cfq-iosched: rename 'desktop' sysfs entry to 'low_latency'
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
245b2e70 51static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
6118b70b
JA
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116};
117
22e2c507
JA
118/*
119 * Per block device queue structure
120 */
1da177e4 121struct cfq_data {
165125e1 122 struct request_queue *queue;
22e2c507
JA
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
cc09e299 127 struct cfq_rb_root service_tree;
a36e71f9
JA
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
22e2c507
JA
136 unsigned int busy_queues;
137
5ad531db 138 int rq_in_driver[2];
3ed9a296 139 int sync_flight;
45333d5a
AC
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
25776e35 145 int hw_tag;
45333d5a
AC
146 int hw_tag_samples;
147 int rq_in_driver_peak;
1da177e4 148
22e2c507
JA
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
8e296755 153 struct delayed_work unplug_work;
1da177e4 154
22e2c507
JA
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
22e2c507 157
c2dea2d1
VT
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
15c31be4 163
6d048f53 164 sector_t last_position;
1da177e4 165
1da177e4
LT
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
22e2c507 170 unsigned int cfq_fifo_expire[2];
1da177e4
LT
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
22e2c507
JA
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
963b72fc 176 unsigned int cfq_latency;
d9ff4187
AV
177
178 struct list_head cic_list;
1da177e4 179
6118b70b
JA
180 /*
181 * Fallback dummy cfqq for extreme OOM conditions
182 */
183 struct cfq_queue oom_cfqq;
365722bb
VG
184
185 unsigned long last_end_sync_rq;
1da177e4
LT
186};
187
3b18152c 188enum cfqq_state_flags {
b0b8d749
JA
189 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 191 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 192 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
193 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 196 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 197 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 198 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
199};
200
201#define CFQ_CFQQ_FNS(name) \
202static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
203{ \
fe094d98 204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
205} \
206static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
207{ \
fe094d98 208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
209} \
210static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
211{ \
fe094d98 212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
213}
214
215CFQ_CFQQ_FNS(on_rr);
216CFQ_CFQQ_FNS(wait_request);
b029195d 217CFQ_CFQQ_FNS(must_dispatch);
3b18152c 218CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
219CFQ_CFQQ_FNS(fifo_expire);
220CFQ_CFQQ_FNS(idle_window);
221CFQ_CFQQ_FNS(prio_changed);
44f7c160 222CFQ_CFQQ_FNS(slice_new);
91fac317 223CFQ_CFQQ_FNS(sync);
a36e71f9 224CFQ_CFQQ_FNS(coop);
3b18152c
JA
225#undef CFQ_CFQQ_FNS
226
7b679138
JA
227#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229#define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
165125e1 232static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 233static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 234 struct io_context *, gfp_t);
4ac845a2 235static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
236 struct io_context *);
237
5ad531db
JA
238static inline int rq_in_driver(struct cfq_data *cfqd)
239{
240 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
241}
242
91fac317
VT
243static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
244 int is_sync)
245{
246 return cic->cfqq[!!is_sync];
247}
248
249static inline void cic_set_cfqq(struct cfq_io_context *cic,
250 struct cfq_queue *cfqq, int is_sync)
251{
252 cic->cfqq[!!is_sync] = cfqq;
253}
254
255/*
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
258 */
259static inline int cfq_bio_sync(struct bio *bio)
260{
1f98a13f 261 if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
91fac317
VT
262 return 1;
263
264 return 0;
265}
1da177e4 266
99f95e52
AM
267/*
268 * scheduler run of queue, if there are requests pending and no one in the
269 * driver that will restart queueing
270 */
8e296755
JA
271static inline void cfq_schedule_dispatch(struct cfq_data *cfqd,
272 unsigned long delay)
99f95e52 273{
7b679138
JA
274 if (cfqd->busy_queues) {
275 cfq_log(cfqd, "schedule dispatch");
8e296755
JA
276 kblockd_schedule_delayed_work(cfqd->queue, &cfqd->unplug_work,
277 delay);
7b679138 278 }
99f95e52
AM
279}
280
165125e1 281static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
282{
283 struct cfq_data *cfqd = q->elevator->elevator_data;
284
b4878f24 285 return !cfqd->busy_queues;
99f95e52
AM
286}
287
44f7c160
JA
288/*
289 * Scale schedule slice based on io priority. Use the sync time slice only
290 * if a queue is marked sync and has sync io queued. A sync queue with async
291 * io only, should not get full sync slice length.
292 */
d9e7620e
JA
293static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
294 unsigned short prio)
44f7c160 295{
d9e7620e 296 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 297
d9e7620e
JA
298 WARN_ON(prio >= IOPRIO_BE_NR);
299
300 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
301}
44f7c160 302
d9e7620e
JA
303static inline int
304cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
305{
306 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
307}
308
309static inline void
310cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
311{
312 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 313 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
314}
315
316/*
317 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
318 * isn't valid until the first request from the dispatch is activated
319 * and the slice time set.
320 */
321static inline int cfq_slice_used(struct cfq_queue *cfqq)
322{
323 if (cfq_cfqq_slice_new(cfqq))
324 return 0;
325 if (time_before(jiffies, cfqq->slice_end))
326 return 0;
327
328 return 1;
329}
330
1da177e4 331/*
5e705374 332 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 333 * We choose the request that is closest to the head right now. Distance
e8a99053 334 * behind the head is penalized and only allowed to a certain extent.
1da177e4 335 */
5e705374
JA
336static struct request *
337cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
338{
339 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 340 unsigned long back_max;
e8a99053
AM
341#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
342#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
343 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 344
5e705374
JA
345 if (rq1 == NULL || rq1 == rq2)
346 return rq2;
347 if (rq2 == NULL)
348 return rq1;
9c2c38a1 349
5e705374
JA
350 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
351 return rq1;
352 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
353 return rq2;
374f84ac
JA
354 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
355 return rq1;
356 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
357 return rq2;
1da177e4 358
83096ebf
TH
359 s1 = blk_rq_pos(rq1);
360 s2 = blk_rq_pos(rq2);
1da177e4 361
6d048f53 362 last = cfqd->last_position;
1da177e4 363
1da177e4
LT
364 /*
365 * by definition, 1KiB is 2 sectors
366 */
367 back_max = cfqd->cfq_back_max * 2;
368
369 /*
370 * Strict one way elevator _except_ in the case where we allow
371 * short backward seeks which are biased as twice the cost of a
372 * similar forward seek.
373 */
374 if (s1 >= last)
375 d1 = s1 - last;
376 else if (s1 + back_max >= last)
377 d1 = (last - s1) * cfqd->cfq_back_penalty;
378 else
e8a99053 379 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
380
381 if (s2 >= last)
382 d2 = s2 - last;
383 else if (s2 + back_max >= last)
384 d2 = (last - s2) * cfqd->cfq_back_penalty;
385 else
e8a99053 386 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
387
388 /* Found required data */
e8a99053
AM
389
390 /*
391 * By doing switch() on the bit mask "wrap" we avoid having to
392 * check two variables for all permutations: --> faster!
393 */
394 switch (wrap) {
5e705374 395 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 396 if (d1 < d2)
5e705374 397 return rq1;
e8a99053 398 else if (d2 < d1)
5e705374 399 return rq2;
e8a99053
AM
400 else {
401 if (s1 >= s2)
5e705374 402 return rq1;
e8a99053 403 else
5e705374 404 return rq2;
e8a99053 405 }
1da177e4 406
e8a99053 407 case CFQ_RQ2_WRAP:
5e705374 408 return rq1;
e8a99053 409 case CFQ_RQ1_WRAP:
5e705374
JA
410 return rq2;
411 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
412 default:
413 /*
414 * Since both rqs are wrapped,
415 * start with the one that's further behind head
416 * (--> only *one* back seek required),
417 * since back seek takes more time than forward.
418 */
419 if (s1 <= s2)
5e705374 420 return rq1;
1da177e4 421 else
5e705374 422 return rq2;
1da177e4
LT
423 }
424}
425
498d3aa2
JA
426/*
427 * The below is leftmost cache rbtree addon
428 */
0871714e 429static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
430{
431 if (!root->left)
432 root->left = rb_first(&root->rb);
433
0871714e
JA
434 if (root->left)
435 return rb_entry(root->left, struct cfq_queue, rb_node);
436
437 return NULL;
cc09e299
JA
438}
439
a36e71f9
JA
440static void rb_erase_init(struct rb_node *n, struct rb_root *root)
441{
442 rb_erase(n, root);
443 RB_CLEAR_NODE(n);
444}
445
cc09e299
JA
446static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
447{
448 if (root->left == n)
449 root->left = NULL;
a36e71f9 450 rb_erase_init(n, &root->rb);
cc09e299
JA
451}
452
1da177e4
LT
453/*
454 * would be nice to take fifo expire time into account as well
455 */
5e705374
JA
456static struct request *
457cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
458 struct request *last)
1da177e4 459{
21183b07
JA
460 struct rb_node *rbnext = rb_next(&last->rb_node);
461 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 462 struct request *next = NULL, *prev = NULL;
1da177e4 463
21183b07 464 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
465
466 if (rbprev)
5e705374 467 prev = rb_entry_rq(rbprev);
1da177e4 468
21183b07 469 if (rbnext)
5e705374 470 next = rb_entry_rq(rbnext);
21183b07
JA
471 else {
472 rbnext = rb_first(&cfqq->sort_list);
473 if (rbnext && rbnext != &last->rb_node)
5e705374 474 next = rb_entry_rq(rbnext);
21183b07 475 }
1da177e4 476
21183b07 477 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
478}
479
d9e7620e
JA
480static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
481 struct cfq_queue *cfqq)
1da177e4 482{
d9e7620e
JA
483 /*
484 * just an approximation, should be ok.
485 */
67e6b49e
JA
486 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
487 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
488}
489
498d3aa2
JA
490/*
491 * The cfqd->service_tree holds all pending cfq_queue's that have
492 * requests waiting to be processed. It is sorted in the order that
493 * we will service the queues.
494 */
a36e71f9
JA
495static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
496 int add_front)
d9e7620e 497{
0871714e
JA
498 struct rb_node **p, *parent;
499 struct cfq_queue *__cfqq;
d9e7620e 500 unsigned long rb_key;
498d3aa2 501 int left;
d9e7620e 502
0871714e
JA
503 if (cfq_class_idle(cfqq)) {
504 rb_key = CFQ_IDLE_DELAY;
505 parent = rb_last(&cfqd->service_tree.rb);
506 if (parent && parent != &cfqq->rb_node) {
507 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
508 rb_key += __cfqq->rb_key;
509 } else
510 rb_key += jiffies;
511 } else if (!add_front) {
edd75ffd
JA
512 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
513 rb_key += cfqq->slice_resid;
514 cfqq->slice_resid = 0;
515 } else
516 rb_key = 0;
1da177e4 517
d9e7620e 518 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 519 /*
d9e7620e 520 * same position, nothing more to do
99f9628a 521 */
d9e7620e
JA
522 if (rb_key == cfqq->rb_key)
523 return;
1da177e4 524
cc09e299 525 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 526 }
d9e7620e 527
498d3aa2 528 left = 1;
0871714e
JA
529 parent = NULL;
530 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 531 while (*p) {
67060e37 532 struct rb_node **n;
cc09e299 533
d9e7620e
JA
534 parent = *p;
535 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
536
0c534e0a
JA
537 /*
538 * sort RT queues first, we always want to give
67060e37
JA
539 * preference to them. IDLE queues goes to the back.
540 * after that, sort on the next service time.
0c534e0a
JA
541 */
542 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 543 n = &(*p)->rb_left;
0c534e0a 544 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
545 n = &(*p)->rb_right;
546 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
547 n = &(*p)->rb_left;
548 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
549 n = &(*p)->rb_right;
0c534e0a 550 else if (rb_key < __cfqq->rb_key)
67060e37
JA
551 n = &(*p)->rb_left;
552 else
553 n = &(*p)->rb_right;
554
555 if (n == &(*p)->rb_right)
cc09e299 556 left = 0;
67060e37
JA
557
558 p = n;
d9e7620e
JA
559 }
560
cc09e299
JA
561 if (left)
562 cfqd->service_tree.left = &cfqq->rb_node;
563
d9e7620e
JA
564 cfqq->rb_key = rb_key;
565 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 566 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
567}
568
a36e71f9 569static struct cfq_queue *
f2d1f0ae
JA
570cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
571 sector_t sector, struct rb_node **ret_parent,
572 struct rb_node ***rb_link)
a36e71f9 573{
a36e71f9
JA
574 struct rb_node **p, *parent;
575 struct cfq_queue *cfqq = NULL;
576
577 parent = NULL;
578 p = &root->rb_node;
579 while (*p) {
580 struct rb_node **n;
581
582 parent = *p;
583 cfqq = rb_entry(parent, struct cfq_queue, p_node);
584
585 /*
586 * Sort strictly based on sector. Smallest to the left,
587 * largest to the right.
588 */
2e46e8b2 589 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 590 n = &(*p)->rb_right;
2e46e8b2 591 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
592 n = &(*p)->rb_left;
593 else
594 break;
595 p = n;
3ac6c9f8 596 cfqq = NULL;
a36e71f9
JA
597 }
598
599 *ret_parent = parent;
600 if (rb_link)
601 *rb_link = p;
3ac6c9f8 602 return cfqq;
a36e71f9
JA
603}
604
605static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
606{
a36e71f9
JA
607 struct rb_node **p, *parent;
608 struct cfq_queue *__cfqq;
609
f2d1f0ae
JA
610 if (cfqq->p_root) {
611 rb_erase(&cfqq->p_node, cfqq->p_root);
612 cfqq->p_root = NULL;
613 }
a36e71f9
JA
614
615 if (cfq_class_idle(cfqq))
616 return;
617 if (!cfqq->next_rq)
618 return;
619
f2d1f0ae 620 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
621 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
622 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
623 if (!__cfqq) {
624 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
625 rb_insert_color(&cfqq->p_node, cfqq->p_root);
626 } else
627 cfqq->p_root = NULL;
a36e71f9
JA
628}
629
498d3aa2
JA
630/*
631 * Update cfqq's position in the service tree.
632 */
edd75ffd 633static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 634{
6d048f53
JA
635 /*
636 * Resorting requires the cfqq to be on the RR list already.
637 */
a36e71f9 638 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 639 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
640 cfq_prio_tree_add(cfqd, cfqq);
641 }
6d048f53
JA
642}
643
1da177e4
LT
644/*
645 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 646 * the pending list according to last request service
1da177e4 647 */
febffd61 648static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 649{
7b679138 650 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
651 BUG_ON(cfq_cfqq_on_rr(cfqq));
652 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
653 cfqd->busy_queues++;
654
edd75ffd 655 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
656}
657
498d3aa2
JA
658/*
659 * Called when the cfqq no longer has requests pending, remove it from
660 * the service tree.
661 */
febffd61 662static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 663{
7b679138 664 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
665 BUG_ON(!cfq_cfqq_on_rr(cfqq));
666 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 667
cc09e299
JA
668 if (!RB_EMPTY_NODE(&cfqq->rb_node))
669 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
670 if (cfqq->p_root) {
671 rb_erase(&cfqq->p_node, cfqq->p_root);
672 cfqq->p_root = NULL;
673 }
d9e7620e 674
1da177e4
LT
675 BUG_ON(!cfqd->busy_queues);
676 cfqd->busy_queues--;
677}
678
679/*
680 * rb tree support functions
681 */
febffd61 682static void cfq_del_rq_rb(struct request *rq)
1da177e4 683{
5e705374 684 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 685 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 686 const int sync = rq_is_sync(rq);
1da177e4 687
b4878f24
JA
688 BUG_ON(!cfqq->queued[sync]);
689 cfqq->queued[sync]--;
1da177e4 690
5e705374 691 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 692
dd67d051 693 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 694 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
695}
696
5e705374 697static void cfq_add_rq_rb(struct request *rq)
1da177e4 698{
5e705374 699 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 700 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 701 struct request *__alias, *prev;
1da177e4 702
5380a101 703 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
704
705 /*
706 * looks a little odd, but the first insert might return an alias.
707 * if that happens, put the alias on the dispatch list
708 */
21183b07 709 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 710 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
711
712 if (!cfq_cfqq_on_rr(cfqq))
713 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
714
715 /*
716 * check if this request is a better next-serve candidate
717 */
a36e71f9 718 prev = cfqq->next_rq;
5044eed4 719 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
720
721 /*
722 * adjust priority tree position, if ->next_rq changes
723 */
724 if (prev != cfqq->next_rq)
725 cfq_prio_tree_add(cfqd, cfqq);
726
5044eed4 727 BUG_ON(!cfqq->next_rq);
1da177e4
LT
728}
729
febffd61 730static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 731{
5380a101
JA
732 elv_rb_del(&cfqq->sort_list, rq);
733 cfqq->queued[rq_is_sync(rq)]--;
5e705374 734 cfq_add_rq_rb(rq);
1da177e4
LT
735}
736
206dc69b
JA
737static struct request *
738cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 739{
206dc69b 740 struct task_struct *tsk = current;
91fac317 741 struct cfq_io_context *cic;
206dc69b 742 struct cfq_queue *cfqq;
1da177e4 743
4ac845a2 744 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
745 if (!cic)
746 return NULL;
747
748 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
749 if (cfqq) {
750 sector_t sector = bio->bi_sector + bio_sectors(bio);
751
21183b07 752 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 753 }
1da177e4 754
1da177e4
LT
755 return NULL;
756}
757
165125e1 758static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 759{
22e2c507 760 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 761
5ad531db 762 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 763 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 764 rq_in_driver(cfqd));
25776e35 765
5b93629b 766 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
767}
768
165125e1 769static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 770{
b4878f24 771 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 772 const int sync = rq_is_sync(rq);
b4878f24 773
5ad531db
JA
774 WARN_ON(!cfqd->rq_in_driver[sync]);
775 cfqd->rq_in_driver[sync]--;
7b679138 776 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 777 rq_in_driver(cfqd));
1da177e4
LT
778}
779
b4878f24 780static void cfq_remove_request(struct request *rq)
1da177e4 781{
5e705374 782 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 783
5e705374
JA
784 if (cfqq->next_rq == rq)
785 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 786
b4878f24 787 list_del_init(&rq->queuelist);
5e705374 788 cfq_del_rq_rb(rq);
374f84ac 789
45333d5a 790 cfqq->cfqd->rq_queued--;
374f84ac
JA
791 if (rq_is_meta(rq)) {
792 WARN_ON(!cfqq->meta_pending);
793 cfqq->meta_pending--;
794 }
1da177e4
LT
795}
796
165125e1
JA
797static int cfq_merge(struct request_queue *q, struct request **req,
798 struct bio *bio)
1da177e4
LT
799{
800 struct cfq_data *cfqd = q->elevator->elevator_data;
801 struct request *__rq;
1da177e4 802
206dc69b 803 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 804 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
805 *req = __rq;
806 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
807 }
808
809 return ELEVATOR_NO_MERGE;
1da177e4
LT
810}
811
165125e1 812static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 813 int type)
1da177e4 814{
21183b07 815 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 816 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 817
5e705374 818 cfq_reposition_rq_rb(cfqq, req);
1da177e4 819 }
1da177e4
LT
820}
821
822static void
165125e1 823cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
824 struct request *next)
825{
22e2c507
JA
826 /*
827 * reposition in fifo if next is older than rq
828 */
829 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
830 time_before(next->start_time, rq->start_time))
831 list_move(&rq->queuelist, &next->queuelist);
832
b4878f24 833 cfq_remove_request(next);
22e2c507
JA
834}
835
165125e1 836static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
837 struct bio *bio)
838{
839 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 840 struct cfq_io_context *cic;
da775265 841 struct cfq_queue *cfqq;
da775265
JA
842
843 /*
ec8acb69 844 * Disallow merge of a sync bio into an async request.
da775265 845 */
91fac317 846 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
847 return 0;
848
849 /*
719d3402
JA
850 * Lookup the cfqq that this bio will be queued with. Allow
851 * merge only if rq is queued there.
da775265 852 */
4ac845a2 853 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
854 if (!cic)
855 return 0;
719d3402 856
91fac317 857 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
858 if (cfqq == RQ_CFQQ(rq))
859 return 1;
da775265 860
ec8acb69 861 return 0;
da775265
JA
862}
863
febffd61
JA
864static void __cfq_set_active_queue(struct cfq_data *cfqd,
865 struct cfq_queue *cfqq)
22e2c507
JA
866{
867 if (cfqq) {
7b679138 868 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 869 cfqq->slice_end = 0;
2f5cb738
JA
870 cfqq->slice_dispatch = 0;
871
2f5cb738 872 cfq_clear_cfqq_wait_request(cfqq);
b029195d 873 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
874 cfq_clear_cfqq_must_alloc_slice(cfqq);
875 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 876 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
877
878 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
879 }
880
881 cfqd->active_queue = cfqq;
882}
883
7b14e3b5
JA
884/*
885 * current cfqq expired its slice (or was too idle), select new one
886 */
887static void
888__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 889 int timed_out)
7b14e3b5 890{
7b679138
JA
891 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
892
7b14e3b5
JA
893 if (cfq_cfqq_wait_request(cfqq))
894 del_timer(&cfqd->idle_slice_timer);
895
7b14e3b5
JA
896 cfq_clear_cfqq_wait_request(cfqq);
897
898 /*
6084cdda 899 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 900 */
7b679138 901 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 902 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
903 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
904 }
7b14e3b5 905
edd75ffd 906 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
907
908 if (cfqq == cfqd->active_queue)
909 cfqd->active_queue = NULL;
910
911 if (cfqd->active_cic) {
912 put_io_context(cfqd->active_cic->ioc);
913 cfqd->active_cic = NULL;
914 }
7b14e3b5
JA
915}
916
6084cdda 917static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
918{
919 struct cfq_queue *cfqq = cfqd->active_queue;
920
921 if (cfqq)
6084cdda 922 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
923}
924
498d3aa2
JA
925/*
926 * Get next queue for service. Unless we have a queue preemption,
927 * we'll simply select the first cfqq in the service tree.
928 */
6d048f53 929static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 930{
edd75ffd
JA
931 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
932 return NULL;
d9e7620e 933
0871714e 934 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
935}
936
498d3aa2
JA
937/*
938 * Get and set a new active queue for service.
939 */
a36e71f9
JA
940static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
941 struct cfq_queue *cfqq)
6d048f53 942{
a36e71f9
JA
943 if (!cfqq) {
944 cfqq = cfq_get_next_queue(cfqd);
945 if (cfqq)
946 cfq_clear_cfqq_coop(cfqq);
947 }
6d048f53 948
22e2c507 949 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 950 return cfqq;
22e2c507
JA
951}
952
d9e7620e
JA
953static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
954 struct request *rq)
955{
83096ebf
TH
956 if (blk_rq_pos(rq) >= cfqd->last_position)
957 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 958 else
83096ebf 959 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
960}
961
04dc6e71
JM
962#define CIC_SEEK_THR 8 * 1024
963#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
964
6d048f53
JA
965static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
966{
967 struct cfq_io_context *cic = cfqd->active_cic;
04dc6e71 968 sector_t sdist = cic->seek_mean;
6d048f53
JA
969
970 if (!sample_valid(cic->seek_samples))
04dc6e71 971 sdist = CIC_SEEK_THR;
6d048f53 972
04dc6e71 973 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
974}
975
a36e71f9
JA
976static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
977 struct cfq_queue *cur_cfqq)
978{
f2d1f0ae 979 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
980 struct rb_node *parent, *node;
981 struct cfq_queue *__cfqq;
982 sector_t sector = cfqd->last_position;
983
984 if (RB_EMPTY_ROOT(root))
985 return NULL;
986
987 /*
988 * First, if we find a request starting at the end of the last
989 * request, choose it.
990 */
f2d1f0ae 991 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
992 if (__cfqq)
993 return __cfqq;
994
995 /*
996 * If the exact sector wasn't found, the parent of the NULL leaf
997 * will contain the closest sector.
998 */
999 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1000 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1001 return __cfqq;
1002
2e46e8b2 1003 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1004 node = rb_next(&__cfqq->p_node);
1005 else
1006 node = rb_prev(&__cfqq->p_node);
1007 if (!node)
1008 return NULL;
1009
1010 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1011 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1012 return __cfqq;
1013
1014 return NULL;
1015}
1016
1017/*
1018 * cfqd - obvious
1019 * cur_cfqq - passed in so that we don't decide that the current queue is
1020 * closely cooperating with itself.
1021 *
1022 * So, basically we're assuming that that cur_cfqq has dispatched at least
1023 * one request, and that cfqd->last_position reflects a position on the disk
1024 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1025 * assumption.
1026 */
1027static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1028 struct cfq_queue *cur_cfqq,
1029 int probe)
6d048f53 1030{
a36e71f9
JA
1031 struct cfq_queue *cfqq;
1032
1033 /*
1034 * A valid cfq_io_context is necessary to compare requests against
1035 * the seek_mean of the current cfqq.
1036 */
1037 if (!cfqd->active_cic)
1038 return NULL;
1039
6d048f53 1040 /*
d9e7620e
JA
1041 * We should notice if some of the queues are cooperating, eg
1042 * working closely on the same area of the disk. In that case,
1043 * we can group them together and don't waste time idling.
6d048f53 1044 */
a36e71f9
JA
1045 cfqq = cfqq_close(cfqd, cur_cfqq);
1046 if (!cfqq)
1047 return NULL;
1048
1049 if (cfq_cfqq_coop(cfqq))
1050 return NULL;
1051
1052 if (!probe)
1053 cfq_mark_cfqq_coop(cfqq);
1054 return cfqq;
6d048f53
JA
1055}
1056
6d048f53 1057static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1058{
1792669c 1059 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1060 struct cfq_io_context *cic;
7b14e3b5
JA
1061 unsigned long sl;
1062
a68bbddb 1063 /*
f7d7b7a7
JA
1064 * SSD device without seek penalty, disable idling. But only do so
1065 * for devices that support queuing, otherwise we still have a problem
1066 * with sync vs async workloads.
a68bbddb 1067 */
f7d7b7a7 1068 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1069 return;
1070
dd67d051 1071 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1072 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1073
1074 /*
1075 * idle is disabled, either manually or by past process history
1076 */
6d048f53
JA
1077 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1078 return;
1079
7b679138
JA
1080 /*
1081 * still requests with the driver, don't idle
1082 */
5ad531db 1083 if (rq_in_driver(cfqd))
7b679138
JA
1084 return;
1085
22e2c507
JA
1086 /*
1087 * task has exited, don't wait
1088 */
206dc69b 1089 cic = cfqd->active_cic;
66dac98e 1090 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1091 return;
1092
3b18152c 1093 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1094
206dc69b
JA
1095 /*
1096 * we don't want to idle for seeks, but we do want to allow
1097 * fair distribution of slice time for a process doing back-to-back
1098 * seeks. so allow a little bit of time for him to submit a new rq
1099 */
6d048f53 1100 sl = cfqd->cfq_slice_idle;
caaa5f9f 1101 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1102 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1103
7b14e3b5 1104 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1105 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1106}
1107
498d3aa2
JA
1108/*
1109 * Move request from internal lists to the request queue dispatch list.
1110 */
165125e1 1111static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1112{
3ed9a296 1113 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1114 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1115
7b679138
JA
1116 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1117
06d21886 1118 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1119 cfq_remove_request(rq);
6d048f53 1120 cfqq->dispatched++;
5380a101 1121 elv_dispatch_sort(q, rq);
3ed9a296
JA
1122
1123 if (cfq_cfqq_sync(cfqq))
1124 cfqd->sync_flight++;
1da177e4
LT
1125}
1126
1127/*
1128 * return expired entry, or NULL to just start from scratch in rbtree
1129 */
febffd61 1130static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4
LT
1131{
1132 struct cfq_data *cfqd = cfqq->cfqd;
22e2c507 1133 struct request *rq;
89850f7e 1134 int fifo;
1da177e4 1135
3b18152c 1136 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1137 return NULL;
cb887411
JA
1138
1139 cfq_mark_cfqq_fifo_expire(cfqq);
1140
89850f7e
JA
1141 if (list_empty(&cfqq->fifo))
1142 return NULL;
1da177e4 1143
6d048f53 1144 fifo = cfq_cfqq_sync(cfqq);
89850f7e 1145 rq = rq_entry_fifo(cfqq->fifo.next);
1da177e4 1146
6d048f53 1147 if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
7b679138 1148 rq = NULL;
1da177e4 1149
7b679138 1150 cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
6d048f53 1151 return rq;
1da177e4
LT
1152}
1153
22e2c507
JA
1154static inline int
1155cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1156{
1157 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1158
22e2c507 1159 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1160
22e2c507 1161 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1162}
1163
22e2c507 1164/*
498d3aa2
JA
1165 * Select a queue for service. If we have a current active queue,
1166 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1167 */
1b5ed5e1 1168static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1169{
a36e71f9 1170 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1171
22e2c507
JA
1172 cfqq = cfqd->active_queue;
1173 if (!cfqq)
1174 goto new_queue;
1da177e4 1175
22e2c507 1176 /*
6d048f53 1177 * The active queue has run out of time, expire it and select new.
22e2c507 1178 */
b029195d 1179 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1180 goto expire;
1da177e4 1181
22e2c507 1182 /*
6d048f53
JA
1183 * The active queue has requests and isn't expired, allow it to
1184 * dispatch.
22e2c507 1185 */
dd67d051 1186 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1187 goto keep_queue;
6d048f53 1188
a36e71f9
JA
1189 /*
1190 * If another queue has a request waiting within our mean seek
1191 * distance, let it run. The expire code will check for close
1192 * cooperators and put the close queue at the front of the service
1193 * tree.
1194 */
1195 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1196 if (new_cfqq)
1197 goto expire;
1198
6d048f53
JA
1199 /*
1200 * No requests pending. If the active queue still has requests in
1201 * flight or is idling for a new request, allow either of these
1202 * conditions to happen (or time out) before selecting a new queue.
1203 */
cc197479
JA
1204 if (timer_pending(&cfqd->idle_slice_timer) ||
1205 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1206 cfqq = NULL;
1207 goto keep_queue;
22e2c507
JA
1208 }
1209
3b18152c 1210expire:
6084cdda 1211 cfq_slice_expired(cfqd, 0);
3b18152c 1212new_queue:
a36e71f9 1213 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1214keep_queue:
3b18152c 1215 return cfqq;
22e2c507
JA
1216}
1217
febffd61 1218static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1219{
1220 int dispatched = 0;
1221
1222 while (cfqq->next_rq) {
1223 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1224 dispatched++;
1225 }
1226
1227 BUG_ON(!list_empty(&cfqq->fifo));
1228 return dispatched;
1229}
1230
498d3aa2
JA
1231/*
1232 * Drain our current requests. Used for barriers and when switching
1233 * io schedulers on-the-fly.
1234 */
d9e7620e 1235static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1236{
0871714e 1237 struct cfq_queue *cfqq;
d9e7620e 1238 int dispatched = 0;
1b5ed5e1 1239
0871714e 1240 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1241 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1242
6084cdda 1243 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1244
1245 BUG_ON(cfqd->busy_queues);
1246
6923715a 1247 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1248 return dispatched;
1249}
1250
2f5cb738
JA
1251/*
1252 * Dispatch a request from cfqq, moving them to the request queue
1253 * dispatch list.
1254 */
1255static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1256{
1257 struct request *rq;
1258
1259 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1260
1261 /*
1262 * follow expired path, else get first next available
1263 */
1264 rq = cfq_check_fifo(cfqq);
1265 if (!rq)
1266 rq = cfqq->next_rq;
1267
1268 /*
1269 * insert request into driver dispatch list
1270 */
1271 cfq_dispatch_insert(cfqd->queue, rq);
1272
1273 if (!cfqd->active_cic) {
1274 struct cfq_io_context *cic = RQ_CIC(rq);
1275
d9c7d394 1276 atomic_long_inc(&cic->ioc->refcount);
2f5cb738
JA
1277 cfqd->active_cic = cic;
1278 }
1279}
1280
1281/*
1282 * Find the cfqq that we need to service and move a request from that to the
1283 * dispatch list
1284 */
165125e1 1285static int cfq_dispatch_requests(struct request_queue *q, int force)
22e2c507
JA
1286{
1287 struct cfq_data *cfqd = q->elevator->elevator_data;
6d048f53 1288 struct cfq_queue *cfqq;
2f5cb738 1289 unsigned int max_dispatch;
22e2c507
JA
1290
1291 if (!cfqd->busy_queues)
1292 return 0;
1293
1b5ed5e1
TH
1294 if (unlikely(force))
1295 return cfq_forced_dispatch(cfqd);
1296
2f5cb738
JA
1297 cfqq = cfq_select_queue(cfqd);
1298 if (!cfqq)
1299 return 0;
1300
5ad531db
JA
1301 /*
1302 * Drain async requests before we start sync IO
1303 */
1304 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1305 return 0;
1306
2f5cb738
JA
1307 /*
1308 * If this is an async queue and we have sync IO in flight, let it wait
1309 */
1310 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1311 return 0;
1312
1313 max_dispatch = cfqd->cfq_quantum;
1314 if (cfq_class_idle(cfqq))
1315 max_dispatch = 1;
b4878f24 1316
2f5cb738
JA
1317 /*
1318 * Does this cfqq already have too much IO in flight?
1319 */
1320 if (cfqq->dispatched >= max_dispatch) {
1321 /*
1322 * idle queue must always only have a single IO in flight
1323 */
3ed9a296 1324 if (cfq_class_idle(cfqq))
2f5cb738 1325 return 0;
3ed9a296 1326
2f5cb738
JA
1327 /*
1328 * We have other queues, don't allow more IO from this one
1329 */
1330 if (cfqd->busy_queues > 1)
1331 return 0;
9ede209e 1332
365722bb 1333 /*
8e296755 1334 * Sole queue user, allow bigger slice
365722bb 1335 */
8e296755
JA
1336 max_dispatch *= 4;
1337 }
1338
1339 /*
1340 * Async queues must wait a bit before being allowed dispatch.
1341 * We also ramp up the dispatch depth gradually for async IO,
1342 * based on the last sync IO we serviced
1343 */
963b72fc 1344 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1345 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1346 unsigned int depth;
365722bb 1347
2f5cb738 1348 /*
8e296755 1349 * must wait a bit longer
2f5cb738 1350 */
8e296755
JA
1351 if (last_sync < cfq_slice_sync) {
1352 cfq_schedule_dispatch(cfqd, cfq_slice_sync - last_sync);
2f5cb738 1353 return 0;
8e296755
JA
1354 }
1355
1356 depth = last_sync / cfq_slice_sync;
1357 if (depth < max_dispatch)
1358 max_dispatch = depth;
2f5cb738 1359 }
3ed9a296 1360
8e296755
JA
1361 if (cfqq->dispatched >= max_dispatch)
1362 return 0;
1363
2f5cb738
JA
1364 /*
1365 * Dispatch a request from this cfqq
1366 */
1367 cfq_dispatch_request(cfqd, cfqq);
1368 cfqq->slice_dispatch++;
b029195d 1369 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1370
2f5cb738
JA
1371 /*
1372 * expire an async queue immediately if it has used up its slice. idle
1373 * queue always expire after 1 dispatch round.
1374 */
1375 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1376 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1377 cfq_class_idle(cfqq))) {
1378 cfqq->slice_end = jiffies + 1;
1379 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1380 }
1381
b217a903 1382 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1383 return 1;
1da177e4
LT
1384}
1385
1da177e4 1386/*
5e705374
JA
1387 * task holds one reference to the queue, dropped when task exits. each rq
1388 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1389 *
1390 * queue lock must be held here.
1391 */
1392static void cfq_put_queue(struct cfq_queue *cfqq)
1393{
22e2c507
JA
1394 struct cfq_data *cfqd = cfqq->cfqd;
1395
1396 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1397
1398 if (!atomic_dec_and_test(&cfqq->ref))
1399 return;
1400
7b679138 1401 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1402 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1403 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1404 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1405
28f95cbc 1406 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1407 __cfq_slice_expired(cfqd, cfqq, 0);
8e296755 1408 cfq_schedule_dispatch(cfqd, 0);
28f95cbc 1409 }
22e2c507 1410
1da177e4
LT
1411 kmem_cache_free(cfq_pool, cfqq);
1412}
1413
d6de8be7
JA
1414/*
1415 * Must always be called with the rcu_read_lock() held
1416 */
07416d29
JA
1417static void
1418__call_for_each_cic(struct io_context *ioc,
1419 void (*func)(struct io_context *, struct cfq_io_context *))
1420{
1421 struct cfq_io_context *cic;
1422 struct hlist_node *n;
1423
1424 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1425 func(ioc, cic);
1426}
1427
4ac845a2 1428/*
34e6bbf2 1429 * Call func for each cic attached to this ioc.
4ac845a2 1430 */
34e6bbf2 1431static void
4ac845a2
JA
1432call_for_each_cic(struct io_context *ioc,
1433 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1434{
4ac845a2 1435 rcu_read_lock();
07416d29 1436 __call_for_each_cic(ioc, func);
4ac845a2 1437 rcu_read_unlock();
34e6bbf2
FC
1438}
1439
1440static void cfq_cic_free_rcu(struct rcu_head *head)
1441{
1442 struct cfq_io_context *cic;
1443
1444 cic = container_of(head, struct cfq_io_context, rcu_head);
1445
1446 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1447 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1448
9a11b4ed
JA
1449 if (ioc_gone) {
1450 /*
1451 * CFQ scheduler is exiting, grab exit lock and check
1452 * the pending io context count. If it hits zero,
1453 * complete ioc_gone and set it back to NULL
1454 */
1455 spin_lock(&ioc_gone_lock);
245b2e70 1456 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1457 complete(ioc_gone);
1458 ioc_gone = NULL;
1459 }
1460 spin_unlock(&ioc_gone_lock);
1461 }
34e6bbf2 1462}
4ac845a2 1463
34e6bbf2
FC
1464static void cfq_cic_free(struct cfq_io_context *cic)
1465{
1466 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1467}
1468
1469static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1470{
1471 unsigned long flags;
1472
1473 BUG_ON(!cic->dead_key);
1474
1475 spin_lock_irqsave(&ioc->lock, flags);
1476 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1477 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1478 spin_unlock_irqrestore(&ioc->lock, flags);
1479
34e6bbf2 1480 cfq_cic_free(cic);
4ac845a2
JA
1481}
1482
d6de8be7
JA
1483/*
1484 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1485 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1486 * and ->trim() which is called with the task lock held
1487 */
4ac845a2
JA
1488static void cfq_free_io_context(struct io_context *ioc)
1489{
4ac845a2 1490 /*
34e6bbf2
FC
1491 * ioc->refcount is zero here, or we are called from elv_unregister(),
1492 * so no more cic's are allowed to be linked into this ioc. So it
1493 * should be ok to iterate over the known list, we will see all cic's
1494 * since no new ones are added.
4ac845a2 1495 */
07416d29 1496 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1497}
1498
89850f7e 1499static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1500{
28f95cbc 1501 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1502 __cfq_slice_expired(cfqd, cfqq, 0);
8e296755 1503 cfq_schedule_dispatch(cfqd, 0);
28f95cbc 1504 }
22e2c507 1505
89850f7e
JA
1506 cfq_put_queue(cfqq);
1507}
22e2c507 1508
89850f7e
JA
1509static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1510 struct cfq_io_context *cic)
1511{
4faa3c81
FC
1512 struct io_context *ioc = cic->ioc;
1513
fc46379d 1514 list_del_init(&cic->queue_list);
4ac845a2
JA
1515
1516 /*
1517 * Make sure key == NULL is seen for dead queues
1518 */
fc46379d 1519 smp_wmb();
4ac845a2 1520 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1521 cic->key = NULL;
1522
4faa3c81
FC
1523 if (ioc->ioc_data == cic)
1524 rcu_assign_pointer(ioc->ioc_data, NULL);
1525
ff6657c6
JA
1526 if (cic->cfqq[BLK_RW_ASYNC]) {
1527 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1528 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1529 }
1530
ff6657c6
JA
1531 if (cic->cfqq[BLK_RW_SYNC]) {
1532 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1533 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1534 }
89850f7e
JA
1535}
1536
4ac845a2
JA
1537static void cfq_exit_single_io_context(struct io_context *ioc,
1538 struct cfq_io_context *cic)
89850f7e
JA
1539{
1540 struct cfq_data *cfqd = cic->key;
1541
89850f7e 1542 if (cfqd) {
165125e1 1543 struct request_queue *q = cfqd->queue;
4ac845a2 1544 unsigned long flags;
89850f7e 1545
4ac845a2 1546 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1547
1548 /*
1549 * Ensure we get a fresh copy of the ->key to prevent
1550 * race between exiting task and queue
1551 */
1552 smp_read_barrier_depends();
1553 if (cic->key)
1554 __cfq_exit_single_io_context(cfqd, cic);
1555
4ac845a2 1556 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1557 }
1da177e4
LT
1558}
1559
498d3aa2
JA
1560/*
1561 * The process that ioc belongs to has exited, we need to clean up
1562 * and put the internal structures we have that belongs to that process.
1563 */
e2d74ac0 1564static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1565{
4ac845a2 1566 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1567}
1568
22e2c507 1569static struct cfq_io_context *
8267e268 1570cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1571{
b5deef90 1572 struct cfq_io_context *cic;
1da177e4 1573
94f6030c
CL
1574 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1575 cfqd->queue->node);
1da177e4 1576 if (cic) {
22e2c507 1577 cic->last_end_request = jiffies;
553698f9 1578 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1579 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1580 cic->dtor = cfq_free_io_context;
1581 cic->exit = cfq_exit_io_context;
245b2e70 1582 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1583 }
1584
1585 return cic;
1586}
1587
fd0928df 1588static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1589{
1590 struct task_struct *tsk = current;
1591 int ioprio_class;
1592
3b18152c 1593 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1594 return;
1595
fd0928df 1596 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1597 switch (ioprio_class) {
fe094d98
JA
1598 default:
1599 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1600 case IOPRIO_CLASS_NONE:
1601 /*
6d63c275 1602 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1603 */
1604 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1605 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1606 break;
1607 case IOPRIO_CLASS_RT:
1608 cfqq->ioprio = task_ioprio(ioc);
1609 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1610 break;
1611 case IOPRIO_CLASS_BE:
1612 cfqq->ioprio = task_ioprio(ioc);
1613 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1614 break;
1615 case IOPRIO_CLASS_IDLE:
1616 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1617 cfqq->ioprio = 7;
1618 cfq_clear_cfqq_idle_window(cfqq);
1619 break;
22e2c507
JA
1620 }
1621
1622 /*
1623 * keep track of original prio settings in case we have to temporarily
1624 * elevate the priority of this queue
1625 */
1626 cfqq->org_ioprio = cfqq->ioprio;
1627 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1628 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1629}
1630
febffd61 1631static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1632{
478a82b0
AV
1633 struct cfq_data *cfqd = cic->key;
1634 struct cfq_queue *cfqq;
c1b707d2 1635 unsigned long flags;
35e6077c 1636
caaa5f9f
JA
1637 if (unlikely(!cfqd))
1638 return;
1639
c1b707d2 1640 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1641
ff6657c6 1642 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1643 if (cfqq) {
1644 struct cfq_queue *new_cfqq;
ff6657c6
JA
1645 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1646 GFP_ATOMIC);
caaa5f9f 1647 if (new_cfqq) {
ff6657c6 1648 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1649 cfq_put_queue(cfqq);
1650 }
22e2c507 1651 }
caaa5f9f 1652
ff6657c6 1653 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1654 if (cfqq)
1655 cfq_mark_cfqq_prio_changed(cfqq);
1656
c1b707d2 1657 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1658}
1659
fc46379d 1660static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1661{
4ac845a2 1662 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1663 ioc->ioprio_changed = 0;
22e2c507
JA
1664}
1665
d5036d77
JA
1666static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1667 pid_t pid, int is_sync)
1668{
1669 RB_CLEAR_NODE(&cfqq->rb_node);
1670 RB_CLEAR_NODE(&cfqq->p_node);
1671 INIT_LIST_HEAD(&cfqq->fifo);
1672
1673 atomic_set(&cfqq->ref, 0);
1674 cfqq->cfqd = cfqd;
1675
1676 cfq_mark_cfqq_prio_changed(cfqq);
1677
1678 if (is_sync) {
1679 if (!cfq_class_idle(cfqq))
1680 cfq_mark_cfqq_idle_window(cfqq);
1681 cfq_mark_cfqq_sync(cfqq);
1682 }
1683 cfqq->pid = pid;
1684}
1685
22e2c507 1686static struct cfq_queue *
15c31be4 1687cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1688 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1689{
22e2c507 1690 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1691 struct cfq_io_context *cic;
22e2c507
JA
1692
1693retry:
4ac845a2 1694 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1695 /* cic always exists here */
1696 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1697
6118b70b
JA
1698 /*
1699 * Always try a new alloc if we fell back to the OOM cfqq
1700 * originally, since it should just be a temporary situation.
1701 */
1702 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1703 cfqq = NULL;
22e2c507
JA
1704 if (new_cfqq) {
1705 cfqq = new_cfqq;
1706 new_cfqq = NULL;
1707 } else if (gfp_mask & __GFP_WAIT) {
1708 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1709 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1710 gfp_mask | __GFP_ZERO,
94f6030c 1711 cfqd->queue->node);
22e2c507 1712 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1713 if (new_cfqq)
1714 goto retry;
22e2c507 1715 } else {
94f6030c
CL
1716 cfqq = kmem_cache_alloc_node(cfq_pool,
1717 gfp_mask | __GFP_ZERO,
1718 cfqd->queue->node);
22e2c507
JA
1719 }
1720
6118b70b
JA
1721 if (cfqq) {
1722 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1723 cfq_init_prio_data(cfqq, ioc);
1724 cfq_log_cfqq(cfqd, cfqq, "alloced");
1725 } else
1726 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1727 }
1728
1729 if (new_cfqq)
1730 kmem_cache_free(cfq_pool, new_cfqq);
1731
22e2c507
JA
1732 return cfqq;
1733}
1734
c2dea2d1
VT
1735static struct cfq_queue **
1736cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1737{
fe094d98 1738 switch (ioprio_class) {
c2dea2d1
VT
1739 case IOPRIO_CLASS_RT:
1740 return &cfqd->async_cfqq[0][ioprio];
1741 case IOPRIO_CLASS_BE:
1742 return &cfqd->async_cfqq[1][ioprio];
1743 case IOPRIO_CLASS_IDLE:
1744 return &cfqd->async_idle_cfqq;
1745 default:
1746 BUG();
1747 }
1748}
1749
15c31be4 1750static struct cfq_queue *
fd0928df 1751cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1752 gfp_t gfp_mask)
1753{
fd0928df
JA
1754 const int ioprio = task_ioprio(ioc);
1755 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1756 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1757 struct cfq_queue *cfqq = NULL;
1758
c2dea2d1
VT
1759 if (!is_sync) {
1760 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1761 cfqq = *async_cfqq;
1762 }
1763
6118b70b 1764 if (!cfqq)
fd0928df 1765 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1766
1767 /*
1768 * pin the queue now that it's allocated, scheduler exit will prune it
1769 */
c2dea2d1 1770 if (!is_sync && !(*async_cfqq)) {
15c31be4 1771 atomic_inc(&cfqq->ref);
c2dea2d1 1772 *async_cfqq = cfqq;
15c31be4
JA
1773 }
1774
1775 atomic_inc(&cfqq->ref);
1776 return cfqq;
1777}
1778
498d3aa2
JA
1779/*
1780 * We drop cfq io contexts lazily, so we may find a dead one.
1781 */
dbecf3ab 1782static void
4ac845a2
JA
1783cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1784 struct cfq_io_context *cic)
dbecf3ab 1785{
4ac845a2
JA
1786 unsigned long flags;
1787
fc46379d 1788 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1789
4ac845a2
JA
1790 spin_lock_irqsave(&ioc->lock, flags);
1791
4faa3c81 1792 BUG_ON(ioc->ioc_data == cic);
597bc485 1793
4ac845a2 1794 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1795 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1796 spin_unlock_irqrestore(&ioc->lock, flags);
1797
1798 cfq_cic_free(cic);
dbecf3ab
OH
1799}
1800
e2d74ac0 1801static struct cfq_io_context *
4ac845a2 1802cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1803{
e2d74ac0 1804 struct cfq_io_context *cic;
d6de8be7 1805 unsigned long flags;
4ac845a2 1806 void *k;
e2d74ac0 1807
91fac317
VT
1808 if (unlikely(!ioc))
1809 return NULL;
1810
d6de8be7
JA
1811 rcu_read_lock();
1812
597bc485
JA
1813 /*
1814 * we maintain a last-hit cache, to avoid browsing over the tree
1815 */
4ac845a2 1816 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1817 if (cic && cic->key == cfqd) {
1818 rcu_read_unlock();
597bc485 1819 return cic;
d6de8be7 1820 }
597bc485 1821
4ac845a2 1822 do {
4ac845a2
JA
1823 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1824 rcu_read_unlock();
1825 if (!cic)
1826 break;
be3b0753
OH
1827 /* ->key must be copied to avoid race with cfq_exit_queue() */
1828 k = cic->key;
1829 if (unlikely(!k)) {
4ac845a2 1830 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1831 rcu_read_lock();
4ac845a2 1832 continue;
dbecf3ab 1833 }
e2d74ac0 1834
d6de8be7 1835 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1836 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1837 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1838 break;
1839 } while (1);
e2d74ac0 1840
4ac845a2 1841 return cic;
e2d74ac0
JA
1842}
1843
4ac845a2
JA
1844/*
1845 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1846 * the process specific cfq io context when entered from the block layer.
1847 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1848 */
febffd61
JA
1849static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1850 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1851{
0261d688 1852 unsigned long flags;
4ac845a2 1853 int ret;
e2d74ac0 1854
4ac845a2
JA
1855 ret = radix_tree_preload(gfp_mask);
1856 if (!ret) {
1857 cic->ioc = ioc;
1858 cic->key = cfqd;
e2d74ac0 1859
4ac845a2
JA
1860 spin_lock_irqsave(&ioc->lock, flags);
1861 ret = radix_tree_insert(&ioc->radix_root,
1862 (unsigned long) cfqd, cic);
ffc4e759
JA
1863 if (!ret)
1864 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1865 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1866
4ac845a2
JA
1867 radix_tree_preload_end();
1868
1869 if (!ret) {
1870 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1871 list_add(&cic->queue_list, &cfqd->cic_list);
1872 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1873 }
e2d74ac0
JA
1874 }
1875
4ac845a2
JA
1876 if (ret)
1877 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1878
4ac845a2 1879 return ret;
e2d74ac0
JA
1880}
1881
1da177e4
LT
1882/*
1883 * Setup general io context and cfq io context. There can be several cfq
1884 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1885 * than one device managed by cfq.
1da177e4
LT
1886 */
1887static struct cfq_io_context *
e2d74ac0 1888cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1889{
22e2c507 1890 struct io_context *ioc = NULL;
1da177e4 1891 struct cfq_io_context *cic;
1da177e4 1892
22e2c507 1893 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1894
b5deef90 1895 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1896 if (!ioc)
1897 return NULL;
1898
4ac845a2 1899 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1900 if (cic)
1901 goto out;
1da177e4 1902
e2d74ac0
JA
1903 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1904 if (cic == NULL)
1905 goto err;
1da177e4 1906
4ac845a2
JA
1907 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1908 goto err_free;
1909
1da177e4 1910out:
fc46379d
JA
1911 smp_read_barrier_depends();
1912 if (unlikely(ioc->ioprio_changed))
1913 cfq_ioc_set_ioprio(ioc);
1914
1da177e4 1915 return cic;
4ac845a2
JA
1916err_free:
1917 cfq_cic_free(cic);
1da177e4
LT
1918err:
1919 put_io_context(ioc);
1920 return NULL;
1921}
1922
22e2c507
JA
1923static void
1924cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1925{
aaf1228d
JA
1926 unsigned long elapsed = jiffies - cic->last_end_request;
1927 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1928
22e2c507
JA
1929 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1930 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1931 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1932}
1da177e4 1933
206dc69b 1934static void
6d048f53
JA
1935cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1936 struct request *rq)
206dc69b
JA
1937{
1938 sector_t sdist;
1939 u64 total;
1940
4d00aa47
JM
1941 if (!cic->last_request_pos)
1942 sdist = 0;
83096ebf
TH
1943 else if (cic->last_request_pos < blk_rq_pos(rq))
1944 sdist = blk_rq_pos(rq) - cic->last_request_pos;
206dc69b 1945 else
83096ebf 1946 sdist = cic->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1947
1948 /*
1949 * Don't allow the seek distance to get too large from the
1950 * odd fragment, pagein, etc
1951 */
1952 if (cic->seek_samples <= 60) /* second&third seek */
1953 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1954 else
1955 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1956
1957 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1958 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1959 total = cic->seek_total + (cic->seek_samples/2);
1960 do_div(total, cic->seek_samples);
1961 cic->seek_mean = (sector_t)total;
1962}
1da177e4 1963
22e2c507
JA
1964/*
1965 * Disable idle window if the process thinks too long or seeks so much that
1966 * it doesn't matter
1967 */
1968static void
1969cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1970 struct cfq_io_context *cic)
1971{
7b679138 1972 int old_idle, enable_idle;
1be92f2f 1973
0871714e
JA
1974 /*
1975 * Don't idle for async or idle io prio class
1976 */
1977 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1978 return;
1979
c265a7f4 1980 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1981
66dac98e 1982 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
963b72fc 1983 (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1984 enable_idle = 0;
1985 else if (sample_valid(cic->ttime_samples)) {
1986 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1987 enable_idle = 0;
1988 else
1989 enable_idle = 1;
1da177e4
LT
1990 }
1991
7b679138
JA
1992 if (old_idle != enable_idle) {
1993 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1994 if (enable_idle)
1995 cfq_mark_cfqq_idle_window(cfqq);
1996 else
1997 cfq_clear_cfqq_idle_window(cfqq);
1998 }
22e2c507 1999}
1da177e4 2000
22e2c507
JA
2001/*
2002 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2003 * no or if we aren't sure, a 1 will cause a preempt.
2004 */
2005static int
2006cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2007 struct request *rq)
22e2c507 2008{
6d048f53 2009 struct cfq_queue *cfqq;
22e2c507 2010
6d048f53
JA
2011 cfqq = cfqd->active_queue;
2012 if (!cfqq)
22e2c507
JA
2013 return 0;
2014
6d048f53
JA
2015 if (cfq_slice_used(cfqq))
2016 return 1;
2017
2018 if (cfq_class_idle(new_cfqq))
caaa5f9f 2019 return 0;
22e2c507
JA
2020
2021 if (cfq_class_idle(cfqq))
2022 return 1;
1e3335de 2023
374f84ac
JA
2024 /*
2025 * if the new request is sync, but the currently running queue is
2026 * not, let the sync request have priority.
2027 */
5e705374 2028 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 2029 return 1;
1e3335de 2030
374f84ac
JA
2031 /*
2032 * So both queues are sync. Let the new request get disk time if
2033 * it's a metadata request and the current queue is doing regular IO.
2034 */
2035 if (rq_is_meta(rq) && !cfqq->meta_pending)
2036 return 1;
22e2c507 2037
3a9a3f6c
DS
2038 /*
2039 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2040 */
2041 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2042 return 1;
2043
1e3335de
JA
2044 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2045 return 0;
2046
2047 /*
2048 * if this request is as-good as one we would expect from the
2049 * current cfqq, let it preempt
2050 */
6d048f53 2051 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
2052 return 1;
2053
22e2c507
JA
2054 return 0;
2055}
2056
2057/*
2058 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2059 * let it have half of its nominal slice.
2060 */
2061static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2062{
7b679138 2063 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2064 cfq_slice_expired(cfqd, 1);
22e2c507 2065
bf572256
JA
2066 /*
2067 * Put the new queue at the front of the of the current list,
2068 * so we know that it will be selected next.
2069 */
2070 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2071
2072 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2073
44f7c160
JA
2074 cfqq->slice_end = 0;
2075 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2076}
2077
22e2c507 2078/*
5e705374 2079 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2080 * something we should do about it
2081 */
2082static void
5e705374
JA
2083cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2084 struct request *rq)
22e2c507 2085{
5e705374 2086 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2087
45333d5a 2088 cfqd->rq_queued++;
374f84ac
JA
2089 if (rq_is_meta(rq))
2090 cfqq->meta_pending++;
2091
9c2c38a1 2092 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2093 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2094 cfq_update_idle_window(cfqd, cfqq, cic);
2095
83096ebf 2096 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2097
2098 if (cfqq == cfqd->active_queue) {
2099 /*
b029195d
JA
2100 * Remember that we saw a request from this process, but
2101 * don't start queuing just yet. Otherwise we risk seeing lots
2102 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2103 * and merging. If the request is already larger than a single
2104 * page, let it rip immediately. For that case we assume that
2d870722
JA
2105 * merging is already done. Ditto for a busy system that
2106 * has other work pending, don't risk delaying until the
2107 * idle timer unplug to continue working.
22e2c507 2108 */
d6ceb25e 2109 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2110 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2111 cfqd->busy_queues > 1) {
d6ceb25e 2112 del_timer(&cfqd->idle_slice_timer);
a7f55792 2113 __blk_run_queue(cfqd->queue);
d6ceb25e 2114 }
b029195d 2115 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2116 }
5e705374 2117 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2118 /*
2119 * not the active queue - expire current slice if it is
2120 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2121 * has some old slice time left and is of higher priority or
2122 * this new queue is RT and the current one is BE
22e2c507
JA
2123 */
2124 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2125 __blk_run_queue(cfqd->queue);
22e2c507 2126 }
1da177e4
LT
2127}
2128
165125e1 2129static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2130{
b4878f24 2131 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2132 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2133
7b679138 2134 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2135 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2136
5e705374 2137 cfq_add_rq_rb(rq);
1da177e4 2138
22e2c507
JA
2139 list_add_tail(&rq->queuelist, &cfqq->fifo);
2140
5e705374 2141 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2142}
2143
45333d5a
AC
2144/*
2145 * Update hw_tag based on peak queue depth over 50 samples under
2146 * sufficient load.
2147 */
2148static void cfq_update_hw_tag(struct cfq_data *cfqd)
2149{
5ad531db
JA
2150 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2151 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2152
2153 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2154 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2155 return;
2156
2157 if (cfqd->hw_tag_samples++ < 50)
2158 return;
2159
2160 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2161 cfqd->hw_tag = 1;
2162 else
2163 cfqd->hw_tag = 0;
2164
2165 cfqd->hw_tag_samples = 0;
2166 cfqd->rq_in_driver_peak = 0;
2167}
2168
165125e1 2169static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2170{
5e705374 2171 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2172 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2173 const int sync = rq_is_sync(rq);
b4878f24 2174 unsigned long now;
1da177e4 2175
b4878f24 2176 now = jiffies;
7b679138 2177 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2178
45333d5a
AC
2179 cfq_update_hw_tag(cfqd);
2180
5ad531db 2181 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2182 WARN_ON(!cfqq->dispatched);
5ad531db 2183 cfqd->rq_in_driver[sync]--;
6d048f53 2184 cfqq->dispatched--;
1da177e4 2185
3ed9a296
JA
2186 if (cfq_cfqq_sync(cfqq))
2187 cfqd->sync_flight--;
2188
365722bb 2189 if (sync) {
5e705374 2190 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2191 cfqd->last_end_sync_rq = now;
2192 }
caaa5f9f
JA
2193
2194 /*
2195 * If this is the active queue, check if it needs to be expired,
2196 * or if we want to idle in case it has no pending requests.
2197 */
2198 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2199 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2200
44f7c160
JA
2201 if (cfq_cfqq_slice_new(cfqq)) {
2202 cfq_set_prio_slice(cfqd, cfqq);
2203 cfq_clear_cfqq_slice_new(cfqq);
2204 }
a36e71f9
JA
2205 /*
2206 * If there are no requests waiting in this queue, and
2207 * there are other queues ready to issue requests, AND
2208 * those other queues are issuing requests within our
2209 * mean seek distance, give them a chance to run instead
2210 * of idling.
2211 */
0871714e 2212 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2213 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2214 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2215 sync && !rq_noidle(rq))
6d048f53 2216 cfq_arm_slice_timer(cfqd);
caaa5f9f 2217 }
6d048f53 2218
5ad531db 2219 if (!rq_in_driver(cfqd))
8e296755 2220 cfq_schedule_dispatch(cfqd, 0);
1da177e4
LT
2221}
2222
22e2c507
JA
2223/*
2224 * we temporarily boost lower priority queues if they are holding fs exclusive
2225 * resources. they are boosted to normal prio (CLASS_BE/4)
2226 */
2227static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2228{
22e2c507
JA
2229 if (has_fs_excl()) {
2230 /*
2231 * boost idle prio on transactions that would lock out other
2232 * users of the filesystem
2233 */
2234 if (cfq_class_idle(cfqq))
2235 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2236 if (cfqq->ioprio > IOPRIO_NORM)
2237 cfqq->ioprio = IOPRIO_NORM;
2238 } else {
2239 /*
2240 * check if we need to unboost the queue
2241 */
2242 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2243 cfqq->ioprio_class = cfqq->org_ioprio_class;
2244 if (cfqq->ioprio != cfqq->org_ioprio)
2245 cfqq->ioprio = cfqq->org_ioprio;
2246 }
22e2c507 2247}
1da177e4 2248
89850f7e 2249static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2250{
1b379d8d 2251 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2252 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2253 return ELV_MQUEUE_MUST;
3b18152c 2254 }
1da177e4 2255
22e2c507 2256 return ELV_MQUEUE_MAY;
22e2c507
JA
2257}
2258
165125e1 2259static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2260{
2261 struct cfq_data *cfqd = q->elevator->elevator_data;
2262 struct task_struct *tsk = current;
91fac317 2263 struct cfq_io_context *cic;
22e2c507
JA
2264 struct cfq_queue *cfqq;
2265
2266 /*
2267 * don't force setup of a queue from here, as a call to may_queue
2268 * does not necessarily imply that a request actually will be queued.
2269 * so just lookup a possibly existing queue, or return 'may queue'
2270 * if that fails
2271 */
4ac845a2 2272 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2273 if (!cic)
2274 return ELV_MQUEUE_MAY;
2275
b0b78f81 2276 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2277 if (cfqq) {
fd0928df 2278 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2279 cfq_prio_boost(cfqq);
2280
89850f7e 2281 return __cfq_may_queue(cfqq);
22e2c507
JA
2282 }
2283
2284 return ELV_MQUEUE_MAY;
1da177e4
LT
2285}
2286
1da177e4
LT
2287/*
2288 * queue lock held here
2289 */
bb37b94c 2290static void cfq_put_request(struct request *rq)
1da177e4 2291{
5e705374 2292 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2293
5e705374 2294 if (cfqq) {
22e2c507 2295 const int rw = rq_data_dir(rq);
1da177e4 2296
22e2c507
JA
2297 BUG_ON(!cfqq->allocated[rw]);
2298 cfqq->allocated[rw]--;
1da177e4 2299
5e705374 2300 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2301
1da177e4 2302 rq->elevator_private = NULL;
5e705374 2303 rq->elevator_private2 = NULL;
1da177e4 2304
1da177e4
LT
2305 cfq_put_queue(cfqq);
2306 }
2307}
2308
2309/*
22e2c507 2310 * Allocate cfq data structures associated with this request.
1da177e4 2311 */
22e2c507 2312static int
165125e1 2313cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2314{
2315 struct cfq_data *cfqd = q->elevator->elevator_data;
2316 struct cfq_io_context *cic;
2317 const int rw = rq_data_dir(rq);
7749a8d4 2318 const int is_sync = rq_is_sync(rq);
22e2c507 2319 struct cfq_queue *cfqq;
1da177e4
LT
2320 unsigned long flags;
2321
2322 might_sleep_if(gfp_mask & __GFP_WAIT);
2323
e2d74ac0 2324 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2325
1da177e4
LT
2326 spin_lock_irqsave(q->queue_lock, flags);
2327
22e2c507
JA
2328 if (!cic)
2329 goto queue_fail;
2330
91fac317 2331 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2332 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2333 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317
VT
2334 cic_set_cfqq(cic, cfqq, is_sync);
2335 }
1da177e4
LT
2336
2337 cfqq->allocated[rw]++;
22e2c507 2338 atomic_inc(&cfqq->ref);
1da177e4 2339
5e705374 2340 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2341
5e705374
JA
2342 rq->elevator_private = cic;
2343 rq->elevator_private2 = cfqq;
2344 return 0;
1da177e4 2345
22e2c507
JA
2346queue_fail:
2347 if (cic)
2348 put_io_context(cic->ioc);
89850f7e 2349
8e296755 2350 cfq_schedule_dispatch(cfqd, 0);
1da177e4 2351 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2352 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2353 return 1;
2354}
2355
65f27f38 2356static void cfq_kick_queue(struct work_struct *work)
22e2c507 2357{
65f27f38 2358 struct cfq_data *cfqd =
8e296755 2359 container_of(work, struct cfq_data, unplug_work.work);
165125e1 2360 struct request_queue *q = cfqd->queue;
22e2c507 2361
40bb54d1 2362 spin_lock_irq(q->queue_lock);
a7f55792 2363 __blk_run_queue(cfqd->queue);
40bb54d1 2364 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2365}
2366
2367/*
2368 * Timer running if the active_queue is currently idling inside its time slice
2369 */
2370static void cfq_idle_slice_timer(unsigned long data)
2371{
2372 struct cfq_data *cfqd = (struct cfq_data *) data;
2373 struct cfq_queue *cfqq;
2374 unsigned long flags;
3c6bd2f8 2375 int timed_out = 1;
22e2c507 2376
7b679138
JA
2377 cfq_log(cfqd, "idle timer fired");
2378
22e2c507
JA
2379 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2380
fe094d98
JA
2381 cfqq = cfqd->active_queue;
2382 if (cfqq) {
3c6bd2f8
JA
2383 timed_out = 0;
2384
b029195d
JA
2385 /*
2386 * We saw a request before the queue expired, let it through
2387 */
2388 if (cfq_cfqq_must_dispatch(cfqq))
2389 goto out_kick;
2390
22e2c507
JA
2391 /*
2392 * expired
2393 */
44f7c160 2394 if (cfq_slice_used(cfqq))
22e2c507
JA
2395 goto expire;
2396
2397 /*
2398 * only expire and reinvoke request handler, if there are
2399 * other queues with pending requests
2400 */
caaa5f9f 2401 if (!cfqd->busy_queues)
22e2c507 2402 goto out_cont;
22e2c507
JA
2403
2404 /*
2405 * not expired and it has a request pending, let it dispatch
2406 */
75e50984 2407 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2408 goto out_kick;
22e2c507
JA
2409 }
2410expire:
6084cdda 2411 cfq_slice_expired(cfqd, timed_out);
22e2c507 2412out_kick:
8e296755 2413 cfq_schedule_dispatch(cfqd, 0);
22e2c507
JA
2414out_cont:
2415 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2416}
2417
3b18152c
JA
2418static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2419{
2420 del_timer_sync(&cfqd->idle_slice_timer);
8e296755 2421 cancel_delayed_work_sync(&cfqd->unplug_work);
3b18152c 2422}
22e2c507 2423
c2dea2d1
VT
2424static void cfq_put_async_queues(struct cfq_data *cfqd)
2425{
2426 int i;
2427
2428 for (i = 0; i < IOPRIO_BE_NR; i++) {
2429 if (cfqd->async_cfqq[0][i])
2430 cfq_put_queue(cfqd->async_cfqq[0][i]);
2431 if (cfqd->async_cfqq[1][i])
2432 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2433 }
2389d1ef
ON
2434
2435 if (cfqd->async_idle_cfqq)
2436 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2437}
2438
b374d18a 2439static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2440{
22e2c507 2441 struct cfq_data *cfqd = e->elevator_data;
165125e1 2442 struct request_queue *q = cfqd->queue;
22e2c507 2443
3b18152c 2444 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2445
d9ff4187 2446 spin_lock_irq(q->queue_lock);
e2d74ac0 2447
d9ff4187 2448 if (cfqd->active_queue)
6084cdda 2449 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2450
2451 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2452 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2453 struct cfq_io_context,
2454 queue_list);
89850f7e
JA
2455
2456 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2457 }
e2d74ac0 2458
c2dea2d1 2459 cfq_put_async_queues(cfqd);
15c31be4 2460
d9ff4187 2461 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2462
2463 cfq_shutdown_timer_wq(cfqd);
2464
a90d742e 2465 kfree(cfqd);
1da177e4
LT
2466}
2467
165125e1 2468static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2469{
2470 struct cfq_data *cfqd;
26a2ac00 2471 int i;
1da177e4 2472
94f6030c 2473 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2474 if (!cfqd)
bc1c1169 2475 return NULL;
1da177e4 2476
cc09e299 2477 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2478
2479 /*
2480 * Not strictly needed (since RB_ROOT just clears the node and we
2481 * zeroed cfqd on alloc), but better be safe in case someone decides
2482 * to add magic to the rb code
2483 */
2484 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2485 cfqd->prio_trees[i] = RB_ROOT;
2486
6118b70b
JA
2487 /*
2488 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2489 * Grab a permanent reference to it, so that the normal code flow
2490 * will not attempt to free it.
2491 */
2492 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2493 atomic_inc(&cfqd->oom_cfqq.ref);
2494
d9ff4187 2495 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2496
1da177e4 2497 cfqd->queue = q;
1da177e4 2498
22e2c507
JA
2499 init_timer(&cfqd->idle_slice_timer);
2500 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2501 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2502
8e296755 2503 INIT_DELAYED_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2504
1da177e4 2505 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2506 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2507 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2508 cfqd->cfq_back_max = cfq_back_max;
2509 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2510 cfqd->cfq_slice[0] = cfq_slice_async;
2511 cfqd->cfq_slice[1] = cfq_slice_sync;
2512 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2513 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2514 cfqd->cfq_latency = 1;
45333d5a 2515 cfqd->hw_tag = 1;
365722bb 2516 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2517 return cfqd;
1da177e4
LT
2518}
2519
2520static void cfq_slab_kill(void)
2521{
d6de8be7
JA
2522 /*
2523 * Caller already ensured that pending RCU callbacks are completed,
2524 * so we should have no busy allocations at this point.
2525 */
1da177e4
LT
2526 if (cfq_pool)
2527 kmem_cache_destroy(cfq_pool);
2528 if (cfq_ioc_pool)
2529 kmem_cache_destroy(cfq_ioc_pool);
2530}
2531
2532static int __init cfq_slab_setup(void)
2533{
0a31bd5f 2534 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2535 if (!cfq_pool)
2536 goto fail;
2537
34e6bbf2 2538 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2539 if (!cfq_ioc_pool)
2540 goto fail;
2541
2542 return 0;
2543fail:
2544 cfq_slab_kill();
2545 return -ENOMEM;
2546}
2547
1da177e4
LT
2548/*
2549 * sysfs parts below -->
2550 */
1da177e4
LT
2551static ssize_t
2552cfq_var_show(unsigned int var, char *page)
2553{
2554 return sprintf(page, "%d\n", var);
2555}
2556
2557static ssize_t
2558cfq_var_store(unsigned int *var, const char *page, size_t count)
2559{
2560 char *p = (char *) page;
2561
2562 *var = simple_strtoul(p, &p, 10);
2563 return count;
2564}
2565
1da177e4 2566#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2567static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2568{ \
3d1ab40f 2569 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2570 unsigned int __data = __VAR; \
2571 if (__CONV) \
2572 __data = jiffies_to_msecs(__data); \
2573 return cfq_var_show(__data, (page)); \
2574}
2575SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2576SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2577SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2578SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2579SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2580SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2581SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2582SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2583SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2584SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2585#undef SHOW_FUNCTION
2586
2587#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2588static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2589{ \
3d1ab40f 2590 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2591 unsigned int __data; \
2592 int ret = cfq_var_store(&__data, (page), count); \
2593 if (__data < (MIN)) \
2594 __data = (MIN); \
2595 else if (__data > (MAX)) \
2596 __data = (MAX); \
2597 if (__CONV) \
2598 *(__PTR) = msecs_to_jiffies(__data); \
2599 else \
2600 *(__PTR) = __data; \
2601 return ret; \
2602}
2603STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2604STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2605 UINT_MAX, 1);
2606STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2607 UINT_MAX, 1);
e572ec7e 2608STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2609STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2610 UINT_MAX, 0);
22e2c507
JA
2611STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2612STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2613STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2614STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2615 UINT_MAX, 0);
963b72fc 2616STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2617#undef STORE_FUNCTION
2618
e572ec7e
AV
2619#define CFQ_ATTR(name) \
2620 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2621
2622static struct elv_fs_entry cfq_attrs[] = {
2623 CFQ_ATTR(quantum),
e572ec7e
AV
2624 CFQ_ATTR(fifo_expire_sync),
2625 CFQ_ATTR(fifo_expire_async),
2626 CFQ_ATTR(back_seek_max),
2627 CFQ_ATTR(back_seek_penalty),
2628 CFQ_ATTR(slice_sync),
2629 CFQ_ATTR(slice_async),
2630 CFQ_ATTR(slice_async_rq),
2631 CFQ_ATTR(slice_idle),
963b72fc 2632 CFQ_ATTR(low_latency),
e572ec7e 2633 __ATTR_NULL
1da177e4
LT
2634};
2635
1da177e4
LT
2636static struct elevator_type iosched_cfq = {
2637 .ops = {
2638 .elevator_merge_fn = cfq_merge,
2639 .elevator_merged_fn = cfq_merged_request,
2640 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2641 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2642 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2643 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2644 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2645 .elevator_deactivate_req_fn = cfq_deactivate_request,
2646 .elevator_queue_empty_fn = cfq_queue_empty,
2647 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2648 .elevator_former_req_fn = elv_rb_former_request,
2649 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2650 .elevator_set_req_fn = cfq_set_request,
2651 .elevator_put_req_fn = cfq_put_request,
2652 .elevator_may_queue_fn = cfq_may_queue,
2653 .elevator_init_fn = cfq_init_queue,
2654 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2655 .trim = cfq_free_io_context,
1da177e4 2656 },
3d1ab40f 2657 .elevator_attrs = cfq_attrs,
1da177e4
LT
2658 .elevator_name = "cfq",
2659 .elevator_owner = THIS_MODULE,
2660};
2661
2662static int __init cfq_init(void)
2663{
22e2c507
JA
2664 /*
2665 * could be 0 on HZ < 1000 setups
2666 */
2667 if (!cfq_slice_async)
2668 cfq_slice_async = 1;
2669 if (!cfq_slice_idle)
2670 cfq_slice_idle = 1;
2671
1da177e4
LT
2672 if (cfq_slab_setup())
2673 return -ENOMEM;
2674
2fdd82bd 2675 elv_register(&iosched_cfq);
1da177e4 2676
2fdd82bd 2677 return 0;
1da177e4
LT
2678}
2679
2680static void __exit cfq_exit(void)
2681{
6e9a4738 2682 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2683 elv_unregister(&iosched_cfq);
334e94de 2684 ioc_gone = &all_gone;
fba82272
OH
2685 /* ioc_gone's update must be visible before reading ioc_count */
2686 smp_wmb();
d6de8be7
JA
2687
2688 /*
2689 * this also protects us from entering cfq_slab_kill() with
2690 * pending RCU callbacks
2691 */
245b2e70 2692 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2693 wait_for_completion(&all_gone);
83521d3e 2694 cfq_slab_kill();
1da177e4
LT
2695}
2696
2697module_init(cfq_init);
2698module_exit(cfq_exit);
2699
2700MODULE_AUTHOR("Jens Axboe");
2701MODULE_LICENSE("GPL");
2702MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");