cfq-iosched: fix issue with rq-rq merging and fifo list ordering
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
245b2e70 51static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
6118b70b
JA
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116};
117
22e2c507
JA
118/*
119 * Per block device queue structure
120 */
1da177e4 121struct cfq_data {
165125e1 122 struct request_queue *queue;
22e2c507
JA
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
cc09e299 127 struct cfq_rb_root service_tree;
a36e71f9
JA
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
22e2c507
JA
136 unsigned int busy_queues;
137
5ad531db 138 int rq_in_driver[2];
3ed9a296 139 int sync_flight;
45333d5a
AC
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
25776e35 145 int hw_tag;
45333d5a
AC
146 int hw_tag_samples;
147 int rq_in_driver_peak;
1da177e4 148
22e2c507
JA
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
8e296755 153 struct delayed_work unplug_work;
1da177e4 154
22e2c507
JA
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
22e2c507 157
c2dea2d1
VT
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
15c31be4 163
6d048f53 164 sector_t last_position;
1da177e4 165
1da177e4
LT
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
22e2c507 170 unsigned int cfq_fifo_expire[2];
1da177e4
LT
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
22e2c507
JA
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
963b72fc 176 unsigned int cfq_latency;
d9ff4187
AV
177
178 struct list_head cic_list;
1da177e4 179
6118b70b
JA
180 /*
181 * Fallback dummy cfqq for extreme OOM conditions
182 */
183 struct cfq_queue oom_cfqq;
365722bb
VG
184
185 unsigned long last_end_sync_rq;
1da177e4
LT
186};
187
3b18152c 188enum cfqq_state_flags {
b0b8d749
JA
189 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 191 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 192 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
193 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 196 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 197 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 198 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
199};
200
201#define CFQ_CFQQ_FNS(name) \
202static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
203{ \
fe094d98 204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
205} \
206static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
207{ \
fe094d98 208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
209} \
210static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
211{ \
fe094d98 212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
213}
214
215CFQ_CFQQ_FNS(on_rr);
216CFQ_CFQQ_FNS(wait_request);
b029195d 217CFQ_CFQQ_FNS(must_dispatch);
3b18152c 218CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
219CFQ_CFQQ_FNS(fifo_expire);
220CFQ_CFQQ_FNS(idle_window);
221CFQ_CFQQ_FNS(prio_changed);
44f7c160 222CFQ_CFQQ_FNS(slice_new);
91fac317 223CFQ_CFQQ_FNS(sync);
a36e71f9 224CFQ_CFQQ_FNS(coop);
3b18152c
JA
225#undef CFQ_CFQQ_FNS
226
7b679138
JA
227#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229#define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
165125e1 232static void cfq_dispatch_insert(struct request_queue *, struct request *);
91fac317 233static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
fd0928df 234 struct io_context *, gfp_t);
4ac845a2 235static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
236 struct io_context *);
237
5ad531db
JA
238static inline int rq_in_driver(struct cfq_data *cfqd)
239{
240 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
241}
242
91fac317
VT
243static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
244 int is_sync)
245{
246 return cic->cfqq[!!is_sync];
247}
248
249static inline void cic_set_cfqq(struct cfq_io_context *cic,
250 struct cfq_queue *cfqq, int is_sync)
251{
252 cic->cfqq[!!is_sync] = cfqq;
253}
254
255/*
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
258 */
259static inline int cfq_bio_sync(struct bio *bio)
260{
1f98a13f 261 if (bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO))
91fac317
VT
262 return 1;
263
264 return 0;
265}
1da177e4 266
99f95e52
AM
267/*
268 * scheduler run of queue, if there are requests pending and no one in the
269 * driver that will restart queueing
270 */
8e296755
JA
271static inline void cfq_schedule_dispatch(struct cfq_data *cfqd,
272 unsigned long delay)
99f95e52 273{
7b679138
JA
274 if (cfqd->busy_queues) {
275 cfq_log(cfqd, "schedule dispatch");
8e296755
JA
276 kblockd_schedule_delayed_work(cfqd->queue, &cfqd->unplug_work,
277 delay);
7b679138 278 }
99f95e52
AM
279}
280
165125e1 281static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
282{
283 struct cfq_data *cfqd = q->elevator->elevator_data;
284
b4878f24 285 return !cfqd->busy_queues;
99f95e52
AM
286}
287
44f7c160
JA
288/*
289 * Scale schedule slice based on io priority. Use the sync time slice only
290 * if a queue is marked sync and has sync io queued. A sync queue with async
291 * io only, should not get full sync slice length.
292 */
d9e7620e
JA
293static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
294 unsigned short prio)
44f7c160 295{
d9e7620e 296 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 297
d9e7620e
JA
298 WARN_ON(prio >= IOPRIO_BE_NR);
299
300 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
301}
44f7c160 302
d9e7620e
JA
303static inline int
304cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
305{
306 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
307}
308
309static inline void
310cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
311{
312 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 313 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
314}
315
316/*
317 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
318 * isn't valid until the first request from the dispatch is activated
319 * and the slice time set.
320 */
321static inline int cfq_slice_used(struct cfq_queue *cfqq)
322{
323 if (cfq_cfqq_slice_new(cfqq))
324 return 0;
325 if (time_before(jiffies, cfqq->slice_end))
326 return 0;
327
328 return 1;
329}
330
1da177e4 331/*
5e705374 332 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 333 * We choose the request that is closest to the head right now. Distance
e8a99053 334 * behind the head is penalized and only allowed to a certain extent.
1da177e4 335 */
5e705374
JA
336static struct request *
337cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
338{
339 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 340 unsigned long back_max;
e8a99053
AM
341#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
342#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
343 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 344
5e705374
JA
345 if (rq1 == NULL || rq1 == rq2)
346 return rq2;
347 if (rq2 == NULL)
348 return rq1;
9c2c38a1 349
5e705374
JA
350 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
351 return rq1;
352 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
353 return rq2;
374f84ac
JA
354 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
355 return rq1;
356 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
357 return rq2;
1da177e4 358
83096ebf
TH
359 s1 = blk_rq_pos(rq1);
360 s2 = blk_rq_pos(rq2);
1da177e4 361
6d048f53 362 last = cfqd->last_position;
1da177e4 363
1da177e4
LT
364 /*
365 * by definition, 1KiB is 2 sectors
366 */
367 back_max = cfqd->cfq_back_max * 2;
368
369 /*
370 * Strict one way elevator _except_ in the case where we allow
371 * short backward seeks which are biased as twice the cost of a
372 * similar forward seek.
373 */
374 if (s1 >= last)
375 d1 = s1 - last;
376 else if (s1 + back_max >= last)
377 d1 = (last - s1) * cfqd->cfq_back_penalty;
378 else
e8a99053 379 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
380
381 if (s2 >= last)
382 d2 = s2 - last;
383 else if (s2 + back_max >= last)
384 d2 = (last - s2) * cfqd->cfq_back_penalty;
385 else
e8a99053 386 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
387
388 /* Found required data */
e8a99053
AM
389
390 /*
391 * By doing switch() on the bit mask "wrap" we avoid having to
392 * check two variables for all permutations: --> faster!
393 */
394 switch (wrap) {
5e705374 395 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 396 if (d1 < d2)
5e705374 397 return rq1;
e8a99053 398 else if (d2 < d1)
5e705374 399 return rq2;
e8a99053
AM
400 else {
401 if (s1 >= s2)
5e705374 402 return rq1;
e8a99053 403 else
5e705374 404 return rq2;
e8a99053 405 }
1da177e4 406
e8a99053 407 case CFQ_RQ2_WRAP:
5e705374 408 return rq1;
e8a99053 409 case CFQ_RQ1_WRAP:
5e705374
JA
410 return rq2;
411 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
412 default:
413 /*
414 * Since both rqs are wrapped,
415 * start with the one that's further behind head
416 * (--> only *one* back seek required),
417 * since back seek takes more time than forward.
418 */
419 if (s1 <= s2)
5e705374 420 return rq1;
1da177e4 421 else
5e705374 422 return rq2;
1da177e4
LT
423 }
424}
425
498d3aa2
JA
426/*
427 * The below is leftmost cache rbtree addon
428 */
0871714e 429static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
430{
431 if (!root->left)
432 root->left = rb_first(&root->rb);
433
0871714e
JA
434 if (root->left)
435 return rb_entry(root->left, struct cfq_queue, rb_node);
436
437 return NULL;
cc09e299
JA
438}
439
a36e71f9
JA
440static void rb_erase_init(struct rb_node *n, struct rb_root *root)
441{
442 rb_erase(n, root);
443 RB_CLEAR_NODE(n);
444}
445
cc09e299
JA
446static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
447{
448 if (root->left == n)
449 root->left = NULL;
a36e71f9 450 rb_erase_init(n, &root->rb);
cc09e299
JA
451}
452
1da177e4
LT
453/*
454 * would be nice to take fifo expire time into account as well
455 */
5e705374
JA
456static struct request *
457cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
458 struct request *last)
1da177e4 459{
21183b07
JA
460 struct rb_node *rbnext = rb_next(&last->rb_node);
461 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 462 struct request *next = NULL, *prev = NULL;
1da177e4 463
21183b07 464 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
465
466 if (rbprev)
5e705374 467 prev = rb_entry_rq(rbprev);
1da177e4 468
21183b07 469 if (rbnext)
5e705374 470 next = rb_entry_rq(rbnext);
21183b07
JA
471 else {
472 rbnext = rb_first(&cfqq->sort_list);
473 if (rbnext && rbnext != &last->rb_node)
5e705374 474 next = rb_entry_rq(rbnext);
21183b07 475 }
1da177e4 476
21183b07 477 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
478}
479
d9e7620e
JA
480static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
481 struct cfq_queue *cfqq)
1da177e4 482{
d9e7620e
JA
483 /*
484 * just an approximation, should be ok.
485 */
67e6b49e
JA
486 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
487 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
488}
489
498d3aa2
JA
490/*
491 * The cfqd->service_tree holds all pending cfq_queue's that have
492 * requests waiting to be processed. It is sorted in the order that
493 * we will service the queues.
494 */
a36e71f9
JA
495static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
496 int add_front)
d9e7620e 497{
0871714e
JA
498 struct rb_node **p, *parent;
499 struct cfq_queue *__cfqq;
d9e7620e 500 unsigned long rb_key;
498d3aa2 501 int left;
d9e7620e 502
0871714e
JA
503 if (cfq_class_idle(cfqq)) {
504 rb_key = CFQ_IDLE_DELAY;
505 parent = rb_last(&cfqd->service_tree.rb);
506 if (parent && parent != &cfqq->rb_node) {
507 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
508 rb_key += __cfqq->rb_key;
509 } else
510 rb_key += jiffies;
511 } else if (!add_front) {
edd75ffd
JA
512 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
513 rb_key += cfqq->slice_resid;
514 cfqq->slice_resid = 0;
515 } else
516 rb_key = 0;
1da177e4 517
d9e7620e 518 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 519 /*
d9e7620e 520 * same position, nothing more to do
99f9628a 521 */
d9e7620e
JA
522 if (rb_key == cfqq->rb_key)
523 return;
1da177e4 524
cc09e299 525 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 526 }
d9e7620e 527
498d3aa2 528 left = 1;
0871714e
JA
529 parent = NULL;
530 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 531 while (*p) {
67060e37 532 struct rb_node **n;
cc09e299 533
d9e7620e
JA
534 parent = *p;
535 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
536
0c534e0a
JA
537 /*
538 * sort RT queues first, we always want to give
67060e37
JA
539 * preference to them. IDLE queues goes to the back.
540 * after that, sort on the next service time.
0c534e0a
JA
541 */
542 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 543 n = &(*p)->rb_left;
0c534e0a 544 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
545 n = &(*p)->rb_right;
546 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
547 n = &(*p)->rb_left;
548 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
549 n = &(*p)->rb_right;
0c534e0a 550 else if (rb_key < __cfqq->rb_key)
67060e37
JA
551 n = &(*p)->rb_left;
552 else
553 n = &(*p)->rb_right;
554
555 if (n == &(*p)->rb_right)
cc09e299 556 left = 0;
67060e37
JA
557
558 p = n;
d9e7620e
JA
559 }
560
cc09e299
JA
561 if (left)
562 cfqd->service_tree.left = &cfqq->rb_node;
563
d9e7620e
JA
564 cfqq->rb_key = rb_key;
565 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 566 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
567}
568
a36e71f9 569static struct cfq_queue *
f2d1f0ae
JA
570cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
571 sector_t sector, struct rb_node **ret_parent,
572 struct rb_node ***rb_link)
a36e71f9 573{
a36e71f9
JA
574 struct rb_node **p, *parent;
575 struct cfq_queue *cfqq = NULL;
576
577 parent = NULL;
578 p = &root->rb_node;
579 while (*p) {
580 struct rb_node **n;
581
582 parent = *p;
583 cfqq = rb_entry(parent, struct cfq_queue, p_node);
584
585 /*
586 * Sort strictly based on sector. Smallest to the left,
587 * largest to the right.
588 */
2e46e8b2 589 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 590 n = &(*p)->rb_right;
2e46e8b2 591 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
592 n = &(*p)->rb_left;
593 else
594 break;
595 p = n;
3ac6c9f8 596 cfqq = NULL;
a36e71f9
JA
597 }
598
599 *ret_parent = parent;
600 if (rb_link)
601 *rb_link = p;
3ac6c9f8 602 return cfqq;
a36e71f9
JA
603}
604
605static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
606{
a36e71f9
JA
607 struct rb_node **p, *parent;
608 struct cfq_queue *__cfqq;
609
f2d1f0ae
JA
610 if (cfqq->p_root) {
611 rb_erase(&cfqq->p_node, cfqq->p_root);
612 cfqq->p_root = NULL;
613 }
a36e71f9
JA
614
615 if (cfq_class_idle(cfqq))
616 return;
617 if (!cfqq->next_rq)
618 return;
619
f2d1f0ae 620 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
621 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
622 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
623 if (!__cfqq) {
624 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
625 rb_insert_color(&cfqq->p_node, cfqq->p_root);
626 } else
627 cfqq->p_root = NULL;
a36e71f9
JA
628}
629
498d3aa2
JA
630/*
631 * Update cfqq's position in the service tree.
632 */
edd75ffd 633static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 634{
6d048f53
JA
635 /*
636 * Resorting requires the cfqq to be on the RR list already.
637 */
a36e71f9 638 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 639 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
640 cfq_prio_tree_add(cfqd, cfqq);
641 }
6d048f53
JA
642}
643
1da177e4
LT
644/*
645 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 646 * the pending list according to last request service
1da177e4 647 */
febffd61 648static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 649{
7b679138 650 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
651 BUG_ON(cfq_cfqq_on_rr(cfqq));
652 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
653 cfqd->busy_queues++;
654
edd75ffd 655 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
656}
657
498d3aa2
JA
658/*
659 * Called when the cfqq no longer has requests pending, remove it from
660 * the service tree.
661 */
febffd61 662static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 663{
7b679138 664 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
665 BUG_ON(!cfq_cfqq_on_rr(cfqq));
666 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 667
cc09e299
JA
668 if (!RB_EMPTY_NODE(&cfqq->rb_node))
669 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
670 if (cfqq->p_root) {
671 rb_erase(&cfqq->p_node, cfqq->p_root);
672 cfqq->p_root = NULL;
673 }
d9e7620e 674
1da177e4
LT
675 BUG_ON(!cfqd->busy_queues);
676 cfqd->busy_queues--;
677}
678
679/*
680 * rb tree support functions
681 */
febffd61 682static void cfq_del_rq_rb(struct request *rq)
1da177e4 683{
5e705374 684 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 685 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 686 const int sync = rq_is_sync(rq);
1da177e4 687
b4878f24
JA
688 BUG_ON(!cfqq->queued[sync]);
689 cfqq->queued[sync]--;
1da177e4 690
5e705374 691 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 692
dd67d051 693 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 694 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
695}
696
5e705374 697static void cfq_add_rq_rb(struct request *rq)
1da177e4 698{
5e705374 699 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 700 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 701 struct request *__alias, *prev;
1da177e4 702
5380a101 703 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
704
705 /*
706 * looks a little odd, but the first insert might return an alias.
707 * if that happens, put the alias on the dispatch list
708 */
21183b07 709 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 710 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
711
712 if (!cfq_cfqq_on_rr(cfqq))
713 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
714
715 /*
716 * check if this request is a better next-serve candidate
717 */
a36e71f9 718 prev = cfqq->next_rq;
5044eed4 719 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
720
721 /*
722 * adjust priority tree position, if ->next_rq changes
723 */
724 if (prev != cfqq->next_rq)
725 cfq_prio_tree_add(cfqd, cfqq);
726
5044eed4 727 BUG_ON(!cfqq->next_rq);
1da177e4
LT
728}
729
febffd61 730static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 731{
5380a101
JA
732 elv_rb_del(&cfqq->sort_list, rq);
733 cfqq->queued[rq_is_sync(rq)]--;
5e705374 734 cfq_add_rq_rb(rq);
1da177e4
LT
735}
736
206dc69b
JA
737static struct request *
738cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 739{
206dc69b 740 struct task_struct *tsk = current;
91fac317 741 struct cfq_io_context *cic;
206dc69b 742 struct cfq_queue *cfqq;
1da177e4 743
4ac845a2 744 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
745 if (!cic)
746 return NULL;
747
748 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
749 if (cfqq) {
750 sector_t sector = bio->bi_sector + bio_sectors(bio);
751
21183b07 752 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 753 }
1da177e4 754
1da177e4
LT
755 return NULL;
756}
757
165125e1 758static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 759{
22e2c507 760 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 761
5ad531db 762 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 763 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 764 rq_in_driver(cfqd));
25776e35 765
5b93629b 766 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
767}
768
165125e1 769static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 770{
b4878f24 771 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 772 const int sync = rq_is_sync(rq);
b4878f24 773
5ad531db
JA
774 WARN_ON(!cfqd->rq_in_driver[sync]);
775 cfqd->rq_in_driver[sync]--;
7b679138 776 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 777 rq_in_driver(cfqd));
1da177e4
LT
778}
779
b4878f24 780static void cfq_remove_request(struct request *rq)
1da177e4 781{
5e705374 782 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 783
5e705374
JA
784 if (cfqq->next_rq == rq)
785 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 786
b4878f24 787 list_del_init(&rq->queuelist);
5e705374 788 cfq_del_rq_rb(rq);
374f84ac 789
45333d5a 790 cfqq->cfqd->rq_queued--;
374f84ac
JA
791 if (rq_is_meta(rq)) {
792 WARN_ON(!cfqq->meta_pending);
793 cfqq->meta_pending--;
794 }
1da177e4
LT
795}
796
165125e1
JA
797static int cfq_merge(struct request_queue *q, struct request **req,
798 struct bio *bio)
1da177e4
LT
799{
800 struct cfq_data *cfqd = q->elevator->elevator_data;
801 struct request *__rq;
1da177e4 802
206dc69b 803 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 804 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
805 *req = __rq;
806 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
807 }
808
809 return ELEVATOR_NO_MERGE;
1da177e4
LT
810}
811
165125e1 812static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 813 int type)
1da177e4 814{
21183b07 815 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 816 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 817
5e705374 818 cfq_reposition_rq_rb(cfqq, req);
1da177e4 819 }
1da177e4
LT
820}
821
822static void
165125e1 823cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
824 struct request *next)
825{
22e2c507
JA
826 /*
827 * reposition in fifo if next is older than rq
828 */
829 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 830 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 831 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
832 rq_set_fifo_time(rq, rq_fifo_time(next));
833 }
22e2c507 834
b4878f24 835 cfq_remove_request(next);
22e2c507
JA
836}
837
165125e1 838static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
839 struct bio *bio)
840{
841 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 842 struct cfq_io_context *cic;
da775265 843 struct cfq_queue *cfqq;
da775265
JA
844
845 /*
ec8acb69 846 * Disallow merge of a sync bio into an async request.
da775265 847 */
91fac317 848 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
da775265
JA
849 return 0;
850
851 /*
719d3402
JA
852 * Lookup the cfqq that this bio will be queued with. Allow
853 * merge only if rq is queued there.
da775265 854 */
4ac845a2 855 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317
VT
856 if (!cic)
857 return 0;
719d3402 858
91fac317 859 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
719d3402
JA
860 if (cfqq == RQ_CFQQ(rq))
861 return 1;
da775265 862
ec8acb69 863 return 0;
da775265
JA
864}
865
febffd61
JA
866static void __cfq_set_active_queue(struct cfq_data *cfqd,
867 struct cfq_queue *cfqq)
22e2c507
JA
868{
869 if (cfqq) {
7b679138 870 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 871 cfqq->slice_end = 0;
2f5cb738
JA
872 cfqq->slice_dispatch = 0;
873
2f5cb738 874 cfq_clear_cfqq_wait_request(cfqq);
b029195d 875 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
876 cfq_clear_cfqq_must_alloc_slice(cfqq);
877 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 878 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
879
880 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
881 }
882
883 cfqd->active_queue = cfqq;
884}
885
7b14e3b5
JA
886/*
887 * current cfqq expired its slice (or was too idle), select new one
888 */
889static void
890__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6084cdda 891 int timed_out)
7b14e3b5 892{
7b679138
JA
893 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
894
7b14e3b5
JA
895 if (cfq_cfqq_wait_request(cfqq))
896 del_timer(&cfqd->idle_slice_timer);
897
7b14e3b5
JA
898 cfq_clear_cfqq_wait_request(cfqq);
899
900 /*
6084cdda 901 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 902 */
7b679138 903 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 904 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
905 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
906 }
7b14e3b5 907
edd75ffd 908 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
909
910 if (cfqq == cfqd->active_queue)
911 cfqd->active_queue = NULL;
912
913 if (cfqd->active_cic) {
914 put_io_context(cfqd->active_cic->ioc);
915 cfqd->active_cic = NULL;
916 }
7b14e3b5
JA
917}
918
6084cdda 919static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
7b14e3b5
JA
920{
921 struct cfq_queue *cfqq = cfqd->active_queue;
922
923 if (cfqq)
6084cdda 924 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
925}
926
498d3aa2
JA
927/*
928 * Get next queue for service. Unless we have a queue preemption,
929 * we'll simply select the first cfqq in the service tree.
930 */
6d048f53 931static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 932{
edd75ffd
JA
933 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
934 return NULL;
d9e7620e 935
0871714e 936 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
937}
938
498d3aa2
JA
939/*
940 * Get and set a new active queue for service.
941 */
a36e71f9
JA
942static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
943 struct cfq_queue *cfqq)
6d048f53 944{
a36e71f9
JA
945 if (!cfqq) {
946 cfqq = cfq_get_next_queue(cfqd);
947 if (cfqq)
948 cfq_clear_cfqq_coop(cfqq);
949 }
6d048f53 950
22e2c507 951 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 952 return cfqq;
22e2c507
JA
953}
954
d9e7620e
JA
955static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
956 struct request *rq)
957{
83096ebf
TH
958 if (blk_rq_pos(rq) >= cfqd->last_position)
959 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 960 else
83096ebf 961 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
962}
963
04dc6e71
JM
964#define CIC_SEEK_THR 8 * 1024
965#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
966
6d048f53
JA
967static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
968{
969 struct cfq_io_context *cic = cfqd->active_cic;
04dc6e71 970 sector_t sdist = cic->seek_mean;
6d048f53
JA
971
972 if (!sample_valid(cic->seek_samples))
04dc6e71 973 sdist = CIC_SEEK_THR;
6d048f53 974
04dc6e71 975 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
976}
977
a36e71f9
JA
978static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
979 struct cfq_queue *cur_cfqq)
980{
f2d1f0ae 981 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
982 struct rb_node *parent, *node;
983 struct cfq_queue *__cfqq;
984 sector_t sector = cfqd->last_position;
985
986 if (RB_EMPTY_ROOT(root))
987 return NULL;
988
989 /*
990 * First, if we find a request starting at the end of the last
991 * request, choose it.
992 */
f2d1f0ae 993 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
994 if (__cfqq)
995 return __cfqq;
996
997 /*
998 * If the exact sector wasn't found, the parent of the NULL leaf
999 * will contain the closest sector.
1000 */
1001 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1002 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1003 return __cfqq;
1004
2e46e8b2 1005 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1006 node = rb_next(&__cfqq->p_node);
1007 else
1008 node = rb_prev(&__cfqq->p_node);
1009 if (!node)
1010 return NULL;
1011
1012 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1013 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1014 return __cfqq;
1015
1016 return NULL;
1017}
1018
1019/*
1020 * cfqd - obvious
1021 * cur_cfqq - passed in so that we don't decide that the current queue is
1022 * closely cooperating with itself.
1023 *
1024 * So, basically we're assuming that that cur_cfqq has dispatched at least
1025 * one request, and that cfqd->last_position reflects a position on the disk
1026 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1027 * assumption.
1028 */
1029static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1030 struct cfq_queue *cur_cfqq,
1031 int probe)
6d048f53 1032{
a36e71f9
JA
1033 struct cfq_queue *cfqq;
1034
1035 /*
1036 * A valid cfq_io_context is necessary to compare requests against
1037 * the seek_mean of the current cfqq.
1038 */
1039 if (!cfqd->active_cic)
1040 return NULL;
1041
6d048f53 1042 /*
d9e7620e
JA
1043 * We should notice if some of the queues are cooperating, eg
1044 * working closely on the same area of the disk. In that case,
1045 * we can group them together and don't waste time idling.
6d048f53 1046 */
a36e71f9
JA
1047 cfqq = cfqq_close(cfqd, cur_cfqq);
1048 if (!cfqq)
1049 return NULL;
1050
1051 if (cfq_cfqq_coop(cfqq))
1052 return NULL;
1053
1054 if (!probe)
1055 cfq_mark_cfqq_coop(cfqq);
1056 return cfqq;
6d048f53
JA
1057}
1058
6d048f53 1059static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1060{
1792669c 1061 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1062 struct cfq_io_context *cic;
7b14e3b5
JA
1063 unsigned long sl;
1064
a68bbddb 1065 /*
f7d7b7a7
JA
1066 * SSD device without seek penalty, disable idling. But only do so
1067 * for devices that support queuing, otherwise we still have a problem
1068 * with sync vs async workloads.
a68bbddb 1069 */
f7d7b7a7 1070 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1071 return;
1072
dd67d051 1073 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1074 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1075
1076 /*
1077 * idle is disabled, either manually or by past process history
1078 */
6d048f53
JA
1079 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1080 return;
1081
7b679138
JA
1082 /*
1083 * still requests with the driver, don't idle
1084 */
5ad531db 1085 if (rq_in_driver(cfqd))
7b679138
JA
1086 return;
1087
22e2c507
JA
1088 /*
1089 * task has exited, don't wait
1090 */
206dc69b 1091 cic = cfqd->active_cic;
66dac98e 1092 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1093 return;
1094
3b18152c 1095 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1096
206dc69b
JA
1097 /*
1098 * we don't want to idle for seeks, but we do want to allow
1099 * fair distribution of slice time for a process doing back-to-back
1100 * seeks. so allow a little bit of time for him to submit a new rq
1101 */
6d048f53 1102 sl = cfqd->cfq_slice_idle;
caaa5f9f 1103 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1104 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1105
7b14e3b5 1106 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1107 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1108}
1109
498d3aa2
JA
1110/*
1111 * Move request from internal lists to the request queue dispatch list.
1112 */
165125e1 1113static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1114{
3ed9a296 1115 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1116 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1117
7b679138
JA
1118 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1119
06d21886 1120 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1121 cfq_remove_request(rq);
6d048f53 1122 cfqq->dispatched++;
5380a101 1123 elv_dispatch_sort(q, rq);
3ed9a296
JA
1124
1125 if (cfq_cfqq_sync(cfqq))
1126 cfqd->sync_flight++;
1da177e4
LT
1127}
1128
1129/*
1130 * return expired entry, or NULL to just start from scratch in rbtree
1131 */
febffd61 1132static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1133{
30996f40 1134 struct request *rq = NULL;
1da177e4 1135
3b18152c 1136 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1137 return NULL;
cb887411
JA
1138
1139 cfq_mark_cfqq_fifo_expire(cfqq);
1140
89850f7e
JA
1141 if (list_empty(&cfqq->fifo))
1142 return NULL;
1da177e4 1143
89850f7e 1144 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1145 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1146 rq = NULL;
1da177e4 1147
30996f40 1148 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1149 return rq;
1da177e4
LT
1150}
1151
22e2c507
JA
1152static inline int
1153cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1154{
1155 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1156
22e2c507 1157 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1158
22e2c507 1159 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1160}
1161
22e2c507 1162/*
498d3aa2
JA
1163 * Select a queue for service. If we have a current active queue,
1164 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1165 */
1b5ed5e1 1166static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1167{
a36e71f9 1168 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1169
22e2c507
JA
1170 cfqq = cfqd->active_queue;
1171 if (!cfqq)
1172 goto new_queue;
1da177e4 1173
22e2c507 1174 /*
6d048f53 1175 * The active queue has run out of time, expire it and select new.
22e2c507 1176 */
b029195d 1177 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1178 goto expire;
1da177e4 1179
22e2c507 1180 /*
6d048f53
JA
1181 * The active queue has requests and isn't expired, allow it to
1182 * dispatch.
22e2c507 1183 */
dd67d051 1184 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1185 goto keep_queue;
6d048f53 1186
a36e71f9
JA
1187 /*
1188 * If another queue has a request waiting within our mean seek
1189 * distance, let it run. The expire code will check for close
1190 * cooperators and put the close queue at the front of the service
1191 * tree.
1192 */
1193 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1194 if (new_cfqq)
1195 goto expire;
1196
6d048f53
JA
1197 /*
1198 * No requests pending. If the active queue still has requests in
1199 * flight or is idling for a new request, allow either of these
1200 * conditions to happen (or time out) before selecting a new queue.
1201 */
cc197479
JA
1202 if (timer_pending(&cfqd->idle_slice_timer) ||
1203 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1204 cfqq = NULL;
1205 goto keep_queue;
22e2c507
JA
1206 }
1207
3b18152c 1208expire:
6084cdda 1209 cfq_slice_expired(cfqd, 0);
3b18152c 1210new_queue:
a36e71f9 1211 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1212keep_queue:
3b18152c 1213 return cfqq;
22e2c507
JA
1214}
1215
febffd61 1216static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1217{
1218 int dispatched = 0;
1219
1220 while (cfqq->next_rq) {
1221 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1222 dispatched++;
1223 }
1224
1225 BUG_ON(!list_empty(&cfqq->fifo));
1226 return dispatched;
1227}
1228
498d3aa2
JA
1229/*
1230 * Drain our current requests. Used for barriers and when switching
1231 * io schedulers on-the-fly.
1232 */
d9e7620e 1233static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1234{
0871714e 1235 struct cfq_queue *cfqq;
d9e7620e 1236 int dispatched = 0;
1b5ed5e1 1237
0871714e 1238 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1239 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1240
6084cdda 1241 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1242
1243 BUG_ON(cfqd->busy_queues);
1244
6923715a 1245 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1246 return dispatched;
1247}
1248
2f5cb738
JA
1249/*
1250 * Dispatch a request from cfqq, moving them to the request queue
1251 * dispatch list.
1252 */
1253static void cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1254{
1255 struct request *rq;
1256
1257 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1258
1259 /*
1260 * follow expired path, else get first next available
1261 */
1262 rq = cfq_check_fifo(cfqq);
1263 if (!rq)
1264 rq = cfqq->next_rq;
1265
1266 /*
1267 * insert request into driver dispatch list
1268 */
1269 cfq_dispatch_insert(cfqd->queue, rq);
1270
1271 if (!cfqd->active_cic) {
1272 struct cfq_io_context *cic = RQ_CIC(rq);
1273
d9c7d394 1274 atomic_long_inc(&cic->ioc->refcount);
2f5cb738
JA
1275 cfqd->active_cic = cic;
1276 }
1277}
1278
1279/*
1280 * Find the cfqq that we need to service and move a request from that to the
1281 * dispatch list
1282 */
165125e1 1283static int cfq_dispatch_requests(struct request_queue *q, int force)
22e2c507
JA
1284{
1285 struct cfq_data *cfqd = q->elevator->elevator_data;
6d048f53 1286 struct cfq_queue *cfqq;
2f5cb738 1287 unsigned int max_dispatch;
22e2c507
JA
1288
1289 if (!cfqd->busy_queues)
1290 return 0;
1291
1b5ed5e1
TH
1292 if (unlikely(force))
1293 return cfq_forced_dispatch(cfqd);
1294
2f5cb738
JA
1295 cfqq = cfq_select_queue(cfqd);
1296 if (!cfqq)
1297 return 0;
1298
5ad531db
JA
1299 /*
1300 * Drain async requests before we start sync IO
1301 */
1302 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
1303 return 0;
1304
2f5cb738
JA
1305 /*
1306 * If this is an async queue and we have sync IO in flight, let it wait
1307 */
1308 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
1309 return 0;
1310
1311 max_dispatch = cfqd->cfq_quantum;
1312 if (cfq_class_idle(cfqq))
1313 max_dispatch = 1;
b4878f24 1314
2f5cb738
JA
1315 /*
1316 * Does this cfqq already have too much IO in flight?
1317 */
1318 if (cfqq->dispatched >= max_dispatch) {
1319 /*
1320 * idle queue must always only have a single IO in flight
1321 */
3ed9a296 1322 if (cfq_class_idle(cfqq))
2f5cb738 1323 return 0;
3ed9a296 1324
2f5cb738
JA
1325 /*
1326 * We have other queues, don't allow more IO from this one
1327 */
1328 if (cfqd->busy_queues > 1)
1329 return 0;
9ede209e 1330
365722bb 1331 /*
8e296755 1332 * Sole queue user, allow bigger slice
365722bb 1333 */
8e296755
JA
1334 max_dispatch *= 4;
1335 }
1336
1337 /*
1338 * Async queues must wait a bit before being allowed dispatch.
1339 * We also ramp up the dispatch depth gradually for async IO,
1340 * based on the last sync IO we serviced
1341 */
963b72fc 1342 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1343 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1344 unsigned int depth;
365722bb 1345
61f0c1dc 1346 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1347 if (!depth && !cfqq->dispatched)
1348 depth = 1;
8e296755
JA
1349 if (depth < max_dispatch)
1350 max_dispatch = depth;
2f5cb738 1351 }
3ed9a296 1352
8e296755
JA
1353 if (cfqq->dispatched >= max_dispatch)
1354 return 0;
1355
2f5cb738
JA
1356 /*
1357 * Dispatch a request from this cfqq
1358 */
1359 cfq_dispatch_request(cfqd, cfqq);
1360 cfqq->slice_dispatch++;
b029195d 1361 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1362
2f5cb738
JA
1363 /*
1364 * expire an async queue immediately if it has used up its slice. idle
1365 * queue always expire after 1 dispatch round.
1366 */
1367 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1368 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1369 cfq_class_idle(cfqq))) {
1370 cfqq->slice_end = jiffies + 1;
1371 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1372 }
1373
b217a903 1374 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1375 return 1;
1da177e4
LT
1376}
1377
1da177e4 1378/*
5e705374
JA
1379 * task holds one reference to the queue, dropped when task exits. each rq
1380 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1381 *
1382 * queue lock must be held here.
1383 */
1384static void cfq_put_queue(struct cfq_queue *cfqq)
1385{
22e2c507
JA
1386 struct cfq_data *cfqd = cfqq->cfqd;
1387
1388 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1389
1390 if (!atomic_dec_and_test(&cfqq->ref))
1391 return;
1392
7b679138 1393 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1394 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1395 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1396 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1397
28f95cbc 1398 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1399 __cfq_slice_expired(cfqd, cfqq, 0);
8e296755 1400 cfq_schedule_dispatch(cfqd, 0);
28f95cbc 1401 }
22e2c507 1402
1da177e4
LT
1403 kmem_cache_free(cfq_pool, cfqq);
1404}
1405
d6de8be7
JA
1406/*
1407 * Must always be called with the rcu_read_lock() held
1408 */
07416d29
JA
1409static void
1410__call_for_each_cic(struct io_context *ioc,
1411 void (*func)(struct io_context *, struct cfq_io_context *))
1412{
1413 struct cfq_io_context *cic;
1414 struct hlist_node *n;
1415
1416 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1417 func(ioc, cic);
1418}
1419
4ac845a2 1420/*
34e6bbf2 1421 * Call func for each cic attached to this ioc.
4ac845a2 1422 */
34e6bbf2 1423static void
4ac845a2
JA
1424call_for_each_cic(struct io_context *ioc,
1425 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1426{
4ac845a2 1427 rcu_read_lock();
07416d29 1428 __call_for_each_cic(ioc, func);
4ac845a2 1429 rcu_read_unlock();
34e6bbf2
FC
1430}
1431
1432static void cfq_cic_free_rcu(struct rcu_head *head)
1433{
1434 struct cfq_io_context *cic;
1435
1436 cic = container_of(head, struct cfq_io_context, rcu_head);
1437
1438 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1439 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1440
9a11b4ed
JA
1441 if (ioc_gone) {
1442 /*
1443 * CFQ scheduler is exiting, grab exit lock and check
1444 * the pending io context count. If it hits zero,
1445 * complete ioc_gone and set it back to NULL
1446 */
1447 spin_lock(&ioc_gone_lock);
245b2e70 1448 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1449 complete(ioc_gone);
1450 ioc_gone = NULL;
1451 }
1452 spin_unlock(&ioc_gone_lock);
1453 }
34e6bbf2 1454}
4ac845a2 1455
34e6bbf2
FC
1456static void cfq_cic_free(struct cfq_io_context *cic)
1457{
1458 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1459}
1460
1461static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1462{
1463 unsigned long flags;
1464
1465 BUG_ON(!cic->dead_key);
1466
1467 spin_lock_irqsave(&ioc->lock, flags);
1468 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1469 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1470 spin_unlock_irqrestore(&ioc->lock, flags);
1471
34e6bbf2 1472 cfq_cic_free(cic);
4ac845a2
JA
1473}
1474
d6de8be7
JA
1475/*
1476 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1477 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1478 * and ->trim() which is called with the task lock held
1479 */
4ac845a2
JA
1480static void cfq_free_io_context(struct io_context *ioc)
1481{
4ac845a2 1482 /*
34e6bbf2
FC
1483 * ioc->refcount is zero here, or we are called from elv_unregister(),
1484 * so no more cic's are allowed to be linked into this ioc. So it
1485 * should be ok to iterate over the known list, we will see all cic's
1486 * since no new ones are added.
4ac845a2 1487 */
07416d29 1488 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1489}
1490
89850f7e 1491static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1492{
28f95cbc 1493 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1494 __cfq_slice_expired(cfqd, cfqq, 0);
8e296755 1495 cfq_schedule_dispatch(cfqd, 0);
28f95cbc 1496 }
22e2c507 1497
89850f7e
JA
1498 cfq_put_queue(cfqq);
1499}
22e2c507 1500
89850f7e
JA
1501static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1502 struct cfq_io_context *cic)
1503{
4faa3c81
FC
1504 struct io_context *ioc = cic->ioc;
1505
fc46379d 1506 list_del_init(&cic->queue_list);
4ac845a2
JA
1507
1508 /*
1509 * Make sure key == NULL is seen for dead queues
1510 */
fc46379d 1511 smp_wmb();
4ac845a2 1512 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1513 cic->key = NULL;
1514
4faa3c81
FC
1515 if (ioc->ioc_data == cic)
1516 rcu_assign_pointer(ioc->ioc_data, NULL);
1517
ff6657c6
JA
1518 if (cic->cfqq[BLK_RW_ASYNC]) {
1519 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1520 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1521 }
1522
ff6657c6
JA
1523 if (cic->cfqq[BLK_RW_SYNC]) {
1524 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1525 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1526 }
89850f7e
JA
1527}
1528
4ac845a2
JA
1529static void cfq_exit_single_io_context(struct io_context *ioc,
1530 struct cfq_io_context *cic)
89850f7e
JA
1531{
1532 struct cfq_data *cfqd = cic->key;
1533
89850f7e 1534 if (cfqd) {
165125e1 1535 struct request_queue *q = cfqd->queue;
4ac845a2 1536 unsigned long flags;
89850f7e 1537
4ac845a2 1538 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1539
1540 /*
1541 * Ensure we get a fresh copy of the ->key to prevent
1542 * race between exiting task and queue
1543 */
1544 smp_read_barrier_depends();
1545 if (cic->key)
1546 __cfq_exit_single_io_context(cfqd, cic);
1547
4ac845a2 1548 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1549 }
1da177e4
LT
1550}
1551
498d3aa2
JA
1552/*
1553 * The process that ioc belongs to has exited, we need to clean up
1554 * and put the internal structures we have that belongs to that process.
1555 */
e2d74ac0 1556static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1557{
4ac845a2 1558 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1559}
1560
22e2c507 1561static struct cfq_io_context *
8267e268 1562cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1563{
b5deef90 1564 struct cfq_io_context *cic;
1da177e4 1565
94f6030c
CL
1566 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1567 cfqd->queue->node);
1da177e4 1568 if (cic) {
22e2c507 1569 cic->last_end_request = jiffies;
553698f9 1570 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1571 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1572 cic->dtor = cfq_free_io_context;
1573 cic->exit = cfq_exit_io_context;
245b2e70 1574 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1575 }
1576
1577 return cic;
1578}
1579
fd0928df 1580static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1581{
1582 struct task_struct *tsk = current;
1583 int ioprio_class;
1584
3b18152c 1585 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1586 return;
1587
fd0928df 1588 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1589 switch (ioprio_class) {
fe094d98
JA
1590 default:
1591 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1592 case IOPRIO_CLASS_NONE:
1593 /*
6d63c275 1594 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1595 */
1596 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1597 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1598 break;
1599 case IOPRIO_CLASS_RT:
1600 cfqq->ioprio = task_ioprio(ioc);
1601 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1602 break;
1603 case IOPRIO_CLASS_BE:
1604 cfqq->ioprio = task_ioprio(ioc);
1605 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1606 break;
1607 case IOPRIO_CLASS_IDLE:
1608 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1609 cfqq->ioprio = 7;
1610 cfq_clear_cfqq_idle_window(cfqq);
1611 break;
22e2c507
JA
1612 }
1613
1614 /*
1615 * keep track of original prio settings in case we have to temporarily
1616 * elevate the priority of this queue
1617 */
1618 cfqq->org_ioprio = cfqq->ioprio;
1619 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1620 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1621}
1622
febffd61 1623static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1624{
478a82b0
AV
1625 struct cfq_data *cfqd = cic->key;
1626 struct cfq_queue *cfqq;
c1b707d2 1627 unsigned long flags;
35e6077c 1628
caaa5f9f
JA
1629 if (unlikely(!cfqd))
1630 return;
1631
c1b707d2 1632 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1633
ff6657c6 1634 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1635 if (cfqq) {
1636 struct cfq_queue *new_cfqq;
ff6657c6
JA
1637 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1638 GFP_ATOMIC);
caaa5f9f 1639 if (new_cfqq) {
ff6657c6 1640 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1641 cfq_put_queue(cfqq);
1642 }
22e2c507 1643 }
caaa5f9f 1644
ff6657c6 1645 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1646 if (cfqq)
1647 cfq_mark_cfqq_prio_changed(cfqq);
1648
c1b707d2 1649 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1650}
1651
fc46379d 1652static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1653{
4ac845a2 1654 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1655 ioc->ioprio_changed = 0;
22e2c507
JA
1656}
1657
d5036d77
JA
1658static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1659 pid_t pid, int is_sync)
1660{
1661 RB_CLEAR_NODE(&cfqq->rb_node);
1662 RB_CLEAR_NODE(&cfqq->p_node);
1663 INIT_LIST_HEAD(&cfqq->fifo);
1664
1665 atomic_set(&cfqq->ref, 0);
1666 cfqq->cfqd = cfqd;
1667
1668 cfq_mark_cfqq_prio_changed(cfqq);
1669
1670 if (is_sync) {
1671 if (!cfq_class_idle(cfqq))
1672 cfq_mark_cfqq_idle_window(cfqq);
1673 cfq_mark_cfqq_sync(cfqq);
1674 }
1675 cfqq->pid = pid;
1676}
1677
22e2c507 1678static struct cfq_queue *
15c31be4 1679cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
fd0928df 1680 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1681{
22e2c507 1682 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1683 struct cfq_io_context *cic;
22e2c507
JA
1684
1685retry:
4ac845a2 1686 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1687 /* cic always exists here */
1688 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1689
6118b70b
JA
1690 /*
1691 * Always try a new alloc if we fell back to the OOM cfqq
1692 * originally, since it should just be a temporary situation.
1693 */
1694 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1695 cfqq = NULL;
22e2c507
JA
1696 if (new_cfqq) {
1697 cfqq = new_cfqq;
1698 new_cfqq = NULL;
1699 } else if (gfp_mask & __GFP_WAIT) {
1700 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1701 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1702 gfp_mask | __GFP_ZERO,
94f6030c 1703 cfqd->queue->node);
22e2c507 1704 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1705 if (new_cfqq)
1706 goto retry;
22e2c507 1707 } else {
94f6030c
CL
1708 cfqq = kmem_cache_alloc_node(cfq_pool,
1709 gfp_mask | __GFP_ZERO,
1710 cfqd->queue->node);
22e2c507
JA
1711 }
1712
6118b70b
JA
1713 if (cfqq) {
1714 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1715 cfq_init_prio_data(cfqq, ioc);
1716 cfq_log_cfqq(cfqd, cfqq, "alloced");
1717 } else
1718 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1719 }
1720
1721 if (new_cfqq)
1722 kmem_cache_free(cfq_pool, new_cfqq);
1723
22e2c507
JA
1724 return cfqq;
1725}
1726
c2dea2d1
VT
1727static struct cfq_queue **
1728cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1729{
fe094d98 1730 switch (ioprio_class) {
c2dea2d1
VT
1731 case IOPRIO_CLASS_RT:
1732 return &cfqd->async_cfqq[0][ioprio];
1733 case IOPRIO_CLASS_BE:
1734 return &cfqd->async_cfqq[1][ioprio];
1735 case IOPRIO_CLASS_IDLE:
1736 return &cfqd->async_idle_cfqq;
1737 default:
1738 BUG();
1739 }
1740}
1741
15c31be4 1742static struct cfq_queue *
fd0928df 1743cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
15c31be4
JA
1744 gfp_t gfp_mask)
1745{
fd0928df
JA
1746 const int ioprio = task_ioprio(ioc);
1747 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1748 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1749 struct cfq_queue *cfqq = NULL;
1750
c2dea2d1
VT
1751 if (!is_sync) {
1752 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1753 cfqq = *async_cfqq;
1754 }
1755
6118b70b 1756 if (!cfqq)
fd0928df 1757 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1758
1759 /*
1760 * pin the queue now that it's allocated, scheduler exit will prune it
1761 */
c2dea2d1 1762 if (!is_sync && !(*async_cfqq)) {
15c31be4 1763 atomic_inc(&cfqq->ref);
c2dea2d1 1764 *async_cfqq = cfqq;
15c31be4
JA
1765 }
1766
1767 atomic_inc(&cfqq->ref);
1768 return cfqq;
1769}
1770
498d3aa2
JA
1771/*
1772 * We drop cfq io contexts lazily, so we may find a dead one.
1773 */
dbecf3ab 1774static void
4ac845a2
JA
1775cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1776 struct cfq_io_context *cic)
dbecf3ab 1777{
4ac845a2
JA
1778 unsigned long flags;
1779
fc46379d 1780 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1781
4ac845a2
JA
1782 spin_lock_irqsave(&ioc->lock, flags);
1783
4faa3c81 1784 BUG_ON(ioc->ioc_data == cic);
597bc485 1785
4ac845a2 1786 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1787 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1788 spin_unlock_irqrestore(&ioc->lock, flags);
1789
1790 cfq_cic_free(cic);
dbecf3ab
OH
1791}
1792
e2d74ac0 1793static struct cfq_io_context *
4ac845a2 1794cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1795{
e2d74ac0 1796 struct cfq_io_context *cic;
d6de8be7 1797 unsigned long flags;
4ac845a2 1798 void *k;
e2d74ac0 1799
91fac317
VT
1800 if (unlikely(!ioc))
1801 return NULL;
1802
d6de8be7
JA
1803 rcu_read_lock();
1804
597bc485
JA
1805 /*
1806 * we maintain a last-hit cache, to avoid browsing over the tree
1807 */
4ac845a2 1808 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1809 if (cic && cic->key == cfqd) {
1810 rcu_read_unlock();
597bc485 1811 return cic;
d6de8be7 1812 }
597bc485 1813
4ac845a2 1814 do {
4ac845a2
JA
1815 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1816 rcu_read_unlock();
1817 if (!cic)
1818 break;
be3b0753
OH
1819 /* ->key must be copied to avoid race with cfq_exit_queue() */
1820 k = cic->key;
1821 if (unlikely(!k)) {
4ac845a2 1822 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1823 rcu_read_lock();
4ac845a2 1824 continue;
dbecf3ab 1825 }
e2d74ac0 1826
d6de8be7 1827 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1828 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1829 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1830 break;
1831 } while (1);
e2d74ac0 1832
4ac845a2 1833 return cic;
e2d74ac0
JA
1834}
1835
4ac845a2
JA
1836/*
1837 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1838 * the process specific cfq io context when entered from the block layer.
1839 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1840 */
febffd61
JA
1841static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1842 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1843{
0261d688 1844 unsigned long flags;
4ac845a2 1845 int ret;
e2d74ac0 1846
4ac845a2
JA
1847 ret = radix_tree_preload(gfp_mask);
1848 if (!ret) {
1849 cic->ioc = ioc;
1850 cic->key = cfqd;
e2d74ac0 1851
4ac845a2
JA
1852 spin_lock_irqsave(&ioc->lock, flags);
1853 ret = radix_tree_insert(&ioc->radix_root,
1854 (unsigned long) cfqd, cic);
ffc4e759
JA
1855 if (!ret)
1856 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1857 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1858
4ac845a2
JA
1859 radix_tree_preload_end();
1860
1861 if (!ret) {
1862 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1863 list_add(&cic->queue_list, &cfqd->cic_list);
1864 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1865 }
e2d74ac0
JA
1866 }
1867
4ac845a2
JA
1868 if (ret)
1869 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1870
4ac845a2 1871 return ret;
e2d74ac0
JA
1872}
1873
1da177e4
LT
1874/*
1875 * Setup general io context and cfq io context. There can be several cfq
1876 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1877 * than one device managed by cfq.
1da177e4
LT
1878 */
1879static struct cfq_io_context *
e2d74ac0 1880cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1881{
22e2c507 1882 struct io_context *ioc = NULL;
1da177e4 1883 struct cfq_io_context *cic;
1da177e4 1884
22e2c507 1885 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1886
b5deef90 1887 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1888 if (!ioc)
1889 return NULL;
1890
4ac845a2 1891 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1892 if (cic)
1893 goto out;
1da177e4 1894
e2d74ac0
JA
1895 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1896 if (cic == NULL)
1897 goto err;
1da177e4 1898
4ac845a2
JA
1899 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1900 goto err_free;
1901
1da177e4 1902out:
fc46379d
JA
1903 smp_read_barrier_depends();
1904 if (unlikely(ioc->ioprio_changed))
1905 cfq_ioc_set_ioprio(ioc);
1906
1da177e4 1907 return cic;
4ac845a2
JA
1908err_free:
1909 cfq_cic_free(cic);
1da177e4
LT
1910err:
1911 put_io_context(ioc);
1912 return NULL;
1913}
1914
22e2c507
JA
1915static void
1916cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1917{
aaf1228d
JA
1918 unsigned long elapsed = jiffies - cic->last_end_request;
1919 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1920
22e2c507
JA
1921 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1922 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1923 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1924}
1da177e4 1925
206dc69b 1926static void
6d048f53
JA
1927cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1928 struct request *rq)
206dc69b
JA
1929{
1930 sector_t sdist;
1931 u64 total;
1932
4d00aa47
JM
1933 if (!cic->last_request_pos)
1934 sdist = 0;
83096ebf
TH
1935 else if (cic->last_request_pos < blk_rq_pos(rq))
1936 sdist = blk_rq_pos(rq) - cic->last_request_pos;
206dc69b 1937 else
83096ebf 1938 sdist = cic->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1939
1940 /*
1941 * Don't allow the seek distance to get too large from the
1942 * odd fragment, pagein, etc
1943 */
1944 if (cic->seek_samples <= 60) /* second&third seek */
1945 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1946 else
1947 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1948
1949 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1950 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1951 total = cic->seek_total + (cic->seek_samples/2);
1952 do_div(total, cic->seek_samples);
1953 cic->seek_mean = (sector_t)total;
1954}
1da177e4 1955
22e2c507
JA
1956/*
1957 * Disable idle window if the process thinks too long or seeks so much that
1958 * it doesn't matter
1959 */
1960static void
1961cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1962 struct cfq_io_context *cic)
1963{
7b679138 1964 int old_idle, enable_idle;
1be92f2f 1965
0871714e
JA
1966 /*
1967 * Don't idle for async or idle io prio class
1968 */
1969 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1970 return;
1971
c265a7f4 1972 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1973
66dac98e 1974 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
963b72fc 1975 (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1976 enable_idle = 0;
1977 else if (sample_valid(cic->ttime_samples)) {
1978 if (cic->ttime_mean > cfqd->cfq_slice_idle)
1979 enable_idle = 0;
1980 else
1981 enable_idle = 1;
1da177e4
LT
1982 }
1983
7b679138
JA
1984 if (old_idle != enable_idle) {
1985 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
1986 if (enable_idle)
1987 cfq_mark_cfqq_idle_window(cfqq);
1988 else
1989 cfq_clear_cfqq_idle_window(cfqq);
1990 }
22e2c507 1991}
1da177e4 1992
22e2c507
JA
1993/*
1994 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1995 * no or if we aren't sure, a 1 will cause a preempt.
1996 */
1997static int
1998cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 1999 struct request *rq)
22e2c507 2000{
6d048f53 2001 struct cfq_queue *cfqq;
22e2c507 2002
6d048f53
JA
2003 cfqq = cfqd->active_queue;
2004 if (!cfqq)
22e2c507
JA
2005 return 0;
2006
6d048f53
JA
2007 if (cfq_slice_used(cfqq))
2008 return 1;
2009
2010 if (cfq_class_idle(new_cfqq))
caaa5f9f 2011 return 0;
22e2c507
JA
2012
2013 if (cfq_class_idle(cfqq))
2014 return 1;
1e3335de 2015
374f84ac
JA
2016 /*
2017 * if the new request is sync, but the currently running queue is
2018 * not, let the sync request have priority.
2019 */
5e705374 2020 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
22e2c507 2021 return 1;
1e3335de 2022
374f84ac
JA
2023 /*
2024 * So both queues are sync. Let the new request get disk time if
2025 * it's a metadata request and the current queue is doing regular IO.
2026 */
2027 if (rq_is_meta(rq) && !cfqq->meta_pending)
2028 return 1;
22e2c507 2029
3a9a3f6c
DS
2030 /*
2031 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2032 */
2033 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
2034 return 1;
2035
1e3335de
JA
2036 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
2037 return 0;
2038
2039 /*
2040 * if this request is as-good as one we would expect from the
2041 * current cfqq, let it preempt
2042 */
6d048f53 2043 if (cfq_rq_close(cfqd, rq))
1e3335de
JA
2044 return 1;
2045
22e2c507
JA
2046 return 0;
2047}
2048
2049/*
2050 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2051 * let it have half of its nominal slice.
2052 */
2053static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2054{
7b679138 2055 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2056 cfq_slice_expired(cfqd, 1);
22e2c507 2057
bf572256
JA
2058 /*
2059 * Put the new queue at the front of the of the current list,
2060 * so we know that it will be selected next.
2061 */
2062 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2063
2064 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2065
44f7c160
JA
2066 cfqq->slice_end = 0;
2067 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2068}
2069
22e2c507 2070/*
5e705374 2071 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2072 * something we should do about it
2073 */
2074static void
5e705374
JA
2075cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2076 struct request *rq)
22e2c507 2077{
5e705374 2078 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2079
45333d5a 2080 cfqd->rq_queued++;
374f84ac
JA
2081 if (rq_is_meta(rq))
2082 cfqq->meta_pending++;
2083
9c2c38a1 2084 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2085 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2086 cfq_update_idle_window(cfqd, cfqq, cic);
2087
83096ebf 2088 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2089
2090 if (cfqq == cfqd->active_queue) {
2091 /*
b029195d
JA
2092 * Remember that we saw a request from this process, but
2093 * don't start queuing just yet. Otherwise we risk seeing lots
2094 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2095 * and merging. If the request is already larger than a single
2096 * page, let it rip immediately. For that case we assume that
2d870722
JA
2097 * merging is already done. Ditto for a busy system that
2098 * has other work pending, don't risk delaying until the
2099 * idle timer unplug to continue working.
22e2c507 2100 */
d6ceb25e 2101 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2102 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2103 cfqd->busy_queues > 1) {
d6ceb25e 2104 del_timer(&cfqd->idle_slice_timer);
a7f55792 2105 __blk_run_queue(cfqd->queue);
d6ceb25e 2106 }
b029195d 2107 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2108 }
5e705374 2109 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2110 /*
2111 * not the active queue - expire current slice if it is
2112 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2113 * has some old slice time left and is of higher priority or
2114 * this new queue is RT and the current one is BE
22e2c507
JA
2115 */
2116 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2117 __blk_run_queue(cfqd->queue);
22e2c507 2118 }
1da177e4
LT
2119}
2120
165125e1 2121static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2122{
b4878f24 2123 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2124 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2125
7b679138 2126 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2127 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2128
5e705374 2129 cfq_add_rq_rb(rq);
1da177e4 2130
30996f40 2131 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507
JA
2132 list_add_tail(&rq->queuelist, &cfqq->fifo);
2133
5e705374 2134 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2135}
2136
45333d5a
AC
2137/*
2138 * Update hw_tag based on peak queue depth over 50 samples under
2139 * sufficient load.
2140 */
2141static void cfq_update_hw_tag(struct cfq_data *cfqd)
2142{
5ad531db
JA
2143 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2144 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2145
2146 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2147 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2148 return;
2149
2150 if (cfqd->hw_tag_samples++ < 50)
2151 return;
2152
2153 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2154 cfqd->hw_tag = 1;
2155 else
2156 cfqd->hw_tag = 0;
2157
2158 cfqd->hw_tag_samples = 0;
2159 cfqd->rq_in_driver_peak = 0;
2160}
2161
165125e1 2162static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2163{
5e705374 2164 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2165 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2166 const int sync = rq_is_sync(rq);
b4878f24 2167 unsigned long now;
1da177e4 2168
b4878f24 2169 now = jiffies;
7b679138 2170 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2171
45333d5a
AC
2172 cfq_update_hw_tag(cfqd);
2173
5ad531db 2174 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2175 WARN_ON(!cfqq->dispatched);
5ad531db 2176 cfqd->rq_in_driver[sync]--;
6d048f53 2177 cfqq->dispatched--;
1da177e4 2178
3ed9a296
JA
2179 if (cfq_cfqq_sync(cfqq))
2180 cfqd->sync_flight--;
2181
365722bb 2182 if (sync) {
5e705374 2183 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2184 cfqd->last_end_sync_rq = now;
2185 }
caaa5f9f
JA
2186
2187 /*
2188 * If this is the active queue, check if it needs to be expired,
2189 * or if we want to idle in case it has no pending requests.
2190 */
2191 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2192 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2193
44f7c160
JA
2194 if (cfq_cfqq_slice_new(cfqq)) {
2195 cfq_set_prio_slice(cfqd, cfqq);
2196 cfq_clear_cfqq_slice_new(cfqq);
2197 }
a36e71f9
JA
2198 /*
2199 * If there are no requests waiting in this queue, and
2200 * there are other queues ready to issue requests, AND
2201 * those other queues are issuing requests within our
2202 * mean seek distance, give them a chance to run instead
2203 * of idling.
2204 */
0871714e 2205 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2206 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2207 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2208 sync && !rq_noidle(rq))
6d048f53 2209 cfq_arm_slice_timer(cfqd);
caaa5f9f 2210 }
6d048f53 2211
5ad531db 2212 if (!rq_in_driver(cfqd))
8e296755 2213 cfq_schedule_dispatch(cfqd, 0);
1da177e4
LT
2214}
2215
22e2c507
JA
2216/*
2217 * we temporarily boost lower priority queues if they are holding fs exclusive
2218 * resources. they are boosted to normal prio (CLASS_BE/4)
2219 */
2220static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2221{
22e2c507
JA
2222 if (has_fs_excl()) {
2223 /*
2224 * boost idle prio on transactions that would lock out other
2225 * users of the filesystem
2226 */
2227 if (cfq_class_idle(cfqq))
2228 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2229 if (cfqq->ioprio > IOPRIO_NORM)
2230 cfqq->ioprio = IOPRIO_NORM;
2231 } else {
2232 /*
2233 * check if we need to unboost the queue
2234 */
2235 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2236 cfqq->ioprio_class = cfqq->org_ioprio_class;
2237 if (cfqq->ioprio != cfqq->org_ioprio)
2238 cfqq->ioprio = cfqq->org_ioprio;
2239 }
22e2c507 2240}
1da177e4 2241
89850f7e 2242static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2243{
1b379d8d 2244 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2245 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2246 return ELV_MQUEUE_MUST;
3b18152c 2247 }
1da177e4 2248
22e2c507 2249 return ELV_MQUEUE_MAY;
22e2c507
JA
2250}
2251
165125e1 2252static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2253{
2254 struct cfq_data *cfqd = q->elevator->elevator_data;
2255 struct task_struct *tsk = current;
91fac317 2256 struct cfq_io_context *cic;
22e2c507
JA
2257 struct cfq_queue *cfqq;
2258
2259 /*
2260 * don't force setup of a queue from here, as a call to may_queue
2261 * does not necessarily imply that a request actually will be queued.
2262 * so just lookup a possibly existing queue, or return 'may queue'
2263 * if that fails
2264 */
4ac845a2 2265 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2266 if (!cic)
2267 return ELV_MQUEUE_MAY;
2268
b0b78f81 2269 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2270 if (cfqq) {
fd0928df 2271 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2272 cfq_prio_boost(cfqq);
2273
89850f7e 2274 return __cfq_may_queue(cfqq);
22e2c507
JA
2275 }
2276
2277 return ELV_MQUEUE_MAY;
1da177e4
LT
2278}
2279
1da177e4
LT
2280/*
2281 * queue lock held here
2282 */
bb37b94c 2283static void cfq_put_request(struct request *rq)
1da177e4 2284{
5e705374 2285 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2286
5e705374 2287 if (cfqq) {
22e2c507 2288 const int rw = rq_data_dir(rq);
1da177e4 2289
22e2c507
JA
2290 BUG_ON(!cfqq->allocated[rw]);
2291 cfqq->allocated[rw]--;
1da177e4 2292
5e705374 2293 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2294
1da177e4 2295 rq->elevator_private = NULL;
5e705374 2296 rq->elevator_private2 = NULL;
1da177e4 2297
1da177e4
LT
2298 cfq_put_queue(cfqq);
2299 }
2300}
2301
2302/*
22e2c507 2303 * Allocate cfq data structures associated with this request.
1da177e4 2304 */
22e2c507 2305static int
165125e1 2306cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2307{
2308 struct cfq_data *cfqd = q->elevator->elevator_data;
2309 struct cfq_io_context *cic;
2310 const int rw = rq_data_dir(rq);
7749a8d4 2311 const int is_sync = rq_is_sync(rq);
22e2c507 2312 struct cfq_queue *cfqq;
1da177e4
LT
2313 unsigned long flags;
2314
2315 might_sleep_if(gfp_mask & __GFP_WAIT);
2316
e2d74ac0 2317 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2318
1da177e4
LT
2319 spin_lock_irqsave(q->queue_lock, flags);
2320
22e2c507
JA
2321 if (!cic)
2322 goto queue_fail;
2323
91fac317 2324 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2325 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2326 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317
VT
2327 cic_set_cfqq(cic, cfqq, is_sync);
2328 }
1da177e4
LT
2329
2330 cfqq->allocated[rw]++;
22e2c507 2331 atomic_inc(&cfqq->ref);
1da177e4 2332
5e705374 2333 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2334
5e705374
JA
2335 rq->elevator_private = cic;
2336 rq->elevator_private2 = cfqq;
2337 return 0;
1da177e4 2338
22e2c507
JA
2339queue_fail:
2340 if (cic)
2341 put_io_context(cic->ioc);
89850f7e 2342
8e296755 2343 cfq_schedule_dispatch(cfqd, 0);
1da177e4 2344 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2345 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2346 return 1;
2347}
2348
65f27f38 2349static void cfq_kick_queue(struct work_struct *work)
22e2c507 2350{
65f27f38 2351 struct cfq_data *cfqd =
8e296755 2352 container_of(work, struct cfq_data, unplug_work.work);
165125e1 2353 struct request_queue *q = cfqd->queue;
22e2c507 2354
40bb54d1 2355 spin_lock_irq(q->queue_lock);
a7f55792 2356 __blk_run_queue(cfqd->queue);
40bb54d1 2357 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2358}
2359
2360/*
2361 * Timer running if the active_queue is currently idling inside its time slice
2362 */
2363static void cfq_idle_slice_timer(unsigned long data)
2364{
2365 struct cfq_data *cfqd = (struct cfq_data *) data;
2366 struct cfq_queue *cfqq;
2367 unsigned long flags;
3c6bd2f8 2368 int timed_out = 1;
22e2c507 2369
7b679138
JA
2370 cfq_log(cfqd, "idle timer fired");
2371
22e2c507
JA
2372 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2373
fe094d98
JA
2374 cfqq = cfqd->active_queue;
2375 if (cfqq) {
3c6bd2f8
JA
2376 timed_out = 0;
2377
b029195d
JA
2378 /*
2379 * We saw a request before the queue expired, let it through
2380 */
2381 if (cfq_cfqq_must_dispatch(cfqq))
2382 goto out_kick;
2383
22e2c507
JA
2384 /*
2385 * expired
2386 */
44f7c160 2387 if (cfq_slice_used(cfqq))
22e2c507
JA
2388 goto expire;
2389
2390 /*
2391 * only expire and reinvoke request handler, if there are
2392 * other queues with pending requests
2393 */
caaa5f9f 2394 if (!cfqd->busy_queues)
22e2c507 2395 goto out_cont;
22e2c507
JA
2396
2397 /*
2398 * not expired and it has a request pending, let it dispatch
2399 */
75e50984 2400 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2401 goto out_kick;
22e2c507
JA
2402 }
2403expire:
6084cdda 2404 cfq_slice_expired(cfqd, timed_out);
22e2c507 2405out_kick:
8e296755 2406 cfq_schedule_dispatch(cfqd, 0);
22e2c507
JA
2407out_cont:
2408 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2409}
2410
3b18152c
JA
2411static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2412{
2413 del_timer_sync(&cfqd->idle_slice_timer);
8e296755 2414 cancel_delayed_work_sync(&cfqd->unplug_work);
3b18152c 2415}
22e2c507 2416
c2dea2d1
VT
2417static void cfq_put_async_queues(struct cfq_data *cfqd)
2418{
2419 int i;
2420
2421 for (i = 0; i < IOPRIO_BE_NR; i++) {
2422 if (cfqd->async_cfqq[0][i])
2423 cfq_put_queue(cfqd->async_cfqq[0][i]);
2424 if (cfqd->async_cfqq[1][i])
2425 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2426 }
2389d1ef
ON
2427
2428 if (cfqd->async_idle_cfqq)
2429 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2430}
2431
b374d18a 2432static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2433{
22e2c507 2434 struct cfq_data *cfqd = e->elevator_data;
165125e1 2435 struct request_queue *q = cfqd->queue;
22e2c507 2436
3b18152c 2437 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2438
d9ff4187 2439 spin_lock_irq(q->queue_lock);
e2d74ac0 2440
d9ff4187 2441 if (cfqd->active_queue)
6084cdda 2442 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2443
2444 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2445 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2446 struct cfq_io_context,
2447 queue_list);
89850f7e
JA
2448
2449 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2450 }
e2d74ac0 2451
c2dea2d1 2452 cfq_put_async_queues(cfqd);
15c31be4 2453
d9ff4187 2454 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2455
2456 cfq_shutdown_timer_wq(cfqd);
2457
a90d742e 2458 kfree(cfqd);
1da177e4
LT
2459}
2460
165125e1 2461static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2462{
2463 struct cfq_data *cfqd;
26a2ac00 2464 int i;
1da177e4 2465
94f6030c 2466 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2467 if (!cfqd)
bc1c1169 2468 return NULL;
1da177e4 2469
cc09e299 2470 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2471
2472 /*
2473 * Not strictly needed (since RB_ROOT just clears the node and we
2474 * zeroed cfqd on alloc), but better be safe in case someone decides
2475 * to add magic to the rb code
2476 */
2477 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2478 cfqd->prio_trees[i] = RB_ROOT;
2479
6118b70b
JA
2480 /*
2481 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2482 * Grab a permanent reference to it, so that the normal code flow
2483 * will not attempt to free it.
2484 */
2485 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2486 atomic_inc(&cfqd->oom_cfqq.ref);
2487
d9ff4187 2488 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2489
1da177e4 2490 cfqd->queue = q;
1da177e4 2491
22e2c507
JA
2492 init_timer(&cfqd->idle_slice_timer);
2493 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2494 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2495
8e296755 2496 INIT_DELAYED_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2497
1da177e4 2498 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2499 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2500 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2501 cfqd->cfq_back_max = cfq_back_max;
2502 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2503 cfqd->cfq_slice[0] = cfq_slice_async;
2504 cfqd->cfq_slice[1] = cfq_slice_sync;
2505 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2506 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2507 cfqd->cfq_latency = 1;
45333d5a 2508 cfqd->hw_tag = 1;
365722bb 2509 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2510 return cfqd;
1da177e4
LT
2511}
2512
2513static void cfq_slab_kill(void)
2514{
d6de8be7
JA
2515 /*
2516 * Caller already ensured that pending RCU callbacks are completed,
2517 * so we should have no busy allocations at this point.
2518 */
1da177e4
LT
2519 if (cfq_pool)
2520 kmem_cache_destroy(cfq_pool);
2521 if (cfq_ioc_pool)
2522 kmem_cache_destroy(cfq_ioc_pool);
2523}
2524
2525static int __init cfq_slab_setup(void)
2526{
0a31bd5f 2527 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2528 if (!cfq_pool)
2529 goto fail;
2530
34e6bbf2 2531 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2532 if (!cfq_ioc_pool)
2533 goto fail;
2534
2535 return 0;
2536fail:
2537 cfq_slab_kill();
2538 return -ENOMEM;
2539}
2540
1da177e4
LT
2541/*
2542 * sysfs parts below -->
2543 */
1da177e4
LT
2544static ssize_t
2545cfq_var_show(unsigned int var, char *page)
2546{
2547 return sprintf(page, "%d\n", var);
2548}
2549
2550static ssize_t
2551cfq_var_store(unsigned int *var, const char *page, size_t count)
2552{
2553 char *p = (char *) page;
2554
2555 *var = simple_strtoul(p, &p, 10);
2556 return count;
2557}
2558
1da177e4 2559#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2560static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2561{ \
3d1ab40f 2562 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2563 unsigned int __data = __VAR; \
2564 if (__CONV) \
2565 __data = jiffies_to_msecs(__data); \
2566 return cfq_var_show(__data, (page)); \
2567}
2568SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2569SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2570SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2571SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2572SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2573SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2574SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2575SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2576SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2577SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2578#undef SHOW_FUNCTION
2579
2580#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2581static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2582{ \
3d1ab40f 2583 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2584 unsigned int __data; \
2585 int ret = cfq_var_store(&__data, (page), count); \
2586 if (__data < (MIN)) \
2587 __data = (MIN); \
2588 else if (__data > (MAX)) \
2589 __data = (MAX); \
2590 if (__CONV) \
2591 *(__PTR) = msecs_to_jiffies(__data); \
2592 else \
2593 *(__PTR) = __data; \
2594 return ret; \
2595}
2596STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2597STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2598 UINT_MAX, 1);
2599STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2600 UINT_MAX, 1);
e572ec7e 2601STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2602STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2603 UINT_MAX, 0);
22e2c507
JA
2604STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2605STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2606STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2607STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2608 UINT_MAX, 0);
963b72fc 2609STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2610#undef STORE_FUNCTION
2611
e572ec7e
AV
2612#define CFQ_ATTR(name) \
2613 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2614
2615static struct elv_fs_entry cfq_attrs[] = {
2616 CFQ_ATTR(quantum),
e572ec7e
AV
2617 CFQ_ATTR(fifo_expire_sync),
2618 CFQ_ATTR(fifo_expire_async),
2619 CFQ_ATTR(back_seek_max),
2620 CFQ_ATTR(back_seek_penalty),
2621 CFQ_ATTR(slice_sync),
2622 CFQ_ATTR(slice_async),
2623 CFQ_ATTR(slice_async_rq),
2624 CFQ_ATTR(slice_idle),
963b72fc 2625 CFQ_ATTR(low_latency),
e572ec7e 2626 __ATTR_NULL
1da177e4
LT
2627};
2628
1da177e4
LT
2629static struct elevator_type iosched_cfq = {
2630 .ops = {
2631 .elevator_merge_fn = cfq_merge,
2632 .elevator_merged_fn = cfq_merged_request,
2633 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2634 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2635 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2636 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2637 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2638 .elevator_deactivate_req_fn = cfq_deactivate_request,
2639 .elevator_queue_empty_fn = cfq_queue_empty,
2640 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2641 .elevator_former_req_fn = elv_rb_former_request,
2642 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2643 .elevator_set_req_fn = cfq_set_request,
2644 .elevator_put_req_fn = cfq_put_request,
2645 .elevator_may_queue_fn = cfq_may_queue,
2646 .elevator_init_fn = cfq_init_queue,
2647 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2648 .trim = cfq_free_io_context,
1da177e4 2649 },
3d1ab40f 2650 .elevator_attrs = cfq_attrs,
1da177e4
LT
2651 .elevator_name = "cfq",
2652 .elevator_owner = THIS_MODULE,
2653};
2654
2655static int __init cfq_init(void)
2656{
22e2c507
JA
2657 /*
2658 * could be 0 on HZ < 1000 setups
2659 */
2660 if (!cfq_slice_async)
2661 cfq_slice_async = 1;
2662 if (!cfq_slice_idle)
2663 cfq_slice_idle = 1;
2664
1da177e4
LT
2665 if (cfq_slab_setup())
2666 return -ENOMEM;
2667
2fdd82bd 2668 elv_register(&iosched_cfq);
1da177e4 2669
2fdd82bd 2670 return 0;
1da177e4
LT
2671}
2672
2673static void __exit cfq_exit(void)
2674{
6e9a4738 2675 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2676 elv_unregister(&iosched_cfq);
334e94de 2677 ioc_gone = &all_gone;
fba82272
OH
2678 /* ioc_gone's update must be visible before reading ioc_count */
2679 smp_wmb();
d6de8be7
JA
2680
2681 /*
2682 * this also protects us from entering cfq_slab_kill() with
2683 * pending RCU callbacks
2684 */
245b2e70 2685 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2686 wait_for_completion(&all_gone);
83521d3e 2687 cfq_slab_kill();
1da177e4
LT
2688}
2689
2690module_init(cfq_init);
2691module_exit(cfq_exit);
2692
2693MODULE_AUTHOR("Jens Axboe");
2694MODULE_LICENSE("GPL");
2695MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");