Merge branch 'for-jens' of git://git.drbd.org/linux-2.6-drbd into for-2.6.33
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
30static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
31static const int cfq_hist_divisor = 4;
22e2c507 32
d9e7620e 33/*
0871714e 34 * offset from end of service tree
d9e7620e 35 */
0871714e 36#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
37
38/*
39 * below this threshold, we consider thinktime immediate
40 */
41#define CFQ_MIN_TT (2)
42
e6c5bc73
JM
43/*
44 * Allow merged cfqqs to perform this amount of seeky I/O before
45 * deciding to break the queues up again.
46 */
47#define CFQQ_COOP_TOUT (HZ)
48
22e2c507 49#define CFQ_SLICE_SCALE (5)
45333d5a 50#define CFQ_HW_QUEUE_MIN (5)
22e2c507 51
fe094d98
JA
52#define RQ_CIC(rq) \
53 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 54#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 55
e18b890b
CL
56static struct kmem_cache *cfq_pool;
57static struct kmem_cache *cfq_ioc_pool;
1da177e4 58
245b2e70 59static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 60static struct completion *ioc_gone;
9a11b4ed 61static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 62
22e2c507
JA
63#define CFQ_PRIO_LISTS IOPRIO_BE_NR
64#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
65#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
66
206dc69b
JA
67#define sample_valid(samples) ((samples) > 80)
68
cc09e299
JA
69/*
70 * Most of our rbtree usage is for sorting with min extraction, so
71 * if we cache the leftmost node we don't have to walk down the tree
72 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
73 * move this into the elevator for the rq sorting as well.
74 */
75struct cfq_rb_root {
76 struct rb_root rb;
77 struct rb_node *left;
aa6f6a3d 78 unsigned count;
cc09e299 79};
aa6f6a3d 80#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 81
6118b70b
JA
82/*
83 * Per process-grouping structure
84 */
85struct cfq_queue {
86 /* reference count */
87 atomic_t ref;
88 /* various state flags, see below */
89 unsigned int flags;
90 /* parent cfq_data */
91 struct cfq_data *cfqd;
92 /* service_tree member */
93 struct rb_node rb_node;
94 /* service_tree key */
95 unsigned long rb_key;
96 /* prio tree member */
97 struct rb_node p_node;
98 /* prio tree root we belong to, if any */
99 struct rb_root *p_root;
100 /* sorted list of pending requests */
101 struct rb_root sort_list;
102 /* if fifo isn't expired, next request to serve */
103 struct request *next_rq;
104 /* requests queued in sort_list */
105 int queued[2];
106 /* currently allocated requests */
107 int allocated[2];
108 /* fifo list of requests in sort_list */
109 struct list_head fifo;
110
111 unsigned long slice_end;
112 long slice_resid;
113 unsigned int slice_dispatch;
114
115 /* pending metadata requests */
116 int meta_pending;
117 /* number of requests that are on the dispatch list or inside driver */
118 int dispatched;
119
120 /* io prio of this group */
121 unsigned short ioprio, org_ioprio;
122 unsigned short ioprio_class, org_ioprio_class;
123
b2c18e1e
JM
124 unsigned int seek_samples;
125 u64 seek_total;
126 sector_t seek_mean;
127 sector_t last_request_pos;
e6c5bc73 128 unsigned long seeky_start;
b2c18e1e 129
6118b70b 130 pid_t pid;
df5fe3e8 131
aa6f6a3d 132 struct cfq_rb_root *service_tree;
df5fe3e8 133 struct cfq_queue *new_cfqq;
6118b70b
JA
134};
135
c0324a02 136/*
718eee05 137 * First index in the service_trees.
c0324a02
CZ
138 * IDLE is handled separately, so it has negative index
139 */
140enum wl_prio_t {
141 IDLE_WORKLOAD = -1,
142 BE_WORKLOAD = 0,
143 RT_WORKLOAD = 1
144};
145
718eee05
CZ
146/*
147 * Second index in the service_trees.
148 */
149enum wl_type_t {
150 ASYNC_WORKLOAD = 0,
151 SYNC_NOIDLE_WORKLOAD = 1,
152 SYNC_WORKLOAD = 2
153};
154
155
22e2c507
JA
156/*
157 * Per block device queue structure
158 */
1da177e4 159struct cfq_data {
165125e1 160 struct request_queue *queue;
22e2c507
JA
161
162 /*
c0324a02
CZ
163 * rr lists of queues with requests, onle rr for each priority class.
164 * Counts are embedded in the cfq_rb_root
165 */
718eee05 166 struct cfq_rb_root service_trees[2][3];
c0324a02
CZ
167 struct cfq_rb_root service_tree_idle;
168 /*
169 * The priority currently being served
22e2c507 170 */
c0324a02 171 enum wl_prio_t serving_prio;
718eee05
CZ
172 enum wl_type_t serving_type;
173 unsigned long workload_expires;
a36e71f9
JA
174
175 /*
176 * Each priority tree is sorted by next_request position. These
177 * trees are used when determining if two or more queues are
178 * interleaving requests (see cfq_close_cooperator).
179 */
180 struct rb_root prio_trees[CFQ_PRIO_LISTS];
181
22e2c507 182 unsigned int busy_queues;
5db5d642 183 unsigned int busy_queues_avg[2];
22e2c507 184
5ad531db 185 int rq_in_driver[2];
3ed9a296 186 int sync_flight;
45333d5a
AC
187
188 /*
189 * queue-depth detection
190 */
191 int rq_queued;
25776e35 192 int hw_tag;
45333d5a
AC
193 int hw_tag_samples;
194 int rq_in_driver_peak;
1da177e4 195
22e2c507
JA
196 /*
197 * idle window management
198 */
199 struct timer_list idle_slice_timer;
23e018a1 200 struct work_struct unplug_work;
1da177e4 201
22e2c507
JA
202 struct cfq_queue *active_queue;
203 struct cfq_io_context *active_cic;
22e2c507 204
c2dea2d1
VT
205 /*
206 * async queue for each priority case
207 */
208 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
209 struct cfq_queue *async_idle_cfqq;
15c31be4 210
6d048f53 211 sector_t last_position;
1da177e4 212
1da177e4
LT
213 /*
214 * tunables, see top of file
215 */
216 unsigned int cfq_quantum;
22e2c507 217 unsigned int cfq_fifo_expire[2];
1da177e4
LT
218 unsigned int cfq_back_penalty;
219 unsigned int cfq_back_max;
22e2c507
JA
220 unsigned int cfq_slice[2];
221 unsigned int cfq_slice_async_rq;
222 unsigned int cfq_slice_idle;
963b72fc 223 unsigned int cfq_latency;
d9ff4187
AV
224
225 struct list_head cic_list;
1da177e4 226
6118b70b
JA
227 /*
228 * Fallback dummy cfqq for extreme OOM conditions
229 */
230 struct cfq_queue oom_cfqq;
365722bb
VG
231
232 unsigned long last_end_sync_rq;
1da177e4
LT
233};
234
c0324a02 235static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
718eee05 236 enum wl_type_t type,
c0324a02
CZ
237 struct cfq_data *cfqd)
238{
239 if (prio == IDLE_WORKLOAD)
240 return &cfqd->service_tree_idle;
241
718eee05 242 return &cfqd->service_trees[prio][type];
c0324a02
CZ
243}
244
3b18152c 245enum cfqq_state_flags {
b0b8d749
JA
246 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
247 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 248 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 249 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
250 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
251 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
252 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 253 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 254 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 255 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
3b18152c
JA
256};
257
258#define CFQ_CFQQ_FNS(name) \
259static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
260{ \
fe094d98 261 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
262} \
263static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
264{ \
fe094d98 265 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
266} \
267static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
268{ \
fe094d98 269 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
270}
271
272CFQ_CFQQ_FNS(on_rr);
273CFQ_CFQQ_FNS(wait_request);
b029195d 274CFQ_CFQQ_FNS(must_dispatch);
3b18152c 275CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
276CFQ_CFQQ_FNS(fifo_expire);
277CFQ_CFQQ_FNS(idle_window);
278CFQ_CFQQ_FNS(prio_changed);
44f7c160 279CFQ_CFQQ_FNS(slice_new);
91fac317 280CFQ_CFQQ_FNS(sync);
a36e71f9 281CFQ_CFQQ_FNS(coop);
3b18152c
JA
282#undef CFQ_CFQQ_FNS
283
7b679138
JA
284#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
285 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
286#define cfq_log(cfqd, fmt, args...) \
287 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
288
c0324a02
CZ
289static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
290{
291 if (cfq_class_idle(cfqq))
292 return IDLE_WORKLOAD;
293 if (cfq_class_rt(cfqq))
294 return RT_WORKLOAD;
295 return BE_WORKLOAD;
296}
297
718eee05
CZ
298
299static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
300{
301 if (!cfq_cfqq_sync(cfqq))
302 return ASYNC_WORKLOAD;
303 if (!cfq_cfqq_idle_window(cfqq))
304 return SYNC_NOIDLE_WORKLOAD;
305 return SYNC_WORKLOAD;
306}
307
c0324a02
CZ
308static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
309{
310 if (wl == IDLE_WORKLOAD)
311 return cfqd->service_tree_idle.count;
312
718eee05
CZ
313 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
314 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
315 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
316}
317
165125e1 318static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 319static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 320 struct io_context *, gfp_t);
4ac845a2 321static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
322 struct io_context *);
323
5ad531db
JA
324static inline int rq_in_driver(struct cfq_data *cfqd)
325{
326 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
327}
328
91fac317 329static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 330 bool is_sync)
91fac317 331{
a6151c3a 332 return cic->cfqq[is_sync];
91fac317
VT
333}
334
335static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 336 struct cfq_queue *cfqq, bool is_sync)
91fac317 337{
a6151c3a 338 cic->cfqq[is_sync] = cfqq;
91fac317
VT
339}
340
341/*
342 * We regard a request as SYNC, if it's either a read or has the SYNC bit
343 * set (in which case it could also be direct WRITE).
344 */
a6151c3a 345static inline bool cfq_bio_sync(struct bio *bio)
91fac317 346{
a6151c3a 347 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 348}
1da177e4 349
99f95e52
AM
350/*
351 * scheduler run of queue, if there are requests pending and no one in the
352 * driver that will restart queueing
353 */
23e018a1 354static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 355{
7b679138
JA
356 if (cfqd->busy_queues) {
357 cfq_log(cfqd, "schedule dispatch");
23e018a1 358 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 359 }
99f95e52
AM
360}
361
165125e1 362static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
363{
364 struct cfq_data *cfqd = q->elevator->elevator_data;
365
b4878f24 366 return !cfqd->busy_queues;
99f95e52
AM
367}
368
44f7c160
JA
369/*
370 * Scale schedule slice based on io priority. Use the sync time slice only
371 * if a queue is marked sync and has sync io queued. A sync queue with async
372 * io only, should not get full sync slice length.
373 */
a6151c3a 374static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 375 unsigned short prio)
44f7c160 376{
d9e7620e 377 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 378
d9e7620e
JA
379 WARN_ON(prio >= IOPRIO_BE_NR);
380
381 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
382}
44f7c160 383
d9e7620e
JA
384static inline int
385cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
386{
387 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
388}
389
5db5d642
CZ
390/*
391 * get averaged number of queues of RT/BE priority.
392 * average is updated, with a formula that gives more weight to higher numbers,
393 * to quickly follows sudden increases and decrease slowly
394 */
395
5869619c
JA
396static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
397{
5db5d642
CZ
398 unsigned min_q, max_q;
399 unsigned mult = cfq_hist_divisor - 1;
400 unsigned round = cfq_hist_divisor / 2;
c0324a02 401 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
402
403 min_q = min(cfqd->busy_queues_avg[rt], busy);
404 max_q = max(cfqd->busy_queues_avg[rt], busy);
405 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
406 cfq_hist_divisor;
407 return cfqd->busy_queues_avg[rt];
408}
409
44f7c160
JA
410static inline void
411cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
412{
5db5d642
CZ
413 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
414 if (cfqd->cfq_latency) {
415 /* interested queues (we consider only the ones with the same
416 * priority class) */
417 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
418 unsigned sync_slice = cfqd->cfq_slice[1];
419 unsigned expect_latency = sync_slice * iq;
420 if (expect_latency > cfq_target_latency) {
421 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
422 /* scale low_slice according to IO priority
423 * and sync vs async */
424 unsigned low_slice =
425 min(slice, base_low_slice * slice / sync_slice);
426 /* the adapted slice value is scaled to fit all iqs
427 * into the target latency */
428 slice = max(slice * cfq_target_latency / expect_latency,
429 low_slice);
430 }
431 }
432 cfqq->slice_end = jiffies + slice;
7b679138 433 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
434}
435
436/*
437 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
438 * isn't valid until the first request from the dispatch is activated
439 * and the slice time set.
440 */
a6151c3a 441static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
442{
443 if (cfq_cfqq_slice_new(cfqq))
444 return 0;
445 if (time_before(jiffies, cfqq->slice_end))
446 return 0;
447
448 return 1;
449}
450
1da177e4 451/*
5e705374 452 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 453 * We choose the request that is closest to the head right now. Distance
e8a99053 454 * behind the head is penalized and only allowed to a certain extent.
1da177e4 455 */
5e705374
JA
456static struct request *
457cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
458{
459 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 460 unsigned long back_max;
e8a99053
AM
461#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
462#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
463 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 464
5e705374
JA
465 if (rq1 == NULL || rq1 == rq2)
466 return rq2;
467 if (rq2 == NULL)
468 return rq1;
9c2c38a1 469
5e705374
JA
470 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
471 return rq1;
472 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
473 return rq2;
374f84ac
JA
474 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
475 return rq1;
476 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
477 return rq2;
1da177e4 478
83096ebf
TH
479 s1 = blk_rq_pos(rq1);
480 s2 = blk_rq_pos(rq2);
1da177e4 481
6d048f53 482 last = cfqd->last_position;
1da177e4 483
1da177e4
LT
484 /*
485 * by definition, 1KiB is 2 sectors
486 */
487 back_max = cfqd->cfq_back_max * 2;
488
489 /*
490 * Strict one way elevator _except_ in the case where we allow
491 * short backward seeks which are biased as twice the cost of a
492 * similar forward seek.
493 */
494 if (s1 >= last)
495 d1 = s1 - last;
496 else if (s1 + back_max >= last)
497 d1 = (last - s1) * cfqd->cfq_back_penalty;
498 else
e8a99053 499 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
500
501 if (s2 >= last)
502 d2 = s2 - last;
503 else if (s2 + back_max >= last)
504 d2 = (last - s2) * cfqd->cfq_back_penalty;
505 else
e8a99053 506 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
507
508 /* Found required data */
e8a99053
AM
509
510 /*
511 * By doing switch() on the bit mask "wrap" we avoid having to
512 * check two variables for all permutations: --> faster!
513 */
514 switch (wrap) {
5e705374 515 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 516 if (d1 < d2)
5e705374 517 return rq1;
e8a99053 518 else if (d2 < d1)
5e705374 519 return rq2;
e8a99053
AM
520 else {
521 if (s1 >= s2)
5e705374 522 return rq1;
e8a99053 523 else
5e705374 524 return rq2;
e8a99053 525 }
1da177e4 526
e8a99053 527 case CFQ_RQ2_WRAP:
5e705374 528 return rq1;
e8a99053 529 case CFQ_RQ1_WRAP:
5e705374
JA
530 return rq2;
531 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
532 default:
533 /*
534 * Since both rqs are wrapped,
535 * start with the one that's further behind head
536 * (--> only *one* back seek required),
537 * since back seek takes more time than forward.
538 */
539 if (s1 <= s2)
5e705374 540 return rq1;
1da177e4 541 else
5e705374 542 return rq2;
1da177e4
LT
543 }
544}
545
498d3aa2
JA
546/*
547 * The below is leftmost cache rbtree addon
548 */
0871714e 549static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
550{
551 if (!root->left)
552 root->left = rb_first(&root->rb);
553
0871714e
JA
554 if (root->left)
555 return rb_entry(root->left, struct cfq_queue, rb_node);
556
557 return NULL;
cc09e299
JA
558}
559
a36e71f9
JA
560static void rb_erase_init(struct rb_node *n, struct rb_root *root)
561{
562 rb_erase(n, root);
563 RB_CLEAR_NODE(n);
564}
565
cc09e299
JA
566static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
567{
568 if (root->left == n)
569 root->left = NULL;
a36e71f9 570 rb_erase_init(n, &root->rb);
aa6f6a3d 571 --root->count;
cc09e299
JA
572}
573
1da177e4
LT
574/*
575 * would be nice to take fifo expire time into account as well
576 */
5e705374
JA
577static struct request *
578cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
579 struct request *last)
1da177e4 580{
21183b07
JA
581 struct rb_node *rbnext = rb_next(&last->rb_node);
582 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 583 struct request *next = NULL, *prev = NULL;
1da177e4 584
21183b07 585 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
586
587 if (rbprev)
5e705374 588 prev = rb_entry_rq(rbprev);
1da177e4 589
21183b07 590 if (rbnext)
5e705374 591 next = rb_entry_rq(rbnext);
21183b07
JA
592 else {
593 rbnext = rb_first(&cfqq->sort_list);
594 if (rbnext && rbnext != &last->rb_node)
5e705374 595 next = rb_entry_rq(rbnext);
21183b07 596 }
1da177e4 597
21183b07 598 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
599}
600
d9e7620e
JA
601static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
602 struct cfq_queue *cfqq)
1da177e4 603{
d9e7620e
JA
604 /*
605 * just an approximation, should be ok.
606 */
67e6b49e
JA
607 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
608 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
609}
610
498d3aa2 611/*
c0324a02 612 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
613 * requests waiting to be processed. It is sorted in the order that
614 * we will service the queues.
615 */
a36e71f9 616static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 617 bool add_front)
d9e7620e 618{
0871714e
JA
619 struct rb_node **p, *parent;
620 struct cfq_queue *__cfqq;
d9e7620e 621 unsigned long rb_key;
c0324a02 622 struct cfq_rb_root *service_tree;
498d3aa2 623 int left;
d9e7620e 624
718eee05 625 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
0871714e
JA
626 if (cfq_class_idle(cfqq)) {
627 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 628 parent = rb_last(&service_tree->rb);
0871714e
JA
629 if (parent && parent != &cfqq->rb_node) {
630 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
631 rb_key += __cfqq->rb_key;
632 } else
633 rb_key += jiffies;
634 } else if (!add_front) {
b9c8946b
JA
635 /*
636 * Get our rb key offset. Subtract any residual slice
637 * value carried from last service. A negative resid
638 * count indicates slice overrun, and this should position
639 * the next service time further away in the tree.
640 */
edd75ffd 641 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 642 rb_key -= cfqq->slice_resid;
edd75ffd 643 cfqq->slice_resid = 0;
48e025e6
CZ
644 } else {
645 rb_key = -HZ;
aa6f6a3d 646 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
647 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
648 }
1da177e4 649
d9e7620e 650 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 651 /*
d9e7620e 652 * same position, nothing more to do
99f9628a 653 */
c0324a02
CZ
654 if (rb_key == cfqq->rb_key &&
655 cfqq->service_tree == service_tree)
d9e7620e 656 return;
1da177e4 657
aa6f6a3d
CZ
658 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
659 cfqq->service_tree = NULL;
1da177e4 660 }
d9e7620e 661
498d3aa2 662 left = 1;
0871714e 663 parent = NULL;
aa6f6a3d
CZ
664 cfqq->service_tree = service_tree;
665 p = &service_tree->rb.rb_node;
d9e7620e 666 while (*p) {
67060e37 667 struct rb_node **n;
cc09e299 668
d9e7620e
JA
669 parent = *p;
670 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
671
0c534e0a 672 /*
c0324a02 673 * sort by key, that represents service time.
0c534e0a 674 */
c0324a02 675 if (time_before(rb_key, __cfqq->rb_key))
67060e37 676 n = &(*p)->rb_left;
c0324a02 677 else {
67060e37 678 n = &(*p)->rb_right;
cc09e299 679 left = 0;
c0324a02 680 }
67060e37
JA
681
682 p = n;
d9e7620e
JA
683 }
684
cc09e299 685 if (left)
aa6f6a3d 686 service_tree->left = &cfqq->rb_node;
cc09e299 687
d9e7620e
JA
688 cfqq->rb_key = rb_key;
689 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
690 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
691 service_tree->count++;
1da177e4
LT
692}
693
a36e71f9 694static struct cfq_queue *
f2d1f0ae
JA
695cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
696 sector_t sector, struct rb_node **ret_parent,
697 struct rb_node ***rb_link)
a36e71f9 698{
a36e71f9
JA
699 struct rb_node **p, *parent;
700 struct cfq_queue *cfqq = NULL;
701
702 parent = NULL;
703 p = &root->rb_node;
704 while (*p) {
705 struct rb_node **n;
706
707 parent = *p;
708 cfqq = rb_entry(parent, struct cfq_queue, p_node);
709
710 /*
711 * Sort strictly based on sector. Smallest to the left,
712 * largest to the right.
713 */
2e46e8b2 714 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 715 n = &(*p)->rb_right;
2e46e8b2 716 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
717 n = &(*p)->rb_left;
718 else
719 break;
720 p = n;
3ac6c9f8 721 cfqq = NULL;
a36e71f9
JA
722 }
723
724 *ret_parent = parent;
725 if (rb_link)
726 *rb_link = p;
3ac6c9f8 727 return cfqq;
a36e71f9
JA
728}
729
730static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
731{
a36e71f9
JA
732 struct rb_node **p, *parent;
733 struct cfq_queue *__cfqq;
734
f2d1f0ae
JA
735 if (cfqq->p_root) {
736 rb_erase(&cfqq->p_node, cfqq->p_root);
737 cfqq->p_root = NULL;
738 }
a36e71f9
JA
739
740 if (cfq_class_idle(cfqq))
741 return;
742 if (!cfqq->next_rq)
743 return;
744
f2d1f0ae 745 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
746 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
747 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
748 if (!__cfqq) {
749 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
750 rb_insert_color(&cfqq->p_node, cfqq->p_root);
751 } else
752 cfqq->p_root = NULL;
a36e71f9
JA
753}
754
498d3aa2
JA
755/*
756 * Update cfqq's position in the service tree.
757 */
edd75ffd 758static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 759{
6d048f53
JA
760 /*
761 * Resorting requires the cfqq to be on the RR list already.
762 */
a36e71f9 763 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 764 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
765 cfq_prio_tree_add(cfqd, cfqq);
766 }
6d048f53
JA
767}
768
1da177e4
LT
769/*
770 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 771 * the pending list according to last request service
1da177e4 772 */
febffd61 773static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 774{
7b679138 775 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
776 BUG_ON(cfq_cfqq_on_rr(cfqq));
777 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
778 cfqd->busy_queues++;
779
edd75ffd 780 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
781}
782
498d3aa2
JA
783/*
784 * Called when the cfqq no longer has requests pending, remove it from
785 * the service tree.
786 */
febffd61 787static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 788{
7b679138 789 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
790 BUG_ON(!cfq_cfqq_on_rr(cfqq));
791 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 792
aa6f6a3d
CZ
793 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
794 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
795 cfqq->service_tree = NULL;
796 }
f2d1f0ae
JA
797 if (cfqq->p_root) {
798 rb_erase(&cfqq->p_node, cfqq->p_root);
799 cfqq->p_root = NULL;
800 }
d9e7620e 801
1da177e4
LT
802 BUG_ON(!cfqd->busy_queues);
803 cfqd->busy_queues--;
804}
805
806/*
807 * rb tree support functions
808 */
febffd61 809static void cfq_del_rq_rb(struct request *rq)
1da177e4 810{
5e705374 811 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 812 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 813 const int sync = rq_is_sync(rq);
1da177e4 814
b4878f24
JA
815 BUG_ON(!cfqq->queued[sync]);
816 cfqq->queued[sync]--;
1da177e4 817
5e705374 818 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 819
dd67d051 820 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 821 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
822}
823
5e705374 824static void cfq_add_rq_rb(struct request *rq)
1da177e4 825{
5e705374 826 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 827 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 828 struct request *__alias, *prev;
1da177e4 829
5380a101 830 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
831
832 /*
833 * looks a little odd, but the first insert might return an alias.
834 * if that happens, put the alias on the dispatch list
835 */
21183b07 836 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 837 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
838
839 if (!cfq_cfqq_on_rr(cfqq))
840 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
841
842 /*
843 * check if this request is a better next-serve candidate
844 */
a36e71f9 845 prev = cfqq->next_rq;
5044eed4 846 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
847
848 /*
849 * adjust priority tree position, if ->next_rq changes
850 */
851 if (prev != cfqq->next_rq)
852 cfq_prio_tree_add(cfqd, cfqq);
853
5044eed4 854 BUG_ON(!cfqq->next_rq);
1da177e4
LT
855}
856
febffd61 857static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 858{
5380a101
JA
859 elv_rb_del(&cfqq->sort_list, rq);
860 cfqq->queued[rq_is_sync(rq)]--;
5e705374 861 cfq_add_rq_rb(rq);
1da177e4
LT
862}
863
206dc69b
JA
864static struct request *
865cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 866{
206dc69b 867 struct task_struct *tsk = current;
91fac317 868 struct cfq_io_context *cic;
206dc69b 869 struct cfq_queue *cfqq;
1da177e4 870
4ac845a2 871 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
872 if (!cic)
873 return NULL;
874
875 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
876 if (cfqq) {
877 sector_t sector = bio->bi_sector + bio_sectors(bio);
878
21183b07 879 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 880 }
1da177e4 881
1da177e4
LT
882 return NULL;
883}
884
165125e1 885static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 886{
22e2c507 887 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 888
5ad531db 889 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 890 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 891 rq_in_driver(cfqd));
25776e35 892
5b93629b 893 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
894}
895
165125e1 896static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 897{
b4878f24 898 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 899 const int sync = rq_is_sync(rq);
b4878f24 900
5ad531db
JA
901 WARN_ON(!cfqd->rq_in_driver[sync]);
902 cfqd->rq_in_driver[sync]--;
7b679138 903 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 904 rq_in_driver(cfqd));
1da177e4
LT
905}
906
b4878f24 907static void cfq_remove_request(struct request *rq)
1da177e4 908{
5e705374 909 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 910
5e705374
JA
911 if (cfqq->next_rq == rq)
912 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 913
b4878f24 914 list_del_init(&rq->queuelist);
5e705374 915 cfq_del_rq_rb(rq);
374f84ac 916
45333d5a 917 cfqq->cfqd->rq_queued--;
374f84ac
JA
918 if (rq_is_meta(rq)) {
919 WARN_ON(!cfqq->meta_pending);
920 cfqq->meta_pending--;
921 }
1da177e4
LT
922}
923
165125e1
JA
924static int cfq_merge(struct request_queue *q, struct request **req,
925 struct bio *bio)
1da177e4
LT
926{
927 struct cfq_data *cfqd = q->elevator->elevator_data;
928 struct request *__rq;
1da177e4 929
206dc69b 930 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 931 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
932 *req = __rq;
933 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
934 }
935
936 return ELEVATOR_NO_MERGE;
1da177e4
LT
937}
938
165125e1 939static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 940 int type)
1da177e4 941{
21183b07 942 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 943 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 944
5e705374 945 cfq_reposition_rq_rb(cfqq, req);
1da177e4 946 }
1da177e4
LT
947}
948
949static void
165125e1 950cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
951 struct request *next)
952{
22e2c507
JA
953 /*
954 * reposition in fifo if next is older than rq
955 */
956 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 957 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 958 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
959 rq_set_fifo_time(rq, rq_fifo_time(next));
960 }
22e2c507 961
b4878f24 962 cfq_remove_request(next);
22e2c507
JA
963}
964
165125e1 965static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
966 struct bio *bio)
967{
968 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 969 struct cfq_io_context *cic;
da775265 970 struct cfq_queue *cfqq;
da775265
JA
971
972 /*
ec8acb69 973 * Disallow merge of a sync bio into an async request.
da775265 974 */
91fac317 975 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 976 return false;
da775265
JA
977
978 /*
719d3402
JA
979 * Lookup the cfqq that this bio will be queued with. Allow
980 * merge only if rq is queued there.
da775265 981 */
4ac845a2 982 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 983 if (!cic)
a6151c3a 984 return false;
719d3402 985
91fac317 986 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 987 return cfqq == RQ_CFQQ(rq);
da775265
JA
988}
989
febffd61
JA
990static void __cfq_set_active_queue(struct cfq_data *cfqd,
991 struct cfq_queue *cfqq)
22e2c507
JA
992{
993 if (cfqq) {
7b679138 994 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 995 cfqq->slice_end = 0;
2f5cb738
JA
996 cfqq->slice_dispatch = 0;
997
2f5cb738 998 cfq_clear_cfqq_wait_request(cfqq);
b029195d 999 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1000 cfq_clear_cfqq_must_alloc_slice(cfqq);
1001 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1002 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1003
1004 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1005 }
1006
1007 cfqd->active_queue = cfqq;
1008}
1009
7b14e3b5
JA
1010/*
1011 * current cfqq expired its slice (or was too idle), select new one
1012 */
1013static void
1014__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1015 bool timed_out)
7b14e3b5 1016{
7b679138
JA
1017 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1018
7b14e3b5
JA
1019 if (cfq_cfqq_wait_request(cfqq))
1020 del_timer(&cfqd->idle_slice_timer);
1021
7b14e3b5
JA
1022 cfq_clear_cfqq_wait_request(cfqq);
1023
1024 /*
6084cdda 1025 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1026 */
7b679138 1027 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1028 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1029 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1030 }
7b14e3b5 1031
edd75ffd 1032 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1033
1034 if (cfqq == cfqd->active_queue)
1035 cfqd->active_queue = NULL;
1036
1037 if (cfqd->active_cic) {
1038 put_io_context(cfqd->active_cic->ioc);
1039 cfqd->active_cic = NULL;
1040 }
7b14e3b5
JA
1041}
1042
a6151c3a 1043static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1044{
1045 struct cfq_queue *cfqq = cfqd->active_queue;
1046
1047 if (cfqq)
6084cdda 1048 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1049}
1050
498d3aa2
JA
1051/*
1052 * Get next queue for service. Unless we have a queue preemption,
1053 * we'll simply select the first cfqq in the service tree.
1054 */
6d048f53 1055static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1056{
c0324a02 1057 struct cfq_rb_root *service_tree =
718eee05 1058 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
d9e7620e 1059
c0324a02
CZ
1060 if (RB_EMPTY_ROOT(&service_tree->rb))
1061 return NULL;
1062 return cfq_rb_first(service_tree);
6d048f53
JA
1063}
1064
498d3aa2
JA
1065/*
1066 * Get and set a new active queue for service.
1067 */
a36e71f9
JA
1068static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1069 struct cfq_queue *cfqq)
6d048f53 1070{
e00ef799 1071 if (!cfqq)
a36e71f9 1072 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1073
22e2c507 1074 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1075 return cfqq;
22e2c507
JA
1076}
1077
d9e7620e
JA
1078static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1079 struct request *rq)
1080{
83096ebf
TH
1081 if (blk_rq_pos(rq) >= cfqd->last_position)
1082 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1083 else
83096ebf 1084 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1085}
1086
b2c18e1e
JM
1087#define CFQQ_SEEK_THR 8 * 1024
1088#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1089
b2c18e1e
JM
1090static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1091 struct request *rq)
6d048f53 1092{
b2c18e1e 1093 sector_t sdist = cfqq->seek_mean;
6d048f53 1094
b2c18e1e
JM
1095 if (!sample_valid(cfqq->seek_samples))
1096 sdist = CFQQ_SEEK_THR;
6d048f53 1097
04dc6e71 1098 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1099}
1100
a36e71f9
JA
1101static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1102 struct cfq_queue *cur_cfqq)
1103{
f2d1f0ae 1104 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1105 struct rb_node *parent, *node;
1106 struct cfq_queue *__cfqq;
1107 sector_t sector = cfqd->last_position;
1108
1109 if (RB_EMPTY_ROOT(root))
1110 return NULL;
1111
1112 /*
1113 * First, if we find a request starting at the end of the last
1114 * request, choose it.
1115 */
f2d1f0ae 1116 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1117 if (__cfqq)
1118 return __cfqq;
1119
1120 /*
1121 * If the exact sector wasn't found, the parent of the NULL leaf
1122 * will contain the closest sector.
1123 */
1124 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1125 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1126 return __cfqq;
1127
2e46e8b2 1128 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1129 node = rb_next(&__cfqq->p_node);
1130 else
1131 node = rb_prev(&__cfqq->p_node);
1132 if (!node)
1133 return NULL;
1134
1135 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1136 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1137 return __cfqq;
1138
1139 return NULL;
1140}
1141
1142/*
1143 * cfqd - obvious
1144 * cur_cfqq - passed in so that we don't decide that the current queue is
1145 * closely cooperating with itself.
1146 *
1147 * So, basically we're assuming that that cur_cfqq has dispatched at least
1148 * one request, and that cfqd->last_position reflects a position on the disk
1149 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1150 * assumption.
1151 */
1152static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1153 struct cfq_queue *cur_cfqq)
6d048f53 1154{
a36e71f9
JA
1155 struct cfq_queue *cfqq;
1156
e6c5bc73
JM
1157 if (!cfq_cfqq_sync(cur_cfqq))
1158 return NULL;
1159 if (CFQQ_SEEKY(cur_cfqq))
1160 return NULL;
1161
6d048f53 1162 /*
d9e7620e
JA
1163 * We should notice if some of the queues are cooperating, eg
1164 * working closely on the same area of the disk. In that case,
1165 * we can group them together and don't waste time idling.
6d048f53 1166 */
a36e71f9
JA
1167 cfqq = cfqq_close(cfqd, cur_cfqq);
1168 if (!cfqq)
1169 return NULL;
1170
df5fe3e8
JM
1171 /*
1172 * It only makes sense to merge sync queues.
1173 */
1174 if (!cfq_cfqq_sync(cfqq))
1175 return NULL;
e6c5bc73
JM
1176 if (CFQQ_SEEKY(cfqq))
1177 return NULL;
df5fe3e8 1178
c0324a02
CZ
1179 /*
1180 * Do not merge queues of different priority classes
1181 */
1182 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1183 return NULL;
1184
a36e71f9 1185 return cfqq;
6d048f53
JA
1186}
1187
a6d44e98
CZ
1188/*
1189 * Determine whether we should enforce idle window for this queue.
1190 */
1191
1192static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1193{
1194 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1195 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98
CZ
1196
1197 /* We never do for idle class queues. */
1198 if (prio == IDLE_WORKLOAD)
1199 return false;
1200
1201 /* We do for queues that were marked with idle window flag. */
1202 if (cfq_cfqq_idle_window(cfqq))
1203 return true;
1204
1205 /*
1206 * Otherwise, we do only if they are the last ones
1207 * in their service tree.
1208 */
718eee05
CZ
1209 if (!service_tree)
1210 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1211
a6d44e98
CZ
1212 if (service_tree->count == 0)
1213 return true;
1214
1215 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1216}
1217
6d048f53 1218static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1219{
1792669c 1220 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1221 struct cfq_io_context *cic;
7b14e3b5
JA
1222 unsigned long sl;
1223
a68bbddb 1224 /*
f7d7b7a7
JA
1225 * SSD device without seek penalty, disable idling. But only do so
1226 * for devices that support queuing, otherwise we still have a problem
1227 * with sync vs async workloads.
a68bbddb 1228 */
f7d7b7a7 1229 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1230 return;
1231
dd67d051 1232 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1233 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1234
1235 /*
1236 * idle is disabled, either manually or by past process history
1237 */
a6d44e98 1238 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1239 return;
1240
7b679138
JA
1241 /*
1242 * still requests with the driver, don't idle
1243 */
5ad531db 1244 if (rq_in_driver(cfqd))
7b679138
JA
1245 return;
1246
22e2c507
JA
1247 /*
1248 * task has exited, don't wait
1249 */
206dc69b 1250 cic = cfqd->active_cic;
66dac98e 1251 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1252 return;
1253
355b659c
CZ
1254 /*
1255 * If our average think time is larger than the remaining time
1256 * slice, then don't idle. This avoids overrunning the allotted
1257 * time slice.
1258 */
1259 if (sample_valid(cic->ttime_samples) &&
1260 (cfqq->slice_end - jiffies < cic->ttime_mean))
1261 return;
1262
3b18152c 1263 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1264
6d048f53 1265 sl = cfqd->cfq_slice_idle;
718eee05
CZ
1266 /* are we servicing noidle tree, and there are more queues?
1267 * non-rotational or NCQ: no idle
1268 * non-NCQ rotational : very small idle, to allow
1269 * fair distribution of slice time for a process doing back-to-back
1270 * seeks.
1271 */
1272 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
1273 service_tree_for(cfqd->serving_prio, SYNC_NOIDLE_WORKLOAD, cfqd)
1274 ->count > 0) {
1275 if (blk_queue_nonrot(cfqd->queue) || cfqd->hw_tag)
1276 return;
d9e7620e 1277 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
718eee05 1278 }
206dc69b 1279
7b14e3b5 1280 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1281 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1282}
1283
498d3aa2
JA
1284/*
1285 * Move request from internal lists to the request queue dispatch list.
1286 */
165125e1 1287static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1288{
3ed9a296 1289 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1290 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1291
7b679138
JA
1292 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1293
06d21886 1294 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1295 cfq_remove_request(rq);
6d048f53 1296 cfqq->dispatched++;
5380a101 1297 elv_dispatch_sort(q, rq);
3ed9a296
JA
1298
1299 if (cfq_cfqq_sync(cfqq))
1300 cfqd->sync_flight++;
1da177e4
LT
1301}
1302
1303/*
1304 * return expired entry, or NULL to just start from scratch in rbtree
1305 */
febffd61 1306static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1307{
30996f40 1308 struct request *rq = NULL;
1da177e4 1309
3b18152c 1310 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1311 return NULL;
cb887411
JA
1312
1313 cfq_mark_cfqq_fifo_expire(cfqq);
1314
89850f7e
JA
1315 if (list_empty(&cfqq->fifo))
1316 return NULL;
1da177e4 1317
89850f7e 1318 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1319 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1320 rq = NULL;
1da177e4 1321
30996f40 1322 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1323 return rq;
1da177e4
LT
1324}
1325
22e2c507
JA
1326static inline int
1327cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1328{
1329 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1330
22e2c507 1331 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1332
22e2c507 1333 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1334}
1335
df5fe3e8
JM
1336/*
1337 * Must be called with the queue_lock held.
1338 */
1339static int cfqq_process_refs(struct cfq_queue *cfqq)
1340{
1341 int process_refs, io_refs;
1342
1343 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1344 process_refs = atomic_read(&cfqq->ref) - io_refs;
1345 BUG_ON(process_refs < 0);
1346 return process_refs;
1347}
1348
1349static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1350{
e6c5bc73 1351 int process_refs, new_process_refs;
df5fe3e8
JM
1352 struct cfq_queue *__cfqq;
1353
1354 /* Avoid a circular list and skip interim queue merges */
1355 while ((__cfqq = new_cfqq->new_cfqq)) {
1356 if (__cfqq == cfqq)
1357 return;
1358 new_cfqq = __cfqq;
1359 }
1360
1361 process_refs = cfqq_process_refs(cfqq);
1362 /*
1363 * If the process for the cfqq has gone away, there is no
1364 * sense in merging the queues.
1365 */
1366 if (process_refs == 0)
1367 return;
1368
e6c5bc73
JM
1369 /*
1370 * Merge in the direction of the lesser amount of work.
1371 */
1372 new_process_refs = cfqq_process_refs(new_cfqq);
1373 if (new_process_refs >= process_refs) {
1374 cfqq->new_cfqq = new_cfqq;
1375 atomic_add(process_refs, &new_cfqq->ref);
1376 } else {
1377 new_cfqq->new_cfqq = cfqq;
1378 atomic_add(new_process_refs, &cfqq->ref);
1379 }
df5fe3e8
JM
1380}
1381
718eee05
CZ
1382static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1383 bool prio_changed)
1384{
1385 struct cfq_queue *queue;
1386 int i;
1387 bool key_valid = false;
1388 unsigned long lowest_key = 0;
1389 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1390
1391 if (prio_changed) {
1392 /*
1393 * When priorities switched, we prefer starting
1394 * from SYNC_NOIDLE (first choice), or just SYNC
1395 * over ASYNC
1396 */
1397 if (service_tree_for(prio, cur_best, cfqd)->count)
1398 return cur_best;
1399 cur_best = SYNC_WORKLOAD;
1400 if (service_tree_for(prio, cur_best, cfqd)->count)
1401 return cur_best;
1402
1403 return ASYNC_WORKLOAD;
1404 }
1405
1406 for (i = 0; i < 3; ++i) {
1407 /* otherwise, select the one with lowest rb_key */
1408 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1409 if (queue &&
1410 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1411 lowest_key = queue->rb_key;
1412 cur_best = i;
1413 key_valid = true;
1414 }
1415 }
1416
1417 return cur_best;
1418}
1419
1420static void choose_service_tree(struct cfq_data *cfqd)
1421{
1422 enum wl_prio_t previous_prio = cfqd->serving_prio;
1423 bool prio_changed;
1424 unsigned slice;
1425 unsigned count;
1426
1427 /* Choose next priority. RT > BE > IDLE */
1428 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1429 cfqd->serving_prio = RT_WORKLOAD;
1430 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1431 cfqd->serving_prio = BE_WORKLOAD;
1432 else {
1433 cfqd->serving_prio = IDLE_WORKLOAD;
1434 cfqd->workload_expires = jiffies + 1;
1435 return;
1436 }
1437
1438 /*
1439 * For RT and BE, we have to choose also the type
1440 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1441 * expiration time
1442 */
1443 prio_changed = (cfqd->serving_prio != previous_prio);
1444 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1445 ->count;
1446
1447 /*
1448 * If priority didn't change, check workload expiration,
1449 * and that we still have other queues ready
1450 */
1451 if (!prio_changed && count &&
1452 !time_after(jiffies, cfqd->workload_expires))
1453 return;
1454
1455 /* otherwise select new workload type */
1456 cfqd->serving_type =
1457 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1458 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1459 ->count;
1460
1461 /*
1462 * the workload slice is computed as a fraction of target latency
1463 * proportional to the number of queues in that workload, over
1464 * all the queues in the same priority class
1465 */
1466 slice = cfq_target_latency * count /
1467 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1468 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1469
1470 if (cfqd->serving_type == ASYNC_WORKLOAD)
1471 /* async workload slice is scaled down according to
1472 * the sync/async slice ratio. */
1473 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1474 else
1475 /* sync workload slice is at least 2 * cfq_slice_idle */
1476 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1477
1478 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1479 cfqd->workload_expires = jiffies + slice;
1480}
1481
22e2c507 1482/*
498d3aa2
JA
1483 * Select a queue for service. If we have a current active queue,
1484 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1485 */
1b5ed5e1 1486static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1487{
a36e71f9 1488 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1489
22e2c507
JA
1490 cfqq = cfqd->active_queue;
1491 if (!cfqq)
1492 goto new_queue;
1da177e4 1493
22e2c507 1494 /*
6d048f53 1495 * The active queue has run out of time, expire it and select new.
22e2c507 1496 */
b029195d 1497 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1498 goto expire;
1da177e4 1499
22e2c507 1500 /*
6d048f53
JA
1501 * The active queue has requests and isn't expired, allow it to
1502 * dispatch.
22e2c507 1503 */
dd67d051 1504 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1505 goto keep_queue;
6d048f53 1506
a36e71f9
JA
1507 /*
1508 * If another queue has a request waiting within our mean seek
1509 * distance, let it run. The expire code will check for close
1510 * cooperators and put the close queue at the front of the service
df5fe3e8 1511 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1512 */
b3b6d040 1513 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1514 if (new_cfqq) {
1515 if (!cfqq->new_cfqq)
1516 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1517 goto expire;
df5fe3e8 1518 }
a36e71f9 1519
6d048f53
JA
1520 /*
1521 * No requests pending. If the active queue still has requests in
1522 * flight or is idling for a new request, allow either of these
1523 * conditions to happen (or time out) before selecting a new queue.
1524 */
cc197479 1525 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1526 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1527 cfqq = NULL;
1528 goto keep_queue;
22e2c507
JA
1529 }
1530
3b18152c 1531expire:
6084cdda 1532 cfq_slice_expired(cfqd, 0);
3b18152c 1533new_queue:
718eee05
CZ
1534 /*
1535 * Current queue expired. Check if we have to switch to a new
1536 * service tree
1537 */
1538 if (!new_cfqq)
1539 choose_service_tree(cfqd);
1540
a36e71f9 1541 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1542keep_queue:
3b18152c 1543 return cfqq;
22e2c507
JA
1544}
1545
febffd61 1546static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1547{
1548 int dispatched = 0;
1549
1550 while (cfqq->next_rq) {
1551 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1552 dispatched++;
1553 }
1554
1555 BUG_ON(!list_empty(&cfqq->fifo));
1556 return dispatched;
1557}
1558
498d3aa2
JA
1559/*
1560 * Drain our current requests. Used for barriers and when switching
1561 * io schedulers on-the-fly.
1562 */
d9e7620e 1563static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1564{
0871714e 1565 struct cfq_queue *cfqq;
d9e7620e 1566 int dispatched = 0;
718eee05 1567 int i, j;
c0324a02 1568 for (i = 0; i < 2; ++i)
718eee05
CZ
1569 for (j = 0; j < 3; ++j)
1570 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1571 != NULL)
1572 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1573
c0324a02 1574 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
d9e7620e 1575 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1576
6084cdda 1577 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1578
1579 BUG_ON(cfqd->busy_queues);
1580
6923715a 1581 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1582 return dispatched;
1583}
1584
0b182d61 1585static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1586{
2f5cb738 1587 unsigned int max_dispatch;
22e2c507 1588
5ad531db
JA
1589 /*
1590 * Drain async requests before we start sync IO
1591 */
a6d44e98 1592 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1593 return false;
5ad531db 1594
2f5cb738
JA
1595 /*
1596 * If this is an async queue and we have sync IO in flight, let it wait
1597 */
1598 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1599 return false;
2f5cb738
JA
1600
1601 max_dispatch = cfqd->cfq_quantum;
1602 if (cfq_class_idle(cfqq))
1603 max_dispatch = 1;
b4878f24 1604
2f5cb738
JA
1605 /*
1606 * Does this cfqq already have too much IO in flight?
1607 */
1608 if (cfqq->dispatched >= max_dispatch) {
1609 /*
1610 * idle queue must always only have a single IO in flight
1611 */
3ed9a296 1612 if (cfq_class_idle(cfqq))
0b182d61 1613 return false;
3ed9a296 1614
2f5cb738
JA
1615 /*
1616 * We have other queues, don't allow more IO from this one
1617 */
1618 if (cfqd->busy_queues > 1)
0b182d61 1619 return false;
9ede209e 1620
365722bb 1621 /*
8e296755 1622 * Sole queue user, allow bigger slice
365722bb 1623 */
8e296755
JA
1624 max_dispatch *= 4;
1625 }
1626
1627 /*
1628 * Async queues must wait a bit before being allowed dispatch.
1629 * We also ramp up the dispatch depth gradually for async IO,
1630 * based on the last sync IO we serviced
1631 */
963b72fc 1632 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1633 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1634 unsigned int depth;
365722bb 1635
61f0c1dc 1636 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1637 if (!depth && !cfqq->dispatched)
1638 depth = 1;
8e296755
JA
1639 if (depth < max_dispatch)
1640 max_dispatch = depth;
2f5cb738 1641 }
3ed9a296 1642
0b182d61
JA
1643 /*
1644 * If we're below the current max, allow a dispatch
1645 */
1646 return cfqq->dispatched < max_dispatch;
1647}
1648
1649/*
1650 * Dispatch a request from cfqq, moving them to the request queue
1651 * dispatch list.
1652 */
1653static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1654{
1655 struct request *rq;
1656
1657 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1658
1659 if (!cfq_may_dispatch(cfqd, cfqq))
1660 return false;
1661
1662 /*
1663 * follow expired path, else get first next available
1664 */
1665 rq = cfq_check_fifo(cfqq);
1666 if (!rq)
1667 rq = cfqq->next_rq;
1668
1669 /*
1670 * insert request into driver dispatch list
1671 */
1672 cfq_dispatch_insert(cfqd->queue, rq);
1673
1674 if (!cfqd->active_cic) {
1675 struct cfq_io_context *cic = RQ_CIC(rq);
1676
1677 atomic_long_inc(&cic->ioc->refcount);
1678 cfqd->active_cic = cic;
1679 }
1680
1681 return true;
1682}
1683
1684/*
1685 * Find the cfqq that we need to service and move a request from that to the
1686 * dispatch list
1687 */
1688static int cfq_dispatch_requests(struct request_queue *q, int force)
1689{
1690 struct cfq_data *cfqd = q->elevator->elevator_data;
1691 struct cfq_queue *cfqq;
1692
1693 if (!cfqd->busy_queues)
1694 return 0;
1695
1696 if (unlikely(force))
1697 return cfq_forced_dispatch(cfqd);
1698
1699 cfqq = cfq_select_queue(cfqd);
1700 if (!cfqq)
8e296755
JA
1701 return 0;
1702
2f5cb738 1703 /*
0b182d61 1704 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1705 */
0b182d61
JA
1706 if (!cfq_dispatch_request(cfqd, cfqq))
1707 return 0;
1708
2f5cb738 1709 cfqq->slice_dispatch++;
b029195d 1710 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1711
2f5cb738
JA
1712 /*
1713 * expire an async queue immediately if it has used up its slice. idle
1714 * queue always expire after 1 dispatch round.
1715 */
1716 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1717 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1718 cfq_class_idle(cfqq))) {
1719 cfqq->slice_end = jiffies + 1;
1720 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1721 }
1722
b217a903 1723 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1724 return 1;
1da177e4
LT
1725}
1726
1da177e4 1727/*
5e705374
JA
1728 * task holds one reference to the queue, dropped when task exits. each rq
1729 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1730 *
1731 * queue lock must be held here.
1732 */
1733static void cfq_put_queue(struct cfq_queue *cfqq)
1734{
22e2c507
JA
1735 struct cfq_data *cfqd = cfqq->cfqd;
1736
1737 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1738
1739 if (!atomic_dec_and_test(&cfqq->ref))
1740 return;
1741
7b679138 1742 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1743 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1744 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1745 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1746
28f95cbc 1747 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1748 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1749 cfq_schedule_dispatch(cfqd);
28f95cbc 1750 }
22e2c507 1751
1da177e4
LT
1752 kmem_cache_free(cfq_pool, cfqq);
1753}
1754
d6de8be7
JA
1755/*
1756 * Must always be called with the rcu_read_lock() held
1757 */
07416d29
JA
1758static void
1759__call_for_each_cic(struct io_context *ioc,
1760 void (*func)(struct io_context *, struct cfq_io_context *))
1761{
1762 struct cfq_io_context *cic;
1763 struct hlist_node *n;
1764
1765 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1766 func(ioc, cic);
1767}
1768
4ac845a2 1769/*
34e6bbf2 1770 * Call func for each cic attached to this ioc.
4ac845a2 1771 */
34e6bbf2 1772static void
4ac845a2
JA
1773call_for_each_cic(struct io_context *ioc,
1774 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1775{
4ac845a2 1776 rcu_read_lock();
07416d29 1777 __call_for_each_cic(ioc, func);
4ac845a2 1778 rcu_read_unlock();
34e6bbf2
FC
1779}
1780
1781static void cfq_cic_free_rcu(struct rcu_head *head)
1782{
1783 struct cfq_io_context *cic;
1784
1785 cic = container_of(head, struct cfq_io_context, rcu_head);
1786
1787 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1788 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1789
9a11b4ed
JA
1790 if (ioc_gone) {
1791 /*
1792 * CFQ scheduler is exiting, grab exit lock and check
1793 * the pending io context count. If it hits zero,
1794 * complete ioc_gone and set it back to NULL
1795 */
1796 spin_lock(&ioc_gone_lock);
245b2e70 1797 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1798 complete(ioc_gone);
1799 ioc_gone = NULL;
1800 }
1801 spin_unlock(&ioc_gone_lock);
1802 }
34e6bbf2 1803}
4ac845a2 1804
34e6bbf2
FC
1805static void cfq_cic_free(struct cfq_io_context *cic)
1806{
1807 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1808}
1809
1810static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1811{
1812 unsigned long flags;
1813
1814 BUG_ON(!cic->dead_key);
1815
1816 spin_lock_irqsave(&ioc->lock, flags);
1817 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1818 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1819 spin_unlock_irqrestore(&ioc->lock, flags);
1820
34e6bbf2 1821 cfq_cic_free(cic);
4ac845a2
JA
1822}
1823
d6de8be7
JA
1824/*
1825 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1826 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1827 * and ->trim() which is called with the task lock held
1828 */
4ac845a2
JA
1829static void cfq_free_io_context(struct io_context *ioc)
1830{
4ac845a2 1831 /*
34e6bbf2
FC
1832 * ioc->refcount is zero here, or we are called from elv_unregister(),
1833 * so no more cic's are allowed to be linked into this ioc. So it
1834 * should be ok to iterate over the known list, we will see all cic's
1835 * since no new ones are added.
4ac845a2 1836 */
07416d29 1837 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1838}
1839
89850f7e 1840static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1841{
df5fe3e8
JM
1842 struct cfq_queue *__cfqq, *next;
1843
28f95cbc 1844 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1845 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1846 cfq_schedule_dispatch(cfqd);
28f95cbc 1847 }
22e2c507 1848
df5fe3e8
JM
1849 /*
1850 * If this queue was scheduled to merge with another queue, be
1851 * sure to drop the reference taken on that queue (and others in
1852 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1853 */
1854 __cfqq = cfqq->new_cfqq;
1855 while (__cfqq) {
1856 if (__cfqq == cfqq) {
1857 WARN(1, "cfqq->new_cfqq loop detected\n");
1858 break;
1859 }
1860 next = __cfqq->new_cfqq;
1861 cfq_put_queue(__cfqq);
1862 __cfqq = next;
1863 }
1864
89850f7e
JA
1865 cfq_put_queue(cfqq);
1866}
22e2c507 1867
89850f7e
JA
1868static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1869 struct cfq_io_context *cic)
1870{
4faa3c81
FC
1871 struct io_context *ioc = cic->ioc;
1872
fc46379d 1873 list_del_init(&cic->queue_list);
4ac845a2
JA
1874
1875 /*
1876 * Make sure key == NULL is seen for dead queues
1877 */
fc46379d 1878 smp_wmb();
4ac845a2 1879 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1880 cic->key = NULL;
1881
4faa3c81
FC
1882 if (ioc->ioc_data == cic)
1883 rcu_assign_pointer(ioc->ioc_data, NULL);
1884
ff6657c6
JA
1885 if (cic->cfqq[BLK_RW_ASYNC]) {
1886 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1887 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1888 }
1889
ff6657c6
JA
1890 if (cic->cfqq[BLK_RW_SYNC]) {
1891 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1892 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1893 }
89850f7e
JA
1894}
1895
4ac845a2
JA
1896static void cfq_exit_single_io_context(struct io_context *ioc,
1897 struct cfq_io_context *cic)
89850f7e
JA
1898{
1899 struct cfq_data *cfqd = cic->key;
1900
89850f7e 1901 if (cfqd) {
165125e1 1902 struct request_queue *q = cfqd->queue;
4ac845a2 1903 unsigned long flags;
89850f7e 1904
4ac845a2 1905 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1906
1907 /*
1908 * Ensure we get a fresh copy of the ->key to prevent
1909 * race between exiting task and queue
1910 */
1911 smp_read_barrier_depends();
1912 if (cic->key)
1913 __cfq_exit_single_io_context(cfqd, cic);
1914
4ac845a2 1915 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1916 }
1da177e4
LT
1917}
1918
498d3aa2
JA
1919/*
1920 * The process that ioc belongs to has exited, we need to clean up
1921 * and put the internal structures we have that belongs to that process.
1922 */
e2d74ac0 1923static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1924{
4ac845a2 1925 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1926}
1927
22e2c507 1928static struct cfq_io_context *
8267e268 1929cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1930{
b5deef90 1931 struct cfq_io_context *cic;
1da177e4 1932
94f6030c
CL
1933 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1934 cfqd->queue->node);
1da177e4 1935 if (cic) {
22e2c507 1936 cic->last_end_request = jiffies;
553698f9 1937 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1938 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1939 cic->dtor = cfq_free_io_context;
1940 cic->exit = cfq_exit_io_context;
245b2e70 1941 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1942 }
1943
1944 return cic;
1945}
1946
fd0928df 1947static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1948{
1949 struct task_struct *tsk = current;
1950 int ioprio_class;
1951
3b18152c 1952 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1953 return;
1954
fd0928df 1955 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1956 switch (ioprio_class) {
fe094d98
JA
1957 default:
1958 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1959 case IOPRIO_CLASS_NONE:
1960 /*
6d63c275 1961 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1962 */
1963 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1964 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1965 break;
1966 case IOPRIO_CLASS_RT:
1967 cfqq->ioprio = task_ioprio(ioc);
1968 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1969 break;
1970 case IOPRIO_CLASS_BE:
1971 cfqq->ioprio = task_ioprio(ioc);
1972 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1973 break;
1974 case IOPRIO_CLASS_IDLE:
1975 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1976 cfqq->ioprio = 7;
1977 cfq_clear_cfqq_idle_window(cfqq);
1978 break;
22e2c507
JA
1979 }
1980
1981 /*
1982 * keep track of original prio settings in case we have to temporarily
1983 * elevate the priority of this queue
1984 */
1985 cfqq->org_ioprio = cfqq->ioprio;
1986 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1987 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1988}
1989
febffd61 1990static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1991{
478a82b0
AV
1992 struct cfq_data *cfqd = cic->key;
1993 struct cfq_queue *cfqq;
c1b707d2 1994 unsigned long flags;
35e6077c 1995
caaa5f9f
JA
1996 if (unlikely(!cfqd))
1997 return;
1998
c1b707d2 1999 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 2000
ff6657c6 2001 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2002 if (cfqq) {
2003 struct cfq_queue *new_cfqq;
ff6657c6
JA
2004 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2005 GFP_ATOMIC);
caaa5f9f 2006 if (new_cfqq) {
ff6657c6 2007 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2008 cfq_put_queue(cfqq);
2009 }
22e2c507 2010 }
caaa5f9f 2011
ff6657c6 2012 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2013 if (cfqq)
2014 cfq_mark_cfqq_prio_changed(cfqq);
2015
c1b707d2 2016 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2017}
2018
fc46379d 2019static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2020{
4ac845a2 2021 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2022 ioc->ioprio_changed = 0;
22e2c507
JA
2023}
2024
d5036d77 2025static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2026 pid_t pid, bool is_sync)
d5036d77
JA
2027{
2028 RB_CLEAR_NODE(&cfqq->rb_node);
2029 RB_CLEAR_NODE(&cfqq->p_node);
2030 INIT_LIST_HEAD(&cfqq->fifo);
2031
2032 atomic_set(&cfqq->ref, 0);
2033 cfqq->cfqd = cfqd;
2034
2035 cfq_mark_cfqq_prio_changed(cfqq);
2036
2037 if (is_sync) {
2038 if (!cfq_class_idle(cfqq))
2039 cfq_mark_cfqq_idle_window(cfqq);
2040 cfq_mark_cfqq_sync(cfqq);
2041 }
2042 cfqq->pid = pid;
2043}
2044
22e2c507 2045static struct cfq_queue *
a6151c3a 2046cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2047 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2048{
22e2c507 2049 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2050 struct cfq_io_context *cic;
22e2c507
JA
2051
2052retry:
4ac845a2 2053 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2054 /* cic always exists here */
2055 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2056
6118b70b
JA
2057 /*
2058 * Always try a new alloc if we fell back to the OOM cfqq
2059 * originally, since it should just be a temporary situation.
2060 */
2061 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2062 cfqq = NULL;
22e2c507
JA
2063 if (new_cfqq) {
2064 cfqq = new_cfqq;
2065 new_cfqq = NULL;
2066 } else if (gfp_mask & __GFP_WAIT) {
2067 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2068 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2069 gfp_mask | __GFP_ZERO,
94f6030c 2070 cfqd->queue->node);
22e2c507 2071 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2072 if (new_cfqq)
2073 goto retry;
22e2c507 2074 } else {
94f6030c
CL
2075 cfqq = kmem_cache_alloc_node(cfq_pool,
2076 gfp_mask | __GFP_ZERO,
2077 cfqd->queue->node);
22e2c507
JA
2078 }
2079
6118b70b
JA
2080 if (cfqq) {
2081 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2082 cfq_init_prio_data(cfqq, ioc);
2083 cfq_log_cfqq(cfqd, cfqq, "alloced");
2084 } else
2085 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2086 }
2087
2088 if (new_cfqq)
2089 kmem_cache_free(cfq_pool, new_cfqq);
2090
22e2c507
JA
2091 return cfqq;
2092}
2093
c2dea2d1
VT
2094static struct cfq_queue **
2095cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2096{
fe094d98 2097 switch (ioprio_class) {
c2dea2d1
VT
2098 case IOPRIO_CLASS_RT:
2099 return &cfqd->async_cfqq[0][ioprio];
2100 case IOPRIO_CLASS_BE:
2101 return &cfqd->async_cfqq[1][ioprio];
2102 case IOPRIO_CLASS_IDLE:
2103 return &cfqd->async_idle_cfqq;
2104 default:
2105 BUG();
2106 }
2107}
2108
15c31be4 2109static struct cfq_queue *
a6151c3a 2110cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2111 gfp_t gfp_mask)
2112{
fd0928df
JA
2113 const int ioprio = task_ioprio(ioc);
2114 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2115 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2116 struct cfq_queue *cfqq = NULL;
2117
c2dea2d1
VT
2118 if (!is_sync) {
2119 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2120 cfqq = *async_cfqq;
2121 }
2122
6118b70b 2123 if (!cfqq)
fd0928df 2124 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2125
2126 /*
2127 * pin the queue now that it's allocated, scheduler exit will prune it
2128 */
c2dea2d1 2129 if (!is_sync && !(*async_cfqq)) {
15c31be4 2130 atomic_inc(&cfqq->ref);
c2dea2d1 2131 *async_cfqq = cfqq;
15c31be4
JA
2132 }
2133
2134 atomic_inc(&cfqq->ref);
2135 return cfqq;
2136}
2137
498d3aa2
JA
2138/*
2139 * We drop cfq io contexts lazily, so we may find a dead one.
2140 */
dbecf3ab 2141static void
4ac845a2
JA
2142cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2143 struct cfq_io_context *cic)
dbecf3ab 2144{
4ac845a2
JA
2145 unsigned long flags;
2146
fc46379d 2147 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2148
4ac845a2
JA
2149 spin_lock_irqsave(&ioc->lock, flags);
2150
4faa3c81 2151 BUG_ON(ioc->ioc_data == cic);
597bc485 2152
4ac845a2 2153 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2154 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2155 spin_unlock_irqrestore(&ioc->lock, flags);
2156
2157 cfq_cic_free(cic);
dbecf3ab
OH
2158}
2159
e2d74ac0 2160static struct cfq_io_context *
4ac845a2 2161cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2162{
e2d74ac0 2163 struct cfq_io_context *cic;
d6de8be7 2164 unsigned long flags;
4ac845a2 2165 void *k;
e2d74ac0 2166
91fac317
VT
2167 if (unlikely(!ioc))
2168 return NULL;
2169
d6de8be7
JA
2170 rcu_read_lock();
2171
597bc485
JA
2172 /*
2173 * we maintain a last-hit cache, to avoid browsing over the tree
2174 */
4ac845a2 2175 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2176 if (cic && cic->key == cfqd) {
2177 rcu_read_unlock();
597bc485 2178 return cic;
d6de8be7 2179 }
597bc485 2180
4ac845a2 2181 do {
4ac845a2
JA
2182 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2183 rcu_read_unlock();
2184 if (!cic)
2185 break;
be3b0753
OH
2186 /* ->key must be copied to avoid race with cfq_exit_queue() */
2187 k = cic->key;
2188 if (unlikely(!k)) {
4ac845a2 2189 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2190 rcu_read_lock();
4ac845a2 2191 continue;
dbecf3ab 2192 }
e2d74ac0 2193
d6de8be7 2194 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2195 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2196 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2197 break;
2198 } while (1);
e2d74ac0 2199
4ac845a2 2200 return cic;
e2d74ac0
JA
2201}
2202
4ac845a2
JA
2203/*
2204 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2205 * the process specific cfq io context when entered from the block layer.
2206 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2207 */
febffd61
JA
2208static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2209 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2210{
0261d688 2211 unsigned long flags;
4ac845a2 2212 int ret;
e2d74ac0 2213
4ac845a2
JA
2214 ret = radix_tree_preload(gfp_mask);
2215 if (!ret) {
2216 cic->ioc = ioc;
2217 cic->key = cfqd;
e2d74ac0 2218
4ac845a2
JA
2219 spin_lock_irqsave(&ioc->lock, flags);
2220 ret = radix_tree_insert(&ioc->radix_root,
2221 (unsigned long) cfqd, cic);
ffc4e759
JA
2222 if (!ret)
2223 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2224 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2225
4ac845a2
JA
2226 radix_tree_preload_end();
2227
2228 if (!ret) {
2229 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2230 list_add(&cic->queue_list, &cfqd->cic_list);
2231 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2232 }
e2d74ac0
JA
2233 }
2234
4ac845a2
JA
2235 if (ret)
2236 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2237
4ac845a2 2238 return ret;
e2d74ac0
JA
2239}
2240
1da177e4
LT
2241/*
2242 * Setup general io context and cfq io context. There can be several cfq
2243 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2244 * than one device managed by cfq.
1da177e4
LT
2245 */
2246static struct cfq_io_context *
e2d74ac0 2247cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2248{
22e2c507 2249 struct io_context *ioc = NULL;
1da177e4 2250 struct cfq_io_context *cic;
1da177e4 2251
22e2c507 2252 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2253
b5deef90 2254 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2255 if (!ioc)
2256 return NULL;
2257
4ac845a2 2258 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2259 if (cic)
2260 goto out;
1da177e4 2261
e2d74ac0
JA
2262 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2263 if (cic == NULL)
2264 goto err;
1da177e4 2265
4ac845a2
JA
2266 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2267 goto err_free;
2268
1da177e4 2269out:
fc46379d
JA
2270 smp_read_barrier_depends();
2271 if (unlikely(ioc->ioprio_changed))
2272 cfq_ioc_set_ioprio(ioc);
2273
1da177e4 2274 return cic;
4ac845a2
JA
2275err_free:
2276 cfq_cic_free(cic);
1da177e4
LT
2277err:
2278 put_io_context(ioc);
2279 return NULL;
2280}
2281
22e2c507
JA
2282static void
2283cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2284{
aaf1228d
JA
2285 unsigned long elapsed = jiffies - cic->last_end_request;
2286 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2287
22e2c507
JA
2288 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2289 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2290 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2291}
1da177e4 2292
206dc69b 2293static void
b2c18e1e 2294cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2295 struct request *rq)
206dc69b
JA
2296{
2297 sector_t sdist;
2298 u64 total;
2299
b2c18e1e 2300 if (!cfqq->last_request_pos)
4d00aa47 2301 sdist = 0;
b2c18e1e
JM
2302 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2303 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2304 else
b2c18e1e 2305 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2306
2307 /*
2308 * Don't allow the seek distance to get too large from the
2309 * odd fragment, pagein, etc
2310 */
b2c18e1e
JM
2311 if (cfqq->seek_samples <= 60) /* second&third seek */
2312 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2313 else
b2c18e1e 2314 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2315
b2c18e1e
JM
2316 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2317 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2318 total = cfqq->seek_total + (cfqq->seek_samples/2);
2319 do_div(total, cfqq->seek_samples);
2320 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2321
2322 /*
2323 * If this cfqq is shared between multiple processes, check to
2324 * make sure that those processes are still issuing I/Os within
2325 * the mean seek distance. If not, it may be time to break the
2326 * queues apart again.
2327 */
2328 if (cfq_cfqq_coop(cfqq)) {
2329 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2330 cfqq->seeky_start = jiffies;
2331 else if (!CFQQ_SEEKY(cfqq))
2332 cfqq->seeky_start = 0;
2333 }
206dc69b 2334}
1da177e4 2335
22e2c507
JA
2336/*
2337 * Disable idle window if the process thinks too long or seeks so much that
2338 * it doesn't matter
2339 */
2340static void
2341cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2342 struct cfq_io_context *cic)
2343{
7b679138 2344 int old_idle, enable_idle;
1be92f2f 2345
0871714e
JA
2346 /*
2347 * Don't idle for async or idle io prio class
2348 */
2349 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2350 return;
2351
c265a7f4 2352 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2353
66dac98e 2354 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
718eee05 2355 (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2356 enable_idle = 0;
2357 else if (sample_valid(cic->ttime_samples)) {
718eee05 2358 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2359 enable_idle = 0;
2360 else
2361 enable_idle = 1;
1da177e4
LT
2362 }
2363
7b679138
JA
2364 if (old_idle != enable_idle) {
2365 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2366 if (enable_idle)
2367 cfq_mark_cfqq_idle_window(cfqq);
2368 else
2369 cfq_clear_cfqq_idle_window(cfqq);
2370 }
22e2c507 2371}
1da177e4 2372
22e2c507
JA
2373/*
2374 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2375 * no or if we aren't sure, a 1 will cause a preempt.
2376 */
a6151c3a 2377static bool
22e2c507 2378cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2379 struct request *rq)
22e2c507 2380{
6d048f53 2381 struct cfq_queue *cfqq;
22e2c507 2382
6d048f53
JA
2383 cfqq = cfqd->active_queue;
2384 if (!cfqq)
a6151c3a 2385 return false;
22e2c507 2386
6d048f53 2387 if (cfq_slice_used(cfqq))
a6151c3a 2388 return true;
6d048f53
JA
2389
2390 if (cfq_class_idle(new_cfqq))
a6151c3a 2391 return false;
22e2c507
JA
2392
2393 if (cfq_class_idle(cfqq))
a6151c3a 2394 return true;
1e3335de 2395
718eee05
CZ
2396 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD
2397 && new_cfqq->service_tree == cfqq->service_tree)
2398 return true;
2399
374f84ac
JA
2400 /*
2401 * if the new request is sync, but the currently running queue is
2402 * not, let the sync request have priority.
2403 */
5e705374 2404 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2405 return true;
1e3335de 2406
374f84ac
JA
2407 /*
2408 * So both queues are sync. Let the new request get disk time if
2409 * it's a metadata request and the current queue is doing regular IO.
2410 */
2411 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2412 return true;
22e2c507 2413
3a9a3f6c
DS
2414 /*
2415 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2416 */
2417 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2418 return true;
3a9a3f6c 2419
1e3335de 2420 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2421 return false;
1e3335de
JA
2422
2423 /*
2424 * if this request is as-good as one we would expect from the
2425 * current cfqq, let it preempt
2426 */
e00ef799 2427 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2428 return true;
1e3335de 2429
a6151c3a 2430 return false;
22e2c507
JA
2431}
2432
2433/*
2434 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2435 * let it have half of its nominal slice.
2436 */
2437static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2438{
7b679138 2439 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2440 cfq_slice_expired(cfqd, 1);
22e2c507 2441
bf572256
JA
2442 /*
2443 * Put the new queue at the front of the of the current list,
2444 * so we know that it will be selected next.
2445 */
2446 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2447
2448 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2449
44f7c160
JA
2450 cfqq->slice_end = 0;
2451 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2452}
2453
22e2c507 2454/*
5e705374 2455 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2456 * something we should do about it
2457 */
2458static void
5e705374
JA
2459cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2460 struct request *rq)
22e2c507 2461{
5e705374 2462 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2463
45333d5a 2464 cfqd->rq_queued++;
374f84ac
JA
2465 if (rq_is_meta(rq))
2466 cfqq->meta_pending++;
2467
9c2c38a1 2468 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2469 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2470 cfq_update_idle_window(cfqd, cfqq, cic);
2471
b2c18e1e 2472 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2473
2474 if (cfqq == cfqd->active_queue) {
2475 /*
b029195d
JA
2476 * Remember that we saw a request from this process, but
2477 * don't start queuing just yet. Otherwise we risk seeing lots
2478 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2479 * and merging. If the request is already larger than a single
2480 * page, let it rip immediately. For that case we assume that
2d870722
JA
2481 * merging is already done. Ditto for a busy system that
2482 * has other work pending, don't risk delaying until the
2483 * idle timer unplug to continue working.
22e2c507 2484 */
d6ceb25e 2485 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2486 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2487 cfqd->busy_queues > 1) {
d6ceb25e 2488 del_timer(&cfqd->idle_slice_timer);
a7f55792 2489 __blk_run_queue(cfqd->queue);
d6ceb25e 2490 }
b029195d 2491 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2492 }
5e705374 2493 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2494 /*
2495 * not the active queue - expire current slice if it is
2496 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2497 * has some old slice time left and is of higher priority or
2498 * this new queue is RT and the current one is BE
22e2c507
JA
2499 */
2500 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2501 __blk_run_queue(cfqd->queue);
22e2c507 2502 }
1da177e4
LT
2503}
2504
165125e1 2505static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2506{
b4878f24 2507 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2508 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2509
7b679138 2510 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2511 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2512
30996f40 2513 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2514 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2515 cfq_add_rq_rb(rq);
22e2c507 2516
5e705374 2517 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2518}
2519
45333d5a
AC
2520/*
2521 * Update hw_tag based on peak queue depth over 50 samples under
2522 * sufficient load.
2523 */
2524static void cfq_update_hw_tag(struct cfq_data *cfqd)
2525{
1a1238a7
SL
2526 struct cfq_queue *cfqq = cfqd->active_queue;
2527
5ad531db
JA
2528 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2529 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2530
2531 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2532 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2533 return;
2534
1a1238a7
SL
2535 /*
2536 * If active queue hasn't enough requests and can idle, cfq might not
2537 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2538 * case
2539 */
2540 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2541 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2542 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2543 return;
2544
45333d5a
AC
2545 if (cfqd->hw_tag_samples++ < 50)
2546 return;
2547
2548 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2549 cfqd->hw_tag = 1;
2550 else
2551 cfqd->hw_tag = 0;
2552
2553 cfqd->hw_tag_samples = 0;
2554 cfqd->rq_in_driver_peak = 0;
2555}
2556
165125e1 2557static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2558{
5e705374 2559 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2560 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2561 const int sync = rq_is_sync(rq);
b4878f24 2562 unsigned long now;
1da177e4 2563
b4878f24 2564 now = jiffies;
7b679138 2565 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2566
45333d5a
AC
2567 cfq_update_hw_tag(cfqd);
2568
5ad531db 2569 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2570 WARN_ON(!cfqq->dispatched);
5ad531db 2571 cfqd->rq_in_driver[sync]--;
6d048f53 2572 cfqq->dispatched--;
1da177e4 2573
3ed9a296
JA
2574 if (cfq_cfqq_sync(cfqq))
2575 cfqd->sync_flight--;
2576
365722bb 2577 if (sync) {
5e705374 2578 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2579 cfqd->last_end_sync_rq = now;
2580 }
caaa5f9f
JA
2581
2582 /*
2583 * If this is the active queue, check if it needs to be expired,
2584 * or if we want to idle in case it has no pending requests.
2585 */
2586 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2587 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2588
44f7c160
JA
2589 if (cfq_cfqq_slice_new(cfqq)) {
2590 cfq_set_prio_slice(cfqd, cfqq);
2591 cfq_clear_cfqq_slice_new(cfqq);
2592 }
a36e71f9
JA
2593 /*
2594 * If there are no requests waiting in this queue, and
2595 * there are other queues ready to issue requests, AND
2596 * those other queues are issuing requests within our
2597 * mean seek distance, give them a chance to run instead
2598 * of idling.
2599 */
0871714e 2600 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2601 cfq_slice_expired(cfqd, 1);
b3b6d040 2602 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
a36e71f9 2603 sync && !rq_noidle(rq))
6d048f53 2604 cfq_arm_slice_timer(cfqd);
caaa5f9f 2605 }
6d048f53 2606
5ad531db 2607 if (!rq_in_driver(cfqd))
23e018a1 2608 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2609}
2610
22e2c507
JA
2611/*
2612 * we temporarily boost lower priority queues if they are holding fs exclusive
2613 * resources. they are boosted to normal prio (CLASS_BE/4)
2614 */
2615static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2616{
22e2c507
JA
2617 if (has_fs_excl()) {
2618 /*
2619 * boost idle prio on transactions that would lock out other
2620 * users of the filesystem
2621 */
2622 if (cfq_class_idle(cfqq))
2623 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2624 if (cfqq->ioprio > IOPRIO_NORM)
2625 cfqq->ioprio = IOPRIO_NORM;
2626 } else {
2627 /*
dddb7451 2628 * unboost the queue (if needed)
22e2c507 2629 */
dddb7451
CZ
2630 cfqq->ioprio_class = cfqq->org_ioprio_class;
2631 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2632 }
22e2c507 2633}
1da177e4 2634
89850f7e 2635static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2636{
1b379d8d 2637 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2638 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2639 return ELV_MQUEUE_MUST;
3b18152c 2640 }
1da177e4 2641
22e2c507 2642 return ELV_MQUEUE_MAY;
22e2c507
JA
2643}
2644
165125e1 2645static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2646{
2647 struct cfq_data *cfqd = q->elevator->elevator_data;
2648 struct task_struct *tsk = current;
91fac317 2649 struct cfq_io_context *cic;
22e2c507
JA
2650 struct cfq_queue *cfqq;
2651
2652 /*
2653 * don't force setup of a queue from here, as a call to may_queue
2654 * does not necessarily imply that a request actually will be queued.
2655 * so just lookup a possibly existing queue, or return 'may queue'
2656 * if that fails
2657 */
4ac845a2 2658 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2659 if (!cic)
2660 return ELV_MQUEUE_MAY;
2661
b0b78f81 2662 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2663 if (cfqq) {
fd0928df 2664 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2665 cfq_prio_boost(cfqq);
2666
89850f7e 2667 return __cfq_may_queue(cfqq);
22e2c507
JA
2668 }
2669
2670 return ELV_MQUEUE_MAY;
1da177e4
LT
2671}
2672
1da177e4
LT
2673/*
2674 * queue lock held here
2675 */
bb37b94c 2676static void cfq_put_request(struct request *rq)
1da177e4 2677{
5e705374 2678 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2679
5e705374 2680 if (cfqq) {
22e2c507 2681 const int rw = rq_data_dir(rq);
1da177e4 2682
22e2c507
JA
2683 BUG_ON(!cfqq->allocated[rw]);
2684 cfqq->allocated[rw]--;
1da177e4 2685
5e705374 2686 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2687
1da177e4 2688 rq->elevator_private = NULL;
5e705374 2689 rq->elevator_private2 = NULL;
1da177e4 2690
1da177e4
LT
2691 cfq_put_queue(cfqq);
2692 }
2693}
2694
df5fe3e8
JM
2695static struct cfq_queue *
2696cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2697 struct cfq_queue *cfqq)
2698{
2699 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2700 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2701 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2702 cfq_put_queue(cfqq);
2703 return cic_to_cfqq(cic, 1);
2704}
2705
e6c5bc73
JM
2706static int should_split_cfqq(struct cfq_queue *cfqq)
2707{
2708 if (cfqq->seeky_start &&
2709 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2710 return 1;
2711 return 0;
2712}
2713
2714/*
2715 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2716 * was the last process referring to said cfqq.
2717 */
2718static struct cfq_queue *
2719split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2720{
2721 if (cfqq_process_refs(cfqq) == 1) {
2722 cfqq->seeky_start = 0;
2723 cfqq->pid = current->pid;
2724 cfq_clear_cfqq_coop(cfqq);
2725 return cfqq;
2726 }
2727
2728 cic_set_cfqq(cic, NULL, 1);
2729 cfq_put_queue(cfqq);
2730 return NULL;
2731}
1da177e4 2732/*
22e2c507 2733 * Allocate cfq data structures associated with this request.
1da177e4 2734 */
22e2c507 2735static int
165125e1 2736cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2737{
2738 struct cfq_data *cfqd = q->elevator->elevator_data;
2739 struct cfq_io_context *cic;
2740 const int rw = rq_data_dir(rq);
a6151c3a 2741 const bool is_sync = rq_is_sync(rq);
22e2c507 2742 struct cfq_queue *cfqq;
1da177e4
LT
2743 unsigned long flags;
2744
2745 might_sleep_if(gfp_mask & __GFP_WAIT);
2746
e2d74ac0 2747 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2748
1da177e4
LT
2749 spin_lock_irqsave(q->queue_lock, flags);
2750
22e2c507
JA
2751 if (!cic)
2752 goto queue_fail;
2753
e6c5bc73 2754new_queue:
91fac317 2755 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2756 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2757 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2758 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2759 } else {
e6c5bc73
JM
2760 /*
2761 * If the queue was seeky for too long, break it apart.
2762 */
2763 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2764 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2765 cfqq = split_cfqq(cic, cfqq);
2766 if (!cfqq)
2767 goto new_queue;
2768 }
2769
df5fe3e8
JM
2770 /*
2771 * Check to see if this queue is scheduled to merge with
2772 * another, closely cooperating queue. The merging of
2773 * queues happens here as it must be done in process context.
2774 * The reference on new_cfqq was taken in merge_cfqqs.
2775 */
2776 if (cfqq->new_cfqq)
2777 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2778 }
1da177e4
LT
2779
2780 cfqq->allocated[rw]++;
22e2c507 2781 atomic_inc(&cfqq->ref);
1da177e4 2782
5e705374 2783 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2784
5e705374
JA
2785 rq->elevator_private = cic;
2786 rq->elevator_private2 = cfqq;
2787 return 0;
1da177e4 2788
22e2c507
JA
2789queue_fail:
2790 if (cic)
2791 put_io_context(cic->ioc);
89850f7e 2792
23e018a1 2793 cfq_schedule_dispatch(cfqd);
1da177e4 2794 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2795 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2796 return 1;
2797}
2798
65f27f38 2799static void cfq_kick_queue(struct work_struct *work)
22e2c507 2800{
65f27f38 2801 struct cfq_data *cfqd =
23e018a1 2802 container_of(work, struct cfq_data, unplug_work);
165125e1 2803 struct request_queue *q = cfqd->queue;
22e2c507 2804
40bb54d1 2805 spin_lock_irq(q->queue_lock);
a7f55792 2806 __blk_run_queue(cfqd->queue);
40bb54d1 2807 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2808}
2809
2810/*
2811 * Timer running if the active_queue is currently idling inside its time slice
2812 */
2813static void cfq_idle_slice_timer(unsigned long data)
2814{
2815 struct cfq_data *cfqd = (struct cfq_data *) data;
2816 struct cfq_queue *cfqq;
2817 unsigned long flags;
3c6bd2f8 2818 int timed_out = 1;
22e2c507 2819
7b679138
JA
2820 cfq_log(cfqd, "idle timer fired");
2821
22e2c507
JA
2822 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2823
fe094d98
JA
2824 cfqq = cfqd->active_queue;
2825 if (cfqq) {
3c6bd2f8
JA
2826 timed_out = 0;
2827
b029195d
JA
2828 /*
2829 * We saw a request before the queue expired, let it through
2830 */
2831 if (cfq_cfqq_must_dispatch(cfqq))
2832 goto out_kick;
2833
22e2c507
JA
2834 /*
2835 * expired
2836 */
44f7c160 2837 if (cfq_slice_used(cfqq))
22e2c507
JA
2838 goto expire;
2839
2840 /*
2841 * only expire and reinvoke request handler, if there are
2842 * other queues with pending requests
2843 */
caaa5f9f 2844 if (!cfqd->busy_queues)
22e2c507 2845 goto out_cont;
22e2c507
JA
2846
2847 /*
2848 * not expired and it has a request pending, let it dispatch
2849 */
75e50984 2850 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2851 goto out_kick;
22e2c507
JA
2852 }
2853expire:
6084cdda 2854 cfq_slice_expired(cfqd, timed_out);
22e2c507 2855out_kick:
23e018a1 2856 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2857out_cont:
2858 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2859}
2860
3b18152c
JA
2861static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2862{
2863 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2864 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2865}
22e2c507 2866
c2dea2d1
VT
2867static void cfq_put_async_queues(struct cfq_data *cfqd)
2868{
2869 int i;
2870
2871 for (i = 0; i < IOPRIO_BE_NR; i++) {
2872 if (cfqd->async_cfqq[0][i])
2873 cfq_put_queue(cfqd->async_cfqq[0][i]);
2874 if (cfqd->async_cfqq[1][i])
2875 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2876 }
2389d1ef
ON
2877
2878 if (cfqd->async_idle_cfqq)
2879 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2880}
2881
b374d18a 2882static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2883{
22e2c507 2884 struct cfq_data *cfqd = e->elevator_data;
165125e1 2885 struct request_queue *q = cfqd->queue;
22e2c507 2886
3b18152c 2887 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2888
d9ff4187 2889 spin_lock_irq(q->queue_lock);
e2d74ac0 2890
d9ff4187 2891 if (cfqd->active_queue)
6084cdda 2892 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2893
2894 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2895 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2896 struct cfq_io_context,
2897 queue_list);
89850f7e
JA
2898
2899 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2900 }
e2d74ac0 2901
c2dea2d1 2902 cfq_put_async_queues(cfqd);
15c31be4 2903
d9ff4187 2904 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2905
2906 cfq_shutdown_timer_wq(cfqd);
2907
a90d742e 2908 kfree(cfqd);
1da177e4
LT
2909}
2910
165125e1 2911static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2912{
2913 struct cfq_data *cfqd;
718eee05 2914 int i, j;
1da177e4 2915
94f6030c 2916 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2917 if (!cfqd)
bc1c1169 2918 return NULL;
1da177e4 2919
c0324a02 2920 for (i = 0; i < 2; ++i)
718eee05
CZ
2921 for (j = 0; j < 3; ++j)
2922 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
c0324a02 2923 cfqd->service_tree_idle = CFQ_RB_ROOT;
26a2ac00
JA
2924
2925 /*
2926 * Not strictly needed (since RB_ROOT just clears the node and we
2927 * zeroed cfqd on alloc), but better be safe in case someone decides
2928 * to add magic to the rb code
2929 */
2930 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2931 cfqd->prio_trees[i] = RB_ROOT;
2932
6118b70b
JA
2933 /*
2934 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2935 * Grab a permanent reference to it, so that the normal code flow
2936 * will not attempt to free it.
2937 */
2938 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2939 atomic_inc(&cfqd->oom_cfqq.ref);
2940
d9ff4187 2941 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2942
1da177e4 2943 cfqd->queue = q;
1da177e4 2944
22e2c507
JA
2945 init_timer(&cfqd->idle_slice_timer);
2946 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2947 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2948
23e018a1 2949 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2950
1da177e4 2951 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2952 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2953 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2954 cfqd->cfq_back_max = cfq_back_max;
2955 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2956 cfqd->cfq_slice[0] = cfq_slice_async;
2957 cfqd->cfq_slice[1] = cfq_slice_sync;
2958 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2959 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2960 cfqd->cfq_latency = 1;
45333d5a 2961 cfqd->hw_tag = 1;
365722bb 2962 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2963 return cfqd;
1da177e4
LT
2964}
2965
2966static void cfq_slab_kill(void)
2967{
d6de8be7
JA
2968 /*
2969 * Caller already ensured that pending RCU callbacks are completed,
2970 * so we should have no busy allocations at this point.
2971 */
1da177e4
LT
2972 if (cfq_pool)
2973 kmem_cache_destroy(cfq_pool);
2974 if (cfq_ioc_pool)
2975 kmem_cache_destroy(cfq_ioc_pool);
2976}
2977
2978static int __init cfq_slab_setup(void)
2979{
0a31bd5f 2980 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2981 if (!cfq_pool)
2982 goto fail;
2983
34e6bbf2 2984 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2985 if (!cfq_ioc_pool)
2986 goto fail;
2987
2988 return 0;
2989fail:
2990 cfq_slab_kill();
2991 return -ENOMEM;
2992}
2993
1da177e4
LT
2994/*
2995 * sysfs parts below -->
2996 */
1da177e4
LT
2997static ssize_t
2998cfq_var_show(unsigned int var, char *page)
2999{
3000 return sprintf(page, "%d\n", var);
3001}
3002
3003static ssize_t
3004cfq_var_store(unsigned int *var, const char *page, size_t count)
3005{
3006 char *p = (char *) page;
3007
3008 *var = simple_strtoul(p, &p, 10);
3009 return count;
3010}
3011
1da177e4 3012#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3013static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3014{ \
3d1ab40f 3015 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3016 unsigned int __data = __VAR; \
3017 if (__CONV) \
3018 __data = jiffies_to_msecs(__data); \
3019 return cfq_var_show(__data, (page)); \
3020}
3021SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3022SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3023SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3024SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3025SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3026SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3027SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3028SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3029SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3030SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3031#undef SHOW_FUNCTION
3032
3033#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3034static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3035{ \
3d1ab40f 3036 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3037 unsigned int __data; \
3038 int ret = cfq_var_store(&__data, (page), count); \
3039 if (__data < (MIN)) \
3040 __data = (MIN); \
3041 else if (__data > (MAX)) \
3042 __data = (MAX); \
3043 if (__CONV) \
3044 *(__PTR) = msecs_to_jiffies(__data); \
3045 else \
3046 *(__PTR) = __data; \
3047 return ret; \
3048}
3049STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3050STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3051 UINT_MAX, 1);
3052STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3053 UINT_MAX, 1);
e572ec7e 3054STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3055STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3056 UINT_MAX, 0);
22e2c507
JA
3057STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3058STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3059STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3060STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3061 UINT_MAX, 0);
963b72fc 3062STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3063#undef STORE_FUNCTION
3064
e572ec7e
AV
3065#define CFQ_ATTR(name) \
3066 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3067
3068static struct elv_fs_entry cfq_attrs[] = {
3069 CFQ_ATTR(quantum),
e572ec7e
AV
3070 CFQ_ATTR(fifo_expire_sync),
3071 CFQ_ATTR(fifo_expire_async),
3072 CFQ_ATTR(back_seek_max),
3073 CFQ_ATTR(back_seek_penalty),
3074 CFQ_ATTR(slice_sync),
3075 CFQ_ATTR(slice_async),
3076 CFQ_ATTR(slice_async_rq),
3077 CFQ_ATTR(slice_idle),
963b72fc 3078 CFQ_ATTR(low_latency),
e572ec7e 3079 __ATTR_NULL
1da177e4
LT
3080};
3081
1da177e4
LT
3082static struct elevator_type iosched_cfq = {
3083 .ops = {
3084 .elevator_merge_fn = cfq_merge,
3085 .elevator_merged_fn = cfq_merged_request,
3086 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3087 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3088 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3089 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3090 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3091 .elevator_deactivate_req_fn = cfq_deactivate_request,
3092 .elevator_queue_empty_fn = cfq_queue_empty,
3093 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3094 .elevator_former_req_fn = elv_rb_former_request,
3095 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3096 .elevator_set_req_fn = cfq_set_request,
3097 .elevator_put_req_fn = cfq_put_request,
3098 .elevator_may_queue_fn = cfq_may_queue,
3099 .elevator_init_fn = cfq_init_queue,
3100 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3101 .trim = cfq_free_io_context,
1da177e4 3102 },
3d1ab40f 3103 .elevator_attrs = cfq_attrs,
1da177e4
LT
3104 .elevator_name = "cfq",
3105 .elevator_owner = THIS_MODULE,
3106};
3107
3108static int __init cfq_init(void)
3109{
22e2c507
JA
3110 /*
3111 * could be 0 on HZ < 1000 setups
3112 */
3113 if (!cfq_slice_async)
3114 cfq_slice_async = 1;
3115 if (!cfq_slice_idle)
3116 cfq_slice_idle = 1;
3117
1da177e4
LT
3118 if (cfq_slab_setup())
3119 return -ENOMEM;
3120
2fdd82bd 3121 elv_register(&iosched_cfq);
1da177e4 3122
2fdd82bd 3123 return 0;
1da177e4
LT
3124}
3125
3126static void __exit cfq_exit(void)
3127{
6e9a4738 3128 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3129 elv_unregister(&iosched_cfq);
334e94de 3130 ioc_gone = &all_gone;
fba82272
OH
3131 /* ioc_gone's update must be visible before reading ioc_count */
3132 smp_wmb();
d6de8be7
JA
3133
3134 /*
3135 * this also protects us from entering cfq_slab_kill() with
3136 * pending RCU callbacks
3137 */
245b2e70 3138 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3139 wait_for_completion(&all_gone);
83521d3e 3140 cfq_slab_kill();
1da177e4
LT
3141}
3142
3143module_init(cfq_init);
3144module_exit(cfq_exit);
3145
3146MODULE_AUTHOR("Jens Axboe");
3147MODULE_LICENSE("GPL");
3148MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");