Add support for latency probing over an interval of load
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
22  *
23  */
24 #include <unistd.h>
25 #include <string.h>
26 #include <signal.h>
27 #include <assert.h>
28 #include <inttypes.h>
29 #include <sys/stat.h>
30 #include <sys/wait.h>
31 #include <math.h>
32 #include <pthread.h>
33
34 #include "fio.h"
35 #include "smalloc.h"
36 #include "verify.h"
37 #include "diskutil.h"
38 #include "cgroup.h"
39 #include "profile.h"
40 #include "lib/rand.h"
41 #include "lib/memalign.h"
42 #include "server.h"
43 #include "lib/getrusage.h"
44 #include "idletime.h"
45 #include "err.h"
46 #include "workqueue.h"
47 #include "lib/mountcheck.h"
48 #include "rate-submit.h"
49 #include "helper_thread.h"
50 #include "pshared.h"
51 #include "zone-dist.h"
52 #include "target.h"
53
54 static struct fio_sem *startup_sem;
55 static struct flist_head *cgroup_list;
56 static struct cgroup_mnt *cgroup_mnt;
57 static int exit_value;
58 static volatile bool fio_abort;
59 static unsigned int nr_process = 0;
60 static unsigned int nr_thread = 0;
61
62 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
63
64 int groupid = 0;
65 unsigned int thread_number = 0;
66 unsigned int stat_number = 0;
67 int shm_id = 0;
68 int temp_stall_ts;
69 unsigned long done_secs = 0;
70 pthread_mutex_t overlap_check = PTHREAD_MUTEX_INITIALIZER;
71
72 #define JOB_START_TIMEOUT       (5 * 1000)
73
74 static void sig_int(int sig)
75 {
76         if (threads) {
77                 if (is_backend)
78                         fio_server_got_signal(sig);
79                 else {
80                         log_info("\nfio: terminating on signal %d\n", sig);
81                         log_info_flush();
82                         exit_value = 128;
83                 }
84
85                 fio_terminate_threads(TERMINATE_ALL);
86         }
87 }
88
89 void sig_show_status(int sig)
90 {
91         show_running_run_stats();
92 }
93
94 static void set_sig_handlers(void)
95 {
96         struct sigaction act;
97
98         memset(&act, 0, sizeof(act));
99         act.sa_handler = sig_int;
100         act.sa_flags = SA_RESTART;
101         sigaction(SIGINT, &act, NULL);
102
103         memset(&act, 0, sizeof(act));
104         act.sa_handler = sig_int;
105         act.sa_flags = SA_RESTART;
106         sigaction(SIGTERM, &act, NULL);
107
108 /* Windows uses SIGBREAK as a quit signal from other applications */
109 #ifdef WIN32
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_int;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGBREAK, &act, NULL);
114 #endif
115
116         memset(&act, 0, sizeof(act));
117         act.sa_handler = sig_show_status;
118         act.sa_flags = SA_RESTART;
119         sigaction(SIGUSR1, &act, NULL);
120
121         if (is_backend) {
122                 memset(&act, 0, sizeof(act));
123                 act.sa_handler = sig_int;
124                 act.sa_flags = SA_RESTART;
125                 sigaction(SIGPIPE, &act, NULL);
126         }
127 }
128
129 /*
130  * Check if we are above the minimum rate given.
131  */
132 static bool __check_min_rate(struct thread_data *td, struct timespec *now,
133                              enum fio_ddir ddir)
134 {
135         unsigned long long bytes = 0;
136         unsigned long iops = 0;
137         unsigned long spent;
138         unsigned long rate;
139         unsigned int ratemin = 0;
140         unsigned int rate_iops = 0;
141         unsigned int rate_iops_min = 0;
142
143         assert(ddir_rw(ddir));
144
145         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
146                 return false;
147
148         /*
149          * allow a 2 second settle period in the beginning
150          */
151         if (mtime_since(&td->start, now) < 2000)
152                 return false;
153
154         iops += td->this_io_blocks[ddir];
155         bytes += td->this_io_bytes[ddir];
156         ratemin += td->o.ratemin[ddir];
157         rate_iops += td->o.rate_iops[ddir];
158         rate_iops_min += td->o.rate_iops_min[ddir];
159
160         /*
161          * if rate blocks is set, sample is running
162          */
163         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
164                 spent = mtime_since(&td->lastrate[ddir], now);
165                 if (spent < td->o.ratecycle)
166                         return false;
167
168                 if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
169                         /*
170                          * check bandwidth specified rate
171                          */
172                         if (bytes < td->rate_bytes[ddir]) {
173                                 log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
174                                         td->o.name, ratemin, bytes);
175                                 return true;
176                         } else {
177                                 if (spent)
178                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
179                                 else
180                                         rate = 0;
181
182                                 if (rate < ratemin ||
183                                     bytes < td->rate_bytes[ddir]) {
184                                         log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
185                                                 td->o.name, ratemin, rate);
186                                         return true;
187                                 }
188                         }
189                 } else {
190                         /*
191                          * checks iops specified rate
192                          */
193                         if (iops < rate_iops) {
194                                 log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
195                                                 td->o.name, rate_iops, iops);
196                                 return true;
197                         } else {
198                                 if (spent)
199                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
200                                 else
201                                         rate = 0;
202
203                                 if (rate < rate_iops_min ||
204                                     iops < td->rate_blocks[ddir]) {
205                                         log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
206                                                 td->o.name, rate_iops_min, rate);
207                                         return true;
208                                 }
209                         }
210                 }
211         }
212
213         td->rate_bytes[ddir] = bytes;
214         td->rate_blocks[ddir] = iops;
215         memcpy(&td->lastrate[ddir], now, sizeof(*now));
216         return false;
217 }
218
219 static bool check_min_rate(struct thread_data *td, struct timespec *now)
220 {
221         bool ret = false;
222
223         if (td->bytes_done[DDIR_READ])
224                 ret |= __check_min_rate(td, now, DDIR_READ);
225         if (td->bytes_done[DDIR_WRITE])
226                 ret |= __check_min_rate(td, now, DDIR_WRITE);
227         if (td->bytes_done[DDIR_TRIM])
228                 ret |= __check_min_rate(td, now, DDIR_TRIM);
229
230         return ret;
231 }
232
233 /*
234  * When job exits, we can cancel the in-flight IO if we are using async
235  * io. Attempt to do so.
236  */
237 static void cleanup_pending_aio(struct thread_data *td)
238 {
239         int r;
240
241         /*
242          * get immediately available events, if any
243          */
244         r = io_u_queued_complete(td, 0);
245         if (r < 0)
246                 return;
247
248         /*
249          * now cancel remaining active events
250          */
251         if (td->io_ops->cancel) {
252                 struct io_u *io_u;
253                 int i;
254
255                 io_u_qiter(&td->io_u_all, io_u, i) {
256                         if (io_u->flags & IO_U_F_FLIGHT) {
257                                 r = td->io_ops->cancel(td, io_u);
258                                 if (!r)
259                                         put_io_u(td, io_u);
260                         }
261                 }
262         }
263
264         if (td->cur_depth)
265                 r = io_u_queued_complete(td, td->cur_depth);
266 }
267
268 /*
269  * Helper to handle the final sync of a file. Works just like the normal
270  * io path, just does everything sync.
271  */
272 static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
273 {
274         struct io_u *io_u = __get_io_u(td);
275         enum fio_q_status ret;
276
277         if (!io_u)
278                 return true;
279
280         io_u->ddir = DDIR_SYNC;
281         io_u->file = f;
282
283         if (td_io_prep(td, io_u)) {
284                 put_io_u(td, io_u);
285                 return true;
286         }
287
288 requeue:
289         ret = td_io_queue(td, io_u);
290         switch (ret) {
291         case FIO_Q_QUEUED:
292                 td_io_commit(td);
293                 if (io_u_queued_complete(td, 1) < 0)
294                         return true;
295                 break;
296         case FIO_Q_COMPLETED:
297                 if (io_u->error) {
298                         td_verror(td, io_u->error, "td_io_queue");
299                         return true;
300                 }
301
302                 if (io_u_sync_complete(td, io_u) < 0)
303                         return true;
304                 break;
305         case FIO_Q_BUSY:
306                 td_io_commit(td);
307                 goto requeue;
308         }
309
310         return false;
311 }
312
313 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
314 {
315         int ret;
316
317         if (fio_file_open(f))
318                 return fio_io_sync(td, f);
319
320         if (td_io_open_file(td, f))
321                 return 1;
322
323         ret = fio_io_sync(td, f);
324         td_io_close_file(td, f);
325         return ret;
326 }
327
328 static inline void __update_ts_cache(struct thread_data *td)
329 {
330         fio_gettime(&td->ts_cache, NULL);
331 }
332
333 static inline void update_ts_cache(struct thread_data *td)
334 {
335         if ((++td->ts_cache_nr & td->ts_cache_mask) == td->ts_cache_mask)
336                 __update_ts_cache(td);
337 }
338
339 static inline bool runtime_exceeded(struct thread_data *td, struct timespec *t)
340 {
341         if (in_ramp_time(td))
342                 return false;
343         if (!td->o.timeout)
344                 return false;
345         if (utime_since(&td->epoch, t) >= td->o.timeout)
346                 return true;
347
348         return false;
349 }
350
351 /*
352  * We need to update the runtime consistently in ms, but keep a running
353  * tally of the current elapsed time in microseconds for sub millisecond
354  * updates.
355  */
356 static inline void update_runtime(struct thread_data *td,
357                                   unsigned long long *elapsed_us,
358                                   const enum fio_ddir ddir)
359 {
360         if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
361                 return;
362
363         td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
364         elapsed_us[ddir] += utime_since_now(&td->start);
365         td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
366 }
367
368 static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
369                                 int *retptr)
370 {
371         int ret = *retptr;
372
373         if (ret < 0 || td->error) {
374                 int err = td->error;
375                 enum error_type_bit eb;
376
377                 if (ret < 0)
378                         err = -ret;
379
380                 eb = td_error_type(ddir, err);
381                 if (!(td->o.continue_on_error & (1 << eb)))
382                         return true;
383
384                 if (td_non_fatal_error(td, eb, err)) {
385                         /*
386                          * Continue with the I/Os in case of
387                          * a non fatal error.
388                          */
389                         update_error_count(td, err);
390                         td_clear_error(td);
391                         *retptr = 0;
392                         return false;
393                 } else if (td->o.fill_device && err == ENOSPC) {
394                         /*
395                          * We expect to hit this error if
396                          * fill_device option is set.
397                          */
398                         td_clear_error(td);
399                         fio_mark_td_terminate(td);
400                         return true;
401                 } else {
402                         /*
403                          * Stop the I/O in case of a fatal
404                          * error.
405                          */
406                         update_error_count(td, err);
407                         return true;
408                 }
409         }
410
411         return false;
412 }
413
414 static void check_update_rusage(struct thread_data *td)
415 {
416         if (td->update_rusage) {
417                 td->update_rusage = 0;
418                 update_rusage_stat(td);
419                 fio_sem_up(td->rusage_sem);
420         }
421 }
422
423 static int wait_for_completions(struct thread_data *td, struct timespec *time)
424 {
425         const int full = queue_full(td);
426         int min_evts = 0;
427         int ret;
428
429         if (td->flags & TD_F_REGROW_LOGS)
430                 return io_u_quiesce(td);
431
432         /*
433          * if the queue is full, we MUST reap at least 1 event
434          */
435         min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
436         if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
437                 min_evts = 1;
438
439         if (time && __should_check_rate(td))
440                 fio_gettime(time, NULL);
441
442         do {
443                 ret = io_u_queued_complete(td, min_evts);
444                 if (ret < 0)
445                         break;
446         } while (full && (td->cur_depth > td->o.iodepth_low));
447
448         return ret;
449 }
450
451 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
452                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
453                    struct timespec *comp_time)
454 {
455         switch (*ret) {
456         case FIO_Q_COMPLETED:
457                 if (io_u->error) {
458                         *ret = -io_u->error;
459                         clear_io_u(td, io_u);
460                 } else if (io_u->resid) {
461                         long long bytes = io_u->xfer_buflen - io_u->resid;
462                         struct fio_file *f = io_u->file;
463
464                         if (bytes_issued)
465                                 *bytes_issued += bytes;
466
467                         if (!from_verify)
468                                 trim_io_piece(io_u);
469
470                         /*
471                          * zero read, fail
472                          */
473                         if (!bytes) {
474                                 if (!from_verify)
475                                         unlog_io_piece(td, io_u);
476                                 td_verror(td, EIO, "full resid");
477                                 put_io_u(td, io_u);
478                                 break;
479                         }
480
481                         io_u->xfer_buflen = io_u->resid;
482                         io_u->xfer_buf += bytes;
483                         io_u->offset += bytes;
484
485                         if (ddir_rw(io_u->ddir))
486                                 td->ts.short_io_u[io_u->ddir]++;
487
488                         if (io_u->offset == f->real_file_size)
489                                 goto sync_done;
490
491                         requeue_io_u(td, &io_u);
492                 } else {
493 sync_done:
494                         if (comp_time && __should_check_rate(td))
495                                 fio_gettime(comp_time, NULL);
496
497                         *ret = io_u_sync_complete(td, io_u);
498                         if (*ret < 0)
499                                 break;
500                 }
501
502                 if (td->flags & TD_F_REGROW_LOGS)
503                         regrow_logs(td);
504
505                 /*
506                  * when doing I/O (not when verifying),
507                  * check for any errors that are to be ignored
508                  */
509                 if (!from_verify)
510                         break;
511
512                 return 0;
513         case FIO_Q_QUEUED:
514                 /*
515                  * if the engine doesn't have a commit hook,
516                  * the io_u is really queued. if it does have such
517                  * a hook, it has to call io_u_queued() itself.
518                  */
519                 if (td->io_ops->commit == NULL)
520                         io_u_queued(td, io_u);
521                 if (bytes_issued)
522                         *bytes_issued += io_u->xfer_buflen;
523                 break;
524         case FIO_Q_BUSY:
525                 if (!from_verify)
526                         unlog_io_piece(td, io_u);
527                 requeue_io_u(td, &io_u);
528                 td_io_commit(td);
529                 break;
530         default:
531                 assert(*ret < 0);
532                 td_verror(td, -(*ret), "td_io_queue");
533                 break;
534         }
535
536         if (break_on_this_error(td, ddir, ret))
537                 return 1;
538
539         return 0;
540 }
541
542 static inline bool io_in_polling(struct thread_data *td)
543 {
544         return !td->o.iodepth_batch_complete_min &&
545                    !td->o.iodepth_batch_complete_max;
546 }
547 /*
548  * Unlinks files from thread data fio_file structure
549  */
550 static int unlink_all_files(struct thread_data *td)
551 {
552         struct fio_file *f;
553         unsigned int i;
554         int ret = 0;
555
556         for_each_file(td, f, i) {
557                 if (f->filetype != FIO_TYPE_FILE)
558                         continue;
559                 ret = td_io_unlink_file(td, f);
560                 if (ret)
561                         break;
562         }
563
564         if (ret)
565                 td_verror(td, ret, "unlink_all_files");
566
567         return ret;
568 }
569
570 /*
571  * Check if io_u will overlap an in-flight IO in the queue
572  */
573 bool in_flight_overlap(struct io_u_queue *q, struct io_u *io_u)
574 {
575         bool overlap;
576         struct io_u *check_io_u;
577         unsigned long long x1, x2, y1, y2;
578         int i;
579
580         x1 = io_u->offset;
581         x2 = io_u->offset + io_u->buflen;
582         overlap = false;
583         io_u_qiter(q, check_io_u, i) {
584                 if (check_io_u->flags & IO_U_F_FLIGHT) {
585                         y1 = check_io_u->offset;
586                         y2 = check_io_u->offset + check_io_u->buflen;
587
588                         if (x1 < y2 && y1 < x2) {
589                                 overlap = true;
590                                 dprint(FD_IO, "in-flight overlap: %llu/%llu, %llu/%llu\n",
591                                                 x1, io_u->buflen,
592                                                 y1, check_io_u->buflen);
593                                 break;
594                         }
595                 }
596         }
597
598         return overlap;
599 }
600
601 static enum fio_q_status io_u_submit(struct thread_data *td, struct io_u *io_u)
602 {
603         /*
604          * Check for overlap if the user asked us to, and we have
605          * at least one IO in flight besides this one.
606          */
607         if (td->o.serialize_overlap && td->cur_depth > 1 &&
608             in_flight_overlap(&td->io_u_all, io_u))
609                 return FIO_Q_BUSY;
610
611         return td_io_queue(td, io_u);
612 }
613
614 /*
615  * The main verify engine. Runs over the writes we previously submitted,
616  * reads the blocks back in, and checks the crc/md5 of the data.
617  */
618 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
619 {
620         struct fio_file *f;
621         struct io_u *io_u;
622         int ret, min_events;
623         unsigned int i;
624
625         dprint(FD_VERIFY, "starting loop\n");
626
627         /*
628          * sync io first and invalidate cache, to make sure we really
629          * read from disk.
630          */
631         for_each_file(td, f, i) {
632                 if (!fio_file_open(f))
633                         continue;
634                 if (fio_io_sync(td, f))
635                         break;
636                 if (file_invalidate_cache(td, f))
637                         break;
638         }
639
640         check_update_rusage(td);
641
642         if (td->error)
643                 return;
644
645         /*
646          * verify_state needs to be reset before verification
647          * proceeds so that expected random seeds match actual
648          * random seeds in headers. The main loop will reset
649          * all random number generators if randrepeat is set.
650          */
651         if (!td->o.rand_repeatable)
652                 td_fill_verify_state_seed(td);
653
654         td_set_runstate(td, TD_VERIFYING);
655
656         io_u = NULL;
657         while (!td->terminate) {
658                 enum fio_ddir ddir;
659                 int full;
660
661                 update_ts_cache(td);
662                 check_update_rusage(td);
663
664                 if (runtime_exceeded(td, &td->ts_cache)) {
665                         __update_ts_cache(td);
666                         if (runtime_exceeded(td, &td->ts_cache)) {
667                                 fio_mark_td_terminate(td);
668                                 break;
669                         }
670                 }
671
672                 if (flow_threshold_exceeded(td))
673                         continue;
674
675                 if (!td->o.experimental_verify) {
676                         io_u = __get_io_u(td);
677                         if (!io_u)
678                                 break;
679
680                         if (get_next_verify(td, io_u)) {
681                                 put_io_u(td, io_u);
682                                 break;
683                         }
684
685                         if (td_io_prep(td, io_u)) {
686                                 put_io_u(td, io_u);
687                                 break;
688                         }
689                 } else {
690                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
691                                 break;
692
693                         while ((io_u = get_io_u(td)) != NULL) {
694                                 if (IS_ERR_OR_NULL(io_u)) {
695                                         io_u = NULL;
696                                         ret = FIO_Q_BUSY;
697                                         goto reap;
698                                 }
699
700                                 /*
701                                  * We are only interested in the places where
702                                  * we wrote or trimmed IOs. Turn those into
703                                  * reads for verification purposes.
704                                  */
705                                 if (io_u->ddir == DDIR_READ) {
706                                         /*
707                                          * Pretend we issued it for rwmix
708                                          * accounting
709                                          */
710                                         td->io_issues[DDIR_READ]++;
711                                         put_io_u(td, io_u);
712                                         continue;
713                                 } else if (io_u->ddir == DDIR_TRIM) {
714                                         io_u->ddir = DDIR_READ;
715                                         io_u_set(td, io_u, IO_U_F_TRIMMED);
716                                         break;
717                                 } else if (io_u->ddir == DDIR_WRITE) {
718                                         io_u->ddir = DDIR_READ;
719                                         populate_verify_io_u(td, io_u);
720                                         break;
721                                 } else {
722                                         put_io_u(td, io_u);
723                                         continue;
724                                 }
725                         }
726
727                         if (!io_u)
728                                 break;
729                 }
730
731                 if (verify_state_should_stop(td, io_u)) {
732                         put_io_u(td, io_u);
733                         break;
734                 }
735
736                 if (td->o.verify_async)
737                         io_u->end_io = verify_io_u_async;
738                 else
739                         io_u->end_io = verify_io_u;
740
741                 ddir = io_u->ddir;
742                 if (!td->o.disable_slat)
743                         fio_gettime(&io_u->start_time, NULL);
744
745                 ret = io_u_submit(td, io_u);
746
747                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
748                         break;
749
750                 /*
751                  * if we can queue more, do so. but check if there are
752                  * completed io_u's first. Note that we can get BUSY even
753                  * without IO queued, if the system is resource starved.
754                  */
755 reap:
756                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
757                 if (full || io_in_polling(td))
758                         ret = wait_for_completions(td, NULL);
759
760                 if (ret < 0)
761                         break;
762         }
763
764         check_update_rusage(td);
765
766         if (!td->error) {
767                 min_events = td->cur_depth;
768
769                 if (min_events)
770                         ret = io_u_queued_complete(td, min_events);
771         } else
772                 cleanup_pending_aio(td);
773
774         td_set_runstate(td, TD_RUNNING);
775
776         dprint(FD_VERIFY, "exiting loop\n");
777 }
778
779 static bool exceeds_number_ios(struct thread_data *td)
780 {
781         unsigned long long number_ios;
782
783         if (!td->o.number_ios)
784                 return false;
785
786         number_ios = ddir_rw_sum(td->io_blocks);
787         number_ios += td->io_u_queued + td->io_u_in_flight;
788
789         return number_ios >= (td->o.number_ios * td->loops);
790 }
791
792 static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
793 {
794         unsigned long long bytes, limit;
795
796         if (td_rw(td))
797                 bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
798         else if (td_write(td))
799                 bytes = this_bytes[DDIR_WRITE];
800         else if (td_read(td))
801                 bytes = this_bytes[DDIR_READ];
802         else
803                 bytes = this_bytes[DDIR_TRIM];
804
805         if (td->o.io_size)
806                 limit = td->o.io_size;
807         else
808                 limit = td->o.size;
809
810         limit *= td->loops;
811         return bytes >= limit || exceeds_number_ios(td);
812 }
813
814 static bool io_issue_bytes_exceeded(struct thread_data *td)
815 {
816         return io_bytes_exceeded(td, td->io_issue_bytes);
817 }
818
819 static bool io_complete_bytes_exceeded(struct thread_data *td)
820 {
821         return io_bytes_exceeded(td, td->this_io_bytes);
822 }
823
824 /*
825  * used to calculate the next io time for rate control
826  *
827  */
828 static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
829 {
830         uint64_t bps = td->rate_bps[ddir];
831
832         assert(!(td->flags & TD_F_CHILD));
833
834         if (td->o.rate_process == RATE_PROCESS_POISSON) {
835                 uint64_t val, iops;
836
837                 iops = bps / td->o.bs[ddir];
838                 val = (int64_t) (1000000 / iops) *
839                                 -logf(__rand_0_1(&td->poisson_state[ddir]));
840                 if (val) {
841                         dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
842                                         (unsigned long long) 1000000 / val,
843                                         ddir);
844                 }
845                 td->last_usec[ddir] += val;
846                 return td->last_usec[ddir];
847         } else if (bps) {
848                 uint64_t bytes = td->rate_io_issue_bytes[ddir];
849                 uint64_t secs = bytes / bps;
850                 uint64_t remainder = bytes % bps;
851
852                 return remainder * 1000000 / bps + secs * 1000000;
853         }
854
855         return 0;
856 }
857
858 static void handle_thinktime(struct thread_data *td, enum fio_ddir ddir)
859 {
860         unsigned long long b;
861         uint64_t total;
862         int left;
863
864         b = ddir_rw_sum(td->io_blocks);
865         if (b % td->o.thinktime_blocks)
866                 return;
867
868         io_u_quiesce(td);
869
870         total = 0;
871         if (td->o.thinktime_spin)
872                 total = usec_spin(td->o.thinktime_spin);
873
874         left = td->o.thinktime - total;
875         if (left)
876                 total += usec_sleep(td, left);
877
878         /*
879          * If we're ignoring thinktime for the rate, add the number of bytes
880          * we would have done while sleeping, minus one block to ensure we
881          * start issuing immediately after the sleep.
882          */
883         if (total && td->rate_bps[ddir] && td->o.rate_ign_think) {
884                 uint64_t missed = (td->rate_bps[ddir] * total) / 1000000ULL;
885                 uint64_t bs = td->o.min_bs[ddir];
886                 uint64_t usperop = bs * 1000000ULL / td->rate_bps[ddir];
887                 uint64_t over;
888
889                 if (usperop <= total)
890                         over = bs;
891                 else
892                         over = (usperop - total) / usperop * -bs;
893
894                 td->rate_io_issue_bytes[ddir] += (missed - over);
895                 /* adjust for rate_process=poisson */
896                 td->last_usec[ddir] += total;
897         }
898 }
899
900 /*
901  * Main IO worker function. It retrieves io_u's to process and queues
902  * and reaps them, checking for rate and errors along the way.
903  *
904  * Returns number of bytes written and trimmed.
905  */
906 static void do_io(struct thread_data *td, uint64_t *bytes_done)
907 {
908         unsigned int i;
909         int ret = 0;
910         uint64_t total_bytes, bytes_issued = 0;
911
912         for (i = 0; i < DDIR_RWDIR_CNT; i++)
913                 bytes_done[i] = td->bytes_done[i];
914
915         if (in_ramp_time(td))
916                 td_set_runstate(td, TD_RAMP);
917         else
918                 td_set_runstate(td, TD_RUNNING);
919
920         lat_target_init(td);
921
922         total_bytes = td->o.size;
923         /*
924         * Allow random overwrite workloads to write up to io_size
925         * before starting verification phase as 'size' doesn't apply.
926         */
927         if (td_write(td) && td_random(td) && td->o.norandommap)
928                 total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
929         /*
930          * If verify_backlog is enabled, we'll run the verify in this
931          * handler as well. For that case, we may need up to twice the
932          * amount of bytes.
933          */
934         if (td->o.verify != VERIFY_NONE &&
935            (td_write(td) && td->o.verify_backlog))
936                 total_bytes += td->o.size;
937
938         /* In trimwrite mode, each byte is trimmed and then written, so
939          * allow total_bytes to be twice as big */
940         if (td_trimwrite(td))
941                 total_bytes += td->total_io_size;
942
943         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
944                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
945                 td->o.time_based) {
946                 struct timespec comp_time;
947                 struct io_u *io_u;
948                 int full;
949                 enum fio_ddir ddir;
950
951                 check_update_rusage(td);
952
953                 if (td->terminate || td->done)
954                         break;
955
956                 update_ts_cache(td);
957
958                 if (runtime_exceeded(td, &td->ts_cache)) {
959                         __update_ts_cache(td);
960                         if (runtime_exceeded(td, &td->ts_cache)) {
961                                 fio_mark_td_terminate(td);
962                                 break;
963                         }
964                 }
965
966                 if (flow_threshold_exceeded(td))
967                         continue;
968
969                 /*
970                  * Break if we exceeded the bytes. The exception is time
971                  * based runs, but we still need to break out of the loop
972                  * for those to run verification, if enabled.
973                  * Jobs read from iolog do not use this stop condition.
974                  */
975                 if (bytes_issued >= total_bytes &&
976                     !td->o.read_iolog_file &&
977                     (!td->o.time_based ||
978                      (td->o.time_based && td->o.verify != VERIFY_NONE)))
979                         break;
980
981                 io_u = get_io_u(td);
982                 if (IS_ERR_OR_NULL(io_u)) {
983                         int err = PTR_ERR(io_u);
984
985                         io_u = NULL;
986                         ddir = DDIR_INVAL;
987                         if (err == -EBUSY) {
988                                 ret = FIO_Q_BUSY;
989                                 goto reap;
990                         }
991                         if (td->o.latency_target)
992                                 goto reap;
993                         break;
994                 }
995
996                 if (io_u->ddir == DDIR_WRITE && td->flags & TD_F_DO_VERIFY)
997                         populate_verify_io_u(td, io_u);
998
999                 ddir = io_u->ddir;
1000
1001                 /*
1002                  * Add verification end_io handler if:
1003                  *      - Asked to verify (!td_rw(td))
1004                  *      - Or the io_u is from our verify list (mixed write/ver)
1005                  */
1006                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
1007                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
1008
1009                         if (!td->o.verify_pattern_bytes) {
1010                                 io_u->rand_seed = __rand(&td->verify_state);
1011                                 if (sizeof(int) != sizeof(long *))
1012                                         io_u->rand_seed *= __rand(&td->verify_state);
1013                         }
1014
1015                         if (verify_state_should_stop(td, io_u)) {
1016                                 put_io_u(td, io_u);
1017                                 break;
1018                         }
1019
1020                         if (td->o.verify_async)
1021                                 io_u->end_io = verify_io_u_async;
1022                         else
1023                                 io_u->end_io = verify_io_u;
1024                         td_set_runstate(td, TD_VERIFYING);
1025                 } else if (in_ramp_time(td))
1026                         td_set_runstate(td, TD_RAMP);
1027                 else
1028                         td_set_runstate(td, TD_RUNNING);
1029
1030                 /*
1031                  * Always log IO before it's issued, so we know the specific
1032                  * order of it. The logged unit will track when the IO has
1033                  * completed.
1034                  */
1035                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1036                     td->o.do_verify &&
1037                     td->o.verify != VERIFY_NONE &&
1038                     !td->o.experimental_verify)
1039                         log_io_piece(td, io_u);
1040
1041                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1042                         const unsigned long long blen = io_u->xfer_buflen;
1043                         const enum fio_ddir __ddir = acct_ddir(io_u);
1044
1045                         if (td->error)
1046                                 break;
1047
1048                         workqueue_enqueue(&td->io_wq, &io_u->work);
1049                         ret = FIO_Q_QUEUED;
1050
1051                         if (ddir_rw(__ddir)) {
1052                                 td->io_issues[__ddir]++;
1053                                 td->io_issue_bytes[__ddir] += blen;
1054                                 td->rate_io_issue_bytes[__ddir] += blen;
1055                         }
1056
1057                         if (should_check_rate(td))
1058                                 td->rate_next_io_time[__ddir] = usec_for_io(td, __ddir);
1059
1060                 } else {
1061                         ret = io_u_submit(td, io_u);
1062
1063                         if (should_check_rate(td))
1064                                 td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
1065
1066                         if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
1067                                 break;
1068
1069                         /*
1070                          * See if we need to complete some commands. Note that
1071                          * we can get BUSY even without IO queued, if the
1072                          * system is resource starved.
1073                          */
1074 reap:
1075                         full = queue_full(td) ||
1076                                 (ret == FIO_Q_BUSY && td->cur_depth);
1077                         if (full || io_in_polling(td))
1078                                 ret = wait_for_completions(td, &comp_time);
1079                 }
1080                 if (ret < 0)
1081                         break;
1082                 if (!ddir_rw_sum(td->bytes_done) &&
1083                     !td_ioengine_flagged(td, FIO_NOIO))
1084                         continue;
1085
1086                 if (!in_ramp_time(td) && should_check_rate(td)) {
1087                         if (check_min_rate(td, &comp_time)) {
1088                                 if (exitall_on_terminate || td->o.exitall_error)
1089                                         fio_terminate_threads(td->groupid);
1090                                 td_verror(td, EIO, "check_min_rate");
1091                                 break;
1092                         }
1093                 }
1094                 if (!in_ramp_time(td) && lat_target_check(td))
1095                         break;
1096
1097                 if (ddir_rw(ddir) && td->o.thinktime)
1098                         handle_thinktime(td, ddir);
1099         }
1100
1101         check_update_rusage(td);
1102
1103         if (td->trim_entries)
1104                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
1105
1106         if (td->o.fill_device && td->error == ENOSPC) {
1107                 td->error = 0;
1108                 fio_mark_td_terminate(td);
1109         }
1110         if (!td->error) {
1111                 struct fio_file *f;
1112
1113                 if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
1114                         workqueue_flush(&td->io_wq);
1115                         i = 0;
1116                 } else
1117                         i = td->cur_depth;
1118
1119                 if (i) {
1120                         ret = io_u_queued_complete(td, i);
1121                         if (td->o.fill_device && td->error == ENOSPC)
1122                                 td->error = 0;
1123                 }
1124
1125                 if (should_fsync(td) && td->o.end_fsync) {
1126                         td_set_runstate(td, TD_FSYNCING);
1127
1128                         for_each_file(td, f, i) {
1129                                 if (!fio_file_fsync(td, f))
1130                                         continue;
1131
1132                                 log_err("fio: end_fsync failed for file %s\n",
1133                                                                 f->file_name);
1134                         }
1135                 }
1136         } else
1137                 cleanup_pending_aio(td);
1138
1139         /*
1140          * stop job if we failed doing any IO
1141          */
1142         if (!ddir_rw_sum(td->this_io_bytes))
1143                 td->done = 1;
1144
1145         for (i = 0; i < DDIR_RWDIR_CNT; i++)
1146                 bytes_done[i] = td->bytes_done[i] - bytes_done[i];
1147 }
1148
1149 static void free_file_completion_logging(struct thread_data *td)
1150 {
1151         struct fio_file *f;
1152         unsigned int i;
1153
1154         for_each_file(td, f, i) {
1155                 if (!f->last_write_comp)
1156                         break;
1157                 sfree(f->last_write_comp);
1158         }
1159 }
1160
1161 static int init_file_completion_logging(struct thread_data *td,
1162                                         unsigned int depth)
1163 {
1164         struct fio_file *f;
1165         unsigned int i;
1166
1167         if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
1168                 return 0;
1169
1170         for_each_file(td, f, i) {
1171                 f->last_write_comp = scalloc(depth, sizeof(uint64_t));
1172                 if (!f->last_write_comp)
1173                         goto cleanup;
1174         }
1175
1176         return 0;
1177
1178 cleanup:
1179         free_file_completion_logging(td);
1180         log_err("fio: failed to alloc write comp data\n");
1181         return 1;
1182 }
1183
1184 static void cleanup_io_u(struct thread_data *td)
1185 {
1186         struct io_u *io_u;
1187
1188         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
1189
1190                 if (td->io_ops->io_u_free)
1191                         td->io_ops->io_u_free(td, io_u);
1192
1193                 fio_memfree(io_u, sizeof(*io_u), td_offload_overlap(td));
1194         }
1195
1196         free_io_mem(td);
1197
1198         io_u_rexit(&td->io_u_requeues);
1199         io_u_qexit(&td->io_u_freelist, false);
1200         io_u_qexit(&td->io_u_all, td_offload_overlap(td));
1201
1202         free_file_completion_logging(td);
1203 }
1204
1205 static int init_io_u(struct thread_data *td)
1206 {
1207         struct io_u *io_u;
1208         int cl_align, i, max_units;
1209         int err;
1210
1211         max_units = td->o.iodepth;
1212
1213         err = 0;
1214         err += !io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1215         err += !io_u_qinit(&td->io_u_freelist, td->o.iodepth, false);
1216         err += !io_u_qinit(&td->io_u_all, td->o.iodepth, td_offload_overlap(td));
1217
1218         if (err) {
1219                 log_err("fio: failed setting up IO queues\n");
1220                 return 1;
1221         }
1222
1223         cl_align = os_cache_line_size();
1224
1225         for (i = 0; i < max_units; i++) {
1226                 void *ptr;
1227
1228                 if (td->terminate)
1229                         return 1;
1230
1231                 ptr = fio_memalign(cl_align, sizeof(*io_u), td_offload_overlap(td));
1232                 if (!ptr) {
1233                         log_err("fio: unable to allocate aligned memory\n");
1234                         break;
1235                 }
1236
1237                 io_u = ptr;
1238                 memset(io_u, 0, sizeof(*io_u));
1239                 INIT_FLIST_HEAD(&io_u->verify_list);
1240                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1241
1242                 io_u->index = i;
1243                 io_u->flags = IO_U_F_FREE;
1244                 io_u_qpush(&td->io_u_freelist, io_u);
1245
1246                 /*
1247                  * io_u never leaves this stack, used for iteration of all
1248                  * io_u buffers.
1249                  */
1250                 io_u_qpush(&td->io_u_all, io_u);
1251
1252                 if (td->io_ops->io_u_init) {
1253                         int ret = td->io_ops->io_u_init(td, io_u);
1254
1255                         if (ret) {
1256                                 log_err("fio: failed to init engine data: %d\n", ret);
1257                                 return 1;
1258                         }
1259                 }
1260         }
1261
1262         init_io_u_buffers(td);
1263
1264         if (init_file_completion_logging(td, max_units))
1265                 return 1;
1266
1267         return 0;
1268 }
1269
1270 int init_io_u_buffers(struct thread_data *td)
1271 {
1272         struct io_u *io_u;
1273         unsigned long long max_bs, min_write;
1274         int i, max_units;
1275         int data_xfer = 1;
1276         char *p;
1277
1278         max_units = td->o.iodepth;
1279         max_bs = td_max_bs(td);
1280         min_write = td->o.min_bs[DDIR_WRITE];
1281         td->orig_buffer_size = (unsigned long long) max_bs
1282                                         * (unsigned long long) max_units;
1283
1284         if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
1285                 data_xfer = 0;
1286
1287         /*
1288          * if we may later need to do address alignment, then add any
1289          * possible adjustment here so that we don't cause a buffer
1290          * overflow later. this adjustment may be too much if we get
1291          * lucky and the allocator gives us an aligned address.
1292          */
1293         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1294             td_ioengine_flagged(td, FIO_RAWIO))
1295                 td->orig_buffer_size += page_mask + td->o.mem_align;
1296
1297         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1298                 unsigned long long bs;
1299
1300                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1301                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1302         }
1303
1304         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1305                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1306                 return 1;
1307         }
1308
1309         if (data_xfer && allocate_io_mem(td))
1310                 return 1;
1311
1312         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1313             td_ioengine_flagged(td, FIO_RAWIO))
1314                 p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
1315         else
1316                 p = td->orig_buffer;
1317
1318         for (i = 0; i < max_units; i++) {
1319                 io_u = td->io_u_all.io_us[i];
1320                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1321
1322                 if (data_xfer) {
1323                         io_u->buf = p;
1324                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1325
1326                         if (td_write(td))
1327                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1328                         if (td_write(td) && td->o.verify_pattern_bytes) {
1329                                 /*
1330                                  * Fill the buffer with the pattern if we are
1331                                  * going to be doing writes.
1332                                  */
1333                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1334                         }
1335                 }
1336                 p += max_bs;
1337         }
1338
1339         return 0;
1340 }
1341
1342 /*
1343  * This function is Linux specific.
1344  * FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
1345  */
1346 static int switch_ioscheduler(struct thread_data *td)
1347 {
1348 #ifdef FIO_HAVE_IOSCHED_SWITCH
1349         char tmp[256], tmp2[128], *p;
1350         FILE *f;
1351         int ret;
1352
1353         if (td_ioengine_flagged(td, FIO_DISKLESSIO))
1354                 return 0;
1355
1356         assert(td->files && td->files[0]);
1357         sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
1358
1359         f = fopen(tmp, "r+");
1360         if (!f) {
1361                 if (errno == ENOENT) {
1362                         log_err("fio: os or kernel doesn't support IO scheduler"
1363                                 " switching\n");
1364                         return 0;
1365                 }
1366                 td_verror(td, errno, "fopen iosched");
1367                 return 1;
1368         }
1369
1370         /*
1371          * Set io scheduler.
1372          */
1373         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1374         if (ferror(f) || ret != 1) {
1375                 td_verror(td, errno, "fwrite");
1376                 fclose(f);
1377                 return 1;
1378         }
1379
1380         rewind(f);
1381
1382         /*
1383          * Read back and check that the selected scheduler is now the default.
1384          */
1385         ret = fread(tmp, 1, sizeof(tmp) - 1, f);
1386         if (ferror(f) || ret < 0) {
1387                 td_verror(td, errno, "fread");
1388                 fclose(f);
1389                 return 1;
1390         }
1391         tmp[ret] = '\0';
1392         /*
1393          * either a list of io schedulers or "none\n" is expected. Strip the
1394          * trailing newline.
1395          */
1396         p = tmp;
1397         strsep(&p, "\n");
1398
1399         /*
1400          * Write to "none" entry doesn't fail, so check the result here.
1401          */
1402         if (!strcmp(tmp, "none")) {
1403                 log_err("fio: io scheduler is not tunable\n");
1404                 fclose(f);
1405                 return 0;
1406         }
1407
1408         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1409         if (!strstr(tmp, tmp2)) {
1410                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1411                 td_verror(td, EINVAL, "iosched_switch");
1412                 fclose(f);
1413                 return 1;
1414         }
1415
1416         fclose(f);
1417         return 0;
1418 #else
1419         return 0;
1420 #endif
1421 }
1422
1423 static bool keep_running(struct thread_data *td)
1424 {
1425         unsigned long long limit;
1426
1427         if (td->done)
1428                 return false;
1429         if (td->terminate)
1430                 return false;
1431         if (td->o.time_based)
1432                 return true;
1433         if (td->o.loops) {
1434                 td->o.loops--;
1435                 return true;
1436         }
1437         if (exceeds_number_ios(td))
1438                 return false;
1439
1440         if (td->o.io_size)
1441                 limit = td->o.io_size;
1442         else
1443                 limit = td->o.size;
1444
1445         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1446                 uint64_t diff;
1447
1448                 /*
1449                  * If the difference is less than the maximum IO size, we
1450                  * are done.
1451                  */
1452                 diff = limit - ddir_rw_sum(td->io_bytes);
1453                 if (diff < td_max_bs(td))
1454                         return false;
1455
1456                 if (fio_files_done(td) && !td->o.io_size)
1457                         return false;
1458
1459                 return true;
1460         }
1461
1462         return false;
1463 }
1464
1465 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1466 {
1467         size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1468         int ret;
1469         char *str;
1470
1471         str = malloc(newlen);
1472         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1473
1474         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1475         ret = system(str);
1476         if (ret == -1)
1477                 log_err("fio: exec of cmd <%s> failed\n", str);
1478
1479         free(str);
1480         return ret;
1481 }
1482
1483 /*
1484  * Dry run to compute correct state of numberio for verification.
1485  */
1486 static uint64_t do_dry_run(struct thread_data *td)
1487 {
1488         td_set_runstate(td, TD_RUNNING);
1489
1490         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1491                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1492                 struct io_u *io_u;
1493                 int ret;
1494
1495                 if (td->terminate || td->done)
1496                         break;
1497
1498                 io_u = get_io_u(td);
1499                 if (IS_ERR_OR_NULL(io_u))
1500                         break;
1501
1502                 io_u_set(td, io_u, IO_U_F_FLIGHT);
1503                 io_u->error = 0;
1504                 io_u->resid = 0;
1505                 if (ddir_rw(acct_ddir(io_u)))
1506                         td->io_issues[acct_ddir(io_u)]++;
1507                 if (ddir_rw(io_u->ddir)) {
1508                         io_u_mark_depth(td, 1);
1509                         td->ts.total_io_u[io_u->ddir]++;
1510                 }
1511
1512                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1513                     td->o.do_verify &&
1514                     td->o.verify != VERIFY_NONE &&
1515                     !td->o.experimental_verify)
1516                         log_io_piece(td, io_u);
1517
1518                 ret = io_u_sync_complete(td, io_u);
1519                 (void) ret;
1520         }
1521
1522         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1523 }
1524
1525 struct fork_data {
1526         struct thread_data *td;
1527         struct sk_out *sk_out;
1528 };
1529
1530 /*
1531  * Entry point for the thread based jobs. The process based jobs end up
1532  * here as well, after a little setup.
1533  */
1534 static void *thread_main(void *data)
1535 {
1536         struct fork_data *fd = data;
1537         unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
1538         struct thread_data *td = fd->td;
1539         struct thread_options *o = &td->o;
1540         struct sk_out *sk_out = fd->sk_out;
1541         uint64_t bytes_done[DDIR_RWDIR_CNT];
1542         int deadlock_loop_cnt;
1543         bool clear_state, did_some_io;
1544         int ret;
1545
1546         sk_out_assign(sk_out);
1547         free(fd);
1548
1549         if (!o->use_thread) {
1550                 setsid();
1551                 td->pid = getpid();
1552         } else
1553                 td->pid = gettid();
1554
1555         fio_local_clock_init();
1556
1557         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1558
1559         if (is_backend)
1560                 fio_server_send_start(td);
1561
1562         INIT_FLIST_HEAD(&td->io_log_list);
1563         INIT_FLIST_HEAD(&td->io_hist_list);
1564         INIT_FLIST_HEAD(&td->verify_list);
1565         INIT_FLIST_HEAD(&td->trim_list);
1566         td->io_hist_tree = RB_ROOT;
1567
1568         ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
1569         if (ret) {
1570                 td_verror(td, ret, "mutex_cond_init_pshared");
1571                 goto err;
1572         }
1573         ret = cond_init_pshared(&td->verify_cond);
1574         if (ret) {
1575                 td_verror(td, ret, "mutex_cond_pshared");
1576                 goto err;
1577         }
1578
1579         td_set_runstate(td, TD_INITIALIZED);
1580         dprint(FD_MUTEX, "up startup_sem\n");
1581         fio_sem_up(startup_sem);
1582         dprint(FD_MUTEX, "wait on td->sem\n");
1583         fio_sem_down(td->sem);
1584         dprint(FD_MUTEX, "done waiting on td->sem\n");
1585
1586         /*
1587          * A new gid requires privilege, so we need to do this before setting
1588          * the uid.
1589          */
1590         if (o->gid != -1U && setgid(o->gid)) {
1591                 td_verror(td, errno, "setgid");
1592                 goto err;
1593         }
1594         if (o->uid != -1U && setuid(o->uid)) {
1595                 td_verror(td, errno, "setuid");
1596                 goto err;
1597         }
1598
1599         td_zone_gen_index(td);
1600
1601         /*
1602          * Do this early, we don't want the compress threads to be limited
1603          * to the same CPUs as the IO workers. So do this before we set
1604          * any potential CPU affinity
1605          */
1606         if (iolog_compress_init(td, sk_out))
1607                 goto err;
1608
1609         /*
1610          * If we have a gettimeofday() thread, make sure we exclude that
1611          * thread from this job
1612          */
1613         if (o->gtod_cpu)
1614                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1615
1616         /*
1617          * Set affinity first, in case it has an impact on the memory
1618          * allocations.
1619          */
1620         if (fio_option_is_set(o, cpumask)) {
1621                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1622                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1623                         if (!ret) {
1624                                 log_err("fio: no CPUs set\n");
1625                                 log_err("fio: Try increasing number of available CPUs\n");
1626                                 td_verror(td, EINVAL, "cpus_split");
1627                                 goto err;
1628                         }
1629                 }
1630                 ret = fio_setaffinity(td->pid, o->cpumask);
1631                 if (ret == -1) {
1632                         td_verror(td, errno, "cpu_set_affinity");
1633                         goto err;
1634                 }
1635         }
1636
1637 #ifdef CONFIG_LIBNUMA
1638         /* numa node setup */
1639         if (fio_option_is_set(o, numa_cpunodes) ||
1640             fio_option_is_set(o, numa_memnodes)) {
1641                 struct bitmask *mask;
1642
1643                 if (numa_available() < 0) {
1644                         td_verror(td, errno, "Does not support NUMA API\n");
1645                         goto err;
1646                 }
1647
1648                 if (fio_option_is_set(o, numa_cpunodes)) {
1649                         mask = numa_parse_nodestring(o->numa_cpunodes);
1650                         ret = numa_run_on_node_mask(mask);
1651                         numa_free_nodemask(mask);
1652                         if (ret == -1) {
1653                                 td_verror(td, errno, \
1654                                         "numa_run_on_node_mask failed\n");
1655                                 goto err;
1656                         }
1657                 }
1658
1659                 if (fio_option_is_set(o, numa_memnodes)) {
1660                         mask = NULL;
1661                         if (o->numa_memnodes)
1662                                 mask = numa_parse_nodestring(o->numa_memnodes);
1663
1664                         switch (o->numa_mem_mode) {
1665                         case MPOL_INTERLEAVE:
1666                                 numa_set_interleave_mask(mask);
1667                                 break;
1668                         case MPOL_BIND:
1669                                 numa_set_membind(mask);
1670                                 break;
1671                         case MPOL_LOCAL:
1672                                 numa_set_localalloc();
1673                                 break;
1674                         case MPOL_PREFERRED:
1675                                 numa_set_preferred(o->numa_mem_prefer_node);
1676                                 break;
1677                         case MPOL_DEFAULT:
1678                         default:
1679                                 break;
1680                         }
1681
1682                         if (mask)
1683                                 numa_free_nodemask(mask);
1684
1685                 }
1686         }
1687 #endif
1688
1689         if (fio_pin_memory(td))
1690                 goto err;
1691
1692         /*
1693          * May alter parameters that init_io_u() will use, so we need to
1694          * do this first.
1695          */
1696         if (!init_iolog(td))
1697                 goto err;
1698
1699         if (init_io_u(td))
1700                 goto err;
1701
1702         if (o->verify_async && verify_async_init(td))
1703                 goto err;
1704
1705         if (fio_option_is_set(o, ioprio) ||
1706             fio_option_is_set(o, ioprio_class)) {
1707                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1708                 if (ret == -1) {
1709                         td_verror(td, errno, "ioprio_set");
1710                         goto err;
1711                 }
1712         }
1713
1714         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1715                 goto err;
1716
1717         errno = 0;
1718         if (nice(o->nice) == -1 && errno != 0) {
1719                 td_verror(td, errno, "nice");
1720                 goto err;
1721         }
1722
1723         if (o->ioscheduler && switch_ioscheduler(td))
1724                 goto err;
1725
1726         if (!o->create_serialize && setup_files(td))
1727                 goto err;
1728
1729         if (td_io_init(td))
1730                 goto err;
1731
1732         if (!init_random_map(td))
1733                 goto err;
1734
1735         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1736                 goto err;
1737
1738         if (o->pre_read && !pre_read_files(td))
1739                 goto err;
1740
1741         fio_verify_init(td);
1742
1743         if (rate_submit_init(td, sk_out))
1744                 goto err;
1745
1746         set_epoch_time(td, o->log_unix_epoch);
1747         fio_getrusage(&td->ru_start);
1748         memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
1749         memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
1750         memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
1751
1752         if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1753                         o->ratemin[DDIR_TRIM]) {
1754                 memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1755                                         sizeof(td->bw_sample_time));
1756                 memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1757                                         sizeof(td->bw_sample_time));
1758                 memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1759                                         sizeof(td->bw_sample_time));
1760         }
1761
1762         memset(bytes_done, 0, sizeof(bytes_done));
1763         clear_state = false;
1764         did_some_io = false;
1765
1766         while (keep_running(td)) {
1767                 uint64_t verify_bytes;
1768
1769                 fio_gettime(&td->start, NULL);
1770                 memcpy(&td->ts_cache, &td->start, sizeof(td->start));
1771
1772                 if (clear_state) {
1773                         clear_io_state(td, 0);
1774
1775                         if (o->unlink_each_loop && unlink_all_files(td))
1776                                 break;
1777                 }
1778
1779                 prune_io_piece_log(td);
1780
1781                 if (td->o.verify_only && td_write(td))
1782                         verify_bytes = do_dry_run(td);
1783                 else {
1784                         do_io(td, bytes_done);
1785
1786                         if (!ddir_rw_sum(bytes_done)) {
1787                                 fio_mark_td_terminate(td);
1788                                 verify_bytes = 0;
1789                         } else {
1790                                 verify_bytes = bytes_done[DDIR_WRITE] +
1791                                                 bytes_done[DDIR_TRIM];
1792                         }
1793                 }
1794
1795                 /*
1796                  * If we took too long to shut down, the main thread could
1797                  * already consider us reaped/exited. If that happens, break
1798                  * out and clean up.
1799                  */
1800                 if (td->runstate >= TD_EXITED)
1801                         break;
1802
1803                 clear_state = true;
1804
1805                 /*
1806                  * Make sure we've successfully updated the rusage stats
1807                  * before waiting on the stat mutex. Otherwise we could have
1808                  * the stat thread holding stat mutex and waiting for
1809                  * the rusage_sem, which would never get upped because
1810                  * this thread is waiting for the stat mutex.
1811                  */
1812                 deadlock_loop_cnt = 0;
1813                 do {
1814                         check_update_rusage(td);
1815                         if (!fio_sem_down_trylock(stat_sem))
1816                                 break;
1817                         usleep(1000);
1818                         if (deadlock_loop_cnt++ > 5000) {
1819                                 log_err("fio seems to be stuck grabbing stat_sem, forcibly exiting\n");
1820                                 td->error = EDEADLK;
1821                                 goto err;
1822                         }
1823                 } while (1);
1824
1825                 if (td_read(td) && td->io_bytes[DDIR_READ])
1826                         update_runtime(td, elapsed_us, DDIR_READ);
1827                 if (td_write(td) && td->io_bytes[DDIR_WRITE])
1828                         update_runtime(td, elapsed_us, DDIR_WRITE);
1829                 if (td_trim(td) && td->io_bytes[DDIR_TRIM])
1830                         update_runtime(td, elapsed_us, DDIR_TRIM);
1831                 fio_gettime(&td->start, NULL);
1832                 fio_sem_up(stat_sem);
1833
1834                 if (td->error || td->terminate)
1835                         break;
1836
1837                 if (!o->do_verify ||
1838                     o->verify == VERIFY_NONE ||
1839                     td_ioengine_flagged(td, FIO_UNIDIR))
1840                         continue;
1841
1842                 if (ddir_rw_sum(bytes_done))
1843                         did_some_io = true;
1844
1845                 clear_io_state(td, 0);
1846
1847                 fio_gettime(&td->start, NULL);
1848
1849                 do_verify(td, verify_bytes);
1850
1851                 /*
1852                  * See comment further up for why this is done here.
1853                  */
1854                 check_update_rusage(td);
1855
1856                 fio_sem_down(stat_sem);
1857                 update_runtime(td, elapsed_us, DDIR_READ);
1858                 fio_gettime(&td->start, NULL);
1859                 fio_sem_up(stat_sem);
1860
1861                 if (td->error || td->terminate)
1862                         break;
1863         }
1864
1865         /*
1866          * If td ended up with no I/O when it should have had,
1867          * then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
1868          * (Are we not missing other flags that can be ignored ?)
1869          */
1870         if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
1871             !did_some_io && (td->o.iodepth_mode != IOD_STEPPED) &&
1872             !td->o.create_only &&
1873             !(td_ioengine_flagged(td, FIO_NOIO) ||
1874               td_ioengine_flagged(td, FIO_DISKLESSIO)))
1875                 log_err("%s: No I/O performed by %s, "
1876                          "perhaps try --debug=io option for details?\n",
1877                          td->o.name, td->io_ops->name);
1878
1879         /*
1880          * Acquire this lock if we were doing overlap checking in
1881          * offload mode so that we don't clean up this job while
1882          * another thread is checking its io_u's for overlap
1883          */
1884         if (td_offload_overlap(td))
1885                 pthread_mutex_lock(&overlap_check);
1886         td_set_runstate(td, TD_FINISHING);
1887         if (td_offload_overlap(td))
1888                 pthread_mutex_unlock(&overlap_check);
1889
1890         update_rusage_stat(td);
1891         td->ts.total_run_time = mtime_since_now(&td->epoch);
1892         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1893         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1894         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1895
1896         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1897             (td->o.verify != VERIFY_NONE && td_write(td)))
1898                 verify_save_state(td->thread_number);
1899
1900         fio_unpin_memory(td);
1901
1902         td_writeout_logs(td, true);
1903
1904         iolog_compress_exit(td);
1905         rate_submit_exit(td);
1906
1907         if (o->exec_postrun)
1908                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1909
1910         if (exitall_on_terminate || (o->exitall_error && td->error))
1911                 fio_terminate_threads(td->groupid);
1912
1913 err:
1914         if (td->error)
1915                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1916                                                         td->verror);
1917
1918         if (o->verify_async)
1919                 verify_async_exit(td);
1920
1921         close_and_free_files(td);
1922         cleanup_io_u(td);
1923         close_ioengine(td);
1924         cgroup_shutdown(td, cgroup_mnt);
1925         verify_free_state(td);
1926         td_zone_free_index(td);
1927
1928         if (fio_option_is_set(o, cpumask)) {
1929                 ret = fio_cpuset_exit(&o->cpumask);
1930                 if (ret)
1931                         td_verror(td, ret, "fio_cpuset_exit");
1932         }
1933
1934         /*
1935          * do this very late, it will log file closing as well
1936          */
1937         if (o->write_iolog_file)
1938                 write_iolog_close(td);
1939         if (td->io_log_rfile)
1940                 fclose(td->io_log_rfile);
1941
1942         td_set_runstate(td, TD_EXITED);
1943
1944         /*
1945          * Do this last after setting our runstate to exited, so we
1946          * know that the stat thread is signaled.
1947          */
1948         check_update_rusage(td);
1949
1950         sk_out_drop();
1951         return (void *) (uintptr_t) td->error;
1952 }
1953
1954 /*
1955  * Run over the job map and reap the threads that have exited, if any.
1956  */
1957 static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
1958                          uint64_t *m_rate)
1959 {
1960         struct thread_data *td;
1961         unsigned int cputhreads, realthreads, pending;
1962         int i, status, ret;
1963
1964         /*
1965          * reap exited threads (TD_EXITED -> TD_REAPED)
1966          */
1967         realthreads = pending = cputhreads = 0;
1968         for_each_td(td, i) {
1969                 int flags = 0;
1970
1971                  if (!strcmp(td->o.ioengine, "cpuio"))
1972                         cputhreads++;
1973                 else
1974                         realthreads++;
1975
1976                 if (!td->pid) {
1977                         pending++;
1978                         continue;
1979                 }
1980                 if (td->runstate == TD_REAPED)
1981                         continue;
1982                 if (td->o.use_thread) {
1983                         if (td->runstate == TD_EXITED) {
1984                                 td_set_runstate(td, TD_REAPED);
1985                                 goto reaped;
1986                         }
1987                         continue;
1988                 }
1989
1990                 flags = WNOHANG;
1991                 if (td->runstate == TD_EXITED)
1992                         flags = 0;
1993
1994                 /*
1995                  * check if someone quit or got killed in an unusual way
1996                  */
1997                 ret = waitpid(td->pid, &status, flags);
1998                 if (ret < 0) {
1999                         if (errno == ECHILD) {
2000                                 log_err("fio: pid=%d disappeared %d\n",
2001                                                 (int) td->pid, td->runstate);
2002                                 td->sig = ECHILD;
2003                                 td_set_runstate(td, TD_REAPED);
2004                                 goto reaped;
2005                         }
2006                         perror("waitpid");
2007                 } else if (ret == td->pid) {
2008                         if (WIFSIGNALED(status)) {
2009                                 int sig = WTERMSIG(status);
2010
2011                                 if (sig != SIGTERM && sig != SIGUSR2)
2012                                         log_err("fio: pid=%d, got signal=%d\n",
2013                                                         (int) td->pid, sig);
2014                                 td->sig = sig;
2015                                 td_set_runstate(td, TD_REAPED);
2016                                 goto reaped;
2017                         }
2018                         if (WIFEXITED(status)) {
2019                                 if (WEXITSTATUS(status) && !td->error)
2020                                         td->error = WEXITSTATUS(status);
2021
2022                                 td_set_runstate(td, TD_REAPED);
2023                                 goto reaped;
2024                         }
2025                 }
2026
2027                 /*
2028                  * If the job is stuck, do a forceful timeout of it and
2029                  * move on.
2030                  */
2031                 if (td->terminate &&
2032                     td->runstate < TD_FSYNCING &&
2033                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
2034                         log_err("fio: job '%s' (state=%d) hasn't exited in "
2035                                 "%lu seconds, it appears to be stuck. Doing "
2036                                 "forceful exit of this job.\n",
2037                                 td->o.name, td->runstate,
2038                                 (unsigned long) time_since_now(&td->terminate_time));
2039                         td_set_runstate(td, TD_REAPED);
2040                         goto reaped;
2041                 }
2042
2043                 /*
2044                  * thread is not dead, continue
2045                  */
2046                 pending++;
2047                 continue;
2048 reaped:
2049                 (*nr_running)--;
2050                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
2051                 (*t_rate) -= ddir_rw_sum(td->o.rate);
2052                 if (!td->pid)
2053                         pending--;
2054
2055                 if (td->error)
2056                         exit_value++;
2057
2058                 done_secs += mtime_since_now(&td->epoch) / 1000;
2059                 profile_td_exit(td);
2060         }
2061
2062         if (*nr_running == cputhreads && !pending && realthreads)
2063                 fio_terminate_threads(TERMINATE_ALL);
2064 }
2065
2066 static bool __check_trigger_file(void)
2067 {
2068         struct stat sb;
2069
2070         if (!trigger_file)
2071                 return false;
2072
2073         if (stat(trigger_file, &sb))
2074                 return false;
2075
2076         if (unlink(trigger_file) < 0)
2077                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
2078                                                         strerror(errno));
2079
2080         return true;
2081 }
2082
2083 static bool trigger_timedout(void)
2084 {
2085         if (trigger_timeout)
2086                 if (time_since_genesis() >= trigger_timeout) {
2087                         trigger_timeout = 0;
2088                         return true;
2089                 }
2090
2091         return false;
2092 }
2093
2094 void exec_trigger(const char *cmd)
2095 {
2096         int ret;
2097
2098         if (!cmd || cmd[0] == '\0')
2099                 return;
2100
2101         ret = system(cmd);
2102         if (ret == -1)
2103                 log_err("fio: failed executing %s trigger\n", cmd);
2104 }
2105
2106 void check_trigger_file(void)
2107 {
2108         if (__check_trigger_file() || trigger_timedout()) {
2109                 if (nr_clients)
2110                         fio_clients_send_trigger(trigger_remote_cmd);
2111                 else {
2112                         verify_save_state(IO_LIST_ALL);
2113                         fio_terminate_threads(TERMINATE_ALL);
2114                         exec_trigger(trigger_cmd);
2115                 }
2116         }
2117 }
2118
2119 static int fio_verify_load_state(struct thread_data *td)
2120 {
2121         int ret;
2122
2123         if (!td->o.verify_state)
2124                 return 0;
2125
2126         if (is_backend) {
2127                 void *data;
2128
2129                 ret = fio_server_get_verify_state(td->o.name,
2130                                         td->thread_number - 1, &data);
2131                 if (!ret)
2132                         verify_assign_state(td, data);
2133         } else
2134                 ret = verify_load_state(td, "local");
2135
2136         return ret;
2137 }
2138
2139 static void do_usleep(unsigned int usecs)
2140 {
2141         check_for_running_stats();
2142         check_trigger_file();
2143         usleep(usecs);
2144 }
2145
2146 static bool check_mount_writes(struct thread_data *td)
2147 {
2148         struct fio_file *f;
2149         unsigned int i;
2150
2151         if (!td_write(td) || td->o.allow_mounted_write)
2152                 return false;
2153
2154         /*
2155          * If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
2156          * are mkfs'd and mounted.
2157          */
2158         for_each_file(td, f, i) {
2159 #ifdef FIO_HAVE_CHARDEV_SIZE
2160                 if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
2161 #else
2162                 if (f->filetype != FIO_TYPE_BLOCK)
2163 #endif
2164                         continue;
2165                 if (device_is_mounted(f->file_name))
2166                         goto mounted;
2167         }
2168
2169         return false;
2170 mounted:
2171         log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
2172         return true;
2173 }
2174
2175 static bool waitee_running(struct thread_data *me)
2176 {
2177         const char *waitee = me->o.wait_for;
2178         const char *self = me->o.name;
2179         struct thread_data *td;
2180         int i;
2181
2182         if (!waitee)
2183                 return false;
2184
2185         for_each_td(td, i) {
2186                 if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
2187                         continue;
2188
2189                 if (td->runstate < TD_EXITED) {
2190                         dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
2191                                         self, td->o.name,
2192                                         runstate_to_name(td->runstate));
2193                         return true;
2194                 }
2195         }
2196
2197         dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
2198         return false;
2199 }
2200
2201 /*
2202  * Main function for kicking off and reaping jobs, as needed.
2203  */
2204 static void run_threads(struct sk_out *sk_out)
2205 {
2206         struct thread_data *td;
2207         unsigned int i, todo, nr_running, nr_started;
2208         uint64_t m_rate, t_rate;
2209         uint64_t spent;
2210
2211         if (fio_gtod_offload && fio_start_gtod_thread())
2212                 return;
2213
2214         fio_idle_prof_init();
2215
2216         set_sig_handlers();
2217
2218         nr_thread = nr_process = 0;
2219         for_each_td(td, i) {
2220                 if (check_mount_writes(td))
2221                         return;
2222                 if (td->o.use_thread)
2223                         nr_thread++;
2224                 else
2225                         nr_process++;
2226         }
2227
2228         if (output_format & FIO_OUTPUT_NORMAL) {
2229                 struct buf_output out;
2230
2231                 buf_output_init(&out);
2232                 __log_buf(&out, "Starting ");
2233                 if (nr_thread)
2234                         __log_buf(&out, "%d thread%s", nr_thread,
2235                                                 nr_thread > 1 ? "s" : "");
2236                 if (nr_process) {
2237                         if (nr_thread)
2238                                 __log_buf(&out, " and ");
2239                         __log_buf(&out, "%d process%s", nr_process,
2240                                                 nr_process > 1 ? "es" : "");
2241                 }
2242                 __log_buf(&out, "\n");
2243                 log_info_buf(out.buf, out.buflen);
2244                 buf_output_free(&out);
2245         }
2246
2247         todo = thread_number;
2248         nr_running = 0;
2249         nr_started = 0;
2250         m_rate = t_rate = 0;
2251
2252         for_each_td(td, i) {
2253                 print_status_init(td->thread_number - 1);
2254
2255                 if (!td->o.create_serialize)
2256                         continue;
2257
2258                 if (fio_verify_load_state(td))
2259                         goto reap;
2260
2261                 /*
2262                  * do file setup here so it happens sequentially,
2263                  * we don't want X number of threads getting their
2264                  * client data interspersed on disk
2265                  */
2266                 if (setup_files(td)) {
2267 reap:
2268                         exit_value++;
2269                         if (td->error)
2270                                 log_err("fio: pid=%d, err=%d/%s\n",
2271                                         (int) td->pid, td->error, td->verror);
2272                         td_set_runstate(td, TD_REAPED);
2273                         todo--;
2274                 } else {
2275                         struct fio_file *f;
2276                         unsigned int j;
2277
2278                         /*
2279                          * for sharing to work, each job must always open
2280                          * its own files. so close them, if we opened them
2281                          * for creation
2282                          */
2283                         for_each_file(td, f, j) {
2284                                 if (fio_file_open(f))
2285                                         td_io_close_file(td, f);
2286                         }
2287                 }
2288         }
2289
2290         /* start idle threads before io threads start to run */
2291         fio_idle_prof_start();
2292
2293         set_genesis_time();
2294
2295         while (todo) {
2296                 struct thread_data *map[REAL_MAX_JOBS];
2297                 struct timespec this_start;
2298                 int this_jobs = 0, left;
2299                 struct fork_data *fd;
2300
2301                 /*
2302                  * create threads (TD_NOT_CREATED -> TD_CREATED)
2303                  */
2304                 for_each_td(td, i) {
2305                         if (td->runstate != TD_NOT_CREATED)
2306                                 continue;
2307
2308                         /*
2309                          * never got a chance to start, killed by other
2310                          * thread for some reason
2311                          */
2312                         if (td->terminate) {
2313                                 todo--;
2314                                 continue;
2315                         }
2316
2317                         if (td->o.start_delay) {
2318                                 spent = utime_since_genesis();
2319
2320                                 if (td->o.start_delay > spent)
2321                                         continue;
2322                         }
2323
2324                         if (td->o.stonewall && (nr_started || nr_running)) {
2325                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
2326                                                         td->o.name);
2327                                 break;
2328                         }
2329
2330                         if (waitee_running(td)) {
2331                                 dprint(FD_PROCESS, "%s: waiting for %s\n",
2332                                                 td->o.name, td->o.wait_for);
2333                                 continue;
2334                         }
2335
2336                         init_disk_util(td);
2337
2338                         td->rusage_sem = fio_sem_init(FIO_SEM_LOCKED);
2339                         td->update_rusage = 0;
2340
2341                         /*
2342                          * Set state to created. Thread will transition
2343                          * to TD_INITIALIZED when it's done setting up.
2344                          */
2345                         td_set_runstate(td, TD_CREATED);
2346                         map[this_jobs++] = td;
2347                         nr_started++;
2348
2349                         fd = calloc(1, sizeof(*fd));
2350                         fd->td = td;
2351                         fd->sk_out = sk_out;
2352
2353                         if (td->o.use_thread) {
2354                                 int ret;
2355
2356                                 dprint(FD_PROCESS, "will pthread_create\n");
2357                                 ret = pthread_create(&td->thread, NULL,
2358                                                         thread_main, fd);
2359                                 if (ret) {
2360                                         log_err("pthread_create: %s\n",
2361                                                         strerror(ret));
2362                                         free(fd);
2363                                         nr_started--;
2364                                         break;
2365                                 }
2366                                 fd = NULL;
2367                                 ret = pthread_detach(td->thread);
2368                                 if (ret)
2369                                         log_err("pthread_detach: %s",
2370                                                         strerror(ret));
2371                         } else {
2372                                 pid_t pid;
2373                                 dprint(FD_PROCESS, "will fork\n");
2374                                 pid = fork();
2375                                 if (!pid) {
2376                                         int ret;
2377
2378                                         ret = (int)(uintptr_t)thread_main(fd);
2379                                         _exit(ret);
2380                                 } else if (i == fio_debug_jobno)
2381                                         *fio_debug_jobp = pid;
2382                         }
2383                         dprint(FD_MUTEX, "wait on startup_sem\n");
2384                         if (fio_sem_down_timeout(startup_sem, 10000)) {
2385                                 log_err("fio: job startup hung? exiting.\n");
2386                                 fio_terminate_threads(TERMINATE_ALL);
2387                                 fio_abort = true;
2388                                 nr_started--;
2389                                 free(fd);
2390                                 break;
2391                         }
2392                         dprint(FD_MUTEX, "done waiting on startup_sem\n");
2393                 }
2394
2395                 /*
2396                  * Wait for the started threads to transition to
2397                  * TD_INITIALIZED.
2398                  */
2399                 fio_gettime(&this_start, NULL);
2400                 left = this_jobs;
2401                 while (left && !fio_abort) {
2402                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2403                                 break;
2404
2405                         do_usleep(100000);
2406
2407                         for (i = 0; i < this_jobs; i++) {
2408                                 td = map[i];
2409                                 if (!td)
2410                                         continue;
2411                                 if (td->runstate == TD_INITIALIZED) {
2412                                         map[i] = NULL;
2413                                         left--;
2414                                 } else if (td->runstate >= TD_EXITED) {
2415                                         map[i] = NULL;
2416                                         left--;
2417                                         todo--;
2418                                         nr_running++; /* work-around... */
2419                                 }
2420                         }
2421                 }
2422
2423                 if (left) {
2424                         log_err("fio: %d job%s failed to start\n", left,
2425                                         left > 1 ? "s" : "");
2426                         for (i = 0; i < this_jobs; i++) {
2427                                 td = map[i];
2428                                 if (!td)
2429                                         continue;
2430                                 kill(td->pid, SIGTERM);
2431                         }
2432                         break;
2433                 }
2434
2435                 /*
2436                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2437                  */
2438                 for_each_td(td, i) {
2439                         if (td->runstate != TD_INITIALIZED)
2440                                 continue;
2441
2442                         if (in_ramp_time(td))
2443                                 td_set_runstate(td, TD_RAMP);
2444                         else
2445                                 td_set_runstate(td, TD_RUNNING);
2446                         nr_running++;
2447                         nr_started--;
2448                         m_rate += ddir_rw_sum(td->o.ratemin);
2449                         t_rate += ddir_rw_sum(td->o.rate);
2450                         todo--;
2451                         fio_sem_up(td->sem);
2452                 }
2453
2454                 reap_threads(&nr_running, &t_rate, &m_rate);
2455
2456                 if (todo)
2457                         do_usleep(100000);
2458         }
2459
2460         while (nr_running) {
2461                 reap_threads(&nr_running, &t_rate, &m_rate);
2462                 do_usleep(10000);
2463         }
2464
2465         fio_idle_prof_stop();
2466
2467         update_io_ticks();
2468 }
2469
2470 static void free_disk_util(void)
2471 {
2472         disk_util_prune_entries();
2473         helper_thread_destroy();
2474 }
2475
2476 int fio_backend(struct sk_out *sk_out)
2477 {
2478         struct thread_data *td;
2479         int i;
2480
2481         if (exec_profile) {
2482                 if (load_profile(exec_profile))
2483                         return 1;
2484                 free(exec_profile);
2485                 exec_profile = NULL;
2486         }
2487         if (!thread_number)
2488                 return 0;
2489
2490         if (write_bw_log) {
2491                 struct log_params p = {
2492                         .log_type = IO_LOG_TYPE_BW,
2493                 };
2494
2495                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2496                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2497                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2498         }
2499
2500         startup_sem = fio_sem_init(FIO_SEM_LOCKED);
2501         if (!sk_out)
2502                 is_local_backend = true;
2503         if (startup_sem == NULL)
2504                 return 1;
2505
2506         set_genesis_time();
2507         stat_init();
2508         helper_thread_create(startup_sem, sk_out);
2509
2510         cgroup_list = smalloc(sizeof(*cgroup_list));
2511         if (cgroup_list)
2512                 INIT_FLIST_HEAD(cgroup_list);
2513
2514         run_threads(sk_out);
2515
2516         helper_thread_exit();
2517
2518         if (!fio_abort) {
2519                 __show_run_stats();
2520                 if (write_bw_log) {
2521                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2522                                 struct io_log *log = agg_io_log[i];
2523
2524                                 flush_log(log, false);
2525                                 free_log(log);
2526                         }
2527                 }
2528         }
2529
2530         for_each_td(td, i) {
2531                 steadystate_free(td);
2532                 fio_options_free(td);
2533                 if (td->rusage_sem) {
2534                         fio_sem_remove(td->rusage_sem);
2535                         td->rusage_sem = NULL;
2536                 }
2537                 fio_sem_remove(td->sem);
2538                 td->sem = NULL;
2539         }
2540
2541         free_disk_util();
2542         if (cgroup_list) {
2543                 cgroup_kill(cgroup_list);
2544                 sfree(cgroup_list);
2545         }
2546
2547         fio_sem_remove(startup_sem);
2548         stat_exit();
2549         return exit_value;
2550 }