocfs2_figure_cluster_boundaries(osb,
1307 desc->c_cpos,
1308 NULL,
1309 &wc->w_target_to);
1310 } else {
1311 wc->w_target_from = 0;
1312 wc->w_target_to = PAGE_CACHE_SIZE;
1313 }
9517bac6
MF
1314}
1315
4506cfb6
RD
1316/*
1317 * Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
1318 * do the zero work. And should not to clear UNWRITTEN since it will be cleared
1319 * by the direct io procedure.
1320 * If this is a new extent that allocated by direct io, we should mark it in
1321 * the ip_unwritten_list.
1322 */
1323static int ocfs2_unwritten_check(struct inode *inode,
1324 struct ocfs2_write_ctxt *wc,
1325 struct ocfs2_write_cluster_desc *desc)
1326{
1327 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7 1328 struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
4506cfb6
RD
1329 int ret = 0;
1330
1331 if (!desc->c_needs_zero)
1332 return 0;
1333
1334retry:
1335 spin_lock(&oi->ip_lock);
1336 /* Needs not to zero no metter buffer or direct. The one who is zero
1337 * the cluster is doing zero. And he will clear unwritten after all
1338 * cluster io finished. */
c15471f7
RD
1339 list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
1340 if (desc->c_cpos == ue->ue_cpos) {
4506cfb6
RD
1341 BUG_ON(desc->c_new);
1342 desc->c_needs_zero = 0;
1343 desc->c_clear_unwritten = 0;
1344 goto unlock;
1345 }
1346 }
1347
1348 if (wc->w_type != OCFS2_WRITE_DIRECT)
1349 goto unlock;
1350
1351 if (new == NULL) {
1352 spin_unlock(&oi->ip_lock);
1353 new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
1354 GFP_NOFS);
1355 if (new == NULL) {
1356 ret = -ENOMEM;
1357 goto out;
1358 }
1359 goto retry;
1360 }
1361 /* This direct write will doing zero. */
1362 new->ue_cpos = desc->c_cpos;
1363 new->ue_phys = desc->c_phys;
1364 desc->c_clear_unwritten = 0;
1365 list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
1366 list_add_tail(&new->ue_node, &wc->w_unwritten_list);
1367 new = NULL;
1368unlock:
1369 spin_unlock(&oi->ip_lock);
1370out:
1371 if (new)
1372 kfree(new);
1373 return ret;
1374}
1375
0d172baa
MF
1376/*
1377 * Populate each single-cluster write descriptor in the write context
1378 * with information about the i/o to be done.
b27b7cbc
MF
1379 *
1380 * Returns the number of clusters that will have to be allocated, as
1381 * well as a worst case estimate of the number of extent records that
1382 * would have to be created during a write to an unwritten region.
0d172baa
MF
1383 */
1384static int ocfs2_populate_write_desc(struct inode *inode,
1385 struct ocfs2_write_ctxt *wc,
b27b7cbc
MF
1386 unsigned int *clusters_to_alloc,
1387 unsigned int *extents_to_split)
9517bac6 1388{
0d172baa 1389 int ret;
3a307ffc 1390 struct ocfs2_write_cluster_desc *desc;
0d172baa 1391 unsigned int num_clusters = 0;
b27b7cbc 1392 unsigned int ext_flags = 0;
0d172baa
MF
1393 u32 phys = 0;
1394 int i;
9517bac6 1395
b27b7cbc
MF
1396 *clusters_to_alloc = 0;
1397 *extents_to_split = 0;
1398
3a307ffc
MF
1399 for (i = 0; i < wc->w_clen; i++) {
1400 desc = &wc->w_desc[i];
1401 desc->c_cpos = wc->w_cpos + i;
1402
1403 if (num_clusters == 0) {
b27b7cbc
MF
1404 /*
1405 * Need to look up the next extent record.
1406 */
3a307ffc 1407 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
b27b7cbc 1408 &num_clusters, &ext_flags);
3a307ffc
MF
1409 if (ret) {
1410 mlog_errno(ret);
607d44aa 1411 goto out;
3a307ffc 1412 }
b27b7cbc 1413
293b2f70
TM
1414 /* We should already CoW the refcountd extent. */
1415 BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1416
b27b7cbc
MF
1417 /*
1418 * Assume worst case - that we're writing in
1419 * the middle of the extent.
1420 *
1421 * We can assume that the write proceeds from
1422 * left to right, in which case the extent
1423 * insert code is smart enough to coalesce the
1424 * next splits into the previous records created.
1425 */
1426 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1427 *extents_to_split = *extents_to_split + 2;
3a307ffc
MF
1428 } else if (phys) {
1429 /*
1430 * Only increment phys if it doesn't describe
1431 * a hole.
1432 */
1433 phys++;
1434 }
1435
e7432675
SM
1436 /*
1437 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1438 * file that got extended. w_first_new_cpos tells us
1439 * where the newly allocated clusters are so we can
1440 * zero them.
1441 */
1442 if (desc->c_cpos >= wc->w_first_new_cpos) {
1443 BUG_ON(phys == 0);
1444 desc->c_needs_zero = 1;
1445 }
1446
3a307ffc
MF
1447 desc->c_phys = phys;
1448 if (phys == 0) {
1449 desc->c_new = 1;
e7432675 1450 desc->c_needs_zero = 1;
b46637d5 1451 desc->c_clear_unwritten = 1;
0d172baa 1452 *clusters_to_alloc = *clusters_to_alloc + 1;
3a307ffc 1453 }
e7432675
SM
1454
1455 if (ext_flags & OCFS2_EXT_UNWRITTEN) {
b46637d5 1456 desc->c_clear_unwritten = 1;
e7432675
SM
1457 desc->c_needs_zero = 1;
1458 }
3a307ffc 1459
4506cfb6
RD
1460 ret = ocfs2_unwritten_check(inode, wc, desc);
1461 if (ret) {
1462 mlog_errno(ret);
1463 goto out;
1464 }
1465
3a307ffc 1466 num_clusters--;
9517bac6
MF
1467 }
1468
0d172baa
MF
1469 ret = 0;
1470out:
1471 return ret;
1472}
1473
1afc32b9
MF
1474static int ocfs2_write_begin_inline(struct address_space *mapping,
1475 struct inode *inode,
1476 struct ocfs2_write_ctxt *wc)
1477{
1478 int ret;
1479 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1480 struct page *page;
1481 handle_t *handle;
1482 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1483
f775da2f
JB
1484 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1485 if (IS_ERR(handle)) {
1486 ret = PTR_ERR(handle);
1487 mlog_errno(ret);
1488 goto out;
1489 }
1490
1afc32b9
MF
1491 page = find_or_create_page(mapping, 0, GFP_NOFS);
1492 if (!page) {
f775da2f 1493 ocfs2_commit_trans(osb, handle);
1afc32b9
MF
1494 ret = -ENOMEM;
1495 mlog_errno(ret);
1496 goto out;
1497 }
1498 /*
1499 * If we don't set w_num_pages then this page won't get unlocked
1500 * and freed on cleanup of the write context.
1501 */
1502 wc->w_pages[0] = wc->w_target_page = page;
1503 wc->w_num_pages = 1;
1504
0cf2f763 1505 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1506 OCFS2_JOURNAL_ACCESS_WRITE);
1afc32b9
MF
1507 if (ret) {
1508 ocfs2_commit_trans(osb, handle);
1509
1510 mlog_errno(ret);
1511 goto out;
1512 }
1513
1514 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1515 ocfs2_set_inode_data_inline(inode, di);
1516
1517 if (!PageUptodate(page)) {
1518 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1519 if (ret) {
1520 ocfs2_commit_trans(osb, handle);
1521
1522 goto out;
1523 }
1524 }
1525
1526 wc->w_handle = handle;
1527out:
1528 return ret;
1529}
1530
1531int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1532{
1533 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1534
0d8a4e0c 1535 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1afc32b9
MF
1536 return 1;
1537 return 0;
1538}
1539
1540static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1541 struct inode *inode, loff_t pos,
1542 unsigned len, struct page *mmap_page,
1543 struct ocfs2_write_ctxt *wc)
1544{
1545 int ret, written = 0;
1546 loff_t end = pos + len;
1547 struct ocfs2_inode_info *oi = OCFS2_I(inode);
d9ae49d6 1548 struct ocfs2_dinode *di = NULL;
1afc32b9 1549
9558156b
TM
1550 trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1551 len, (unsigned long long)pos,
1552 oi->ip_dyn_features);
1afc32b9
MF
1553
1554 /*
1555 * Handle inodes which already have inline data 1st.
1556 */
1557 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1558 if (mmap_page == NULL &&
1559 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1560 goto do_inline_write;
1561
1562 /*
1563 * The write won't fit - we have to give this inode an
1564 * inline extent list now.
1565 */
1566 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1567 if (ret)
1568 mlog_errno(ret);
1569 goto out;
1570 }
1571
1572 /*
1573 * Check whether the inode can accept inline data.
1574 */
1575 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1576 return 0;
1577
1578 /*
1579 * Check whether the write can fit.
1580 */
d9ae49d6
TY
1581 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1582 if (mmap_page ||
1583 end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1afc32b9
MF
1584 return 0;
1585
1586do_inline_write:
1587 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1588 if (ret) {
1589 mlog_errno(ret);
1590 goto out;
1591 }
1592
1593 /*
1594 * This signals to the caller that the data can be written
1595 * inline.
1596 */
1597 written = 1;
1598out:
1599 return written ? written : ret;
1600}
1601
65ed39d6
MF
1602/*
1603 * This function only does anything for file systems which can't
1604 * handle sparse files.
1605 *
1606 * What we want to do here is fill in any hole between the current end
1607 * of allocation and the end of our write. That way the rest of the
1608 * write path can treat it as an non-allocating write, which has no
1609 * special case code for sparse/nonsparse files.
1610 */
5693486b
JB
1611static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1612 struct buffer_head *di_bh,
1613 loff_t pos, unsigned len,
65ed39d6
MF
1614 struct ocfs2_write_ctxt *wc)
1615{
1616 int ret;
65ed39d6
MF
1617 loff_t newsize = pos + len;
1618
5693486b 1619 BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
65ed39d6
MF
1620
1621 if (newsize <= i_size_read(inode))
1622 return 0;
1623
5693486b 1624 ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
65ed39d6
MF
1625 if (ret)
1626 mlog_errno(ret);
1627
46e62556
RD
1628 /* There is no wc if this is call from direct. */
1629 if (wc)
1630 wc->w_first_new_cpos =
1631 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
e7432675 1632
65ed39d6
MF
1633 return ret;
1634}
1635
5693486b
JB
1636static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1637 loff_t pos)
1638{
1639 int ret = 0;
1640
1641 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1642 if (pos > i_size_read(inode))
1643 ret = ocfs2_zero_extend(inode, di_bh, pos);
1644
1645 return ret;
1646}
1647
50308d81
TM
1648/*
1649 * Try to flush truncate logs if we can free enough clusters from it.
1650 * As for return value, "< 0" means error, "0" no space and "1" means
1651 * we have freed enough spaces and let the caller try to allocate again.
1652 */
1653static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
1654 unsigned int needed)
1655{
1656 tid_t target;
1657 int ret = 0;
1658 unsigned int truncated_clusters;
1659
5955102c 1660 inode_lock(osb->osb_tl_inode);
50308d81 1661 truncated_clusters = osb->truncated_clusters;
5955102c 1662 inode_unlock(osb->osb_tl_inode);
50308d81
TM
1663
1664 /*
1665 * Check whether we can succeed in allocating if we free
1666 * the truncate log.
1667 */
1668 if (truncated_clusters < needed)
1669 goto out;
1670
1671 ret = ocfs2_flush_truncate_log(osb);
1672 if (ret) {
1673 mlog_errno(ret);
1674 goto out;
1675 }
1676
1677 if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
1678 jbd2_log_wait_commit(osb->journal->j_journal, target);
1679 ret = 1;
1680 }
1681out:
1682 return ret;
1683}
1684
c1ad1e3c
RD
1685int ocfs2_write_begin_nolock(struct address_space *mapping,
1686 loff_t pos, unsigned len, ocfs2_write_type_t type,
0d172baa
MF
1687 struct page **pagep, void **fsdata,
1688 struct buffer_head *di_bh, struct page *mmap_page)
1689{
e7432675 1690 int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
50308d81 1691 unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
0d172baa
MF
1692 struct ocfs2_write_ctxt *wc;
1693 struct inode *inode = mapping->host;
1694 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1695 struct ocfs2_dinode *di;
1696 struct ocfs2_alloc_context *data_ac = NULL;
1697 struct ocfs2_alloc_context *meta_ac = NULL;
1698 handle_t *handle;
f99b9b7c 1699 struct ocfs2_extent_tree et;
50308d81 1700 int try_free = 1, ret1;
0d172baa 1701
50308d81 1702try_again:
c1ad1e3c 1703 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
0d172baa
MF
1704 if (ret) {
1705 mlog_errno(ret);
1706 return ret;
1707 }
1708
1afc32b9
MF
1709 if (ocfs2_supports_inline_data(osb)) {
1710 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1711 mmap_page, wc);
1712 if (ret == 1) {
1713 ret = 0;
1714 goto success;
1715 }
1716 if (ret < 0) {
1717 mlog_errno(ret);
1718 goto out;
1719 }
1720 }
1721
46e62556
RD
1722 /* Direct io change i_size late, should not zero tail here. */
1723 if (type != OCFS2_WRITE_DIRECT) {
1724 if (ocfs2_sparse_alloc(osb))
1725 ret = ocfs2_zero_tail(inode, di_bh, pos);
1726 else
1727 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
1728 len, wc);
1729 if (ret) {
1730 mlog_errno(ret);
1731 goto out;
1732 }
65ed39d6
MF
1733 }
1734
293b2f70
TM
1735 ret = ocfs2_check_range_for_refcount(inode, pos, len);
1736 if (ret < 0) {
1737 mlog_errno(ret);
1738 goto out;
1739 } else if (ret == 1) {
50308d81 1740 clusters_need = wc->w_clen;
c7dd3392 1741 ret = ocfs2_refcount_cow(inode, di_bh,
37f8a2bf 1742 wc->w_cpos, wc->w_clen, UINT_MAX);
293b2f70
TM
1743 if (ret) {
1744 mlog_errno(ret);
1745 goto out;
1746 }
1747 }
1748
b27b7cbc
MF
1749 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1750 &extents_to_split);
0d172baa
MF
1751 if (ret) {
1752 mlog_errno(ret);
1753 goto out;
1754 }
50308d81 1755 clusters_need += clusters_to_alloc;
0d172baa
MF
1756
1757 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1758
9558156b
TM
1759 trace_ocfs2_write_begin_nolock(
1760 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1761 (long long)i_size_read(inode),
1762 le32_to_cpu(di->i_clusters),
c1ad1e3c 1763 pos, len, type, mmap_page,
9558156b
TM
1764 clusters_to_alloc, extents_to_split);
1765
3a307ffc
MF
1766 /*
1767 * We set w_target_from, w_target_to here so that
1768 * ocfs2_write_end() knows which range in the target page to
1769 * write out. An allocation requires that we write the entire
1770 * cluster range.
1771 */
b27b7cbc 1772 if (clusters_to_alloc || extents_to_split) {
3a307ffc
MF
1773 /*
1774 * XXX: We are stretching the limits of
b27b7cbc 1775 * ocfs2_lock_allocators(). It greatly over-estimates
3a307ffc
MF
1776 * the work to be done.
1777 */
5e404e9e
JB
1778 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1779 wc->w_di_bh);
f99b9b7c 1780 ret = ocfs2_lock_allocators(inode, &et,
231b87d1 1781 clusters_to_alloc, extents_to_split,
f99b9b7c 1782 &data_ac, &meta_ac);
9517bac6
MF
1783 if (ret) {
1784 mlog_errno(ret);
607d44aa 1785 goto out;
9517bac6
MF
1786 }
1787
4fe370af
MF
1788 if (data_ac)
1789 data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
1790
811f933d 1791 credits = ocfs2_calc_extend_credits(inode->i_sb,
06f9da6e 1792 &di->id2.i_list);
46e62556
RD
1793 } else if (type == OCFS2_WRITE_DIRECT)
1794 /* direct write needs not to start trans if no extents alloc. */
1795 goto success;
9517bac6 1796
e7432675
SM
1797 /*
1798 * We have to zero sparse allocated clusters, unwritten extent clusters,
1799 * and non-sparse clusters we just extended. For non-sparse writes,
1800 * we know zeros will only be needed in the first and/or last cluster.
1801 */
4506cfb6
RD
1802 if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
1803 wc->w_desc[wc->w_clen - 1].c_needs_zero))
e7432675
SM
1804 cluster_of_pages = 1;
1805 else
1806 cluster_of_pages = 0;
1807
1808 ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
3a307ffc 1809
9517bac6
MF
1810 handle = ocfs2_start_trans(osb, credits);
1811 if (IS_ERR(handle)) {
1812 ret = PTR_ERR(handle);
1813 mlog_errno(ret);
607d44aa 1814 goto out;
9517bac6
MF
1815 }
1816
3a307ffc
MF
1817 wc->w_handle = handle;
1818
5dd4056d
CH
1819 if (clusters_to_alloc) {
1820 ret = dquot_alloc_space_nodirty(inode,
1821 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1822 if (ret)
1823 goto out_commit;
a90714c1 1824 }
7f27ec97 1825
0cf2f763 1826 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
13723d00 1827 OCFS2_JOURNAL_ACCESS_WRITE);
3a307ffc 1828 if (ret) {
9517bac6 1829 mlog_errno(ret);
a90714c1 1830 goto out_quota;
9517bac6
MF
1831 }
1832
3a307ffc
MF
1833 /*
1834 * Fill our page array first. That way we've grabbed enough so
1835 * that we can zero and flush if we error after adding the
1836 * extent.
1837 */
693c241a 1838 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
e7432675 1839 cluster_of_pages, mmap_page);
5cffff9e 1840 if (ret && ret != -EAGAIN) {
9517bac6 1841 mlog_errno(ret);
a90714c1 1842 goto out_quota;
9517bac6
MF
1843 }
1844
5cffff9e
WW
1845 /*
1846 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
1847 * the target page. In this case, we exit with no error and no target
1848 * page. This will trigger the caller, page_mkwrite(), to re-try
1849 * the operation.
1850 */
1851 if (ret == -EAGAIN) {
1852 BUG_ON(wc->w_target_page);
1853 ret = 0;
1854 goto out_quota;
1855 }
1856
0d172baa
MF
1857 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1858 len);
1859 if (ret) {
1860 mlog_errno(ret);
a90714c1 1861 goto out_quota;
9517bac6 1862 }
9517bac6 1863
3a307ffc
MF
1864 if (data_ac)
1865 ocfs2_free_alloc_context(data_ac);
1866 if (meta_ac)
1867 ocfs2_free_alloc_context(meta_ac);
9517bac6 1868
1afc32b9 1869success:
65c4db8c
RD
1870 if (pagep)
1871 *pagep = wc->w_target_page;
3a307ffc
MF
1872 *fsdata = wc;
1873 return 0;
a90714c1
JK
1874out_quota:
1875 if (clusters_to_alloc)
5dd4056d 1876 dquot_free_space(inode,
a90714c1 1877 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
9517bac6
MF
1878out_commit:
1879 ocfs2_commit_trans(osb, handle);
1880
9517bac6 1881out:
4506cfb6 1882 ocfs2_free_write_ctxt(inode, wc);
3a307ffc 1883
b1214e47 1884 if (data_ac) {
9517bac6 1885 ocfs2_free_alloc_context(data_ac);
b1214e47
X
1886 data_ac = NULL;
1887 }
1888 if (meta_ac) {
9517bac6 1889 ocfs2_free_alloc_context(meta_ac);
b1214e47
X
1890 meta_ac = NULL;
1891 }
50308d81
TM
1892
1893 if (ret == -ENOSPC && try_free) {
1894 /*
1895 * Try to free some truncate log so that we can have enough
1896 * clusters to allocate.
1897 */
1898 try_free = 0;
1899
1900 ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
1901 if (ret1 == 1)
1902 goto try_again;
1903
1904 if (ret1 < 0)
1905 mlog_errno(ret1);
1906 }
1907
3a307ffc
MF
1908 return ret;
1909}
1910
b6af1bcd
NP
1911static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1912 loff_t pos, unsigned len, unsigned flags,
1913 struct page **pagep, void **fsdata)
607d44aa
MF
1914{
1915 int ret;
1916 struct buffer_head *di_bh = NULL;
1917 struct inode *inode = mapping->host;
1918
e63aecb6 1919 ret = ocfs2_inode_lock(inode, &di_bh, 1);
607d44aa
MF
1920 if (ret) {
1921 mlog_errno(ret);
1922 return ret;
1923 }
1924
1925 /*
1926 * Take alloc sem here to prevent concurrent lookups. That way
1927 * the mapping, zeroing and tree manipulation within
1928 * ocfs2_write() will be safe against ->readpage(). This
1929 * should also serve to lock out allocation from a shared
1930 * writeable region.
1931 */
1932 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1933
c1ad1e3c
RD
1934 ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
1935 pagep, fsdata, di_bh, NULL);
607d44aa
MF
1936 if (ret) {
1937 mlog_errno(ret);
c934a92d 1938 goto out_fail;
607d44aa
MF
1939 }
1940
1941 brelse(di_bh);
1942
1943 return 0;
1944
607d44aa
MF
1945out_fail:
1946 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1947
1948 brelse(di_bh);
e63aecb6 1949 ocfs2_inode_unlock(inode, 1);
607d44aa
MF
1950
1951 return ret;
1952}
1953
1afc32b9
MF
1954static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1955 unsigned len, unsigned *copied,
1956 struct ocfs2_dinode *di,
1957 struct ocfs2_write_ctxt *wc)
1958{
1959 void *kaddr;
1960
1961 if (unlikely(*copied < len)) {
1962 if (!PageUptodate(wc->w_target_page)) {
1963 *copied = 0;
1964 return;
1965 }
1966 }
1967
c4bc8dcb 1968 kaddr = kmap_atomic(wc->w_target_page);
1afc32b9 1969 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
c4bc8dcb 1970 kunmap_atomic(kaddr);
1afc32b9 1971
9558156b
TM
1972 trace_ocfs2_write_end_inline(
1973 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1afc32b9
MF
1974 (unsigned long long)pos, *copied,
1975 le16_to_cpu(di->id2.i_data.id_count),
1976 le16_to_cpu(di->i_dyn_features));
1977}
1978
7307de80
MF
1979int ocfs2_write_end_nolock(struct address_space *mapping,
1980 loff_t pos, unsigned len, unsigned copied,
1981 struct page *page, void *fsdata)
3a307ffc 1982{
7f27ec97 1983 int i, ret;
3a307ffc
MF
1984 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1985 struct inode *inode = mapping->host;
1986 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1987 struct ocfs2_write_ctxt *wc = fsdata;
1988 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1989 handle_t *handle = wc->w_handle;
1990 struct page *tmppage;
1991
4506cfb6
RD
1992 BUG_ON(!list_empty(&wc->w_unwritten_list));
1993
46e62556
RD
1994 if (handle) {
1995 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
1996 wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
1997 if (ret) {
1998 copied = ret;
1999 mlog_errno(ret);
2000 goto out;
2001 }
7f27ec97 2002 }
2003
1afc32b9
MF
2004 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2005 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2006 goto out_write_size;
2007 }
2008
65c4db8c 2009 if (unlikely(copied < len) && wc->w_target_page) {
3a307ffc
MF
2010 if (!PageUptodate(wc->w_target_page))
2011 copied = 0;
2012
2013 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2014 start+len);
2015 }
65c4db8c
RD
2016 if (wc->w_target_page)
2017 flush_dcache_page(wc->w_target_page);
3a307ffc
MF
2018
2019 for(i = 0; i < wc->w_num_pages; i++) {
2020 tmppage = wc->w_pages[i];
2021
65c4db8c
RD
2022 /* This is the direct io target page. */
2023 if (tmppage == NULL)
2024 continue;
2025
3a307ffc
MF
2026 if (tmppage == wc->w_target_page) {
2027 from = wc->w_target_from;
2028 to = wc->w_target_to;
2029
2030 BUG_ON(from > PAGE_CACHE_SIZE ||
2031 to > PAGE_CACHE_SIZE ||
2032 to < from);
2033 } else {
2034 /*
2035 * Pages adjacent to the target (if any) imply
2036 * a hole-filling write in which case we want
2037 * to flush their entire range.
2038 */
2039 from = 0;
2040 to = PAGE_CACHE_SIZE;
2041 }
2042
961cecbe 2043 if (page_has_buffers(tmppage)) {
46e62556
RD
2044 if (handle && ocfs2_should_order_data(inode))
2045 ocfs2_jbd2_file_inode(handle, inode);
961cecbe
SM
2046 block_commit_write(tmppage, from, to);
2047 }
3a307ffc
MF
2048 }
2049
1afc32b9 2050out_write_size:
46e62556
RD
2051 /* Direct io do not update i_size here. */
2052 if (wc->w_type != OCFS2_WRITE_DIRECT) {
2053 pos += copied;
2054 if (pos > i_size_read(inode)) {
2055 i_size_write(inode, pos);
2056 mark_inode_dirty(inode);
2057 }
2058 inode->i_blocks = ocfs2_inode_sector_count(inode);
2059 di->i_size = cpu_to_le64((u64)i_size_read(inode));
2060 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2061 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2062 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2063 ocfs2_update_inode_fsync_trans(handle, inode, 1);
2064 }
2065 if (handle)
2066 ocfs2_journal_dirty(handle, wc->w_di_bh);
3a307ffc 2067
7f27ec97 2068out:
136f49b9
JB
2069 /* unlock pages before dealloc since it needs acquiring j_trans_barrier
2070 * lock, or it will cause a deadlock since journal commit threads holds
2071 * this lock and will ask for the page lock when flushing the data.
2072 * put it here to preserve the unlock order.
2073 */
2074 ocfs2_unlock_pages(wc);
2075
46e62556
RD
2076 if (handle)
2077 ocfs2_commit_trans(osb, handle);
59a5e416 2078
b27b7cbc
MF
2079 ocfs2_run_deallocs(osb, &wc->w_dealloc);
2080
136f49b9
JB
2081 brelse(wc->w_di_bh);
2082 kfree(wc);
607d44aa
MF
2083
2084 return copied;
2085}
2086
b6af1bcd
NP
2087static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2088 loff_t pos, unsigned len, unsigned copied,
2089 struct page *page, void *fsdata)
607d44aa
MF
2090{
2091 int ret;
2092 struct inode *inode = mapping->host;
2093
2094 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2095
3a307ffc 2096 up_write(&OCFS2_I(inode)->ip_alloc_sem);
e63aecb6 2097 ocfs2_inode_unlock(inode, 1);
9517bac6 2098
607d44aa 2099 return ret;
9517bac6
MF
2100}
2101
c15471f7
RD
2102struct ocfs2_dio_write_ctxt {
2103 struct list_head dw_zero_list;
2104 unsigned dw_zero_count;
2105 int dw_orphaned;
2106 pid_t dw_writer_pid;
2107};
2108
2109static struct ocfs2_dio_write_ctxt *
2110ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
2111{
2112 struct ocfs2_dio_write_ctxt *dwc = NULL;
2113
2114 if (bh->b_private)
2115 return bh->b_private;
2116
2117 dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
2118 if (dwc == NULL)
2119 return NULL;
2120 INIT_LIST_HEAD(&dwc->dw_zero_list);
2121 dwc->dw_zero_count = 0;
2122 dwc->dw_orphaned = 0;
2123 dwc->dw_writer_pid = task_pid_nr(current);
2124 bh->b_private = dwc;
2125 *alloc = 1;
2126
2127 return dwc;
2128}
2129
2130static void ocfs2_dio_free_write_ctx(struct inode *inode,
2131 struct ocfs2_dio_write_ctxt *dwc)
2132{
2133 ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
2134 kfree(dwc);
2135}
2136
2137/*
2138 * TODO: Make this into a generic get_blocks function.
2139 *
2140 * From do_direct_io in direct-io.c:
2141 * "So what we do is to permit the ->get_blocks function to populate
2142 * bh.b_size with the size of IO which is permitted at this offset and
2143 * this i_blkbits."
2144 *
2145 * This function is called directly from get_more_blocks in direct-io.c.
2146 *
2147 * called like this: dio->get_blocks(dio->inode, fs_startblk,
2148 * fs_count, map_bh, dio->rw == WRITE);
2149 */
2150static int ocfs2_dio_get_block(struct inode *inode, sector_t iblock,
2151 struct buffer_head *bh_result, int create)
2152{
2153 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2154 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2155 struct ocfs2_write_ctxt *wc;
2156 struct ocfs2_write_cluster_desc *desc = NULL;
2157 struct ocfs2_dio_write_ctxt *dwc = NULL;
2158 struct buffer_head *di_bh = NULL;
2159 u64 p_blkno;
2160 loff_t pos = iblock << inode->i_sb->s_blocksize_bits;
2161 unsigned len, total_len = bh_result->b_size;
2162 int ret = 0, first_get_block = 0;
2163
2164 len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
2165 len = min(total_len, len);
2166
2167 mlog(0, "get block of %lu at %llu:%u req %u\n",
2168 inode->i_ino, pos, len, total_len);
2169
ce170828
RD
2170 /*
2171 * Because we need to change file size in ocfs2_dio_end_io_write(), or
2172 * we may need to add it to orphan dir. So can not fall to fast path
2173 * while file size will be changed.
2174 */
2175 if (pos + total_len <= i_size_read(inode)) {
2176 down_read(&oi->ip_alloc_sem);
2177 /* This is the fast path for re-write. */
2178 ret = ocfs2_get_block(inode, iblock, bh_result, create);
c15471f7 2179
ce170828 2180 up_read(&oi->ip_alloc_sem);
a86a72a4 2181
ce170828
RD
2182 if (buffer_mapped(bh_result) &&
2183 !buffer_new(bh_result) &&
2184 ret == 0)
2185 goto out;
c15471f7 2186
ce170828
RD
2187 /* Clear state set by ocfs2_get_block. */
2188 bh_result->b_state = 0;
2189 }
c15471f7
RD
2190
2191 dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
2192 if (unlikely(dwc == NULL)) {
2193 ret = -ENOMEM;
2194 mlog_errno(ret);
2195 goto out;
2196 }
2197
2198 if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
2199 ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
2200 !dwc->dw_orphaned) {
2201 /*
2202 * when we are going to alloc extents beyond file size, add the
2203 * inode to orphan dir, so we can recall those spaces when
2204 * system crashed during write.
2205 */
2206 ret = ocfs2_add_inode_to_orphan(osb, inode);
2207 if (ret < 0) {
2208 mlog_errno(ret);
2209 goto out;
2210 }
2211 dwc->dw_orphaned = 1;
2212 }
2213
2214 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2215 if (ret) {
2216 mlog_errno(ret);
2217 goto out;
2218 }
2219
a86a72a4
RD
2220 down_write(&oi->ip_alloc_sem);
2221
c15471f7
RD
2222 if (first_get_block) {
2223 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
2224 ret = ocfs2_zero_tail(inode, di_bh, pos);
2225 else
2226 ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
2227 total_len, NULL);
2228 if (ret < 0) {
2229 mlog_errno(ret);
2230 goto unlock;
2231 }
2232 }
2233
2234 ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
2235 OCFS2_WRITE_DIRECT, NULL,
2236 (void **)&wc, di_bh, NULL);
2237 if (ret) {
2238 mlog_errno(ret);
2239 goto unlock;
2240 }
2241
2242 desc = &wc->w_desc[0];
2243
2244 p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
2245 BUG_ON(p_blkno == 0);
2246 p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
2247
2248 map_bh(bh_result, inode->i_sb, p_blkno);
2249 bh_result->b_size = len;
2250 if (desc->c_needs_zero)
2251 set_buffer_new(bh_result);
2252
2253 /* May sleep in end_io. It should not happen in a irq context. So defer
2254 * it to dio work queue. */
2255 set_buffer_defer_completion(bh_result);
2256
2257 if (!list_empty(&wc->w_unwritten_list)) {
2258 struct ocfs2_unwritten_extent *ue = NULL;
2259
2260 ue = list_first_entry(&wc->w_unwritten_list,
2261 struct ocfs2_unwritten_extent,
2262 ue_node);
2263 BUG_ON(ue->ue_cpos != desc->c_cpos);
2264 /* The physical address may be 0, fill it. */
2265 ue->ue_phys = desc->c_phys;
2266
2267 list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
2268 dwc->dw_zero_count++;
2269 }
2270
2271 ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, NULL, wc);
2272 BUG_ON(ret != len);
2273 ret = 0;
2274unlock:
a86a72a4 2275 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2276 ocfs2_inode_unlock(inode, 1);
2277 brelse(di_bh);
2278out:
2279 if (ret < 0)
2280 ret = -EIO;
2281 return ret;
2282}
2283
2284static void ocfs2_dio_end_io_write(struct inode *inode,
2285 struct ocfs2_dio_write_ctxt *dwc,
2286 loff_t offset,
2287 ssize_t bytes)
2288{
2289 struct ocfs2_cached_dealloc_ctxt dealloc;
2290 struct ocfs2_extent_tree et;
2291 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
a86a72a4 2292 struct ocfs2_inode_info *oi = OCFS2_I(inode);
c15471f7
RD
2293 struct ocfs2_unwritten_extent *ue = NULL;
2294 struct buffer_head *di_bh = NULL;
2295 struct ocfs2_dinode *di;
2296 struct ocfs2_alloc_context *data_ac = NULL;
2297 struct ocfs2_alloc_context *meta_ac = NULL;
2298 handle_t *handle = NULL;
2299 loff_t end = offset + bytes;
2300 int ret = 0, credits = 0, locked = 0;
2301
2302 ocfs2_init_dealloc_ctxt(&dealloc);
2303
2304 /* We do clear unwritten, delete orphan, change i_size here. If neither
2305 * of these happen, we can skip all this. */
2306 if (list_empty(&dwc->dw_zero_list) &&
2307 end <= i_size_read(inode) &&
2308 !dwc->dw_orphaned)
2309 goto out;
2310
c15471f7
RD
2311 /* ocfs2_file_write_iter will get i_mutex, so we need not lock if we
2312 * are in that context. */
2313 if (dwc->dw_writer_pid != task_pid_nr(current)) {
2314 mutex_lock(&inode->i_mutex);
2315 locked = 1;
2316 }
2317
a86a72a4
RD
2318 ret = ocfs2_inode_lock(inode, &di_bh, 1);
2319 if (ret < 0) {
2320 mlog_errno(ret);
2321 goto out;
2322 }
2323
2324 down_write(&oi->ip_alloc_sem);
2325
c15471f7
RD
2326 /* Delete orphan before acquire i_mutex. */
2327 if (dwc->dw_orphaned) {
2328 BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
2329
2330 end = end > i_size_read(inode) ? end : 0;
2331
2332 ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
2333 !!end, end);
2334 if (ret < 0)
2335 mlog_errno(ret);
2336 }
2337
2338 di = (struct ocfs2_dinode *)di_bh;
2339
2340 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
2341
2342 ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
2343 &data_ac, &meta_ac);
2344
2345 credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
2346
2347 handle = ocfs2_start_trans(osb, credits);
2348 if (IS_ERR(handle)) {
2349 ret = PTR_ERR(handle);
2350 mlog_errno(ret);
2351 goto unlock;
2352 }
2353 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
2354 OCFS2_JOURNAL_ACCESS_WRITE);
2355 if (ret) {
2356 mlog_errno(ret);
2357 goto commit;
2358 }
2359
2360 list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
2361 ret = ocfs2_mark_extent_written(inode, &et, handle,
2362 ue->ue_cpos, 1,
2363 ue->ue_phys,
2364 meta_ac, &dealloc);
2365 if (ret < 0) {
2366 mlog_errno(ret);
2367 break;
2368 }
2369 }
2370
2371 if (end > i_size_read(inode)) {
2372 ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
2373 if (ret < 0)
2374 mlog_errno(ret);
2375 }
2376commit:
2377 ocfs2_commit_trans(osb, handle);
2378unlock:
a86a72a4 2379 up_write(&oi->ip_alloc_sem);
c15471f7
RD
2380 ocfs2_inode_unlock(inode, 1);
2381 brelse(di_bh);
2382out:
2383 ocfs2_run_deallocs(osb, &dealloc);
2384 if (locked)
2385 mutex_unlock(&inode->i_mutex);
2386 ocfs2_dio_free_write_ctx(inode, dwc);
2387 if (data_ac)
2388 ocfs2_free_alloc_context(data_ac);
2389 if (meta_ac)
2390 ocfs2_free_alloc_context(meta_ac);
2391}
2392
2393/*
2394 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
2395 * particularly interested in the aio/dio case. We use the rw_lock DLM lock
2396 * to protect io on one node from truncation on another.
2397 */
2398static int ocfs2_dio_end_io(struct kiocb *iocb,
2399 loff_t offset,
2400 ssize_t bytes,
2401 void *private)
2402{
2403 struct inode *inode = file_inode(iocb->ki_filp);
2404 int level;
2405
2406 if (bytes <= 0)
2407 return 0;
2408
2409 /* this io's submitter should not have unlocked this before we could */
2410 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
2411
c15471f7
RD
2412 if (private)
2413 ocfs2_dio_end_io_write(inode, private, offset, bytes);
2414
2415 ocfs2_iocb_clear_rw_locked(iocb);
2416
2417 level = ocfs2_iocb_rw_locked_level(iocb);
2418 ocfs2_rw_unlock(inode, level);
2419 return 0;
2420}
2421
2422static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
2423 loff_t offset)
2424{
2425 struct file *file = iocb->ki_filp;
2426 struct inode *inode = file_inode(file)->i_mapping->host;
2427 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2428 loff_t end = offset + iter->count;
2429 get_block_t *get_block;
2430
2431 /*
2432 * Fallback to buffered I/O if we see an inode without
2433 * extents.
2434 */
2435 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
2436 return 0;
2437
2438 /* Fallback to buffered I/O if we do not support append dio. */
2439 if (end > i_size_read(inode) && !ocfs2_supports_append_dio(osb))
2440 return 0;
2441
2442 if (iov_iter_rw(iter) == READ)
2443 get_block = ocfs2_get_block;
2444 else
2445 get_block = ocfs2_dio_get_block;
2446
2447 return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
2448 iter, offset, get_block,
2449 ocfs2_dio_end_io, NULL, 0);
2450}
2451
f5e54d6e 2452const struct address_space_operations ocfs2_aops = {
1fca3a05
HH
2453 .readpage = ocfs2_readpage,
2454 .readpages = ocfs2_readpages,
2455 .writepage = ocfs2_writepage,
2456 .write_begin = ocfs2_write_begin,
2457 .write_end = ocfs2_write_end,
2458 .bmap = ocfs2_bmap,
1fca3a05 2459 .direct_IO = ocfs2_direct_IO,
41ecc345 2460 .invalidatepage = block_invalidatepage,
1fca3a05
HH
2461 .releasepage = ocfs2_releasepage,
2462 .migratepage = buffer_migrate_page,
2463 .is_partially_uptodate = block_is_partially_uptodate,
aa261f54 2464 .error_remove_page = generic_error_remove_page,
ccd979bd 2465};