workqueue: remove knowledge of io issue (and others) stats
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38 #include <math.h>
39
40 #include "fio.h"
41 #ifndef FIO_NO_HAVE_SHM_H
42 #include <sys/shm.h>
43 #endif
44 #include "hash.h"
45 #include "smalloc.h"
46 #include "verify.h"
47 #include "trim.h"
48 #include "diskutil.h"
49 #include "cgroup.h"
50 #include "profile.h"
51 #include "lib/rand.h"
52 #include "lib/memalign.h"
53 #include "server.h"
54 #include "lib/getrusage.h"
55 #include "idletime.h"
56 #include "err.h"
57 #include "lib/tp.h"
58 #include "workqueue.h"
59 #include "lib/mountcheck.h"
60
61 static pthread_t helper_thread;
62 static pthread_mutex_t helper_lock;
63 pthread_cond_t helper_cond;
64 int helper_do_stat = 0;
65
66 static struct fio_mutex *startup_mutex;
67 static struct flist_head *cgroup_list;
68 static char *cgroup_mnt;
69 static int exit_value;
70 static volatile int fio_abort;
71 static unsigned int nr_process = 0;
72 static unsigned int nr_thread = 0;
73
74 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
75
76 int groupid = 0;
77 unsigned int thread_number = 0;
78 unsigned int stat_number = 0;
79 int shm_id = 0;
80 int temp_stall_ts;
81 unsigned long done_secs = 0;
82 volatile int helper_exit = 0;
83
84 #define PAGE_ALIGN(buf) \
85         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
86
87 #define JOB_START_TIMEOUT       (5 * 1000)
88
89 static void sig_int(int sig)
90 {
91         if (threads) {
92                 if (is_backend)
93                         fio_server_got_signal(sig);
94                 else {
95                         log_info("\nfio: terminating on signal %d\n", sig);
96                         log_info_flush();
97                         exit_value = 128;
98                 }
99
100                 fio_terminate_threads(TERMINATE_ALL);
101         }
102 }
103
104 void sig_show_status(int sig)
105 {
106         show_running_run_stats();
107 }
108
109 static void set_sig_handlers(void)
110 {
111         struct sigaction act;
112
113         memset(&act, 0, sizeof(act));
114         act.sa_handler = sig_int;
115         act.sa_flags = SA_RESTART;
116         sigaction(SIGINT, &act, NULL);
117
118         memset(&act, 0, sizeof(act));
119         act.sa_handler = sig_int;
120         act.sa_flags = SA_RESTART;
121         sigaction(SIGTERM, &act, NULL);
122
123 /* Windows uses SIGBREAK as a quit signal from other applications */
124 #ifdef WIN32
125         memset(&act, 0, sizeof(act));
126         act.sa_handler = sig_int;
127         act.sa_flags = SA_RESTART;
128         sigaction(SIGBREAK, &act, NULL);
129 #endif
130
131         memset(&act, 0, sizeof(act));
132         act.sa_handler = sig_show_status;
133         act.sa_flags = SA_RESTART;
134         sigaction(SIGUSR1, &act, NULL);
135
136         if (is_backend) {
137                 memset(&act, 0, sizeof(act));
138                 act.sa_handler = sig_int;
139                 act.sa_flags = SA_RESTART;
140                 sigaction(SIGPIPE, &act, NULL);
141         }
142 }
143
144 /*
145  * Check if we are above the minimum rate given.
146  */
147 static bool __check_min_rate(struct thread_data *td, struct timeval *now,
148                              enum fio_ddir ddir)
149 {
150         unsigned long long bytes = 0;
151         unsigned long iops = 0;
152         unsigned long spent;
153         unsigned long rate;
154         unsigned int ratemin = 0;
155         unsigned int rate_iops = 0;
156         unsigned int rate_iops_min = 0;
157
158         assert(ddir_rw(ddir));
159
160         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
161                 return false;
162
163         /*
164          * allow a 2 second settle period in the beginning
165          */
166         if (mtime_since(&td->start, now) < 2000)
167                 return false;
168
169         iops += td->this_io_blocks[ddir];
170         bytes += td->this_io_bytes[ddir];
171         ratemin += td->o.ratemin[ddir];
172         rate_iops += td->o.rate_iops[ddir];
173         rate_iops_min += td->o.rate_iops_min[ddir];
174
175         /*
176          * if rate blocks is set, sample is running
177          */
178         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
179                 spent = mtime_since(&td->lastrate[ddir], now);
180                 if (spent < td->o.ratecycle)
181                         return false;
182
183                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
184                         /*
185                          * check bandwidth specified rate
186                          */
187                         if (bytes < td->rate_bytes[ddir]) {
188                                 log_err("%s: min rate %u not met\n", td->o.name,
189                                                                 ratemin);
190                                 return true;
191                         } else {
192                                 if (spent)
193                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
194                                 else
195                                         rate = 0;
196
197                                 if (rate < ratemin ||
198                                     bytes < td->rate_bytes[ddir]) {
199                                         log_err("%s: min rate %u not met, got"
200                                                 " %luKB/sec\n", td->o.name,
201                                                         ratemin, rate);
202                                         return true;
203                                 }
204                         }
205                 } else {
206                         /*
207                          * checks iops specified rate
208                          */
209                         if (iops < rate_iops) {
210                                 log_err("%s: min iops rate %u not met\n",
211                                                 td->o.name, rate_iops);
212                                 return true;
213                         } else {
214                                 if (spent)
215                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
216                                 else
217                                         rate = 0;
218
219                                 if (rate < rate_iops_min ||
220                                     iops < td->rate_blocks[ddir]) {
221                                         log_err("%s: min iops rate %u not met,"
222                                                 " got %lu\n", td->o.name,
223                                                         rate_iops_min, rate);
224                                         return true;
225                                 }
226                         }
227                 }
228         }
229
230         td->rate_bytes[ddir] = bytes;
231         td->rate_blocks[ddir] = iops;
232         memcpy(&td->lastrate[ddir], now, sizeof(*now));
233         return false;
234 }
235
236 static bool check_min_rate(struct thread_data *td, struct timeval *now)
237 {
238         bool ret = false;
239
240         if (td->bytes_done[DDIR_READ])
241                 ret |= __check_min_rate(td, now, DDIR_READ);
242         if (td->bytes_done[DDIR_WRITE])
243                 ret |= __check_min_rate(td, now, DDIR_WRITE);
244         if (td->bytes_done[DDIR_TRIM])
245                 ret |= __check_min_rate(td, now, DDIR_TRIM);
246
247         return ret;
248 }
249
250 /*
251  * When job exits, we can cancel the in-flight IO if we are using async
252  * io. Attempt to do so.
253  */
254 static void cleanup_pending_aio(struct thread_data *td)
255 {
256         int r;
257
258         /*
259          * get immediately available events, if any
260          */
261         r = io_u_queued_complete(td, 0);
262         if (r < 0)
263                 return;
264
265         /*
266          * now cancel remaining active events
267          */
268         if (td->io_ops->cancel) {
269                 struct io_u *io_u;
270                 int i;
271
272                 io_u_qiter(&td->io_u_all, io_u, i) {
273                         if (io_u->flags & IO_U_F_FLIGHT) {
274                                 r = td->io_ops->cancel(td, io_u);
275                                 if (!r)
276                                         put_io_u(td, io_u);
277                         }
278                 }
279         }
280
281         if (td->cur_depth)
282                 r = io_u_queued_complete(td, td->cur_depth);
283 }
284
285 /*
286  * Helper to handle the final sync of a file. Works just like the normal
287  * io path, just does everything sync.
288  */
289 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
290 {
291         struct io_u *io_u = __get_io_u(td);
292         int ret;
293
294         if (!io_u)
295                 return true;
296
297         io_u->ddir = DDIR_SYNC;
298         io_u->file = f;
299
300         if (td_io_prep(td, io_u)) {
301                 put_io_u(td, io_u);
302                 return true;
303         }
304
305 requeue:
306         ret = td_io_queue(td, io_u);
307         if (ret < 0) {
308                 td_verror(td, io_u->error, "td_io_queue");
309                 put_io_u(td, io_u);
310                 return true;
311         } else if (ret == FIO_Q_QUEUED) {
312                 if (io_u_queued_complete(td, 1) < 0)
313                         return true;
314         } else if (ret == FIO_Q_COMPLETED) {
315                 if (io_u->error) {
316                         td_verror(td, io_u->error, "td_io_queue");
317                         return true;
318                 }
319
320                 if (io_u_sync_complete(td, io_u) < 0)
321                         return true;
322         } else if (ret == FIO_Q_BUSY) {
323                 if (td_io_commit(td))
324                         return true;
325                 goto requeue;
326         }
327
328         return false;
329 }
330
331 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
332 {
333         int ret;
334
335         if (fio_file_open(f))
336                 return fio_io_sync(td, f);
337
338         if (td_io_open_file(td, f))
339                 return 1;
340
341         ret = fio_io_sync(td, f);
342         td_io_close_file(td, f);
343         return ret;
344 }
345
346 static inline void __update_tv_cache(struct thread_data *td)
347 {
348         fio_gettime(&td->tv_cache, NULL);
349 }
350
351 static inline void update_tv_cache(struct thread_data *td)
352 {
353         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
354                 __update_tv_cache(td);
355 }
356
357 static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
358 {
359         if (in_ramp_time(td))
360                 return false;
361         if (!td->o.timeout)
362                 return false;
363         if (utime_since(&td->epoch, t) >= td->o.timeout)
364                 return true;
365
366         return false;
367 }
368
369 /*
370  * We need to update the runtime consistently in ms, but keep a running
371  * tally of the current elapsed time in microseconds for sub millisecond
372  * updates.
373  */
374 static inline void update_runtime(struct thread_data *td,
375                                   unsigned long long *elapsed_us,
376                                   const enum fio_ddir ddir)
377 {
378         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
379                 return;
380
381         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
382         elapsed_us[ddir] += utime_since_now(&td->start);
383         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
384 }
385
386 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
387                                 int *retptr)
388 {
389         int ret = *retptr;
390
391         if (ret < 0 || td->error) {
392                 int err = td->error;
393                 enum error_type_bit eb;
394
395                 if (ret < 0)
396                         err = -ret;
397
398                 eb = td_error_type(ddir, err);
399                 if (!(td->o.continue_on_error & (1 << eb)))
400                         return true;
401
402                 if (td_non_fatal_error(td, eb, err)) {
403                         /*
404                          * Continue with the I/Os in case of
405                          * a non fatal error.
406                          */
407                         update_error_count(td, err);
408                         td_clear_error(td);
409                         *retptr = 0;
410                         return false;
411                 } else if (td->o.fill_device && err == ENOSPC) {
412                         /*
413                          * We expect to hit this error if
414                          * fill_device option is set.
415                          */
416                         td_clear_error(td);
417                         fio_mark_td_terminate(td);
418                         return true;
419                 } else {
420                         /*
421                          * Stop the I/O in case of a fatal
422                          * error.
423                          */
424                         update_error_count(td, err);
425                         return true;
426                 }
427         }
428
429         return false;
430 }
431
432 static void check_update_rusage(struct thread_data *td)
433 {
434         if (td->update_rusage) {
435                 td->update_rusage = 0;
436                 update_rusage_stat(td);
437                 fio_mutex_up(td->rusage_sem);
438         }
439 }
440
441 static int wait_for_completions(struct thread_data *td, struct timeval *time)
442 {
443         const int full = queue_full(td);
444         int min_evts = 0;
445         int ret;
446
447         /*
448          * if the queue is full, we MUST reap at least 1 event
449          */
450         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
451         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
452                 min_evts = 1;
453
454         if (time && (__should_check_rate(td, DDIR_READ) ||
455             __should_check_rate(td, DDIR_WRITE) ||
456             __should_check_rate(td, DDIR_TRIM)))
457                 fio_gettime(time, NULL);
458
459         do {
460                 ret = io_u_queued_complete(td, min_evts);
461                 if (ret < 0)
462                         break;
463         } while (full && (td->cur_depth > td->o.iodepth_low));
464
465         return ret;
466 }
467
468 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
469                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
470                    struct timeval *comp_time)
471 {
472         int ret2;
473
474         switch (*ret) {
475         case FIO_Q_COMPLETED:
476                 if (io_u->error) {
477                         *ret = -io_u->error;
478                         clear_io_u(td, io_u);
479                 } else if (io_u->resid) {
480                         int bytes = io_u->xfer_buflen - io_u->resid;
481                         struct fio_file *f = io_u->file;
482
483                         if (bytes_issued)
484                                 *bytes_issued += bytes;
485
486                         if (!from_verify)
487                                 trim_io_piece(td, io_u);
488
489                         /*
490                          * zero read, fail
491                          */
492                         if (!bytes) {
493                                 if (!from_verify)
494                                         unlog_io_piece(td, io_u);
495                                 td_verror(td, EIO, "full resid");
496                                 put_io_u(td, io_u);
497                                 break;
498                         }
499
500                         io_u->xfer_buflen = io_u->resid;
501                         io_u->xfer_buf += bytes;
502                         io_u->offset += bytes;
503
504                         if (ddir_rw(io_u->ddir))
505                                 td->ts.short_io_u[io_u->ddir]++;
506
507                         f = io_u->file;
508                         if (io_u->offset == f->real_file_size)
509                                 goto sync_done;
510
511                         requeue_io_u(td, &io_u);
512                 } else {
513 sync_done:
514                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
515                             __should_check_rate(td, DDIR_WRITE) ||
516                             __should_check_rate(td, DDIR_TRIM)))
517                                 fio_gettime(comp_time, NULL);
518
519                         *ret = io_u_sync_complete(td, io_u);
520                         if (*ret < 0)
521                                 break;
522                 }
523                 return 0;
524         case FIO_Q_QUEUED:
525                 /*
526                  * if the engine doesn't have a commit hook,
527                  * the io_u is really queued. if it does have such
528                  * a hook, it has to call io_u_queued() itself.
529                  */
530                 if (td->io_ops->commit == NULL)
531                         io_u_queued(td, io_u);
532                 if (bytes_issued)
533                         *bytes_issued += io_u->xfer_buflen;
534                 break;
535         case FIO_Q_BUSY:
536                 if (!from_verify)
537                         unlog_io_piece(td, io_u);
538                 requeue_io_u(td, &io_u);
539                 ret2 = td_io_commit(td);
540                 if (ret2 < 0)
541                         *ret = ret2;
542                 break;
543         default:
544                 assert(*ret < 0);
545                 td_verror(td, -(*ret), "td_io_queue");
546                 break;
547         }
548
549         if (break_on_this_error(td, ddir, ret))
550                 return 1;
551
552         return 0;
553 }
554
555 static inline bool io_in_polling(struct thread_data *td)
556 {
557         return !td->o.iodepth_batch_complete_min &&
558                    !td->o.iodepth_batch_complete_max;
559 }
560
561 /*
562  * The main verify engine. Runs over the writes we previously submitted,
563  * reads the blocks back in, and checks the crc/md5 of the data.
564  */
565 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
566 {
567         struct fio_file *f;
568         struct io_u *io_u;
569         int ret, min_events;
570         unsigned int i;
571
572         dprint(FD_VERIFY, "starting loop\n");
573
574         /*
575          * sync io first and invalidate cache, to make sure we really
576          * read from disk.
577          */
578         for_each_file(td, f, i) {
579                 if (!fio_file_open(f))
580                         continue;
581                 if (fio_io_sync(td, f))
582                         break;
583                 if (file_invalidate_cache(td, f))
584                         break;
585         }
586
587         check_update_rusage(td);
588
589         if (td->error)
590                 return;
591
592         td_set_runstate(td, TD_VERIFYING);
593
594         io_u = NULL;
595         while (!td->terminate) {
596                 enum fio_ddir ddir;
597                 int full;
598
599                 update_tv_cache(td);
600                 check_update_rusage(td);
601
602                 if (runtime_exceeded(td, &td->tv_cache)) {
603                         __update_tv_cache(td);
604                         if (runtime_exceeded(td, &td->tv_cache)) {
605                                 fio_mark_td_terminate(td);
606                                 break;
607                         }
608                 }
609
610                 if (flow_threshold_exceeded(td))
611                         continue;
612
613                 if (!td->o.experimental_verify) {
614                         io_u = __get_io_u(td);
615                         if (!io_u)
616                                 break;
617
618                         if (get_next_verify(td, io_u)) {
619                                 put_io_u(td, io_u);
620                                 break;
621                         }
622
623                         if (td_io_prep(td, io_u)) {
624                                 put_io_u(td, io_u);
625                                 break;
626                         }
627                 } else {
628                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
629                                 break;
630
631                         while ((io_u = get_io_u(td)) != NULL) {
632                                 if (IS_ERR(io_u)) {
633                                         io_u = NULL;
634                                         ret = FIO_Q_BUSY;
635                                         goto reap;
636                                 }
637
638                                 /*
639                                  * We are only interested in the places where
640                                  * we wrote or trimmed IOs. Turn those into
641                                  * reads for verification purposes.
642                                  */
643                                 if (io_u->ddir == DDIR_READ) {
644                                         /*
645                                          * Pretend we issued it for rwmix
646                                          * accounting
647                                          */
648                                         td->io_issues[DDIR_READ]++;
649                                         put_io_u(td, io_u);
650                                         continue;
651                                 } else if (io_u->ddir == DDIR_TRIM) {
652                                         io_u->ddir = DDIR_READ;
653                                         io_u_set(io_u, IO_U_F_TRIMMED);
654                                         break;
655                                 } else if (io_u->ddir == DDIR_WRITE) {
656                                         io_u->ddir = DDIR_READ;
657                                         break;
658                                 } else {
659                                         put_io_u(td, io_u);
660                                         continue;
661                                 }
662                         }
663
664                         if (!io_u)
665                                 break;
666                 }
667
668                 if (verify_state_should_stop(td, io_u)) {
669                         put_io_u(td, io_u);
670                         break;
671                 }
672
673                 if (td->o.verify_async)
674                         io_u->end_io = verify_io_u_async;
675                 else
676                         io_u->end_io = verify_io_u;
677
678                 ddir = io_u->ddir;
679                 if (!td->o.disable_slat)
680                         fio_gettime(&io_u->start_time, NULL);
681
682                 ret = td_io_queue(td, io_u);
683
684                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
685                         break;
686
687                 /*
688                  * if we can queue more, do so. but check if there are
689                  * completed io_u's first. Note that we can get BUSY even
690                  * without IO queued, if the system is resource starved.
691                  */
692 reap:
693                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
694                 if (full || io_in_polling(td))
695                         ret = wait_for_completions(td, NULL);
696
697                 if (ret < 0)
698                         break;
699         }
700
701         check_update_rusage(td);
702
703         if (!td->error) {
704                 min_events = td->cur_depth;
705
706                 if (min_events)
707                         ret = io_u_queued_complete(td, min_events);
708         } else
709                 cleanup_pending_aio(td);
710
711         td_set_runstate(td, TD_RUNNING);
712
713         dprint(FD_VERIFY, "exiting loop\n");
714 }
715
716 static bool exceeds_number_ios(struct thread_data *td)
717 {
718         unsigned long long number_ios;
719
720         if (!td->o.number_ios)
721                 return false;
722
723         number_ios = ddir_rw_sum(td->io_blocks);
724         number_ios += td->io_u_queued + td->io_u_in_flight;
725
726         return number_ios >= (td->o.number_ios * td->loops);
727 }
728
729 static bool io_issue_bytes_exceeded(struct thread_data *td)
730 {
731         unsigned long long bytes, limit;
732
733         if (td_rw(td))
734                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
735         else if (td_write(td))
736                 bytes = td->io_issue_bytes[DDIR_WRITE];
737         else if (td_read(td))
738                 bytes = td->io_issue_bytes[DDIR_READ];
739         else
740                 bytes = td->io_issue_bytes[DDIR_TRIM];
741
742         if (td->o.io_limit)
743                 limit = td->o.io_limit;
744         else
745                 limit = td->o.size;
746
747         limit *= td->loops;
748         return bytes >= limit || exceeds_number_ios(td);
749 }
750
751 static bool io_complete_bytes_exceeded(struct thread_data *td)
752 {
753         unsigned long long bytes, limit;
754
755         if (td_rw(td))
756                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
757         else if (td_write(td))
758                 bytes = td->this_io_bytes[DDIR_WRITE];
759         else if (td_read(td))
760                 bytes = td->this_io_bytes[DDIR_READ];
761         else
762                 bytes = td->this_io_bytes[DDIR_TRIM];
763
764         if (td->o.io_limit)
765                 limit = td->o.io_limit;
766         else
767                 limit = td->o.size;
768
769         limit *= td->loops;
770         return bytes >= limit || exceeds_number_ios(td);
771 }
772
773 /*
774  * used to calculate the next io time for rate control
775  *
776  */
777 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
778 {
779         uint64_t secs, remainder, bps, bytes, iops;
780
781         assert(!(td->flags & TD_F_CHILD));
782         bytes = td->rate_io_issue_bytes[ddir];
783         bps = td->rate_bps[ddir];
784
785         if (td->o.rate_process == RATE_PROCESS_POISSON) {
786                 uint64_t val;
787                 iops = bps / td->o.bs[ddir];
788                 val = (int64_t) (1000000 / iops) *
789                                 -logf(__rand_0_1(&td->poisson_state));
790                 if (val) {
791                         dprint(FD_RATE, "poisson rate iops=%llu\n",
792                                         (unsigned long long) 1000000 / val);
793                 }
794                 td->last_usec += val;
795                 return td->last_usec;
796         } else if (bps) {
797                 secs = bytes / bps;
798                 remainder = bytes % bps;
799                 return remainder * 1000000 / bps + secs * 1000000;
800         }
801
802         return 0;
803 }
804
805 /*
806  * Main IO worker function. It retrieves io_u's to process and queues
807  * and reaps them, checking for rate and errors along the way.
808  *
809  * Returns number of bytes written and trimmed.
810  */
811 static uint64_t do_io(struct thread_data *td)
812 {
813         unsigned int i;
814         int ret = 0;
815         uint64_t total_bytes, bytes_issued = 0;
816
817         if (in_ramp_time(td))
818                 td_set_runstate(td, TD_RAMP);
819         else
820                 td_set_runstate(td, TD_RUNNING);
821
822         lat_target_init(td);
823
824         total_bytes = td->o.size;
825         /*
826         * Allow random overwrite workloads to write up to io_limit
827         * before starting verification phase as 'size' doesn't apply.
828         */
829         if (td_write(td) && td_random(td) && td->o.norandommap)
830                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
831         /*
832          * If verify_backlog is enabled, we'll run the verify in this
833          * handler as well. For that case, we may need up to twice the
834          * amount of bytes.
835          */
836         if (td->o.verify != VERIFY_NONE &&
837            (td_write(td) && td->o.verify_backlog))
838                 total_bytes += td->o.size;
839
840         /* In trimwrite mode, each byte is trimmed and then written, so
841          * allow total_bytes to be twice as big */
842         if (td_trimwrite(td))
843                 total_bytes += td->total_io_size;
844
845         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
846                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
847                 td->o.time_based) {
848                 struct timeval comp_time;
849                 struct io_u *io_u;
850                 int full;
851                 enum fio_ddir ddir;
852
853                 check_update_rusage(td);
854
855                 if (td->terminate || td->done)
856                         break;
857
858                 update_tv_cache(td);
859
860                 if (runtime_exceeded(td, &td->tv_cache)) {
861                         __update_tv_cache(td);
862                         if (runtime_exceeded(td, &td->tv_cache)) {
863                                 fio_mark_td_terminate(td);
864                                 break;
865                         }
866                 }
867
868                 if (flow_threshold_exceeded(td))
869                         continue;
870
871                 if (!td->o.time_based && bytes_issued >= total_bytes)
872                         break;
873
874                 io_u = get_io_u(td);
875                 if (IS_ERR_OR_NULL(io_u)) {
876                         int err = PTR_ERR(io_u);
877
878                         io_u = NULL;
879                         if (err == -EBUSY) {
880                                 ret = FIO_Q_BUSY;
881                                 goto reap;
882                         }
883                         if (td->o.latency_target)
884                                 goto reap;
885                         break;
886                 }
887
888                 ddir = io_u->ddir;
889
890                 /*
891                  * Add verification end_io handler if:
892                  *      - Asked to verify (!td_rw(td))
893                  *      - Or the io_u is from our verify list (mixed write/ver)
894                  */
895                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
896                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
897
898                         if (!td->o.verify_pattern_bytes) {
899                                 io_u->rand_seed = __rand(&td->verify_state);
900                                 if (sizeof(int) != sizeof(long *))
901                                         io_u->rand_seed *= __rand(&td->verify_state);
902                         }
903
904                         if (verify_state_should_stop(td, io_u)) {
905                                 put_io_u(td, io_u);
906                                 break;
907                         }
908
909                         if (td->o.verify_async)
910                                 io_u->end_io = verify_io_u_async;
911                         else
912                                 io_u->end_io = verify_io_u;
913                         td_set_runstate(td, TD_VERIFYING);
914                 } else if (in_ramp_time(td))
915                         td_set_runstate(td, TD_RAMP);
916                 else
917                         td_set_runstate(td, TD_RUNNING);
918
919                 /*
920                  * Always log IO before it's issued, so we know the specific
921                  * order of it. The logged unit will track when the IO has
922                  * completed.
923                  */
924                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
925                     td->o.do_verify &&
926                     td->o.verify != VERIFY_NONE &&
927                     !td->o.experimental_verify)
928                         log_io_piece(td, io_u);
929
930                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
931                         const unsigned long blen = io_u->xfer_buflen;
932                         const enum fio_ddir ddir = acct_ddir(io_u);
933
934                         if (td->error)
935                                 break;
936
937                         ret = workqueue_enqueue(&td->io_wq, io_u);
938
939                         if (ret == FIO_Q_QUEUED && ddir_rw(ddir)) {
940                                 td->io_issues[ddir]++;
941                                 td->io_issue_bytes[ddir] += blen;
942                                 td->rate_io_issue_bytes[ddir] += blen;
943                         }
944
945                         if (should_check_rate(td))
946                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
947
948                 } else {
949                         ret = td_io_queue(td, io_u);
950
951                         if (should_check_rate(td))
952                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
953
954                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
955                                 break;
956
957                         /*
958                          * See if we need to complete some commands. Note that
959                          * we can get BUSY even without IO queued, if the
960                          * system is resource starved.
961                          */
962 reap:
963                         full = queue_full(td) ||
964                                 (ret == FIO_Q_BUSY && td->cur_depth);
965                         if (full || io_in_polling(td))
966                                 ret = wait_for_completions(td, &comp_time);
967                 }
968                 if (ret < 0)
969                         break;
970                 if (!ddir_rw_sum(td->bytes_done) &&
971                     !(td->io_ops->flags & FIO_NOIO))
972                         continue;
973
974                 if (!in_ramp_time(td) && should_check_rate(td)) {
975                         if (check_min_rate(td, &comp_time)) {
976                                 if (exitall_on_terminate)
977                                         fio_terminate_threads(td->groupid);
978                                 td_verror(td, EIO, "check_min_rate");
979                                 break;
980                         }
981                 }
982                 if (!in_ramp_time(td) && td->o.latency_target)
983                         lat_target_check(td);
984
985                 if (td->o.thinktime) {
986                         unsigned long long b;
987
988                         b = ddir_rw_sum(td->io_blocks);
989                         if (!(b % td->o.thinktime_blocks)) {
990                                 int left;
991
992                                 io_u_quiesce(td);
993
994                                 if (td->o.thinktime_spin)
995                                         usec_spin(td->o.thinktime_spin);
996
997                                 left = td->o.thinktime - td->o.thinktime_spin;
998                                 if (left)
999                                         usec_sleep(td, left);
1000                         }
1001                 }
1002         }
1003
1004         check_update_rusage(td);
1005
1006         if (td->trim_entries)
1007                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1008
1009         if (td->o.fill_device && td->error == ENOSPC) {
1010                 td->error = 0;
1011                 fio_mark_td_terminate(td);
1012         }
1013         if (!td->error) {
1014                 struct fio_file *f;
1015
1016                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1017                         workqueue_flush(&td->io_wq);
1018                         i = 0;
1019                 } else
1020                         i = td->cur_depth;
1021
1022                 if (i) {
1023                         ret = io_u_queued_complete(td, i);
1024                         if (td->o.fill_device && td->error == ENOSPC)
1025                                 td->error = 0;
1026                 }
1027
1028                 if (should_fsync(td) && td->o.end_fsync) {
1029                         td_set_runstate(td, TD_FSYNCING);
1030
1031                         for_each_file(td, f, i) {
1032                                 if (!fio_file_fsync(td, f))
1033                                         continue;
1034
1035                                 log_err("fio: end_fsync failed for file %s\n",
1036                                                                 f->file_name);
1037                         }
1038                 }
1039         } else
1040                 cleanup_pending_aio(td);
1041
1042         /*
1043          * stop job if we failed doing any IO
1044          */
1045         if (!ddir_rw_sum(td->this_io_bytes))
1046                 td->done = 1;
1047
1048         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1049 }
1050
1051 static void cleanup_io_u(struct thread_data *td)
1052 {
1053         struct io_u *io_u;
1054
1055         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1056
1057                 if (td->io_ops->io_u_free)
1058                         td->io_ops->io_u_free(td, io_u);
1059
1060                 fio_memfree(io_u, sizeof(*io_u));
1061         }
1062
1063         free_io_mem(td);
1064
1065         io_u_rexit(&td->io_u_requeues);
1066         io_u_qexit(&td->io_u_freelist);
1067         io_u_qexit(&td->io_u_all);
1068
1069         if (td->last_write_comp)
1070                 sfree(td->last_write_comp);
1071 }
1072
1073 static int init_io_u(struct thread_data *td)
1074 {
1075         struct io_u *io_u;
1076         unsigned int max_bs, min_write;
1077         int cl_align, i, max_units;
1078         int data_xfer = 1, err;
1079         char *p;
1080
1081         max_units = td->o.iodepth;
1082         max_bs = td_max_bs(td);
1083         min_write = td->o.min_bs[DDIR_WRITE];
1084         td->orig_buffer_size = (unsigned long long) max_bs
1085                                         * (unsigned long long) max_units;
1086
1087         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1088                 data_xfer = 0;
1089
1090         err = 0;
1091         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1092         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1093         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1094
1095         if (err) {
1096                 log_err("fio: failed setting up IO queues\n");
1097                 return 1;
1098         }
1099
1100         /*
1101          * if we may later need to do address alignment, then add any
1102          * possible adjustment here so that we don't cause a buffer
1103          * overflow later. this adjustment may be too much if we get
1104          * lucky and the allocator gives us an aligned address.
1105          */
1106         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1107             (td->io_ops->flags & FIO_RAWIO))
1108                 td->orig_buffer_size += page_mask + td->o.mem_align;
1109
1110         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1111                 unsigned long bs;
1112
1113                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1114                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1115         }
1116
1117         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1118                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1119                 return 1;
1120         }
1121
1122         if (data_xfer && allocate_io_mem(td))
1123                 return 1;
1124
1125         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1126             (td->io_ops->flags & FIO_RAWIO))
1127                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1128         else
1129                 p = td->orig_buffer;
1130
1131         cl_align = os_cache_line_size();
1132
1133         for (i = 0; i < max_units; i++) {
1134                 void *ptr;
1135
1136                 if (td->terminate)
1137                         return 1;
1138
1139                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1140                 if (!ptr) {
1141                         log_err("fio: unable to allocate aligned memory\n");
1142                         break;
1143                 }
1144
1145                 io_u = ptr;
1146                 memset(io_u, 0, sizeof(*io_u));
1147                 INIT_FLIST_HEAD(&io_u->verify_list);
1148                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1149
1150                 if (data_xfer) {
1151                         io_u->buf = p;
1152                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1153
1154                         if (td_write(td))
1155                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1156                         if (td_write(td) && td->o.verify_pattern_bytes) {
1157                                 /*
1158                                  * Fill the buffer with the pattern if we are
1159                                  * going to be doing writes.
1160                                  */
1161                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1162                         }
1163                 }
1164
1165                 io_u->index = i;
1166                 io_u->flags = IO_U_F_FREE;
1167                 io_u_qpush(&td->io_u_freelist, io_u);
1168
1169                 /*
1170                  * io_u never leaves this stack, used for iteration of all
1171                  * io_u buffers.
1172                  */
1173                 io_u_qpush(&td->io_u_all, io_u);
1174
1175                 if (td->io_ops->io_u_init) {
1176                         int ret = td->io_ops->io_u_init(td, io_u);
1177
1178                         if (ret) {
1179                                 log_err("fio: failed to init engine data: %d\n", ret);
1180                                 return 1;
1181                         }
1182                 }
1183
1184                 p += max_bs;
1185         }
1186
1187         if (td->o.verify != VERIFY_NONE) {
1188                 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1189                 if (!td->last_write_comp) {
1190                         log_err("fio: failed to alloc write comp data\n");
1191                         return 1;
1192                 }
1193         }
1194
1195         return 0;
1196 }
1197
1198 static int switch_ioscheduler(struct thread_data *td)
1199 {
1200         char tmp[256], tmp2[128];
1201         FILE *f;
1202         int ret;
1203
1204         if (td->io_ops->flags & FIO_DISKLESSIO)
1205                 return 0;
1206
1207         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1208
1209         f = fopen(tmp, "r+");
1210         if (!f) {
1211                 if (errno == ENOENT) {
1212                         log_err("fio: os or kernel doesn't support IO scheduler"
1213                                 " switching\n");
1214                         return 0;
1215                 }
1216                 td_verror(td, errno, "fopen iosched");
1217                 return 1;
1218         }
1219
1220         /*
1221          * Set io scheduler.
1222          */
1223         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1224         if (ferror(f) || ret != 1) {
1225                 td_verror(td, errno, "fwrite");
1226                 fclose(f);
1227                 return 1;
1228         }
1229
1230         rewind(f);
1231
1232         /*
1233          * Read back and check that the selected scheduler is now the default.
1234          */
1235         memset(tmp, 0, sizeof(tmp));
1236         ret = fread(tmp, sizeof(tmp), 1, f);
1237         if (ferror(f) || ret < 0) {
1238                 td_verror(td, errno, "fread");
1239                 fclose(f);
1240                 return 1;
1241         }
1242         /*
1243          * either a list of io schedulers or "none\n" is expected.
1244          */
1245         tmp[strlen(tmp) - 1] = '\0';
1246
1247
1248         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1249         if (!strstr(tmp, tmp2)) {
1250                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1251                 td_verror(td, EINVAL, "iosched_switch");
1252                 fclose(f);
1253                 return 1;
1254         }
1255
1256         fclose(f);
1257         return 0;
1258 }
1259
1260 static bool keep_running(struct thread_data *td)
1261 {
1262         unsigned long long limit;
1263
1264         if (td->done)
1265                 return false;
1266         if (td->o.time_based)
1267                 return true;
1268         if (td->o.loops) {
1269                 td->o.loops--;
1270                 return true;
1271         }
1272         if (exceeds_number_ios(td))
1273                 return false;
1274
1275         if (td->o.io_limit)
1276                 limit = td->o.io_limit;
1277         else
1278                 limit = td->o.size;
1279
1280         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1281                 uint64_t diff;
1282
1283                 /*
1284                  * If the difference is less than the minimum IO size, we
1285                  * are done.
1286                  */
1287                 diff = limit - ddir_rw_sum(td->io_bytes);
1288                 if (diff < td_max_bs(td))
1289                         return false;
1290
1291                 if (fio_files_done(td))
1292                         return false;
1293
1294                 return true;
1295         }
1296
1297         return false;
1298 }
1299
1300 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1301 {
1302         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1303         int ret;
1304         char *str;
1305
1306         str = malloc(newlen);
1307         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1308
1309         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1310         ret = system(str);
1311         if (ret == -1)
1312                 log_err("fio: exec of cmd <%s> failed\n", str);
1313
1314         free(str);
1315         return ret;
1316 }
1317
1318 /*
1319  * Dry run to compute correct state of numberio for verification.
1320  */
1321 static uint64_t do_dry_run(struct thread_data *td)
1322 {
1323         td_set_runstate(td, TD_RUNNING);
1324
1325         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1326                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1327                 struct io_u *io_u;
1328                 int ret;
1329
1330                 if (td->terminate || td->done)
1331                         break;
1332
1333                 io_u = get_io_u(td);
1334                 if (!io_u)
1335                         break;
1336
1337                 io_u_set(io_u, IO_U_F_FLIGHT);
1338                 io_u->error = 0;
1339                 io_u->resid = 0;
1340                 if (ddir_rw(acct_ddir(io_u)))
1341                         td->io_issues[acct_ddir(io_u)]++;
1342                 if (ddir_rw(io_u->ddir)) {
1343                         io_u_mark_depth(td, 1);
1344                         td->ts.total_io_u[io_u->ddir]++;
1345                 }
1346
1347                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1348                     td->o.do_verify &&
1349                     td->o.verify != VERIFY_NONE &&
1350                     !td->o.experimental_verify)
1351                         log_io_piece(td, io_u);
1352
1353                 ret = io_u_sync_complete(td, io_u);
1354                 (void) ret;
1355         }
1356
1357         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1358 }
1359
1360 static void io_workqueue_fn(struct thread_data *td, struct io_u *io_u)
1361 {
1362         const enum fio_ddir ddir = io_u->ddir;
1363         int ret;
1364
1365         dprint(FD_RATE, "io_u %p queued by %u\n", io_u, gettid());
1366
1367         io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1368
1369         td->cur_depth++;
1370
1371         do {
1372                 ret = td_io_queue(td, io_u);
1373                 if (ret != FIO_Q_BUSY)
1374                         break;
1375                 ret = io_u_queued_complete(td, 1);
1376                 if (ret > 0)
1377                         td->cur_depth -= ret;
1378                 io_u_clear(io_u, IO_U_F_FLIGHT);
1379         } while (1);
1380
1381         dprint(FD_RATE, "io_u %p ret %d by %u\n", io_u, ret, gettid());
1382
1383         io_queue_event(td, io_u, &ret, ddir, NULL, 0, NULL);
1384
1385         if (ret == FIO_Q_COMPLETED)
1386                 td->cur_depth--;
1387         else if (ret == FIO_Q_QUEUED) {
1388                 unsigned int min_evts;
1389
1390                 if (td->o.iodepth == 1)
1391                         min_evts = 1;
1392                 else
1393                         min_evts = 0;
1394
1395                 ret = io_u_queued_complete(td, min_evts);
1396                 if (ret > 0)
1397                         td->cur_depth -= ret;
1398         } else if (ret == FIO_Q_BUSY) {
1399                 ret = io_u_queued_complete(td, td->cur_depth);
1400                 if (ret > 0)
1401                         td->cur_depth -= ret;
1402         }
1403 }
1404
1405 /*
1406  * Entry point for the thread based jobs. The process based jobs end up
1407  * here as well, after a little setup.
1408  */
1409 static void *thread_main(void *data)
1410 {
1411         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1412         struct thread_data *td = data;
1413         struct thread_options *o = &td->o;
1414         pthread_condattr_t attr;
1415         int clear_state;
1416         int ret;
1417
1418         if (!o->use_thread) {
1419                 setsid();
1420                 td->pid = getpid();
1421         } else
1422                 td->pid = gettid();
1423
1424         fio_local_clock_init(o->use_thread);
1425
1426         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1427
1428         if (is_backend)
1429                 fio_server_send_start(td);
1430
1431         INIT_FLIST_HEAD(&td->io_log_list);
1432         INIT_FLIST_HEAD(&td->io_hist_list);
1433         INIT_FLIST_HEAD(&td->verify_list);
1434         INIT_FLIST_HEAD(&td->trim_list);
1435         INIT_FLIST_HEAD(&td->next_rand_list);
1436         pthread_mutex_init(&td->io_u_lock, NULL);
1437         td->io_hist_tree = RB_ROOT;
1438
1439         pthread_condattr_init(&attr);
1440         pthread_cond_init(&td->verify_cond, &attr);
1441         pthread_cond_init(&td->free_cond, &attr);
1442
1443         td_set_runstate(td, TD_INITIALIZED);
1444         dprint(FD_MUTEX, "up startup_mutex\n");
1445         fio_mutex_up(startup_mutex);
1446         dprint(FD_MUTEX, "wait on td->mutex\n");
1447         fio_mutex_down(td->mutex);
1448         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1449
1450         /*
1451          * A new gid requires privilege, so we need to do this before setting
1452          * the uid.
1453          */
1454         if (o->gid != -1U && setgid(o->gid)) {
1455                 td_verror(td, errno, "setgid");
1456                 goto err;
1457         }
1458         if (o->uid != -1U && setuid(o->uid)) {
1459                 td_verror(td, errno, "setuid");
1460                 goto err;
1461         }
1462
1463         /*
1464          * If we have a gettimeofday() thread, make sure we exclude that
1465          * thread from this job
1466          */
1467         if (o->gtod_cpu)
1468                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1469
1470         /*
1471          * Set affinity first, in case it has an impact on the memory
1472          * allocations.
1473          */
1474         if (fio_option_is_set(o, cpumask)) {
1475                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1476                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1477                         if (!ret) {
1478                                 log_err("fio: no CPUs set\n");
1479                                 log_err("fio: Try increasing number of available CPUs\n");
1480                                 td_verror(td, EINVAL, "cpus_split");
1481                                 goto err;
1482                         }
1483                 }
1484                 ret = fio_setaffinity(td->pid, o->cpumask);
1485                 if (ret == -1) {
1486                         td_verror(td, errno, "cpu_set_affinity");
1487                         goto err;
1488                 }
1489         }
1490
1491 #ifdef CONFIG_LIBNUMA
1492         /* numa node setup */
1493         if (fio_option_is_set(o, numa_cpunodes) ||
1494             fio_option_is_set(o, numa_memnodes)) {
1495                 struct bitmask *mask;
1496
1497                 if (numa_available() < 0) {
1498                         td_verror(td, errno, "Does not support NUMA API\n");
1499                         goto err;
1500                 }
1501
1502                 if (fio_option_is_set(o, numa_cpunodes)) {
1503                         mask = numa_parse_nodestring(o->numa_cpunodes);
1504                         ret = numa_run_on_node_mask(mask);
1505                         numa_free_nodemask(mask);
1506                         if (ret == -1) {
1507                                 td_verror(td, errno, \
1508                                         "numa_run_on_node_mask failed\n");
1509                                 goto err;
1510                         }
1511                 }
1512
1513                 if (fio_option_is_set(o, numa_memnodes)) {
1514                         mask = NULL;
1515                         if (o->numa_memnodes)
1516                                 mask = numa_parse_nodestring(o->numa_memnodes);
1517
1518                         switch (o->numa_mem_mode) {
1519                         case MPOL_INTERLEAVE:
1520                                 numa_set_interleave_mask(mask);
1521                                 break;
1522                         case MPOL_BIND:
1523                                 numa_set_membind(mask);
1524                                 break;
1525                         case MPOL_LOCAL:
1526                                 numa_set_localalloc();
1527                                 break;
1528                         case MPOL_PREFERRED:
1529                                 numa_set_preferred(o->numa_mem_prefer_node);
1530                                 break;
1531                         case MPOL_DEFAULT:
1532                         default:
1533                                 break;
1534                         }
1535
1536                         if (mask)
1537                                 numa_free_nodemask(mask);
1538
1539                 }
1540         }
1541 #endif
1542
1543         if (fio_pin_memory(td))
1544                 goto err;
1545
1546         /*
1547          * May alter parameters that init_io_u() will use, so we need to
1548          * do this first.
1549          */
1550         if (init_iolog(td))
1551                 goto err;
1552
1553         if (init_io_u(td))
1554                 goto err;
1555
1556         if (o->verify_async && verify_async_init(td))
1557                 goto err;
1558
1559         if (fio_option_is_set(o, ioprio) ||
1560             fio_option_is_set(o, ioprio_class)) {
1561                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1562                 if (ret == -1) {
1563                         td_verror(td, errno, "ioprio_set");
1564                         goto err;
1565                 }
1566         }
1567
1568         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1569                 goto err;
1570
1571         errno = 0;
1572         if (nice(o->nice) == -1 && errno != 0) {
1573                 td_verror(td, errno, "nice");
1574                 goto err;
1575         }
1576
1577         if (o->ioscheduler && switch_ioscheduler(td))
1578                 goto err;
1579
1580         if (!o->create_serialize && setup_files(td))
1581                 goto err;
1582
1583         if (td_io_init(td))
1584                 goto err;
1585
1586         if (init_random_map(td))
1587                 goto err;
1588
1589         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1590                 goto err;
1591
1592         if (o->pre_read) {
1593                 if (pre_read_files(td) < 0)
1594                         goto err;
1595         }
1596
1597         if (td->flags & TD_F_COMPRESS_LOG)
1598                 tp_init(&td->tp_data);
1599
1600         fio_verify_init(td);
1601
1602         if ((o->io_submit_mode == IO_MODE_OFFLOAD) &&
1603             workqueue_init(td, &td->io_wq, io_workqueue_fn, td->o.iodepth))
1604                 goto err;
1605
1606         fio_gettime(&td->epoch, NULL);
1607         fio_getrusage(&td->ru_start);
1608         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1609         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1610
1611         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1612                         o->ratemin[DDIR_TRIM]) {
1613                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1614                                         sizeof(td->bw_sample_time));
1615                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1616                                         sizeof(td->bw_sample_time));
1617                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1618                                         sizeof(td->bw_sample_time));
1619         }
1620
1621         clear_state = 0;
1622         while (keep_running(td)) {
1623                 uint64_t verify_bytes;
1624
1625                 fio_gettime(&td->start, NULL);
1626                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1627
1628                 if (clear_state)
1629                         clear_io_state(td, 0);
1630
1631                 prune_io_piece_log(td);
1632
1633                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1634                         verify_bytes = do_dry_run(td);
1635                 else
1636                         verify_bytes = do_io(td);
1637
1638                 clear_state = 1;
1639
1640                 /*
1641                  * Make sure we've successfully updated the rusage stats
1642                  * before waiting on the stat mutex. Otherwise we could have
1643                  * the stat thread holding stat mutex and waiting for
1644                  * the rusage_sem, which would never get upped because
1645                  * this thread is waiting for the stat mutex.
1646                  */
1647                 check_update_rusage(td);
1648
1649                 fio_mutex_down(stat_mutex);
1650                 if (td_read(td) && td->io_bytes[DDIR_READ])
1651                         update_runtime(td, elapsed_us, DDIR_READ);
1652                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1653                         update_runtime(td, elapsed_us, DDIR_WRITE);
1654                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1655                         update_runtime(td, elapsed_us, DDIR_TRIM);
1656                 fio_gettime(&td->start, NULL);
1657                 fio_mutex_up(stat_mutex);
1658
1659                 if (td->error || td->terminate)
1660                         break;
1661
1662                 if (!o->do_verify ||
1663                     o->verify == VERIFY_NONE ||
1664                     (td->io_ops->flags & FIO_UNIDIR))
1665                         continue;
1666
1667                 clear_io_state(td, 0);
1668
1669                 fio_gettime(&td->start, NULL);
1670
1671                 do_verify(td, verify_bytes);
1672
1673                 /*
1674                  * See comment further up for why this is done here.
1675                  */
1676                 check_update_rusage(td);
1677
1678                 fio_mutex_down(stat_mutex);
1679                 update_runtime(td, elapsed_us, DDIR_READ);
1680                 fio_gettime(&td->start, NULL);
1681                 fio_mutex_up(stat_mutex);
1682
1683                 if (td->error || td->terminate)
1684                         break;
1685         }
1686
1687         update_rusage_stat(td);
1688         td->ts.total_run_time = mtime_since_now(&td->epoch);
1689         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1690         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1691         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1692
1693         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1694             (td->o.verify != VERIFY_NONE && td_write(td)))
1695                 verify_save_state(td->thread_number);
1696
1697         fio_unpin_memory(td);
1698
1699         fio_writeout_logs(td);
1700
1701         if (o->io_submit_mode == IO_MODE_OFFLOAD)
1702                 workqueue_exit(&td->io_wq);
1703
1704         if (td->flags & TD_F_COMPRESS_LOG)
1705                 tp_exit(&td->tp_data);
1706
1707         if (o->exec_postrun)
1708                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1709
1710         if (exitall_on_terminate)
1711                 fio_terminate_threads(td->groupid);
1712
1713 err:
1714         if (td->error)
1715                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1716                                                         td->verror);
1717
1718         if (o->verify_async)
1719                 verify_async_exit(td);
1720
1721         close_and_free_files(td);
1722         cleanup_io_u(td);
1723         close_ioengine(td);
1724         cgroup_shutdown(td, &cgroup_mnt);
1725         verify_free_state(td);
1726
1727         if (fio_option_is_set(o, cpumask)) {
1728                 ret = fio_cpuset_exit(&o->cpumask);
1729                 if (ret)
1730                         td_verror(td, ret, "fio_cpuset_exit");
1731         }
1732
1733         /*
1734          * do this very late, it will log file closing as well
1735          */
1736         if (o->write_iolog_file)
1737                 write_iolog_close(td);
1738
1739         fio_mutex_remove(td->mutex);
1740         td->mutex = NULL;
1741
1742         td_set_runstate(td, TD_EXITED);
1743
1744         /*
1745          * Do this last after setting our runstate to exited, so we
1746          * know that the stat thread is signaled.
1747          */
1748         check_update_rusage(td);
1749
1750         return (void *) (uintptr_t) td->error;
1751 }
1752
1753
1754 /*
1755  * We cannot pass the td data into a forked process, so attach the td and
1756  * pass it to the thread worker.
1757  */
1758 static int fork_main(int shmid, int offset)
1759 {
1760         struct thread_data *td;
1761         void *data, *ret;
1762
1763 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1764         data = shmat(shmid, NULL, 0);
1765         if (data == (void *) -1) {
1766                 int __err = errno;
1767
1768                 perror("shmat");
1769                 return __err;
1770         }
1771 #else
1772         /*
1773          * HP-UX inherits shm mappings?
1774          */
1775         data = threads;
1776 #endif
1777
1778         td = data + offset * sizeof(struct thread_data);
1779         ret = thread_main(td);
1780         shmdt(data);
1781         return (int) (uintptr_t) ret;
1782 }
1783
1784 static void dump_td_info(struct thread_data *td)
1785 {
1786         log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1787                 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1788                         (unsigned long) time_since_now(&td->terminate_time));
1789 }
1790
1791 /*
1792  * Run over the job map and reap the threads that have exited, if any.
1793  */
1794 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1795                          unsigned int *m_rate)
1796 {
1797         struct thread_data *td;
1798         unsigned int cputhreads, realthreads, pending;
1799         int i, status, ret;
1800
1801         /*
1802          * reap exited threads (TD_EXITED -> TD_REAPED)
1803          */
1804         realthreads = pending = cputhreads = 0;
1805         for_each_td(td, i) {
1806                 int flags = 0;
1807
1808                 /*
1809                  * ->io_ops is NULL for a thread that has closed its
1810                  * io engine
1811                  */
1812                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1813                         cputhreads++;
1814                 else
1815                         realthreads++;
1816
1817                 if (!td->pid) {
1818                         pending++;
1819                         continue;
1820                 }
1821                 if (td->runstate == TD_REAPED)
1822                         continue;
1823                 if (td->o.use_thread) {
1824                         if (td->runstate == TD_EXITED) {
1825                                 td_set_runstate(td, TD_REAPED);
1826                                 goto reaped;
1827                         }
1828                         continue;
1829                 }
1830
1831                 flags = WNOHANG;
1832                 if (td->runstate == TD_EXITED)
1833                         flags = 0;
1834
1835                 /*
1836                  * check if someone quit or got killed in an unusual way
1837                  */
1838                 ret = waitpid(td->pid, &status, flags);
1839                 if (ret < 0) {
1840                         if (errno == ECHILD) {
1841                                 log_err("fio: pid=%d disappeared %d\n",
1842                                                 (int) td->pid, td->runstate);
1843                                 td->sig = ECHILD;
1844                                 td_set_runstate(td, TD_REAPED);
1845                                 goto reaped;
1846                         }
1847                         perror("waitpid");
1848                 } else if (ret == td->pid) {
1849                         if (WIFSIGNALED(status)) {
1850                                 int sig = WTERMSIG(status);
1851
1852                                 if (sig != SIGTERM && sig != SIGUSR2)
1853                                         log_err("fio: pid=%d, got signal=%d\n",
1854                                                         (int) td->pid, sig);
1855                                 td->sig = sig;
1856                                 td_set_runstate(td, TD_REAPED);
1857                                 goto reaped;
1858                         }
1859                         if (WIFEXITED(status)) {
1860                                 if (WEXITSTATUS(status) && !td->error)
1861                                         td->error = WEXITSTATUS(status);
1862
1863                                 td_set_runstate(td, TD_REAPED);
1864                                 goto reaped;
1865                         }
1866                 }
1867
1868                 /*
1869                  * If the job is stuck, do a forceful timeout of it and
1870                  * move on.
1871                  */
1872                 if (td->terminate &&
1873                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1874                         dump_td_info(td);
1875                         td_set_runstate(td, TD_REAPED);
1876                         goto reaped;
1877                 }
1878
1879                 /*
1880                  * thread is not dead, continue
1881                  */
1882                 pending++;
1883                 continue;
1884 reaped:
1885                 (*nr_running)--;
1886                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1887                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1888                 if (!td->pid)
1889                         pending--;
1890
1891                 if (td->error)
1892                         exit_value++;
1893
1894                 done_secs += mtime_since_now(&td->epoch) / 1000;
1895                 profile_td_exit(td);
1896         }
1897
1898         if (*nr_running == cputhreads && !pending && realthreads)
1899                 fio_terminate_threads(TERMINATE_ALL);
1900 }
1901
1902 static bool __check_trigger_file(void)
1903 {
1904         struct stat sb;
1905
1906         if (!trigger_file)
1907                 return false;
1908
1909         if (stat(trigger_file, &sb))
1910                 return false;
1911
1912         if (unlink(trigger_file) < 0)
1913                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1914                                                         strerror(errno));
1915
1916         return true;
1917 }
1918
1919 static bool trigger_timedout(void)
1920 {
1921         if (trigger_timeout)
1922                 return time_since_genesis() >= trigger_timeout;
1923
1924         return false;
1925 }
1926
1927 void exec_trigger(const char *cmd)
1928 {
1929         int ret;
1930
1931         if (!cmd)
1932                 return;
1933
1934         ret = system(cmd);
1935         if (ret == -1)
1936                 log_err("fio: failed executing %s trigger\n", cmd);
1937 }
1938
1939 void check_trigger_file(void)
1940 {
1941         if (__check_trigger_file() || trigger_timedout()) {
1942                 if (nr_clients)
1943                         fio_clients_send_trigger(trigger_remote_cmd);
1944                 else {
1945                         verify_save_state(IO_LIST_ALL);
1946                         fio_terminate_threads(TERMINATE_ALL);
1947                         exec_trigger(trigger_cmd);
1948                 }
1949         }
1950 }
1951
1952 static int fio_verify_load_state(struct thread_data *td)
1953 {
1954         int ret;
1955
1956         if (!td->o.verify_state)
1957                 return 0;
1958
1959         if (is_backend) {
1960                 void *data;
1961                 int ver;
1962
1963                 ret = fio_server_get_verify_state(td->o.name,
1964                                         td->thread_number - 1, &data, &ver);
1965                 if (!ret)
1966                         verify_convert_assign_state(td, data, ver);
1967         } else
1968                 ret = verify_load_state(td, "local");
1969
1970         return ret;
1971 }
1972
1973 static void do_usleep(unsigned int usecs)
1974 {
1975         check_for_running_stats();
1976         check_trigger_file();
1977         usleep(usecs);
1978 }
1979
1980 static bool check_mount_writes(struct thread_data *td)
1981 {
1982         struct fio_file *f;
1983         unsigned int i;
1984
1985         if (!td_write(td) || td->o.allow_mounted_write)
1986                 return false;
1987
1988         for_each_file(td, f, i) {
1989                 if (f->filetype != FIO_TYPE_BD)
1990                         continue;
1991                 if (device_is_mounted(f->file_name))
1992                         goto mounted;
1993         }
1994
1995         return false;
1996 mounted:
1997         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.", f->file_name);
1998         return true;
1999 }
2000
2001 /*
2002  * Main function for kicking off and reaping jobs, as needed.
2003  */
2004 static void run_threads(void)
2005 {
2006         struct thread_data *td;
2007         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
2008         uint64_t spent;
2009
2010         if (fio_gtod_offload && fio_start_gtod_thread())
2011                 return;
2012
2013         fio_idle_prof_init();
2014
2015         set_sig_handlers();
2016
2017         nr_thread = nr_process = 0;
2018         for_each_td(td, i) {
2019                 if (check_mount_writes(td))
2020                         return;
2021                 if (td->o.use_thread)
2022                         nr_thread++;
2023                 else
2024                         nr_process++;
2025         }
2026
2027         if (output_format & FIO_OUTPUT_NORMAL) {
2028                 log_info("Starting ");
2029                 if (nr_thread)
2030                         log_info("%d thread%s", nr_thread,
2031                                                 nr_thread > 1 ? "s" : "");
2032                 if (nr_process) {
2033                         if (nr_thread)
2034                                 log_info(" and ");
2035                         log_info("%d process%s", nr_process,
2036                                                 nr_process > 1 ? "es" : "");
2037                 }
2038                 log_info("\n");
2039                 log_info_flush();
2040         }
2041
2042         todo = thread_number;
2043         nr_running = 0;
2044         nr_started = 0;
2045         m_rate = t_rate = 0;
2046
2047         for_each_td(td, i) {
2048                 print_status_init(td->thread_number - 1);
2049
2050                 if (!td->o.create_serialize)
2051                         continue;
2052
2053                 if (fio_verify_load_state(td))
2054                         goto reap;
2055
2056                 /*
2057                  * do file setup here so it happens sequentially,
2058                  * we don't want X number of threads getting their
2059                  * client data interspersed on disk
2060                  */
2061                 if (setup_files(td)) {
2062 reap:
2063                         exit_value++;
2064                         if (td->error)
2065                                 log_err("fio: pid=%d, err=%d/%s\n",
2066                                         (int) td->pid, td->error, td->verror);
2067                         td_set_runstate(td, TD_REAPED);
2068                         todo--;
2069                 } else {
2070                         struct fio_file *f;
2071                         unsigned int j;
2072
2073                         /*
2074                          * for sharing to work, each job must always open
2075                          * its own files. so close them, if we opened them
2076                          * for creation
2077                          */
2078                         for_each_file(td, f, j) {
2079                                 if (fio_file_open(f))
2080                                         td_io_close_file(td, f);
2081                         }
2082                 }
2083         }
2084
2085         /* start idle threads before io threads start to run */
2086         fio_idle_prof_start();
2087
2088         set_genesis_time();
2089
2090         while (todo) {
2091                 struct thread_data *map[REAL_MAX_JOBS];
2092                 struct timeval this_start;
2093                 int this_jobs = 0, left;
2094
2095                 /*
2096                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2097                  */
2098                 for_each_td(td, i) {
2099                         if (td->runstate != TD_NOT_CREATED)
2100                                 continue;
2101
2102                         /*
2103                          * never got a chance to start, killed by other
2104                          * thread for some reason
2105                          */
2106                         if (td->terminate) {
2107                                 todo--;
2108                                 continue;
2109                         }
2110
2111                         if (td->o.start_delay) {
2112                                 spent = utime_since_genesis();
2113
2114                                 if (td->o.start_delay > spent)
2115                                         continue;
2116                         }
2117
2118                         if (td->o.stonewall && (nr_started || nr_running)) {
2119                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2120                                                         td->o.name);
2121                                 break;
2122                         }
2123
2124                         init_disk_util(td);
2125
2126                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
2127                         td->update_rusage = 0;
2128
2129                         /*
2130                          * Set state to created. Thread will transition
2131                          * to TD_INITIALIZED when it's done setting up.
2132                          */
2133                         td_set_runstate(td, TD_CREATED);
2134                         map[this_jobs++] = td;
2135                         nr_started++;
2136
2137                         if (td->o.use_thread) {
2138                                 int ret;
2139
2140                                 dprint(FD_PROCESS, "will pthread_create\n");
2141                                 ret = pthread_create(&td->thread, NULL,
2142                                                         thread_main, td);
2143                                 if (ret) {
2144                                         log_err("pthread_create: %s\n",
2145                                                         strerror(ret));
2146                                         nr_started--;
2147                                         break;
2148                                 }
2149                                 ret = pthread_detach(td->thread);
2150                                 if (ret)
2151                                         log_err("pthread_detach: %s",
2152                                                         strerror(ret));
2153                         } else {
2154                                 pid_t pid;
2155                                 dprint(FD_PROCESS, "will fork\n");
2156                                 pid = fork();
2157                                 if (!pid) {
2158                                         int ret = fork_main(shm_id, i);
2159
2160                                         _exit(ret);
2161                                 } else if (i == fio_debug_jobno)
2162                                         *fio_debug_jobp = pid;
2163                         }
2164                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2165                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
2166                                 log_err("fio: job startup hung? exiting.\n");
2167                                 fio_terminate_threads(TERMINATE_ALL);
2168                                 fio_abort = 1;
2169                                 nr_started--;
2170                                 break;
2171                         }
2172                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2173                 }
2174
2175                 /*
2176                  * Wait for the started threads to transition to
2177                  * TD_INITIALIZED.
2178                  */
2179                 fio_gettime(&this_start, NULL);
2180                 left = this_jobs;
2181                 while (left && !fio_abort) {
2182                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2183                                 break;
2184
2185                         do_usleep(100000);
2186
2187                         for (i = 0; i < this_jobs; i++) {
2188                                 td = map[i];
2189                                 if (!td)
2190                                         continue;
2191                                 if (td->runstate == TD_INITIALIZED) {
2192                                         map[i] = NULL;
2193                                         left--;
2194                                 } else if (td->runstate >= TD_EXITED) {
2195                                         map[i] = NULL;
2196                                         left--;
2197                                         todo--;
2198                                         nr_running++; /* work-around... */
2199                                 }
2200                         }
2201                 }
2202
2203                 if (left) {
2204                         log_err("fio: %d job%s failed to start\n", left,
2205                                         left > 1 ? "s" : "");
2206                         for (i = 0; i < this_jobs; i++) {
2207                                 td = map[i];
2208                                 if (!td)
2209                                         continue;
2210                                 kill(td->pid, SIGTERM);
2211                         }
2212                         break;
2213                 }
2214
2215                 /*
2216                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2217                  */
2218                 for_each_td(td, i) {
2219                         if (td->runstate != TD_INITIALIZED)
2220                                 continue;
2221
2222                         if (in_ramp_time(td))
2223                                 td_set_runstate(td, TD_RAMP);
2224                         else
2225                                 td_set_runstate(td, TD_RUNNING);
2226                         nr_running++;
2227                         nr_started--;
2228                         m_rate += ddir_rw_sum(td->o.ratemin);
2229                         t_rate += ddir_rw_sum(td->o.rate);
2230                         todo--;
2231                         fio_mutex_up(td->mutex);
2232                 }
2233
2234                 reap_threads(&nr_running, &t_rate, &m_rate);
2235
2236                 if (todo)
2237                         do_usleep(100000);
2238         }
2239
2240         while (nr_running) {
2241                 reap_threads(&nr_running, &t_rate, &m_rate);
2242                 do_usleep(10000);
2243         }
2244
2245         fio_idle_prof_stop();
2246
2247         update_io_ticks();
2248 }
2249
2250 static void wait_for_helper_thread_exit(void)
2251 {
2252         void *ret;
2253
2254         helper_exit = 1;
2255         pthread_cond_signal(&helper_cond);
2256         pthread_join(helper_thread, &ret);
2257 }
2258
2259 static void free_disk_util(void)
2260 {
2261         disk_util_prune_entries();
2262
2263         pthread_cond_destroy(&helper_cond);
2264 }
2265
2266 static void *helper_thread_main(void *data)
2267 {
2268         int ret = 0;
2269
2270         fio_mutex_up(startup_mutex);
2271
2272         while (!ret) {
2273                 uint64_t sec = DISK_UTIL_MSEC / 1000;
2274                 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2275                 struct timespec ts;
2276                 struct timeval tv;
2277
2278                 gettimeofday(&tv, NULL);
2279                 ts.tv_sec = tv.tv_sec + sec;
2280                 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2281
2282                 if (ts.tv_nsec >= 1000000000ULL) {
2283                         ts.tv_nsec -= 1000000000ULL;
2284                         ts.tv_sec++;
2285                 }
2286
2287                 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2288
2289                 ret = update_io_ticks();
2290
2291                 if (helper_do_stat) {
2292                         helper_do_stat = 0;
2293                         __show_running_run_stats();
2294                 }
2295
2296                 if (!is_backend)
2297                         print_thread_status();
2298         }
2299
2300         return NULL;
2301 }
2302
2303 static int create_helper_thread(void)
2304 {
2305         int ret;
2306
2307         setup_disk_util();
2308
2309         pthread_cond_init(&helper_cond, NULL);
2310         pthread_mutex_init(&helper_lock, NULL);
2311
2312         ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2313         if (ret) {
2314                 log_err("Can't create helper thread: %s\n", strerror(ret));
2315                 return 1;
2316         }
2317
2318         dprint(FD_MUTEX, "wait on startup_mutex\n");
2319         fio_mutex_down(startup_mutex);
2320         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2321         return 0;
2322 }
2323
2324 int fio_backend(void)
2325 {
2326         struct thread_data *td;
2327         int i;
2328
2329         if (exec_profile) {
2330                 if (load_profile(exec_profile))
2331                         return 1;
2332                 free(exec_profile);
2333                 exec_profile = NULL;
2334         }
2335         if (!thread_number)
2336                 return 0;
2337
2338         if (write_bw_log) {
2339                 struct log_params p = {
2340                         .log_type = IO_LOG_TYPE_BW,
2341                 };
2342
2343                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2344                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2345                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2346         }
2347
2348         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2349         if (startup_mutex == NULL)
2350                 return 1;
2351
2352         set_genesis_time();
2353         stat_init();
2354         create_helper_thread();
2355
2356         cgroup_list = smalloc(sizeof(*cgroup_list));
2357         INIT_FLIST_HEAD(cgroup_list);
2358
2359         run_threads();
2360
2361         wait_for_helper_thread_exit();
2362
2363         if (!fio_abort) {
2364                 __show_run_stats();
2365                 if (write_bw_log) {
2366                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2367                                 struct io_log *log = agg_io_log[i];
2368
2369                                 flush_log(log, 0);
2370                                 free_log(log);
2371                         }
2372                 }
2373         }
2374
2375         for_each_td(td, i) {
2376                 fio_options_free(td);
2377                 if (td->rusage_sem) {
2378                         fio_mutex_remove(td->rusage_sem);
2379                         td->rusage_sem = NULL;
2380                 }
2381         }
2382
2383         free_disk_util();
2384         cgroup_kill(cgroup_list);
2385         sfree(cgroup_list);
2386         sfree(cgroup_mnt);
2387
2388         fio_mutex_remove(startup_mutex);
2389         stat_exit();
2390         return exit_value;
2391 }