Input: gpio_keys - use dev_ macros to report information
[linux-2.6-block.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
1da177e4 12#include <linux/rbtree.h>
22e2c507 13#include <linux/ioprio.h>
7b679138 14#include <linux/blktrace_api.h>
1da177e4
LT
15
16/*
17 * tunables
18 */
fe094d98
JA
19/* max queue in one round of service */
20static const int cfq_quantum = 4;
64100099 21static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
22/* maximum backwards seek, in KiB */
23static const int cfq_back_max = 16 * 1024;
24/* penalty of a backwards seek */
25static const int cfq_back_penalty = 2;
64100099 26static const int cfq_slice_sync = HZ / 10;
3b18152c 27static int cfq_slice_async = HZ / 25;
64100099 28static const int cfq_slice_async_rq = 2;
caaa5f9f 29static int cfq_slice_idle = HZ / 125;
22e2c507 30
d9e7620e 31/*
0871714e 32 * offset from end of service tree
d9e7620e 33 */
0871714e 34#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
35
36/*
37 * below this threshold, we consider thinktime immediate
38 */
39#define CFQ_MIN_TT (2)
40
22e2c507 41#define CFQ_SLICE_SCALE (5)
45333d5a 42#define CFQ_HW_QUEUE_MIN (5)
22e2c507 43
fe094d98
JA
44#define RQ_CIC(rq) \
45 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 46#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 47
e18b890b
CL
48static struct kmem_cache *cfq_pool;
49static struct kmem_cache *cfq_ioc_pool;
1da177e4 50
245b2e70 51static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 52static struct completion *ioc_gone;
9a11b4ed 53static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 54
22e2c507
JA
55#define CFQ_PRIO_LISTS IOPRIO_BE_NR
56#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
57#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
58
206dc69b
JA
59#define sample_valid(samples) ((samples) > 80)
60
cc09e299
JA
61/*
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
66 */
67struct cfq_rb_root {
68 struct rb_root rb;
69 struct rb_node *left;
70};
71#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
72
6118b70b
JA
73/*
74 * Per process-grouping structure
75 */
76struct cfq_queue {
77 /* reference count */
78 atomic_t ref;
79 /* various state flags, see below */
80 unsigned int flags;
81 /* parent cfq_data */
82 struct cfq_data *cfqd;
83 /* service_tree member */
84 struct rb_node rb_node;
85 /* service_tree key */
86 unsigned long rb_key;
87 /* prio tree member */
88 struct rb_node p_node;
89 /* prio tree root we belong to, if any */
90 struct rb_root *p_root;
91 /* sorted list of pending requests */
92 struct rb_root sort_list;
93 /* if fifo isn't expired, next request to serve */
94 struct request *next_rq;
95 /* requests queued in sort_list */
96 int queued[2];
97 /* currently allocated requests */
98 int allocated[2];
99 /* fifo list of requests in sort_list */
100 struct list_head fifo;
101
102 unsigned long slice_end;
103 long slice_resid;
104 unsigned int slice_dispatch;
105
106 /* pending metadata requests */
107 int meta_pending;
108 /* number of requests that are on the dispatch list or inside driver */
109 int dispatched;
110
111 /* io prio of this group */
112 unsigned short ioprio, org_ioprio;
113 unsigned short ioprio_class, org_ioprio_class;
114
115 pid_t pid;
116};
117
22e2c507
JA
118/*
119 * Per block device queue structure
120 */
1da177e4 121struct cfq_data {
165125e1 122 struct request_queue *queue;
22e2c507
JA
123
124 /*
125 * rr list of queues with requests and the count of them
126 */
cc09e299 127 struct cfq_rb_root service_tree;
a36e71f9
JA
128
129 /*
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
133 */
134 struct rb_root prio_trees[CFQ_PRIO_LISTS];
135
22e2c507
JA
136 unsigned int busy_queues;
137
5ad531db 138 int rq_in_driver[2];
3ed9a296 139 int sync_flight;
45333d5a
AC
140
141 /*
142 * queue-depth detection
143 */
144 int rq_queued;
25776e35 145 int hw_tag;
45333d5a
AC
146 int hw_tag_samples;
147 int rq_in_driver_peak;
1da177e4 148
22e2c507
JA
149 /*
150 * idle window management
151 */
152 struct timer_list idle_slice_timer;
23e018a1 153 struct work_struct unplug_work;
1da177e4 154
22e2c507
JA
155 struct cfq_queue *active_queue;
156 struct cfq_io_context *active_cic;
22e2c507 157
c2dea2d1
VT
158 /*
159 * async queue for each priority case
160 */
161 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
162 struct cfq_queue *async_idle_cfqq;
15c31be4 163
6d048f53 164 sector_t last_position;
1da177e4 165
1da177e4
LT
166 /*
167 * tunables, see top of file
168 */
169 unsigned int cfq_quantum;
22e2c507 170 unsigned int cfq_fifo_expire[2];
1da177e4
LT
171 unsigned int cfq_back_penalty;
172 unsigned int cfq_back_max;
22e2c507
JA
173 unsigned int cfq_slice[2];
174 unsigned int cfq_slice_async_rq;
175 unsigned int cfq_slice_idle;
963b72fc 176 unsigned int cfq_latency;
d9ff4187
AV
177
178 struct list_head cic_list;
1da177e4 179
6118b70b
JA
180 /*
181 * Fallback dummy cfqq for extreme OOM conditions
182 */
183 struct cfq_queue oom_cfqq;
365722bb
VG
184
185 unsigned long last_end_sync_rq;
1da177e4
LT
186};
187
3b18152c 188enum cfqq_state_flags {
b0b8d749
JA
189 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
190 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 191 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 192 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
193 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
194 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
195 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 196 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 197 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
a36e71f9 198 CFQ_CFQQ_FLAG_coop, /* has done a coop jump of the queue */
3b18152c
JA
199};
200
201#define CFQ_CFQQ_FNS(name) \
202static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
203{ \
fe094d98 204 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
205} \
206static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
207{ \
fe094d98 208 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
209} \
210static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
211{ \
fe094d98 212 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
213}
214
215CFQ_CFQQ_FNS(on_rr);
216CFQ_CFQQ_FNS(wait_request);
b029195d 217CFQ_CFQQ_FNS(must_dispatch);
3b18152c 218CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
219CFQ_CFQQ_FNS(fifo_expire);
220CFQ_CFQQ_FNS(idle_window);
221CFQ_CFQQ_FNS(prio_changed);
44f7c160 222CFQ_CFQQ_FNS(slice_new);
91fac317 223CFQ_CFQQ_FNS(sync);
a36e71f9 224CFQ_CFQQ_FNS(coop);
3b18152c
JA
225#undef CFQ_CFQQ_FNS
226
7b679138
JA
227#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
228 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
229#define cfq_log(cfqd, fmt, args...) \
230 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
231
165125e1 232static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 233static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 234 struct io_context *, gfp_t);
4ac845a2 235static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
236 struct io_context *);
237
5ad531db
JA
238static inline int rq_in_driver(struct cfq_data *cfqd)
239{
240 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
241}
242
91fac317 243static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 244 bool is_sync)
91fac317 245{
a6151c3a 246 return cic->cfqq[is_sync];
91fac317
VT
247}
248
249static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 250 struct cfq_queue *cfqq, bool is_sync)
91fac317 251{
a6151c3a 252 cic->cfqq[is_sync] = cfqq;
91fac317
VT
253}
254
255/*
256 * We regard a request as SYNC, if it's either a read or has the SYNC bit
257 * set (in which case it could also be direct WRITE).
258 */
a6151c3a 259static inline bool cfq_bio_sync(struct bio *bio)
91fac317 260{
a6151c3a 261 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 262}
1da177e4 263
99f95e52
AM
264/*
265 * scheduler run of queue, if there are requests pending and no one in the
266 * driver that will restart queueing
267 */
23e018a1 268static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 269{
7b679138
JA
270 if (cfqd->busy_queues) {
271 cfq_log(cfqd, "schedule dispatch");
23e018a1 272 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 273 }
99f95e52
AM
274}
275
165125e1 276static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
277{
278 struct cfq_data *cfqd = q->elevator->elevator_data;
279
b4878f24 280 return !cfqd->busy_queues;
99f95e52
AM
281}
282
44f7c160
JA
283/*
284 * Scale schedule slice based on io priority. Use the sync time slice only
285 * if a queue is marked sync and has sync io queued. A sync queue with async
286 * io only, should not get full sync slice length.
287 */
a6151c3a 288static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 289 unsigned short prio)
44f7c160 290{
d9e7620e 291 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 292
d9e7620e
JA
293 WARN_ON(prio >= IOPRIO_BE_NR);
294
295 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
296}
44f7c160 297
d9e7620e
JA
298static inline int
299cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
300{
301 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
302}
303
304static inline void
305cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
306{
307 cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
7b679138 308 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
309}
310
311/*
312 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
313 * isn't valid until the first request from the dispatch is activated
314 * and the slice time set.
315 */
a6151c3a 316static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
317{
318 if (cfq_cfqq_slice_new(cfqq))
319 return 0;
320 if (time_before(jiffies, cfqq->slice_end))
321 return 0;
322
323 return 1;
324}
325
1da177e4 326/*
5e705374 327 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 328 * We choose the request that is closest to the head right now. Distance
e8a99053 329 * behind the head is penalized and only allowed to a certain extent.
1da177e4 330 */
5e705374
JA
331static struct request *
332cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
1da177e4
LT
333{
334 sector_t last, s1, s2, d1 = 0, d2 = 0;
1da177e4 335 unsigned long back_max;
e8a99053
AM
336#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
337#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
338 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 339
5e705374
JA
340 if (rq1 == NULL || rq1 == rq2)
341 return rq2;
342 if (rq2 == NULL)
343 return rq1;
9c2c38a1 344
5e705374
JA
345 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
346 return rq1;
347 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
348 return rq2;
374f84ac
JA
349 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
350 return rq1;
351 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
352 return rq2;
1da177e4 353
83096ebf
TH
354 s1 = blk_rq_pos(rq1);
355 s2 = blk_rq_pos(rq2);
1da177e4 356
6d048f53 357 last = cfqd->last_position;
1da177e4 358
1da177e4
LT
359 /*
360 * by definition, 1KiB is 2 sectors
361 */
362 back_max = cfqd->cfq_back_max * 2;
363
364 /*
365 * Strict one way elevator _except_ in the case where we allow
366 * short backward seeks which are biased as twice the cost of a
367 * similar forward seek.
368 */
369 if (s1 >= last)
370 d1 = s1 - last;
371 else if (s1 + back_max >= last)
372 d1 = (last - s1) * cfqd->cfq_back_penalty;
373 else
e8a99053 374 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
375
376 if (s2 >= last)
377 d2 = s2 - last;
378 else if (s2 + back_max >= last)
379 d2 = (last - s2) * cfqd->cfq_back_penalty;
380 else
e8a99053 381 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
382
383 /* Found required data */
e8a99053
AM
384
385 /*
386 * By doing switch() on the bit mask "wrap" we avoid having to
387 * check two variables for all permutations: --> faster!
388 */
389 switch (wrap) {
5e705374 390 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 391 if (d1 < d2)
5e705374 392 return rq1;
e8a99053 393 else if (d2 < d1)
5e705374 394 return rq2;
e8a99053
AM
395 else {
396 if (s1 >= s2)
5e705374 397 return rq1;
e8a99053 398 else
5e705374 399 return rq2;
e8a99053 400 }
1da177e4 401
e8a99053 402 case CFQ_RQ2_WRAP:
5e705374 403 return rq1;
e8a99053 404 case CFQ_RQ1_WRAP:
5e705374
JA
405 return rq2;
406 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
407 default:
408 /*
409 * Since both rqs are wrapped,
410 * start with the one that's further behind head
411 * (--> only *one* back seek required),
412 * since back seek takes more time than forward.
413 */
414 if (s1 <= s2)
5e705374 415 return rq1;
1da177e4 416 else
5e705374 417 return rq2;
1da177e4
LT
418 }
419}
420
498d3aa2
JA
421/*
422 * The below is leftmost cache rbtree addon
423 */
0871714e 424static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
425{
426 if (!root->left)
427 root->left = rb_first(&root->rb);
428
0871714e
JA
429 if (root->left)
430 return rb_entry(root->left, struct cfq_queue, rb_node);
431
432 return NULL;
cc09e299
JA
433}
434
a36e71f9
JA
435static void rb_erase_init(struct rb_node *n, struct rb_root *root)
436{
437 rb_erase(n, root);
438 RB_CLEAR_NODE(n);
439}
440
cc09e299
JA
441static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
442{
443 if (root->left == n)
444 root->left = NULL;
a36e71f9 445 rb_erase_init(n, &root->rb);
cc09e299
JA
446}
447
1da177e4
LT
448/*
449 * would be nice to take fifo expire time into account as well
450 */
5e705374
JA
451static struct request *
452cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
453 struct request *last)
1da177e4 454{
21183b07
JA
455 struct rb_node *rbnext = rb_next(&last->rb_node);
456 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 457 struct request *next = NULL, *prev = NULL;
1da177e4 458
21183b07 459 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
460
461 if (rbprev)
5e705374 462 prev = rb_entry_rq(rbprev);
1da177e4 463
21183b07 464 if (rbnext)
5e705374 465 next = rb_entry_rq(rbnext);
21183b07
JA
466 else {
467 rbnext = rb_first(&cfqq->sort_list);
468 if (rbnext && rbnext != &last->rb_node)
5e705374 469 next = rb_entry_rq(rbnext);
21183b07 470 }
1da177e4 471
21183b07 472 return cfq_choose_req(cfqd, next, prev);
1da177e4
LT
473}
474
d9e7620e
JA
475static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
476 struct cfq_queue *cfqq)
1da177e4 477{
d9e7620e
JA
478 /*
479 * just an approximation, should be ok.
480 */
67e6b49e
JA
481 return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
482 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
483}
484
498d3aa2
JA
485/*
486 * The cfqd->service_tree holds all pending cfq_queue's that have
487 * requests waiting to be processed. It is sorted in the order that
488 * we will service the queues.
489 */
a36e71f9 490static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 491 bool add_front)
d9e7620e 492{
0871714e
JA
493 struct rb_node **p, *parent;
494 struct cfq_queue *__cfqq;
d9e7620e 495 unsigned long rb_key;
498d3aa2 496 int left;
d9e7620e 497
0871714e
JA
498 if (cfq_class_idle(cfqq)) {
499 rb_key = CFQ_IDLE_DELAY;
500 parent = rb_last(&cfqd->service_tree.rb);
501 if (parent && parent != &cfqq->rb_node) {
502 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
503 rb_key += __cfqq->rb_key;
504 } else
505 rb_key += jiffies;
506 } else if (!add_front) {
b9c8946b
JA
507 /*
508 * Get our rb key offset. Subtract any residual slice
509 * value carried from last service. A negative resid
510 * count indicates slice overrun, and this should position
511 * the next service time further away in the tree.
512 */
edd75ffd 513 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 514 rb_key -= cfqq->slice_resid;
edd75ffd 515 cfqq->slice_resid = 0;
48e025e6
CZ
516 } else {
517 rb_key = -HZ;
518 __cfqq = cfq_rb_first(&cfqd->service_tree);
519 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
520 }
1da177e4 521
d9e7620e 522 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 523 /*
d9e7620e 524 * same position, nothing more to do
99f9628a 525 */
d9e7620e
JA
526 if (rb_key == cfqq->rb_key)
527 return;
1da177e4 528
cc09e299 529 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
1da177e4 530 }
d9e7620e 531
498d3aa2 532 left = 1;
0871714e
JA
533 parent = NULL;
534 p = &cfqd->service_tree.rb.rb_node;
d9e7620e 535 while (*p) {
67060e37 536 struct rb_node **n;
cc09e299 537
d9e7620e
JA
538 parent = *p;
539 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
540
0c534e0a
JA
541 /*
542 * sort RT queues first, we always want to give
67060e37
JA
543 * preference to them. IDLE queues goes to the back.
544 * after that, sort on the next service time.
0c534e0a
JA
545 */
546 if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
67060e37 547 n = &(*p)->rb_left;
0c534e0a 548 else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
67060e37
JA
549 n = &(*p)->rb_right;
550 else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
551 n = &(*p)->rb_left;
552 else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
553 n = &(*p)->rb_right;
48e025e6 554 else if (time_before(rb_key, __cfqq->rb_key))
67060e37
JA
555 n = &(*p)->rb_left;
556 else
557 n = &(*p)->rb_right;
558
559 if (n == &(*p)->rb_right)
cc09e299 560 left = 0;
67060e37
JA
561
562 p = n;
d9e7620e
JA
563 }
564
cc09e299
JA
565 if (left)
566 cfqd->service_tree.left = &cfqq->rb_node;
567
d9e7620e
JA
568 cfqq->rb_key = rb_key;
569 rb_link_node(&cfqq->rb_node, parent, p);
cc09e299 570 rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
1da177e4
LT
571}
572
a36e71f9 573static struct cfq_queue *
f2d1f0ae
JA
574cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
575 sector_t sector, struct rb_node **ret_parent,
576 struct rb_node ***rb_link)
a36e71f9 577{
a36e71f9
JA
578 struct rb_node **p, *parent;
579 struct cfq_queue *cfqq = NULL;
580
581 parent = NULL;
582 p = &root->rb_node;
583 while (*p) {
584 struct rb_node **n;
585
586 parent = *p;
587 cfqq = rb_entry(parent, struct cfq_queue, p_node);
588
589 /*
590 * Sort strictly based on sector. Smallest to the left,
591 * largest to the right.
592 */
2e46e8b2 593 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 594 n = &(*p)->rb_right;
2e46e8b2 595 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
596 n = &(*p)->rb_left;
597 else
598 break;
599 p = n;
3ac6c9f8 600 cfqq = NULL;
a36e71f9
JA
601 }
602
603 *ret_parent = parent;
604 if (rb_link)
605 *rb_link = p;
3ac6c9f8 606 return cfqq;
a36e71f9
JA
607}
608
609static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
610{
a36e71f9
JA
611 struct rb_node **p, *parent;
612 struct cfq_queue *__cfqq;
613
f2d1f0ae
JA
614 if (cfqq->p_root) {
615 rb_erase(&cfqq->p_node, cfqq->p_root);
616 cfqq->p_root = NULL;
617 }
a36e71f9
JA
618
619 if (cfq_class_idle(cfqq))
620 return;
621 if (!cfqq->next_rq)
622 return;
623
f2d1f0ae 624 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
625 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
626 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
627 if (!__cfqq) {
628 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
629 rb_insert_color(&cfqq->p_node, cfqq->p_root);
630 } else
631 cfqq->p_root = NULL;
a36e71f9
JA
632}
633
498d3aa2
JA
634/*
635 * Update cfqq's position in the service tree.
636 */
edd75ffd 637static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 638{
6d048f53
JA
639 /*
640 * Resorting requires the cfqq to be on the RR list already.
641 */
a36e71f9 642 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 643 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
644 cfq_prio_tree_add(cfqd, cfqq);
645 }
6d048f53
JA
646}
647
1da177e4
LT
648/*
649 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 650 * the pending list according to last request service
1da177e4 651 */
febffd61 652static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 653{
7b679138 654 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
655 BUG_ON(cfq_cfqq_on_rr(cfqq));
656 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
657 cfqd->busy_queues++;
658
edd75ffd 659 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
660}
661
498d3aa2
JA
662/*
663 * Called when the cfqq no longer has requests pending, remove it from
664 * the service tree.
665 */
febffd61 666static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 667{
7b679138 668 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
669 BUG_ON(!cfq_cfqq_on_rr(cfqq));
670 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 671
cc09e299
JA
672 if (!RB_EMPTY_NODE(&cfqq->rb_node))
673 cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
f2d1f0ae
JA
674 if (cfqq->p_root) {
675 rb_erase(&cfqq->p_node, cfqq->p_root);
676 cfqq->p_root = NULL;
677 }
d9e7620e 678
1da177e4
LT
679 BUG_ON(!cfqd->busy_queues);
680 cfqd->busy_queues--;
681}
682
683/*
684 * rb tree support functions
685 */
febffd61 686static void cfq_del_rq_rb(struct request *rq)
1da177e4 687{
5e705374 688 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 689 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 690 const int sync = rq_is_sync(rq);
1da177e4 691
b4878f24
JA
692 BUG_ON(!cfqq->queued[sync]);
693 cfqq->queued[sync]--;
1da177e4 694
5e705374 695 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 696
dd67d051 697 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 698 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
699}
700
5e705374 701static void cfq_add_rq_rb(struct request *rq)
1da177e4 702{
5e705374 703 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 704 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 705 struct request *__alias, *prev;
1da177e4 706
5380a101 707 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
708
709 /*
710 * looks a little odd, but the first insert might return an alias.
711 * if that happens, put the alias on the dispatch list
712 */
21183b07 713 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 714 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
715
716 if (!cfq_cfqq_on_rr(cfqq))
717 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
718
719 /*
720 * check if this request is a better next-serve candidate
721 */
a36e71f9 722 prev = cfqq->next_rq;
5044eed4 723 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
a36e71f9
JA
724
725 /*
726 * adjust priority tree position, if ->next_rq changes
727 */
728 if (prev != cfqq->next_rq)
729 cfq_prio_tree_add(cfqd, cfqq);
730
5044eed4 731 BUG_ON(!cfqq->next_rq);
1da177e4
LT
732}
733
febffd61 734static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 735{
5380a101
JA
736 elv_rb_del(&cfqq->sort_list, rq);
737 cfqq->queued[rq_is_sync(rq)]--;
5e705374 738 cfq_add_rq_rb(rq);
1da177e4
LT
739}
740
206dc69b
JA
741static struct request *
742cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 743{
206dc69b 744 struct task_struct *tsk = current;
91fac317 745 struct cfq_io_context *cic;
206dc69b 746 struct cfq_queue *cfqq;
1da177e4 747
4ac845a2 748 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
749 if (!cic)
750 return NULL;
751
752 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
753 if (cfqq) {
754 sector_t sector = bio->bi_sector + bio_sectors(bio);
755
21183b07 756 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 757 }
1da177e4 758
1da177e4
LT
759 return NULL;
760}
761
165125e1 762static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 763{
22e2c507 764 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 765
5ad531db 766 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 767 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 768 rq_in_driver(cfqd));
25776e35 769
5b93629b 770 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
771}
772
165125e1 773static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 774{
b4878f24 775 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 776 const int sync = rq_is_sync(rq);
b4878f24 777
5ad531db
JA
778 WARN_ON(!cfqd->rq_in_driver[sync]);
779 cfqd->rq_in_driver[sync]--;
7b679138 780 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 781 rq_in_driver(cfqd));
1da177e4
LT
782}
783
b4878f24 784static void cfq_remove_request(struct request *rq)
1da177e4 785{
5e705374 786 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 787
5e705374
JA
788 if (cfqq->next_rq == rq)
789 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 790
b4878f24 791 list_del_init(&rq->queuelist);
5e705374 792 cfq_del_rq_rb(rq);
374f84ac 793
45333d5a 794 cfqq->cfqd->rq_queued--;
374f84ac
JA
795 if (rq_is_meta(rq)) {
796 WARN_ON(!cfqq->meta_pending);
797 cfqq->meta_pending--;
798 }
1da177e4
LT
799}
800
165125e1
JA
801static int cfq_merge(struct request_queue *q, struct request **req,
802 struct bio *bio)
1da177e4
LT
803{
804 struct cfq_data *cfqd = q->elevator->elevator_data;
805 struct request *__rq;
1da177e4 806
206dc69b 807 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 808 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
809 *req = __rq;
810 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
811 }
812
813 return ELEVATOR_NO_MERGE;
1da177e4
LT
814}
815
165125e1 816static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 817 int type)
1da177e4 818{
21183b07 819 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 820 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 821
5e705374 822 cfq_reposition_rq_rb(cfqq, req);
1da177e4 823 }
1da177e4
LT
824}
825
826static void
165125e1 827cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
828 struct request *next)
829{
22e2c507
JA
830 /*
831 * reposition in fifo if next is older than rq
832 */
833 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 834 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 835 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
836 rq_set_fifo_time(rq, rq_fifo_time(next));
837 }
22e2c507 838
b4878f24 839 cfq_remove_request(next);
22e2c507
JA
840}
841
165125e1 842static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
843 struct bio *bio)
844{
845 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 846 struct cfq_io_context *cic;
da775265 847 struct cfq_queue *cfqq;
da775265
JA
848
849 /*
ec8acb69 850 * Disallow merge of a sync bio into an async request.
da775265 851 */
91fac317 852 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 853 return false;
da775265
JA
854
855 /*
719d3402
JA
856 * Lookup the cfqq that this bio will be queued with. Allow
857 * merge only if rq is queued there.
da775265 858 */
4ac845a2 859 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 860 if (!cic)
a6151c3a 861 return false;
719d3402 862
91fac317 863 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 864 return cfqq == RQ_CFQQ(rq);
da775265
JA
865}
866
febffd61
JA
867static void __cfq_set_active_queue(struct cfq_data *cfqd,
868 struct cfq_queue *cfqq)
22e2c507
JA
869{
870 if (cfqq) {
7b679138 871 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 872 cfqq->slice_end = 0;
2f5cb738
JA
873 cfqq->slice_dispatch = 0;
874
2f5cb738 875 cfq_clear_cfqq_wait_request(cfqq);
b029195d 876 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
877 cfq_clear_cfqq_must_alloc_slice(cfqq);
878 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 879 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
880
881 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
882 }
883
884 cfqd->active_queue = cfqq;
885}
886
7b14e3b5
JA
887/*
888 * current cfqq expired its slice (or was too idle), select new one
889 */
890static void
891__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 892 bool timed_out)
7b14e3b5 893{
7b679138
JA
894 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
895
7b14e3b5
JA
896 if (cfq_cfqq_wait_request(cfqq))
897 del_timer(&cfqd->idle_slice_timer);
898
7b14e3b5
JA
899 cfq_clear_cfqq_wait_request(cfqq);
900
901 /*
6084cdda 902 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 903 */
7b679138 904 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 905 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
906 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
907 }
7b14e3b5 908
edd75ffd 909 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
910
911 if (cfqq == cfqd->active_queue)
912 cfqd->active_queue = NULL;
913
914 if (cfqd->active_cic) {
915 put_io_context(cfqd->active_cic->ioc);
916 cfqd->active_cic = NULL;
917 }
7b14e3b5
JA
918}
919
a6151c3a 920static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
921{
922 struct cfq_queue *cfqq = cfqd->active_queue;
923
924 if (cfqq)
6084cdda 925 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
926}
927
498d3aa2
JA
928/*
929 * Get next queue for service. Unless we have a queue preemption,
930 * we'll simply select the first cfqq in the service tree.
931 */
6d048f53 932static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 933{
edd75ffd
JA
934 if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
935 return NULL;
d9e7620e 936
0871714e 937 return cfq_rb_first(&cfqd->service_tree);
6d048f53
JA
938}
939
498d3aa2
JA
940/*
941 * Get and set a new active queue for service.
942 */
a36e71f9
JA
943static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
944 struct cfq_queue *cfqq)
6d048f53 945{
a36e71f9
JA
946 if (!cfqq) {
947 cfqq = cfq_get_next_queue(cfqd);
948 if (cfqq)
949 cfq_clear_cfqq_coop(cfqq);
950 }
6d048f53 951
22e2c507 952 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 953 return cfqq;
22e2c507
JA
954}
955
d9e7620e
JA
956static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
957 struct request *rq)
958{
83096ebf
TH
959 if (blk_rq_pos(rq) >= cfqd->last_position)
960 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 961 else
83096ebf 962 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
963}
964
04dc6e71
JM
965#define CIC_SEEK_THR 8 * 1024
966#define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
967
6d048f53
JA
968static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
969{
970 struct cfq_io_context *cic = cfqd->active_cic;
04dc6e71 971 sector_t sdist = cic->seek_mean;
6d048f53
JA
972
973 if (!sample_valid(cic->seek_samples))
04dc6e71 974 sdist = CIC_SEEK_THR;
6d048f53 975
04dc6e71 976 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
977}
978
a36e71f9
JA
979static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
980 struct cfq_queue *cur_cfqq)
981{
f2d1f0ae 982 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
983 struct rb_node *parent, *node;
984 struct cfq_queue *__cfqq;
985 sector_t sector = cfqd->last_position;
986
987 if (RB_EMPTY_ROOT(root))
988 return NULL;
989
990 /*
991 * First, if we find a request starting at the end of the last
992 * request, choose it.
993 */
f2d1f0ae 994 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
995 if (__cfqq)
996 return __cfqq;
997
998 /*
999 * If the exact sector wasn't found, the parent of the NULL leaf
1000 * will contain the closest sector.
1001 */
1002 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
1003 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1004 return __cfqq;
1005
2e46e8b2 1006 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1007 node = rb_next(&__cfqq->p_node);
1008 else
1009 node = rb_prev(&__cfqq->p_node);
1010 if (!node)
1011 return NULL;
1012
1013 __cfqq = rb_entry(node, struct cfq_queue, p_node);
1014 if (cfq_rq_close(cfqd, __cfqq->next_rq))
1015 return __cfqq;
1016
1017 return NULL;
1018}
1019
1020/*
1021 * cfqd - obvious
1022 * cur_cfqq - passed in so that we don't decide that the current queue is
1023 * closely cooperating with itself.
1024 *
1025 * So, basically we're assuming that that cur_cfqq has dispatched at least
1026 * one request, and that cfqd->last_position reflects a position on the disk
1027 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1028 * assumption.
1029 */
1030static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
1031 struct cfq_queue *cur_cfqq,
a6151c3a 1032 bool probe)
6d048f53 1033{
a36e71f9
JA
1034 struct cfq_queue *cfqq;
1035
1036 /*
1037 * A valid cfq_io_context is necessary to compare requests against
1038 * the seek_mean of the current cfqq.
1039 */
1040 if (!cfqd->active_cic)
1041 return NULL;
1042
6d048f53 1043 /*
d9e7620e
JA
1044 * We should notice if some of the queues are cooperating, eg
1045 * working closely on the same area of the disk. In that case,
1046 * we can group them together and don't waste time idling.
6d048f53 1047 */
a36e71f9
JA
1048 cfqq = cfqq_close(cfqd, cur_cfqq);
1049 if (!cfqq)
1050 return NULL;
1051
1052 if (cfq_cfqq_coop(cfqq))
1053 return NULL;
1054
1055 if (!probe)
1056 cfq_mark_cfqq_coop(cfqq);
1057 return cfqq;
6d048f53
JA
1058}
1059
6d048f53 1060static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1061{
1792669c 1062 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1063 struct cfq_io_context *cic;
7b14e3b5
JA
1064 unsigned long sl;
1065
a68bbddb 1066 /*
f7d7b7a7
JA
1067 * SSD device without seek penalty, disable idling. But only do so
1068 * for devices that support queuing, otherwise we still have a problem
1069 * with sync vs async workloads.
a68bbddb 1070 */
f7d7b7a7 1071 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1072 return;
1073
dd67d051 1074 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1075 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1076
1077 /*
1078 * idle is disabled, either manually or by past process history
1079 */
6d048f53
JA
1080 if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
1081 return;
1082
7b679138
JA
1083 /*
1084 * still requests with the driver, don't idle
1085 */
5ad531db 1086 if (rq_in_driver(cfqd))
7b679138
JA
1087 return;
1088
22e2c507
JA
1089 /*
1090 * task has exited, don't wait
1091 */
206dc69b 1092 cic = cfqd->active_cic;
66dac98e 1093 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1094 return;
1095
355b659c
CZ
1096 /*
1097 * If our average think time is larger than the remaining time
1098 * slice, then don't idle. This avoids overrunning the allotted
1099 * time slice.
1100 */
1101 if (sample_valid(cic->ttime_samples) &&
1102 (cfqq->slice_end - jiffies < cic->ttime_mean))
1103 return;
1104
3b18152c 1105 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1106
206dc69b
JA
1107 /*
1108 * we don't want to idle for seeks, but we do want to allow
1109 * fair distribution of slice time for a process doing back-to-back
1110 * seeks. so allow a little bit of time for him to submit a new rq
1111 */
6d048f53 1112 sl = cfqd->cfq_slice_idle;
caaa5f9f 1113 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
d9e7620e 1114 sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
206dc69b 1115
7b14e3b5 1116 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1117 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1118}
1119
498d3aa2
JA
1120/*
1121 * Move request from internal lists to the request queue dispatch list.
1122 */
165125e1 1123static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1124{
3ed9a296 1125 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1126 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1127
7b679138
JA
1128 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1129
06d21886 1130 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1131 cfq_remove_request(rq);
6d048f53 1132 cfqq->dispatched++;
5380a101 1133 elv_dispatch_sort(q, rq);
3ed9a296
JA
1134
1135 if (cfq_cfqq_sync(cfqq))
1136 cfqd->sync_flight++;
1da177e4
LT
1137}
1138
1139/*
1140 * return expired entry, or NULL to just start from scratch in rbtree
1141 */
febffd61 1142static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1143{
30996f40 1144 struct request *rq = NULL;
1da177e4 1145
3b18152c 1146 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1147 return NULL;
cb887411
JA
1148
1149 cfq_mark_cfqq_fifo_expire(cfqq);
1150
89850f7e
JA
1151 if (list_empty(&cfqq->fifo))
1152 return NULL;
1da177e4 1153
89850f7e 1154 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1155 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1156 rq = NULL;
1da177e4 1157
30996f40 1158 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1159 return rq;
1da177e4
LT
1160}
1161
22e2c507
JA
1162static inline int
1163cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1164{
1165 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1166
22e2c507 1167 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1168
22e2c507 1169 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1170}
1171
22e2c507 1172/*
498d3aa2
JA
1173 * Select a queue for service. If we have a current active queue,
1174 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1175 */
1b5ed5e1 1176static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1177{
a36e71f9 1178 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1179
22e2c507
JA
1180 cfqq = cfqd->active_queue;
1181 if (!cfqq)
1182 goto new_queue;
1da177e4 1183
22e2c507 1184 /*
6d048f53 1185 * The active queue has run out of time, expire it and select new.
22e2c507 1186 */
b029195d 1187 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1188 goto expire;
1da177e4 1189
22e2c507 1190 /*
6d048f53
JA
1191 * The active queue has requests and isn't expired, allow it to
1192 * dispatch.
22e2c507 1193 */
dd67d051 1194 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1195 goto keep_queue;
6d048f53 1196
a36e71f9
JA
1197 /*
1198 * If another queue has a request waiting within our mean seek
1199 * distance, let it run. The expire code will check for close
1200 * cooperators and put the close queue at the front of the service
1201 * tree.
1202 */
1203 new_cfqq = cfq_close_cooperator(cfqd, cfqq, 0);
1204 if (new_cfqq)
1205 goto expire;
1206
6d048f53
JA
1207 /*
1208 * No requests pending. If the active queue still has requests in
1209 * flight or is idling for a new request, allow either of these
1210 * conditions to happen (or time out) before selecting a new queue.
1211 */
cc197479
JA
1212 if (timer_pending(&cfqd->idle_slice_timer) ||
1213 (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
caaa5f9f
JA
1214 cfqq = NULL;
1215 goto keep_queue;
22e2c507
JA
1216 }
1217
3b18152c 1218expire:
6084cdda 1219 cfq_slice_expired(cfqd, 0);
3b18152c 1220new_queue:
a36e71f9 1221 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1222keep_queue:
3b18152c 1223 return cfqq;
22e2c507
JA
1224}
1225
febffd61 1226static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1227{
1228 int dispatched = 0;
1229
1230 while (cfqq->next_rq) {
1231 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1232 dispatched++;
1233 }
1234
1235 BUG_ON(!list_empty(&cfqq->fifo));
1236 return dispatched;
1237}
1238
498d3aa2
JA
1239/*
1240 * Drain our current requests. Used for barriers and when switching
1241 * io schedulers on-the-fly.
1242 */
d9e7620e 1243static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1244{
0871714e 1245 struct cfq_queue *cfqq;
d9e7620e 1246 int dispatched = 0;
1b5ed5e1 1247
0871714e 1248 while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
d9e7620e 1249 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1250
6084cdda 1251 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1252
1253 BUG_ON(cfqd->busy_queues);
1254
6923715a 1255 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1256 return dispatched;
1257}
1258
0b182d61 1259static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1260{
2f5cb738 1261 unsigned int max_dispatch;
22e2c507 1262
5ad531db
JA
1263 /*
1264 * Drain async requests before we start sync IO
1265 */
1266 if (cfq_cfqq_idle_window(cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1267 return false;
5ad531db 1268
2f5cb738
JA
1269 /*
1270 * If this is an async queue and we have sync IO in flight, let it wait
1271 */
1272 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1273 return false;
2f5cb738
JA
1274
1275 max_dispatch = cfqd->cfq_quantum;
1276 if (cfq_class_idle(cfqq))
1277 max_dispatch = 1;
b4878f24 1278
2f5cb738
JA
1279 /*
1280 * Does this cfqq already have too much IO in flight?
1281 */
1282 if (cfqq->dispatched >= max_dispatch) {
1283 /*
1284 * idle queue must always only have a single IO in flight
1285 */
3ed9a296 1286 if (cfq_class_idle(cfqq))
0b182d61 1287 return false;
3ed9a296 1288
2f5cb738
JA
1289 /*
1290 * We have other queues, don't allow more IO from this one
1291 */
1292 if (cfqd->busy_queues > 1)
0b182d61 1293 return false;
9ede209e 1294
365722bb 1295 /*
8e296755 1296 * Sole queue user, allow bigger slice
365722bb 1297 */
8e296755
JA
1298 max_dispatch *= 4;
1299 }
1300
1301 /*
1302 * Async queues must wait a bit before being allowed dispatch.
1303 * We also ramp up the dispatch depth gradually for async IO,
1304 * based on the last sync IO we serviced
1305 */
963b72fc 1306 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1307 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1308 unsigned int depth;
365722bb 1309
61f0c1dc 1310 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1311 if (!depth && !cfqq->dispatched)
1312 depth = 1;
8e296755
JA
1313 if (depth < max_dispatch)
1314 max_dispatch = depth;
2f5cb738 1315 }
3ed9a296 1316
0b182d61
JA
1317 /*
1318 * If we're below the current max, allow a dispatch
1319 */
1320 return cfqq->dispatched < max_dispatch;
1321}
1322
1323/*
1324 * Dispatch a request from cfqq, moving them to the request queue
1325 * dispatch list.
1326 */
1327static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1328{
1329 struct request *rq;
1330
1331 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1332
1333 if (!cfq_may_dispatch(cfqd, cfqq))
1334 return false;
1335
1336 /*
1337 * follow expired path, else get first next available
1338 */
1339 rq = cfq_check_fifo(cfqq);
1340 if (!rq)
1341 rq = cfqq->next_rq;
1342
1343 /*
1344 * insert request into driver dispatch list
1345 */
1346 cfq_dispatch_insert(cfqd->queue, rq);
1347
1348 if (!cfqd->active_cic) {
1349 struct cfq_io_context *cic = RQ_CIC(rq);
1350
1351 atomic_long_inc(&cic->ioc->refcount);
1352 cfqd->active_cic = cic;
1353 }
1354
1355 return true;
1356}
1357
1358/*
1359 * Find the cfqq that we need to service and move a request from that to the
1360 * dispatch list
1361 */
1362static int cfq_dispatch_requests(struct request_queue *q, int force)
1363{
1364 struct cfq_data *cfqd = q->elevator->elevator_data;
1365 struct cfq_queue *cfqq;
1366
1367 if (!cfqd->busy_queues)
1368 return 0;
1369
1370 if (unlikely(force))
1371 return cfq_forced_dispatch(cfqd);
1372
1373 cfqq = cfq_select_queue(cfqd);
1374 if (!cfqq)
8e296755
JA
1375 return 0;
1376
2f5cb738 1377 /*
0b182d61 1378 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1379 */
0b182d61
JA
1380 if (!cfq_dispatch_request(cfqd, cfqq))
1381 return 0;
1382
2f5cb738 1383 cfqq->slice_dispatch++;
b029195d 1384 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1385
2f5cb738
JA
1386 /*
1387 * expire an async queue immediately if it has used up its slice. idle
1388 * queue always expire after 1 dispatch round.
1389 */
1390 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1391 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1392 cfq_class_idle(cfqq))) {
1393 cfqq->slice_end = jiffies + 1;
1394 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1395 }
1396
b217a903 1397 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1398 return 1;
1da177e4
LT
1399}
1400
1da177e4 1401/*
5e705374
JA
1402 * task holds one reference to the queue, dropped when task exits. each rq
1403 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1404 *
1405 * queue lock must be held here.
1406 */
1407static void cfq_put_queue(struct cfq_queue *cfqq)
1408{
22e2c507
JA
1409 struct cfq_data *cfqd = cfqq->cfqd;
1410
1411 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1412
1413 if (!atomic_dec_and_test(&cfqq->ref))
1414 return;
1415
7b679138 1416 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1417 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1418 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1419 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1420
28f95cbc 1421 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1422 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1423 cfq_schedule_dispatch(cfqd);
28f95cbc 1424 }
22e2c507 1425
1da177e4
LT
1426 kmem_cache_free(cfq_pool, cfqq);
1427}
1428
d6de8be7
JA
1429/*
1430 * Must always be called with the rcu_read_lock() held
1431 */
07416d29
JA
1432static void
1433__call_for_each_cic(struct io_context *ioc,
1434 void (*func)(struct io_context *, struct cfq_io_context *))
1435{
1436 struct cfq_io_context *cic;
1437 struct hlist_node *n;
1438
1439 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1440 func(ioc, cic);
1441}
1442
4ac845a2 1443/*
34e6bbf2 1444 * Call func for each cic attached to this ioc.
4ac845a2 1445 */
34e6bbf2 1446static void
4ac845a2
JA
1447call_for_each_cic(struct io_context *ioc,
1448 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1449{
4ac845a2 1450 rcu_read_lock();
07416d29 1451 __call_for_each_cic(ioc, func);
4ac845a2 1452 rcu_read_unlock();
34e6bbf2
FC
1453}
1454
1455static void cfq_cic_free_rcu(struct rcu_head *head)
1456{
1457 struct cfq_io_context *cic;
1458
1459 cic = container_of(head, struct cfq_io_context, rcu_head);
1460
1461 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1462 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1463
9a11b4ed
JA
1464 if (ioc_gone) {
1465 /*
1466 * CFQ scheduler is exiting, grab exit lock and check
1467 * the pending io context count. If it hits zero,
1468 * complete ioc_gone and set it back to NULL
1469 */
1470 spin_lock(&ioc_gone_lock);
245b2e70 1471 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1472 complete(ioc_gone);
1473 ioc_gone = NULL;
1474 }
1475 spin_unlock(&ioc_gone_lock);
1476 }
34e6bbf2 1477}
4ac845a2 1478
34e6bbf2
FC
1479static void cfq_cic_free(struct cfq_io_context *cic)
1480{
1481 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1482}
1483
1484static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1485{
1486 unsigned long flags;
1487
1488 BUG_ON(!cic->dead_key);
1489
1490 spin_lock_irqsave(&ioc->lock, flags);
1491 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1492 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1493 spin_unlock_irqrestore(&ioc->lock, flags);
1494
34e6bbf2 1495 cfq_cic_free(cic);
4ac845a2
JA
1496}
1497
d6de8be7
JA
1498/*
1499 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1500 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1501 * and ->trim() which is called with the task lock held
1502 */
4ac845a2
JA
1503static void cfq_free_io_context(struct io_context *ioc)
1504{
4ac845a2 1505 /*
34e6bbf2
FC
1506 * ioc->refcount is zero here, or we are called from elv_unregister(),
1507 * so no more cic's are allowed to be linked into this ioc. So it
1508 * should be ok to iterate over the known list, we will see all cic's
1509 * since no new ones are added.
4ac845a2 1510 */
07416d29 1511 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1512}
1513
89850f7e 1514static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1515{
28f95cbc 1516 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1517 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1518 cfq_schedule_dispatch(cfqd);
28f95cbc 1519 }
22e2c507 1520
89850f7e
JA
1521 cfq_put_queue(cfqq);
1522}
22e2c507 1523
89850f7e
JA
1524static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1525 struct cfq_io_context *cic)
1526{
4faa3c81
FC
1527 struct io_context *ioc = cic->ioc;
1528
fc46379d 1529 list_del_init(&cic->queue_list);
4ac845a2
JA
1530
1531 /*
1532 * Make sure key == NULL is seen for dead queues
1533 */
fc46379d 1534 smp_wmb();
4ac845a2 1535 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1536 cic->key = NULL;
1537
4faa3c81
FC
1538 if (ioc->ioc_data == cic)
1539 rcu_assign_pointer(ioc->ioc_data, NULL);
1540
ff6657c6
JA
1541 if (cic->cfqq[BLK_RW_ASYNC]) {
1542 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1543 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1544 }
1545
ff6657c6
JA
1546 if (cic->cfqq[BLK_RW_SYNC]) {
1547 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1548 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1549 }
89850f7e
JA
1550}
1551
4ac845a2
JA
1552static void cfq_exit_single_io_context(struct io_context *ioc,
1553 struct cfq_io_context *cic)
89850f7e
JA
1554{
1555 struct cfq_data *cfqd = cic->key;
1556
89850f7e 1557 if (cfqd) {
165125e1 1558 struct request_queue *q = cfqd->queue;
4ac845a2 1559 unsigned long flags;
89850f7e 1560
4ac845a2 1561 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1562
1563 /*
1564 * Ensure we get a fresh copy of the ->key to prevent
1565 * race between exiting task and queue
1566 */
1567 smp_read_barrier_depends();
1568 if (cic->key)
1569 __cfq_exit_single_io_context(cfqd, cic);
1570
4ac845a2 1571 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1572 }
1da177e4
LT
1573}
1574
498d3aa2
JA
1575/*
1576 * The process that ioc belongs to has exited, we need to clean up
1577 * and put the internal structures we have that belongs to that process.
1578 */
e2d74ac0 1579static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1580{
4ac845a2 1581 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1582}
1583
22e2c507 1584static struct cfq_io_context *
8267e268 1585cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1586{
b5deef90 1587 struct cfq_io_context *cic;
1da177e4 1588
94f6030c
CL
1589 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1590 cfqd->queue->node);
1da177e4 1591 if (cic) {
22e2c507 1592 cic->last_end_request = jiffies;
553698f9 1593 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1594 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1595 cic->dtor = cfq_free_io_context;
1596 cic->exit = cfq_exit_io_context;
245b2e70 1597 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1598 }
1599
1600 return cic;
1601}
1602
fd0928df 1603static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1604{
1605 struct task_struct *tsk = current;
1606 int ioprio_class;
1607
3b18152c 1608 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1609 return;
1610
fd0928df 1611 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1612 switch (ioprio_class) {
fe094d98
JA
1613 default:
1614 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1615 case IOPRIO_CLASS_NONE:
1616 /*
6d63c275 1617 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1618 */
1619 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1620 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1621 break;
1622 case IOPRIO_CLASS_RT:
1623 cfqq->ioprio = task_ioprio(ioc);
1624 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1625 break;
1626 case IOPRIO_CLASS_BE:
1627 cfqq->ioprio = task_ioprio(ioc);
1628 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1629 break;
1630 case IOPRIO_CLASS_IDLE:
1631 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1632 cfqq->ioprio = 7;
1633 cfq_clear_cfqq_idle_window(cfqq);
1634 break;
22e2c507
JA
1635 }
1636
1637 /*
1638 * keep track of original prio settings in case we have to temporarily
1639 * elevate the priority of this queue
1640 */
1641 cfqq->org_ioprio = cfqq->ioprio;
1642 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1643 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1644}
1645
febffd61 1646static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1647{
478a82b0
AV
1648 struct cfq_data *cfqd = cic->key;
1649 struct cfq_queue *cfqq;
c1b707d2 1650 unsigned long flags;
35e6077c 1651
caaa5f9f
JA
1652 if (unlikely(!cfqd))
1653 return;
1654
c1b707d2 1655 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1656
ff6657c6 1657 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
1658 if (cfqq) {
1659 struct cfq_queue *new_cfqq;
ff6657c6
JA
1660 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
1661 GFP_ATOMIC);
caaa5f9f 1662 if (new_cfqq) {
ff6657c6 1663 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
1664 cfq_put_queue(cfqq);
1665 }
22e2c507 1666 }
caaa5f9f 1667
ff6657c6 1668 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
1669 if (cfqq)
1670 cfq_mark_cfqq_prio_changed(cfqq);
1671
c1b707d2 1672 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
1673}
1674
fc46379d 1675static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 1676{
4ac845a2 1677 call_for_each_cic(ioc, changed_ioprio);
fc46379d 1678 ioc->ioprio_changed = 0;
22e2c507
JA
1679}
1680
d5036d77 1681static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1682 pid_t pid, bool is_sync)
d5036d77
JA
1683{
1684 RB_CLEAR_NODE(&cfqq->rb_node);
1685 RB_CLEAR_NODE(&cfqq->p_node);
1686 INIT_LIST_HEAD(&cfqq->fifo);
1687
1688 atomic_set(&cfqq->ref, 0);
1689 cfqq->cfqd = cfqd;
1690
1691 cfq_mark_cfqq_prio_changed(cfqq);
1692
1693 if (is_sync) {
1694 if (!cfq_class_idle(cfqq))
1695 cfq_mark_cfqq_idle_window(cfqq);
1696 cfq_mark_cfqq_sync(cfqq);
1697 }
1698 cfqq->pid = pid;
1699}
1700
22e2c507 1701static struct cfq_queue *
a6151c3a 1702cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 1703 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 1704{
22e2c507 1705 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 1706 struct cfq_io_context *cic;
22e2c507
JA
1707
1708retry:
4ac845a2 1709 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
1710 /* cic always exists here */
1711 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 1712
6118b70b
JA
1713 /*
1714 * Always try a new alloc if we fell back to the OOM cfqq
1715 * originally, since it should just be a temporary situation.
1716 */
1717 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
1718 cfqq = NULL;
22e2c507
JA
1719 if (new_cfqq) {
1720 cfqq = new_cfqq;
1721 new_cfqq = NULL;
1722 } else if (gfp_mask & __GFP_WAIT) {
1723 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 1724 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 1725 gfp_mask | __GFP_ZERO,
94f6030c 1726 cfqd->queue->node);
22e2c507 1727 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
1728 if (new_cfqq)
1729 goto retry;
22e2c507 1730 } else {
94f6030c
CL
1731 cfqq = kmem_cache_alloc_node(cfq_pool,
1732 gfp_mask | __GFP_ZERO,
1733 cfqd->queue->node);
22e2c507
JA
1734 }
1735
6118b70b
JA
1736 if (cfqq) {
1737 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
1738 cfq_init_prio_data(cfqq, ioc);
1739 cfq_log_cfqq(cfqd, cfqq, "alloced");
1740 } else
1741 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
1742 }
1743
1744 if (new_cfqq)
1745 kmem_cache_free(cfq_pool, new_cfqq);
1746
22e2c507
JA
1747 return cfqq;
1748}
1749
c2dea2d1
VT
1750static struct cfq_queue **
1751cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
1752{
fe094d98 1753 switch (ioprio_class) {
c2dea2d1
VT
1754 case IOPRIO_CLASS_RT:
1755 return &cfqd->async_cfqq[0][ioprio];
1756 case IOPRIO_CLASS_BE:
1757 return &cfqd->async_cfqq[1][ioprio];
1758 case IOPRIO_CLASS_IDLE:
1759 return &cfqd->async_idle_cfqq;
1760 default:
1761 BUG();
1762 }
1763}
1764
15c31be4 1765static struct cfq_queue *
a6151c3a 1766cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
1767 gfp_t gfp_mask)
1768{
fd0928df
JA
1769 const int ioprio = task_ioprio(ioc);
1770 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 1771 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
1772 struct cfq_queue *cfqq = NULL;
1773
c2dea2d1
VT
1774 if (!is_sync) {
1775 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
1776 cfqq = *async_cfqq;
1777 }
1778
6118b70b 1779 if (!cfqq)
fd0928df 1780 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
1781
1782 /*
1783 * pin the queue now that it's allocated, scheduler exit will prune it
1784 */
c2dea2d1 1785 if (!is_sync && !(*async_cfqq)) {
15c31be4 1786 atomic_inc(&cfqq->ref);
c2dea2d1 1787 *async_cfqq = cfqq;
15c31be4
JA
1788 }
1789
1790 atomic_inc(&cfqq->ref);
1791 return cfqq;
1792}
1793
498d3aa2
JA
1794/*
1795 * We drop cfq io contexts lazily, so we may find a dead one.
1796 */
dbecf3ab 1797static void
4ac845a2
JA
1798cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
1799 struct cfq_io_context *cic)
dbecf3ab 1800{
4ac845a2
JA
1801 unsigned long flags;
1802
fc46379d 1803 WARN_ON(!list_empty(&cic->queue_list));
597bc485 1804
4ac845a2
JA
1805 spin_lock_irqsave(&ioc->lock, flags);
1806
4faa3c81 1807 BUG_ON(ioc->ioc_data == cic);
597bc485 1808
4ac845a2 1809 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 1810 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1811 spin_unlock_irqrestore(&ioc->lock, flags);
1812
1813 cfq_cic_free(cic);
dbecf3ab
OH
1814}
1815
e2d74ac0 1816static struct cfq_io_context *
4ac845a2 1817cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 1818{
e2d74ac0 1819 struct cfq_io_context *cic;
d6de8be7 1820 unsigned long flags;
4ac845a2 1821 void *k;
e2d74ac0 1822
91fac317
VT
1823 if (unlikely(!ioc))
1824 return NULL;
1825
d6de8be7
JA
1826 rcu_read_lock();
1827
597bc485
JA
1828 /*
1829 * we maintain a last-hit cache, to avoid browsing over the tree
1830 */
4ac845a2 1831 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
1832 if (cic && cic->key == cfqd) {
1833 rcu_read_unlock();
597bc485 1834 return cic;
d6de8be7 1835 }
597bc485 1836
4ac845a2 1837 do {
4ac845a2
JA
1838 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
1839 rcu_read_unlock();
1840 if (!cic)
1841 break;
be3b0753
OH
1842 /* ->key must be copied to avoid race with cfq_exit_queue() */
1843 k = cic->key;
1844 if (unlikely(!k)) {
4ac845a2 1845 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 1846 rcu_read_lock();
4ac845a2 1847 continue;
dbecf3ab 1848 }
e2d74ac0 1849
d6de8be7 1850 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 1851 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 1852 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
1853 break;
1854 } while (1);
e2d74ac0 1855
4ac845a2 1856 return cic;
e2d74ac0
JA
1857}
1858
4ac845a2
JA
1859/*
1860 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1861 * the process specific cfq io context when entered from the block layer.
1862 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1863 */
febffd61
JA
1864static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
1865 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 1866{
0261d688 1867 unsigned long flags;
4ac845a2 1868 int ret;
e2d74ac0 1869
4ac845a2
JA
1870 ret = radix_tree_preload(gfp_mask);
1871 if (!ret) {
1872 cic->ioc = ioc;
1873 cic->key = cfqd;
e2d74ac0 1874
4ac845a2
JA
1875 spin_lock_irqsave(&ioc->lock, flags);
1876 ret = radix_tree_insert(&ioc->radix_root,
1877 (unsigned long) cfqd, cic);
ffc4e759
JA
1878 if (!ret)
1879 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 1880 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 1881
4ac845a2
JA
1882 radix_tree_preload_end();
1883
1884 if (!ret) {
1885 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1886 list_add(&cic->queue_list, &cfqd->cic_list);
1887 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1888 }
e2d74ac0
JA
1889 }
1890
4ac845a2
JA
1891 if (ret)
1892 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 1893
4ac845a2 1894 return ret;
e2d74ac0
JA
1895}
1896
1da177e4
LT
1897/*
1898 * Setup general io context and cfq io context. There can be several cfq
1899 * io contexts per general io context, if this process is doing io to more
e2d74ac0 1900 * than one device managed by cfq.
1da177e4
LT
1901 */
1902static struct cfq_io_context *
e2d74ac0 1903cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1904{
22e2c507 1905 struct io_context *ioc = NULL;
1da177e4 1906 struct cfq_io_context *cic;
1da177e4 1907
22e2c507 1908 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 1909
b5deef90 1910 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
1911 if (!ioc)
1912 return NULL;
1913
4ac845a2 1914 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
1915 if (cic)
1916 goto out;
1da177e4 1917
e2d74ac0
JA
1918 cic = cfq_alloc_io_context(cfqd, gfp_mask);
1919 if (cic == NULL)
1920 goto err;
1da177e4 1921
4ac845a2
JA
1922 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
1923 goto err_free;
1924
1da177e4 1925out:
fc46379d
JA
1926 smp_read_barrier_depends();
1927 if (unlikely(ioc->ioprio_changed))
1928 cfq_ioc_set_ioprio(ioc);
1929
1da177e4 1930 return cic;
4ac845a2
JA
1931err_free:
1932 cfq_cic_free(cic);
1da177e4
LT
1933err:
1934 put_io_context(ioc);
1935 return NULL;
1936}
1937
22e2c507
JA
1938static void
1939cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 1940{
aaf1228d
JA
1941 unsigned long elapsed = jiffies - cic->last_end_request;
1942 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 1943
22e2c507
JA
1944 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
1945 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
1946 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
1947}
1da177e4 1948
206dc69b 1949static void
6d048f53
JA
1950cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
1951 struct request *rq)
206dc69b
JA
1952{
1953 sector_t sdist;
1954 u64 total;
1955
4d00aa47
JM
1956 if (!cic->last_request_pos)
1957 sdist = 0;
83096ebf
TH
1958 else if (cic->last_request_pos < blk_rq_pos(rq))
1959 sdist = blk_rq_pos(rq) - cic->last_request_pos;
206dc69b 1960 else
83096ebf 1961 sdist = cic->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
1962
1963 /*
1964 * Don't allow the seek distance to get too large from the
1965 * odd fragment, pagein, etc
1966 */
1967 if (cic->seek_samples <= 60) /* second&third seek */
1968 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
1969 else
1970 sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
1971
1972 cic->seek_samples = (7*cic->seek_samples + 256) / 8;
1973 cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
1974 total = cic->seek_total + (cic->seek_samples/2);
1975 do_div(total, cic->seek_samples);
1976 cic->seek_mean = (sector_t)total;
1977}
1da177e4 1978
22e2c507
JA
1979/*
1980 * Disable idle window if the process thinks too long or seeks so much that
1981 * it doesn't matter
1982 */
1983static void
1984cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1985 struct cfq_io_context *cic)
1986{
7b679138 1987 int old_idle, enable_idle;
1be92f2f 1988
0871714e
JA
1989 /*
1990 * Don't idle for async or idle io prio class
1991 */
1992 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
1993 return;
1994
c265a7f4 1995 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 1996
66dac98e 1997 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
963b72fc 1998 (!cfqd->cfq_latency && cfqd->hw_tag && CIC_SEEKY(cic)))
22e2c507
JA
1999 enable_idle = 0;
2000 else if (sample_valid(cic->ttime_samples)) {
ec60e4f6
CZ
2001 unsigned int slice_idle = cfqd->cfq_slice_idle;
2002 if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
2003 slice_idle = msecs_to_jiffies(CFQ_MIN_TT);
2004 if (cic->ttime_mean > slice_idle)
22e2c507
JA
2005 enable_idle = 0;
2006 else
2007 enable_idle = 1;
1da177e4
LT
2008 }
2009
7b679138
JA
2010 if (old_idle != enable_idle) {
2011 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2012 if (enable_idle)
2013 cfq_mark_cfqq_idle_window(cfqq);
2014 else
2015 cfq_clear_cfqq_idle_window(cfqq);
2016 }
22e2c507 2017}
1da177e4 2018
22e2c507
JA
2019/*
2020 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2021 * no or if we aren't sure, a 1 will cause a preempt.
2022 */
a6151c3a 2023static bool
22e2c507 2024cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2025 struct request *rq)
22e2c507 2026{
6d048f53 2027 struct cfq_queue *cfqq;
22e2c507 2028
6d048f53
JA
2029 cfqq = cfqd->active_queue;
2030 if (!cfqq)
a6151c3a 2031 return false;
22e2c507 2032
6d048f53 2033 if (cfq_slice_used(cfqq))
a6151c3a 2034 return true;
6d048f53
JA
2035
2036 if (cfq_class_idle(new_cfqq))
a6151c3a 2037 return false;
22e2c507
JA
2038
2039 if (cfq_class_idle(cfqq))
a6151c3a 2040 return true;
1e3335de 2041
374f84ac
JA
2042 /*
2043 * if the new request is sync, but the currently running queue is
2044 * not, let the sync request have priority.
2045 */
5e705374 2046 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2047 return true;
1e3335de 2048
374f84ac
JA
2049 /*
2050 * So both queues are sync. Let the new request get disk time if
2051 * it's a metadata request and the current queue is doing regular IO.
2052 */
2053 if (rq_is_meta(rq) && !cfqq->meta_pending)
a6151c3a 2054 return false;
22e2c507 2055
3a9a3f6c
DS
2056 /*
2057 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2058 */
2059 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2060 return true;
3a9a3f6c 2061
1e3335de 2062 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2063 return false;
1e3335de
JA
2064
2065 /*
2066 * if this request is as-good as one we would expect from the
2067 * current cfqq, let it preempt
2068 */
6d048f53 2069 if (cfq_rq_close(cfqd, rq))
a6151c3a 2070 return true;
1e3335de 2071
a6151c3a 2072 return false;
22e2c507
JA
2073}
2074
2075/*
2076 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2077 * let it have half of its nominal slice.
2078 */
2079static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2080{
7b679138 2081 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2082 cfq_slice_expired(cfqd, 1);
22e2c507 2083
bf572256
JA
2084 /*
2085 * Put the new queue at the front of the of the current list,
2086 * so we know that it will be selected next.
2087 */
2088 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2089
2090 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2091
44f7c160
JA
2092 cfqq->slice_end = 0;
2093 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2094}
2095
22e2c507 2096/*
5e705374 2097 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2098 * something we should do about it
2099 */
2100static void
5e705374
JA
2101cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2102 struct request *rq)
22e2c507 2103{
5e705374 2104 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2105
45333d5a 2106 cfqd->rq_queued++;
374f84ac
JA
2107 if (rq_is_meta(rq))
2108 cfqq->meta_pending++;
2109
9c2c38a1 2110 cfq_update_io_thinktime(cfqd, cic);
6d048f53 2111 cfq_update_io_seektime(cfqd, cic, rq);
9c2c38a1
JA
2112 cfq_update_idle_window(cfqd, cfqq, cic);
2113
83096ebf 2114 cic->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2115
2116 if (cfqq == cfqd->active_queue) {
2117 /*
b029195d
JA
2118 * Remember that we saw a request from this process, but
2119 * don't start queuing just yet. Otherwise we risk seeing lots
2120 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2121 * and merging. If the request is already larger than a single
2122 * page, let it rip immediately. For that case we assume that
2d870722
JA
2123 * merging is already done. Ditto for a busy system that
2124 * has other work pending, don't risk delaying until the
2125 * idle timer unplug to continue working.
22e2c507 2126 */
d6ceb25e 2127 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2128 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2129 cfqd->busy_queues > 1) {
d6ceb25e 2130 del_timer(&cfqd->idle_slice_timer);
a7f55792 2131 __blk_run_queue(cfqd->queue);
d6ceb25e 2132 }
b029195d 2133 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2134 }
5e705374 2135 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2136 /*
2137 * not the active queue - expire current slice if it is
2138 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2139 * has some old slice time left and is of higher priority or
2140 * this new queue is RT and the current one is BE
22e2c507
JA
2141 */
2142 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2143 __blk_run_queue(cfqd->queue);
22e2c507 2144 }
1da177e4
LT
2145}
2146
165125e1 2147static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2148{
b4878f24 2149 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2150 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2151
7b679138 2152 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2153 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2154
5e705374 2155 cfq_add_rq_rb(rq);
1da177e4 2156
30996f40 2157 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507
JA
2158 list_add_tail(&rq->queuelist, &cfqq->fifo);
2159
5e705374 2160 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2161}
2162
45333d5a
AC
2163/*
2164 * Update hw_tag based on peak queue depth over 50 samples under
2165 * sufficient load.
2166 */
2167static void cfq_update_hw_tag(struct cfq_data *cfqd)
2168{
5ad531db
JA
2169 if (rq_in_driver(cfqd) > cfqd->rq_in_driver_peak)
2170 cfqd->rq_in_driver_peak = rq_in_driver(cfqd);
45333d5a
AC
2171
2172 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2173 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2174 return;
2175
2176 if (cfqd->hw_tag_samples++ < 50)
2177 return;
2178
2179 if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
2180 cfqd->hw_tag = 1;
2181 else
2182 cfqd->hw_tag = 0;
2183
2184 cfqd->hw_tag_samples = 0;
2185 cfqd->rq_in_driver_peak = 0;
2186}
2187
165125e1 2188static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2189{
5e705374 2190 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2191 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2192 const int sync = rq_is_sync(rq);
b4878f24 2193 unsigned long now;
1da177e4 2194
b4878f24 2195 now = jiffies;
7b679138 2196 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2197
45333d5a
AC
2198 cfq_update_hw_tag(cfqd);
2199
5ad531db 2200 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2201 WARN_ON(!cfqq->dispatched);
5ad531db 2202 cfqd->rq_in_driver[sync]--;
6d048f53 2203 cfqq->dispatched--;
1da177e4 2204
3ed9a296
JA
2205 if (cfq_cfqq_sync(cfqq))
2206 cfqd->sync_flight--;
2207
365722bb 2208 if (sync) {
5e705374 2209 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2210 cfqd->last_end_sync_rq = now;
2211 }
caaa5f9f
JA
2212
2213 /*
2214 * If this is the active queue, check if it needs to be expired,
2215 * or if we want to idle in case it has no pending requests.
2216 */
2217 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2218 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2219
44f7c160
JA
2220 if (cfq_cfqq_slice_new(cfqq)) {
2221 cfq_set_prio_slice(cfqd, cfqq);
2222 cfq_clear_cfqq_slice_new(cfqq);
2223 }
a36e71f9
JA
2224 /*
2225 * If there are no requests waiting in this queue, and
2226 * there are other queues ready to issue requests, AND
2227 * those other queues are issuing requests within our
2228 * mean seek distance, give them a chance to run instead
2229 * of idling.
2230 */
0871714e 2231 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2232 cfq_slice_expired(cfqd, 1);
a36e71f9
JA
2233 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq, 1) &&
2234 sync && !rq_noidle(rq))
6d048f53 2235 cfq_arm_slice_timer(cfqd);
caaa5f9f 2236 }
6d048f53 2237
5ad531db 2238 if (!rq_in_driver(cfqd))
23e018a1 2239 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2240}
2241
22e2c507
JA
2242/*
2243 * we temporarily boost lower priority queues if they are holding fs exclusive
2244 * resources. they are boosted to normal prio (CLASS_BE/4)
2245 */
2246static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2247{
22e2c507
JA
2248 if (has_fs_excl()) {
2249 /*
2250 * boost idle prio on transactions that would lock out other
2251 * users of the filesystem
2252 */
2253 if (cfq_class_idle(cfqq))
2254 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2255 if (cfqq->ioprio > IOPRIO_NORM)
2256 cfqq->ioprio = IOPRIO_NORM;
2257 } else {
2258 /*
2259 * check if we need to unboost the queue
2260 */
2261 if (cfqq->ioprio_class != cfqq->org_ioprio_class)
2262 cfqq->ioprio_class = cfqq->org_ioprio_class;
2263 if (cfqq->ioprio != cfqq->org_ioprio)
2264 cfqq->ioprio = cfqq->org_ioprio;
2265 }
22e2c507 2266}
1da177e4 2267
89850f7e 2268static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2269{
1b379d8d 2270 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2271 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2272 return ELV_MQUEUE_MUST;
3b18152c 2273 }
1da177e4 2274
22e2c507 2275 return ELV_MQUEUE_MAY;
22e2c507
JA
2276}
2277
165125e1 2278static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2279{
2280 struct cfq_data *cfqd = q->elevator->elevator_data;
2281 struct task_struct *tsk = current;
91fac317 2282 struct cfq_io_context *cic;
22e2c507
JA
2283 struct cfq_queue *cfqq;
2284
2285 /*
2286 * don't force setup of a queue from here, as a call to may_queue
2287 * does not necessarily imply that a request actually will be queued.
2288 * so just lookup a possibly existing queue, or return 'may queue'
2289 * if that fails
2290 */
4ac845a2 2291 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2292 if (!cic)
2293 return ELV_MQUEUE_MAY;
2294
b0b78f81 2295 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2296 if (cfqq) {
fd0928df 2297 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2298 cfq_prio_boost(cfqq);
2299
89850f7e 2300 return __cfq_may_queue(cfqq);
22e2c507
JA
2301 }
2302
2303 return ELV_MQUEUE_MAY;
1da177e4
LT
2304}
2305
1da177e4
LT
2306/*
2307 * queue lock held here
2308 */
bb37b94c 2309static void cfq_put_request(struct request *rq)
1da177e4 2310{
5e705374 2311 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2312
5e705374 2313 if (cfqq) {
22e2c507 2314 const int rw = rq_data_dir(rq);
1da177e4 2315
22e2c507
JA
2316 BUG_ON(!cfqq->allocated[rw]);
2317 cfqq->allocated[rw]--;
1da177e4 2318
5e705374 2319 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2320
1da177e4 2321 rq->elevator_private = NULL;
5e705374 2322 rq->elevator_private2 = NULL;
1da177e4 2323
1da177e4
LT
2324 cfq_put_queue(cfqq);
2325 }
2326}
2327
2328/*
22e2c507 2329 * Allocate cfq data structures associated with this request.
1da177e4 2330 */
22e2c507 2331static int
165125e1 2332cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2333{
2334 struct cfq_data *cfqd = q->elevator->elevator_data;
2335 struct cfq_io_context *cic;
2336 const int rw = rq_data_dir(rq);
a6151c3a 2337 const bool is_sync = rq_is_sync(rq);
22e2c507 2338 struct cfq_queue *cfqq;
1da177e4
LT
2339 unsigned long flags;
2340
2341 might_sleep_if(gfp_mask & __GFP_WAIT);
2342
e2d74ac0 2343 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2344
1da177e4
LT
2345 spin_lock_irqsave(q->queue_lock, flags);
2346
22e2c507
JA
2347 if (!cic)
2348 goto queue_fail;
2349
91fac317 2350 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2351 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2352 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317
VT
2353 cic_set_cfqq(cic, cfqq, is_sync);
2354 }
1da177e4
LT
2355
2356 cfqq->allocated[rw]++;
22e2c507 2357 atomic_inc(&cfqq->ref);
1da177e4 2358
5e705374 2359 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2360
5e705374
JA
2361 rq->elevator_private = cic;
2362 rq->elevator_private2 = cfqq;
2363 return 0;
1da177e4 2364
22e2c507
JA
2365queue_fail:
2366 if (cic)
2367 put_io_context(cic->ioc);
89850f7e 2368
23e018a1 2369 cfq_schedule_dispatch(cfqd);
1da177e4 2370 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2371 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2372 return 1;
2373}
2374
65f27f38 2375static void cfq_kick_queue(struct work_struct *work)
22e2c507 2376{
65f27f38 2377 struct cfq_data *cfqd =
23e018a1 2378 container_of(work, struct cfq_data, unplug_work);
165125e1 2379 struct request_queue *q = cfqd->queue;
22e2c507 2380
40bb54d1 2381 spin_lock_irq(q->queue_lock);
a7f55792 2382 __blk_run_queue(cfqd->queue);
40bb54d1 2383 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2384}
2385
2386/*
2387 * Timer running if the active_queue is currently idling inside its time slice
2388 */
2389static void cfq_idle_slice_timer(unsigned long data)
2390{
2391 struct cfq_data *cfqd = (struct cfq_data *) data;
2392 struct cfq_queue *cfqq;
2393 unsigned long flags;
3c6bd2f8 2394 int timed_out = 1;
22e2c507 2395
7b679138
JA
2396 cfq_log(cfqd, "idle timer fired");
2397
22e2c507
JA
2398 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2399
fe094d98
JA
2400 cfqq = cfqd->active_queue;
2401 if (cfqq) {
3c6bd2f8
JA
2402 timed_out = 0;
2403
b029195d
JA
2404 /*
2405 * We saw a request before the queue expired, let it through
2406 */
2407 if (cfq_cfqq_must_dispatch(cfqq))
2408 goto out_kick;
2409
22e2c507
JA
2410 /*
2411 * expired
2412 */
44f7c160 2413 if (cfq_slice_used(cfqq))
22e2c507
JA
2414 goto expire;
2415
2416 /*
2417 * only expire and reinvoke request handler, if there are
2418 * other queues with pending requests
2419 */
caaa5f9f 2420 if (!cfqd->busy_queues)
22e2c507 2421 goto out_cont;
22e2c507
JA
2422
2423 /*
2424 * not expired and it has a request pending, let it dispatch
2425 */
75e50984 2426 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2427 goto out_kick;
22e2c507
JA
2428 }
2429expire:
6084cdda 2430 cfq_slice_expired(cfqd, timed_out);
22e2c507 2431out_kick:
23e018a1 2432 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2433out_cont:
2434 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2435}
2436
3b18152c
JA
2437static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2438{
2439 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2440 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2441}
22e2c507 2442
c2dea2d1
VT
2443static void cfq_put_async_queues(struct cfq_data *cfqd)
2444{
2445 int i;
2446
2447 for (i = 0; i < IOPRIO_BE_NR; i++) {
2448 if (cfqd->async_cfqq[0][i])
2449 cfq_put_queue(cfqd->async_cfqq[0][i]);
2450 if (cfqd->async_cfqq[1][i])
2451 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2452 }
2389d1ef
ON
2453
2454 if (cfqd->async_idle_cfqq)
2455 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2456}
2457
b374d18a 2458static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2459{
22e2c507 2460 struct cfq_data *cfqd = e->elevator_data;
165125e1 2461 struct request_queue *q = cfqd->queue;
22e2c507 2462
3b18152c 2463 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2464
d9ff4187 2465 spin_lock_irq(q->queue_lock);
e2d74ac0 2466
d9ff4187 2467 if (cfqd->active_queue)
6084cdda 2468 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2469
2470 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2471 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2472 struct cfq_io_context,
2473 queue_list);
89850f7e
JA
2474
2475 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2476 }
e2d74ac0 2477
c2dea2d1 2478 cfq_put_async_queues(cfqd);
15c31be4 2479
d9ff4187 2480 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2481
2482 cfq_shutdown_timer_wq(cfqd);
2483
a90d742e 2484 kfree(cfqd);
1da177e4
LT
2485}
2486
165125e1 2487static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2488{
2489 struct cfq_data *cfqd;
26a2ac00 2490 int i;
1da177e4 2491
94f6030c 2492 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2493 if (!cfqd)
bc1c1169 2494 return NULL;
1da177e4 2495
cc09e299 2496 cfqd->service_tree = CFQ_RB_ROOT;
26a2ac00
JA
2497
2498 /*
2499 * Not strictly needed (since RB_ROOT just clears the node and we
2500 * zeroed cfqd on alloc), but better be safe in case someone decides
2501 * to add magic to the rb code
2502 */
2503 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2504 cfqd->prio_trees[i] = RB_ROOT;
2505
6118b70b
JA
2506 /*
2507 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2508 * Grab a permanent reference to it, so that the normal code flow
2509 * will not attempt to free it.
2510 */
2511 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2512 atomic_inc(&cfqd->oom_cfqq.ref);
2513
d9ff4187 2514 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2515
1da177e4 2516 cfqd->queue = q;
1da177e4 2517
22e2c507
JA
2518 init_timer(&cfqd->idle_slice_timer);
2519 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2520 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2521
23e018a1 2522 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2523
1da177e4 2524 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2525 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2526 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2527 cfqd->cfq_back_max = cfq_back_max;
2528 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2529 cfqd->cfq_slice[0] = cfq_slice_async;
2530 cfqd->cfq_slice[1] = cfq_slice_sync;
2531 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2532 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2533 cfqd->cfq_latency = 1;
45333d5a 2534 cfqd->hw_tag = 1;
365722bb 2535 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2536 return cfqd;
1da177e4
LT
2537}
2538
2539static void cfq_slab_kill(void)
2540{
d6de8be7
JA
2541 /*
2542 * Caller already ensured that pending RCU callbacks are completed,
2543 * so we should have no busy allocations at this point.
2544 */
1da177e4
LT
2545 if (cfq_pool)
2546 kmem_cache_destroy(cfq_pool);
2547 if (cfq_ioc_pool)
2548 kmem_cache_destroy(cfq_ioc_pool);
2549}
2550
2551static int __init cfq_slab_setup(void)
2552{
0a31bd5f 2553 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2554 if (!cfq_pool)
2555 goto fail;
2556
34e6bbf2 2557 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2558 if (!cfq_ioc_pool)
2559 goto fail;
2560
2561 return 0;
2562fail:
2563 cfq_slab_kill();
2564 return -ENOMEM;
2565}
2566
1da177e4
LT
2567/*
2568 * sysfs parts below -->
2569 */
1da177e4
LT
2570static ssize_t
2571cfq_var_show(unsigned int var, char *page)
2572{
2573 return sprintf(page, "%d\n", var);
2574}
2575
2576static ssize_t
2577cfq_var_store(unsigned int *var, const char *page, size_t count)
2578{
2579 char *p = (char *) page;
2580
2581 *var = simple_strtoul(p, &p, 10);
2582 return count;
2583}
2584
1da177e4 2585#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 2586static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 2587{ \
3d1ab40f 2588 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2589 unsigned int __data = __VAR; \
2590 if (__CONV) \
2591 __data = jiffies_to_msecs(__data); \
2592 return cfq_var_show(__data, (page)); \
2593}
2594SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
2595SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
2596SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
2597SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
2598SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
2599SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
2600SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
2601SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
2602SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 2603SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
2604#undef SHOW_FUNCTION
2605
2606#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 2607static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 2608{ \
3d1ab40f 2609 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
2610 unsigned int __data; \
2611 int ret = cfq_var_store(&__data, (page), count); \
2612 if (__data < (MIN)) \
2613 __data = (MIN); \
2614 else if (__data > (MAX)) \
2615 __data = (MAX); \
2616 if (__CONV) \
2617 *(__PTR) = msecs_to_jiffies(__data); \
2618 else \
2619 *(__PTR) = __data; \
2620 return ret; \
2621}
2622STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
2623STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
2624 UINT_MAX, 1);
2625STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
2626 UINT_MAX, 1);
e572ec7e 2627STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
2628STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
2629 UINT_MAX, 0);
22e2c507
JA
2630STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
2631STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
2632STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
2633STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
2634 UINT_MAX, 0);
963b72fc 2635STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
2636#undef STORE_FUNCTION
2637
e572ec7e
AV
2638#define CFQ_ATTR(name) \
2639 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2640
2641static struct elv_fs_entry cfq_attrs[] = {
2642 CFQ_ATTR(quantum),
e572ec7e
AV
2643 CFQ_ATTR(fifo_expire_sync),
2644 CFQ_ATTR(fifo_expire_async),
2645 CFQ_ATTR(back_seek_max),
2646 CFQ_ATTR(back_seek_penalty),
2647 CFQ_ATTR(slice_sync),
2648 CFQ_ATTR(slice_async),
2649 CFQ_ATTR(slice_async_rq),
2650 CFQ_ATTR(slice_idle),
963b72fc 2651 CFQ_ATTR(low_latency),
e572ec7e 2652 __ATTR_NULL
1da177e4
LT
2653};
2654
1da177e4
LT
2655static struct elevator_type iosched_cfq = {
2656 .ops = {
2657 .elevator_merge_fn = cfq_merge,
2658 .elevator_merged_fn = cfq_merged_request,
2659 .elevator_merge_req_fn = cfq_merged_requests,
da775265 2660 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 2661 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 2662 .elevator_add_req_fn = cfq_insert_request,
b4878f24 2663 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
2664 .elevator_deactivate_req_fn = cfq_deactivate_request,
2665 .elevator_queue_empty_fn = cfq_queue_empty,
2666 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
2667 .elevator_former_req_fn = elv_rb_former_request,
2668 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
2669 .elevator_set_req_fn = cfq_set_request,
2670 .elevator_put_req_fn = cfq_put_request,
2671 .elevator_may_queue_fn = cfq_may_queue,
2672 .elevator_init_fn = cfq_init_queue,
2673 .elevator_exit_fn = cfq_exit_queue,
fc46379d 2674 .trim = cfq_free_io_context,
1da177e4 2675 },
3d1ab40f 2676 .elevator_attrs = cfq_attrs,
1da177e4
LT
2677 .elevator_name = "cfq",
2678 .elevator_owner = THIS_MODULE,
2679};
2680
2681static int __init cfq_init(void)
2682{
22e2c507
JA
2683 /*
2684 * could be 0 on HZ < 1000 setups
2685 */
2686 if (!cfq_slice_async)
2687 cfq_slice_async = 1;
2688 if (!cfq_slice_idle)
2689 cfq_slice_idle = 1;
2690
1da177e4
LT
2691 if (cfq_slab_setup())
2692 return -ENOMEM;
2693
2fdd82bd 2694 elv_register(&iosched_cfq);
1da177e4 2695
2fdd82bd 2696 return 0;
1da177e4
LT
2697}
2698
2699static void __exit cfq_exit(void)
2700{
6e9a4738 2701 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 2702 elv_unregister(&iosched_cfq);
334e94de 2703 ioc_gone = &all_gone;
fba82272
OH
2704 /* ioc_gone's update must be visible before reading ioc_count */
2705 smp_wmb();
d6de8be7
JA
2706
2707 /*
2708 * this also protects us from entering cfq_slab_kill() with
2709 * pending RCU callbacks
2710 */
245b2e70 2711 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 2712 wait_for_completion(&all_gone);
83521d3e 2713 cfq_slab_kill();
1da177e4
LT
2714}
2715
2716module_init(cfq_init);
2717module_exit(cfq_exit);
2718
2719MODULE_AUTHOR("Jens Axboe");
2720MODULE_LICENSE("GPL");
2721MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");