blkio: Introduce the notion of cfq groups
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
1da177e4
LT
16
17/*
18 * tunables
19 */
fe094d98
JA
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
64100099 22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
64100099 27static const int cfq_slice_sync = HZ / 10;
3b18152c 28static int cfq_slice_async = HZ / 25;
64100099 29static const int cfq_slice_async_rq = 2;
caaa5f9f 30static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
22e2c507 33
d9e7620e 34/*
0871714e 35 * offset from end of service tree
d9e7620e 36 */
0871714e 37#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
e6c5bc73
JM
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
22e2c507 50#define CFQ_SLICE_SCALE (5)
45333d5a 51#define CFQ_HW_QUEUE_MIN (5)
22e2c507 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b
JA
68#define sample_valid(samples) ((samples) > 80)
69
cc09e299
JA
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
aa6f6a3d 79 unsigned count;
cc09e299 80};
aa6f6a3d 81#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 82
6118b70b
JA
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
b2c18e1e
JM
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
e6c5bc73 129 unsigned long seeky_start;
b2c18e1e 130
6118b70b 131 pid_t pid;
df5fe3e8 132
aa6f6a3d 133 struct cfq_rb_root *service_tree;
df5fe3e8 134 struct cfq_queue *new_cfqq;
cdb16e8f 135 struct cfq_group *cfqg;
6118b70b
JA
136};
137
c0324a02 138/*
718eee05 139 * First index in the service_trees.
c0324a02
CZ
140 * IDLE is handled separately, so it has negative index
141 */
142enum wl_prio_t {
143 IDLE_WORKLOAD = -1,
144 BE_WORKLOAD = 0,
145 RT_WORKLOAD = 1
146};
147
718eee05
CZ
148/*
149 * Second index in the service_trees.
150 */
151enum wl_type_t {
152 ASYNC_WORKLOAD = 0,
153 SYNC_NOIDLE_WORKLOAD = 1,
154 SYNC_WORKLOAD = 2
155};
156
cdb16e8f
VG
157/* This is per cgroup per device grouping structure */
158struct cfq_group {
159 /*
160 * rr lists of queues with requests, onle rr for each priority class.
161 * Counts are embedded in the cfq_rb_root
162 */
163 struct cfq_rb_root service_trees[2][3];
164 struct cfq_rb_root service_tree_idle;
165};
718eee05 166
22e2c507
JA
167/*
168 * Per block device queue structure
169 */
1da177e4 170struct cfq_data {
165125e1 171 struct request_queue *queue;
cdb16e8f 172 struct cfq_group root_group;
22e2c507 173
c0324a02
CZ
174 /*
175 * The priority currently being served
22e2c507 176 */
c0324a02 177 enum wl_prio_t serving_prio;
718eee05
CZ
178 enum wl_type_t serving_type;
179 unsigned long workload_expires;
cdb16e8f 180 struct cfq_group *serving_group;
8e550632 181 bool noidle_tree_requires_idle;
a36e71f9
JA
182
183 /*
184 * Each priority tree is sorted by next_request position. These
185 * trees are used when determining if two or more queues are
186 * interleaving requests (see cfq_close_cooperator).
187 */
188 struct rb_root prio_trees[CFQ_PRIO_LISTS];
189
22e2c507 190 unsigned int busy_queues;
5db5d642 191 unsigned int busy_queues_avg[2];
22e2c507 192
5ad531db 193 int rq_in_driver[2];
3ed9a296 194 int sync_flight;
45333d5a
AC
195
196 /*
197 * queue-depth detection
198 */
199 int rq_queued;
25776e35 200 int hw_tag;
e459dd08
CZ
201 /*
202 * hw_tag can be
203 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
204 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
205 * 0 => no NCQ
206 */
207 int hw_tag_est_depth;
208 unsigned int hw_tag_samples;
1da177e4 209
22e2c507
JA
210 /*
211 * idle window management
212 */
213 struct timer_list idle_slice_timer;
23e018a1 214 struct work_struct unplug_work;
1da177e4 215
22e2c507
JA
216 struct cfq_queue *active_queue;
217 struct cfq_io_context *active_cic;
22e2c507 218
c2dea2d1
VT
219 /*
220 * async queue for each priority case
221 */
222 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
223 struct cfq_queue *async_idle_cfqq;
15c31be4 224
6d048f53 225 sector_t last_position;
1da177e4 226
1da177e4
LT
227 /*
228 * tunables, see top of file
229 */
230 unsigned int cfq_quantum;
22e2c507 231 unsigned int cfq_fifo_expire[2];
1da177e4
LT
232 unsigned int cfq_back_penalty;
233 unsigned int cfq_back_max;
22e2c507
JA
234 unsigned int cfq_slice[2];
235 unsigned int cfq_slice_async_rq;
236 unsigned int cfq_slice_idle;
963b72fc 237 unsigned int cfq_latency;
d9ff4187
AV
238
239 struct list_head cic_list;
1da177e4 240
6118b70b
JA
241 /*
242 * Fallback dummy cfqq for extreme OOM conditions
243 */
244 struct cfq_queue oom_cfqq;
365722bb
VG
245
246 unsigned long last_end_sync_rq;
1da177e4
LT
247};
248
cdb16e8f
VG
249static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
250 enum wl_prio_t prio,
718eee05 251 enum wl_type_t type,
c0324a02
CZ
252 struct cfq_data *cfqd)
253{
254 if (prio == IDLE_WORKLOAD)
cdb16e8f 255 return &cfqg->service_tree_idle;
c0324a02 256
cdb16e8f 257 return &cfqg->service_trees[prio][type];
c0324a02
CZ
258}
259
3b18152c 260enum cfqq_state_flags {
b0b8d749
JA
261 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
262 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 263 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 264 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
265 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
266 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
267 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 268 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 269 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 270 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
76280aff 271 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
3b18152c
JA
272};
273
274#define CFQ_CFQQ_FNS(name) \
275static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
276{ \
fe094d98 277 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
278} \
279static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
280{ \
fe094d98 281 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
282} \
283static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
284{ \
fe094d98 285 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
286}
287
288CFQ_CFQQ_FNS(on_rr);
289CFQ_CFQQ_FNS(wait_request);
b029195d 290CFQ_CFQQ_FNS(must_dispatch);
3b18152c 291CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
292CFQ_CFQQ_FNS(fifo_expire);
293CFQ_CFQQ_FNS(idle_window);
294CFQ_CFQQ_FNS(prio_changed);
44f7c160 295CFQ_CFQQ_FNS(slice_new);
91fac317 296CFQ_CFQQ_FNS(sync);
a36e71f9 297CFQ_CFQQ_FNS(coop);
76280aff 298CFQ_CFQQ_FNS(deep);
3b18152c
JA
299#undef CFQ_CFQQ_FNS
300
7b679138
JA
301#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
302 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
303#define cfq_log(cfqd, fmt, args...) \
304 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
305
c0324a02
CZ
306static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
307{
308 if (cfq_class_idle(cfqq))
309 return IDLE_WORKLOAD;
310 if (cfq_class_rt(cfqq))
311 return RT_WORKLOAD;
312 return BE_WORKLOAD;
313}
314
718eee05
CZ
315
316static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
317{
318 if (!cfq_cfqq_sync(cfqq))
319 return ASYNC_WORKLOAD;
320 if (!cfq_cfqq_idle_window(cfqq))
321 return SYNC_NOIDLE_WORKLOAD;
322 return SYNC_WORKLOAD;
323}
324
c0324a02
CZ
325static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
326{
cdb16e8f
VG
327 struct cfq_group *cfqg = &cfqd->root_group;
328
c0324a02 329 if (wl == IDLE_WORKLOAD)
cdb16e8f 330 return cfqg->service_tree_idle.count;
c0324a02 331
cdb16e8f
VG
332 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
333 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
334 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
335}
336
165125e1 337static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 338static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 339 struct io_context *, gfp_t);
4ac845a2 340static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
341 struct io_context *);
342
5ad531db
JA
343static inline int rq_in_driver(struct cfq_data *cfqd)
344{
345 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
346}
347
91fac317 348static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 349 bool is_sync)
91fac317 350{
a6151c3a 351 return cic->cfqq[is_sync];
91fac317
VT
352}
353
354static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 355 struct cfq_queue *cfqq, bool is_sync)
91fac317 356{
a6151c3a 357 cic->cfqq[is_sync] = cfqq;
91fac317
VT
358}
359
360/*
361 * We regard a request as SYNC, if it's either a read or has the SYNC bit
362 * set (in which case it could also be direct WRITE).
363 */
a6151c3a 364static inline bool cfq_bio_sync(struct bio *bio)
91fac317 365{
a6151c3a 366 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 367}
1da177e4 368
99f95e52
AM
369/*
370 * scheduler run of queue, if there are requests pending and no one in the
371 * driver that will restart queueing
372 */
23e018a1 373static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 374{
7b679138
JA
375 if (cfqd->busy_queues) {
376 cfq_log(cfqd, "schedule dispatch");
23e018a1 377 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 378 }
99f95e52
AM
379}
380
165125e1 381static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
382{
383 struct cfq_data *cfqd = q->elevator->elevator_data;
384
b4878f24 385 return !cfqd->busy_queues;
99f95e52
AM
386}
387
44f7c160
JA
388/*
389 * Scale schedule slice based on io priority. Use the sync time slice only
390 * if a queue is marked sync and has sync io queued. A sync queue with async
391 * io only, should not get full sync slice length.
392 */
a6151c3a 393static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 394 unsigned short prio)
44f7c160 395{
d9e7620e 396 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 397
d9e7620e
JA
398 WARN_ON(prio >= IOPRIO_BE_NR);
399
400 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
401}
44f7c160 402
d9e7620e
JA
403static inline int
404cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
405{
406 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
407}
408
5db5d642
CZ
409/*
410 * get averaged number of queues of RT/BE priority.
411 * average is updated, with a formula that gives more weight to higher numbers,
412 * to quickly follows sudden increases and decrease slowly
413 */
414
5869619c
JA
415static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
416{
5db5d642
CZ
417 unsigned min_q, max_q;
418 unsigned mult = cfq_hist_divisor - 1;
419 unsigned round = cfq_hist_divisor / 2;
c0324a02 420 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
421
422 min_q = min(cfqd->busy_queues_avg[rt], busy);
423 max_q = max(cfqd->busy_queues_avg[rt], busy);
424 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
425 cfq_hist_divisor;
426 return cfqd->busy_queues_avg[rt];
427}
428
44f7c160
JA
429static inline void
430cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
431{
5db5d642
CZ
432 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
433 if (cfqd->cfq_latency) {
434 /* interested queues (we consider only the ones with the same
435 * priority class) */
436 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
437 unsigned sync_slice = cfqd->cfq_slice[1];
438 unsigned expect_latency = sync_slice * iq;
439 if (expect_latency > cfq_target_latency) {
440 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
441 /* scale low_slice according to IO priority
442 * and sync vs async */
443 unsigned low_slice =
444 min(slice, base_low_slice * slice / sync_slice);
445 /* the adapted slice value is scaled to fit all iqs
446 * into the target latency */
447 slice = max(slice * cfq_target_latency / expect_latency,
448 low_slice);
449 }
450 }
451 cfqq->slice_end = jiffies + slice;
7b679138 452 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
453}
454
455/*
456 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
457 * isn't valid until the first request from the dispatch is activated
458 * and the slice time set.
459 */
a6151c3a 460static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
461{
462 if (cfq_cfqq_slice_new(cfqq))
463 return 0;
464 if (time_before(jiffies, cfqq->slice_end))
465 return 0;
466
467 return 1;
468}
469
1da177e4 470/*
5e705374 471 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 472 * We choose the request that is closest to the head right now. Distance
e8a99053 473 * behind the head is penalized and only allowed to a certain extent.
1da177e4 474 */
5e705374 475static struct request *
cf7c25cf 476cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 477{
cf7c25cf 478 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 479 unsigned long back_max;
e8a99053
AM
480#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
481#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
482 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 483
5e705374
JA
484 if (rq1 == NULL || rq1 == rq2)
485 return rq2;
486 if (rq2 == NULL)
487 return rq1;
9c2c38a1 488
5e705374
JA
489 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
490 return rq1;
491 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
492 return rq2;
374f84ac
JA
493 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
494 return rq1;
495 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
496 return rq2;
1da177e4 497
83096ebf
TH
498 s1 = blk_rq_pos(rq1);
499 s2 = blk_rq_pos(rq2);
1da177e4 500
1da177e4
LT
501 /*
502 * by definition, 1KiB is 2 sectors
503 */
504 back_max = cfqd->cfq_back_max * 2;
505
506 /*
507 * Strict one way elevator _except_ in the case where we allow
508 * short backward seeks which are biased as twice the cost of a
509 * similar forward seek.
510 */
511 if (s1 >= last)
512 d1 = s1 - last;
513 else if (s1 + back_max >= last)
514 d1 = (last - s1) * cfqd->cfq_back_penalty;
515 else
e8a99053 516 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
517
518 if (s2 >= last)
519 d2 = s2 - last;
520 else if (s2 + back_max >= last)
521 d2 = (last - s2) * cfqd->cfq_back_penalty;
522 else
e8a99053 523 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
524
525 /* Found required data */
e8a99053
AM
526
527 /*
528 * By doing switch() on the bit mask "wrap" we avoid having to
529 * check two variables for all permutations: --> faster!
530 */
531 switch (wrap) {
5e705374 532 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 533 if (d1 < d2)
5e705374 534 return rq1;
e8a99053 535 else if (d2 < d1)
5e705374 536 return rq2;
e8a99053
AM
537 else {
538 if (s1 >= s2)
5e705374 539 return rq1;
e8a99053 540 else
5e705374 541 return rq2;
e8a99053 542 }
1da177e4 543
e8a99053 544 case CFQ_RQ2_WRAP:
5e705374 545 return rq1;
e8a99053 546 case CFQ_RQ1_WRAP:
5e705374
JA
547 return rq2;
548 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
549 default:
550 /*
551 * Since both rqs are wrapped,
552 * start with the one that's further behind head
553 * (--> only *one* back seek required),
554 * since back seek takes more time than forward.
555 */
556 if (s1 <= s2)
5e705374 557 return rq1;
1da177e4 558 else
5e705374 559 return rq2;
1da177e4
LT
560 }
561}
562
498d3aa2
JA
563/*
564 * The below is leftmost cache rbtree addon
565 */
0871714e 566static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
567{
568 if (!root->left)
569 root->left = rb_first(&root->rb);
570
0871714e
JA
571 if (root->left)
572 return rb_entry(root->left, struct cfq_queue, rb_node);
573
574 return NULL;
cc09e299
JA
575}
576
a36e71f9
JA
577static void rb_erase_init(struct rb_node *n, struct rb_root *root)
578{
579 rb_erase(n, root);
580 RB_CLEAR_NODE(n);
581}
582
cc09e299
JA
583static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
584{
585 if (root->left == n)
586 root->left = NULL;
a36e71f9 587 rb_erase_init(n, &root->rb);
aa6f6a3d 588 --root->count;
cc09e299
JA
589}
590
1da177e4
LT
591/*
592 * would be nice to take fifo expire time into account as well
593 */
5e705374
JA
594static struct request *
595cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
596 struct request *last)
1da177e4 597{
21183b07
JA
598 struct rb_node *rbnext = rb_next(&last->rb_node);
599 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 600 struct request *next = NULL, *prev = NULL;
1da177e4 601
21183b07 602 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
603
604 if (rbprev)
5e705374 605 prev = rb_entry_rq(rbprev);
1da177e4 606
21183b07 607 if (rbnext)
5e705374 608 next = rb_entry_rq(rbnext);
21183b07
JA
609 else {
610 rbnext = rb_first(&cfqq->sort_list);
611 if (rbnext && rbnext != &last->rb_node)
5e705374 612 next = rb_entry_rq(rbnext);
21183b07 613 }
1da177e4 614
cf7c25cf 615 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
616}
617
d9e7620e
JA
618static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
619 struct cfq_queue *cfqq)
1da177e4 620{
d9e7620e
JA
621 /*
622 * just an approximation, should be ok.
623 */
cdb16e8f 624 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 625 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
626}
627
498d3aa2 628/*
c0324a02 629 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
630 * requests waiting to be processed. It is sorted in the order that
631 * we will service the queues.
632 */
a36e71f9 633static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 634 bool add_front)
d9e7620e 635{
0871714e
JA
636 struct rb_node **p, *parent;
637 struct cfq_queue *__cfqq;
d9e7620e 638 unsigned long rb_key;
c0324a02 639 struct cfq_rb_root *service_tree;
498d3aa2 640 int left;
d9e7620e 641
cdb16e8f
VG
642 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
643 cfqq_type(cfqq), cfqd);
0871714e
JA
644 if (cfq_class_idle(cfqq)) {
645 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 646 parent = rb_last(&service_tree->rb);
0871714e
JA
647 if (parent && parent != &cfqq->rb_node) {
648 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
649 rb_key += __cfqq->rb_key;
650 } else
651 rb_key += jiffies;
652 } else if (!add_front) {
b9c8946b
JA
653 /*
654 * Get our rb key offset. Subtract any residual slice
655 * value carried from last service. A negative resid
656 * count indicates slice overrun, and this should position
657 * the next service time further away in the tree.
658 */
edd75ffd 659 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 660 rb_key -= cfqq->slice_resid;
edd75ffd 661 cfqq->slice_resid = 0;
48e025e6
CZ
662 } else {
663 rb_key = -HZ;
aa6f6a3d 664 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
665 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
666 }
1da177e4 667
d9e7620e 668 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 669 /*
d9e7620e 670 * same position, nothing more to do
99f9628a 671 */
c0324a02
CZ
672 if (rb_key == cfqq->rb_key &&
673 cfqq->service_tree == service_tree)
d9e7620e 674 return;
1da177e4 675
aa6f6a3d
CZ
676 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
677 cfqq->service_tree = NULL;
1da177e4 678 }
d9e7620e 679
498d3aa2 680 left = 1;
0871714e 681 parent = NULL;
aa6f6a3d
CZ
682 cfqq->service_tree = service_tree;
683 p = &service_tree->rb.rb_node;
d9e7620e 684 while (*p) {
67060e37 685 struct rb_node **n;
cc09e299 686
d9e7620e
JA
687 parent = *p;
688 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
689
0c534e0a 690 /*
c0324a02 691 * sort by key, that represents service time.
0c534e0a 692 */
c0324a02 693 if (time_before(rb_key, __cfqq->rb_key))
67060e37 694 n = &(*p)->rb_left;
c0324a02 695 else {
67060e37 696 n = &(*p)->rb_right;
cc09e299 697 left = 0;
c0324a02 698 }
67060e37
JA
699
700 p = n;
d9e7620e
JA
701 }
702
cc09e299 703 if (left)
aa6f6a3d 704 service_tree->left = &cfqq->rb_node;
cc09e299 705
d9e7620e
JA
706 cfqq->rb_key = rb_key;
707 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
708 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
709 service_tree->count++;
1da177e4
LT
710}
711
a36e71f9 712static struct cfq_queue *
f2d1f0ae
JA
713cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
714 sector_t sector, struct rb_node **ret_parent,
715 struct rb_node ***rb_link)
a36e71f9 716{
a36e71f9
JA
717 struct rb_node **p, *parent;
718 struct cfq_queue *cfqq = NULL;
719
720 parent = NULL;
721 p = &root->rb_node;
722 while (*p) {
723 struct rb_node **n;
724
725 parent = *p;
726 cfqq = rb_entry(parent, struct cfq_queue, p_node);
727
728 /*
729 * Sort strictly based on sector. Smallest to the left,
730 * largest to the right.
731 */
2e46e8b2 732 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 733 n = &(*p)->rb_right;
2e46e8b2 734 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
735 n = &(*p)->rb_left;
736 else
737 break;
738 p = n;
3ac6c9f8 739 cfqq = NULL;
a36e71f9
JA
740 }
741
742 *ret_parent = parent;
743 if (rb_link)
744 *rb_link = p;
3ac6c9f8 745 return cfqq;
a36e71f9
JA
746}
747
748static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
749{
a36e71f9
JA
750 struct rb_node **p, *parent;
751 struct cfq_queue *__cfqq;
752
f2d1f0ae
JA
753 if (cfqq->p_root) {
754 rb_erase(&cfqq->p_node, cfqq->p_root);
755 cfqq->p_root = NULL;
756 }
a36e71f9
JA
757
758 if (cfq_class_idle(cfqq))
759 return;
760 if (!cfqq->next_rq)
761 return;
762
f2d1f0ae 763 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
764 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
765 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
766 if (!__cfqq) {
767 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
768 rb_insert_color(&cfqq->p_node, cfqq->p_root);
769 } else
770 cfqq->p_root = NULL;
a36e71f9
JA
771}
772
498d3aa2
JA
773/*
774 * Update cfqq's position in the service tree.
775 */
edd75ffd 776static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 777{
6d048f53
JA
778 /*
779 * Resorting requires the cfqq to be on the RR list already.
780 */
a36e71f9 781 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 782 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
783 cfq_prio_tree_add(cfqd, cfqq);
784 }
6d048f53
JA
785}
786
1da177e4
LT
787/*
788 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 789 * the pending list according to last request service
1da177e4 790 */
febffd61 791static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 792{
7b679138 793 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
794 BUG_ON(cfq_cfqq_on_rr(cfqq));
795 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
796 cfqd->busy_queues++;
797
edd75ffd 798 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
799}
800
498d3aa2
JA
801/*
802 * Called when the cfqq no longer has requests pending, remove it from
803 * the service tree.
804 */
febffd61 805static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 806{
7b679138 807 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
808 BUG_ON(!cfq_cfqq_on_rr(cfqq));
809 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 810
aa6f6a3d
CZ
811 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
812 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
813 cfqq->service_tree = NULL;
814 }
f2d1f0ae
JA
815 if (cfqq->p_root) {
816 rb_erase(&cfqq->p_node, cfqq->p_root);
817 cfqq->p_root = NULL;
818 }
d9e7620e 819
1da177e4
LT
820 BUG_ON(!cfqd->busy_queues);
821 cfqd->busy_queues--;
822}
823
824/*
825 * rb tree support functions
826 */
febffd61 827static void cfq_del_rq_rb(struct request *rq)
1da177e4 828{
5e705374 829 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 830 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 831 const int sync = rq_is_sync(rq);
1da177e4 832
b4878f24
JA
833 BUG_ON(!cfqq->queued[sync]);
834 cfqq->queued[sync]--;
1da177e4 835
5e705374 836 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 837
dd67d051 838 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 839 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
840}
841
5e705374 842static void cfq_add_rq_rb(struct request *rq)
1da177e4 843{
5e705374 844 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 845 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 846 struct request *__alias, *prev;
1da177e4 847
5380a101 848 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
849
850 /*
851 * looks a little odd, but the first insert might return an alias.
852 * if that happens, put the alias on the dispatch list
853 */
21183b07 854 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 855 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
856
857 if (!cfq_cfqq_on_rr(cfqq))
858 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
859
860 /*
861 * check if this request is a better next-serve candidate
862 */
a36e71f9 863 prev = cfqq->next_rq;
cf7c25cf 864 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
865
866 /*
867 * adjust priority tree position, if ->next_rq changes
868 */
869 if (prev != cfqq->next_rq)
870 cfq_prio_tree_add(cfqd, cfqq);
871
5044eed4 872 BUG_ON(!cfqq->next_rq);
1da177e4
LT
873}
874
febffd61 875static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 876{
5380a101
JA
877 elv_rb_del(&cfqq->sort_list, rq);
878 cfqq->queued[rq_is_sync(rq)]--;
5e705374 879 cfq_add_rq_rb(rq);
1da177e4
LT
880}
881
206dc69b
JA
882static struct request *
883cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 884{
206dc69b 885 struct task_struct *tsk = current;
91fac317 886 struct cfq_io_context *cic;
206dc69b 887 struct cfq_queue *cfqq;
1da177e4 888
4ac845a2 889 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
890 if (!cic)
891 return NULL;
892
893 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
894 if (cfqq) {
895 sector_t sector = bio->bi_sector + bio_sectors(bio);
896
21183b07 897 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 898 }
1da177e4 899
1da177e4
LT
900 return NULL;
901}
902
165125e1 903static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 904{
22e2c507 905 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 906
5ad531db 907 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 908 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 909 rq_in_driver(cfqd));
25776e35 910
5b93629b 911 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
912}
913
165125e1 914static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 915{
b4878f24 916 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 917 const int sync = rq_is_sync(rq);
b4878f24 918
5ad531db
JA
919 WARN_ON(!cfqd->rq_in_driver[sync]);
920 cfqd->rq_in_driver[sync]--;
7b679138 921 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 922 rq_in_driver(cfqd));
1da177e4
LT
923}
924
b4878f24 925static void cfq_remove_request(struct request *rq)
1da177e4 926{
5e705374 927 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 928
5e705374
JA
929 if (cfqq->next_rq == rq)
930 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 931
b4878f24 932 list_del_init(&rq->queuelist);
5e705374 933 cfq_del_rq_rb(rq);
374f84ac 934
45333d5a 935 cfqq->cfqd->rq_queued--;
374f84ac
JA
936 if (rq_is_meta(rq)) {
937 WARN_ON(!cfqq->meta_pending);
938 cfqq->meta_pending--;
939 }
1da177e4
LT
940}
941
165125e1
JA
942static int cfq_merge(struct request_queue *q, struct request **req,
943 struct bio *bio)
1da177e4
LT
944{
945 struct cfq_data *cfqd = q->elevator->elevator_data;
946 struct request *__rq;
1da177e4 947
206dc69b 948 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 949 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
950 *req = __rq;
951 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
952 }
953
954 return ELEVATOR_NO_MERGE;
1da177e4
LT
955}
956
165125e1 957static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 958 int type)
1da177e4 959{
21183b07 960 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 961 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 962
5e705374 963 cfq_reposition_rq_rb(cfqq, req);
1da177e4 964 }
1da177e4
LT
965}
966
967static void
165125e1 968cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
969 struct request *next)
970{
cf7c25cf 971 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
972 /*
973 * reposition in fifo if next is older than rq
974 */
975 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 976 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 977 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
978 rq_set_fifo_time(rq, rq_fifo_time(next));
979 }
22e2c507 980
cf7c25cf
CZ
981 if (cfqq->next_rq == next)
982 cfqq->next_rq = rq;
b4878f24 983 cfq_remove_request(next);
22e2c507
JA
984}
985
165125e1 986static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
987 struct bio *bio)
988{
989 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 990 struct cfq_io_context *cic;
da775265 991 struct cfq_queue *cfqq;
da775265
JA
992
993 /*
ec8acb69 994 * Disallow merge of a sync bio into an async request.
da775265 995 */
91fac317 996 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 997 return false;
da775265
JA
998
999 /*
719d3402
JA
1000 * Lookup the cfqq that this bio will be queued with. Allow
1001 * merge only if rq is queued there.
da775265 1002 */
4ac845a2 1003 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 1004 if (!cic)
a6151c3a 1005 return false;
719d3402 1006
91fac317 1007 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1008 return cfqq == RQ_CFQQ(rq);
da775265
JA
1009}
1010
febffd61
JA
1011static void __cfq_set_active_queue(struct cfq_data *cfqd,
1012 struct cfq_queue *cfqq)
22e2c507
JA
1013{
1014 if (cfqq) {
7b679138 1015 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1016 cfqq->slice_end = 0;
2f5cb738
JA
1017 cfqq->slice_dispatch = 0;
1018
2f5cb738 1019 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1020 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1021 cfq_clear_cfqq_must_alloc_slice(cfqq);
1022 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1023 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1024
1025 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1026 }
1027
1028 cfqd->active_queue = cfqq;
1029}
1030
7b14e3b5
JA
1031/*
1032 * current cfqq expired its slice (or was too idle), select new one
1033 */
1034static void
1035__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1036 bool timed_out)
7b14e3b5 1037{
7b679138
JA
1038 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1039
7b14e3b5
JA
1040 if (cfq_cfqq_wait_request(cfqq))
1041 del_timer(&cfqd->idle_slice_timer);
1042
7b14e3b5
JA
1043 cfq_clear_cfqq_wait_request(cfqq);
1044
1045 /*
6084cdda 1046 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1047 */
7b679138 1048 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1049 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1050 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1051 }
7b14e3b5 1052
edd75ffd 1053 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1054
1055 if (cfqq == cfqd->active_queue)
1056 cfqd->active_queue = NULL;
1057
1058 if (cfqd->active_cic) {
1059 put_io_context(cfqd->active_cic->ioc);
1060 cfqd->active_cic = NULL;
1061 }
7b14e3b5
JA
1062}
1063
a6151c3a 1064static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1065{
1066 struct cfq_queue *cfqq = cfqd->active_queue;
1067
1068 if (cfqq)
6084cdda 1069 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1070}
1071
498d3aa2
JA
1072/*
1073 * Get next queue for service. Unless we have a queue preemption,
1074 * we'll simply select the first cfqq in the service tree.
1075 */
6d048f53 1076static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1077{
c0324a02 1078 struct cfq_rb_root *service_tree =
cdb16e8f
VG
1079 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
1080 cfqd->serving_type, cfqd);
d9e7620e 1081
c0324a02
CZ
1082 if (RB_EMPTY_ROOT(&service_tree->rb))
1083 return NULL;
1084 return cfq_rb_first(service_tree);
6d048f53
JA
1085}
1086
498d3aa2
JA
1087/*
1088 * Get and set a new active queue for service.
1089 */
a36e71f9
JA
1090static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1091 struct cfq_queue *cfqq)
6d048f53 1092{
e00ef799 1093 if (!cfqq)
a36e71f9 1094 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1095
22e2c507 1096 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1097 return cfqq;
22e2c507
JA
1098}
1099
d9e7620e
JA
1100static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1101 struct request *rq)
1102{
83096ebf
TH
1103 if (blk_rq_pos(rq) >= cfqd->last_position)
1104 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1105 else
83096ebf 1106 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1107}
1108
b2c18e1e
JM
1109#define CFQQ_SEEK_THR 8 * 1024
1110#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1111
b2c18e1e
JM
1112static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1113 struct request *rq)
6d048f53 1114{
b2c18e1e 1115 sector_t sdist = cfqq->seek_mean;
6d048f53 1116
b2c18e1e
JM
1117 if (!sample_valid(cfqq->seek_samples))
1118 sdist = CFQQ_SEEK_THR;
6d048f53 1119
04dc6e71 1120 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1121}
1122
a36e71f9
JA
1123static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1124 struct cfq_queue *cur_cfqq)
1125{
f2d1f0ae 1126 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1127 struct rb_node *parent, *node;
1128 struct cfq_queue *__cfqq;
1129 sector_t sector = cfqd->last_position;
1130
1131 if (RB_EMPTY_ROOT(root))
1132 return NULL;
1133
1134 /*
1135 * First, if we find a request starting at the end of the last
1136 * request, choose it.
1137 */
f2d1f0ae 1138 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1139 if (__cfqq)
1140 return __cfqq;
1141
1142 /*
1143 * If the exact sector wasn't found, the parent of the NULL leaf
1144 * will contain the closest sector.
1145 */
1146 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1147 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1148 return __cfqq;
1149
2e46e8b2 1150 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1151 node = rb_next(&__cfqq->p_node);
1152 else
1153 node = rb_prev(&__cfqq->p_node);
1154 if (!node)
1155 return NULL;
1156
1157 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1158 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1159 return __cfqq;
1160
1161 return NULL;
1162}
1163
1164/*
1165 * cfqd - obvious
1166 * cur_cfqq - passed in so that we don't decide that the current queue is
1167 * closely cooperating with itself.
1168 *
1169 * So, basically we're assuming that that cur_cfqq has dispatched at least
1170 * one request, and that cfqd->last_position reflects a position on the disk
1171 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1172 * assumption.
1173 */
1174static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1175 struct cfq_queue *cur_cfqq)
6d048f53 1176{
a36e71f9
JA
1177 struct cfq_queue *cfqq;
1178
e6c5bc73
JM
1179 if (!cfq_cfqq_sync(cur_cfqq))
1180 return NULL;
1181 if (CFQQ_SEEKY(cur_cfqq))
1182 return NULL;
1183
6d048f53 1184 /*
d9e7620e
JA
1185 * We should notice if some of the queues are cooperating, eg
1186 * working closely on the same area of the disk. In that case,
1187 * we can group them together and don't waste time idling.
6d048f53 1188 */
a36e71f9
JA
1189 cfqq = cfqq_close(cfqd, cur_cfqq);
1190 if (!cfqq)
1191 return NULL;
1192
df5fe3e8
JM
1193 /*
1194 * It only makes sense to merge sync queues.
1195 */
1196 if (!cfq_cfqq_sync(cfqq))
1197 return NULL;
e6c5bc73
JM
1198 if (CFQQ_SEEKY(cfqq))
1199 return NULL;
df5fe3e8 1200
c0324a02
CZ
1201 /*
1202 * Do not merge queues of different priority classes
1203 */
1204 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1205 return NULL;
1206
a36e71f9 1207 return cfqq;
6d048f53
JA
1208}
1209
a6d44e98
CZ
1210/*
1211 * Determine whether we should enforce idle window for this queue.
1212 */
1213
1214static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1215{
1216 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1217 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98
CZ
1218
1219 /* We never do for idle class queues. */
1220 if (prio == IDLE_WORKLOAD)
1221 return false;
1222
1223 /* We do for queues that were marked with idle window flag. */
1224 if (cfq_cfqq_idle_window(cfqq))
1225 return true;
1226
1227 /*
1228 * Otherwise, we do only if they are the last ones
1229 * in their service tree.
1230 */
718eee05 1231 if (!service_tree)
cdb16e8f
VG
1232 service_tree = service_tree_for(cfqq->cfqg, prio,
1233 cfqq_type(cfqq), cfqd);
718eee05 1234
a6d44e98
CZ
1235 if (service_tree->count == 0)
1236 return true;
1237
1238 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1239}
1240
6d048f53 1241static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1242{
1792669c 1243 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1244 struct cfq_io_context *cic;
7b14e3b5
JA
1245 unsigned long sl;
1246
a68bbddb 1247 /*
f7d7b7a7
JA
1248 * SSD device without seek penalty, disable idling. But only do so
1249 * for devices that support queuing, otherwise we still have a problem
1250 * with sync vs async workloads.
a68bbddb 1251 */
f7d7b7a7 1252 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1253 return;
1254
dd67d051 1255 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1256 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1257
1258 /*
1259 * idle is disabled, either manually or by past process history
1260 */
a6d44e98 1261 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1262 return;
1263
7b679138 1264 /*
8e550632 1265 * still active requests from this queue, don't idle
7b679138 1266 */
8e550632 1267 if (cfqq->dispatched)
7b679138
JA
1268 return;
1269
22e2c507
JA
1270 /*
1271 * task has exited, don't wait
1272 */
206dc69b 1273 cic = cfqd->active_cic;
66dac98e 1274 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1275 return;
1276
355b659c
CZ
1277 /*
1278 * If our average think time is larger than the remaining time
1279 * slice, then don't idle. This avoids overrunning the allotted
1280 * time slice.
1281 */
1282 if (sample_valid(cic->ttime_samples) &&
1283 (cfqq->slice_end - jiffies < cic->ttime_mean))
1284 return;
1285
3b18152c 1286 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1287
6d048f53 1288 sl = cfqd->cfq_slice_idle;
206dc69b 1289
7b14e3b5 1290 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1291 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1292}
1293
498d3aa2
JA
1294/*
1295 * Move request from internal lists to the request queue dispatch list.
1296 */
165125e1 1297static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1298{
3ed9a296 1299 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1300 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1301
7b679138
JA
1302 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1303
06d21886 1304 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1305 cfq_remove_request(rq);
6d048f53 1306 cfqq->dispatched++;
5380a101 1307 elv_dispatch_sort(q, rq);
3ed9a296
JA
1308
1309 if (cfq_cfqq_sync(cfqq))
1310 cfqd->sync_flight++;
1da177e4
LT
1311}
1312
1313/*
1314 * return expired entry, or NULL to just start from scratch in rbtree
1315 */
febffd61 1316static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1317{
30996f40 1318 struct request *rq = NULL;
1da177e4 1319
3b18152c 1320 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1321 return NULL;
cb887411
JA
1322
1323 cfq_mark_cfqq_fifo_expire(cfqq);
1324
89850f7e
JA
1325 if (list_empty(&cfqq->fifo))
1326 return NULL;
1da177e4 1327
89850f7e 1328 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1329 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1330 rq = NULL;
1da177e4 1331
30996f40 1332 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1333 return rq;
1da177e4
LT
1334}
1335
22e2c507
JA
1336static inline int
1337cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1338{
1339 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1340
22e2c507 1341 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1342
22e2c507 1343 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1344}
1345
df5fe3e8
JM
1346/*
1347 * Must be called with the queue_lock held.
1348 */
1349static int cfqq_process_refs(struct cfq_queue *cfqq)
1350{
1351 int process_refs, io_refs;
1352
1353 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1354 process_refs = atomic_read(&cfqq->ref) - io_refs;
1355 BUG_ON(process_refs < 0);
1356 return process_refs;
1357}
1358
1359static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1360{
e6c5bc73 1361 int process_refs, new_process_refs;
df5fe3e8
JM
1362 struct cfq_queue *__cfqq;
1363
1364 /* Avoid a circular list and skip interim queue merges */
1365 while ((__cfqq = new_cfqq->new_cfqq)) {
1366 if (__cfqq == cfqq)
1367 return;
1368 new_cfqq = __cfqq;
1369 }
1370
1371 process_refs = cfqq_process_refs(cfqq);
1372 /*
1373 * If the process for the cfqq has gone away, there is no
1374 * sense in merging the queues.
1375 */
1376 if (process_refs == 0)
1377 return;
1378
e6c5bc73
JM
1379 /*
1380 * Merge in the direction of the lesser amount of work.
1381 */
1382 new_process_refs = cfqq_process_refs(new_cfqq);
1383 if (new_process_refs >= process_refs) {
1384 cfqq->new_cfqq = new_cfqq;
1385 atomic_add(process_refs, &new_cfqq->ref);
1386 } else {
1387 new_cfqq->new_cfqq = cfqq;
1388 atomic_add(new_process_refs, &cfqq->ref);
1389 }
df5fe3e8
JM
1390}
1391
cdb16e8f
VG
1392static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
1393 struct cfq_group *cfqg, enum wl_prio_t prio,
1394 bool prio_changed)
718eee05
CZ
1395{
1396 struct cfq_queue *queue;
1397 int i;
1398 bool key_valid = false;
1399 unsigned long lowest_key = 0;
1400 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1401
1402 if (prio_changed) {
1403 /*
1404 * When priorities switched, we prefer starting
1405 * from SYNC_NOIDLE (first choice), or just SYNC
1406 * over ASYNC
1407 */
cdb16e8f 1408 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1409 return cur_best;
1410 cur_best = SYNC_WORKLOAD;
cdb16e8f 1411 if (service_tree_for(cfqg, prio, cur_best, cfqd)->count)
718eee05
CZ
1412 return cur_best;
1413
1414 return ASYNC_WORKLOAD;
1415 }
1416
1417 for (i = 0; i < 3; ++i) {
1418 /* otherwise, select the one with lowest rb_key */
cdb16e8f 1419 queue = cfq_rb_first(service_tree_for(cfqg, prio, i, cfqd));
718eee05
CZ
1420 if (queue &&
1421 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1422 lowest_key = queue->rb_key;
1423 cur_best = i;
1424 key_valid = true;
1425 }
1426 }
1427
1428 return cur_best;
1429}
1430
cdb16e8f 1431static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05
CZ
1432{
1433 enum wl_prio_t previous_prio = cfqd->serving_prio;
1434 bool prio_changed;
1435 unsigned slice;
1436 unsigned count;
cdb16e8f 1437 struct cfq_rb_root *st;
718eee05
CZ
1438
1439 /* Choose next priority. RT > BE > IDLE */
1440 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1441 cfqd->serving_prio = RT_WORKLOAD;
1442 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1443 cfqd->serving_prio = BE_WORKLOAD;
1444 else {
1445 cfqd->serving_prio = IDLE_WORKLOAD;
1446 cfqd->workload_expires = jiffies + 1;
1447 return;
1448 }
1449
1450 /*
1451 * For RT and BE, we have to choose also the type
1452 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1453 * expiration time
1454 */
1455 prio_changed = (cfqd->serving_prio != previous_prio);
cdb16e8f
VG
1456 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1457 cfqd);
1458 count = st->count;
718eee05
CZ
1459
1460 /*
1461 * If priority didn't change, check workload expiration,
1462 * and that we still have other queues ready
1463 */
1464 if (!prio_changed && count &&
1465 !time_after(jiffies, cfqd->workload_expires))
1466 return;
1467
1468 /* otherwise select new workload type */
1469 cfqd->serving_type =
cdb16e8f
VG
1470 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio, prio_changed);
1471 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type,
1472 cfqd);
1473 count = st->count;
718eee05
CZ
1474
1475 /*
1476 * the workload slice is computed as a fraction of target latency
1477 * proportional to the number of queues in that workload, over
1478 * all the queues in the same priority class
1479 */
1480 slice = cfq_target_latency * count /
1481 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1482 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1483
1484 if (cfqd->serving_type == ASYNC_WORKLOAD)
1485 /* async workload slice is scaled down according to
1486 * the sync/async slice ratio. */
1487 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1488 else
1489 /* sync workload slice is at least 2 * cfq_slice_idle */
1490 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1491
1492 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1493 cfqd->workload_expires = jiffies + slice;
8e550632 1494 cfqd->noidle_tree_requires_idle = false;
718eee05
CZ
1495}
1496
cdb16e8f
VG
1497static void cfq_choose_cfqg(struct cfq_data *cfqd)
1498{
1499 cfqd->serving_group = &cfqd->root_group;
1500 choose_service_tree(cfqd, &cfqd->root_group);
1501}
1502
22e2c507 1503/*
498d3aa2
JA
1504 * Select a queue for service. If we have a current active queue,
1505 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1506 */
1b5ed5e1 1507static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1508{
a36e71f9 1509 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1510
22e2c507
JA
1511 cfqq = cfqd->active_queue;
1512 if (!cfqq)
1513 goto new_queue;
1da177e4 1514
22e2c507 1515 /*
6d048f53 1516 * The active queue has run out of time, expire it and select new.
22e2c507 1517 */
b029195d 1518 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1519 goto expire;
1da177e4 1520
22e2c507 1521 /*
6d048f53
JA
1522 * The active queue has requests and isn't expired, allow it to
1523 * dispatch.
22e2c507 1524 */
dd67d051 1525 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1526 goto keep_queue;
6d048f53 1527
a36e71f9
JA
1528 /*
1529 * If another queue has a request waiting within our mean seek
1530 * distance, let it run. The expire code will check for close
1531 * cooperators and put the close queue at the front of the service
df5fe3e8 1532 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1533 */
b3b6d040 1534 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1535 if (new_cfqq) {
1536 if (!cfqq->new_cfqq)
1537 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1538 goto expire;
df5fe3e8 1539 }
a36e71f9 1540
6d048f53
JA
1541 /*
1542 * No requests pending. If the active queue still has requests in
1543 * flight or is idling for a new request, allow either of these
1544 * conditions to happen (or time out) before selecting a new queue.
1545 */
cc197479 1546 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1547 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1548 cfqq = NULL;
1549 goto keep_queue;
22e2c507
JA
1550 }
1551
3b18152c 1552expire:
6084cdda 1553 cfq_slice_expired(cfqd, 0);
3b18152c 1554new_queue:
718eee05
CZ
1555 /*
1556 * Current queue expired. Check if we have to switch to a new
1557 * service tree
1558 */
1559 if (!new_cfqq)
cdb16e8f 1560 cfq_choose_cfqg(cfqd);
718eee05 1561
a36e71f9 1562 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1563keep_queue:
3b18152c 1564 return cfqq;
22e2c507
JA
1565}
1566
febffd61 1567static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1568{
1569 int dispatched = 0;
1570
1571 while (cfqq->next_rq) {
1572 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1573 dispatched++;
1574 }
1575
1576 BUG_ON(!list_empty(&cfqq->fifo));
1577 return dispatched;
1578}
1579
498d3aa2
JA
1580/*
1581 * Drain our current requests. Used for barriers and when switching
1582 * io schedulers on-the-fly.
1583 */
d9e7620e 1584static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1585{
0871714e 1586 struct cfq_queue *cfqq;
d9e7620e 1587 int dispatched = 0;
718eee05 1588 int i, j;
cdb16e8f
VG
1589 struct cfq_group *cfqg = &cfqd->root_group;
1590
c0324a02 1591 for (i = 0; i < 2; ++i)
718eee05 1592 for (j = 0; j < 3; ++j)
cdb16e8f 1593 while ((cfqq = cfq_rb_first(&cfqg->service_trees[i][j]))
718eee05
CZ
1594 != NULL)
1595 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1596
cdb16e8f 1597 while ((cfqq = cfq_rb_first(&cfqg->service_tree_idle)) != NULL)
d9e7620e 1598 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1599
6084cdda 1600 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1601
1602 BUG_ON(cfqd->busy_queues);
1603
6923715a 1604 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1605 return dispatched;
1606}
1607
0b182d61 1608static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1609{
2f5cb738 1610 unsigned int max_dispatch;
22e2c507 1611
5ad531db
JA
1612 /*
1613 * Drain async requests before we start sync IO
1614 */
a6d44e98 1615 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1616 return false;
5ad531db 1617
2f5cb738
JA
1618 /*
1619 * If this is an async queue and we have sync IO in flight, let it wait
1620 */
1621 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1622 return false;
2f5cb738
JA
1623
1624 max_dispatch = cfqd->cfq_quantum;
1625 if (cfq_class_idle(cfqq))
1626 max_dispatch = 1;
b4878f24 1627
2f5cb738
JA
1628 /*
1629 * Does this cfqq already have too much IO in flight?
1630 */
1631 if (cfqq->dispatched >= max_dispatch) {
1632 /*
1633 * idle queue must always only have a single IO in flight
1634 */
3ed9a296 1635 if (cfq_class_idle(cfqq))
0b182d61 1636 return false;
3ed9a296 1637
2f5cb738
JA
1638 /*
1639 * We have other queues, don't allow more IO from this one
1640 */
1641 if (cfqd->busy_queues > 1)
0b182d61 1642 return false;
9ede209e 1643
365722bb 1644 /*
474b18cc 1645 * Sole queue user, no limit
365722bb 1646 */
474b18cc 1647 max_dispatch = -1;
8e296755
JA
1648 }
1649
1650 /*
1651 * Async queues must wait a bit before being allowed dispatch.
1652 * We also ramp up the dispatch depth gradually for async IO,
1653 * based on the last sync IO we serviced
1654 */
963b72fc 1655 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1656 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1657 unsigned int depth;
365722bb 1658
61f0c1dc 1659 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1660 if (!depth && !cfqq->dispatched)
1661 depth = 1;
8e296755
JA
1662 if (depth < max_dispatch)
1663 max_dispatch = depth;
2f5cb738 1664 }
3ed9a296 1665
0b182d61
JA
1666 /*
1667 * If we're below the current max, allow a dispatch
1668 */
1669 return cfqq->dispatched < max_dispatch;
1670}
1671
1672/*
1673 * Dispatch a request from cfqq, moving them to the request queue
1674 * dispatch list.
1675 */
1676static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1677{
1678 struct request *rq;
1679
1680 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1681
1682 if (!cfq_may_dispatch(cfqd, cfqq))
1683 return false;
1684
1685 /*
1686 * follow expired path, else get first next available
1687 */
1688 rq = cfq_check_fifo(cfqq);
1689 if (!rq)
1690 rq = cfqq->next_rq;
1691
1692 /*
1693 * insert request into driver dispatch list
1694 */
1695 cfq_dispatch_insert(cfqd->queue, rq);
1696
1697 if (!cfqd->active_cic) {
1698 struct cfq_io_context *cic = RQ_CIC(rq);
1699
1700 atomic_long_inc(&cic->ioc->refcount);
1701 cfqd->active_cic = cic;
1702 }
1703
1704 return true;
1705}
1706
1707/*
1708 * Find the cfqq that we need to service and move a request from that to the
1709 * dispatch list
1710 */
1711static int cfq_dispatch_requests(struct request_queue *q, int force)
1712{
1713 struct cfq_data *cfqd = q->elevator->elevator_data;
1714 struct cfq_queue *cfqq;
1715
1716 if (!cfqd->busy_queues)
1717 return 0;
1718
1719 if (unlikely(force))
1720 return cfq_forced_dispatch(cfqd);
1721
1722 cfqq = cfq_select_queue(cfqd);
1723 if (!cfqq)
8e296755
JA
1724 return 0;
1725
2f5cb738 1726 /*
0b182d61 1727 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1728 */
0b182d61
JA
1729 if (!cfq_dispatch_request(cfqd, cfqq))
1730 return 0;
1731
2f5cb738 1732 cfqq->slice_dispatch++;
b029195d 1733 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1734
2f5cb738
JA
1735 /*
1736 * expire an async queue immediately if it has used up its slice. idle
1737 * queue always expire after 1 dispatch round.
1738 */
1739 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1740 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1741 cfq_class_idle(cfqq))) {
1742 cfqq->slice_end = jiffies + 1;
1743 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1744 }
1745
b217a903 1746 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1747 return 1;
1da177e4
LT
1748}
1749
1da177e4 1750/*
5e705374
JA
1751 * task holds one reference to the queue, dropped when task exits. each rq
1752 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1753 *
1754 * queue lock must be held here.
1755 */
1756static void cfq_put_queue(struct cfq_queue *cfqq)
1757{
22e2c507
JA
1758 struct cfq_data *cfqd = cfqq->cfqd;
1759
1760 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1761
1762 if (!atomic_dec_and_test(&cfqq->ref))
1763 return;
1764
7b679138 1765 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1766 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1767 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1768 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1769
28f95cbc 1770 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1771 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1772 cfq_schedule_dispatch(cfqd);
28f95cbc 1773 }
22e2c507 1774
1da177e4
LT
1775 kmem_cache_free(cfq_pool, cfqq);
1776}
1777
d6de8be7
JA
1778/*
1779 * Must always be called with the rcu_read_lock() held
1780 */
07416d29
JA
1781static void
1782__call_for_each_cic(struct io_context *ioc,
1783 void (*func)(struct io_context *, struct cfq_io_context *))
1784{
1785 struct cfq_io_context *cic;
1786 struct hlist_node *n;
1787
1788 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1789 func(ioc, cic);
1790}
1791
4ac845a2 1792/*
34e6bbf2 1793 * Call func for each cic attached to this ioc.
4ac845a2 1794 */
34e6bbf2 1795static void
4ac845a2
JA
1796call_for_each_cic(struct io_context *ioc,
1797 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1798{
4ac845a2 1799 rcu_read_lock();
07416d29 1800 __call_for_each_cic(ioc, func);
4ac845a2 1801 rcu_read_unlock();
34e6bbf2
FC
1802}
1803
1804static void cfq_cic_free_rcu(struct rcu_head *head)
1805{
1806 struct cfq_io_context *cic;
1807
1808 cic = container_of(head, struct cfq_io_context, rcu_head);
1809
1810 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1811 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1812
9a11b4ed
JA
1813 if (ioc_gone) {
1814 /*
1815 * CFQ scheduler is exiting, grab exit lock and check
1816 * the pending io context count. If it hits zero,
1817 * complete ioc_gone and set it back to NULL
1818 */
1819 spin_lock(&ioc_gone_lock);
245b2e70 1820 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1821 complete(ioc_gone);
1822 ioc_gone = NULL;
1823 }
1824 spin_unlock(&ioc_gone_lock);
1825 }
34e6bbf2 1826}
4ac845a2 1827
34e6bbf2
FC
1828static void cfq_cic_free(struct cfq_io_context *cic)
1829{
1830 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1831}
1832
1833static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1834{
1835 unsigned long flags;
1836
1837 BUG_ON(!cic->dead_key);
1838
1839 spin_lock_irqsave(&ioc->lock, flags);
1840 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1841 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1842 spin_unlock_irqrestore(&ioc->lock, flags);
1843
34e6bbf2 1844 cfq_cic_free(cic);
4ac845a2
JA
1845}
1846
d6de8be7
JA
1847/*
1848 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1849 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1850 * and ->trim() which is called with the task lock held
1851 */
4ac845a2
JA
1852static void cfq_free_io_context(struct io_context *ioc)
1853{
4ac845a2 1854 /*
34e6bbf2
FC
1855 * ioc->refcount is zero here, or we are called from elv_unregister(),
1856 * so no more cic's are allowed to be linked into this ioc. So it
1857 * should be ok to iterate over the known list, we will see all cic's
1858 * since no new ones are added.
4ac845a2 1859 */
07416d29 1860 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1861}
1862
89850f7e 1863static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1864{
df5fe3e8
JM
1865 struct cfq_queue *__cfqq, *next;
1866
28f95cbc 1867 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1868 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1869 cfq_schedule_dispatch(cfqd);
28f95cbc 1870 }
22e2c507 1871
df5fe3e8
JM
1872 /*
1873 * If this queue was scheduled to merge with another queue, be
1874 * sure to drop the reference taken on that queue (and others in
1875 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1876 */
1877 __cfqq = cfqq->new_cfqq;
1878 while (__cfqq) {
1879 if (__cfqq == cfqq) {
1880 WARN(1, "cfqq->new_cfqq loop detected\n");
1881 break;
1882 }
1883 next = __cfqq->new_cfqq;
1884 cfq_put_queue(__cfqq);
1885 __cfqq = next;
1886 }
1887
89850f7e
JA
1888 cfq_put_queue(cfqq);
1889}
22e2c507 1890
89850f7e
JA
1891static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1892 struct cfq_io_context *cic)
1893{
4faa3c81
FC
1894 struct io_context *ioc = cic->ioc;
1895
fc46379d 1896 list_del_init(&cic->queue_list);
4ac845a2
JA
1897
1898 /*
1899 * Make sure key == NULL is seen for dead queues
1900 */
fc46379d 1901 smp_wmb();
4ac845a2 1902 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1903 cic->key = NULL;
1904
4faa3c81
FC
1905 if (ioc->ioc_data == cic)
1906 rcu_assign_pointer(ioc->ioc_data, NULL);
1907
ff6657c6
JA
1908 if (cic->cfqq[BLK_RW_ASYNC]) {
1909 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1910 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1911 }
1912
ff6657c6
JA
1913 if (cic->cfqq[BLK_RW_SYNC]) {
1914 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1915 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1916 }
89850f7e
JA
1917}
1918
4ac845a2
JA
1919static void cfq_exit_single_io_context(struct io_context *ioc,
1920 struct cfq_io_context *cic)
89850f7e
JA
1921{
1922 struct cfq_data *cfqd = cic->key;
1923
89850f7e 1924 if (cfqd) {
165125e1 1925 struct request_queue *q = cfqd->queue;
4ac845a2 1926 unsigned long flags;
89850f7e 1927
4ac845a2 1928 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1929
1930 /*
1931 * Ensure we get a fresh copy of the ->key to prevent
1932 * race between exiting task and queue
1933 */
1934 smp_read_barrier_depends();
1935 if (cic->key)
1936 __cfq_exit_single_io_context(cfqd, cic);
1937
4ac845a2 1938 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1939 }
1da177e4
LT
1940}
1941
498d3aa2
JA
1942/*
1943 * The process that ioc belongs to has exited, we need to clean up
1944 * and put the internal structures we have that belongs to that process.
1945 */
e2d74ac0 1946static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1947{
4ac845a2 1948 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1949}
1950
22e2c507 1951static struct cfq_io_context *
8267e268 1952cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1953{
b5deef90 1954 struct cfq_io_context *cic;
1da177e4 1955
94f6030c
CL
1956 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1957 cfqd->queue->node);
1da177e4 1958 if (cic) {
22e2c507 1959 cic->last_end_request = jiffies;
553698f9 1960 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1961 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1962 cic->dtor = cfq_free_io_context;
1963 cic->exit = cfq_exit_io_context;
245b2e70 1964 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1965 }
1966
1967 return cic;
1968}
1969
fd0928df 1970static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1971{
1972 struct task_struct *tsk = current;
1973 int ioprio_class;
1974
3b18152c 1975 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1976 return;
1977
fd0928df 1978 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1979 switch (ioprio_class) {
fe094d98
JA
1980 default:
1981 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1982 case IOPRIO_CLASS_NONE:
1983 /*
6d63c275 1984 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1985 */
1986 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1987 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1988 break;
1989 case IOPRIO_CLASS_RT:
1990 cfqq->ioprio = task_ioprio(ioc);
1991 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1992 break;
1993 case IOPRIO_CLASS_BE:
1994 cfqq->ioprio = task_ioprio(ioc);
1995 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1996 break;
1997 case IOPRIO_CLASS_IDLE:
1998 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1999 cfqq->ioprio = 7;
2000 cfq_clear_cfqq_idle_window(cfqq);
2001 break;
22e2c507
JA
2002 }
2003
2004 /*
2005 * keep track of original prio settings in case we have to temporarily
2006 * elevate the priority of this queue
2007 */
2008 cfqq->org_ioprio = cfqq->ioprio;
2009 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 2010 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2011}
2012
febffd61 2013static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 2014{
478a82b0
AV
2015 struct cfq_data *cfqd = cic->key;
2016 struct cfq_queue *cfqq;
c1b707d2 2017 unsigned long flags;
35e6077c 2018
caaa5f9f
JA
2019 if (unlikely(!cfqd))
2020 return;
2021
c1b707d2 2022 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2023
ff6657c6 2024 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2025 if (cfqq) {
2026 struct cfq_queue *new_cfqq;
ff6657c6
JA
2027 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2028 GFP_ATOMIC);
caaa5f9f 2029 if (new_cfqq) {
ff6657c6 2030 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2031 cfq_put_queue(cfqq);
2032 }
22e2c507 2033 }
caaa5f9f 2034
ff6657c6 2035 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2036 if (cfqq)
2037 cfq_mark_cfqq_prio_changed(cfqq);
2038
c1b707d2 2039 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2040}
2041
fc46379d 2042static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2043{
4ac845a2 2044 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2045 ioc->ioprio_changed = 0;
22e2c507
JA
2046}
2047
d5036d77 2048static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2049 pid_t pid, bool is_sync)
d5036d77
JA
2050{
2051 RB_CLEAR_NODE(&cfqq->rb_node);
2052 RB_CLEAR_NODE(&cfqq->p_node);
2053 INIT_LIST_HEAD(&cfqq->fifo);
2054
2055 atomic_set(&cfqq->ref, 0);
2056 cfqq->cfqd = cfqd;
2057
2058 cfq_mark_cfqq_prio_changed(cfqq);
2059
2060 if (is_sync) {
2061 if (!cfq_class_idle(cfqq))
2062 cfq_mark_cfqq_idle_window(cfqq);
2063 cfq_mark_cfqq_sync(cfqq);
2064 }
2065 cfqq->pid = pid;
2066}
2067
cdb16e8f
VG
2068static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
2069{
2070 cfqq->cfqg = cfqg;
2071}
2072
2073static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd, int create)
2074{
2075 return &cfqd->root_group;
2076}
2077
22e2c507 2078static struct cfq_queue *
a6151c3a 2079cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2080 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2081{
22e2c507 2082 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2083 struct cfq_io_context *cic;
cdb16e8f 2084 struct cfq_group *cfqg;
22e2c507
JA
2085
2086retry:
cdb16e8f 2087 cfqg = cfq_get_cfqg(cfqd, 1);
4ac845a2 2088 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2089 /* cic always exists here */
2090 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2091
6118b70b
JA
2092 /*
2093 * Always try a new alloc if we fell back to the OOM cfqq
2094 * originally, since it should just be a temporary situation.
2095 */
2096 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2097 cfqq = NULL;
22e2c507
JA
2098 if (new_cfqq) {
2099 cfqq = new_cfqq;
2100 new_cfqq = NULL;
2101 } else if (gfp_mask & __GFP_WAIT) {
2102 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2103 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2104 gfp_mask | __GFP_ZERO,
94f6030c 2105 cfqd->queue->node);
22e2c507 2106 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2107 if (new_cfqq)
2108 goto retry;
22e2c507 2109 } else {
94f6030c
CL
2110 cfqq = kmem_cache_alloc_node(cfq_pool,
2111 gfp_mask | __GFP_ZERO,
2112 cfqd->queue->node);
22e2c507
JA
2113 }
2114
6118b70b
JA
2115 if (cfqq) {
2116 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2117 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2118 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2119 cfq_log_cfqq(cfqd, cfqq, "alloced");
2120 } else
2121 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2122 }
2123
2124 if (new_cfqq)
2125 kmem_cache_free(cfq_pool, new_cfqq);
2126
22e2c507
JA
2127 return cfqq;
2128}
2129
c2dea2d1
VT
2130static struct cfq_queue **
2131cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2132{
fe094d98 2133 switch (ioprio_class) {
c2dea2d1
VT
2134 case IOPRIO_CLASS_RT:
2135 return &cfqd->async_cfqq[0][ioprio];
2136 case IOPRIO_CLASS_BE:
2137 return &cfqd->async_cfqq[1][ioprio];
2138 case IOPRIO_CLASS_IDLE:
2139 return &cfqd->async_idle_cfqq;
2140 default:
2141 BUG();
2142 }
2143}
2144
15c31be4 2145static struct cfq_queue *
a6151c3a 2146cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2147 gfp_t gfp_mask)
2148{
fd0928df
JA
2149 const int ioprio = task_ioprio(ioc);
2150 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2151 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2152 struct cfq_queue *cfqq = NULL;
2153
c2dea2d1
VT
2154 if (!is_sync) {
2155 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2156 cfqq = *async_cfqq;
2157 }
2158
6118b70b 2159 if (!cfqq)
fd0928df 2160 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2161
2162 /*
2163 * pin the queue now that it's allocated, scheduler exit will prune it
2164 */
c2dea2d1 2165 if (!is_sync && !(*async_cfqq)) {
15c31be4 2166 atomic_inc(&cfqq->ref);
c2dea2d1 2167 *async_cfqq = cfqq;
15c31be4
JA
2168 }
2169
2170 atomic_inc(&cfqq->ref);
2171 return cfqq;
2172}
2173
498d3aa2
JA
2174/*
2175 * We drop cfq io contexts lazily, so we may find a dead one.
2176 */
dbecf3ab 2177static void
4ac845a2
JA
2178cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2179 struct cfq_io_context *cic)
dbecf3ab 2180{
4ac845a2
JA
2181 unsigned long flags;
2182
fc46379d 2183 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2184
4ac845a2
JA
2185 spin_lock_irqsave(&ioc->lock, flags);
2186
4faa3c81 2187 BUG_ON(ioc->ioc_data == cic);
597bc485 2188
4ac845a2 2189 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2190 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2191 spin_unlock_irqrestore(&ioc->lock, flags);
2192
2193 cfq_cic_free(cic);
dbecf3ab
OH
2194}
2195
e2d74ac0 2196static struct cfq_io_context *
4ac845a2 2197cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2198{
e2d74ac0 2199 struct cfq_io_context *cic;
d6de8be7 2200 unsigned long flags;
4ac845a2 2201 void *k;
e2d74ac0 2202
91fac317
VT
2203 if (unlikely(!ioc))
2204 return NULL;
2205
d6de8be7
JA
2206 rcu_read_lock();
2207
597bc485
JA
2208 /*
2209 * we maintain a last-hit cache, to avoid browsing over the tree
2210 */
4ac845a2 2211 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2212 if (cic && cic->key == cfqd) {
2213 rcu_read_unlock();
597bc485 2214 return cic;
d6de8be7 2215 }
597bc485 2216
4ac845a2 2217 do {
4ac845a2
JA
2218 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2219 rcu_read_unlock();
2220 if (!cic)
2221 break;
be3b0753
OH
2222 /* ->key must be copied to avoid race with cfq_exit_queue() */
2223 k = cic->key;
2224 if (unlikely(!k)) {
4ac845a2 2225 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2226 rcu_read_lock();
4ac845a2 2227 continue;
dbecf3ab 2228 }
e2d74ac0 2229
d6de8be7 2230 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2231 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2232 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2233 break;
2234 } while (1);
e2d74ac0 2235
4ac845a2 2236 return cic;
e2d74ac0
JA
2237}
2238
4ac845a2
JA
2239/*
2240 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2241 * the process specific cfq io context when entered from the block layer.
2242 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2243 */
febffd61
JA
2244static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2245 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2246{
0261d688 2247 unsigned long flags;
4ac845a2 2248 int ret;
e2d74ac0 2249
4ac845a2
JA
2250 ret = radix_tree_preload(gfp_mask);
2251 if (!ret) {
2252 cic->ioc = ioc;
2253 cic->key = cfqd;
e2d74ac0 2254
4ac845a2
JA
2255 spin_lock_irqsave(&ioc->lock, flags);
2256 ret = radix_tree_insert(&ioc->radix_root,
2257 (unsigned long) cfqd, cic);
ffc4e759
JA
2258 if (!ret)
2259 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2260 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2261
4ac845a2
JA
2262 radix_tree_preload_end();
2263
2264 if (!ret) {
2265 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2266 list_add(&cic->queue_list, &cfqd->cic_list);
2267 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2268 }
e2d74ac0
JA
2269 }
2270
4ac845a2
JA
2271 if (ret)
2272 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2273
4ac845a2 2274 return ret;
e2d74ac0
JA
2275}
2276
1da177e4
LT
2277/*
2278 * Setup general io context and cfq io context. There can be several cfq
2279 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2280 * than one device managed by cfq.
1da177e4
LT
2281 */
2282static struct cfq_io_context *
e2d74ac0 2283cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2284{
22e2c507 2285 struct io_context *ioc = NULL;
1da177e4 2286 struct cfq_io_context *cic;
1da177e4 2287
22e2c507 2288 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2289
b5deef90 2290 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2291 if (!ioc)
2292 return NULL;
2293
4ac845a2 2294 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2295 if (cic)
2296 goto out;
1da177e4 2297
e2d74ac0
JA
2298 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2299 if (cic == NULL)
2300 goto err;
1da177e4 2301
4ac845a2
JA
2302 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2303 goto err_free;
2304
1da177e4 2305out:
fc46379d
JA
2306 smp_read_barrier_depends();
2307 if (unlikely(ioc->ioprio_changed))
2308 cfq_ioc_set_ioprio(ioc);
2309
1da177e4 2310 return cic;
4ac845a2
JA
2311err_free:
2312 cfq_cic_free(cic);
1da177e4
LT
2313err:
2314 put_io_context(ioc);
2315 return NULL;
2316}
2317
22e2c507
JA
2318static void
2319cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2320{
aaf1228d
JA
2321 unsigned long elapsed = jiffies - cic->last_end_request;
2322 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2323
22e2c507
JA
2324 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2325 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2326 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2327}
1da177e4 2328
206dc69b 2329static void
b2c18e1e 2330cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2331 struct request *rq)
206dc69b
JA
2332{
2333 sector_t sdist;
2334 u64 total;
2335
b2c18e1e 2336 if (!cfqq->last_request_pos)
4d00aa47 2337 sdist = 0;
b2c18e1e
JM
2338 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2339 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2340 else
b2c18e1e 2341 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2342
2343 /*
2344 * Don't allow the seek distance to get too large from the
2345 * odd fragment, pagein, etc
2346 */
b2c18e1e
JM
2347 if (cfqq->seek_samples <= 60) /* second&third seek */
2348 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2349 else
b2c18e1e 2350 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2351
b2c18e1e
JM
2352 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2353 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2354 total = cfqq->seek_total + (cfqq->seek_samples/2);
2355 do_div(total, cfqq->seek_samples);
2356 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2357
2358 /*
2359 * If this cfqq is shared between multiple processes, check to
2360 * make sure that those processes are still issuing I/Os within
2361 * the mean seek distance. If not, it may be time to break the
2362 * queues apart again.
2363 */
2364 if (cfq_cfqq_coop(cfqq)) {
2365 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2366 cfqq->seeky_start = jiffies;
2367 else if (!CFQQ_SEEKY(cfqq))
2368 cfqq->seeky_start = 0;
2369 }
206dc69b 2370}
1da177e4 2371
22e2c507
JA
2372/*
2373 * Disable idle window if the process thinks too long or seeks so much that
2374 * it doesn't matter
2375 */
2376static void
2377cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2378 struct cfq_io_context *cic)
2379{
7b679138 2380 int old_idle, enable_idle;
1be92f2f 2381
0871714e
JA
2382 /*
2383 * Don't idle for async or idle io prio class
2384 */
2385 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2386 return;
2387
c265a7f4 2388 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2389
76280aff
CZ
2390 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
2391 cfq_mark_cfqq_deep(cfqq);
2392
66dac98e 2393 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
76280aff
CZ
2394 (!cfq_cfqq_deep(cfqq) && sample_valid(cfqq->seek_samples)
2395 && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2396 enable_idle = 0;
2397 else if (sample_valid(cic->ttime_samples)) {
718eee05 2398 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2399 enable_idle = 0;
2400 else
2401 enable_idle = 1;
1da177e4
LT
2402 }
2403
7b679138
JA
2404 if (old_idle != enable_idle) {
2405 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2406 if (enable_idle)
2407 cfq_mark_cfqq_idle_window(cfqq);
2408 else
2409 cfq_clear_cfqq_idle_window(cfqq);
2410 }
22e2c507 2411}
1da177e4 2412
22e2c507
JA
2413/*
2414 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2415 * no or if we aren't sure, a 1 will cause a preempt.
2416 */
a6151c3a 2417static bool
22e2c507 2418cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2419 struct request *rq)
22e2c507 2420{
6d048f53 2421 struct cfq_queue *cfqq;
22e2c507 2422
6d048f53
JA
2423 cfqq = cfqd->active_queue;
2424 if (!cfqq)
a6151c3a 2425 return false;
22e2c507 2426
6d048f53 2427 if (cfq_slice_used(cfqq))
a6151c3a 2428 return true;
6d048f53
JA
2429
2430 if (cfq_class_idle(new_cfqq))
a6151c3a 2431 return false;
22e2c507
JA
2432
2433 if (cfq_class_idle(cfqq))
a6151c3a 2434 return true;
1e3335de 2435
e4a22919
CZ
2436 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2437 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2438 new_cfqq->service_tree->count == 1)
718eee05
CZ
2439 return true;
2440
374f84ac
JA
2441 /*
2442 * if the new request is sync, but the currently running queue is
2443 * not, let the sync request have priority.
2444 */
5e705374 2445 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2446 return true;
1e3335de 2447
374f84ac
JA
2448 /*
2449 * So both queues are sync. Let the new request get disk time if
2450 * it's a metadata request and the current queue is doing regular IO.
2451 */
2452 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2453 return true;
22e2c507 2454
3a9a3f6c
DS
2455 /*
2456 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2457 */
2458 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2459 return true;
3a9a3f6c 2460
1e3335de 2461 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2462 return false;
1e3335de
JA
2463
2464 /*
2465 * if this request is as-good as one we would expect from the
2466 * current cfqq, let it preempt
2467 */
e00ef799 2468 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2469 return true;
1e3335de 2470
a6151c3a 2471 return false;
22e2c507
JA
2472}
2473
2474/*
2475 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2476 * let it have half of its nominal slice.
2477 */
2478static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2479{
7b679138 2480 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2481 cfq_slice_expired(cfqd, 1);
22e2c507 2482
bf572256
JA
2483 /*
2484 * Put the new queue at the front of the of the current list,
2485 * so we know that it will be selected next.
2486 */
2487 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2488
2489 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2490
44f7c160
JA
2491 cfqq->slice_end = 0;
2492 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2493}
2494
22e2c507 2495/*
5e705374 2496 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2497 * something we should do about it
2498 */
2499static void
5e705374
JA
2500cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2501 struct request *rq)
22e2c507 2502{
5e705374 2503 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2504
45333d5a 2505 cfqd->rq_queued++;
374f84ac
JA
2506 if (rq_is_meta(rq))
2507 cfqq->meta_pending++;
2508
9c2c38a1 2509 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2510 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2511 cfq_update_idle_window(cfqd, cfqq, cic);
2512
b2c18e1e 2513 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2514
2515 if (cfqq == cfqd->active_queue) {
2516 /*
b029195d
JA
2517 * Remember that we saw a request from this process, but
2518 * don't start queuing just yet. Otherwise we risk seeing lots
2519 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2520 * and merging. If the request is already larger than a single
2521 * page, let it rip immediately. For that case we assume that
2d870722
JA
2522 * merging is already done. Ditto for a busy system that
2523 * has other work pending, don't risk delaying until the
2524 * idle timer unplug to continue working.
22e2c507 2525 */
d6ceb25e 2526 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2527 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2528 cfqd->busy_queues > 1) {
d6ceb25e 2529 del_timer(&cfqd->idle_slice_timer);
bf791937
VG
2530 __blk_run_queue(cfqd->queue);
2531 } else
2532 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2533 }
5e705374 2534 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2535 /*
2536 * not the active queue - expire current slice if it is
2537 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2538 * has some old slice time left and is of higher priority or
2539 * this new queue is RT and the current one is BE
22e2c507
JA
2540 */
2541 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2542 __blk_run_queue(cfqd->queue);
22e2c507 2543 }
1da177e4
LT
2544}
2545
165125e1 2546static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2547{
b4878f24 2548 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2549 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2550
7b679138 2551 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2552 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2553
30996f40 2554 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2555 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2556 cfq_add_rq_rb(rq);
22e2c507 2557
5e705374 2558 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2559}
2560
45333d5a
AC
2561/*
2562 * Update hw_tag based on peak queue depth over 50 samples under
2563 * sufficient load.
2564 */
2565static void cfq_update_hw_tag(struct cfq_data *cfqd)
2566{
1a1238a7
SL
2567 struct cfq_queue *cfqq = cfqd->active_queue;
2568
e459dd08
CZ
2569 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2570 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2571
2572 if (cfqd->hw_tag == 1)
2573 return;
45333d5a
AC
2574
2575 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2576 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2577 return;
2578
1a1238a7
SL
2579 /*
2580 * If active queue hasn't enough requests and can idle, cfq might not
2581 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2582 * case
2583 */
2584 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2585 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2586 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2587 return;
2588
45333d5a
AC
2589 if (cfqd->hw_tag_samples++ < 50)
2590 return;
2591
e459dd08 2592 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2593 cfqd->hw_tag = 1;
2594 else
2595 cfqd->hw_tag = 0;
45333d5a
AC
2596}
2597
165125e1 2598static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2599{
5e705374 2600 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2601 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2602 const int sync = rq_is_sync(rq);
b4878f24 2603 unsigned long now;
1da177e4 2604
b4878f24 2605 now = jiffies;
7b679138 2606 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2607
45333d5a
AC
2608 cfq_update_hw_tag(cfqd);
2609
5ad531db 2610 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2611 WARN_ON(!cfqq->dispatched);
5ad531db 2612 cfqd->rq_in_driver[sync]--;
6d048f53 2613 cfqq->dispatched--;
1da177e4 2614
3ed9a296
JA
2615 if (cfq_cfqq_sync(cfqq))
2616 cfqd->sync_flight--;
2617
365722bb 2618 if (sync) {
5e705374 2619 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2620 cfqd->last_end_sync_rq = now;
2621 }
caaa5f9f
JA
2622
2623 /*
2624 * If this is the active queue, check if it needs to be expired,
2625 * or if we want to idle in case it has no pending requests.
2626 */
2627 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2628 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2629
44f7c160
JA
2630 if (cfq_cfqq_slice_new(cfqq)) {
2631 cfq_set_prio_slice(cfqd, cfqq);
2632 cfq_clear_cfqq_slice_new(cfqq);
2633 }
a36e71f9 2634 /*
8e550632
CZ
2635 * Idling is not enabled on:
2636 * - expired queues
2637 * - idle-priority queues
2638 * - async queues
2639 * - queues with still some requests queued
2640 * - when there is a close cooperator
a36e71f9 2641 */
0871714e 2642 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2643 cfq_slice_expired(cfqd, 1);
8e550632
CZ
2644 else if (sync && cfqq_empty &&
2645 !cfq_close_cooperator(cfqd, cfqq)) {
2646 cfqd->noidle_tree_requires_idle |= !rq_noidle(rq);
2647 /*
2648 * Idling is enabled for SYNC_WORKLOAD.
2649 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
2650 * only if we processed at least one !rq_noidle request
2651 */
2652 if (cfqd->serving_type == SYNC_WORKLOAD
2653 || cfqd->noidle_tree_requires_idle)
2654 cfq_arm_slice_timer(cfqd);
2655 }
caaa5f9f 2656 }
6d048f53 2657
5ad531db 2658 if (!rq_in_driver(cfqd))
23e018a1 2659 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2660}
2661
22e2c507
JA
2662/*
2663 * we temporarily boost lower priority queues if they are holding fs exclusive
2664 * resources. they are boosted to normal prio (CLASS_BE/4)
2665 */
2666static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2667{
22e2c507
JA
2668 if (has_fs_excl()) {
2669 /*
2670 * boost idle prio on transactions that would lock out other
2671 * users of the filesystem
2672 */
2673 if (cfq_class_idle(cfqq))
2674 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2675 if (cfqq->ioprio > IOPRIO_NORM)
2676 cfqq->ioprio = IOPRIO_NORM;
2677 } else {
2678 /*
dddb7451 2679 * unboost the queue (if needed)
22e2c507 2680 */
dddb7451
CZ
2681 cfqq->ioprio_class = cfqq->org_ioprio_class;
2682 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2683 }
22e2c507 2684}
1da177e4 2685
89850f7e 2686static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2687{
1b379d8d 2688 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2689 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2690 return ELV_MQUEUE_MUST;
3b18152c 2691 }
1da177e4 2692
22e2c507 2693 return ELV_MQUEUE_MAY;
22e2c507
JA
2694}
2695
165125e1 2696static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2697{
2698 struct cfq_data *cfqd = q->elevator->elevator_data;
2699 struct task_struct *tsk = current;
91fac317 2700 struct cfq_io_context *cic;
22e2c507
JA
2701 struct cfq_queue *cfqq;
2702
2703 /*
2704 * don't force setup of a queue from here, as a call to may_queue
2705 * does not necessarily imply that a request actually will be queued.
2706 * so just lookup a possibly existing queue, or return 'may queue'
2707 * if that fails
2708 */
4ac845a2 2709 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2710 if (!cic)
2711 return ELV_MQUEUE_MAY;
2712
b0b78f81 2713 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2714 if (cfqq) {
fd0928df 2715 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2716 cfq_prio_boost(cfqq);
2717
89850f7e 2718 return __cfq_may_queue(cfqq);
22e2c507
JA
2719 }
2720
2721 return ELV_MQUEUE_MAY;
1da177e4
LT
2722}
2723
1da177e4
LT
2724/*
2725 * queue lock held here
2726 */
bb37b94c 2727static void cfq_put_request(struct request *rq)
1da177e4 2728{
5e705374 2729 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2730
5e705374 2731 if (cfqq) {
22e2c507 2732 const int rw = rq_data_dir(rq);
1da177e4 2733
22e2c507
JA
2734 BUG_ON(!cfqq->allocated[rw]);
2735 cfqq->allocated[rw]--;
1da177e4 2736
5e705374 2737 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2738
1da177e4 2739 rq->elevator_private = NULL;
5e705374 2740 rq->elevator_private2 = NULL;
1da177e4 2741
1da177e4
LT
2742 cfq_put_queue(cfqq);
2743 }
2744}
2745
df5fe3e8
JM
2746static struct cfq_queue *
2747cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2748 struct cfq_queue *cfqq)
2749{
2750 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2751 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2752 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2753 cfq_put_queue(cfqq);
2754 return cic_to_cfqq(cic, 1);
2755}
2756
e6c5bc73
JM
2757static int should_split_cfqq(struct cfq_queue *cfqq)
2758{
2759 if (cfqq->seeky_start &&
2760 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2761 return 1;
2762 return 0;
2763}
2764
2765/*
2766 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2767 * was the last process referring to said cfqq.
2768 */
2769static struct cfq_queue *
2770split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2771{
2772 if (cfqq_process_refs(cfqq) == 1) {
2773 cfqq->seeky_start = 0;
2774 cfqq->pid = current->pid;
2775 cfq_clear_cfqq_coop(cfqq);
2776 return cfqq;
2777 }
2778
2779 cic_set_cfqq(cic, NULL, 1);
2780 cfq_put_queue(cfqq);
2781 return NULL;
2782}
1da177e4 2783/*
22e2c507 2784 * Allocate cfq data structures associated with this request.
1da177e4 2785 */
22e2c507 2786static int
165125e1 2787cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2788{
2789 struct cfq_data *cfqd = q->elevator->elevator_data;
2790 struct cfq_io_context *cic;
2791 const int rw = rq_data_dir(rq);
a6151c3a 2792 const bool is_sync = rq_is_sync(rq);
22e2c507 2793 struct cfq_queue *cfqq;
1da177e4
LT
2794 unsigned long flags;
2795
2796 might_sleep_if(gfp_mask & __GFP_WAIT);
2797
e2d74ac0 2798 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2799
1da177e4
LT
2800 spin_lock_irqsave(q->queue_lock, flags);
2801
22e2c507
JA
2802 if (!cic)
2803 goto queue_fail;
2804
e6c5bc73 2805new_queue:
91fac317 2806 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2807 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2808 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2809 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2810 } else {
e6c5bc73
JM
2811 /*
2812 * If the queue was seeky for too long, break it apart.
2813 */
2814 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2815 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2816 cfqq = split_cfqq(cic, cfqq);
2817 if (!cfqq)
2818 goto new_queue;
2819 }
2820
df5fe3e8
JM
2821 /*
2822 * Check to see if this queue is scheduled to merge with
2823 * another, closely cooperating queue. The merging of
2824 * queues happens here as it must be done in process context.
2825 * The reference on new_cfqq was taken in merge_cfqqs.
2826 */
2827 if (cfqq->new_cfqq)
2828 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2829 }
1da177e4
LT
2830
2831 cfqq->allocated[rw]++;
22e2c507 2832 atomic_inc(&cfqq->ref);
1da177e4 2833
5e705374 2834 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2835
5e705374
JA
2836 rq->elevator_private = cic;
2837 rq->elevator_private2 = cfqq;
2838 return 0;
1da177e4 2839
22e2c507
JA
2840queue_fail:
2841 if (cic)
2842 put_io_context(cic->ioc);
89850f7e 2843
23e018a1 2844 cfq_schedule_dispatch(cfqd);
1da177e4 2845 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2846 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2847 return 1;
2848}
2849
65f27f38 2850static void cfq_kick_queue(struct work_struct *work)
22e2c507 2851{
65f27f38 2852 struct cfq_data *cfqd =
23e018a1 2853 container_of(work, struct cfq_data, unplug_work);
165125e1 2854 struct request_queue *q = cfqd->queue;
22e2c507 2855
40bb54d1 2856 spin_lock_irq(q->queue_lock);
a7f55792 2857 __blk_run_queue(cfqd->queue);
40bb54d1 2858 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2859}
2860
2861/*
2862 * Timer running if the active_queue is currently idling inside its time slice
2863 */
2864static void cfq_idle_slice_timer(unsigned long data)
2865{
2866 struct cfq_data *cfqd = (struct cfq_data *) data;
2867 struct cfq_queue *cfqq;
2868 unsigned long flags;
3c6bd2f8 2869 int timed_out = 1;
22e2c507 2870
7b679138
JA
2871 cfq_log(cfqd, "idle timer fired");
2872
22e2c507
JA
2873 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2874
fe094d98
JA
2875 cfqq = cfqd->active_queue;
2876 if (cfqq) {
3c6bd2f8
JA
2877 timed_out = 0;
2878
b029195d
JA
2879 /*
2880 * We saw a request before the queue expired, let it through
2881 */
2882 if (cfq_cfqq_must_dispatch(cfqq))
2883 goto out_kick;
2884
22e2c507
JA
2885 /*
2886 * expired
2887 */
44f7c160 2888 if (cfq_slice_used(cfqq))
22e2c507
JA
2889 goto expire;
2890
2891 /*
2892 * only expire and reinvoke request handler, if there are
2893 * other queues with pending requests
2894 */
caaa5f9f 2895 if (!cfqd->busy_queues)
22e2c507 2896 goto out_cont;
22e2c507
JA
2897
2898 /*
2899 * not expired and it has a request pending, let it dispatch
2900 */
75e50984 2901 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2902 goto out_kick;
76280aff
CZ
2903
2904 /*
2905 * Queue depth flag is reset only when the idle didn't succeed
2906 */
2907 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
2908 }
2909expire:
6084cdda 2910 cfq_slice_expired(cfqd, timed_out);
22e2c507 2911out_kick:
23e018a1 2912 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2913out_cont:
2914 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2915}
2916
3b18152c
JA
2917static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2918{
2919 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2920 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2921}
22e2c507 2922
c2dea2d1
VT
2923static void cfq_put_async_queues(struct cfq_data *cfqd)
2924{
2925 int i;
2926
2927 for (i = 0; i < IOPRIO_BE_NR; i++) {
2928 if (cfqd->async_cfqq[0][i])
2929 cfq_put_queue(cfqd->async_cfqq[0][i]);
2930 if (cfqd->async_cfqq[1][i])
2931 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2932 }
2389d1ef
ON
2933
2934 if (cfqd->async_idle_cfqq)
2935 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2936}
2937
b374d18a 2938static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2939{
22e2c507 2940 struct cfq_data *cfqd = e->elevator_data;
165125e1 2941 struct request_queue *q = cfqd->queue;
22e2c507 2942
3b18152c 2943 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2944
d9ff4187 2945 spin_lock_irq(q->queue_lock);
e2d74ac0 2946
d9ff4187 2947 if (cfqd->active_queue)
6084cdda 2948 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2949
2950 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2951 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2952 struct cfq_io_context,
2953 queue_list);
89850f7e
JA
2954
2955 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2956 }
e2d74ac0 2957
c2dea2d1 2958 cfq_put_async_queues(cfqd);
15c31be4 2959
d9ff4187 2960 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2961
2962 cfq_shutdown_timer_wq(cfqd);
2963
a90d742e 2964 kfree(cfqd);
1da177e4
LT
2965}
2966
165125e1 2967static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2968{
2969 struct cfq_data *cfqd;
718eee05 2970 int i, j;
cdb16e8f 2971 struct cfq_group *cfqg;
1da177e4 2972
94f6030c 2973 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2974 if (!cfqd)
bc1c1169 2975 return NULL;
1da177e4 2976
cdb16e8f
VG
2977 /* Init root group */
2978 cfqg = &cfqd->root_group;
2979
c0324a02 2980 for (i = 0; i < 2; ++i)
718eee05 2981 for (j = 0; j < 3; ++j)
cdb16e8f
VG
2982 cfqg->service_trees[i][j] = CFQ_RB_ROOT;
2983 cfqg->service_tree_idle = CFQ_RB_ROOT;
26a2ac00
JA
2984
2985 /*
2986 * Not strictly needed (since RB_ROOT just clears the node and we
2987 * zeroed cfqd on alloc), but better be safe in case someone decides
2988 * to add magic to the rb code
2989 */
2990 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2991 cfqd->prio_trees[i] = RB_ROOT;
2992
6118b70b
JA
2993 /*
2994 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2995 * Grab a permanent reference to it, so that the normal code flow
2996 * will not attempt to free it.
2997 */
2998 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2999 atomic_inc(&cfqd->oom_cfqq.ref);
cdb16e8f 3000 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3001
d9ff4187 3002 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3003
1da177e4 3004 cfqd->queue = q;
1da177e4 3005
22e2c507
JA
3006 init_timer(&cfqd->idle_slice_timer);
3007 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3008 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3009
23e018a1 3010 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3011
1da177e4 3012 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3013 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3014 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3015 cfqd->cfq_back_max = cfq_back_max;
3016 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3017 cfqd->cfq_slice[0] = cfq_slice_async;
3018 cfqd->cfq_slice[1] = cfq_slice_sync;
3019 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3020 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 3021 cfqd->cfq_latency = 1;
e459dd08 3022 cfqd->hw_tag = -1;
365722bb 3023 cfqd->last_end_sync_rq = jiffies;
bc1c1169 3024 return cfqd;
1da177e4
LT
3025}
3026
3027static void cfq_slab_kill(void)
3028{
d6de8be7
JA
3029 /*
3030 * Caller already ensured that pending RCU callbacks are completed,
3031 * so we should have no busy allocations at this point.
3032 */
1da177e4
LT
3033 if (cfq_pool)
3034 kmem_cache_destroy(cfq_pool);
3035 if (cfq_ioc_pool)
3036 kmem_cache_destroy(cfq_ioc_pool);
3037}
3038
3039static int __init cfq_slab_setup(void)
3040{
0a31bd5f 3041 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3042 if (!cfq_pool)
3043 goto fail;
3044
34e6bbf2 3045 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3046 if (!cfq_ioc_pool)
3047 goto fail;
3048
3049 return 0;
3050fail:
3051 cfq_slab_kill();
3052 return -ENOMEM;
3053}
3054
1da177e4
LT
3055/*
3056 * sysfs parts below -->
3057 */
1da177e4
LT
3058static ssize_t
3059cfq_var_show(unsigned int var, char *page)
3060{
3061 return sprintf(page, "%d\n", var);
3062}
3063
3064static ssize_t
3065cfq_var_store(unsigned int *var, const char *page, size_t count)
3066{
3067 char *p = (char *) page;
3068
3069 *var = simple_strtoul(p, &p, 10);
3070 return count;
3071}
3072
1da177e4 3073#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3074static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3075{ \
3d1ab40f 3076 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3077 unsigned int __data = __VAR; \
3078 if (__CONV) \
3079 __data = jiffies_to_msecs(__data); \
3080 return cfq_var_show(__data, (page)); \
3081}
3082SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3083SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3084SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3085SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3086SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3087SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3088SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3089SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3090SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3091SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3092#undef SHOW_FUNCTION
3093
3094#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3095static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3096{ \
3d1ab40f 3097 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3098 unsigned int __data; \
3099 int ret = cfq_var_store(&__data, (page), count); \
3100 if (__data < (MIN)) \
3101 __data = (MIN); \
3102 else if (__data > (MAX)) \
3103 __data = (MAX); \
3104 if (__CONV) \
3105 *(__PTR) = msecs_to_jiffies(__data); \
3106 else \
3107 *(__PTR) = __data; \
3108 return ret; \
3109}
3110STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3111STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3112 UINT_MAX, 1);
3113STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3114 UINT_MAX, 1);
e572ec7e 3115STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3116STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3117 UINT_MAX, 0);
22e2c507
JA
3118STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3119STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3120STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3121STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3122 UINT_MAX, 0);
963b72fc 3123STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3124#undef STORE_FUNCTION
3125
e572ec7e
AV
3126#define CFQ_ATTR(name) \
3127 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3128
3129static struct elv_fs_entry cfq_attrs[] = {
3130 CFQ_ATTR(quantum),
e572ec7e
AV
3131 CFQ_ATTR(fifo_expire_sync),
3132 CFQ_ATTR(fifo_expire_async),
3133 CFQ_ATTR(back_seek_max),
3134 CFQ_ATTR(back_seek_penalty),
3135 CFQ_ATTR(slice_sync),
3136 CFQ_ATTR(slice_async),
3137 CFQ_ATTR(slice_async_rq),
3138 CFQ_ATTR(slice_idle),
963b72fc 3139 CFQ_ATTR(low_latency),
e572ec7e 3140 __ATTR_NULL
1da177e4
LT
3141};
3142
1da177e4
LT
3143static struct elevator_type iosched_cfq = {
3144 .ops = {
3145 .elevator_merge_fn = cfq_merge,
3146 .elevator_merged_fn = cfq_merged_request,
3147 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3148 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3149 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3150 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3151 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3152 .elevator_deactivate_req_fn = cfq_deactivate_request,
3153 .elevator_queue_empty_fn = cfq_queue_empty,
3154 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3155 .elevator_former_req_fn = elv_rb_former_request,
3156 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3157 .elevator_set_req_fn = cfq_set_request,
3158 .elevator_put_req_fn = cfq_put_request,
3159 .elevator_may_queue_fn = cfq_may_queue,
3160 .elevator_init_fn = cfq_init_queue,
3161 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3162 .trim = cfq_free_io_context,
1da177e4 3163 },
3d1ab40f 3164 .elevator_attrs = cfq_attrs,
1da177e4
LT
3165 .elevator_name = "cfq",
3166 .elevator_owner = THIS_MODULE,
3167};
3168
3169static int __init cfq_init(void)
3170{
22e2c507
JA
3171 /*
3172 * could be 0 on HZ < 1000 setups
3173 */
3174 if (!cfq_slice_async)
3175 cfq_slice_async = 1;
3176 if (!cfq_slice_idle)
3177 cfq_slice_idle = 1;
3178
1da177e4
LT
3179 if (cfq_slab_setup())
3180 return -ENOMEM;
3181
2fdd82bd 3182 elv_register(&iosched_cfq);
1da177e4 3183
2fdd82bd 3184 return 0;
1da177e4
LT
3185}
3186
3187static void __exit cfq_exit(void)
3188{
6e9a4738 3189 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3190 elv_unregister(&iosched_cfq);
334e94de 3191 ioc_gone = &all_gone;
fba82272
OH
3192 /* ioc_gone's update must be visible before reading ioc_count */
3193 smp_wmb();
d6de8be7
JA
3194
3195 /*
3196 * this also protects us from entering cfq_slab_kill() with
3197 * pending RCU callbacks
3198 */
245b2e70 3199 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3200 wait_for_completion(&all_gone);
83521d3e 3201 cfq_slab_kill();
1da177e4
LT
3202}
3203
3204module_init(cfq_init);
3205module_exit(cfq_exit);
3206
3207MODULE_AUTHOR("Jens Axboe");
3208MODULE_LICENSE("GPL");
3209MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");