blkio: Keep queue on service tree until we expire it
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
1da177e4
LT
16
17/*
18 * tunables
19 */
fe094d98
JA
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
64100099 22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
64100099 27static const int cfq_slice_sync = HZ / 10;
3b18152c 28static int cfq_slice_async = HZ / 25;
64100099 29static const int cfq_slice_async_rq = 2;
caaa5f9f 30static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
22e2c507 33
d9e7620e 34/*
0871714e 35 * offset from end of service tree
d9e7620e 36 */
0871714e 37#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
e6c5bc73
JM
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
22e2c507 50#define CFQ_SLICE_SCALE (5)
45333d5a 51#define CFQ_HW_QUEUE_MIN (5)
22e2c507 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b
JA
68#define sample_valid(samples) ((samples) > 80)
69
cc09e299
JA
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
aa6f6a3d 79 unsigned count;
cc09e299 80};
aa6f6a3d 81#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 82
6118b70b
JA
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
b2c18e1e
JM
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
e6c5bc73 129 unsigned long seeky_start;
b2c18e1e 130
6118b70b 131 pid_t pid;
df5fe3e8 132
aa6f6a3d 133 struct cfq_rb_root *service_tree;
df5fe3e8 134 struct cfq_queue *new_cfqq;
cdb16e8f 135 struct cfq_group *cfqg;
6118b70b
JA
136};
137
c0324a02 138/*
718eee05 139 * First index in the service_trees.
c0324a02
CZ
140 * IDLE is handled separately, so it has negative index
141 */
142enum wl_prio_t {
c0324a02 143 BE_WORKLOAD = 0,
615f0259
VG
144 RT_WORKLOAD = 1,
145 IDLE_WORKLOAD = 2,
c0324a02
CZ
146};
147
718eee05
CZ
148/*
149 * Second index in the service_trees.
150 */
151enum wl_type_t {
152 ASYNC_WORKLOAD = 0,
153 SYNC_NOIDLE_WORKLOAD = 1,
154 SYNC_WORKLOAD = 2
155};
156
cdb16e8f
VG
157/* This is per cgroup per device grouping structure */
158struct cfq_group {
159 /*
160 * rr lists of queues with requests, onle rr for each priority class.
161 * Counts are embedded in the cfq_rb_root
162 */
163 struct cfq_rb_root service_trees[2][3];
164 struct cfq_rb_root service_tree_idle;
165};
718eee05 166
22e2c507
JA
167/*
168 * Per block device queue structure
169 */
1da177e4 170struct cfq_data {
165125e1 171 struct request_queue *queue;
cdb16e8f 172 struct cfq_group root_group;
22e2c507 173
c0324a02
CZ
174 /*
175 * The priority currently being served
22e2c507 176 */
c0324a02 177 enum wl_prio_t serving_prio;
718eee05
CZ
178 enum wl_type_t serving_type;
179 unsigned long workload_expires;
cdb16e8f 180 struct cfq_group *serving_group;
8e550632 181 bool noidle_tree_requires_idle;
a36e71f9
JA
182
183 /*
184 * Each priority tree is sorted by next_request position. These
185 * trees are used when determining if two or more queues are
186 * interleaving requests (see cfq_close_cooperator).
187 */
188 struct rb_root prio_trees[CFQ_PRIO_LISTS];
189
22e2c507 190 unsigned int busy_queues;
5db5d642 191 unsigned int busy_queues_avg[2];
22e2c507 192
5ad531db 193 int rq_in_driver[2];
3ed9a296 194 int sync_flight;
45333d5a
AC
195
196 /*
197 * queue-depth detection
198 */
199 int rq_queued;
25776e35 200 int hw_tag;
e459dd08
CZ
201 /*
202 * hw_tag can be
203 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
204 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
205 * 0 => no NCQ
206 */
207 int hw_tag_est_depth;
208 unsigned int hw_tag_samples;
1da177e4 209
22e2c507
JA
210 /*
211 * idle window management
212 */
213 struct timer_list idle_slice_timer;
23e018a1 214 struct work_struct unplug_work;
1da177e4 215
22e2c507
JA
216 struct cfq_queue *active_queue;
217 struct cfq_io_context *active_cic;
22e2c507 218
c2dea2d1
VT
219 /*
220 * async queue for each priority case
221 */
222 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
223 struct cfq_queue *async_idle_cfqq;
15c31be4 224
6d048f53 225 sector_t last_position;
1da177e4 226
1da177e4
LT
227 /*
228 * tunables, see top of file
229 */
230 unsigned int cfq_quantum;
22e2c507 231 unsigned int cfq_fifo_expire[2];
1da177e4
LT
232 unsigned int cfq_back_penalty;
233 unsigned int cfq_back_max;
22e2c507
JA
234 unsigned int cfq_slice[2];
235 unsigned int cfq_slice_async_rq;
236 unsigned int cfq_slice_idle;
963b72fc 237 unsigned int cfq_latency;
d9ff4187
AV
238
239 struct list_head cic_list;
1da177e4 240
6118b70b
JA
241 /*
242 * Fallback dummy cfqq for extreme OOM conditions
243 */
244 struct cfq_queue oom_cfqq;
365722bb
VG
245
246 unsigned long last_end_sync_rq;
1da177e4
LT
247};
248
cdb16e8f
VG
249static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
250 enum wl_prio_t prio,
718eee05 251 enum wl_type_t type,
c0324a02
CZ
252 struct cfq_data *cfqd)
253{
254 if (prio == IDLE_WORKLOAD)
cdb16e8f 255 return &cfqg->service_tree_idle;
c0324a02 256
cdb16e8f 257 return &cfqg->service_trees[prio][type];
c0324a02
CZ
258}
259
3b18152c 260enum cfqq_state_flags {
b0b8d749
JA
261 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
262 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 263 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 264 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
265 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
266 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
267 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 268 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 269 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 270 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 271 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
272};
273
274#define CFQ_CFQQ_FNS(name) \
275static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
276{ \
fe094d98 277 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
278} \
279static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
280{ \
fe094d98 281 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
282} \
283static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
284{ \
fe094d98 285 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
286}
287
288CFQ_CFQQ_FNS(on_rr);
289CFQ_CFQQ_FNS(wait_request);
b029195d 290CFQ_CFQQ_FNS(must_dispatch);
3b18152c 291CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
292CFQ_CFQQ_FNS(fifo_expire);
293CFQ_CFQQ_FNS(idle_window);
294CFQ_CFQQ_FNS(prio_changed);
44f7c160 295CFQ_CFQQ_FNS(slice_new);
91fac317 296CFQ_CFQQ_FNS(sync);
a36e71f9 297CFQ_CFQQ_FNS(coop);
76280aff 298CFQ_CFQQ_FNS(deep);
3b18152c
JA
299#undef CFQ_CFQQ_FNS
300
7b679138
JA
301#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
302 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
303#define cfq_log(cfqd, fmt, args...) \
304 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
305
615f0259
VG
306/* Traverses through cfq group service trees */
307#define for_each_cfqg_st(cfqg, i, j, st) \
308 for (i = 0; i <= IDLE_WORKLOAD; i++) \
309 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
310 : &cfqg->service_tree_idle; \
311 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
312 (i == IDLE_WORKLOAD && j == 0); \
313 j++, st = i < IDLE_WORKLOAD ? \
314 &cfqg->service_trees[i][j]: NULL) \
315
316
c0324a02
CZ
317static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
318{
319 if (cfq_class_idle(cfqq))
320 return IDLE_WORKLOAD;
321 if (cfq_class_rt(cfqq))
322 return RT_WORKLOAD;
323 return BE_WORKLOAD;
324}
325
718eee05
CZ
326
327static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
328{
329 if (!cfq_cfqq_sync(cfqq))
330 return ASYNC_WORKLOAD;
331 if (!cfq_cfqq_idle_window(cfqq))
332 return SYNC_NOIDLE_WORKLOAD;
333 return SYNC_WORKLOAD;
334}
335
c0324a02
CZ
336static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
337{
cdb16e8f
VG
338 struct cfq_group *cfqg = &cfqd->root_group;
339
c0324a02 340 if (wl == IDLE_WORKLOAD)
cdb16e8f 341 return cfqg->service_tree_idle.count;
c0324a02 342
cdb16e8f
VG
343 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
344 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
345 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
346}
347
165125e1 348static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 349static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 350 struct io_context *, gfp_t);
4ac845a2 351static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
352 struct io_context *);
353
5ad531db
JA
354static inline int rq_in_driver(struct cfq_data *cfqd)
355{
356 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
357}
358
91fac317 359static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 360 bool is_sync)
91fac317 361{
a6151c3a 362 return cic->cfqq[is_sync];
91fac317
VT
363}
364
365static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 366 struct cfq_queue *cfqq, bool is_sync)
91fac317 367{
a6151c3a 368 cic->cfqq[is_sync] = cfqq;
91fac317
VT
369}
370
371/*
372 * We regard a request as SYNC, if it's either a read or has the SYNC bit
373 * set (in which case it could also be direct WRITE).
374 */
a6151c3a 375static inline bool cfq_bio_sync(struct bio *bio)
91fac317 376{
a6151c3a 377 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 378}
1da177e4 379
99f95e52
AM
380/*
381 * scheduler run of queue, if there are requests pending and no one in the
382 * driver that will restart queueing
383 */
23e018a1 384static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 385{
7b679138
JA
386 if (cfqd->busy_queues) {
387 cfq_log(cfqd, "schedule dispatch");
23e018a1 388 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 389 }
99f95e52
AM
390}
391
165125e1 392static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
393{
394 struct cfq_data *cfqd = q->elevator->elevator_data;
395
f04a6424 396 return !cfqd->rq_queued;
99f95e52
AM
397}
398
44f7c160
JA
399/*
400 * Scale schedule slice based on io priority. Use the sync time slice only
401 * if a queue is marked sync and has sync io queued. A sync queue with async
402 * io only, should not get full sync slice length.
403 */
a6151c3a 404static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 405 unsigned short prio)
44f7c160 406{
d9e7620e 407 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 408
d9e7620e
JA
409 WARN_ON(prio >= IOPRIO_BE_NR);
410
411 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
412}
44f7c160 413
d9e7620e
JA
414static inline int
415cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
416{
417 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
418}
419
5db5d642
CZ
420/*
421 * get averaged number of queues of RT/BE priority.
422 * average is updated, with a formula that gives more weight to higher numbers,
423 * to quickly follows sudden increases and decrease slowly
424 */
425
5869619c
JA
426static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
427{
5db5d642
CZ
428 unsigned min_q, max_q;
429 unsigned mult = cfq_hist_divisor - 1;
430 unsigned round = cfq_hist_divisor / 2;
c0324a02 431 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
432
433 min_q = min(cfqd->busy_queues_avg[rt], busy);
434 max_q = max(cfqd->busy_queues_avg[rt], busy);
435 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
436 cfq_hist_divisor;
437 return cfqd->busy_queues_avg[rt];
438}
439
44f7c160
JA
440static inline void
441cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
442{
5db5d642
CZ
443 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
444 if (cfqd->cfq_latency) {
445 /* interested queues (we consider only the ones with the same
446 * priority class) */
447 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
448 unsigned sync_slice = cfqd->cfq_slice[1];
449 unsigned expect_latency = sync_slice * iq;
450 if (expect_latency > cfq_target_latency) {
451 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
452 /* scale low_slice according to IO priority
453 * and sync vs async */
454 unsigned low_slice =
455 min(slice, base_low_slice * slice / sync_slice);
456 /* the adapted slice value is scaled to fit all iqs
457 * into the target latency */
458 slice = max(slice * cfq_target_latency / expect_latency,
459 low_slice);
460 }
461 }
462 cfqq->slice_end = jiffies + slice;
7b679138 463 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
464}
465
466/*
467 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
468 * isn't valid until the first request from the dispatch is activated
469 * and the slice time set.
470 */
a6151c3a 471static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
472{
473 if (cfq_cfqq_slice_new(cfqq))
474 return 0;
475 if (time_before(jiffies, cfqq->slice_end))
476 return 0;
477
478 return 1;
479}
480
1da177e4 481/*
5e705374 482 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 483 * We choose the request that is closest to the head right now. Distance
e8a99053 484 * behind the head is penalized and only allowed to a certain extent.
1da177e4 485 */
5e705374 486static struct request *
cf7c25cf 487cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 488{
cf7c25cf 489 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 490 unsigned long back_max;
e8a99053
AM
491#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
492#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
493 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 494
5e705374
JA
495 if (rq1 == NULL || rq1 == rq2)
496 return rq2;
497 if (rq2 == NULL)
498 return rq1;
9c2c38a1 499
5e705374
JA
500 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
501 return rq1;
502 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
503 return rq2;
374f84ac
JA
504 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
505 return rq1;
506 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
507 return rq2;
1da177e4 508
83096ebf
TH
509 s1 = blk_rq_pos(rq1);
510 s2 = blk_rq_pos(rq2);
1da177e4 511
1da177e4
LT
512 /*
513 * by definition, 1KiB is 2 sectors
514 */
515 back_max = cfqd->cfq_back_max * 2;
516
517 /*
518 * Strict one way elevator _except_ in the case where we allow
519 * short backward seeks which are biased as twice the cost of a
520 * similar forward seek.
521 */
522 if (s1 >= last)
523 d1 = s1 - last;
524 else if (s1 + back_max >= last)
525 d1 = (last - s1) * cfqd->cfq_back_penalty;
526 else
e8a99053 527 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
528
529 if (s2 >= last)
530 d2 = s2 - last;
531 else if (s2 + back_max >= last)
532 d2 = (last - s2) * cfqd->cfq_back_penalty;
533 else
e8a99053 534 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
535
536 /* Found required data */
e8a99053
AM
537
538 /*
539 * By doing switch() on the bit mask "wrap" we avoid having to
540 * check two variables for all permutations: --> faster!
541 */
542 switch (wrap) {
5e705374 543 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 544 if (d1 < d2)
5e705374 545 return rq1;
e8a99053 546 else if (d2 < d1)
5e705374 547 return rq2;
e8a99053
AM
548 else {
549 if (s1 >= s2)
5e705374 550 return rq1;
e8a99053 551 else
5e705374 552 return rq2;
e8a99053 553 }
1da177e4 554
e8a99053 555 case CFQ_RQ2_WRAP:
5e705374 556 return rq1;
e8a99053 557 case CFQ_RQ1_WRAP:
5e705374
JA
558 return rq2;
559 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
560 default:
561 /*
562 * Since both rqs are wrapped,
563 * start with the one that's further behind head
564 * (--> only *one* back seek required),
565 * since back seek takes more time than forward.
566 */
567 if (s1 <= s2)
5e705374 568 return rq1;
1da177e4 569 else
5e705374 570 return rq2;
1da177e4
LT
571 }
572}
573
498d3aa2
JA
574/*
575 * The below is leftmost cache rbtree addon
576 */
0871714e 577static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 578{
615f0259
VG
579 /* Service tree is empty */
580 if (!root->count)
581 return NULL;
582
cc09e299
JA
583 if (!root->left)
584 root->left = rb_first(&root->rb);
585
0871714e
JA
586 if (root->left)
587 return rb_entry(root->left, struct cfq_queue, rb_node);
588
589 return NULL;
cc09e299
JA
590}
591
a36e71f9
JA
592static void rb_erase_init(struct rb_node *n, struct rb_root *root)
593{
594 rb_erase(n, root);
595 RB_CLEAR_NODE(n);
596}
597
cc09e299
JA
598static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
599{
600 if (root->left == n)
601 root->left = NULL;
a36e71f9 602 rb_erase_init(n, &root->rb);
aa6f6a3d 603 --root->count;
cc09e299
JA
604}
605
1da177e4
LT
606/*
607 * would be nice to take fifo expire time into account as well
608 */
5e705374
JA
609static struct request *
610cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
611 struct request *last)
1da177e4 612{
21183b07
JA
613 struct rb_node *rbnext = rb_next(&last->rb_node);
614 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 615 struct request *next = NULL, *prev = NULL;
1da177e4 616
21183b07 617 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
618
619 if (rbprev)
5e705374 620 prev = rb_entry_rq(rbprev);
1da177e4 621
21183b07 622 if (rbnext)
5e705374 623 next = rb_entry_rq(rbnext);
21183b07
JA
624 else {
625 rbnext = rb_first(&cfqq->sort_list);
626 if (rbnext && rbnext != &last->rb_node)
5e705374 627 next = rb_entry_rq(rbnext);
21183b07 628 }
1da177e4 629
cf7c25cf 630 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
631}
632
d9e7620e
JA
633static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
634 struct cfq_queue *cfqq)
1da177e4 635{
d9e7620e
JA
636 /*
637 * just an approximation, should be ok.
638 */
cdb16e8f 639 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 640 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
641}
642
498d3aa2 643/*
c0324a02 644 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
645 * requests waiting to be processed. It is sorted in the order that
646 * we will service the queues.
647 */
a36e71f9 648static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 649 bool add_front)
d9e7620e 650{
0871714e
JA
651 struct rb_node **p, *parent;
652 struct cfq_queue *__cfqq;
d9e7620e 653 unsigned long rb_key;
c0324a02 654 struct cfq_rb_root *service_tree;
498d3aa2 655 int left;
d9e7620e 656
cdb16e8f
VG
657 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
658 cfqq_type(cfqq), cfqd);
0871714e
JA
659 if (cfq_class_idle(cfqq)) {
660 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 661 parent = rb_last(&service_tree->rb);
0871714e
JA
662 if (parent && parent != &cfqq->rb_node) {
663 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
664 rb_key += __cfqq->rb_key;
665 } else
666 rb_key += jiffies;
667 } else if (!add_front) {
b9c8946b
JA
668 /*
669 * Get our rb key offset. Subtract any residual slice
670 * value carried from last service. A negative resid
671 * count indicates slice overrun, and this should position
672 * the next service time further away in the tree.
673 */
edd75ffd 674 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 675 rb_key -= cfqq->slice_resid;
edd75ffd 676 cfqq->slice_resid = 0;
48e025e6
CZ
677 } else {
678 rb_key = -HZ;
aa6f6a3d 679 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
680 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
681 }
1da177e4 682
d9e7620e 683 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 684 /*
d9e7620e 685 * same position, nothing more to do
99f9628a 686 */
c0324a02
CZ
687 if (rb_key == cfqq->rb_key &&
688 cfqq->service_tree == service_tree)
d9e7620e 689 return;
1da177e4 690
aa6f6a3d
CZ
691 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
692 cfqq->service_tree = NULL;
1da177e4 693 }
d9e7620e 694
498d3aa2 695 left = 1;
0871714e 696 parent = NULL;
aa6f6a3d
CZ
697 cfqq->service_tree = service_tree;
698 p = &service_tree->rb.rb_node;
d9e7620e 699 while (*p) {
67060e37 700 struct rb_node **n;
cc09e299 701
d9e7620e
JA
702 parent = *p;
703 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
704
0c534e0a 705 /*
c0324a02 706 * sort by key, that represents service time.
0c534e0a 707 */
c0324a02 708 if (time_before(rb_key, __cfqq->rb_key))
67060e37 709 n = &(*p)->rb_left;
c0324a02 710 else {
67060e37 711 n = &(*p)->rb_right;
cc09e299 712 left = 0;
c0324a02 713 }
67060e37
JA
714
715 p = n;
d9e7620e
JA
716 }
717
cc09e299 718 if (left)
aa6f6a3d 719 service_tree->left = &cfqq->rb_node;
cc09e299 720
d9e7620e
JA
721 cfqq->rb_key = rb_key;
722 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
723 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
724 service_tree->count++;
1da177e4
LT
725}
726
a36e71f9 727static struct cfq_queue *
f2d1f0ae
JA
728cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
729 sector_t sector, struct rb_node **ret_parent,
730 struct rb_node ***rb_link)
a36e71f9 731{
a36e71f9
JA
732 struct rb_node **p, *parent;
733 struct cfq_queue *cfqq = NULL;
734
735 parent = NULL;
736 p = &root->rb_node;
737 while (*p) {
738 struct rb_node **n;
739
740 parent = *p;
741 cfqq = rb_entry(parent, struct cfq_queue, p_node);
742
743 /*
744 * Sort strictly based on sector. Smallest to the left,
745 * largest to the right.
746 */
2e46e8b2 747 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 748 n = &(*p)->rb_right;
2e46e8b2 749 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
750 n = &(*p)->rb_left;
751 else
752 break;
753 p = n;
3ac6c9f8 754 cfqq = NULL;
a36e71f9
JA
755 }
756
757 *ret_parent = parent;
758 if (rb_link)
759 *rb_link = p;
3ac6c9f8 760 return cfqq;
a36e71f9
JA
761}
762
763static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
764{
a36e71f9
JA
765 struct rb_node **p, *parent;
766 struct cfq_queue *__cfqq;
767
f2d1f0ae
JA
768 if (cfqq->p_root) {
769 rb_erase(&cfqq->p_node, cfqq->p_root);
770 cfqq->p_root = NULL;
771 }
a36e71f9
JA
772
773 if (cfq_class_idle(cfqq))
774 return;
775 if (!cfqq->next_rq)
776 return;
777
f2d1f0ae 778 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
779 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
780 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
781 if (!__cfqq) {
782 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
783 rb_insert_color(&cfqq->p_node, cfqq->p_root);
784 } else
785 cfqq->p_root = NULL;
a36e71f9
JA
786}
787
498d3aa2
JA
788/*
789 * Update cfqq's position in the service tree.
790 */
edd75ffd 791static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 792{
6d048f53
JA
793 /*
794 * Resorting requires the cfqq to be on the RR list already.
795 */
a36e71f9 796 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 797 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
798 cfq_prio_tree_add(cfqd, cfqq);
799 }
6d048f53
JA
800}
801
1da177e4
LT
802/*
803 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 804 * the pending list according to last request service
1da177e4 805 */
febffd61 806static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 807{
7b679138 808 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
809 BUG_ON(cfq_cfqq_on_rr(cfqq));
810 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
811 cfqd->busy_queues++;
812
edd75ffd 813 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
814}
815
498d3aa2
JA
816/*
817 * Called when the cfqq no longer has requests pending, remove it from
818 * the service tree.
819 */
febffd61 820static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 821{
7b679138 822 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
823 BUG_ON(!cfq_cfqq_on_rr(cfqq));
824 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 825
aa6f6a3d
CZ
826 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
827 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
828 cfqq->service_tree = NULL;
829 }
f2d1f0ae
JA
830 if (cfqq->p_root) {
831 rb_erase(&cfqq->p_node, cfqq->p_root);
832 cfqq->p_root = NULL;
833 }
d9e7620e 834
1da177e4
LT
835 BUG_ON(!cfqd->busy_queues);
836 cfqd->busy_queues--;
837}
838
839/*
840 * rb tree support functions
841 */
febffd61 842static void cfq_del_rq_rb(struct request *rq)
1da177e4 843{
5e705374 844 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 845 const int sync = rq_is_sync(rq);
1da177e4 846
b4878f24
JA
847 BUG_ON(!cfqq->queued[sync]);
848 cfqq->queued[sync]--;
1da177e4 849
5e705374 850 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 851
f04a6424
VG
852 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
853 /*
854 * Queue will be deleted from service tree when we actually
855 * expire it later. Right now just remove it from prio tree
856 * as it is empty.
857 */
858 if (cfqq->p_root) {
859 rb_erase(&cfqq->p_node, cfqq->p_root);
860 cfqq->p_root = NULL;
861 }
862 }
1da177e4
LT
863}
864
5e705374 865static void cfq_add_rq_rb(struct request *rq)
1da177e4 866{
5e705374 867 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 868 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 869 struct request *__alias, *prev;
1da177e4 870
5380a101 871 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
872
873 /*
874 * looks a little odd, but the first insert might return an alias.
875 * if that happens, put the alias on the dispatch list
876 */
21183b07 877 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 878 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
879
880 if (!cfq_cfqq_on_rr(cfqq))
881 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
882
883 /*
884 * check if this request is a better next-serve candidate
885 */
a36e71f9 886 prev = cfqq->next_rq;
cf7c25cf 887 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
888
889 /*
890 * adjust priority tree position, if ->next_rq changes
891 */
892 if (prev != cfqq->next_rq)
893 cfq_prio_tree_add(cfqd, cfqq);
894
5044eed4 895 BUG_ON(!cfqq->next_rq);
1da177e4
LT
896}
897
febffd61 898static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 899{
5380a101
JA
900 elv_rb_del(&cfqq->sort_list, rq);
901 cfqq->queued[rq_is_sync(rq)]--;
5e705374 902 cfq_add_rq_rb(rq);
1da177e4
LT
903}
904
206dc69b
JA
905static struct request *
906cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 907{
206dc69b 908 struct task_struct *tsk = current;
91fac317 909 struct cfq_io_context *cic;
206dc69b 910 struct cfq_queue *cfqq;
1da177e4 911
4ac845a2 912 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
913 if (!cic)
914 return NULL;
915
916 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
917 if (cfqq) {
918 sector_t sector = bio->bi_sector + bio_sectors(bio);
919
21183b07 920 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 921 }
1da177e4 922
1da177e4
LT
923 return NULL;
924}
925
165125e1 926static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 927{
22e2c507 928 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 929
5ad531db 930 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 931 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 932 rq_in_driver(cfqd));
25776e35 933
5b93629b 934 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
935}
936
165125e1 937static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 938{
b4878f24 939 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 940 const int sync = rq_is_sync(rq);
b4878f24 941
5ad531db
JA
942 WARN_ON(!cfqd->rq_in_driver[sync]);
943 cfqd->rq_in_driver[sync]--;
7b679138 944 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 945 rq_in_driver(cfqd));
1da177e4
LT
946}
947
b4878f24 948static void cfq_remove_request(struct request *rq)
1da177e4 949{
5e705374 950 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 951
5e705374
JA
952 if (cfqq->next_rq == rq)
953 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 954
b4878f24 955 list_del_init(&rq->queuelist);
5e705374 956 cfq_del_rq_rb(rq);
374f84ac 957
45333d5a 958 cfqq->cfqd->rq_queued--;
374f84ac
JA
959 if (rq_is_meta(rq)) {
960 WARN_ON(!cfqq->meta_pending);
961 cfqq->meta_pending--;
962 }
1da177e4
LT
963}
964
165125e1
JA
965static int cfq_merge(struct request_queue *q, struct request **req,
966 struct bio *bio)
1da177e4
LT
967{
968 struct cfq_data *cfqd = q->elevator->elevator_data;
969 struct request *__rq;
1da177e4 970
206dc69b 971 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 972 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
973 *req = __rq;
974 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
975 }
976
977 return ELEVATOR_NO_MERGE;
1da177e4
LT
978}
979
165125e1 980static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 981 int type)
1da177e4 982{
21183b07 983 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 984 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 985
5e705374 986 cfq_reposition_rq_rb(cfqq, req);
1da177e4 987 }
1da177e4
LT
988}
989
990static void
165125e1 991cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
992 struct request *next)
993{
cf7c25cf 994 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
995 /*
996 * reposition in fifo if next is older than rq
997 */
998 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 999 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1000 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1001 rq_set_fifo_time(rq, rq_fifo_time(next));
1002 }
22e2c507 1003
cf7c25cf
CZ
1004 if (cfqq->next_rq == next)
1005 cfqq->next_rq = rq;
b4878f24 1006 cfq_remove_request(next);
22e2c507
JA
1007}
1008
165125e1 1009static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1010 struct bio *bio)
1011{
1012 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1013 struct cfq_io_context *cic;
da775265 1014 struct cfq_queue *cfqq;
da775265
JA
1015
1016 /*
ec8acb69 1017 * Disallow merge of a sync bio into an async request.
da775265 1018 */
91fac317 1019 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1020 return false;
da775265
JA
1021
1022 /*
719d3402
JA
1023 * Lookup the cfqq that this bio will be queued with. Allow
1024 * merge only if rq is queued there.
da775265 1025 */
4ac845a2 1026 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1027 if (!cic)
a6151c3a 1028 return false;
719d3402 1029
91fac317 1030 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1031 return cfqq == RQ_CFQQ(rq);
da775265
JA
1032}
1033
febffd61
JA
1034static void __cfq_set_active_queue(struct cfq_data *cfqd,
1035 struct cfq_queue *cfqq)
22e2c507
JA
1036{
1037 if (cfqq) {
7b679138 1038 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1039 cfqq->slice_end = 0;
2f5cb738
JA
1040 cfqq->slice_dispatch = 0;
1041
2f5cb738 1042 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1043 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1044 cfq_clear_cfqq_must_alloc_slice(cfqq);
1045 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1046 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1047
1048 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1049 }
1050
1051 cfqd->active_queue = cfqq;
1052}
1053
7b14e3b5
JA
1054/*
1055 * current cfqq expired its slice (or was too idle), select new one
1056 */
1057static void
1058__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1059 bool timed_out)
7b14e3b5 1060{
7b679138
JA
1061 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1062
7b14e3b5
JA
1063 if (cfq_cfqq_wait_request(cfqq))
1064 del_timer(&cfqd->idle_slice_timer);
1065
7b14e3b5
JA
1066 cfq_clear_cfqq_wait_request(cfqq);
1067
1068 /*
6084cdda 1069 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1070 */
7b679138 1071 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1072 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1073 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1074 }
7b14e3b5 1075
f04a6424
VG
1076 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1077 cfq_del_cfqq_rr(cfqd, cfqq);
1078
edd75ffd 1079 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1080
1081 if (cfqq == cfqd->active_queue)
1082 cfqd->active_queue = NULL;
1083
1084 if (cfqd->active_cic) {
1085 put_io_context(cfqd->active_cic->ioc);
1086 cfqd->active_cic = NULL;
1087 }
7b14e3b5
JA
1088}
1089
a6151c3a 1090static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1091{
1092 struct cfq_queue *cfqq = cfqd->active_queue;
1093
1094 if (cfqq)
6084cdda 1095 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1096}
1097
498d3aa2
JA
1098/*
1099 * Get next queue for service. Unless we have a queue preemption,
1100 * we'll simply select the first cfqq in the service tree.
1101 */
6d048f53 1102static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1103{
c0324a02 1104 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1105 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1106 cfqd->serving_type, cfqd);
d9e7620e 1107
f04a6424
VG
1108 if (!cfqd->rq_queued)
1109 return NULL;
1110
c0324a02
CZ
1111 if (RB_EMPTY_ROOT(&service_tree->rb))
1112 return NULL;
1113 return cfq_rb_first(service_tree);
6d048f53
JA
1114}
1115
f04a6424
VG
1116static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1117{
1118 struct cfq_group *cfqg = &cfqd->root_group;
1119 struct cfq_queue *cfqq;
1120 int i, j;
1121 struct cfq_rb_root *st;
1122
1123 if (!cfqd->rq_queued)
1124 return NULL;
1125
1126 for_each_cfqg_st(cfqg, i, j, st)
1127 if ((cfqq = cfq_rb_first(st)) != NULL)
1128 return cfqq;
1129 return NULL;
1130}
1131
498d3aa2
JA
1132/*
1133 * Get and set a new active queue for service.
1134 */
a36e71f9
JA
1135static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1136 struct cfq_queue *cfqq)
6d048f53 1137{
e00ef799 1138 if (!cfqq)
a36e71f9 1139 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1140
22e2c507 1141 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1142 return cfqq;
22e2c507
JA
1143}
1144
d9e7620e
JA
1145static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1146 struct request *rq)
1147{
83096ebf
TH
1148 if (blk_rq_pos(rq) >= cfqd->last_position)
1149 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1150 else
83096ebf 1151 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1152}
1153
b2c18e1e
JM
1154#define CFQQ_SEEK_THR 8 * 1024
1155#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1156
b2c18e1e
JM
1157static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1158 struct request *rq)
6d048f53 1159{
b2c18e1e 1160 sector_t sdist = cfqq->seek_mean;
6d048f53 1161
b2c18e1e
JM
1162 if (!sample_valid(cfqq->seek_samples))
1163 sdist = CFQQ_SEEK_THR;
6d048f53 1164
04dc6e71 1165 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1166}
1167
a36e71f9
JA
1168static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1169 struct cfq_queue *cur_cfqq)
1170{
f2d1f0ae 1171 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1172 struct rb_node *parent, *node;
1173 struct cfq_queue *__cfqq;
1174 sector_t sector = cfqd->last_position;
1175
1176 if (RB_EMPTY_ROOT(root))
1177 return NULL;
1178
1179 /*
1180 * First, if we find a request starting at the end of the last
1181 * request, choose it.
1182 */
f2d1f0ae 1183 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1184 if (__cfqq)
1185 return __cfqq;
1186
1187 /*
1188 * If the exact sector wasn't found, the parent of the NULL leaf
1189 * will contain the closest sector.
1190 */
1191 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1192 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1193 return __cfqq;
1194
2e46e8b2 1195 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1196 node = rb_next(&__cfqq->p_node);
1197 else
1198 node = rb_prev(&__cfqq->p_node);
1199 if (!node)
1200 return NULL;
1201
1202 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1203 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1204 return __cfqq;
1205
1206 return NULL;
1207}
1208
1209/*
1210 * cfqd - obvious
1211 * cur_cfqq - passed in so that we don't decide that the current queue is
1212 * closely cooperating with itself.
1213 *
1214 * So, basically we're assuming that that cur_cfqq has dispatched at least
1215 * one request, and that cfqd->last_position reflects a position on the disk
1216 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1217 * assumption.
1218 */
1219static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1220 struct cfq_queue *cur_cfqq)
6d048f53 1221{
a36e71f9
JA
1222 struct cfq_queue *cfqq;
1223
e6c5bc73
JM
1224 if (!cfq_cfqq_sync(cur_cfqq))
1225 return NULL;
1226 if (CFQQ_SEEKY(cur_cfqq))
1227 return NULL;
1228
6d048f53 1229 /*
d9e7620e
JA
1230 * We should notice if some of the queues are cooperating, eg
1231 * working closely on the same area of the disk. In that case,
1232 * we can group them together and don't waste time idling.
6d048f53 1233 */
a36e71f9
JA
1234 cfqq = cfqq_close(cfqd, cur_cfqq);
1235 if (!cfqq)
1236 return NULL;
1237
df5fe3e8
JM
1238 /*
1239 * It only makes sense to merge sync queues.
1240 */
1241 if (!cfq_cfqq_sync(cfqq))
1242 return NULL;
e6c5bc73
JM
1243 if (CFQQ_SEEKY(cfqq))
1244 return NULL;
df5fe3e8 1245
c0324a02
CZ
1246 /*
1247 * Do not merge queues of different priority classes
1248 */
1249 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1250 return NULL;
1251
a36e71f9 1252 return cfqq;
6d048f53
JA
1253}
1254
a6d44e98
CZ
1255/*
1256 * Determine whether we should enforce idle window for this queue.
1257 */
1258
1259static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1260{
1261 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1262 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1263
f04a6424
VG
1264 BUG_ON(!service_tree);
1265 BUG_ON(!service_tree->count);
1266
a6d44e98
CZ
1267 /* We never do for idle class queues. */
1268 if (prio == IDLE_WORKLOAD)
1269 return false;
1270
1271 /* We do for queues that were marked with idle window flag. */
1272 if (cfq_cfqq_idle_window(cfqq))
1273 return true;
1274
1275 /*
1276 * Otherwise, we do only if they are the last ones
1277 * in their service tree.
1278 */
f04a6424 1279 return service_tree->count == 1;
a6d44e98
CZ
1280}
1281
6d048f53 1282static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1283{
1792669c 1284 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1285 struct cfq_io_context *cic;
7b14e3b5
JA
1286 unsigned long sl;
1287
a68bbddb 1288 /*
f7d7b7a7
JA
1289 * SSD device without seek penalty, disable idling. But only do so
1290 * for devices that support queuing, otherwise we still have a problem
1291 * with sync vs async workloads.
a68bbddb 1292 */
f7d7b7a7 1293 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1294 return;
1295
dd67d051 1296 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1297 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1298
1299 /*
1300 * idle is disabled, either manually or by past process history
1301 */
a6d44e98 1302 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1303 return;
1304
7b679138 1305 /*
8e550632 1306 * still active requests from this queue, don't idle
7b679138 1307 */
8e550632 1308 if (cfqq->dispatched)
7b679138
JA
1309 return;
1310
22e2c507
JA
1311 /*
1312 * task has exited, don't wait
1313 */
206dc69b 1314 cic = cfqd->active_cic;
66dac98e 1315 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1316 return;
1317
355b659c
CZ
1318 /*
1319 * If our average think time is larger than the remaining time
1320 * slice, then don't idle. This avoids overrunning the allotted
1321 * time slice.
1322 */
1323 if (sample_valid(cic->ttime_samples) &&
1324 (cfqq->slice_end - jiffies < cic->ttime_mean))
1325 return;
1326
3b18152c 1327 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1328
6d048f53 1329 sl = cfqd->cfq_slice_idle;
206dc69b 1330
7b14e3b5 1331 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1332 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1333}
1334
498d3aa2
JA
1335/*
1336 * Move request from internal lists to the request queue dispatch list.
1337 */
165125e1 1338static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1339{
3ed9a296 1340 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1341 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1342
7b679138
JA
1343 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1344
06d21886 1345 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1346 cfq_remove_request(rq);
6d048f53 1347 cfqq->dispatched++;
5380a101 1348 elv_dispatch_sort(q, rq);
3ed9a296
JA
1349
1350 if (cfq_cfqq_sync(cfqq))
1351 cfqd->sync_flight++;
1da177e4
LT
1352}
1353
1354/*
1355 * return expired entry, or NULL to just start from scratch in rbtree
1356 */
febffd61 1357static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1358{
30996f40 1359 struct request *rq = NULL;
1da177e4 1360
3b18152c 1361 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1362 return NULL;
cb887411
JA
1363
1364 cfq_mark_cfqq_fifo_expire(cfqq);
1365
89850f7e
JA
1366 if (list_empty(&cfqq->fifo))
1367 return NULL;
1da177e4 1368
89850f7e 1369 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1370 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1371 rq = NULL;
1da177e4 1372
30996f40 1373 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1374 return rq;
1da177e4
LT
1375}
1376
22e2c507
JA
1377static inline int
1378cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1379{
1380 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1381
22e2c507 1382 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1383
22e2c507 1384 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1385}
1386
df5fe3e8
JM
1387/*
1388 * Must be called with the queue_lock held.
1389 */
1390static int cfqq_process_refs(struct cfq_queue *cfqq)
1391{
1392 int process_refs, io_refs;
1393
1394 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1395 process_refs = atomic_read(&cfqq->ref) - io_refs;
1396 BUG_ON(process_refs < 0);
1397 return process_refs;
1398}
1399
1400static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1401{
e6c5bc73 1402 int process_refs, new_process_refs;
df5fe3e8
JM
1403 struct cfq_queue *__cfqq;
1404
1405 /* Avoid a circular list and skip interim queue merges */
1406 while ((__cfqq = new_cfqq->new_cfqq)) {
1407 if (__cfqq == cfqq)
1408 return;
1409 new_cfqq = __cfqq;
1410 }
1411
1412 process_refs = cfqq_process_refs(cfqq);
1413 /*
1414 * If the process for the cfqq has gone away, there is no
1415 * sense in merging the queues.
1416 */
1417 if (process_refs == 0)
1418 return;
1419
e6c5bc73
JM
1420 /*
1421 * Merge in the direction of the lesser amount of work.
1422 */
1423 new_process_refs = cfqq_process_refs(new_cfqq);
1424 if (new_process_refs >= process_refs) {
1425 cfqq->new_cfqq = new_cfqq;
1426 atomic_add(process_refs, &new_cfqq->ref);
1427 } else {
1428 new_cfqq->new_cfqq = cfqq;
1429 atomic_add(new_process_refs, &cfqq->ref);
1430 }
df5fe3e8
JM
1431}
1432
cdb16e8f
VG
1433static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1434 struct cfq_group *cfqg, enum wl_prio_t prio,
1435 bool prio_changed)
718eee05
CZ
1436{
1437 struct cfq_queue *queue;
1438 int i;
1439 bool key_valid = false;
1440 unsigned long lowest_key = 0;
1441 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1442
1443 if (prio_changed) {
1444 /*
1445 * When priorities switched, we prefer starting
1446 * from SYNC_NOIDLE (first choice), or just SYNC
1447 * over ASYNC
1448 */
cdb16e8f 1449 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1450 return cur_best;
1451 cur_best = SYNC_WORKLOAD;
cdb16e8f 1452 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1453 return cur_best;
1454
1455 return ASYNC_WORKLOAD;
1456 }
1457
1458 for (i = 0; i < 3; ++i) {
1459 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1460 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1461 if (queue &&
1462 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1463 lowest_key = queue->rb_key;
1464 cur_best = i;
1465 key_valid = true;
1466 }
1467 }
1468
1469 return cur_best;
1470}
1471
cdb16e8f 1472static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1473{
1474 enum wl_prio_t previous_prio = cfqd->serving_prio;
1475 bool prio_changed;
1476 unsigned slice;
1477 unsigned count;
cdb16e8f 1478 struct cfq_rb_root *st;
718eee05
CZ
1479
1480 /* Choose next priority. RT > BE > IDLE */
1481 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1482 cfqd->serving_prio = RT_WORKLOAD;
1483 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1484 cfqd->serving_prio = BE_WORKLOAD;
1485 else {
1486 cfqd->serving_prio = IDLE_WORKLOAD;
1487 cfqd->workload_expires = jiffies + 1;
1488 return;
1489 }
1490
1491 /*
1492 * For RT and BE, we have to choose also the type
1493 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1494 * expiration time
1495 */
1496 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1497 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1498 cfqd);
1499 count = st->count;
718eee05
CZ
1500
1501 /*
1502 * If priority didn't change, check workload expiration,
1503 * and that we still have other queues ready
1504 */
1505 if (!prio_changed && count &&
1506 !time_after(jiffies, cfqd->workload_expires))
1507 return;
1508
1509 /* otherwise select new workload type */
1510 cfqd->serving_type =
cdb16e8f
VG
1511 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1512 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1513 cfqd);
1514 count = st->count;
718eee05
CZ
1515
1516 /*
1517 * the workload slice is computed as a fraction of target latency
1518 * proportional to the number of queues in that workload, over
1519 * all the queues in the same priority class
1520 */
1521 slice = cfq_target_latency * count /
1522 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1523 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1524
1525 if (cfqd->serving_type == ASYNC_WORKLOAD)
1526 /* async workload slice is scaled down according to
1527 * the sync/async slice ratio. */
1528 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1529 else
1530 /* sync workload slice is at least 2 * cfq_slice_idle */
1531 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1532
1533 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1534 cfqd->workload_expires = jiffies + slice;
8e550632 1535 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
1536}
1537
cdb16e8f
VG
1538static void cfq_choose_cfqg(struct cfq_data *cfqd)
1539{
1540 cfqd->serving_group = &cfqd->root_group;
1541 choose_service_tree(cfqd, &cfqd->root_group);
1542}
1543
22e2c507 1544/*
498d3aa2
JA
1545 * Select a queue for service. If we have a current active queue,
1546 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1547 */
1b5ed5e1 1548static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1549{
a36e71f9 1550 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1551
22e2c507
JA
1552 cfqq = cfqd->active_queue;
1553 if (!cfqq)
1554 goto new_queue;
1da177e4 1555
f04a6424
VG
1556 if (!cfqd->rq_queued)
1557 return NULL;
22e2c507 1558 /*
6d048f53 1559 * The active queue has run out of time, expire it and select new.
22e2c507 1560 */
b029195d 1561 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1562 goto expire;
1da177e4 1563
22e2c507 1564 /*
6d048f53
JA
1565 * The active queue has requests and isn't expired, allow it to
1566 * dispatch.
22e2c507 1567 */
dd67d051 1568 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1569 goto keep_queue;
6d048f53 1570
a36e71f9
JA
1571 /*
1572 * If another queue has a request waiting within our mean seek
1573 * distance, let it run. The expire code will check for close
1574 * cooperators and put the close queue at the front of the service
df5fe3e8 1575 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1576 */
b3b6d040 1577 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1578 if (new_cfqq) {
1579 if (!cfqq->new_cfqq)
1580 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1581 goto expire;
df5fe3e8 1582 }
a36e71f9 1583
6d048f53
JA
1584 /*
1585 * No requests pending. If the active queue still has requests in
1586 * flight or is idling for a new request, allow either of these
1587 * conditions to happen (or time out) before selecting a new queue.
1588 */
cc197479 1589 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1590 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1591 cfqq = NULL;
1592 goto keep_queue;
22e2c507
JA
1593 }
1594
3b18152c 1595expire:
6084cdda 1596 cfq_slice_expired(cfqd, 0);
3b18152c 1597new_queue:
718eee05
CZ
1598 /*
1599 * Current queue expired. Check if we have to switch to a new
1600 * service tree
1601 */
1602 if (!new_cfqq)
cdb16e8f 1603 cfq_choose_cfqg(cfqd);
718eee05 1604
a36e71f9 1605 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1606keep_queue:
3b18152c 1607 return cfqq;
22e2c507
JA
1608}
1609
febffd61 1610static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1611{
1612 int dispatched = 0;
1613
1614 while (cfqq->next_rq) {
1615 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1616 dispatched++;
1617 }
1618
1619 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
1620
1621 /* By default cfqq is not expired if it is empty. Do it explicitly */
1622 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
1623 return dispatched;
1624}
1625
498d3aa2
JA
1626/*
1627 * Drain our current requests. Used for barriers and when switching
1628 * io schedulers on-the-fly.
1629 */
d9e7620e 1630static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1631{
0871714e 1632 struct cfq_queue *cfqq;
d9e7620e 1633 int dispatched = 0;
cdb16e8f 1634
f04a6424
VG
1635 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL)
1636 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1637
6084cdda 1638 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1639 BUG_ON(cfqd->busy_queues);
1640
6923715a 1641 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1642 return dispatched;
1643}
1644
0b182d61 1645static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1646{
2f5cb738 1647 unsigned int max_dispatch;
22e2c507 1648
5ad531db
JA
1649 /*
1650 * Drain async requests before we start sync IO
1651 */
a6d44e98 1652 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1653 return false;
5ad531db 1654
2f5cb738
JA
1655 /*
1656 * If this is an async queue and we have sync IO in flight, let it wait
1657 */
1658 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1659 return false;
2f5cb738
JA
1660
1661 max_dispatch = cfqd->cfq_quantum;
1662 if (cfq_class_idle(cfqq))
1663 max_dispatch = 1;
b4878f24 1664
2f5cb738
JA
1665 /*
1666 * Does this cfqq already have too much IO in flight?
1667 */
1668 if (cfqq->dispatched >= max_dispatch) {
1669 /*
1670 * idle queue must always only have a single IO in flight
1671 */
3ed9a296 1672 if (cfq_class_idle(cfqq))
0b182d61 1673 return false;
3ed9a296 1674
2f5cb738
JA
1675 /*
1676 * We have other queues, don't allow more IO from this one
1677 */
1678 if (cfqd->busy_queues > 1)
0b182d61 1679 return false;
9ede209e 1680
365722bb 1681 /*
474b18cc 1682 * Sole queue user, no limit
365722bb 1683 */
474b18cc 1684 max_dispatch = -1;
8e296755
JA
1685 }
1686
1687 /*
1688 * Async queues must wait a bit before being allowed dispatch.
1689 * We also ramp up the dispatch depth gradually for async IO,
1690 * based on the last sync IO we serviced
1691 */
963b72fc 1692 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1693 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1694 unsigned int depth;
365722bb 1695
61f0c1dc 1696 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1697 if (!depth && !cfqq->dispatched)
1698 depth = 1;
8e296755
JA
1699 if (depth < max_dispatch)
1700 max_dispatch = depth;
2f5cb738 1701 }
3ed9a296 1702
0b182d61
JA
1703 /*
1704 * If we're below the current max, allow a dispatch
1705 */
1706 return cfqq->dispatched < max_dispatch;
1707}
1708
1709/*
1710 * Dispatch a request from cfqq, moving them to the request queue
1711 * dispatch list.
1712 */
1713static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1714{
1715 struct request *rq;
1716
1717 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1718
1719 if (!cfq_may_dispatch(cfqd, cfqq))
1720 return false;
1721
1722 /*
1723 * follow expired path, else get first next available
1724 */
1725 rq = cfq_check_fifo(cfqq);
1726 if (!rq)
1727 rq = cfqq->next_rq;
1728
1729 /*
1730 * insert request into driver dispatch list
1731 */
1732 cfq_dispatch_insert(cfqd->queue, rq);
1733
1734 if (!cfqd->active_cic) {
1735 struct cfq_io_context *cic = RQ_CIC(rq);
1736
1737 atomic_long_inc(&cic->ioc->refcount);
1738 cfqd->active_cic = cic;
1739 }
1740
1741 return true;
1742}
1743
1744/*
1745 * Find the cfqq that we need to service and move a request from that to the
1746 * dispatch list
1747 */
1748static int cfq_dispatch_requests(struct request_queue *q, int force)
1749{
1750 struct cfq_data *cfqd = q->elevator->elevator_data;
1751 struct cfq_queue *cfqq;
1752
1753 if (!cfqd->busy_queues)
1754 return 0;
1755
1756 if (unlikely(force))
1757 return cfq_forced_dispatch(cfqd);
1758
1759 cfqq = cfq_select_queue(cfqd);
1760 if (!cfqq)
8e296755
JA
1761 return 0;
1762
2f5cb738 1763 /*
0b182d61 1764 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1765 */
0b182d61
JA
1766 if (!cfq_dispatch_request(cfqd, cfqq))
1767 return 0;
1768
2f5cb738 1769 cfqq->slice_dispatch++;
b029195d 1770 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1771
2f5cb738
JA
1772 /*
1773 * expire an async queue immediately if it has used up its slice. idle
1774 * queue always expire after 1 dispatch round.
1775 */
1776 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1777 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1778 cfq_class_idle(cfqq))) {
1779 cfqq->slice_end = jiffies + 1;
1780 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1781 }
1782
b217a903 1783 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1784 return 1;
1da177e4
LT
1785}
1786
1da177e4 1787/*
5e705374
JA
1788 * task holds one reference to the queue, dropped when task exits. each rq
1789 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1790 *
1791 * queue lock must be held here.
1792 */
1793static void cfq_put_queue(struct cfq_queue *cfqq)
1794{
22e2c507
JA
1795 struct cfq_data *cfqd = cfqq->cfqd;
1796
1797 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1798
1799 if (!atomic_dec_and_test(&cfqq->ref))
1800 return;
1801
7b679138 1802 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1803 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1804 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
1da177e4 1805
28f95cbc 1806 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1807 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1808 cfq_schedule_dispatch(cfqd);
28f95cbc 1809 }
22e2c507 1810
f04a6424 1811 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4
LT
1812 kmem_cache_free(cfq_pool, cfqq);
1813}
1814
d6de8be7
JA
1815/*
1816 * Must always be called with the rcu_read_lock() held
1817 */
07416d29
JA
1818static void
1819__call_for_each_cic(struct io_context *ioc,
1820 void (*func)(struct io_context *, struct cfq_io_context *))
1821{
1822 struct cfq_io_context *cic;
1823 struct hlist_node *n;
1824
1825 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1826 func(ioc, cic);
1827}
1828
4ac845a2 1829/*
34e6bbf2 1830 * Call func for each cic attached to this ioc.
4ac845a2 1831 */
34e6bbf2 1832static void
4ac845a2
JA
1833call_for_each_cic(struct io_context *ioc,
1834 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1835{
4ac845a2 1836 rcu_read_lock();
07416d29 1837 __call_for_each_cic(ioc, func);
4ac845a2 1838 rcu_read_unlock();
34e6bbf2
FC
1839}
1840
1841static void cfq_cic_free_rcu(struct rcu_head *head)
1842{
1843 struct cfq_io_context *cic;
1844
1845 cic = container_of(head, struct cfq_io_context, rcu_head);
1846
1847 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1848 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1849
9a11b4ed
JA
1850 if (ioc_gone) {
1851 /*
1852 * CFQ scheduler is exiting, grab exit lock and check
1853 * the pending io context count. If it hits zero,
1854 * complete ioc_gone and set it back to NULL
1855 */
1856 spin_lock(&ioc_gone_lock);
245b2e70 1857 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1858 complete(ioc_gone);
1859 ioc_gone = NULL;
1860 }
1861 spin_unlock(&ioc_gone_lock);
1862 }
34e6bbf2 1863}
4ac845a2 1864
34e6bbf2
FC
1865static void cfq_cic_free(struct cfq_io_context *cic)
1866{
1867 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1868}
1869
1870static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1871{
1872 unsigned long flags;
1873
1874 BUG_ON(!cic->dead_key);
1875
1876 spin_lock_irqsave(&ioc->lock, flags);
1877 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1878 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1879 spin_unlock_irqrestore(&ioc->lock, flags);
1880
34e6bbf2 1881 cfq_cic_free(cic);
4ac845a2
JA
1882}
1883
d6de8be7
JA
1884/*
1885 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1886 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1887 * and ->trim() which is called with the task lock held
1888 */
4ac845a2
JA
1889static void cfq_free_io_context(struct io_context *ioc)
1890{
4ac845a2 1891 /*
34e6bbf2
FC
1892 * ioc->refcount is zero here, or we are called from elv_unregister(),
1893 * so no more cic's are allowed to be linked into this ioc. So it
1894 * should be ok to iterate over the known list, we will see all cic's
1895 * since no new ones are added.
4ac845a2 1896 */
07416d29 1897 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1898}
1899
89850f7e 1900static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1901{
df5fe3e8
JM
1902 struct cfq_queue *__cfqq, *next;
1903
28f95cbc 1904 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1905 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1906 cfq_schedule_dispatch(cfqd);
28f95cbc 1907 }
22e2c507 1908
df5fe3e8
JM
1909 /*
1910 * If this queue was scheduled to merge with another queue, be
1911 * sure to drop the reference taken on that queue (and others in
1912 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1913 */
1914 __cfqq = cfqq->new_cfqq;
1915 while (__cfqq) {
1916 if (__cfqq == cfqq) {
1917 WARN(1, "cfqq->new_cfqq loop detected\n");
1918 break;
1919 }
1920 next = __cfqq->new_cfqq;
1921 cfq_put_queue(__cfqq);
1922 __cfqq = next;
1923 }
1924
89850f7e
JA
1925 cfq_put_queue(cfqq);
1926}
22e2c507 1927
89850f7e
JA
1928static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1929 struct cfq_io_context *cic)
1930{
4faa3c81
FC
1931 struct io_context *ioc = cic->ioc;
1932
fc46379d 1933 list_del_init(&cic->queue_list);
4ac845a2
JA
1934
1935 /*
1936 * Make sure key == NULL is seen for dead queues
1937 */
fc46379d 1938 smp_wmb();
4ac845a2 1939 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1940 cic->key = NULL;
1941
4faa3c81
FC
1942 if (ioc->ioc_data == cic)
1943 rcu_assign_pointer(ioc->ioc_data, NULL);
1944
ff6657c6
JA
1945 if (cic->cfqq[BLK_RW_ASYNC]) {
1946 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1947 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1948 }
1949
ff6657c6
JA
1950 if (cic->cfqq[BLK_RW_SYNC]) {
1951 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1952 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1953 }
89850f7e
JA
1954}
1955
4ac845a2
JA
1956static void cfq_exit_single_io_context(struct io_context *ioc,
1957 struct cfq_io_context *cic)
89850f7e
JA
1958{
1959 struct cfq_data *cfqd = cic->key;
1960
89850f7e 1961 if (cfqd) {
165125e1 1962 struct request_queue *q = cfqd->queue;
4ac845a2 1963 unsigned long flags;
89850f7e 1964
4ac845a2 1965 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1966
1967 /*
1968 * Ensure we get a fresh copy of the ->key to prevent
1969 * race between exiting task and queue
1970 */
1971 smp_read_barrier_depends();
1972 if (cic->key)
1973 __cfq_exit_single_io_context(cfqd, cic);
1974
4ac845a2 1975 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1976 }
1da177e4
LT
1977}
1978
498d3aa2
JA
1979/*
1980 * The process that ioc belongs to has exited, we need to clean up
1981 * and put the internal structures we have that belongs to that process.
1982 */
e2d74ac0 1983static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1984{
4ac845a2 1985 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1986}
1987
22e2c507 1988static struct cfq_io_context *
8267e268 1989cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1990{
b5deef90 1991 struct cfq_io_context *cic;
1da177e4 1992
94f6030c
CL
1993 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1994 cfqd->queue->node);
1da177e4 1995 if (cic) {
22e2c507 1996 cic->last_end_request = jiffies;
553698f9 1997 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1998 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1999 cic->dtor = cfq_free_io_context;
2000 cic->exit = cfq_exit_io_context;
245b2e70 2001 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
2002 }
2003
2004 return cic;
2005}
2006
fd0928df 2007static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2008{
2009 struct task_struct *tsk = current;
2010 int ioprio_class;
2011
3b18152c 2012 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2013 return;
2014
fd0928df 2015 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2016 switch (ioprio_class) {
fe094d98
JA
2017 default:
2018 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2019 case IOPRIO_CLASS_NONE:
2020 /*
6d63c275 2021 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2022 */
2023 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2024 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2025 break;
2026 case IOPRIO_CLASS_RT:
2027 cfqq->ioprio = task_ioprio(ioc);
2028 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2029 break;
2030 case IOPRIO_CLASS_BE:
2031 cfqq->ioprio = task_ioprio(ioc);
2032 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2033 break;
2034 case IOPRIO_CLASS_IDLE:
2035 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2036 cfqq->ioprio = 7;
2037 cfq_clear_cfqq_idle_window(cfqq);
2038 break;
22e2c507
JA
2039 }
2040
2041 /*
2042 * keep track of original prio settings in case we have to temporarily
2043 * elevate the priority of this queue
2044 */
2045 cfqq->org_ioprio = cfqq->ioprio;
2046 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2047 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2048}
2049
febffd61 2050static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2051{
478a82b0
AV
2052 struct cfq_data *cfqd = cic->key;
2053 struct cfq_queue *cfqq;
c1b707d2 2054 unsigned long flags;
35e6077c 2055
caaa5f9f
JA
2056 if (unlikely(!cfqd))
2057 return;
2058
c1b707d2 2059 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2060
ff6657c6 2061 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2062 if (cfqq) {
2063 struct cfq_queue *new_cfqq;
ff6657c6
JA
2064 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2065 GFP_ATOMIC);
caaa5f9f 2066 if (new_cfqq) {
ff6657c6 2067 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2068 cfq_put_queue(cfqq);
2069 }
22e2c507 2070 }
caaa5f9f 2071
ff6657c6 2072 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2073 if (cfqq)
2074 cfq_mark_cfqq_prio_changed(cfqq);
2075
c1b707d2 2076 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2077}
2078
fc46379d 2079static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2080{
4ac845a2 2081 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2082 ioc->ioprio_changed = 0;
22e2c507
JA
2083}
2084
d5036d77 2085static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2086 pid_t pid, bool is_sync)
d5036d77
JA
2087{
2088 RB_CLEAR_NODE(&cfqq->rb_node);
2089 RB_CLEAR_NODE(&cfqq->p_node);
2090 INIT_LIST_HEAD(&cfqq->fifo);
2091
2092 atomic_set(&cfqq->ref, 0);
2093 cfqq->cfqd = cfqd;
2094
2095 cfq_mark_cfqq_prio_changed(cfqq);
2096
2097 if (is_sync) {
2098 if (!cfq_class_idle(cfqq))
2099 cfq_mark_cfqq_idle_window(cfqq);
2100 cfq_mark_cfqq_sync(cfqq);
2101 }
2102 cfqq->pid = pid;
2103}
2104
cdb16e8f
VG
2105static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2106{
2107 cfqq->cfqg = cfqg;
2108}
2109
2110static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2111{
2112 return &cfqd->root_group;
2113}
2114
22e2c507 2115static struct cfq_queue *
a6151c3a 2116cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2117 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2118{
22e2c507 2119 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2120 struct cfq_io_context *cic;
cdb16e8f 2121 struct cfq_group *cfqg;
22e2c507
JA
2122
2123retry:
cdb16e8f 2124 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2125 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2126 /* cic always exists here */
2127 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2128
6118b70b
JA
2129 /*
2130 * Always try a new alloc if we fell back to the OOM cfqq
2131 * originally, since it should just be a temporary situation.
2132 */
2133 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2134 cfqq = NULL;
22e2c507
JA
2135 if (new_cfqq) {
2136 cfqq = new_cfqq;
2137 new_cfqq = NULL;
2138 } else if (gfp_mask & __GFP_WAIT) {
2139 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2140 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2141 gfp_mask | __GFP_ZERO,
94f6030c 2142 cfqd->queue->node);
22e2c507 2143 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2144 if (new_cfqq)
2145 goto retry;
22e2c507 2146 } else {
94f6030c
CL
2147 cfqq = kmem_cache_alloc_node(cfq_pool,
2148 gfp_mask | __GFP_ZERO,
2149 cfqd->queue->node);
22e2c507
JA
2150 }
2151
6118b70b
JA
2152 if (cfqq) {
2153 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2154 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2155 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2156 cfq_log_cfqq(cfqd, cfqq, "alloced");
2157 } else
2158 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2159 }
2160
2161 if (new_cfqq)
2162 kmem_cache_free(cfq_pool, new_cfqq);
2163
22e2c507
JA
2164 return cfqq;
2165}
2166
c2dea2d1
VT
2167static struct cfq_queue **
2168cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2169{
fe094d98 2170 switch (ioprio_class) {
c2dea2d1
VT
2171 case IOPRIO_CLASS_RT:
2172 return &cfqd->async_cfqq[0][ioprio];
2173 case IOPRIO_CLASS_BE:
2174 return &cfqd->async_cfqq[1][ioprio];
2175 case IOPRIO_CLASS_IDLE:
2176 return &cfqd->async_idle_cfqq;
2177 default:
2178 BUG();
2179 }
2180}
2181
15c31be4 2182static struct cfq_queue *
a6151c3a 2183cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2184 gfp_t gfp_mask)
2185{
fd0928df
JA
2186 const int ioprio = task_ioprio(ioc);
2187 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2188 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2189 struct cfq_queue *cfqq = NULL;
2190
c2dea2d1
VT
2191 if (!is_sync) {
2192 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2193 cfqq = *async_cfqq;
2194 }
2195
6118b70b 2196 if (!cfqq)
fd0928df 2197 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2198
2199 /*
2200 * pin the queue now that it's allocated, scheduler exit will prune it
2201 */
c2dea2d1 2202 if (!is_sync && !(*async_cfqq)) {
15c31be4 2203 atomic_inc(&cfqq->ref);
c2dea2d1 2204 *async_cfqq = cfqq;
15c31be4
JA
2205 }
2206
2207 atomic_inc(&cfqq->ref);
2208 return cfqq;
2209}
2210
498d3aa2
JA
2211/*
2212 * We drop cfq io contexts lazily, so we may find a dead one.
2213 */
dbecf3ab 2214static void
4ac845a2
JA
2215cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2216 struct cfq_io_context *cic)
dbecf3ab 2217{
4ac845a2
JA
2218 unsigned long flags;
2219
fc46379d 2220 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2221
4ac845a2
JA
2222 spin_lock_irqsave(&ioc->lock, flags);
2223
4faa3c81 2224 BUG_ON(ioc->ioc_data == cic);
597bc485 2225
4ac845a2 2226 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2227 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2228 spin_unlock_irqrestore(&ioc->lock, flags);
2229
2230 cfq_cic_free(cic);
dbecf3ab
OH
2231}
2232
e2d74ac0 2233static struct cfq_io_context *
4ac845a2 2234cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2235{
e2d74ac0 2236 struct cfq_io_context *cic;
d6de8be7 2237 unsigned long flags;
4ac845a2 2238 void *k;
e2d74ac0 2239
91fac317
VT
2240 if (unlikely(!ioc))
2241 return NULL;
2242
d6de8be7
JA
2243 rcu_read_lock();
2244
597bc485
JA
2245 /*
2246 * we maintain a last-hit cache, to avoid browsing over the tree
2247 */
4ac845a2 2248 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2249 if (cic && cic->key == cfqd) {
2250 rcu_read_unlock();
597bc485 2251 return cic;
d6de8be7 2252 }
597bc485 2253
4ac845a2 2254 do {
4ac845a2
JA
2255 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2256 rcu_read_unlock();
2257 if (!cic)
2258 break;
be3b0753
OH
2259 /* ->key must be copied to avoid race with cfq_exit_queue() */
2260 k = cic->key;
2261 if (unlikely(!k)) {
4ac845a2 2262 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2263 rcu_read_lock();
4ac845a2 2264 continue;
dbecf3ab 2265 }
e2d74ac0 2266
d6de8be7 2267 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2268 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2269 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2270 break;
2271 } while (1);
e2d74ac0 2272
4ac845a2 2273 return cic;
e2d74ac0
JA
2274}
2275
4ac845a2
JA
2276/*
2277 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2278 * the process specific cfq io context when entered from the block layer.
2279 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2280 */
febffd61
JA
2281static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2282 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2283{
0261d688 2284 unsigned long flags;
4ac845a2 2285 int ret;
e2d74ac0 2286
4ac845a2
JA
2287 ret = radix_tree_preload(gfp_mask);
2288 if (!ret) {
2289 cic->ioc = ioc;
2290 cic->key = cfqd;
e2d74ac0 2291
4ac845a2
JA
2292 spin_lock_irqsave(&ioc->lock, flags);
2293 ret = radix_tree_insert(&ioc->radix_root,
2294 (unsigned long) cfqd, cic);
ffc4e759
JA
2295 if (!ret)
2296 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2297 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2298
4ac845a2
JA
2299 radix_tree_preload_end();
2300
2301 if (!ret) {
2302 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2303 list_add(&cic->queue_list, &cfqd->cic_list);
2304 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2305 }
e2d74ac0
JA
2306 }
2307
4ac845a2
JA
2308 if (ret)
2309 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2310
4ac845a2 2311 return ret;
e2d74ac0
JA
2312}
2313
1da177e4
LT
2314/*
2315 * Setup general io context and cfq io context. There can be several cfq
2316 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2317 * than one device managed by cfq.
1da177e4
LT
2318 */
2319static struct cfq_io_context *
e2d74ac0 2320cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2321{
22e2c507 2322 struct io_context *ioc = NULL;
1da177e4 2323 struct cfq_io_context *cic;
1da177e4 2324
22e2c507 2325 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2326
b5deef90 2327 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2328 if (!ioc)
2329 return NULL;
2330
4ac845a2 2331 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2332 if (cic)
2333 goto out;
1da177e4 2334
e2d74ac0
JA
2335 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2336 if (cic == NULL)
2337 goto err;
1da177e4 2338
4ac845a2
JA
2339 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2340 goto err_free;
2341
1da177e4 2342out:
fc46379d
JA
2343 smp_read_barrier_depends();
2344 if (unlikely(ioc->ioprio_changed))
2345 cfq_ioc_set_ioprio(ioc);
2346
1da177e4 2347 return cic;
4ac845a2
JA
2348err_free:
2349 cfq_cic_free(cic);
1da177e4
LT
2350err:
2351 put_io_context(ioc);
2352 return NULL;
2353}
2354
22e2c507
JA
2355static void
2356cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2357{
aaf1228d
JA
2358 unsigned long elapsed = jiffies - cic->last_end_request;
2359 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2360
22e2c507
JA
2361 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2362 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2363 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2364}
1da177e4 2365
206dc69b 2366static void
b2c18e1e 2367cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2368 struct request *rq)
206dc69b
JA
2369{
2370 sector_t sdist;
2371 u64 total;
2372
b2c18e1e 2373 if (!cfqq->last_request_pos)
4d00aa47 2374 sdist = 0;
b2c18e1e
JM
2375 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2376 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2377 else
b2c18e1e 2378 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2379
2380 /*
2381 * Don't allow the seek distance to get too large from the
2382 * odd fragment, pagein, etc
2383 */
b2c18e1e
JM
2384 if (cfqq->seek_samples <= 60) /* second&third seek */
2385 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2386 else
b2c18e1e 2387 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2388
b2c18e1e
JM
2389 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2390 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2391 total = cfqq->seek_total + (cfqq->seek_samples/2);
2392 do_div(total, cfqq->seek_samples);
2393 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2394
2395 /*
2396 * If this cfqq is shared between multiple processes, check to
2397 * make sure that those processes are still issuing I/Os within
2398 * the mean seek distance. If not, it may be time to break the
2399 * queues apart again.
2400 */
2401 if (cfq_cfqq_coop(cfqq)) {
2402 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2403 cfqq->seeky_start = jiffies;
2404 else if (!CFQQ_SEEKY(cfqq))
2405 cfqq->seeky_start = 0;
2406 }
206dc69b 2407}
1da177e4 2408
22e2c507
JA
2409/*
2410 * Disable idle window if the process thinks too long or seeks so much that
2411 * it doesn't matter
2412 */
2413static void
2414cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2415 struct cfq_io_context *cic)
2416{
7b679138 2417 int old_idle, enable_idle;
1be92f2f 2418
0871714e
JA
2419 /*
2420 * Don't idle for async or idle io prio class
2421 */
2422 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2423 return;
2424
c265a7f4 2425 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2426
76280aff
CZ
2427 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2428 cfq_mark_cfqq_deep(cfqq);
2429
66dac98e 2430 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2431 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2432 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2433 enable_idle = 0;
2434 else if (sample_valid(cic->ttime_samples)) {
718eee05 2435 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2436 enable_idle = 0;
2437 else
2438 enable_idle = 1;
1da177e4
LT
2439 }
2440
7b679138
JA
2441 if (old_idle != enable_idle) {
2442 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2443 if (enable_idle)
2444 cfq_mark_cfqq_idle_window(cfqq);
2445 else
2446 cfq_clear_cfqq_idle_window(cfqq);
2447 }
22e2c507 2448}
1da177e4 2449
22e2c507
JA
2450/*
2451 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2452 * no or if we aren't sure, a 1 will cause a preempt.
2453 */
a6151c3a 2454static bool
22e2c507 2455cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2456 struct request *rq)
22e2c507 2457{
6d048f53 2458 struct cfq_queue *cfqq;
22e2c507 2459
6d048f53
JA
2460 cfqq = cfqd->active_queue;
2461 if (!cfqq)
a6151c3a 2462 return false;
22e2c507 2463
6d048f53 2464 if (cfq_slice_used(cfqq))
a6151c3a 2465 return true;
6d048f53
JA
2466
2467 if (cfq_class_idle(new_cfqq))
a6151c3a 2468 return false;
22e2c507
JA
2469
2470 if (cfq_class_idle(cfqq))
a6151c3a 2471 return true;
1e3335de 2472
f04a6424 2473 /* Allow preemption only if we are idling on sync-noidle tree */
e4a22919
CZ
2474 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2475 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
f04a6424
VG
2476 new_cfqq->service_tree->count == 2 &&
2477 RB_EMPTY_ROOT(&cfqq->sort_list))
718eee05
CZ
2478 return true;
2479
374f84ac
JA
2480 /*
2481 * if the new request is sync, but the currently running queue is
2482 * not, let the sync request have priority.
2483 */
5e705374 2484 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2485 return true;
1e3335de 2486
374f84ac
JA
2487 /*
2488 * So both queues are sync. Let the new request get disk time if
2489 * it's a metadata request and the current queue is doing regular IO.
2490 */
2491 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2492 return true;
22e2c507 2493
3a9a3f6c
DS
2494 /*
2495 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2496 */
2497 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2498 return true;
3a9a3f6c 2499
1e3335de 2500 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2501 return false;
1e3335de
JA
2502
2503 /*
2504 * if this request is as-good as one we would expect from the
2505 * current cfqq, let it preempt
2506 */
e00ef799 2507 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2508 return true;
1e3335de 2509
a6151c3a 2510 return false;
22e2c507
JA
2511}
2512
2513/*
2514 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2515 * let it have half of its nominal slice.
2516 */
2517static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2518{
7b679138 2519 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2520 cfq_slice_expired(cfqd, 1);
22e2c507 2521
bf572256
JA
2522 /*
2523 * Put the new queue at the front of the of the current list,
2524 * so we know that it will be selected next.
2525 */
2526 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2527
2528 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2529
44f7c160
JA
2530 cfqq->slice_end = 0;
2531 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2532}
2533
22e2c507 2534/*
5e705374 2535 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2536 * something we should do about it
2537 */
2538static void
5e705374
JA
2539cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2540 struct request *rq)
22e2c507 2541{
5e705374 2542 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2543
45333d5a 2544 cfqd->rq_queued++;
374f84ac
JA
2545 if (rq_is_meta(rq))
2546 cfqq->meta_pending++;
2547
9c2c38a1 2548 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2549 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2550 cfq_update_idle_window(cfqd, cfqq, cic);
2551
b2c18e1e 2552 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2553
2554 if (cfqq == cfqd->active_queue) {
2555 /*
b029195d
JA
2556 * Remember that we saw a request from this process, but
2557 * don't start queuing just yet. Otherwise we risk seeing lots
2558 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2559 * and merging. If the request is already larger than a single
2560 * page, let it rip immediately. For that case we assume that
2d870722
JA
2561 * merging is already done. Ditto for a busy system that
2562 * has other work pending, don't risk delaying until the
2563 * idle timer unplug to continue working.
22e2c507 2564 */
d6ceb25e 2565 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2566 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2567 cfqd->busy_queues > 1) {
d6ceb25e 2568 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
2569 __blk_run_queue(cfqd->queue);
2570 } else
2571 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2572 }
5e705374 2573 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2574 /*
2575 * not the active queue - expire current slice if it is
2576 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2577 * has some old slice time left and is of higher priority or
2578 * this new queue is RT and the current one is BE
22e2c507
JA
2579 */
2580 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2581 __blk_run_queue(cfqd->queue);
22e2c507 2582 }
1da177e4
LT
2583}
2584
165125e1 2585static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2586{
b4878f24 2587 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2588 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2589
7b679138 2590 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2591 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2592
30996f40 2593 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2594 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2595 cfq_add_rq_rb(rq);
22e2c507 2596
5e705374 2597 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2598}
2599
45333d5a
AC
2600/*
2601 * Update hw_tag based on peak queue depth over 50 samples under
2602 * sufficient load.
2603 */
2604static void cfq_update_hw_tag(struct cfq_data *cfqd)
2605{
1a1238a7
SL
2606 struct cfq_queue *cfqq = cfqd->active_queue;
2607
e459dd08
CZ
2608 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2609 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2610
2611 if (cfqd->hw_tag == 1)
2612 return;
45333d5a
AC
2613
2614 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2615 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2616 return;
2617
1a1238a7
SL
2618 /*
2619 * If active queue hasn't enough requests and can idle, cfq might not
2620 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2621 * case
2622 */
2623 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2624 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2625 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2626 return;
2627
45333d5a
AC
2628 if (cfqd->hw_tag_samples++ < 50)
2629 return;
2630
e459dd08 2631 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2632 cfqd->hw_tag = 1;
2633 else
2634 cfqd->hw_tag = 0;
45333d5a
AC
2635}
2636
165125e1 2637static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2638{
5e705374 2639 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2640 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2641 const int sync = rq_is_sync(rq);
b4878f24 2642 unsigned long now;
1da177e4 2643
b4878f24 2644 now = jiffies;
7b679138 2645 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2646
45333d5a
AC
2647 cfq_update_hw_tag(cfqd);
2648
5ad531db 2649 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2650 WARN_ON(!cfqq->dispatched);
5ad531db 2651 cfqd->rq_in_driver[sync]--;
6d048f53 2652 cfqq->dispatched--;
1da177e4 2653
3ed9a296
JA
2654 if (cfq_cfqq_sync(cfqq))
2655 cfqd->sync_flight--;
2656
365722bb 2657 if (sync) {
5e705374 2658 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2659 cfqd->last_end_sync_rq = now;
2660 }
caaa5f9f
JA
2661
2662 /*
2663 * If this is the active queue, check if it needs to be expired,
2664 * or if we want to idle in case it has no pending requests.
2665 */
2666 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2667 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2668
44f7c160
JA
2669 if (cfq_cfqq_slice_new(cfqq)) {
2670 cfq_set_prio_slice(cfqd, cfqq);
2671 cfq_clear_cfqq_slice_new(cfqq);
2672 }
a36e71f9 2673 /*
8e550632
CZ
2674 * Idling is not enabled on:
2675 * - expired queues
2676 * - idle-priority queues
2677 * - async queues
2678 * - queues with still some requests queued
2679 * - when there is a close cooperator
a36e71f9 2680 */
0871714e 2681 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2682 cfq_slice_expired(cfqd, 1);
8e550632
CZ
2683 else if (sync && cfqq_empty &&
2684 !cfq_close_cooperator(cfqd, cfqq)) {
2685 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2686 /*
2687 * Idling is enabled for SYNC_WORKLOAD.
2688 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2689 * only if we processed at least one !rq_noidle request
2690 */
2691 if (cfqd->serving_type == SYNC_WORKLOAD
2692 || cfqd->noidle_tree_requires_idle)
2693 cfq_arm_slice_timer(cfqd);
2694 }
caaa5f9f 2695 }
6d048f53 2696
5ad531db 2697 if (!rq_in_driver(cfqd))
23e018a1 2698 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2699}
2700
22e2c507
JA
2701/*
2702 * we temporarily boost lower priority queues if they are holding fs exclusive
2703 * resources. they are boosted to normal prio (CLASS_BE/4)
2704 */
2705static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2706{
22e2c507
JA
2707 if (has_fs_excl()) {
2708 /*
2709 * boost idle prio on transactions that would lock out other
2710 * users of the filesystem
2711 */
2712 if (cfq_class_idle(cfqq))
2713 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2714 if (cfqq->ioprio > IOPRIO_NORM)
2715 cfqq->ioprio = IOPRIO_NORM;
2716 } else {
2717 /*
dddb7451 2718 * unboost the queue (if needed)
22e2c507 2719 */
dddb7451
CZ
2720 cfqq->ioprio_class = cfqq->org_ioprio_class;
2721 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2722 }
22e2c507 2723}
1da177e4 2724
89850f7e 2725static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2726{
1b379d8d 2727 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2728 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2729 return ELV_MQUEUE_MUST;
3b18152c 2730 }
1da177e4 2731
22e2c507 2732 return ELV_MQUEUE_MAY;
22e2c507
JA
2733}
2734
165125e1 2735static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2736{
2737 struct cfq_data *cfqd = q->elevator->elevator_data;
2738 struct task_struct *tsk = current;
91fac317 2739 struct cfq_io_context *cic;
22e2c507
JA
2740 struct cfq_queue *cfqq;
2741
2742 /*
2743 * don't force setup of a queue from here, as a call to may_queue
2744 * does not necessarily imply that a request actually will be queued.
2745 * so just lookup a possibly existing queue, or return 'may queue'
2746 * if that fails
2747 */
4ac845a2 2748 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2749 if (!cic)
2750 return ELV_MQUEUE_MAY;
2751
b0b78f81 2752 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2753 if (cfqq) {
fd0928df 2754 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2755 cfq_prio_boost(cfqq);
2756
89850f7e 2757 return __cfq_may_queue(cfqq);
22e2c507
JA
2758 }
2759
2760 return ELV_MQUEUE_MAY;
1da177e4
LT
2761}
2762
1da177e4
LT
2763/*
2764 * queue lock held here
2765 */
bb37b94c 2766static void cfq_put_request(struct request *rq)
1da177e4 2767{
5e705374 2768 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2769
5e705374 2770 if (cfqq) {
22e2c507 2771 const int rw = rq_data_dir(rq);
1da177e4 2772
22e2c507
JA
2773 BUG_ON(!cfqq->allocated[rw]);
2774 cfqq->allocated[rw]--;
1da177e4 2775
5e705374 2776 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2777
1da177e4 2778 rq->elevator_private = NULL;
5e705374 2779 rq->elevator_private2 = NULL;
1da177e4 2780
1da177e4
LT
2781 cfq_put_queue(cfqq);
2782 }
2783}
2784
df5fe3e8
JM
2785static struct cfq_queue *
2786cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2787 struct cfq_queue *cfqq)
2788{
2789 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2790 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2791 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2792 cfq_put_queue(cfqq);
2793 return cic_to_cfqq(cic, 1);
2794}
2795
e6c5bc73
JM
2796static int should_split_cfqq(struct cfq_queue *cfqq)
2797{
2798 if (cfqq->seeky_start &&
2799 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2800 return 1;
2801 return 0;
2802}
2803
2804/*
2805 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2806 * was the last process referring to said cfqq.
2807 */
2808static struct cfq_queue *
2809split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2810{
2811 if (cfqq_process_refs(cfqq) == 1) {
2812 cfqq->seeky_start = 0;
2813 cfqq->pid = current->pid;
2814 cfq_clear_cfqq_coop(cfqq);
2815 return cfqq;
2816 }
2817
2818 cic_set_cfqq(cic, NULL, 1);
2819 cfq_put_queue(cfqq);
2820 return NULL;
2821}
1da177e4 2822/*
22e2c507 2823 * Allocate cfq data structures associated with this request.
1da177e4 2824 */
22e2c507 2825static int
165125e1 2826cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2827{
2828 struct cfq_data *cfqd = q->elevator->elevator_data;
2829 struct cfq_io_context *cic;
2830 const int rw = rq_data_dir(rq);
a6151c3a 2831 const bool is_sync = rq_is_sync(rq);
22e2c507 2832 struct cfq_queue *cfqq;
1da177e4
LT
2833 unsigned long flags;
2834
2835 might_sleep_if(gfp_mask & __GFP_WAIT);
2836
e2d74ac0 2837 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2838
1da177e4
LT
2839 spin_lock_irqsave(q->queue_lock, flags);
2840
22e2c507
JA
2841 if (!cic)
2842 goto queue_fail;
2843
e6c5bc73 2844new_queue:
91fac317 2845 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2846 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2847 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2848 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2849 } else {
e6c5bc73
JM
2850 /*
2851 * If the queue was seeky for too long, break it apart.
2852 */
2853 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2854 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2855 cfqq = split_cfqq(cic, cfqq);
2856 if (!cfqq)
2857 goto new_queue;
2858 }
2859
df5fe3e8
JM
2860 /*
2861 * Check to see if this queue is scheduled to merge with
2862 * another, closely cooperating queue. The merging of
2863 * queues happens here as it must be done in process context.
2864 * The reference on new_cfqq was taken in merge_cfqqs.
2865 */
2866 if (cfqq->new_cfqq)
2867 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2868 }
1da177e4
LT
2869
2870 cfqq->allocated[rw]++;
22e2c507 2871 atomic_inc(&cfqq->ref);
1da177e4 2872
5e705374 2873 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2874
5e705374
JA
2875 rq->elevator_private = cic;
2876 rq->elevator_private2 = cfqq;
2877 return 0;
1da177e4 2878
22e2c507
JA
2879queue_fail:
2880 if (cic)
2881 put_io_context(cic->ioc);
89850f7e 2882
23e018a1 2883 cfq_schedule_dispatch(cfqd);
1da177e4 2884 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2885 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2886 return 1;
2887}
2888
65f27f38 2889static void cfq_kick_queue(struct work_struct *work)
22e2c507 2890{
65f27f38 2891 struct cfq_data *cfqd =
23e018a1 2892 container_of(work, struct cfq_data, unplug_work);
165125e1 2893 struct request_queue *q = cfqd->queue;
22e2c507 2894
40bb54d1 2895 spin_lock_irq(q->queue_lock);
a7f55792 2896 __blk_run_queue(cfqd->queue);
40bb54d1 2897 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2898}
2899
2900/*
2901 * Timer running if the active_queue is currently idling inside its time slice
2902 */
2903static void cfq_idle_slice_timer(unsigned long data)
2904{
2905 struct cfq_data *cfqd = (struct cfq_data *) data;
2906 struct cfq_queue *cfqq;
2907 unsigned long flags;
3c6bd2f8 2908 int timed_out = 1;
22e2c507 2909
7b679138
JA
2910 cfq_log(cfqd, "idle timer fired");
2911
22e2c507
JA
2912 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2913
fe094d98
JA
2914 cfqq = cfqd->active_queue;
2915 if (cfqq) {
3c6bd2f8
JA
2916 timed_out = 0;
2917
b029195d
JA
2918 /*
2919 * We saw a request before the queue expired, let it through
2920 */
2921 if (cfq_cfqq_must_dispatch(cfqq))
2922 goto out_kick;
2923
22e2c507
JA
2924 /*
2925 * expired
2926 */
44f7c160 2927 if (cfq_slice_used(cfqq))
22e2c507
JA
2928 goto expire;
2929
2930 /*
2931 * only expire and reinvoke request handler, if there are
2932 * other queues with pending requests
2933 */
caaa5f9f 2934 if (!cfqd->busy_queues)
22e2c507 2935 goto out_cont;
22e2c507
JA
2936
2937 /*
2938 * not expired and it has a request pending, let it dispatch
2939 */
75e50984 2940 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2941 goto out_kick;
76280aff
CZ
2942
2943 /*
2944 * Queue depth flag is reset only when the idle didn't succeed
2945 */
2946 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
2947 }
2948expire:
6084cdda 2949 cfq_slice_expired(cfqd, timed_out);
22e2c507 2950out_kick:
23e018a1 2951 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2952out_cont:
2953 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2954}
2955
3b18152c
JA
2956static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2957{
2958 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2959 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2960}
22e2c507 2961
c2dea2d1
VT
2962static void cfq_put_async_queues(struct cfq_data *cfqd)
2963{
2964 int i;
2965
2966 for (i = 0; i < IOPRIO_BE_NR; i++) {
2967 if (cfqd->async_cfqq[0][i])
2968 cfq_put_queue(cfqd->async_cfqq[0][i]);
2969 if (cfqd->async_cfqq[1][i])
2970 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2971 }
2389d1ef
ON
2972
2973 if (cfqd->async_idle_cfqq)
2974 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2975}
2976
b374d18a 2977static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2978{
22e2c507 2979 struct cfq_data *cfqd = e->elevator_data;
165125e1 2980 struct request_queue *q = cfqd->queue;
22e2c507 2981
3b18152c 2982 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2983
d9ff4187 2984 spin_lock_irq(q->queue_lock);
e2d74ac0 2985
d9ff4187 2986 if (cfqd->active_queue)
6084cdda 2987 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2988
2989 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2990 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2991 struct cfq_io_context,
2992 queue_list);
89850f7e
JA
2993
2994 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2995 }
e2d74ac0 2996
c2dea2d1 2997 cfq_put_async_queues(cfqd);
15c31be4 2998
d9ff4187 2999 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3000
3001 cfq_shutdown_timer_wq(cfqd);
3002
a90d742e 3003 kfree(cfqd);
1da177e4
LT
3004}
3005
165125e1 3006static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3007{
3008 struct cfq_data *cfqd;
718eee05 3009 int i, j;
cdb16e8f 3010 struct cfq_group *cfqg;
615f0259 3011 struct cfq_rb_root *st;
1da177e4 3012
94f6030c 3013 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 3014 if (!cfqd)
bc1c1169 3015 return NULL;
1da177e4 3016
cdb16e8f
VG
3017 /* Init root group */
3018 cfqg = &cfqd->root_group;
615f0259
VG
3019 for_each_cfqg_st(cfqg, i, j, st)
3020 *st = CFQ_RB_ROOT;
26a2ac00
JA
3021
3022 /*
3023 * Not strictly needed (since RB_ROOT just clears the node and we
3024 * zeroed cfqd on alloc), but better be safe in case someone decides
3025 * to add magic to the rb code
3026 */
3027 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3028 cfqd->prio_trees[i] = RB_ROOT;
3029
6118b70b
JA
3030 /*
3031 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3032 * Grab a permanent reference to it, so that the normal code flow
3033 * will not attempt to free it.
3034 */
3035 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
3036 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3037 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3038
d9ff4187 3039 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3040
1da177e4 3041 cfqd->queue = q;
1da177e4 3042
22e2c507
JA
3043 init_timer(&cfqd->idle_slice_timer);
3044 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3045 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3046
23e018a1 3047 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3048
1da177e4 3049 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3050 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3051 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3052 cfqd->cfq_back_max = cfq_back_max;
3053 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3054 cfqd->cfq_slice[0] = cfq_slice_async;
3055 cfqd->cfq_slice[1] = cfq_slice_sync;
3056 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3057 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3058 cfqd->cfq_latency = 1;
e459dd08 3059 cfqd->hw_tag = -1;
365722bb 3060 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3061 return cfqd;
1da177e4
LT
3062}
3063
3064static void cfq_slab_kill(void)
3065{
d6de8be7
JA
3066 /*
3067 * Caller already ensured that pending RCU callbacks are completed,
3068 * so we should have no busy allocations at this point.
3069 */
1da177e4
LT
3070 if (cfq_pool)
3071 kmem_cache_destroy(cfq_pool);
3072 if (cfq_ioc_pool)
3073 kmem_cache_destroy(cfq_ioc_pool);
3074}
3075
3076static int __init cfq_slab_setup(void)
3077{
0a31bd5f 3078 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3079 if (!cfq_pool)
3080 goto fail;
3081
34e6bbf2 3082 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3083 if (!cfq_ioc_pool)
3084 goto fail;
3085
3086 return 0;
3087fail:
3088 cfq_slab_kill();
3089 return -ENOMEM;
3090}
3091
1da177e4
LT
3092/*
3093 * sysfs parts below -->
3094 */
1da177e4
LT
3095static ssize_t
3096cfq_var_show(unsigned int var, char *page)
3097{
3098 return sprintf(page, "%d\n", var);
3099}
3100
3101static ssize_t
3102cfq_var_store(unsigned int *var, const char *page, size_t count)
3103{
3104 char *p = (char *) page;
3105
3106 *var = simple_strtoul(p, &p, 10);
3107 return count;
3108}
3109
1da177e4 3110#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3111static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3112{ \
3d1ab40f 3113 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3114 unsigned int __data = __VAR; \
3115 if (__CONV) \
3116 __data = jiffies_to_msecs(__data); \
3117 return cfq_var_show(__data, (page)); \
3118}
3119SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3120SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3121SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3122SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3123SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3124SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3125SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3126SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3127SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3128SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3129#undef SHOW_FUNCTION
3130
3131#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3132static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3133{ \
3d1ab40f 3134 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3135 unsigned int __data; \
3136 int ret = cfq_var_store(&__data, (page), count); \
3137 if (__data < (MIN)) \
3138 __data = (MIN); \
3139 else if (__data > (MAX)) \
3140 __data = (MAX); \
3141 if (__CONV) \
3142 *(__PTR) = msecs_to_jiffies(__data); \
3143 else \
3144 *(__PTR) = __data; \
3145 return ret; \
3146}
3147STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3148STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3149 UINT_MAX, 1);
3150STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3151 UINT_MAX, 1);
e572ec7e 3152STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3153STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3154 UINT_MAX, 0);
22e2c507
JA
3155STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3156STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3157STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3158STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3159 UINT_MAX, 0);
963b72fc 3160STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3161#undef STORE_FUNCTION
3162
e572ec7e
AV
3163#define CFQ_ATTR(name) \
3164 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3165
3166static struct elv_fs_entry cfq_attrs[] = {
3167 CFQ_ATTR(quantum),
e572ec7e
AV
3168 CFQ_ATTR(fifo_expire_sync),
3169 CFQ_ATTR(fifo_expire_async),
3170 CFQ_ATTR(back_seek_max),
3171 CFQ_ATTR(back_seek_penalty),
3172 CFQ_ATTR(slice_sync),
3173 CFQ_ATTR(slice_async),
3174 CFQ_ATTR(slice_async_rq),
3175 CFQ_ATTR(slice_idle),
963b72fc 3176 CFQ_ATTR(low_latency),
e572ec7e 3177 __ATTR_NULL
1da177e4
LT
3178};
3179
1da177e4
LT
3180static struct elevator_type iosched_cfq = {
3181 .ops = {
3182 .elevator_merge_fn = cfq_merge,
3183 .elevator_merged_fn = cfq_merged_request,
3184 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3185 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3186 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3187 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3188 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3189 .elevator_deactivate_req_fn = cfq_deactivate_request,
3190 .elevator_queue_empty_fn = cfq_queue_empty,
3191 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3192 .elevator_former_req_fn = elv_rb_former_request,
3193 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3194 .elevator_set_req_fn = cfq_set_request,
3195 .elevator_put_req_fn = cfq_put_request,
3196 .elevator_may_queue_fn = cfq_may_queue,
3197 .elevator_init_fn = cfq_init_queue,
3198 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3199 .trim = cfq_free_io_context,
1da177e4 3200 },
3d1ab40f 3201 .elevator_attrs = cfq_attrs,
1da177e4
LT
3202 .elevator_name = "cfq",
3203 .elevator_owner = THIS_MODULE,
3204};
3205
3206static int __init cfq_init(void)
3207{
22e2c507
JA
3208 /*
3209 * could be 0 on HZ < 1000 setups
3210 */
3211 if (!cfq_slice_async)
3212 cfq_slice_async = 1;
3213 if (!cfq_slice_idle)
3214 cfq_slice_idle = 1;
3215
1da177e4
LT
3216 if (cfq_slab_setup())
3217 return -ENOMEM;
3218
2fdd82bd 3219 elv_register(&iosched_cfq);
1da177e4 3220
2fdd82bd 3221 return 0;
1da177e4
LT
3222}
3223
3224static void __exit cfq_exit(void)
3225{
6e9a4738 3226 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3227 elv_unregister(&iosched_cfq);
334e94de 3228 ioc_gone = &all_gone;
fba82272
OH
3229 /* ioc_gone's update must be visible before reading ioc_count */
3230 smp_wmb();
d6de8be7
JA
3231
3232 /*
3233 * this also protects us from entering cfq_slab_kill() with
3234 * pending RCU callbacks
3235 */
245b2e70 3236 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3237 wait_for_completion(&all_gone);
83521d3e 3238 cfq_slab_kill();
1da177e4
LT
3239}
3240
3241module_init(cfq_init);
3242module_exit(cfq_exit);
3243
3244MODULE_AUTHOR("Jens Axboe");
3245MODULE_LICENSE("GPL");
3246MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");