Steady state detection: enhance reporting of results, change memory allocation point
[fio.git] / stat.c
1 #include <stdio.h>
2 #include <string.h>
3 #include <sys/time.h>
4 #include <sys/types.h>
5 #include <sys/stat.h>
6 #include <dirent.h>
7 #include <libgen.h>
8 #include <math.h>
9
10 #include "fio.h"
11 #include "diskutil.h"
12 #include "lib/ieee754.h"
13 #include "json.h"
14 #include "lib/getrusage.h"
15 #include "idletime.h"
16 #include "lib/pow2.h"
17 #include "lib/output_buffer.h"
18 #include "helper_thread.h"
19 #include "smalloc.h"
20
21 #define LOG_MSEC_SLACK  10
22
23 struct fio_mutex *stat_mutex;
24
25 void clear_rusage_stat(struct thread_data *td)
26 {
27         struct thread_stat *ts = &td->ts;
28
29         fio_getrusage(&td->ru_start);
30         ts->usr_time = ts->sys_time = 0;
31         ts->ctx = 0;
32         ts->minf = ts->majf = 0;
33 }
34
35 void update_rusage_stat(struct thread_data *td)
36 {
37         struct thread_stat *ts = &td->ts;
38
39         fio_getrusage(&td->ru_end);
40         ts->usr_time += mtime_since(&td->ru_start.ru_utime,
41                                         &td->ru_end.ru_utime);
42         ts->sys_time += mtime_since(&td->ru_start.ru_stime,
43                                         &td->ru_end.ru_stime);
44         ts->ctx += td->ru_end.ru_nvcsw + td->ru_end.ru_nivcsw
45                         - (td->ru_start.ru_nvcsw + td->ru_start.ru_nivcsw);
46         ts->minf += td->ru_end.ru_minflt - td->ru_start.ru_minflt;
47         ts->majf += td->ru_end.ru_majflt - td->ru_start.ru_majflt;
48
49         memcpy(&td->ru_start, &td->ru_end, sizeof(td->ru_end));
50 }
51
52 /*
53  * Given a latency, return the index of the corresponding bucket in
54  * the structure tracking percentiles.
55  *
56  * (1) find the group (and error bits) that the value (latency)
57  * belongs to by looking at its MSB. (2) find the bucket number in the
58  * group by looking at the index bits.
59  *
60  */
61 static unsigned int plat_val_to_idx(unsigned int val)
62 {
63         unsigned int msb, error_bits, base, offset, idx;
64
65         /* Find MSB starting from bit 0 */
66         if (val == 0)
67                 msb = 0;
68         else
69                 msb = (sizeof(val)*8) - __builtin_clz(val) - 1;
70
71         /*
72          * MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
73          * all bits of the sample as index
74          */
75         if (msb <= FIO_IO_U_PLAT_BITS)
76                 return val;
77
78         /* Compute the number of error bits to discard*/
79         error_bits = msb - FIO_IO_U_PLAT_BITS;
80
81         /* Compute the number of buckets before the group */
82         base = (error_bits + 1) << FIO_IO_U_PLAT_BITS;
83
84         /*
85          * Discard the error bits and apply the mask to find the
86          * index for the buckets in the group
87          */
88         offset = (FIO_IO_U_PLAT_VAL - 1) & (val >> error_bits);
89
90         /* Make sure the index does not exceed (array size - 1) */
91         idx = (base + offset) < (FIO_IO_U_PLAT_NR - 1) ?
92                 (base + offset) : (FIO_IO_U_PLAT_NR - 1);
93
94         return idx;
95 }
96
97 /*
98  * Convert the given index of the bucket array to the value
99  * represented by the bucket
100  */
101 static unsigned int plat_idx_to_val(unsigned int idx)
102 {
103         unsigned int error_bits, k, base;
104
105         assert(idx < FIO_IO_U_PLAT_NR);
106
107         /* MSB <= (FIO_IO_U_PLAT_BITS-1), cannot be rounded off. Use
108          * all bits of the sample as index */
109         if (idx < (FIO_IO_U_PLAT_VAL << 1))
110                 return idx;
111
112         /* Find the group and compute the minimum value of that group */
113         error_bits = (idx >> FIO_IO_U_PLAT_BITS) - 1;
114         base = 1 << (error_bits + FIO_IO_U_PLAT_BITS);
115
116         /* Find its bucket number of the group */
117         k = idx % FIO_IO_U_PLAT_VAL;
118
119         /* Return the mean of the range of the bucket */
120         return base + ((k + 0.5) * (1 << error_bits));
121 }
122
123 static int double_cmp(const void *a, const void *b)
124 {
125         const fio_fp64_t fa = *(const fio_fp64_t *) a;
126         const fio_fp64_t fb = *(const fio_fp64_t *) b;
127         int cmp = 0;
128
129         if (fa.u.f > fb.u.f)
130                 cmp = 1;
131         else if (fa.u.f < fb.u.f)
132                 cmp = -1;
133
134         return cmp;
135 }
136
137 unsigned int calc_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
138                                    fio_fp64_t *plist, unsigned int **output,
139                                    unsigned int *maxv, unsigned int *minv)
140 {
141         unsigned long sum = 0;
142         unsigned int len, i, j = 0;
143         unsigned int oval_len = 0;
144         unsigned int *ovals = NULL;
145         int is_last;
146
147         *minv = -1U;
148         *maxv = 0;
149
150         len = 0;
151         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
152                 len++;
153
154         if (!len)
155                 return 0;
156
157         /*
158          * Sort the percentile list. Note that it may already be sorted if
159          * we are using the default values, but since it's a short list this
160          * isn't a worry. Also note that this does not work for NaN values.
161          */
162         if (len > 1)
163                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
164
165         /*
166          * Calculate bucket values, note down max and min values
167          */
168         is_last = 0;
169         for (i = 0; i < FIO_IO_U_PLAT_NR && !is_last; i++) {
170                 sum += io_u_plat[i];
171                 while (sum >= (plist[j].u.f / 100.0 * nr)) {
172                         assert(plist[j].u.f <= 100.0);
173
174                         if (j == oval_len) {
175                                 oval_len += 100;
176                                 ovals = realloc(ovals, oval_len * sizeof(unsigned int));
177                         }
178
179                         ovals[j] = plat_idx_to_val(i);
180                         if (ovals[j] < *minv)
181                                 *minv = ovals[j];
182                         if (ovals[j] > *maxv)
183                                 *maxv = ovals[j];
184
185                         is_last = (j == len - 1);
186                         if (is_last)
187                                 break;
188
189                         j++;
190                 }
191         }
192
193         *output = ovals;
194         return len;
195 }
196
197 /*
198  * Find and display the p-th percentile of clat
199  */
200 static void show_clat_percentiles(unsigned int *io_u_plat, unsigned long nr,
201                                   fio_fp64_t *plist, unsigned int precision,
202                                   struct buf_output *out)
203 {
204         unsigned int len, j = 0, minv, maxv;
205         unsigned int *ovals;
206         int is_last, per_line, scale_down;
207         char fmt[32];
208
209         len = calc_clat_percentiles(io_u_plat, nr, plist, &ovals, &maxv, &minv);
210         if (!len)
211                 goto out;
212
213         /*
214          * We default to usecs, but if the value range is such that we
215          * should scale down to msecs, do that.
216          */
217         if (minv > 2000 && maxv > 99999) {
218                 scale_down = 1;
219                 log_buf(out, "    clat percentiles (msec):\n     |");
220         } else {
221                 scale_down = 0;
222                 log_buf(out, "    clat percentiles (usec):\n     |");
223         }
224
225         snprintf(fmt, sizeof(fmt), "%%1.%uf", precision);
226         per_line = (80 - 7) / (precision + 14);
227
228         for (j = 0; j < len; j++) {
229                 char fbuf[16], *ptr = fbuf;
230
231                 /* for formatting */
232                 if (j != 0 && (j % per_line) == 0)
233                         log_buf(out, "     |");
234
235                 /* end of the list */
236                 is_last = (j == len - 1);
237
238                 if (plist[j].u.f < 10.0)
239                         ptr += sprintf(fbuf, " ");
240
241                 snprintf(ptr, sizeof(fbuf), fmt, plist[j].u.f);
242
243                 if (scale_down)
244                         ovals[j] = (ovals[j] + 999) / 1000;
245
246                 log_buf(out, " %sth=[%5u]%c", fbuf, ovals[j], is_last ? '\n' : ',');
247
248                 if (is_last)
249                         break;
250
251                 if ((j % per_line) == per_line - 1)     /* for formatting */
252                         log_buf(out, "\n");
253         }
254
255 out:
256         if (ovals)
257                 free(ovals);
258 }
259
260 int calc_lat(struct io_stat *is, unsigned long *min, unsigned long *max,
261              double *mean, double *dev)
262 {
263         double n = (double) is->samples;
264
265         if (n == 0)
266                 return 0;
267
268         *min = is->min_val;
269         *max = is->max_val;
270         *mean = is->mean.u.f;
271
272         if (n > 1.0)
273                 *dev = sqrt(is->S.u.f / (n - 1.0));
274         else
275                 *dev = 0;
276
277         return 1;
278 }
279
280 void show_group_stats(struct group_run_stats *rs, struct buf_output *out)
281 {
282         char *p1, *p2, *p3, *p4;
283         const char *str[] = { "   READ", "  WRITE" , "   TRIM"};
284         int i;
285
286         log_buf(out, "\nRun status group %d (all jobs):\n", rs->groupid);
287
288         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
289                 const int i2p = is_power_of_2(rs->kb_base);
290
291                 if (!rs->max_run[i])
292                         continue;
293
294                 p1 = num2str(rs->io_kb[i], 6, rs->kb_base, i2p, 8);
295                 p2 = num2str(rs->agg[i], 6, rs->kb_base, i2p, rs->unit_base);
296                 p3 = num2str(rs->min_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
297                 p4 = num2str(rs->max_bw[i], 6, rs->kb_base, i2p, rs->unit_base);
298
299                 log_buf(out, "%s: io=%s, aggrb=%s/s, minb=%s/s, maxb=%s/s,"
300                          " mint=%llumsec, maxt=%llumsec\n",
301                                 rs->unified_rw_rep ? "  MIXED" : str[i],
302                                 p1, p2, p3, p4,
303                                 (unsigned long long) rs->min_run[i],
304                                 (unsigned long long) rs->max_run[i]);
305
306                 free(p1);
307                 free(p2);
308                 free(p3);
309                 free(p4);
310         }
311 }
312
313 void stat_calc_dist(unsigned int *map, unsigned long total, double *io_u_dist)
314 {
315         int i;
316
317         /*
318          * Do depth distribution calculations
319          */
320         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
321                 if (total) {
322                         io_u_dist[i] = (double) map[i] / (double) total;
323                         io_u_dist[i] *= 100.0;
324                         if (io_u_dist[i] < 0.1 && map[i])
325                                 io_u_dist[i] = 0.1;
326                 } else
327                         io_u_dist[i] = 0.0;
328         }
329 }
330
331 static void stat_calc_lat(struct thread_stat *ts, double *dst,
332                           unsigned int *src, int nr)
333 {
334         unsigned long total = ddir_rw_sum(ts->total_io_u);
335         int i;
336
337         /*
338          * Do latency distribution calculations
339          */
340         for (i = 0; i < nr; i++) {
341                 if (total) {
342                         dst[i] = (double) src[i] / (double) total;
343                         dst[i] *= 100.0;
344                         if (dst[i] < 0.01 && src[i])
345                                 dst[i] = 0.01;
346                 } else
347                         dst[i] = 0.0;
348         }
349 }
350
351 void stat_calc_lat_u(struct thread_stat *ts, double *io_u_lat)
352 {
353         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_u, FIO_IO_U_LAT_U_NR);
354 }
355
356 void stat_calc_lat_m(struct thread_stat *ts, double *io_u_lat)
357 {
358         stat_calc_lat(ts, io_u_lat, ts->io_u_lat_m, FIO_IO_U_LAT_M_NR);
359 }
360
361 static void display_lat(const char *name, unsigned long min, unsigned long max,
362                         double mean, double dev, struct buf_output *out)
363 {
364         const char *base = "(usec)";
365         char *minp, *maxp;
366
367         if (!usec_to_msec(&min, &max, &mean, &dev))
368                 base = "(msec)";
369
370         minp = num2str(min, 6, 1, 0, 0);
371         maxp = num2str(max, 6, 1, 0, 0);
372
373         log_buf(out, "    %s %s: min=%s, max=%s, avg=%5.02f,"
374                  " stdev=%5.02f\n", name, base, minp, maxp, mean, dev);
375
376         free(minp);
377         free(maxp);
378 }
379
380 static void show_ddir_status(struct group_run_stats *rs, struct thread_stat *ts,
381                              int ddir, struct buf_output *out)
382 {
383         const char *str[] = { "read ", "write", "trim" };
384         unsigned long min, max, runt;
385         unsigned long long bw, iops;
386         double mean, dev;
387         char *io_p, *bw_p, *iops_p;
388         int i2p;
389
390         assert(ddir_rw(ddir));
391
392         if (!ts->runtime[ddir])
393                 return;
394
395         i2p = is_power_of_2(rs->kb_base);
396         runt = ts->runtime[ddir];
397
398         bw = (1000 * ts->io_bytes[ddir]) / runt;
399         io_p = num2str(ts->io_bytes[ddir], 6, 1, i2p, 8);
400         bw_p = num2str(bw, 6, 1, i2p, ts->unit_base);
401
402         iops = (1000 * (uint64_t)ts->total_io_u[ddir]) / runt;
403         iops_p = num2str(iops, 6, 1, 0, 0);
404
405         log_buf(out, "  %s: io=%s, bw=%s/s, iops=%s, runt=%6llumsec\n",
406                                 rs->unified_rw_rep ? "mixed" : str[ddir],
407                                 io_p, bw_p, iops_p,
408                                 (unsigned long long) ts->runtime[ddir]);
409
410         free(io_p);
411         free(bw_p);
412         free(iops_p);
413
414         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
415                 display_lat("slat", min, max, mean, dev, out);
416         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
417                 display_lat("clat", min, max, mean, dev, out);
418         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
419                 display_lat(" lat", min, max, mean, dev, out);
420
421         if (ts->clat_percentiles) {
422                 show_clat_percentiles(ts->io_u_plat[ddir],
423                                         ts->clat_stat[ddir].samples,
424                                         ts->percentile_list,
425                                         ts->percentile_precision, out);
426         }
427         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
428                 double p_of_agg = 100.0, fkb_base = (double)rs->kb_base;
429                 const char *bw_str = (rs->unit_base == 1 ? "Kbit" : "KB");
430
431                 if (rs->unit_base == 1) {
432                         min *= 8.0;
433                         max *= 8.0;
434                         mean *= 8.0;
435                         dev *= 8.0;
436                 }
437
438                 if (rs->agg[ddir]) {
439                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
440                         if (p_of_agg > 100.0)
441                                 p_of_agg = 100.0;
442                 }
443
444                 if (mean > fkb_base * fkb_base) {
445                         min /= fkb_base;
446                         max /= fkb_base;
447                         mean /= fkb_base;
448                         dev /= fkb_base;
449                         bw_str = (rs->unit_base == 1 ? "Mbit" : "MB");
450                 }
451
452                 log_buf(out, "    bw (%-4s/s): min=%5lu, max=%5lu, per=%3.2f%%,"
453                          " avg=%5.02f, stdev=%5.02f\n", bw_str, min, max,
454                                                         p_of_agg, mean, dev);
455         }
456 }
457
458 static int show_lat(double *io_u_lat, int nr, const char **ranges,
459                     const char *msg, struct buf_output *out)
460 {
461         int new_line = 1, i, line = 0, shown = 0;
462
463         for (i = 0; i < nr; i++) {
464                 if (io_u_lat[i] <= 0.0)
465                         continue;
466                 shown = 1;
467                 if (new_line) {
468                         if (line)
469                                 log_buf(out, "\n");
470                         log_buf(out, "    lat (%s) : ", msg);
471                         new_line = 0;
472                         line = 0;
473                 }
474                 if (line)
475                         log_buf(out, ", ");
476                 log_buf(out, "%s%3.2f%%", ranges[i], io_u_lat[i]);
477                 line++;
478                 if (line == 5)
479                         new_line = 1;
480         }
481
482         if (shown)
483                 log_buf(out, "\n");
484
485         return shown;
486 }
487
488 static void show_lat_u(double *io_u_lat_u, struct buf_output *out)
489 {
490         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
491                                  "250=", "500=", "750=", "1000=", };
492
493         show_lat(io_u_lat_u, FIO_IO_U_LAT_U_NR, ranges, "usec", out);
494 }
495
496 static void show_lat_m(double *io_u_lat_m, struct buf_output *out)
497 {
498         const char *ranges[] = { "2=", "4=", "10=", "20=", "50=", "100=",
499                                  "250=", "500=", "750=", "1000=", "2000=",
500                                  ">=2000=", };
501
502         show_lat(io_u_lat_m, FIO_IO_U_LAT_M_NR, ranges, "msec", out);
503 }
504
505 static void show_latencies(struct thread_stat *ts, struct buf_output *out)
506 {
507         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
508         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
509
510         stat_calc_lat_u(ts, io_u_lat_u);
511         stat_calc_lat_m(ts, io_u_lat_m);
512
513         show_lat_u(io_u_lat_u, out);
514         show_lat_m(io_u_lat_m, out);
515 }
516
517 static int block_state_category(int block_state)
518 {
519         switch (block_state) {
520         case BLOCK_STATE_UNINIT:
521                 return 0;
522         case BLOCK_STATE_TRIMMED:
523         case BLOCK_STATE_WRITTEN:
524                 return 1;
525         case BLOCK_STATE_WRITE_FAILURE:
526         case BLOCK_STATE_TRIM_FAILURE:
527                 return 2;
528         default:
529                 /* Silence compile warning on some BSDs and have a return */
530                 assert(0);
531                 return -1;
532         }
533 }
534
535 static int compare_block_infos(const void *bs1, const void *bs2)
536 {
537         uint32_t block1 = *(uint32_t *)bs1;
538         uint32_t block2 = *(uint32_t *)bs2;
539         int state1 = BLOCK_INFO_STATE(block1);
540         int state2 = BLOCK_INFO_STATE(block2);
541         int bscat1 = block_state_category(state1);
542         int bscat2 = block_state_category(state2);
543         int cycles1 = BLOCK_INFO_TRIMS(block1);
544         int cycles2 = BLOCK_INFO_TRIMS(block2);
545
546         if (bscat1 < bscat2)
547                 return -1;
548         if (bscat1 > bscat2)
549                 return 1;
550
551         if (cycles1 < cycles2)
552                 return -1;
553         if (cycles1 > cycles2)
554                 return 1;
555
556         if (state1 < state2)
557                 return -1;
558         if (state1 > state2)
559                 return 1;
560
561         assert(block1 == block2);
562         return 0;
563 }
564
565 static int calc_block_percentiles(int nr_block_infos, uint32_t *block_infos,
566                                   fio_fp64_t *plist, unsigned int **percentiles,
567                                   unsigned int *types)
568 {
569         int len = 0;
570         int i, nr_uninit;
571
572         qsort(block_infos, nr_block_infos, sizeof(uint32_t), compare_block_infos);
573
574         while (len < FIO_IO_U_LIST_MAX_LEN && plist[len].u.f != 0.0)
575                 len++;
576
577         if (!len)
578                 return 0;
579
580         /*
581          * Sort the percentile list. Note that it may already be sorted if
582          * we are using the default values, but since it's a short list this
583          * isn't a worry. Also note that this does not work for NaN values.
584          */
585         if (len > 1)
586                 qsort((void *)plist, len, sizeof(plist[0]), double_cmp);
587
588         nr_uninit = 0;
589         /* Start only after the uninit entries end */
590         for (nr_uninit = 0;
591              nr_uninit < nr_block_infos
592                 && BLOCK_INFO_STATE(block_infos[nr_uninit]) == BLOCK_STATE_UNINIT;
593              nr_uninit ++)
594                 ;
595
596         if (nr_uninit == nr_block_infos)
597                 return 0;
598
599         *percentiles = calloc(len, sizeof(**percentiles));
600
601         for (i = 0; i < len; i++) {
602                 int idx = (plist[i].u.f * (nr_block_infos - nr_uninit) / 100)
603                                 + nr_uninit;
604                 (*percentiles)[i] = BLOCK_INFO_TRIMS(block_infos[idx]);
605         }
606
607         memset(types, 0, sizeof(*types) * BLOCK_STATE_COUNT);
608         for (i = 0; i < nr_block_infos; i++)
609                 types[BLOCK_INFO_STATE(block_infos[i])]++;
610
611         return len;
612 }
613
614 static const char *block_state_names[] = {
615         [BLOCK_STATE_UNINIT] = "unwritten",
616         [BLOCK_STATE_TRIMMED] = "trimmed",
617         [BLOCK_STATE_WRITTEN] = "written",
618         [BLOCK_STATE_TRIM_FAILURE] = "trim failure",
619         [BLOCK_STATE_WRITE_FAILURE] = "write failure",
620 };
621
622 static void show_block_infos(int nr_block_infos, uint32_t *block_infos,
623                              fio_fp64_t *plist, struct buf_output *out)
624 {
625         int len, pos, i;
626         unsigned int *percentiles = NULL;
627         unsigned int block_state_counts[BLOCK_STATE_COUNT];
628
629         len = calc_block_percentiles(nr_block_infos, block_infos, plist,
630                                      &percentiles, block_state_counts);
631
632         log_buf(out, "  block lifetime percentiles :\n   |");
633         pos = 0;
634         for (i = 0; i < len; i++) {
635                 uint32_t block_info = percentiles[i];
636 #define LINE_LENGTH     75
637                 char str[LINE_LENGTH];
638                 int strln = snprintf(str, LINE_LENGTH, " %3.2fth=%u%c",
639                                      plist[i].u.f, block_info,
640                                      i == len - 1 ? '\n' : ',');
641                 assert(strln < LINE_LENGTH);
642                 if (pos + strln > LINE_LENGTH) {
643                         pos = 0;
644                         log_buf(out, "\n   |");
645                 }
646                 log_buf(out, "%s", str);
647                 pos += strln;
648 #undef LINE_LENGTH
649         }
650         if (percentiles)
651                 free(percentiles);
652
653         log_buf(out, "        states               :");
654         for (i = 0; i < BLOCK_STATE_COUNT; i++)
655                 log_buf(out, " %s=%u%c",
656                          block_state_names[i], block_state_counts[i],
657                          i == BLOCK_STATE_COUNT - 1 ? '\n' : ',');
658 }
659
660 static void show_thread_status_normal(struct thread_stat *ts,
661                                       struct group_run_stats *rs,
662                                       struct buf_output *out)
663 {
664         double usr_cpu, sys_cpu;
665         unsigned long runtime;
666         double io_u_dist[FIO_IO_U_MAP_NR];
667         time_t time_p;
668         char time_buf[32];
669
670         if (!ddir_rw_sum(ts->io_bytes) && !ddir_rw_sum(ts->total_io_u))
671                 return;
672
673         time(&time_p);
674         os_ctime_r((const time_t *) &time_p, time_buf, sizeof(time_buf));
675
676         if (!ts->error) {
677                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d: pid=%d: %s",
678                                         ts->name, ts->groupid, ts->members,
679                                         ts->error, (int) ts->pid, time_buf);
680         } else {
681                 log_buf(out, "%s: (groupid=%d, jobs=%d): err=%2d (%s): pid=%d: %s",
682                                         ts->name, ts->groupid, ts->members,
683                                         ts->error, ts->verror, (int) ts->pid,
684                                         time_buf);
685         }
686
687         if (strlen(ts->description))
688                 log_buf(out, "  Description  : [%s]\n", ts->description);
689
690         if (ts->io_bytes[DDIR_READ])
691                 show_ddir_status(rs, ts, DDIR_READ, out);
692         if (ts->io_bytes[DDIR_WRITE])
693                 show_ddir_status(rs, ts, DDIR_WRITE, out);
694         if (ts->io_bytes[DDIR_TRIM])
695                 show_ddir_status(rs, ts, DDIR_TRIM, out);
696
697         show_latencies(ts, out);
698
699         runtime = ts->total_run_time;
700         if (runtime) {
701                 double runt = (double) runtime;
702
703                 usr_cpu = (double) ts->usr_time * 100 / runt;
704                 sys_cpu = (double) ts->sys_time * 100 / runt;
705         } else {
706                 usr_cpu = 0;
707                 sys_cpu = 0;
708         }
709
710         log_buf(out, "  cpu          : usr=%3.2f%%, sys=%3.2f%%, ctx=%llu,"
711                  " majf=%llu, minf=%llu\n", usr_cpu, sys_cpu,
712                         (unsigned long long) ts->ctx,
713                         (unsigned long long) ts->majf,
714                         (unsigned long long) ts->minf);
715
716         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
717         log_buf(out, "  IO depths    : 1=%3.1f%%, 2=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%,"
718                  " 16=%3.1f%%, 32=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
719                                         io_u_dist[1], io_u_dist[2],
720                                         io_u_dist[3], io_u_dist[4],
721                                         io_u_dist[5], io_u_dist[6]);
722
723         stat_calc_dist(ts->io_u_submit, ts->total_submit, io_u_dist);
724         log_buf(out, "     submit    : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
725                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
726                                         io_u_dist[1], io_u_dist[2],
727                                         io_u_dist[3], io_u_dist[4],
728                                         io_u_dist[5], io_u_dist[6]);
729         stat_calc_dist(ts->io_u_complete, ts->total_complete, io_u_dist);
730         log_buf(out, "     complete  : 0=%3.1f%%, 4=%3.1f%%, 8=%3.1f%%, 16=%3.1f%%,"
731                  " 32=%3.1f%%, 64=%3.1f%%, >=64=%3.1f%%\n", io_u_dist[0],
732                                         io_u_dist[1], io_u_dist[2],
733                                         io_u_dist[3], io_u_dist[4],
734                                         io_u_dist[5], io_u_dist[6]);
735         log_buf(out, "     issued    : total=r=%llu/w=%llu/d=%llu,"
736                                  " short=r=%llu/w=%llu/d=%llu,"
737                                  " drop=r=%llu/w=%llu/d=%llu\n",
738                                         (unsigned long long) ts->total_io_u[0],
739                                         (unsigned long long) ts->total_io_u[1],
740                                         (unsigned long long) ts->total_io_u[2],
741                                         (unsigned long long) ts->short_io_u[0],
742                                         (unsigned long long) ts->short_io_u[1],
743                                         (unsigned long long) ts->short_io_u[2],
744                                         (unsigned long long) ts->drop_io_u[0],
745                                         (unsigned long long) ts->drop_io_u[1],
746                                         (unsigned long long) ts->drop_io_u[2]);
747         if (ts->continue_on_error) {
748                 log_buf(out, "     errors    : total=%llu, first_error=%d/<%s>\n",
749                                         (unsigned long long)ts->total_err_count,
750                                         ts->first_error,
751                                         strerror(ts->first_error));
752         }
753         if (ts->latency_depth) {
754                 log_buf(out, "     latency   : target=%llu, window=%llu, percentile=%.2f%%, depth=%u\n",
755                                         (unsigned long long)ts->latency_target,
756                                         (unsigned long long)ts->latency_window,
757                                         ts->latency_percentile.u.f,
758                                         ts->latency_depth);
759         }
760
761         if (ts->nr_block_infos)
762                 show_block_infos(ts->nr_block_infos, ts->block_infos,
763                                   ts->percentile_list, out);
764 }
765
766 static void show_ddir_status_terse(struct thread_stat *ts,
767                                    struct group_run_stats *rs, int ddir,
768                                    struct buf_output *out)
769 {
770         unsigned long min, max;
771         unsigned long long bw, iops;
772         unsigned int *ovals = NULL;
773         double mean, dev;
774         unsigned int len, minv, maxv;
775         int i;
776
777         assert(ddir_rw(ddir));
778
779         iops = bw = 0;
780         if (ts->runtime[ddir]) {
781                 uint64_t runt = ts->runtime[ddir];
782
783                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
784                 iops = (1000 * (uint64_t) ts->total_io_u[ddir]) / runt;
785         }
786
787         log_buf(out, ";%llu;%llu;%llu;%llu",
788                 (unsigned long long) ts->io_bytes[ddir] >> 10, bw, iops,
789                                         (unsigned long long) ts->runtime[ddir]);
790
791         if (calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev))
792                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
793         else
794                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
795
796         if (calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev))
797                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
798         else
799                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
800
801         if (ts->clat_percentiles) {
802                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
803                                         ts->clat_stat[ddir].samples,
804                                         ts->percentile_list, &ovals, &maxv,
805                                         &minv);
806         } else
807                 len = 0;
808
809         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
810                 if (i >= len) {
811                         log_buf(out, ";0%%=0");
812                         continue;
813                 }
814                 log_buf(out, ";%f%%=%u", ts->percentile_list[i].u.f, ovals[i]);
815         }
816
817         if (calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev))
818                 log_buf(out, ";%lu;%lu;%f;%f", min, max, mean, dev);
819         else
820                 log_buf(out, ";%lu;%lu;%f;%f", 0UL, 0UL, 0.0, 0.0);
821
822         if (ovals)
823                 free(ovals);
824
825         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
826                 double p_of_agg = 100.0;
827
828                 if (rs->agg[ddir]) {
829                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
830                         if (p_of_agg > 100.0)
831                                 p_of_agg = 100.0;
832                 }
833
834                 log_buf(out, ";%lu;%lu;%f%%;%f;%f", min, max, p_of_agg, mean, dev);
835         } else
836                 log_buf(out, ";%lu;%lu;%f%%;%f;%f", 0UL, 0UL, 0.0, 0.0, 0.0);
837 }
838
839 static void add_ddir_status_json(struct thread_stat *ts,
840                 struct group_run_stats *rs, int ddir, struct json_object *parent)
841 {
842         unsigned long min, max;
843         unsigned long long bw;
844         unsigned int *ovals = NULL;
845         double mean, dev, iops;
846         unsigned int len, minv, maxv;
847         int i;
848         const char *ddirname[] = {"read", "write", "trim"};
849         struct json_object *dir_object, *tmp_object, *percentile_object, *clat_bins_object;
850         char buf[120];
851         double p_of_agg = 100.0;
852
853         assert(ddir_rw(ddir));
854
855         if (ts->unified_rw_rep && ddir != DDIR_READ)
856                 return;
857
858         dir_object = json_create_object();
859         json_object_add_value_object(parent,
860                 ts->unified_rw_rep ? "mixed" : ddirname[ddir], dir_object);
861
862         bw = 0;
863         iops = 0.0;
864         if (ts->runtime[ddir]) {
865                 uint64_t runt = ts->runtime[ddir];
866
867                 bw = ((1000 * ts->io_bytes[ddir]) / runt) / 1024;
868                 iops = (1000.0 * (uint64_t) ts->total_io_u[ddir]) / runt;
869         }
870
871         json_object_add_value_int(dir_object, "io_bytes", ts->io_bytes[ddir] >> 10);
872         json_object_add_value_int(dir_object, "bw", bw);
873         json_object_add_value_float(dir_object, "iops", iops);
874         json_object_add_value_int(dir_object, "runtime", ts->runtime[ddir]);
875         json_object_add_value_int(dir_object, "total_ios", ts->total_io_u[ddir]);
876         json_object_add_value_int(dir_object, "short_ios", ts->short_io_u[ddir]);
877         json_object_add_value_int(dir_object, "drop_ios", ts->drop_io_u[ddir]);
878
879         if (!calc_lat(&ts->slat_stat[ddir], &min, &max, &mean, &dev)) {
880                 min = max = 0;
881                 mean = dev = 0.0;
882         }
883         tmp_object = json_create_object();
884         json_object_add_value_object(dir_object, "slat", tmp_object);
885         json_object_add_value_int(tmp_object, "min", min);
886         json_object_add_value_int(tmp_object, "max", max);
887         json_object_add_value_float(tmp_object, "mean", mean);
888         json_object_add_value_float(tmp_object, "stddev", dev);
889
890         if (!calc_lat(&ts->clat_stat[ddir], &min, &max, &mean, &dev)) {
891                 min = max = 0;
892                 mean = dev = 0.0;
893         }
894         tmp_object = json_create_object();
895         json_object_add_value_object(dir_object, "clat", tmp_object);
896         json_object_add_value_int(tmp_object, "min", min);
897         json_object_add_value_int(tmp_object, "max", max);
898         json_object_add_value_float(tmp_object, "mean", mean);
899         json_object_add_value_float(tmp_object, "stddev", dev);
900
901         if (ts->clat_percentiles) {
902                 len = calc_clat_percentiles(ts->io_u_plat[ddir],
903                                         ts->clat_stat[ddir].samples,
904                                         ts->percentile_list, &ovals, &maxv,
905                                         &minv);
906         } else
907                 len = 0;
908
909         percentile_object = json_create_object();
910         json_object_add_value_object(tmp_object, "percentile", percentile_object);
911         for (i = 0; i < FIO_IO_U_LIST_MAX_LEN; i++) {
912                 if (i >= len) {
913                         json_object_add_value_int(percentile_object, "0.00", 0);
914                         continue;
915                 }
916                 snprintf(buf, sizeof(buf), "%f", ts->percentile_list[i].u.f);
917                 json_object_add_value_int(percentile_object, (const char *)buf, ovals[i]);
918         }
919
920         if (output_format & FIO_OUTPUT_JSON_PLUS) {
921                 clat_bins_object = json_create_object();
922                 json_object_add_value_object(tmp_object, "bins", clat_bins_object);
923                 for(i = 0; i < FIO_IO_U_PLAT_NR; i++) {
924                         snprintf(buf, sizeof(buf), "%d", i);
925                         json_object_add_value_int(clat_bins_object, (const char *)buf, ts->io_u_plat[ddir][i]);
926                 }
927                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_BITS", FIO_IO_U_PLAT_BITS);
928                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_VAL", FIO_IO_U_PLAT_VAL);
929                 json_object_add_value_int(clat_bins_object, "FIO_IO_U_PLAT_NR", FIO_IO_U_PLAT_NR);
930         }
931
932         if (!calc_lat(&ts->lat_stat[ddir], &min, &max, &mean, &dev)) {
933                 min = max = 0;
934                 mean = dev = 0.0;
935         }
936         tmp_object = json_create_object();
937         json_object_add_value_object(dir_object, "lat", tmp_object);
938         json_object_add_value_int(tmp_object, "min", min);
939         json_object_add_value_int(tmp_object, "max", max);
940         json_object_add_value_float(tmp_object, "mean", mean);
941         json_object_add_value_float(tmp_object, "stddev", dev);
942         if (ovals)
943                 free(ovals);
944
945         if (calc_lat(&ts->bw_stat[ddir], &min, &max, &mean, &dev)) {
946                 if (rs->agg[ddir]) {
947                         p_of_agg = mean * 100 / (double) rs->agg[ddir];
948                         if (p_of_agg > 100.0)
949                                 p_of_agg = 100.0;
950                 }
951         } else {
952                 min = max = 0;
953                 p_of_agg = mean = dev = 0.0;
954         }
955         json_object_add_value_int(dir_object, "bw_min", min);
956         json_object_add_value_int(dir_object, "bw_max", max);
957         json_object_add_value_float(dir_object, "bw_agg", p_of_agg);
958         json_object_add_value_float(dir_object, "bw_mean", mean);
959         json_object_add_value_float(dir_object, "bw_dev", dev);
960 }
961
962 static void show_thread_status_terse_v2(struct thread_stat *ts,
963                                         struct group_run_stats *rs,
964                                         struct buf_output *out)
965 {
966         double io_u_dist[FIO_IO_U_MAP_NR];
967         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
968         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
969         double usr_cpu, sys_cpu;
970         int i;
971
972         /* General Info */
973         log_buf(out, "2;%s;%d;%d", ts->name, ts->groupid, ts->error);
974         /* Log Read Status */
975         show_ddir_status_terse(ts, rs, DDIR_READ, out);
976         /* Log Write Status */
977         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
978         /* Log Trim Status */
979         show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
980
981         /* CPU Usage */
982         if (ts->total_run_time) {
983                 double runt = (double) ts->total_run_time;
984
985                 usr_cpu = (double) ts->usr_time * 100 / runt;
986                 sys_cpu = (double) ts->sys_time * 100 / runt;
987         } else {
988                 usr_cpu = 0;
989                 sys_cpu = 0;
990         }
991
992         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
993                                                 (unsigned long long) ts->ctx,
994                                                 (unsigned long long) ts->majf,
995                                                 (unsigned long long) ts->minf);
996
997         /* Calc % distribution of IO depths, usecond, msecond latency */
998         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
999         stat_calc_lat_u(ts, io_u_lat_u);
1000         stat_calc_lat_m(ts, io_u_lat_m);
1001
1002         /* Only show fixed 7 I/O depth levels*/
1003         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1004                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1005                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1006
1007         /* Microsecond latency */
1008         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1009                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1010         /* Millisecond latency */
1011         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1012                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1013         /* Additional output if continue_on_error set - default off*/
1014         if (ts->continue_on_error)
1015                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1016         log_buf(out, "\n");
1017
1018         /* Additional output if description is set */
1019         if (strlen(ts->description))
1020                 log_buf(out, ";%s", ts->description);
1021
1022         log_buf(out, "\n");
1023 }
1024
1025 static void show_thread_status_terse_v3_v4(struct thread_stat *ts,
1026                                            struct group_run_stats *rs, int ver,
1027                                            struct buf_output *out)
1028 {
1029         double io_u_dist[FIO_IO_U_MAP_NR];
1030         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1031         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1032         double usr_cpu, sys_cpu;
1033         int i;
1034
1035         /* General Info */
1036         log_buf(out, "%d;%s;%s;%d;%d", ver, fio_version_string,
1037                                         ts->name, ts->groupid, ts->error);
1038         /* Log Read Status */
1039         show_ddir_status_terse(ts, rs, DDIR_READ, out);
1040         /* Log Write Status */
1041         show_ddir_status_terse(ts, rs, DDIR_WRITE, out);
1042         /* Log Trim Status */
1043         if (ver == 4)
1044                 show_ddir_status_terse(ts, rs, DDIR_TRIM, out);
1045
1046         /* CPU Usage */
1047         if (ts->total_run_time) {
1048                 double runt = (double) ts->total_run_time;
1049
1050                 usr_cpu = (double) ts->usr_time * 100 / runt;
1051                 sys_cpu = (double) ts->sys_time * 100 / runt;
1052         } else {
1053                 usr_cpu = 0;
1054                 sys_cpu = 0;
1055         }
1056
1057         log_buf(out, ";%f%%;%f%%;%llu;%llu;%llu", usr_cpu, sys_cpu,
1058                                                 (unsigned long long) ts->ctx,
1059                                                 (unsigned long long) ts->majf,
1060                                                 (unsigned long long) ts->minf);
1061
1062         /* Calc % distribution of IO depths, usecond, msecond latency */
1063         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1064         stat_calc_lat_u(ts, io_u_lat_u);
1065         stat_calc_lat_m(ts, io_u_lat_m);
1066
1067         /* Only show fixed 7 I/O depth levels*/
1068         log_buf(out, ";%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%;%3.1f%%",
1069                         io_u_dist[0], io_u_dist[1], io_u_dist[2], io_u_dist[3],
1070                         io_u_dist[4], io_u_dist[5], io_u_dist[6]);
1071
1072         /* Microsecond latency */
1073         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++)
1074                 log_buf(out, ";%3.2f%%", io_u_lat_u[i]);
1075         /* Millisecond latency */
1076         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++)
1077                 log_buf(out, ";%3.2f%%", io_u_lat_m[i]);
1078
1079         /* disk util stats, if any */
1080         show_disk_util(1, NULL, out);
1081
1082         /* Additional output if continue_on_error set - default off*/
1083         if (ts->continue_on_error)
1084                 log_buf(out, ";%llu;%d", (unsigned long long) ts->total_err_count, ts->first_error);
1085
1086         /* Additional output if description is set */
1087         if (strlen(ts->description))
1088                 log_buf(out, ";%s", ts->description);
1089
1090         log_buf(out, "\n");
1091 }
1092
1093 void json_add_job_opts(struct json_object *root, const char *name,
1094                        struct flist_head *opt_list, bool num_jobs)
1095 {
1096         struct json_object *dir_object;
1097         struct flist_head *entry;
1098         struct print_option *p;
1099
1100         if (flist_empty(opt_list))
1101                 return;
1102
1103         dir_object = json_create_object();
1104         json_object_add_value_object(root, name, dir_object);
1105
1106         flist_for_each(entry, opt_list) {
1107                 const char *pos = "";
1108
1109                 p = flist_entry(entry, struct print_option, list);
1110                 if (!num_jobs && !strcmp(p->name, "numjobs"))
1111                         continue;
1112                 if (p->value)
1113                         pos = p->value;
1114                 json_object_add_value_string(dir_object, p->name, pos);
1115         }
1116 }
1117
1118 static struct json_object *show_thread_status_json(struct thread_stat *ts,
1119                                                    struct group_run_stats *rs,
1120                                                    struct flist_head *opt_list)
1121 {
1122         struct json_object *root, *tmp;
1123         struct jobs_eta *je;
1124         double io_u_dist[FIO_IO_U_MAP_NR];
1125         double io_u_lat_u[FIO_IO_U_LAT_U_NR];
1126         double io_u_lat_m[FIO_IO_U_LAT_M_NR];
1127         double usr_cpu, sys_cpu;
1128         int i;
1129         size_t size;
1130
1131         root = json_create_object();
1132         json_object_add_value_string(root, "jobname", ts->name);
1133         json_object_add_value_int(root, "groupid", ts->groupid);
1134         json_object_add_value_int(root, "error", ts->error);
1135
1136         /* ETA Info */
1137         je = get_jobs_eta(true, &size);
1138         if (je) {
1139                 json_object_add_value_int(root, "eta", je->eta_sec);
1140                 json_object_add_value_int(root, "elapsed", je->elapsed_sec);
1141         }
1142
1143         if (opt_list)
1144                 json_add_job_opts(root, "job options", opt_list, true);
1145
1146         add_ddir_status_json(ts, rs, DDIR_READ, root);
1147         add_ddir_status_json(ts, rs, DDIR_WRITE, root);
1148         add_ddir_status_json(ts, rs, DDIR_TRIM, root);
1149
1150         /* CPU Usage */
1151         if (ts->total_run_time) {
1152                 double runt = (double) ts->total_run_time;
1153
1154                 usr_cpu = (double) ts->usr_time * 100 / runt;
1155                 sys_cpu = (double) ts->sys_time * 100 / runt;
1156         } else {
1157                 usr_cpu = 0;
1158                 sys_cpu = 0;
1159         }
1160         json_object_add_value_float(root, "usr_cpu", usr_cpu);
1161         json_object_add_value_float(root, "sys_cpu", sys_cpu);
1162         json_object_add_value_int(root, "ctx", ts->ctx);
1163         json_object_add_value_int(root, "majf", ts->majf);
1164         json_object_add_value_int(root, "minf", ts->minf);
1165
1166
1167         /* Calc % distribution of IO depths, usecond, msecond latency */
1168         stat_calc_dist(ts->io_u_map, ddir_rw_sum(ts->total_io_u), io_u_dist);
1169         stat_calc_lat_u(ts, io_u_lat_u);
1170         stat_calc_lat_m(ts, io_u_lat_m);
1171
1172         tmp = json_create_object();
1173         json_object_add_value_object(root, "iodepth_level", tmp);
1174         /* Only show fixed 7 I/O depth levels*/
1175         for (i = 0; i < 7; i++) {
1176                 char name[20];
1177                 if (i < 6)
1178                         snprintf(name, 20, "%d", 1 << i);
1179                 else
1180                         snprintf(name, 20, ">=%d", 1 << i);
1181                 json_object_add_value_float(tmp, (const char *)name, io_u_dist[i]);
1182         }
1183
1184         tmp = json_create_object();
1185         json_object_add_value_object(root, "latency_us", tmp);
1186         /* Microsecond latency */
1187         for (i = 0; i < FIO_IO_U_LAT_U_NR; i++) {
1188                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1189                                  "250", "500", "750", "1000", };
1190                 json_object_add_value_float(tmp, ranges[i], io_u_lat_u[i]);
1191         }
1192         /* Millisecond latency */
1193         tmp = json_create_object();
1194         json_object_add_value_object(root, "latency_ms", tmp);
1195         for (i = 0; i < FIO_IO_U_LAT_M_NR; i++) {
1196                 const char *ranges[] = { "2", "4", "10", "20", "50", "100",
1197                                  "250", "500", "750", "1000", "2000",
1198                                  ">=2000", };
1199                 json_object_add_value_float(tmp, ranges[i], io_u_lat_m[i]);
1200         }
1201
1202         /* Additional output if continue_on_error set - default off*/
1203         if (ts->continue_on_error) {
1204                 json_object_add_value_int(root, "total_err", ts->total_err_count);
1205                 json_object_add_value_int(root, "first_error", ts->first_error);
1206         }
1207
1208         if (ts->latency_depth) {
1209                 json_object_add_value_int(root, "latency_depth", ts->latency_depth);
1210                 json_object_add_value_int(root, "latency_target", ts->latency_target);
1211                 json_object_add_value_float(root, "latency_percentile", ts->latency_percentile.u.f);
1212                 json_object_add_value_int(root, "latency_window", ts->latency_window);
1213         }
1214
1215         /* Additional output if description is set */
1216         if (strlen(ts->description))
1217                 json_object_add_value_string(root, "desc", ts->description);
1218
1219         if (ts->nr_block_infos) {
1220                 /* Block error histogram and types */
1221                 int len;
1222                 unsigned int *percentiles = NULL;
1223                 unsigned int block_state_counts[BLOCK_STATE_COUNT];
1224
1225                 len = calc_block_percentiles(ts->nr_block_infos, ts->block_infos,
1226                                              ts->percentile_list,
1227                                              &percentiles, block_state_counts);
1228
1229                 if (len) {
1230                         struct json_object *block, *percentile_object, *states;
1231                         int state;
1232                         block = json_create_object();
1233                         json_object_add_value_object(root, "block", block);
1234
1235                         percentile_object = json_create_object();
1236                         json_object_add_value_object(block, "percentiles",
1237                                                      percentile_object);
1238                         for (i = 0; i < len; i++) {
1239                                 char buf[20];
1240                                 snprintf(buf, sizeof(buf), "%f",
1241                                          ts->percentile_list[i].u.f);
1242                                 json_object_add_value_int(percentile_object,
1243                                                           (const char *)buf,
1244                                                           percentiles[i]);
1245                         }
1246
1247                         states = json_create_object();
1248                         json_object_add_value_object(block, "states", states);
1249                         for (state = 0; state < BLOCK_STATE_COUNT; state++) {
1250                                 json_object_add_value_int(states,
1251                                         block_state_names[state],
1252                                         block_state_counts[state]);
1253                         }
1254                         free(percentiles);
1255                 }
1256         }
1257
1258         /* steady state detection; move this behind json+? */
1259         if (ts->ss) {
1260                 struct json_object *data;
1261                 struct json_array *iops, *bw;
1262                 struct steadystate_data *ss = ts->ss;
1263                 double mean_iops = 0.0, mean_bw = 0.0;
1264                 int i, x;
1265                 char ss_option[64];
1266
1267                 snprintf(ss_option, sizeof(ss_option), "%s%s:%f%s", 
1268                         ss->check_iops ? "iops" : "bw",
1269                         ss->check_slope ? "_slope" : "",
1270                         (float) ss->limit,
1271                         ss->pct ? "%" : "");
1272
1273                 tmp = json_create_object();
1274                 json_object_add_value_object(root, "steadystate", tmp);
1275                 json_object_add_value_string(tmp, "ss", ss_option);
1276                 json_object_add_value_int(tmp, "duration", (int)ss->dur);
1277                 json_object_add_value_int(tmp, "steadystate_ramptime", ss->ramp_time / 1000000L);
1278                 json_object_add_value_int(tmp, "attained", ss->attained);
1279                 json_object_add_value_float(tmp, "criterion", ss->pct ? ss->criterion / 100 : ss->criterion);
1280                 json_object_add_value_float(tmp, "max_deviation", ss->deviation);
1281                 json_object_add_value_float(tmp, "slope", ss->slope);
1282
1283                 data = json_create_object();
1284                 json_object_add_value_object(tmp, "data", data);
1285                 bw = json_create_array();
1286                 iops = json_create_array();
1287                 json_object_add_value_array(data, "iops", iops);
1288                 json_object_add_value_array(data, "bw", bw);
1289                 for (i = 0; i < ss->dur; i++) {
1290                         x = (ss->head + i) % ss->dur;
1291                         mean_bw += (double) ss->bw_data[x];
1292                         mean_iops += (double) ss->iops_data[x];
1293                         json_array_add_value_int(bw, ss->bw_data[x]);
1294                         json_array_add_value_int(iops, ss->iops_data[x]);
1295                 }
1296                 mean_bw /= ss->dur;
1297                 mean_iops /= ss->dur;
1298                 json_object_add_value_float(data, "bw_mean", mean_bw);
1299                 json_object_add_value_float(data, "iops_mean", mean_iops);
1300         }
1301
1302         return root;
1303 }
1304
1305 static void show_thread_status_terse(struct thread_stat *ts,
1306                                      struct group_run_stats *rs,
1307                                      struct buf_output *out)
1308 {
1309         if (terse_version == 2)
1310                 show_thread_status_terse_v2(ts, rs, out);
1311         else if (terse_version == 3 || terse_version == 4)
1312                 show_thread_status_terse_v3_v4(ts, rs, terse_version, out);
1313         else
1314                 log_err("fio: bad terse version!? %d\n", terse_version);
1315 }
1316
1317 struct json_object *show_thread_status(struct thread_stat *ts,
1318                                        struct group_run_stats *rs,
1319                                        struct flist_head *opt_list,
1320                                        struct buf_output *out)
1321 {
1322         struct json_object *ret = NULL;
1323
1324         if (output_format & FIO_OUTPUT_TERSE)
1325                 show_thread_status_terse(ts, rs,  out);
1326         if (output_format & FIO_OUTPUT_JSON)
1327                 ret = show_thread_status_json(ts, rs, opt_list);
1328         if (output_format & FIO_OUTPUT_NORMAL)
1329                 show_thread_status_normal(ts, rs,  out);
1330
1331         return ret;
1332 }
1333
1334 static void sum_stat(struct io_stat *dst, struct io_stat *src, bool first)
1335 {
1336         double mean, S;
1337
1338         if (src->samples == 0)
1339                 return;
1340
1341         dst->min_val = min(dst->min_val, src->min_val);
1342         dst->max_val = max(dst->max_val, src->max_val);
1343
1344         /*
1345          * Compute new mean and S after the merge
1346          * <http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
1347          *  #Parallel_algorithm>
1348          */
1349         if (first) {
1350                 mean = src->mean.u.f;
1351                 S = src->S.u.f;
1352         } else {
1353                 double delta = src->mean.u.f - dst->mean.u.f;
1354
1355                 mean = ((src->mean.u.f * src->samples) +
1356                         (dst->mean.u.f * dst->samples)) /
1357                         (dst->samples + src->samples);
1358
1359                 S =  src->S.u.f + dst->S.u.f + pow(delta, 2.0) *
1360                         (dst->samples * src->samples) /
1361                         (dst->samples + src->samples);
1362         }
1363
1364         dst->samples += src->samples;
1365         dst->mean.u.f = mean;
1366         dst->S.u.f = S;
1367 }
1368
1369 void sum_group_stats(struct group_run_stats *dst, struct group_run_stats *src)
1370 {
1371         int i;
1372
1373         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
1374                 if (dst->max_run[i] < src->max_run[i])
1375                         dst->max_run[i] = src->max_run[i];
1376                 if (dst->min_run[i] && dst->min_run[i] > src->min_run[i])
1377                         dst->min_run[i] = src->min_run[i];
1378                 if (dst->max_bw[i] < src->max_bw[i])
1379                         dst->max_bw[i] = src->max_bw[i];
1380                 if (dst->min_bw[i] && dst->min_bw[i] > src->min_bw[i])
1381                         dst->min_bw[i] = src->min_bw[i];
1382
1383                 dst->io_kb[i] += src->io_kb[i];
1384                 dst->agg[i] += src->agg[i];
1385         }
1386
1387         if (!dst->kb_base)
1388                 dst->kb_base = src->kb_base;
1389         if (!dst->unit_base)
1390                 dst->unit_base = src->unit_base;
1391 }
1392
1393 void sum_thread_stats(struct thread_stat *dst, struct thread_stat *src,
1394                       bool first)
1395 {
1396         int l, k;
1397
1398         for (l = 0; l < DDIR_RWDIR_CNT; l++) {
1399                 if (!dst->unified_rw_rep) {
1400                         sum_stat(&dst->clat_stat[l], &src->clat_stat[l], first);
1401                         sum_stat(&dst->slat_stat[l], &src->slat_stat[l], first);
1402                         sum_stat(&dst->lat_stat[l], &src->lat_stat[l], first);
1403                         sum_stat(&dst->bw_stat[l], &src->bw_stat[l], first);
1404
1405                         dst->io_bytes[l] += src->io_bytes[l];
1406
1407                         if (dst->runtime[l] < src->runtime[l])
1408                                 dst->runtime[l] = src->runtime[l];
1409                 } else {
1410                         sum_stat(&dst->clat_stat[0], &src->clat_stat[l], first);
1411                         sum_stat(&dst->slat_stat[0], &src->slat_stat[l], first);
1412                         sum_stat(&dst->lat_stat[0], &src->lat_stat[l], first);
1413                         sum_stat(&dst->bw_stat[0], &src->bw_stat[l], first);
1414
1415                         dst->io_bytes[0] += src->io_bytes[l];
1416
1417                         if (dst->runtime[0] < src->runtime[l])
1418                                 dst->runtime[0] = src->runtime[l];
1419
1420                         /*
1421                          * We're summing to the same destination, so override
1422                          * 'first' after the first iteration of the loop
1423                          */
1424                         first = false;
1425                 }
1426         }
1427
1428         dst->usr_time += src->usr_time;
1429         dst->sys_time += src->sys_time;
1430         dst->ctx += src->ctx;
1431         dst->majf += src->majf;
1432         dst->minf += src->minf;
1433
1434         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1435                 dst->io_u_map[k] += src->io_u_map[k];
1436         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1437                 dst->io_u_submit[k] += src->io_u_submit[k];
1438         for (k = 0; k < FIO_IO_U_MAP_NR; k++)
1439                 dst->io_u_complete[k] += src->io_u_complete[k];
1440         for (k = 0; k < FIO_IO_U_LAT_U_NR; k++)
1441                 dst->io_u_lat_u[k] += src->io_u_lat_u[k];
1442         for (k = 0; k < FIO_IO_U_LAT_M_NR; k++)
1443                 dst->io_u_lat_m[k] += src->io_u_lat_m[k];
1444
1445         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1446                 if (!dst->unified_rw_rep) {
1447                         dst->total_io_u[k] += src->total_io_u[k];
1448                         dst->short_io_u[k] += src->short_io_u[k];
1449                         dst->drop_io_u[k] += src->drop_io_u[k];
1450                 } else {
1451                         dst->total_io_u[0] += src->total_io_u[k];
1452                         dst->short_io_u[0] += src->short_io_u[k];
1453                         dst->drop_io_u[0] += src->drop_io_u[k];
1454                 }
1455         }
1456
1457         for (k = 0; k < DDIR_RWDIR_CNT; k++) {
1458                 int m;
1459
1460                 for (m = 0; m < FIO_IO_U_PLAT_NR; m++) {
1461                         if (!dst->unified_rw_rep)
1462                                 dst->io_u_plat[k][m] += src->io_u_plat[k][m];
1463                         else
1464                                 dst->io_u_plat[0][m] += src->io_u_plat[k][m];
1465                 }
1466         }
1467
1468         dst->total_run_time += src->total_run_time;
1469         dst->total_submit += src->total_submit;
1470         dst->total_complete += src->total_complete;
1471 }
1472
1473 void init_group_run_stat(struct group_run_stats *gs)
1474 {
1475         int i;
1476         memset(gs, 0, sizeof(*gs));
1477
1478         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1479                 gs->min_bw[i] = gs->min_run[i] = ~0UL;
1480 }
1481
1482 void init_thread_stat(struct thread_stat *ts)
1483 {
1484         int j;
1485
1486         memset(ts, 0, sizeof(*ts));
1487
1488         for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1489                 ts->lat_stat[j].min_val = -1UL;
1490                 ts->clat_stat[j].min_val = -1UL;
1491                 ts->slat_stat[j].min_val = -1UL;
1492                 ts->bw_stat[j].min_val = -1UL;
1493         }
1494         ts->groupid = -1;
1495 }
1496
1497 void __show_run_stats(void)
1498 {
1499         struct group_run_stats *runstats, *rs;
1500         struct thread_data *td;
1501         struct thread_stat *threadstats, *ts;
1502         int i, j, k, nr_ts, last_ts, idx;
1503         int kb_base_warned = 0;
1504         int unit_base_warned = 0;
1505         struct json_object *root = NULL;
1506         struct json_array *array = NULL;
1507         struct buf_output output[FIO_OUTPUT_NR];
1508         struct flist_head **opt_lists;
1509
1510         runstats = malloc(sizeof(struct group_run_stats) * (groupid + 1));
1511
1512         for (i = 0; i < groupid + 1; i++)
1513                 init_group_run_stat(&runstats[i]);
1514
1515         /*
1516          * find out how many threads stats we need. if group reporting isn't
1517          * enabled, it's one-per-td.
1518          */
1519         nr_ts = 0;
1520         last_ts = -1;
1521         for_each_td(td, i) {
1522                 if (!td->o.group_reporting) {
1523                         nr_ts++;
1524                         continue;
1525                 }
1526                 if (last_ts == td->groupid)
1527                         continue;
1528
1529                 last_ts = td->groupid;
1530                 nr_ts++;
1531         }
1532
1533         threadstats = malloc(nr_ts * sizeof(struct thread_stat));
1534         opt_lists = malloc(nr_ts * sizeof(struct flist_head *));
1535
1536         for (i = 0; i < nr_ts; i++) {
1537                 init_thread_stat(&threadstats[i]);
1538                 opt_lists[i] = NULL;
1539         }
1540
1541         j = 0;
1542         last_ts = -1;
1543         idx = 0;
1544         for_each_td(td, i) {
1545                 if (idx && (!td->o.group_reporting ||
1546                     (td->o.group_reporting && last_ts != td->groupid))) {
1547                         idx = 0;
1548                         j++;
1549                 }
1550
1551                 last_ts = td->groupid;
1552
1553                 ts = &threadstats[j];
1554
1555                 ts->clat_percentiles = td->o.clat_percentiles;
1556                 ts->percentile_precision = td->o.percentile_precision;
1557                 memcpy(ts->percentile_list, td->o.percentile_list, sizeof(td->o.percentile_list));
1558                 opt_lists[j] = &td->opt_list;
1559
1560                 idx++;
1561                 ts->members++;
1562
1563                 if (ts->groupid == -1) {
1564                         /*
1565                          * These are per-group shared already
1566                          */
1567                         strncpy(ts->name, td->o.name, FIO_JOBNAME_SIZE - 1);
1568                         if (td->o.description)
1569                                 strncpy(ts->description, td->o.description,
1570                                                 FIO_JOBDESC_SIZE - 1);
1571                         else
1572                                 memset(ts->description, 0, FIO_JOBDESC_SIZE);
1573
1574                         /*
1575                          * If multiple entries in this group, this is
1576                          * the first member.
1577                          */
1578                         ts->thread_number = td->thread_number;
1579                         ts->groupid = td->groupid;
1580
1581                         /*
1582                          * first pid in group, not very useful...
1583                          */
1584                         ts->pid = td->pid;
1585
1586                         ts->kb_base = td->o.kb_base;
1587                         ts->unit_base = td->o.unit_base;
1588                         ts->unified_rw_rep = td->o.unified_rw_rep;
1589                 } else if (ts->kb_base != td->o.kb_base && !kb_base_warned) {
1590                         log_info("fio: kb_base differs for jobs in group, using"
1591                                  " %u as the base\n", ts->kb_base);
1592                         kb_base_warned = 1;
1593                 } else if (ts->unit_base != td->o.unit_base && !unit_base_warned) {
1594                         log_info("fio: unit_base differs for jobs in group, using"
1595                                  " %u as the base\n", ts->unit_base);
1596                         unit_base_warned = 1;
1597                 }
1598
1599                 ts->continue_on_error = td->o.continue_on_error;
1600                 ts->total_err_count += td->total_err_count;
1601                 ts->first_error = td->first_error;
1602                 if (!ts->error) {
1603                         if (!td->error && td->o.continue_on_error &&
1604                             td->first_error) {
1605                                 ts->error = td->first_error;
1606                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1607                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1608                         } else  if (td->error) {
1609                                 ts->error = td->error;
1610                                 ts->verror[sizeof(ts->verror) - 1] = '\0';
1611                                 strncpy(ts->verror, td->verror, sizeof(ts->verror) - 1);
1612                         }
1613                 }
1614
1615                 ts->latency_depth = td->latency_qd;
1616                 ts->latency_target = td->o.latency_target;
1617                 ts->latency_percentile = td->o.latency_percentile;
1618                 ts->latency_window = td->o.latency_window;
1619
1620                 ts->nr_block_infos = td->ts.nr_block_infos;
1621                 for (k = 0; k < ts->nr_block_infos; k++)
1622                         ts->block_infos[k] = td->ts.block_infos[k];
1623
1624                 sum_thread_stats(ts, &td->ts, idx == 1);
1625
1626                 if (td->o.ss_dur)
1627                         ts->ss = &td->ss;
1628                 else
1629                         ts->ss = NULL;
1630         }
1631
1632         for (i = 0; i < nr_ts; i++) {
1633                 unsigned long long bw;
1634
1635                 ts = &threadstats[i];
1636                 if (ts->groupid == -1)
1637                         continue;
1638                 rs = &runstats[ts->groupid];
1639                 rs->kb_base = ts->kb_base;
1640                 rs->unit_base = ts->unit_base;
1641                 rs->unified_rw_rep += ts->unified_rw_rep;
1642
1643                 for (j = 0; j < DDIR_RWDIR_CNT; j++) {
1644                         if (!ts->runtime[j])
1645                                 continue;
1646                         if (ts->runtime[j] < rs->min_run[j] || !rs->min_run[j])
1647                                 rs->min_run[j] = ts->runtime[j];
1648                         if (ts->runtime[j] > rs->max_run[j])
1649                                 rs->max_run[j] = ts->runtime[j];
1650
1651                         bw = 0;
1652                         if (ts->runtime[j]) {
1653                                 unsigned long runt = ts->runtime[j];
1654                                 unsigned long long kb;
1655
1656                                 kb = ts->io_bytes[j] / rs->kb_base;
1657                                 bw = kb * 1000 / runt;
1658                         }
1659                         if (bw < rs->min_bw[j])
1660                                 rs->min_bw[j] = bw;
1661                         if (bw > rs->max_bw[j])
1662                                 rs->max_bw[j] = bw;
1663
1664                         rs->io_kb[j] += ts->io_bytes[j] / rs->kb_base;
1665                 }
1666         }
1667
1668         for (i = 0; i < groupid + 1; i++) {
1669                 int ddir;
1670
1671                 rs = &runstats[i];
1672
1673                 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
1674                         if (rs->max_run[ddir])
1675                                 rs->agg[ddir] = (rs->io_kb[ddir] * 1000) /
1676                                                 rs->max_run[ddir];
1677                 }
1678         }
1679
1680         for (i = 0; i < FIO_OUTPUT_NR; i++)
1681                 buf_output_init(&output[i]);
1682
1683         /*
1684          * don't overwrite last signal output
1685          */
1686         if (output_format & FIO_OUTPUT_NORMAL)
1687                 log_buf(&output[__FIO_OUTPUT_NORMAL], "\n");
1688         if (output_format & FIO_OUTPUT_JSON) {
1689                 struct thread_data *global;
1690                 char time_buf[32];
1691                 struct timeval now;
1692                 unsigned long long ms_since_epoch;
1693
1694                 gettimeofday(&now, NULL);
1695                 ms_since_epoch = (unsigned long long)(now.tv_sec) * 1000 +
1696                                  (unsigned long long)(now.tv_usec) / 1000;
1697
1698                 os_ctime_r((const time_t *) &now.tv_sec, time_buf,
1699                                 sizeof(time_buf));
1700                 time_buf[strlen(time_buf) - 1] = '\0';
1701
1702                 root = json_create_object();
1703                 json_object_add_value_string(root, "fio version", fio_version_string);
1704                 json_object_add_value_int(root, "timestamp", now.tv_sec);
1705                 json_object_add_value_int(root, "timestamp_ms", ms_since_epoch);
1706                 json_object_add_value_string(root, "time", time_buf);
1707                 global = get_global_options();
1708                 json_add_job_opts(root, "global options", &global->opt_list, false);
1709                 array = json_create_array();
1710                 json_object_add_value_array(root, "jobs", array);
1711         }
1712
1713         if (is_backend)
1714                 fio_server_send_job_options(&get_global_options()->opt_list, -1U);
1715
1716         for (i = 0; i < nr_ts; i++) {
1717                 ts = &threadstats[i];
1718                 rs = &runstats[ts->groupid];
1719
1720                 if (is_backend) {
1721                         fio_server_send_job_options(opt_lists[i], i);
1722                         fio_server_send_ts(ts, rs);
1723                 } else {
1724                         if (output_format & FIO_OUTPUT_TERSE)
1725                                 show_thread_status_terse(ts, rs, &output[__FIO_OUTPUT_TERSE]);
1726                         if (output_format & FIO_OUTPUT_JSON) {
1727                                 struct json_object *tmp = show_thread_status_json(ts, rs, opt_lists[i]);
1728                                 json_array_add_value_object(array, tmp);
1729                         }
1730                         if (output_format & FIO_OUTPUT_NORMAL)
1731                                 show_thread_status_normal(ts, rs, &output[__FIO_OUTPUT_NORMAL]);
1732                 }
1733         }
1734         if (!is_backend && (output_format & FIO_OUTPUT_JSON)) {
1735                 /* disk util stats, if any */
1736                 show_disk_util(1, root, &output[__FIO_OUTPUT_JSON]);
1737
1738                 show_idle_prof_stats(FIO_OUTPUT_JSON, root, &output[__FIO_OUTPUT_JSON]);
1739
1740                 json_print_object(root, &output[__FIO_OUTPUT_JSON]);
1741                 log_buf(&output[__FIO_OUTPUT_JSON], "\n");
1742                 json_free_object(root);
1743         }
1744
1745         for (i = 0; i < groupid + 1; i++) {
1746                 rs = &runstats[i];
1747
1748                 rs->groupid = i;
1749                 if (is_backend)
1750                         fio_server_send_gs(rs);
1751                 else if (output_format & FIO_OUTPUT_NORMAL)
1752                         show_group_stats(rs, &output[__FIO_OUTPUT_NORMAL]);
1753         }
1754
1755         if (is_backend)
1756                 fio_server_send_du();
1757         else if (output_format & FIO_OUTPUT_NORMAL) {
1758                 show_disk_util(0, NULL, &output[__FIO_OUTPUT_NORMAL]);
1759                 show_idle_prof_stats(FIO_OUTPUT_NORMAL, NULL, &output[__FIO_OUTPUT_NORMAL]);
1760         }
1761
1762         for (i = 0; i < FIO_OUTPUT_NR; i++) {
1763                 buf_output_flush(&output[i]);
1764                 buf_output_free(&output[i]);
1765         }
1766
1767         log_info_flush();
1768         free(runstats);
1769         free(threadstats);
1770         free(opt_lists);
1771 }
1772
1773 void show_run_stats(void)
1774 {
1775         fio_mutex_down(stat_mutex);
1776         __show_run_stats();
1777         fio_mutex_up(stat_mutex);
1778 }
1779
1780 void __show_running_run_stats(void)
1781 {
1782         struct thread_data *td;
1783         unsigned long long *rt;
1784         struct timeval tv;
1785         int i;
1786
1787         fio_mutex_down(stat_mutex);
1788
1789         rt = malloc(thread_number * sizeof(unsigned long long));
1790         fio_gettime(&tv, NULL);
1791
1792         for_each_td(td, i) {
1793                 td->update_rusage = 1;
1794                 td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1795                 td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1796                 td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1797                 td->ts.total_run_time = mtime_since(&td->epoch, &tv);
1798
1799                 rt[i] = mtime_since(&td->start, &tv);
1800                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1801                         td->ts.runtime[DDIR_READ] += rt[i];
1802                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1803                         td->ts.runtime[DDIR_WRITE] += rt[i];
1804                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1805                         td->ts.runtime[DDIR_TRIM] += rt[i];
1806         }
1807
1808         for_each_td(td, i) {
1809                 if (td->runstate >= TD_EXITED)
1810                         continue;
1811                 if (td->rusage_sem) {
1812                         td->update_rusage = 1;
1813                         fio_mutex_down(td->rusage_sem);
1814                 }
1815                 td->update_rusage = 0;
1816         }
1817
1818         __show_run_stats();
1819
1820         for_each_td(td, i) {
1821                 if (td_read(td) && td->ts.io_bytes[DDIR_READ])
1822                         td->ts.runtime[DDIR_READ] -= rt[i];
1823                 if (td_write(td) && td->ts.io_bytes[DDIR_WRITE])
1824                         td->ts.runtime[DDIR_WRITE] -= rt[i];
1825                 if (td_trim(td) && td->ts.io_bytes[DDIR_TRIM])
1826                         td->ts.runtime[DDIR_TRIM] -= rt[i];
1827         }
1828
1829         free(rt);
1830         fio_mutex_up(stat_mutex);
1831 }
1832
1833 static int status_interval_init;
1834 static struct timeval status_time;
1835 static int status_file_disabled;
1836
1837 #define FIO_STATUS_FILE         "fio-dump-status"
1838
1839 static int check_status_file(void)
1840 {
1841         struct stat sb;
1842         const char *temp_dir;
1843         char fio_status_file_path[PATH_MAX];
1844
1845         if (status_file_disabled)
1846                 return 0;
1847
1848         temp_dir = getenv("TMPDIR");
1849         if (temp_dir == NULL) {
1850                 temp_dir = getenv("TEMP");
1851                 if (temp_dir && strlen(temp_dir) >= PATH_MAX)
1852                         temp_dir = NULL;
1853         }
1854         if (temp_dir == NULL)
1855                 temp_dir = "/tmp";
1856
1857         snprintf(fio_status_file_path, sizeof(fio_status_file_path), "%s/%s", temp_dir, FIO_STATUS_FILE);
1858
1859         if (stat(fio_status_file_path, &sb))
1860                 return 0;
1861
1862         if (unlink(fio_status_file_path) < 0) {
1863                 log_err("fio: failed to unlink %s: %s\n", fio_status_file_path,
1864                                                         strerror(errno));
1865                 log_err("fio: disabling status file updates\n");
1866                 status_file_disabled = 1;
1867         }
1868
1869         return 1;
1870 }
1871
1872 void check_for_running_stats(void)
1873 {
1874         if (status_interval) {
1875                 if (!status_interval_init) {
1876                         fio_gettime(&status_time, NULL);
1877                         status_interval_init = 1;
1878                 } else if (mtime_since_now(&status_time) >= status_interval) {
1879                         show_running_run_stats();
1880                         fio_gettime(&status_time, NULL);
1881                         return;
1882                 }
1883         }
1884         if (check_status_file()) {
1885                 show_running_run_stats();
1886                 return;
1887         }
1888 }
1889
1890 static inline void add_stat_sample(struct io_stat *is, unsigned long data)
1891 {
1892         double val = data;
1893         double delta;
1894
1895         if (data > is->max_val)
1896                 is->max_val = data;
1897         if (data < is->min_val)
1898                 is->min_val = data;
1899
1900         delta = val - is->mean.u.f;
1901         if (delta) {
1902                 is->mean.u.f += delta / (is->samples + 1.0);
1903                 is->S.u.f += delta * (val - is->mean.u.f);
1904         }
1905
1906         is->samples++;
1907 }
1908
1909 /*
1910  * Return a struct io_logs, which is added to the tail of the log
1911  * list for 'iolog'.
1912  */
1913 static struct io_logs *get_new_log(struct io_log *iolog)
1914 {
1915         size_t new_size, new_samples;
1916         struct io_logs *cur_log;
1917
1918         /*
1919          * Cap the size at MAX_LOG_ENTRIES, so we don't keep doubling
1920          * forever
1921          */
1922         if (!iolog->cur_log_max)
1923                 new_samples = DEF_LOG_ENTRIES;
1924         else {
1925                 new_samples = iolog->cur_log_max * 2;
1926                 if (new_samples > MAX_LOG_ENTRIES)
1927                         new_samples = MAX_LOG_ENTRIES;
1928         }
1929
1930         new_size = new_samples * log_entry_sz(iolog);
1931
1932         cur_log = smalloc(sizeof(*cur_log));
1933         if (cur_log) {
1934                 INIT_FLIST_HEAD(&cur_log->list);
1935                 cur_log->log = malloc(new_size);
1936                 if (cur_log->log) {
1937                         cur_log->nr_samples = 0;
1938                         cur_log->max_samples = new_samples;
1939                         flist_add_tail(&cur_log->list, &iolog->io_logs);
1940                         iolog->cur_log_max = new_samples;
1941                         return cur_log;
1942                 }
1943                 sfree(cur_log);
1944         }
1945
1946         return NULL;
1947 }
1948
1949 /*
1950  * Add and return a new log chunk, or return current log if big enough
1951  */
1952 static struct io_logs *regrow_log(struct io_log *iolog)
1953 {
1954         struct io_logs *cur_log;
1955         int i;
1956
1957         if (!iolog || iolog->disabled)
1958                 goto disable;
1959
1960         cur_log = iolog_cur_log(iolog);
1961         if (!cur_log) {
1962                 cur_log = get_new_log(iolog);
1963                 if (!cur_log)
1964                         return NULL;
1965         }
1966
1967         if (cur_log->nr_samples < cur_log->max_samples)
1968                 return cur_log;
1969
1970         /*
1971          * No room for a new sample. If we're compressing on the fly, flush
1972          * out the current chunk
1973          */
1974         if (iolog->log_gz) {
1975                 if (iolog_cur_flush(iolog, cur_log)) {
1976                         log_err("fio: failed flushing iolog! Will stop logging.\n");
1977                         return NULL;
1978                 }
1979         }
1980
1981         /*
1982          * Get a new log array, and add to our list
1983          */
1984         cur_log = get_new_log(iolog);
1985         if (!cur_log) {
1986                 log_err("fio: failed extending iolog! Will stop logging.\n");
1987                 return NULL;
1988         }
1989
1990         if (!iolog->pending || !iolog->pending->nr_samples)
1991                 return cur_log;
1992
1993         /*
1994          * Flush pending items to new log
1995          */
1996         for (i = 0; i < iolog->pending->nr_samples; i++) {
1997                 struct io_sample *src, *dst;
1998
1999                 src = get_sample(iolog, iolog->pending, i);
2000                 dst = get_sample(iolog, cur_log, i);
2001                 memcpy(dst, src, log_entry_sz(iolog));
2002         }
2003         cur_log->nr_samples = iolog->pending->nr_samples;
2004
2005         iolog->pending->nr_samples = 0;
2006         return cur_log;
2007 disable:
2008         if (iolog)
2009                 iolog->disabled = true;
2010         return NULL;
2011 }
2012
2013 void regrow_logs(struct thread_data *td)
2014 {
2015         regrow_log(td->slat_log);
2016         regrow_log(td->clat_log);
2017         regrow_log(td->clat_hist_log);
2018         regrow_log(td->lat_log);
2019         regrow_log(td->bw_log);
2020         regrow_log(td->iops_log);
2021         td->flags &= ~TD_F_REGROW_LOGS;
2022 }
2023
2024 static struct io_logs *get_cur_log(struct io_log *iolog)
2025 {
2026         struct io_logs *cur_log;
2027
2028         cur_log = iolog_cur_log(iolog);
2029         if (!cur_log) {
2030                 cur_log = get_new_log(iolog);
2031                 if (!cur_log)
2032                         return NULL;
2033         }
2034
2035         if (cur_log->nr_samples < cur_log->max_samples)
2036                 return cur_log;
2037
2038         /*
2039          * Out of space. If we're in IO offload mode, or we're not doing
2040          * per unit logging (hence logging happens outside of the IO thread
2041          * as well), add a new log chunk inline. If we're doing inline
2042          * submissions, flag 'td' as needing a log regrow and we'll take
2043          * care of it on the submission side.
2044          */
2045         if (iolog->td->o.io_submit_mode == IO_MODE_OFFLOAD ||
2046             !per_unit_log(iolog))
2047                 return regrow_log(iolog);
2048
2049         iolog->td->flags |= TD_F_REGROW_LOGS;
2050         assert(iolog->pending->nr_samples < iolog->pending->max_samples);
2051         return iolog->pending;
2052 }
2053
2054 static void __add_log_sample(struct io_log *iolog, unsigned long val,
2055                              enum fio_ddir ddir, unsigned int bs,
2056                              unsigned long t, uint64_t offset)
2057 {
2058         struct io_logs *cur_log;
2059
2060         if (iolog->disabled)
2061                 return;
2062         if (flist_empty(&iolog->io_logs))
2063                 iolog->avg_last = t;
2064
2065         cur_log = get_cur_log(iolog);
2066         if (cur_log) {
2067                 struct io_sample *s;
2068
2069                 s = get_sample(iolog, cur_log, cur_log->nr_samples);
2070
2071                 s->val = val;
2072                 s->time = t;
2073                 io_sample_set_ddir(iolog, s, ddir);
2074                 s->bs = bs;
2075
2076                 if (iolog->log_offset) {
2077                         struct io_sample_offset *so = (void *) s;
2078
2079                         so->offset = offset;
2080                 }
2081
2082                 cur_log->nr_samples++;
2083                 return;
2084         }
2085
2086         iolog->disabled = true;
2087 }
2088
2089 static inline void reset_io_stat(struct io_stat *ios)
2090 {
2091         ios->max_val = ios->min_val = ios->samples = 0;
2092         ios->mean.u.f = ios->S.u.f = 0;
2093 }
2094
2095 void reset_io_stats(struct thread_data *td)
2096 {
2097         struct thread_stat *ts = &td->ts;
2098         int i, j;
2099
2100         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2101                 reset_io_stat(&ts->clat_stat[i]);
2102                 reset_io_stat(&ts->slat_stat[i]);
2103                 reset_io_stat(&ts->lat_stat[i]);
2104                 reset_io_stat(&ts->bw_stat[i]);
2105                 reset_io_stat(&ts->iops_stat[i]);
2106
2107                 ts->io_bytes[i] = 0;
2108                 ts->runtime[i] = 0;
2109
2110                 for (j = 0; j < FIO_IO_U_PLAT_NR; j++)
2111                         ts->io_u_plat[i][j] = 0;
2112         }
2113
2114         for (i = 0; i < FIO_IO_U_MAP_NR; i++) {
2115                 ts->io_u_map[i] = 0;
2116                 ts->io_u_submit[i] = 0;
2117                 ts->io_u_complete[i] = 0;
2118                 ts->io_u_lat_u[i] = 0;
2119                 ts->io_u_lat_m[i] = 0;
2120                 ts->total_submit = 0;
2121                 ts->total_complete = 0;
2122         }
2123
2124         for (i = 0; i < 3; i++) {
2125                 ts->total_io_u[i] = 0;
2126                 ts->short_io_u[i] = 0;
2127                 ts->drop_io_u[i] = 0;
2128         }
2129 }
2130
2131 static void __add_stat_to_log(struct io_log *iolog, enum fio_ddir ddir,
2132                               unsigned long elapsed, bool log_max)
2133 {
2134         /*
2135          * Note an entry in the log. Use the mean from the logged samples,
2136          * making sure to properly round up. Only write a log entry if we
2137          * had actual samples done.
2138          */
2139         if (iolog->avg_window[ddir].samples) {
2140                 unsigned long val;
2141
2142                 if (log_max)
2143                         val = iolog->avg_window[ddir].max_val;
2144                 else
2145                         val = iolog->avg_window[ddir].mean.u.f + 0.50;
2146
2147                 __add_log_sample(iolog, val, ddir, 0, elapsed, 0);
2148         }
2149
2150         reset_io_stat(&iolog->avg_window[ddir]);
2151 }
2152
2153 static void _add_stat_to_log(struct io_log *iolog, unsigned long elapsed,
2154                              bool log_max)
2155 {
2156         int ddir;
2157
2158         for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
2159                 __add_stat_to_log(iolog, ddir, elapsed, log_max);
2160 }
2161
2162 static long add_log_sample(struct thread_data *td, struct io_log *iolog,
2163                            unsigned long val, enum fio_ddir ddir,
2164                            unsigned int bs, uint64_t offset)
2165 {
2166         unsigned long elapsed, this_window;
2167
2168         if (!ddir_rw(ddir))
2169                 return 0;
2170
2171         elapsed = mtime_since_now(&td->epoch);
2172
2173         /*
2174          * If no time averaging, just add the log sample.
2175          */
2176         if (!iolog->avg_msec) {
2177                 __add_log_sample(iolog, val, ddir, bs, elapsed, offset);
2178                 return 0;
2179         }
2180
2181         /*
2182          * Add the sample. If the time period has passed, then
2183          * add that entry to the log and clear.
2184          */
2185         add_stat_sample(&iolog->avg_window[ddir], val);
2186
2187         /*
2188          * If period hasn't passed, adding the above sample is all we
2189          * need to do.
2190          */
2191         this_window = elapsed - iolog->avg_last;
2192         if (elapsed < iolog->avg_last)
2193                 return iolog->avg_last - elapsed;
2194         else if (this_window < iolog->avg_msec) {
2195                 int diff = iolog->avg_msec - this_window;
2196
2197                 if (inline_log(iolog) || diff > LOG_MSEC_SLACK)
2198                         return diff;
2199         }
2200
2201         _add_stat_to_log(iolog, elapsed, td->o.log_max != 0);
2202
2203         iolog->avg_last = elapsed - (this_window - iolog->avg_msec);
2204         return iolog->avg_msec;
2205 }
2206
2207 void finalize_logs(struct thread_data *td, bool unit_logs)
2208 {
2209         unsigned long elapsed;
2210
2211         elapsed = mtime_since_now(&td->epoch);
2212
2213         if (td->clat_log && unit_logs)
2214                 _add_stat_to_log(td->clat_log, elapsed, td->o.log_max != 0);
2215         if (td->slat_log && unit_logs)
2216                 _add_stat_to_log(td->slat_log, elapsed, td->o.log_max != 0);
2217         if (td->lat_log && unit_logs)
2218                 _add_stat_to_log(td->lat_log, elapsed, td->o.log_max != 0);
2219         if (td->bw_log && (unit_logs == per_unit_log(td->bw_log)))
2220                 _add_stat_to_log(td->bw_log, elapsed, td->o.log_max != 0);
2221         if (td->iops_log && (unit_logs == per_unit_log(td->iops_log)))
2222                 _add_stat_to_log(td->iops_log, elapsed, td->o.log_max != 0);
2223 }
2224
2225 void add_agg_sample(unsigned long val, enum fio_ddir ddir, unsigned int bs)
2226 {
2227         struct io_log *iolog;
2228
2229         if (!ddir_rw(ddir))
2230                 return;
2231
2232         iolog = agg_io_log[ddir];
2233         __add_log_sample(iolog, val, ddir, bs, mtime_since_genesis(), 0);
2234 }
2235
2236 static void add_clat_percentile_sample(struct thread_stat *ts,
2237                                 unsigned long usec, enum fio_ddir ddir)
2238 {
2239         unsigned int idx = plat_val_to_idx(usec);
2240         assert(idx < FIO_IO_U_PLAT_NR);
2241
2242         ts->io_u_plat[ddir][idx]++;
2243 }
2244
2245 void add_clat_sample(struct thread_data *td, enum fio_ddir ddir,
2246                      unsigned long usec, unsigned int bs, uint64_t offset)
2247 {
2248         unsigned long elapsed, this_window;
2249         struct thread_stat *ts = &td->ts;
2250         struct io_log *iolog = td->clat_hist_log;
2251
2252         td_io_u_lock(td);
2253
2254         add_stat_sample(&ts->clat_stat[ddir], usec);
2255
2256         if (td->clat_log)
2257                 add_log_sample(td, td->clat_log, usec, ddir, bs, offset);
2258
2259         if (ts->clat_percentiles)
2260                 add_clat_percentile_sample(ts, usec, ddir);
2261
2262         if (iolog && iolog->hist_msec) {
2263                 struct io_hist *hw = &iolog->hist_window[ddir];
2264
2265                 hw->samples++;
2266                 elapsed = mtime_since_now(&td->epoch);
2267                 if (!hw->hist_last)
2268                         hw->hist_last = elapsed;
2269                 this_window = elapsed - hw->hist_last;
2270                 
2271                 if (this_window >= iolog->hist_msec) {
2272                         unsigned int *io_u_plat;
2273                         unsigned int *dst;
2274
2275                         /*
2276                          * Make a byte-for-byte copy of the latency histogram
2277                          * stored in td->ts.io_u_plat[ddir], recording it in a
2278                          * log sample. Note that the matching call to free() is
2279                          * located in iolog.c after printing this sample to the
2280                          * log file.
2281                          */
2282                         io_u_plat = (unsigned int *) td->ts.io_u_plat[ddir];
2283                         dst = malloc(FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2284                         memcpy(dst, io_u_plat,
2285                                 FIO_IO_U_PLAT_NR * sizeof(unsigned int));
2286                         __add_log_sample(iolog, (unsigned long )dst, ddir, bs,
2287                                                 elapsed, offset);
2288
2289                         /*
2290                          * Update the last time we recorded as being now, minus
2291                          * any drift in time we encountered before actually
2292                          * making the record.
2293                          */
2294                         hw->hist_last = elapsed - (this_window - iolog->hist_msec);
2295                         hw->samples = 0;
2296                 }
2297         }
2298
2299         td_io_u_unlock(td);
2300 }
2301
2302 void add_slat_sample(struct thread_data *td, enum fio_ddir ddir,
2303                      unsigned long usec, unsigned int bs, uint64_t offset)
2304 {
2305         struct thread_stat *ts = &td->ts;
2306
2307         if (!ddir_rw(ddir))
2308                 return;
2309
2310         td_io_u_lock(td);
2311
2312         add_stat_sample(&ts->slat_stat[ddir], usec);
2313
2314         if (td->slat_log)
2315                 add_log_sample(td, td->slat_log, usec, ddir, bs, offset);
2316
2317         td_io_u_unlock(td);
2318 }
2319
2320 void add_lat_sample(struct thread_data *td, enum fio_ddir ddir,
2321                     unsigned long usec, unsigned int bs, uint64_t offset)
2322 {
2323         struct thread_stat *ts = &td->ts;
2324
2325         if (!ddir_rw(ddir))
2326                 return;
2327
2328         td_io_u_lock(td);
2329
2330         add_stat_sample(&ts->lat_stat[ddir], usec);
2331
2332         if (td->lat_log)
2333                 add_log_sample(td, td->lat_log, usec, ddir, bs, offset);
2334
2335         td_io_u_unlock(td);
2336 }
2337
2338 void add_bw_sample(struct thread_data *td, struct io_u *io_u,
2339                    unsigned int bytes, unsigned long spent)
2340 {
2341         struct thread_stat *ts = &td->ts;
2342         unsigned long rate;
2343
2344         if (spent)
2345                 rate = bytes * 1000 / spent;
2346         else
2347                 rate = 0;
2348
2349         td_io_u_lock(td);
2350
2351         add_stat_sample(&ts->bw_stat[io_u->ddir], rate);
2352
2353         if (td->bw_log)
2354                 add_log_sample(td, td->bw_log, rate, io_u->ddir, bytes, io_u->offset);
2355
2356         td->stat_io_bytes[io_u->ddir] = td->this_io_bytes[io_u->ddir];
2357         td_io_u_unlock(td);
2358 }
2359
2360 static int add_bw_samples(struct thread_data *td, struct timeval *t)
2361 {
2362         struct thread_stat *ts = &td->ts;
2363         unsigned long spent, rate;
2364         enum fio_ddir ddir;
2365         unsigned int next, next_log;
2366
2367         next_log = td->o.bw_avg_time;
2368
2369         spent = mtime_since(&td->bw_sample_time, t);
2370         if (spent < td->o.bw_avg_time &&
2371             td->o.bw_avg_time - spent >= LOG_MSEC_SLACK)
2372                 return td->o.bw_avg_time - spent;
2373
2374         td_io_u_lock(td);
2375
2376         /*
2377          * Compute both read and write rates for the interval.
2378          */
2379         for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2380                 uint64_t delta;
2381
2382                 delta = td->this_io_bytes[ddir] - td->stat_io_bytes[ddir];
2383                 if (!delta)
2384                         continue; /* No entries for interval */
2385
2386                 if (spent)
2387                         rate = delta * 1000 / spent / 1024;
2388                 else
2389                         rate = 0;
2390
2391                 add_stat_sample(&ts->bw_stat[ddir], rate);
2392
2393                 if (td->bw_log) {
2394                         unsigned int bs = 0;
2395
2396                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2397                                 bs = td->o.min_bs[ddir];
2398
2399                         next = add_log_sample(td, td->bw_log, rate, ddir, bs, 0);
2400                         next_log = min(next_log, next);
2401                 }
2402
2403                 td->stat_io_bytes[ddir] = td->this_io_bytes[ddir];
2404         }
2405
2406         timeval_add_msec(&td->bw_sample_time, td->o.bw_avg_time);
2407
2408         td_io_u_unlock(td);
2409
2410         if (spent <= td->o.bw_avg_time)
2411                 return min(next_log, td->o.bw_avg_time);
2412
2413         next = td->o.bw_avg_time - (1 + spent - td->o.bw_avg_time);
2414         return min(next, next_log);
2415 }
2416
2417 void add_iops_sample(struct thread_data *td, struct io_u *io_u,
2418                      unsigned int bytes)
2419 {
2420         struct thread_stat *ts = &td->ts;
2421
2422         td_io_u_lock(td);
2423
2424         add_stat_sample(&ts->iops_stat[io_u->ddir], 1);
2425
2426         if (td->iops_log)
2427                 add_log_sample(td, td->iops_log, 1, io_u->ddir, bytes, io_u->offset);
2428
2429         td->stat_io_blocks[io_u->ddir] = td->this_io_blocks[io_u->ddir];
2430         td_io_u_unlock(td);
2431 }
2432
2433 static int add_iops_samples(struct thread_data *td, struct timeval *t)
2434 {
2435         struct thread_stat *ts = &td->ts;
2436         unsigned long spent, iops;
2437         enum fio_ddir ddir;
2438         unsigned int next, next_log;
2439
2440         next_log = td->o.iops_avg_time;
2441
2442         spent = mtime_since(&td->iops_sample_time, t);
2443         if (spent < td->o.iops_avg_time &&
2444             td->o.iops_avg_time - spent >= LOG_MSEC_SLACK)
2445                 return td->o.iops_avg_time - spent;
2446
2447         td_io_u_lock(td);
2448
2449         /*
2450          * Compute both read and write rates for the interval.
2451          */
2452         for (ddir = DDIR_READ; ddir < DDIR_RWDIR_CNT; ddir++) {
2453                 uint64_t delta;
2454
2455                 delta = td->this_io_blocks[ddir] - td->stat_io_blocks[ddir];
2456                 if (!delta)
2457                         continue; /* No entries for interval */
2458
2459                 if (spent)
2460                         iops = (delta * 1000) / spent;
2461                 else
2462                         iops = 0;
2463
2464                 add_stat_sample(&ts->iops_stat[ddir], iops);
2465
2466                 if (td->iops_log) {
2467                         unsigned int bs = 0;
2468
2469                         if (td->o.min_bs[ddir] == td->o.max_bs[ddir])
2470                                 bs = td->o.min_bs[ddir];
2471
2472                         next = add_log_sample(td, td->iops_log, iops, ddir, bs, 0);
2473                         next_log = min(next_log, next);
2474                 }
2475
2476                 td->stat_io_blocks[ddir] = td->this_io_blocks[ddir];
2477         }
2478
2479         timeval_add_msec(&td->iops_sample_time, td->o.iops_avg_time);
2480
2481         td_io_u_unlock(td);
2482
2483         if (spent <= td->o.iops_avg_time)
2484                 return min(next_log, td->o.iops_avg_time);
2485
2486         next = td->o.iops_avg_time - (1 + spent - td->o.iops_avg_time);
2487         return min(next, next_log);
2488 }
2489
2490 /*
2491  * Returns msecs to next event
2492  */
2493 int calc_log_samples(void)
2494 {
2495         struct thread_data *td;
2496         unsigned int next = ~0U, tmp;
2497         struct timeval now;
2498         int i;
2499
2500         fio_gettime(&now, NULL);
2501
2502         for_each_td(td, i) {
2503                 if (in_ramp_time(td) ||
2504                     !(td->runstate == TD_RUNNING || td->runstate == TD_VERIFYING)) {
2505                         next = min(td->o.iops_avg_time, td->o.bw_avg_time);
2506                         continue;
2507                 }
2508                 if (!per_unit_log(td->bw_log)) {
2509                         tmp = add_bw_samples(td, &now);
2510                         if (tmp < next)
2511                                 next = tmp;
2512                 }
2513                 if (!per_unit_log(td->iops_log)) {
2514                         tmp = add_iops_samples(td, &now);
2515                         if (tmp < next)
2516                                 next = tmp;
2517                 }
2518         }
2519
2520         return next == ~0U ? 0 : next;
2521 }
2522
2523 void stat_init(void)
2524 {
2525         stat_mutex = fio_mutex_init(FIO_MUTEX_UNLOCKED);
2526 }
2527
2528 void stat_exit(void)
2529 {
2530         /*
2531          * When we have the mutex, we know out-of-band access to it
2532          * have ended.
2533          */
2534         fio_mutex_down(stat_mutex);
2535         fio_mutex_remove(stat_mutex);
2536 }
2537
2538 /*
2539  * Called from signal handler. Wake up status thread.
2540  */
2541 void show_running_run_stats(void)
2542 {
2543         helper_do_stat();
2544 }
2545
2546 uint32_t *io_u_block_info(struct thread_data *td, struct io_u *io_u)
2547 {
2548         /* Ignore io_u's which span multiple blocks--they will just get
2549          * inaccurate counts. */
2550         int idx = (io_u->offset - io_u->file->file_offset)
2551                         / td->o.bs[DDIR_TRIM];
2552         uint32_t *info = &td->ts.block_infos[idx];
2553         assert(idx < td->ts.nr_block_infos);
2554         return info;
2555 }