ARM: mvebu_v7_defconfig: sync defconfig
[linux-2.6-block.git] / mm / util.c
CommitLineData
16d69265 1#include <linux/mm.h>
30992c97
MM
2#include <linux/slab.h>
3#include <linux/string.h>
3b32123d 4#include <linux/compiler.h>
b95f1b31 5#include <linux/export.h>
96840aa0 6#include <linux/err.h>
3b8f14b4 7#include <linux/sched.h>
6e84f315 8#include <linux/sched/mm.h>
68db0cf1 9#include <linux/sched/task_stack.h>
eb36c587 10#include <linux/security.h>
9800339b 11#include <linux/swap.h>
33806f06 12#include <linux/swapops.h>
00619bcc
JM
13#include <linux/mman.h>
14#include <linux/hugetlb.h>
39f1f78d 15#include <linux/vmalloc.h>
897ab3e0 16#include <linux/userfaultfd_k.h>
00619bcc 17
a4bb1e43 18#include <asm/sections.h>
7c0f6ba6 19#include <linux/uaccess.h>
30992c97 20
6038def0
NK
21#include "internal.h"
22
a4bb1e43
AH
23static inline int is_kernel_rodata(unsigned long addr)
24{
25 return addr >= (unsigned long)__start_rodata &&
26 addr < (unsigned long)__end_rodata;
27}
28
29/**
30 * kfree_const - conditionally free memory
31 * @x: pointer to the memory
32 *
33 * Function calls kfree only if @x is not in .rodata section.
34 */
35void kfree_const(const void *x)
36{
37 if (!is_kernel_rodata((unsigned long)x))
38 kfree(x);
39}
40EXPORT_SYMBOL(kfree_const);
41
30992c97 42/**
30992c97 43 * kstrdup - allocate space for and copy an existing string
30992c97
MM
44 * @s: the string to duplicate
45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
46 */
47char *kstrdup(const char *s, gfp_t gfp)
48{
49 size_t len;
50 char *buf;
51
52 if (!s)
53 return NULL;
54
55 len = strlen(s) + 1;
1d2c8eea 56 buf = kmalloc_track_caller(len, gfp);
30992c97
MM
57 if (buf)
58 memcpy(buf, s, len);
59 return buf;
60}
61EXPORT_SYMBOL(kstrdup);
96840aa0 62
a4bb1e43
AH
63/**
64 * kstrdup_const - conditionally duplicate an existing const string
65 * @s: the string to duplicate
66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
67 *
68 * Function returns source string if it is in .rodata section otherwise it
69 * fallbacks to kstrdup.
70 * Strings allocated by kstrdup_const should be freed by kfree_const.
71 */
72const char *kstrdup_const(const char *s, gfp_t gfp)
73{
74 if (is_kernel_rodata((unsigned long)s))
75 return s;
76
77 return kstrdup(s, gfp);
78}
79EXPORT_SYMBOL(kstrdup_const);
80
1e66df3e
JF
81/**
82 * kstrndup - allocate space for and copy an existing string
83 * @s: the string to duplicate
84 * @max: read at most @max chars from @s
85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
f3515741
DH
86 *
87 * Note: Use kmemdup_nul() instead if the size is known exactly.
1e66df3e
JF
88 */
89char *kstrndup(const char *s, size_t max, gfp_t gfp)
90{
91 size_t len;
92 char *buf;
93
94 if (!s)
95 return NULL;
96
97 len = strnlen(s, max);
98 buf = kmalloc_track_caller(len+1, gfp);
99 if (buf) {
100 memcpy(buf, s, len);
101 buf[len] = '\0';
102 }
103 return buf;
104}
105EXPORT_SYMBOL(kstrndup);
106
1a2f67b4
AD
107/**
108 * kmemdup - duplicate region of memory
109 *
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
113 */
114void *kmemdup(const void *src, size_t len, gfp_t gfp)
115{
116 void *p;
117
1d2c8eea 118 p = kmalloc_track_caller(len, gfp);
1a2f67b4
AD
119 if (p)
120 memcpy(p, src, len);
121 return p;
122}
123EXPORT_SYMBOL(kmemdup);
124
f3515741
DH
125/**
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
130 */
131char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
132{
133 char *buf;
134
135 if (!s)
136 return NULL;
137
138 buf = kmalloc_track_caller(len + 1, gfp);
139 if (buf) {
140 memcpy(buf, s, len);
141 buf[len] = '\0';
142 }
143 return buf;
144}
145EXPORT_SYMBOL(kmemdup_nul);
146
610a77e0
LZ
147/**
148 * memdup_user - duplicate memory region from user space
149 *
150 * @src: source address in user space
151 * @len: number of bytes to copy
152 *
50fd2f29
AV
153 * Returns an ERR_PTR() on failure. Result is physically
154 * contiguous, to be freed by kfree().
610a77e0
LZ
155 */
156void *memdup_user(const void __user *src, size_t len)
157{
158 void *p;
159
6c2c97a2 160 p = kmalloc_track_caller(len, GFP_USER);
610a77e0
LZ
161 if (!p)
162 return ERR_PTR(-ENOMEM);
163
164 if (copy_from_user(p, src, len)) {
165 kfree(p);
166 return ERR_PTR(-EFAULT);
167 }
168
169 return p;
170}
171EXPORT_SYMBOL(memdup_user);
172
50fd2f29
AV
173/**
174 * vmemdup_user - duplicate memory region from user space
175 *
176 * @src: source address in user space
177 * @len: number of bytes to copy
178 *
179 * Returns an ERR_PTR() on failure. Result may be not
180 * physically contiguous. Use kvfree() to free.
181 */
182void *vmemdup_user(const void __user *src, size_t len)
183{
184 void *p;
185
186 p = kvmalloc(len, GFP_USER);
187 if (!p)
188 return ERR_PTR(-ENOMEM);
189
190 if (copy_from_user(p, src, len)) {
191 kvfree(p);
192 return ERR_PTR(-EFAULT);
193 }
194
195 return p;
196}
197EXPORT_SYMBOL(vmemdup_user);
198
96840aa0
DA
199/*
200 * strndup_user - duplicate an existing string from user space
96840aa0
DA
201 * @s: The string to duplicate
202 * @n: Maximum number of bytes to copy, including the trailing NUL.
203 */
204char *strndup_user(const char __user *s, long n)
205{
206 char *p;
207 long length;
208
209 length = strnlen_user(s, n);
210
211 if (!length)
212 return ERR_PTR(-EFAULT);
213
214 if (length > n)
215 return ERR_PTR(-EINVAL);
216
90d74045 217 p = memdup_user(s, length);
96840aa0 218
90d74045
JL
219 if (IS_ERR(p))
220 return p;
96840aa0
DA
221
222 p[length - 1] = '\0';
223
224 return p;
225}
226EXPORT_SYMBOL(strndup_user);
16d69265 227
e9d408e1
AV
228/**
229 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
230 *
231 * @src: source address in user space
232 * @len: number of bytes to copy
233 *
234 * Returns an ERR_PTR() on failure.
235 */
236void *memdup_user_nul(const void __user *src, size_t len)
237{
238 char *p;
239
240 /*
241 * Always use GFP_KERNEL, since copy_from_user() can sleep and
242 * cause pagefault, which makes it pointless to use GFP_NOFS
243 * or GFP_ATOMIC.
244 */
245 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
246 if (!p)
247 return ERR_PTR(-ENOMEM);
248
249 if (copy_from_user(p, src, len)) {
250 kfree(p);
251 return ERR_PTR(-EFAULT);
252 }
253 p[len] = '\0';
254
255 return p;
256}
257EXPORT_SYMBOL(memdup_user_nul);
258
6038def0
NK
259void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
260 struct vm_area_struct *prev, struct rb_node *rb_parent)
261{
262 struct vm_area_struct *next;
263
264 vma->vm_prev = prev;
265 if (prev) {
266 next = prev->vm_next;
267 prev->vm_next = vma;
268 } else {
269 mm->mmap = vma;
270 if (rb_parent)
271 next = rb_entry(rb_parent,
272 struct vm_area_struct, vm_rb);
273 else
274 next = NULL;
275 }
276 vma->vm_next = next;
277 if (next)
278 next->vm_prev = vma;
279}
280
b7643757 281/* Check if the vma is being used as a stack by this task */
d17af505 282int vma_is_stack_for_current(struct vm_area_struct *vma)
b7643757 283{
d17af505
AL
284 struct task_struct * __maybe_unused t = current;
285
b7643757
SP
286 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
287}
288
efc1a3b1 289#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
8f2af155 290void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
16d69265
AM
291{
292 mm->mmap_base = TASK_UNMAPPED_BASE;
293 mm->get_unmapped_area = arch_get_unmapped_area;
16d69265
AM
294}
295#endif
912985dc 296
45888a0c
XG
297/*
298 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
299 * back to the regular GUP.
d0811078
MT
300 * Note a difference with get_user_pages_fast: this always returns the
301 * number of pages pinned, 0 if no pages were pinned.
302 * If the architecture does not support this function, simply return with no
303 * pages pinned.
45888a0c 304 */
3b32123d 305int __weak __get_user_pages_fast(unsigned long start,
45888a0c
XG
306 int nr_pages, int write, struct page **pages)
307{
308 return 0;
309}
310EXPORT_SYMBOL_GPL(__get_user_pages_fast);
311
9de100d0
AG
312/**
313 * get_user_pages_fast() - pin user pages in memory
314 * @start: starting user address
315 * @nr_pages: number of pages from start to pin
316 * @write: whether pages will be written to
317 * @pages: array that receives pointers to the pages pinned.
318 * Should be at least nr_pages long.
319 *
9de100d0
AG
320 * Returns number of pages pinned. This may be fewer than the number
321 * requested. If nr_pages is 0 or negative, returns 0. If no pages
322 * were pinned, returns -errno.
d2bf6be8
NP
323 *
324 * get_user_pages_fast provides equivalent functionality to get_user_pages,
325 * operating on current and current->mm, with force=0 and vma=NULL. However
326 * unlike get_user_pages, it must be called without mmap_sem held.
327 *
328 * get_user_pages_fast may take mmap_sem and page table locks, so no
329 * assumptions can be made about lack of locking. get_user_pages_fast is to be
330 * implemented in a way that is advantageous (vs get_user_pages()) when the
331 * user memory area is already faulted in and present in ptes. However if the
332 * pages have to be faulted in, it may turn out to be slightly slower so
333 * callers need to carefully consider what to use. On many architectures,
334 * get_user_pages_fast simply falls back to get_user_pages.
9de100d0 335 */
3b32123d 336int __weak get_user_pages_fast(unsigned long start,
912985dc
RR
337 int nr_pages, int write, struct page **pages)
338{
c164154f
LS
339 return get_user_pages_unlocked(start, nr_pages, pages,
340 write ? FOLL_WRITE : 0);
912985dc
RR
341}
342EXPORT_SYMBOL_GPL(get_user_pages_fast);
ca2b84cb 343
eb36c587
AV
344unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
345 unsigned long len, unsigned long prot,
9fbeb5ab 346 unsigned long flag, unsigned long pgoff)
eb36c587
AV
347{
348 unsigned long ret;
349 struct mm_struct *mm = current->mm;
41badc15 350 unsigned long populate;
897ab3e0 351 LIST_HEAD(uf);
eb36c587
AV
352
353 ret = security_mmap_file(file, prot, flag);
354 if (!ret) {
9fbeb5ab
MH
355 if (down_write_killable(&mm->mmap_sem))
356 return -EINTR;
bebeb3d6 357 ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
897ab3e0 358 &populate, &uf);
eb36c587 359 up_write(&mm->mmap_sem);
897ab3e0 360 userfaultfd_unmap_complete(mm, &uf);
41badc15
ML
361 if (populate)
362 mm_populate(ret, populate);
eb36c587
AV
363 }
364 return ret;
365}
366
367unsigned long vm_mmap(struct file *file, unsigned long addr,
368 unsigned long len, unsigned long prot,
369 unsigned long flag, unsigned long offset)
370{
371 if (unlikely(offset + PAGE_ALIGN(len) < offset))
372 return -EINVAL;
ea53cde0 373 if (unlikely(offset_in_page(offset)))
eb36c587
AV
374 return -EINVAL;
375
9fbeb5ab 376 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
eb36c587
AV
377}
378EXPORT_SYMBOL(vm_mmap);
379
a7c3e901
MH
380/**
381 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
382 * failure, fall back to non-contiguous (vmalloc) allocation.
383 * @size: size of the request.
384 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
385 * @node: numa node to allocate from
386 *
387 * Uses kmalloc to get the memory but if the allocation fails then falls back
388 * to the vmalloc allocator. Use kvfree for freeing the memory.
389 *
cc965a29
MH
390 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
391 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
392 * preferable to the vmalloc fallback, due to visible performance drawbacks.
a7c3e901 393 *
ce91f6ee
MH
394 * Please note that any use of gfp flags outside of GFP_KERNEL is careful to not
395 * fall back to vmalloc.
a7c3e901
MH
396 */
397void *kvmalloc_node(size_t size, gfp_t flags, int node)
398{
399 gfp_t kmalloc_flags = flags;
400 void *ret;
401
402 /*
403 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
404 * so the given set of flags has to be compatible.
405 */
ce91f6ee
MH
406 if ((flags & GFP_KERNEL) != GFP_KERNEL)
407 return kmalloc_node(size, flags, node);
a7c3e901
MH
408
409 /*
4f4f2ba9
MH
410 * We want to attempt a large physically contiguous block first because
411 * it is less likely to fragment multiple larger blocks and therefore
412 * contribute to a long term fragmentation less than vmalloc fallback.
413 * However make sure that larger requests are not too disruptive - no
414 * OOM killer and no allocation failure warnings as we have a fallback.
a7c3e901 415 */
6c5ab651
MH
416 if (size > PAGE_SIZE) {
417 kmalloc_flags |= __GFP_NOWARN;
418
cc965a29 419 if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
6c5ab651
MH
420 kmalloc_flags |= __GFP_NORETRY;
421 }
a7c3e901
MH
422
423 ret = kmalloc_node(size, kmalloc_flags, node);
424
425 /*
426 * It doesn't really make sense to fallback to vmalloc for sub page
427 * requests
428 */
429 if (ret || size <= PAGE_SIZE)
430 return ret;
431
8594a21c
MH
432 return __vmalloc_node_flags_caller(size, node, flags,
433 __builtin_return_address(0));
a7c3e901
MH
434}
435EXPORT_SYMBOL(kvmalloc_node);
436
39f1f78d
AV
437void kvfree(const void *addr)
438{
439 if (is_vmalloc_addr(addr))
440 vfree(addr);
441 else
442 kfree(addr);
443}
444EXPORT_SYMBOL(kvfree);
445
e39155ea
KS
446static inline void *__page_rmapping(struct page *page)
447{
448 unsigned long mapping;
449
450 mapping = (unsigned long)page->mapping;
451 mapping &= ~PAGE_MAPPING_FLAGS;
452
453 return (void *)mapping;
454}
455
456/* Neutral page->mapping pointer to address_space or anon_vma or other */
457void *page_rmapping(struct page *page)
458{
459 page = compound_head(page);
460 return __page_rmapping(page);
461}
462
1aa8aea5
AM
463/*
464 * Return true if this page is mapped into pagetables.
465 * For compound page it returns true if any subpage of compound page is mapped.
466 */
467bool page_mapped(struct page *page)
468{
469 int i;
470
471 if (likely(!PageCompound(page)))
472 return atomic_read(&page->_mapcount) >= 0;
473 page = compound_head(page);
474 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
475 return true;
476 if (PageHuge(page))
477 return false;
478 for (i = 0; i < hpage_nr_pages(page); i++) {
479 if (atomic_read(&page[i]._mapcount) >= 0)
480 return true;
481 }
482 return false;
483}
484EXPORT_SYMBOL(page_mapped);
485
e39155ea
KS
486struct anon_vma *page_anon_vma(struct page *page)
487{
488 unsigned long mapping;
489
490 page = compound_head(page);
491 mapping = (unsigned long)page->mapping;
492 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
493 return NULL;
494 return __page_rmapping(page);
495}
496
9800339b
SL
497struct address_space *page_mapping(struct page *page)
498{
1c290f64
KS
499 struct address_space *mapping;
500
501 page = compound_head(page);
9800339b 502
03e5ac2f
MP
503 /* This happens if someone calls flush_dcache_page on slab page */
504 if (unlikely(PageSlab(page)))
505 return NULL;
506
33806f06
SL
507 if (unlikely(PageSwapCache(page))) {
508 swp_entry_t entry;
509
510 entry.val = page_private(page);
e39155ea
KS
511 return swap_address_space(entry);
512 }
513
1c290f64 514 mapping = page->mapping;
bda807d4 515 if ((unsigned long)mapping & PAGE_MAPPING_ANON)
e39155ea 516 return NULL;
bda807d4
MK
517
518 return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
9800339b 519}
bda807d4 520EXPORT_SYMBOL(page_mapping);
9800339b 521
cb9f753a
HY
522/*
523 * For file cache pages, return the address_space, otherwise return NULL
524 */
525struct address_space *page_mapping_file(struct page *page)
526{
527 if (unlikely(PageSwapCache(page)))
528 return NULL;
529 return page_mapping(page);
530}
531
b20ce5e0
KS
532/* Slow path of page_mapcount() for compound pages */
533int __page_mapcount(struct page *page)
534{
535 int ret;
536
537 ret = atomic_read(&page->_mapcount) + 1;
dd78fedd
KS
538 /*
539 * For file THP page->_mapcount contains total number of mapping
540 * of the page: no need to look into compound_mapcount.
541 */
542 if (!PageAnon(page) && !PageHuge(page))
543 return ret;
b20ce5e0
KS
544 page = compound_head(page);
545 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
546 if (PageDoubleMap(page))
547 ret--;
548 return ret;
549}
550EXPORT_SYMBOL_GPL(__page_mapcount);
551
39a1aa8e
AR
552int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
553int sysctl_overcommit_ratio __read_mostly = 50;
554unsigned long sysctl_overcommit_kbytes __read_mostly;
555int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
556unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
557unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
558
49f0ce5f
JM
559int overcommit_ratio_handler(struct ctl_table *table, int write,
560 void __user *buffer, size_t *lenp,
561 loff_t *ppos)
562{
563 int ret;
564
565 ret = proc_dointvec(table, write, buffer, lenp, ppos);
566 if (ret == 0 && write)
567 sysctl_overcommit_kbytes = 0;
568 return ret;
569}
570
571int overcommit_kbytes_handler(struct ctl_table *table, int write,
572 void __user *buffer, size_t *lenp,
573 loff_t *ppos)
574{
575 int ret;
576
577 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
578 if (ret == 0 && write)
579 sysctl_overcommit_ratio = 0;
580 return ret;
581}
582
00619bcc
JM
583/*
584 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
585 */
586unsigned long vm_commit_limit(void)
587{
49f0ce5f
JM
588 unsigned long allowed;
589
590 if (sysctl_overcommit_kbytes)
591 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
592 else
593 allowed = ((totalram_pages - hugetlb_total_pages())
594 * sysctl_overcommit_ratio / 100);
595 allowed += total_swap_pages;
596
597 return allowed;
00619bcc
JM
598}
599
39a1aa8e
AR
600/*
601 * Make sure vm_committed_as in one cacheline and not cacheline shared with
602 * other variables. It can be updated by several CPUs frequently.
603 */
604struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
605
606/*
607 * The global memory commitment made in the system can be a metric
608 * that can be used to drive ballooning decisions when Linux is hosted
609 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
610 * balancing memory across competing virtual machines that are hosted.
611 * Several metrics drive this policy engine including the guest reported
612 * memory commitment.
613 */
614unsigned long vm_memory_committed(void)
615{
616 return percpu_counter_read_positive(&vm_committed_as);
617}
618EXPORT_SYMBOL_GPL(vm_memory_committed);
619
620/*
621 * Check that a process has enough memory to allocate a new virtual
622 * mapping. 0 means there is enough memory for the allocation to
623 * succeed and -ENOMEM implies there is not.
624 *
625 * We currently support three overcommit policies, which are set via the
ad56b738 626 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting.rst
39a1aa8e
AR
627 *
628 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
629 * Additional code 2002 Jul 20 by Robert Love.
630 *
631 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
632 *
633 * Note this is a helper function intended to be used by LSMs which
634 * wish to use this logic.
635 */
636int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
637{
638 long free, allowed, reserve;
639
640 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
641 -(s64)vm_committed_as_batch * num_online_cpus(),
642 "memory commitment underflow");
643
644 vm_acct_memory(pages);
645
646 /*
647 * Sometimes we want to use more memory than we have
648 */
649 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
650 return 0;
651
652 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
c41f012a 653 free = global_zone_page_state(NR_FREE_PAGES);
11fb9989 654 free += global_node_page_state(NR_FILE_PAGES);
39a1aa8e
AR
655
656 /*
657 * shmem pages shouldn't be counted as free in this
658 * case, they can't be purged, only swapped out, and
659 * that won't affect the overall amount of available
660 * memory in the system.
661 */
11fb9989 662 free -= global_node_page_state(NR_SHMEM);
39a1aa8e
AR
663
664 free += get_nr_swap_pages();
665
666 /*
667 * Any slabs which are created with the
668 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
669 * which are reclaimable, under pressure. The dentry
670 * cache and most inode caches should fall into this
671 */
d507e2eb 672 free += global_node_page_state(NR_SLAB_RECLAIMABLE);
39a1aa8e 673
d79f7aa4
RG
674 /*
675 * Part of the kernel memory, which can be released
676 * under memory pressure.
677 */
678 free += global_node_page_state(
679 NR_INDIRECTLY_RECLAIMABLE_BYTES) >> PAGE_SHIFT;
680
39a1aa8e
AR
681 /*
682 * Leave reserved pages. The pages are not for anonymous pages.
683 */
684 if (free <= totalreserve_pages)
685 goto error;
686 else
687 free -= totalreserve_pages;
688
689 /*
690 * Reserve some for root
691 */
692 if (!cap_sys_admin)
693 free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
694
695 if (free > pages)
696 return 0;
697
698 goto error;
699 }
700
701 allowed = vm_commit_limit();
702 /*
703 * Reserve some for root
704 */
705 if (!cap_sys_admin)
706 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
707
708 /*
709 * Don't let a single process grow so big a user can't recover
710 */
711 if (mm) {
712 reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
713 allowed -= min_t(long, mm->total_vm / 32, reserve);
714 }
715
716 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
717 return 0;
718error:
719 vm_unacct_memory(pages);
720
721 return -ENOMEM;
722}
723
a9090253
WR
724/**
725 * get_cmdline() - copy the cmdline value to a buffer.
726 * @task: the task whose cmdline value to copy.
727 * @buffer: the buffer to copy to.
728 * @buflen: the length of the buffer. Larger cmdline values are truncated
729 * to this length.
730 * Returns the size of the cmdline field copied. Note that the copy does
731 * not guarantee an ending NULL byte.
732 */
733int get_cmdline(struct task_struct *task, char *buffer, int buflen)
734{
735 int res = 0;
736 unsigned int len;
737 struct mm_struct *mm = get_task_mm(task);
a3b609ef 738 unsigned long arg_start, arg_end, env_start, env_end;
a9090253
WR
739 if (!mm)
740 goto out;
741 if (!mm->arg_end)
742 goto out_mm; /* Shh! No looking before we're done */
743
a3b609ef
MG
744 down_read(&mm->mmap_sem);
745 arg_start = mm->arg_start;
746 arg_end = mm->arg_end;
747 env_start = mm->env_start;
748 env_end = mm->env_end;
749 up_read(&mm->mmap_sem);
750
751 len = arg_end - arg_start;
a9090253
WR
752
753 if (len > buflen)
754 len = buflen;
755
f307ab6d 756 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
a9090253
WR
757
758 /*
759 * If the nul at the end of args has been overwritten, then
760 * assume application is using setproctitle(3).
761 */
762 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
763 len = strnlen(buffer, res);
764 if (len < res) {
765 res = len;
766 } else {
a3b609ef 767 len = env_end - env_start;
a9090253
WR
768 if (len > buflen - res)
769 len = buflen - res;
a3b609ef 770 res += access_process_vm(task, env_start,
f307ab6d
LS
771 buffer+res, len,
772 FOLL_FORCE);
a9090253
WR
773 res = strnlen(buffer, res);
774 }
775 }
776out_mm:
777 mmput(mm);
778out:
779 return res;
780}