Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <avi@qumranet.com>
13  *   Yaniv Kamay  <yaniv@qumranet.com>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static struct file_operations kvm_chardev_ops;
119
120 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
121                            unsigned long arg);
122 #ifdef CONFIG_KVM_COMPAT
123 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
124                                   unsigned long arg);
125 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
126 #else
127 /*
128  * For architectures that don't implement a compat infrastructure,
129  * adopt a double line of defense:
130  * - Prevent a compat task from opening /dev/kvm
131  * - If the open has been done by a 64bit task, and the KVM fd
132  *   passed to a compat task, let the ioctls fail.
133  */
134 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
135                                 unsigned long arg) { return -EINVAL; }
136
137 static int kvm_no_compat_open(struct inode *inode, struct file *file)
138 {
139         return is_compat_task() ? -ENODEV : 0;
140 }
141 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
142                         .open           = kvm_no_compat_open
143 #endif
144 static int hardware_enable_all(void);
145 static void hardware_disable_all(void);
146
147 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
148
149 #define KVM_EVENT_CREATE_VM 0
150 #define KVM_EVENT_DESTROY_VM 1
151 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
152 static unsigned long long kvm_createvm_count;
153 static unsigned long long kvm_active_vms;
154
155 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
156
157 __weak void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
158                                                    unsigned long start, unsigned long end)
159 {
160 }
161
162 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
163 {
164 }
165
166 bool kvm_is_zone_device_page(struct page *page)
167 {
168         /*
169          * The metadata used by is_zone_device_page() to determine whether or
170          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
171          * the device has been pinned, e.g. by get_user_pages().  WARN if the
172          * page_count() is zero to help detect bad usage of this helper.
173          */
174         if (WARN_ON_ONCE(!page_count(page)))
175                 return false;
176
177         return is_zone_device_page(page);
178 }
179
180 /*
181  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
182  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
183  * is likely incomplete, it has been compiled purely through people wanting to
184  * back guest with a certain type of memory and encountering issues.
185  */
186 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
187 {
188         struct page *page;
189
190         if (!pfn_valid(pfn))
191                 return NULL;
192
193         page = pfn_to_page(pfn);
194         if (!PageReserved(page))
195                 return page;
196
197         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
198         if (is_zero_pfn(pfn))
199                 return page;
200
201         /*
202          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
203          * perspective they are "normal" pages, albeit with slightly different
204          * usage rules.
205          */
206         if (kvm_is_zone_device_page(page))
207                 return page;
208
209         return NULL;
210 }
211
212 /*
213  * Switches to specified vcpu, until a matching vcpu_put()
214  */
215 void vcpu_load(struct kvm_vcpu *vcpu)
216 {
217         int cpu = get_cpu();
218
219         __this_cpu_write(kvm_running_vcpu, vcpu);
220         preempt_notifier_register(&vcpu->preempt_notifier);
221         kvm_arch_vcpu_load(vcpu, cpu);
222         put_cpu();
223 }
224 EXPORT_SYMBOL_GPL(vcpu_load);
225
226 void vcpu_put(struct kvm_vcpu *vcpu)
227 {
228         preempt_disable();
229         kvm_arch_vcpu_put(vcpu);
230         preempt_notifier_unregister(&vcpu->preempt_notifier);
231         __this_cpu_write(kvm_running_vcpu, NULL);
232         preempt_enable();
233 }
234 EXPORT_SYMBOL_GPL(vcpu_put);
235
236 /* TODO: merge with kvm_arch_vcpu_should_kick */
237 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
238 {
239         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
240
241         /*
242          * We need to wait for the VCPU to reenable interrupts and get out of
243          * READING_SHADOW_PAGE_TABLES mode.
244          */
245         if (req & KVM_REQUEST_WAIT)
246                 return mode != OUTSIDE_GUEST_MODE;
247
248         /*
249          * Need to kick a running VCPU, but otherwise there is nothing to do.
250          */
251         return mode == IN_GUEST_MODE;
252 }
253
254 static void ack_kick(void *_completed)
255 {
256 }
257
258 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
259 {
260         if (cpumask_empty(cpus))
261                 return false;
262
263         smp_call_function_many(cpus, ack_kick, NULL, wait);
264         return true;
265 }
266
267 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
268                                   struct cpumask *tmp, int current_cpu)
269 {
270         int cpu;
271
272         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
273                 __kvm_make_request(req, vcpu);
274
275         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
276                 return;
277
278         /*
279          * Note, the vCPU could get migrated to a different pCPU at any point
280          * after kvm_request_needs_ipi(), which could result in sending an IPI
281          * to the previous pCPU.  But, that's OK because the purpose of the IPI
282          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
283          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
284          * after this point is also OK, as the requirement is only that KVM wait
285          * for vCPUs that were reading SPTEs _before_ any changes were
286          * finalized. See kvm_vcpu_kick() for more details on handling requests.
287          */
288         if (kvm_request_needs_ipi(vcpu, req)) {
289                 cpu = READ_ONCE(vcpu->cpu);
290                 if (cpu != -1 && cpu != current_cpu)
291                         __cpumask_set_cpu(cpu, tmp);
292         }
293 }
294
295 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
296                                  unsigned long *vcpu_bitmap)
297 {
298         struct kvm_vcpu *vcpu;
299         struct cpumask *cpus;
300         int i, me;
301         bool called;
302
303         me = get_cpu();
304
305         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
306         cpumask_clear(cpus);
307
308         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
309                 vcpu = kvm_get_vcpu(kvm, i);
310                 if (!vcpu)
311                         continue;
312                 kvm_make_vcpu_request(vcpu, req, cpus, me);
313         }
314
315         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
316         put_cpu();
317
318         return called;
319 }
320
321 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
322                                       struct kvm_vcpu *except)
323 {
324         struct kvm_vcpu *vcpu;
325         struct cpumask *cpus;
326         unsigned long i;
327         bool called;
328         int me;
329
330         me = get_cpu();
331
332         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
333         cpumask_clear(cpus);
334
335         kvm_for_each_vcpu(i, vcpu, kvm) {
336                 if (vcpu == except)
337                         continue;
338                 kvm_make_vcpu_request(vcpu, req, cpus, me);
339         }
340
341         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
342         put_cpu();
343
344         return called;
345 }
346
347 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
348 {
349         return kvm_make_all_cpus_request_except(kvm, req, NULL);
350 }
351 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
352
353 #ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
354 void kvm_flush_remote_tlbs(struct kvm *kvm)
355 {
356         ++kvm->stat.generic.remote_tlb_flush_requests;
357
358         /*
359          * We want to publish modifications to the page tables before reading
360          * mode. Pairs with a memory barrier in arch-specific code.
361          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
362          * and smp_mb in walk_shadow_page_lockless_begin/end.
363          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
364          *
365          * There is already an smp_mb__after_atomic() before
366          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
367          * barrier here.
368          */
369         if (!kvm_arch_flush_remote_tlb(kvm)
370             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
371                 ++kvm->stat.generic.remote_tlb_flush;
372 }
373 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
374 #endif
375
376 static void kvm_flush_shadow_all(struct kvm *kvm)
377 {
378         kvm_arch_flush_shadow_all(kvm);
379         kvm_arch_guest_memory_reclaimed(kvm);
380 }
381
382 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
383 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
384                                                gfp_t gfp_flags)
385 {
386         gfp_flags |= mc->gfp_zero;
387
388         if (mc->kmem_cache)
389                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
390         else
391                 return (void *)__get_free_page(gfp_flags);
392 }
393
394 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
395 {
396         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
397         void *obj;
398
399         if (mc->nobjs >= min)
400                 return 0;
401
402         if (unlikely(!mc->objects)) {
403                 if (WARN_ON_ONCE(!capacity))
404                         return -EIO;
405
406                 mc->objects = kvmalloc_array(sizeof(void *), capacity, gfp);
407                 if (!mc->objects)
408                         return -ENOMEM;
409
410                 mc->capacity = capacity;
411         }
412
413         /* It is illegal to request a different capacity across topups. */
414         if (WARN_ON_ONCE(mc->capacity != capacity))
415                 return -EIO;
416
417         while (mc->nobjs < mc->capacity) {
418                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
419                 if (!obj)
420                         return mc->nobjs >= min ? 0 : -ENOMEM;
421                 mc->objects[mc->nobjs++] = obj;
422         }
423         return 0;
424 }
425
426 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
427 {
428         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
429 }
430
431 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
432 {
433         return mc->nobjs;
434 }
435
436 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
437 {
438         while (mc->nobjs) {
439                 if (mc->kmem_cache)
440                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
441                 else
442                         free_page((unsigned long)mc->objects[--mc->nobjs]);
443         }
444
445         kvfree(mc->objects);
446
447         mc->objects = NULL;
448         mc->capacity = 0;
449 }
450
451 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
452 {
453         void *p;
454
455         if (WARN_ON(!mc->nobjs))
456                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
457         else
458                 p = mc->objects[--mc->nobjs];
459         BUG_ON(!p);
460         return p;
461 }
462 #endif
463
464 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
465 {
466         mutex_init(&vcpu->mutex);
467         vcpu->cpu = -1;
468         vcpu->kvm = kvm;
469         vcpu->vcpu_id = id;
470         vcpu->pid = NULL;
471 #ifndef __KVM_HAVE_ARCH_WQP
472         rcuwait_init(&vcpu->wait);
473 #endif
474         kvm_async_pf_vcpu_init(vcpu);
475
476         kvm_vcpu_set_in_spin_loop(vcpu, false);
477         kvm_vcpu_set_dy_eligible(vcpu, false);
478         vcpu->preempted = false;
479         vcpu->ready = false;
480         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
481         vcpu->last_used_slot = NULL;
482
483         /* Fill the stats id string for the vcpu */
484         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
485                  task_pid_nr(current), id);
486 }
487
488 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
489 {
490         kvm_arch_vcpu_destroy(vcpu);
491         kvm_dirty_ring_free(&vcpu->dirty_ring);
492
493         /*
494          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
495          * the vcpu->pid pointer, and at destruction time all file descriptors
496          * are already gone.
497          */
498         put_pid(rcu_dereference_protected(vcpu->pid, 1));
499
500         free_page((unsigned long)vcpu->run);
501         kmem_cache_free(kvm_vcpu_cache, vcpu);
502 }
503
504 void kvm_destroy_vcpus(struct kvm *kvm)
505 {
506         unsigned long i;
507         struct kvm_vcpu *vcpu;
508
509         kvm_for_each_vcpu(i, vcpu, kvm) {
510                 kvm_vcpu_destroy(vcpu);
511                 xa_erase(&kvm->vcpu_array, i);
512         }
513
514         atomic_set(&kvm->online_vcpus, 0);
515 }
516 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
517
518 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
519 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
520 {
521         return container_of(mn, struct kvm, mmu_notifier);
522 }
523
524 static void kvm_mmu_notifier_invalidate_range(struct mmu_notifier *mn,
525                                               struct mm_struct *mm,
526                                               unsigned long start, unsigned long end)
527 {
528         struct kvm *kvm = mmu_notifier_to_kvm(mn);
529         int idx;
530
531         idx = srcu_read_lock(&kvm->srcu);
532         kvm_arch_mmu_notifier_invalidate_range(kvm, start, end);
533         srcu_read_unlock(&kvm->srcu, idx);
534 }
535
536 typedef bool (*hva_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
537
538 typedef void (*on_lock_fn_t)(struct kvm *kvm, unsigned long start,
539                              unsigned long end);
540
541 typedef void (*on_unlock_fn_t)(struct kvm *kvm);
542
543 struct kvm_hva_range {
544         unsigned long start;
545         unsigned long end;
546         pte_t pte;
547         hva_handler_t handler;
548         on_lock_fn_t on_lock;
549         on_unlock_fn_t on_unlock;
550         bool flush_on_ret;
551         bool may_block;
552 };
553
554 /*
555  * Use a dedicated stub instead of NULL to indicate that there is no callback
556  * function/handler.  The compiler technically can't guarantee that a real
557  * function will have a non-zero address, and so it will generate code to
558  * check for !NULL, whereas comparing against a stub will be elided at compile
559  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
560  */
561 static void kvm_null_fn(void)
562 {
563
564 }
565 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
566
567 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
568 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
569         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
570              node;                                                           \
571              node = interval_tree_iter_next(node, start, last))      \
572
573 static __always_inline int __kvm_handle_hva_range(struct kvm *kvm,
574                                                   const struct kvm_hva_range *range)
575 {
576         bool ret = false, locked = false;
577         struct kvm_gfn_range gfn_range;
578         struct kvm_memory_slot *slot;
579         struct kvm_memslots *slots;
580         int i, idx;
581
582         if (WARN_ON_ONCE(range->end <= range->start))
583                 return 0;
584
585         /* A null handler is allowed if and only if on_lock() is provided. */
586         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
587                          IS_KVM_NULL_FN(range->handler)))
588                 return 0;
589
590         idx = srcu_read_lock(&kvm->srcu);
591
592         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
593                 struct interval_tree_node *node;
594
595                 slots = __kvm_memslots(kvm, i);
596                 kvm_for_each_memslot_in_hva_range(node, slots,
597                                                   range->start, range->end - 1) {
598                         unsigned long hva_start, hva_end;
599
600                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
601                         hva_start = max(range->start, slot->userspace_addr);
602                         hva_end = min(range->end, slot->userspace_addr +
603                                                   (slot->npages << PAGE_SHIFT));
604
605                         /*
606                          * To optimize for the likely case where the address
607                          * range is covered by zero or one memslots, don't
608                          * bother making these conditional (to avoid writes on
609                          * the second or later invocation of the handler).
610                          */
611                         gfn_range.pte = range->pte;
612                         gfn_range.may_block = range->may_block;
613
614                         /*
615                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
616                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
617                          */
618                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
619                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
620                         gfn_range.slot = slot;
621
622                         if (!locked) {
623                                 locked = true;
624                                 KVM_MMU_LOCK(kvm);
625                                 if (!IS_KVM_NULL_FN(range->on_lock))
626                                         range->on_lock(kvm, range->start, range->end);
627                                 if (IS_KVM_NULL_FN(range->handler))
628                                         break;
629                         }
630                         ret |= range->handler(kvm, &gfn_range);
631                 }
632         }
633
634         if (range->flush_on_ret && ret)
635                 kvm_flush_remote_tlbs(kvm);
636
637         if (locked) {
638                 KVM_MMU_UNLOCK(kvm);
639                 if (!IS_KVM_NULL_FN(range->on_unlock))
640                         range->on_unlock(kvm);
641         }
642
643         srcu_read_unlock(&kvm->srcu, idx);
644
645         /* The notifiers are averse to booleans. :-( */
646         return (int)ret;
647 }
648
649 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
650                                                 unsigned long start,
651                                                 unsigned long end,
652                                                 pte_t pte,
653                                                 hva_handler_t handler)
654 {
655         struct kvm *kvm = mmu_notifier_to_kvm(mn);
656         const struct kvm_hva_range range = {
657                 .start          = start,
658                 .end            = end,
659                 .pte            = pte,
660                 .handler        = handler,
661                 .on_lock        = (void *)kvm_null_fn,
662                 .on_unlock      = (void *)kvm_null_fn,
663                 .flush_on_ret   = true,
664                 .may_block      = false,
665         };
666
667         return __kvm_handle_hva_range(kvm, &range);
668 }
669
670 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
671                                                          unsigned long start,
672                                                          unsigned long end,
673                                                          hva_handler_t handler)
674 {
675         struct kvm *kvm = mmu_notifier_to_kvm(mn);
676         const struct kvm_hva_range range = {
677                 .start          = start,
678                 .end            = end,
679                 .pte            = __pte(0),
680                 .handler        = handler,
681                 .on_lock        = (void *)kvm_null_fn,
682                 .on_unlock      = (void *)kvm_null_fn,
683                 .flush_on_ret   = false,
684                 .may_block      = false,
685         };
686
687         return __kvm_handle_hva_range(kvm, &range);
688 }
689 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
690                                         struct mm_struct *mm,
691                                         unsigned long address,
692                                         pte_t pte)
693 {
694         struct kvm *kvm = mmu_notifier_to_kvm(mn);
695
696         trace_kvm_set_spte_hva(address);
697
698         /*
699          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
700          * If mmu_invalidate_in_progress is zero, then no in-progress
701          * invalidations, including this one, found a relevant memslot at
702          * start(); rechecking memslots here is unnecessary.  Note, a false
703          * positive (count elevated by a different invalidation) is sub-optimal
704          * but functionally ok.
705          */
706         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
707         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
708                 return;
709
710         kvm_handle_hva_range(mn, address, address + 1, pte, kvm_set_spte_gfn);
711 }
712
713 void kvm_mmu_invalidate_begin(struct kvm *kvm, unsigned long start,
714                               unsigned long end)
715 {
716         /*
717          * The count increase must become visible at unlock time as no
718          * spte can be established without taking the mmu_lock and
719          * count is also read inside the mmu_lock critical section.
720          */
721         kvm->mmu_invalidate_in_progress++;
722         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
723                 kvm->mmu_invalidate_range_start = start;
724                 kvm->mmu_invalidate_range_end = end;
725         } else {
726                 /*
727                  * Fully tracking multiple concurrent ranges has diminishing
728                  * returns. Keep things simple and just find the minimal range
729                  * which includes the current and new ranges. As there won't be
730                  * enough information to subtract a range after its invalidate
731                  * completes, any ranges invalidated concurrently will
732                  * accumulate and persist until all outstanding invalidates
733                  * complete.
734                  */
735                 kvm->mmu_invalidate_range_start =
736                         min(kvm->mmu_invalidate_range_start, start);
737                 kvm->mmu_invalidate_range_end =
738                         max(kvm->mmu_invalidate_range_end, end);
739         }
740 }
741
742 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
743                                         const struct mmu_notifier_range *range)
744 {
745         struct kvm *kvm = mmu_notifier_to_kvm(mn);
746         const struct kvm_hva_range hva_range = {
747                 .start          = range->start,
748                 .end            = range->end,
749                 .pte            = __pte(0),
750                 .handler        = kvm_unmap_gfn_range,
751                 .on_lock        = kvm_mmu_invalidate_begin,
752                 .on_unlock      = kvm_arch_guest_memory_reclaimed,
753                 .flush_on_ret   = true,
754                 .may_block      = mmu_notifier_range_blockable(range),
755         };
756
757         trace_kvm_unmap_hva_range(range->start, range->end);
758
759         /*
760          * Prevent memslot modification between range_start() and range_end()
761          * so that conditionally locking provides the same result in both
762          * functions.  Without that guarantee, the mmu_invalidate_in_progress
763          * adjustments will be imbalanced.
764          *
765          * Pairs with the decrement in range_end().
766          */
767         spin_lock(&kvm->mn_invalidate_lock);
768         kvm->mn_active_invalidate_count++;
769         spin_unlock(&kvm->mn_invalidate_lock);
770
771         /*
772          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
773          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
774          * each cache's lock.  There are relatively few caches in existence at
775          * any given time, and the caches themselves can check for hva overlap,
776          * i.e. don't need to rely on memslot overlap checks for performance.
777          * Because this runs without holding mmu_lock, the pfn caches must use
778          * mn_active_invalidate_count (see above) instead of
779          * mmu_invalidate_in_progress.
780          */
781         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end,
782                                           hva_range.may_block);
783
784         __kvm_handle_hva_range(kvm, &hva_range);
785
786         return 0;
787 }
788
789 void kvm_mmu_invalidate_end(struct kvm *kvm, unsigned long start,
790                             unsigned long end)
791 {
792         /*
793          * This sequence increase will notify the kvm page fault that
794          * the page that is going to be mapped in the spte could have
795          * been freed.
796          */
797         kvm->mmu_invalidate_seq++;
798         smp_wmb();
799         /*
800          * The above sequence increase must be visible before the
801          * below count decrease, which is ensured by the smp_wmb above
802          * in conjunction with the smp_rmb in mmu_invalidate_retry().
803          */
804         kvm->mmu_invalidate_in_progress--;
805 }
806
807 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
808                                         const struct mmu_notifier_range *range)
809 {
810         struct kvm *kvm = mmu_notifier_to_kvm(mn);
811         const struct kvm_hva_range hva_range = {
812                 .start          = range->start,
813                 .end            = range->end,
814                 .pte            = __pte(0),
815                 .handler        = (void *)kvm_null_fn,
816                 .on_lock        = kvm_mmu_invalidate_end,
817                 .on_unlock      = (void *)kvm_null_fn,
818                 .flush_on_ret   = false,
819                 .may_block      = mmu_notifier_range_blockable(range),
820         };
821         bool wake;
822
823         __kvm_handle_hva_range(kvm, &hva_range);
824
825         /* Pairs with the increment in range_start(). */
826         spin_lock(&kvm->mn_invalidate_lock);
827         wake = (--kvm->mn_active_invalidate_count == 0);
828         spin_unlock(&kvm->mn_invalidate_lock);
829
830         /*
831          * There can only be one waiter, since the wait happens under
832          * slots_lock.
833          */
834         if (wake)
835                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
836
837         BUG_ON(kvm->mmu_invalidate_in_progress < 0);
838 }
839
840 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
841                                               struct mm_struct *mm,
842                                               unsigned long start,
843                                               unsigned long end)
844 {
845         trace_kvm_age_hva(start, end);
846
847         return kvm_handle_hva_range(mn, start, end, __pte(0), kvm_age_gfn);
848 }
849
850 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
851                                         struct mm_struct *mm,
852                                         unsigned long start,
853                                         unsigned long end)
854 {
855         trace_kvm_age_hva(start, end);
856
857         /*
858          * Even though we do not flush TLB, this will still adversely
859          * affect performance on pre-Haswell Intel EPT, where there is
860          * no EPT Access Bit to clear so that we have to tear down EPT
861          * tables instead. If we find this unacceptable, we can always
862          * add a parameter to kvm_age_hva so that it effectively doesn't
863          * do anything on clear_young.
864          *
865          * Also note that currently we never issue secondary TLB flushes
866          * from clear_young, leaving this job up to the regular system
867          * cadence. If we find this inaccurate, we might come up with a
868          * more sophisticated heuristic later.
869          */
870         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
871 }
872
873 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
874                                        struct mm_struct *mm,
875                                        unsigned long address)
876 {
877         trace_kvm_test_age_hva(address);
878
879         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
880                                              kvm_test_age_gfn);
881 }
882
883 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
884                                      struct mm_struct *mm)
885 {
886         struct kvm *kvm = mmu_notifier_to_kvm(mn);
887         int idx;
888
889         idx = srcu_read_lock(&kvm->srcu);
890         kvm_flush_shadow_all(kvm);
891         srcu_read_unlock(&kvm->srcu, idx);
892 }
893
894 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
895         .invalidate_range       = kvm_mmu_notifier_invalidate_range,
896         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
897         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
898         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
899         .clear_young            = kvm_mmu_notifier_clear_young,
900         .test_young             = kvm_mmu_notifier_test_young,
901         .change_pte             = kvm_mmu_notifier_change_pte,
902         .release                = kvm_mmu_notifier_release,
903 };
904
905 static int kvm_init_mmu_notifier(struct kvm *kvm)
906 {
907         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
908         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
909 }
910
911 #else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
912
913 static int kvm_init_mmu_notifier(struct kvm *kvm)
914 {
915         return 0;
916 }
917
918 #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
919
920 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
921 static int kvm_pm_notifier_call(struct notifier_block *bl,
922                                 unsigned long state,
923                                 void *unused)
924 {
925         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
926
927         return kvm_arch_pm_notifier(kvm, state);
928 }
929
930 static void kvm_init_pm_notifier(struct kvm *kvm)
931 {
932         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
933         /* Suspend KVM before we suspend ftrace, RCU, etc. */
934         kvm->pm_notifier.priority = INT_MAX;
935         register_pm_notifier(&kvm->pm_notifier);
936 }
937
938 static void kvm_destroy_pm_notifier(struct kvm *kvm)
939 {
940         unregister_pm_notifier(&kvm->pm_notifier);
941 }
942 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
943 static void kvm_init_pm_notifier(struct kvm *kvm)
944 {
945 }
946
947 static void kvm_destroy_pm_notifier(struct kvm *kvm)
948 {
949 }
950 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
951
952 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
953 {
954         if (!memslot->dirty_bitmap)
955                 return;
956
957         kvfree(memslot->dirty_bitmap);
958         memslot->dirty_bitmap = NULL;
959 }
960
961 /* This does not remove the slot from struct kvm_memslots data structures */
962 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
963 {
964         kvm_destroy_dirty_bitmap(slot);
965
966         kvm_arch_free_memslot(kvm, slot);
967
968         kfree(slot);
969 }
970
971 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
972 {
973         struct hlist_node *idnode;
974         struct kvm_memory_slot *memslot;
975         int bkt;
976
977         /*
978          * The same memslot objects live in both active and inactive sets,
979          * arbitrarily free using index '1' so the second invocation of this
980          * function isn't operating over a structure with dangling pointers
981          * (even though this function isn't actually touching them).
982          */
983         if (!slots->node_idx)
984                 return;
985
986         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
987                 kvm_free_memslot(kvm, memslot);
988 }
989
990 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
991 {
992         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
993         case KVM_STATS_TYPE_INSTANT:
994                 return 0444;
995         case KVM_STATS_TYPE_CUMULATIVE:
996         case KVM_STATS_TYPE_PEAK:
997         default:
998                 return 0644;
999         }
1000 }
1001
1002
1003 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1004 {
1005         int i;
1006         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1007                                       kvm_vcpu_stats_header.num_desc;
1008
1009         if (IS_ERR(kvm->debugfs_dentry))
1010                 return;
1011
1012         debugfs_remove_recursive(kvm->debugfs_dentry);
1013
1014         if (kvm->debugfs_stat_data) {
1015                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1016                         kfree(kvm->debugfs_stat_data[i]);
1017                 kfree(kvm->debugfs_stat_data);
1018         }
1019 }
1020
1021 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1022 {
1023         static DEFINE_MUTEX(kvm_debugfs_lock);
1024         struct dentry *dent;
1025         char dir_name[ITOA_MAX_LEN * 2];
1026         struct kvm_stat_data *stat_data;
1027         const struct _kvm_stats_desc *pdesc;
1028         int i, ret = -ENOMEM;
1029         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1030                                       kvm_vcpu_stats_header.num_desc;
1031
1032         if (!debugfs_initialized())
1033                 return 0;
1034
1035         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1036         mutex_lock(&kvm_debugfs_lock);
1037         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1038         if (dent) {
1039                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1040                 dput(dent);
1041                 mutex_unlock(&kvm_debugfs_lock);
1042                 return 0;
1043         }
1044         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1045         mutex_unlock(&kvm_debugfs_lock);
1046         if (IS_ERR(dent))
1047                 return 0;
1048
1049         kvm->debugfs_dentry = dent;
1050         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1051                                          sizeof(*kvm->debugfs_stat_data),
1052                                          GFP_KERNEL_ACCOUNT);
1053         if (!kvm->debugfs_stat_data)
1054                 goto out_err;
1055
1056         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1057                 pdesc = &kvm_vm_stats_desc[i];
1058                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1059                 if (!stat_data)
1060                         goto out_err;
1061
1062                 stat_data->kvm = kvm;
1063                 stat_data->desc = pdesc;
1064                 stat_data->kind = KVM_STAT_VM;
1065                 kvm->debugfs_stat_data[i] = stat_data;
1066                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1067                                     kvm->debugfs_dentry, stat_data,
1068                                     &stat_fops_per_vm);
1069         }
1070
1071         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1072                 pdesc = &kvm_vcpu_stats_desc[i];
1073                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1074                 if (!stat_data)
1075                         goto out_err;
1076
1077                 stat_data->kvm = kvm;
1078                 stat_data->desc = pdesc;
1079                 stat_data->kind = KVM_STAT_VCPU;
1080                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1081                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1082                                     kvm->debugfs_dentry, stat_data,
1083                                     &stat_fops_per_vm);
1084         }
1085
1086         ret = kvm_arch_create_vm_debugfs(kvm);
1087         if (ret)
1088                 goto out_err;
1089
1090         return 0;
1091 out_err:
1092         kvm_destroy_vm_debugfs(kvm);
1093         return ret;
1094 }
1095
1096 /*
1097  * Called after the VM is otherwise initialized, but just before adding it to
1098  * the vm_list.
1099  */
1100 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1101 {
1102         return 0;
1103 }
1104
1105 /*
1106  * Called just after removing the VM from the vm_list, but before doing any
1107  * other destruction.
1108  */
1109 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1110 {
1111 }
1112
1113 /*
1114  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1115  * be setup already, so we can create arch-specific debugfs entries under it.
1116  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1117  * a per-arch destroy interface is not needed.
1118  */
1119 int __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1120 {
1121         return 0;
1122 }
1123
1124 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1125 {
1126         struct kvm *kvm = kvm_arch_alloc_vm();
1127         struct kvm_memslots *slots;
1128         int r = -ENOMEM;
1129         int i, j;
1130
1131         if (!kvm)
1132                 return ERR_PTR(-ENOMEM);
1133
1134         /* KVM is pinned via open("/dev/kvm"), the fd passed to this ioctl(). */
1135         __module_get(kvm_chardev_ops.owner);
1136
1137         KVM_MMU_LOCK_INIT(kvm);
1138         mmgrab(current->mm);
1139         kvm->mm = current->mm;
1140         kvm_eventfd_init(kvm);
1141         mutex_init(&kvm->lock);
1142         mutex_init(&kvm->irq_lock);
1143         mutex_init(&kvm->slots_lock);
1144         mutex_init(&kvm->slots_arch_lock);
1145         spin_lock_init(&kvm->mn_invalidate_lock);
1146         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1147         xa_init(&kvm->vcpu_array);
1148
1149         INIT_LIST_HEAD(&kvm->gpc_list);
1150         spin_lock_init(&kvm->gpc_lock);
1151
1152         INIT_LIST_HEAD(&kvm->devices);
1153         kvm->max_vcpus = KVM_MAX_VCPUS;
1154
1155         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1156
1157         /*
1158          * Force subsequent debugfs file creations to fail if the VM directory
1159          * is not created (by kvm_create_vm_debugfs()).
1160          */
1161         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1162
1163         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1164                  task_pid_nr(current));
1165
1166         if (init_srcu_struct(&kvm->srcu))
1167                 goto out_err_no_srcu;
1168         if (init_srcu_struct(&kvm->irq_srcu))
1169                 goto out_err_no_irq_srcu;
1170
1171         refcount_set(&kvm->users_count, 1);
1172         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1173                 for (j = 0; j < 2; j++) {
1174                         slots = &kvm->__memslots[i][j];
1175
1176                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1177                         slots->hva_tree = RB_ROOT_CACHED;
1178                         slots->gfn_tree = RB_ROOT;
1179                         hash_init(slots->id_hash);
1180                         slots->node_idx = j;
1181
1182                         /* Generations must be different for each address space. */
1183                         slots->generation = i;
1184                 }
1185
1186                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1187         }
1188
1189         for (i = 0; i < KVM_NR_BUSES; i++) {
1190                 rcu_assign_pointer(kvm->buses[i],
1191                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1192                 if (!kvm->buses[i])
1193                         goto out_err_no_arch_destroy_vm;
1194         }
1195
1196         r = kvm_arch_init_vm(kvm, type);
1197         if (r)
1198                 goto out_err_no_arch_destroy_vm;
1199
1200         r = hardware_enable_all();
1201         if (r)
1202                 goto out_err_no_disable;
1203
1204 #ifdef CONFIG_HAVE_KVM_IRQFD
1205         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1206 #endif
1207
1208         r = kvm_init_mmu_notifier(kvm);
1209         if (r)
1210                 goto out_err_no_mmu_notifier;
1211
1212         r = kvm_coalesced_mmio_init(kvm);
1213         if (r < 0)
1214                 goto out_no_coalesced_mmio;
1215
1216         r = kvm_create_vm_debugfs(kvm, fdname);
1217         if (r)
1218                 goto out_err_no_debugfs;
1219
1220         r = kvm_arch_post_init_vm(kvm);
1221         if (r)
1222                 goto out_err;
1223
1224         mutex_lock(&kvm_lock);
1225         list_add(&kvm->vm_list, &vm_list);
1226         mutex_unlock(&kvm_lock);
1227
1228         preempt_notifier_inc();
1229         kvm_init_pm_notifier(kvm);
1230
1231         return kvm;
1232
1233 out_err:
1234         kvm_destroy_vm_debugfs(kvm);
1235 out_err_no_debugfs:
1236         kvm_coalesced_mmio_free(kvm);
1237 out_no_coalesced_mmio:
1238 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1239         if (kvm->mmu_notifier.ops)
1240                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1241 #endif
1242 out_err_no_mmu_notifier:
1243         hardware_disable_all();
1244 out_err_no_disable:
1245         kvm_arch_destroy_vm(kvm);
1246 out_err_no_arch_destroy_vm:
1247         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1248         for (i = 0; i < KVM_NR_BUSES; i++)
1249                 kfree(kvm_get_bus(kvm, i));
1250         cleanup_srcu_struct(&kvm->irq_srcu);
1251 out_err_no_irq_srcu:
1252         cleanup_srcu_struct(&kvm->srcu);
1253 out_err_no_srcu:
1254         kvm_arch_free_vm(kvm);
1255         mmdrop(current->mm);
1256         module_put(kvm_chardev_ops.owner);
1257         return ERR_PTR(r);
1258 }
1259
1260 static void kvm_destroy_devices(struct kvm *kvm)
1261 {
1262         struct kvm_device *dev, *tmp;
1263
1264         /*
1265          * We do not need to take the kvm->lock here, because nobody else
1266          * has a reference to the struct kvm at this point and therefore
1267          * cannot access the devices list anyhow.
1268          */
1269         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1270                 list_del(&dev->vm_node);
1271                 dev->ops->destroy(dev);
1272         }
1273 }
1274
1275 static void kvm_destroy_vm(struct kvm *kvm)
1276 {
1277         int i;
1278         struct mm_struct *mm = kvm->mm;
1279
1280         kvm_destroy_pm_notifier(kvm);
1281         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1282         kvm_destroy_vm_debugfs(kvm);
1283         kvm_arch_sync_events(kvm);
1284         mutex_lock(&kvm_lock);
1285         list_del(&kvm->vm_list);
1286         mutex_unlock(&kvm_lock);
1287         kvm_arch_pre_destroy_vm(kvm);
1288
1289         kvm_free_irq_routing(kvm);
1290         for (i = 0; i < KVM_NR_BUSES; i++) {
1291                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1292
1293                 if (bus)
1294                         kvm_io_bus_destroy(bus);
1295                 kvm->buses[i] = NULL;
1296         }
1297         kvm_coalesced_mmio_free(kvm);
1298 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
1299         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1300         /*
1301          * At this point, pending calls to invalidate_range_start()
1302          * have completed but no more MMU notifiers will run, so
1303          * mn_active_invalidate_count may remain unbalanced.
1304          * No threads can be waiting in install_new_memslots as the
1305          * last reference on KVM has been dropped, but freeing
1306          * memslots would deadlock without this manual intervention.
1307          */
1308         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1309         kvm->mn_active_invalidate_count = 0;
1310 #else
1311         kvm_flush_shadow_all(kvm);
1312 #endif
1313         kvm_arch_destroy_vm(kvm);
1314         kvm_destroy_devices(kvm);
1315         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1316                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1317                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1318         }
1319         cleanup_srcu_struct(&kvm->irq_srcu);
1320         cleanup_srcu_struct(&kvm->srcu);
1321         kvm_arch_free_vm(kvm);
1322         preempt_notifier_dec();
1323         hardware_disable_all();
1324         mmdrop(mm);
1325         module_put(kvm_chardev_ops.owner);
1326 }
1327
1328 void kvm_get_kvm(struct kvm *kvm)
1329 {
1330         refcount_inc(&kvm->users_count);
1331 }
1332 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1333
1334 /*
1335  * Make sure the vm is not during destruction, which is a safe version of
1336  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1337  */
1338 bool kvm_get_kvm_safe(struct kvm *kvm)
1339 {
1340         return refcount_inc_not_zero(&kvm->users_count);
1341 }
1342 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1343
1344 void kvm_put_kvm(struct kvm *kvm)
1345 {
1346         if (refcount_dec_and_test(&kvm->users_count))
1347                 kvm_destroy_vm(kvm);
1348 }
1349 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1350
1351 /*
1352  * Used to put a reference that was taken on behalf of an object associated
1353  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1354  * of the new file descriptor fails and the reference cannot be transferred to
1355  * its final owner.  In such cases, the caller is still actively using @kvm and
1356  * will fail miserably if the refcount unexpectedly hits zero.
1357  */
1358 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1359 {
1360         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1361 }
1362 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1363
1364 static int kvm_vm_release(struct inode *inode, struct file *filp)
1365 {
1366         struct kvm *kvm = filp->private_data;
1367
1368         kvm_irqfd_release(kvm);
1369
1370         kvm_put_kvm(kvm);
1371         return 0;
1372 }
1373
1374 /*
1375  * Allocation size is twice as large as the actual dirty bitmap size.
1376  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1377  */
1378 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1379 {
1380         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1381
1382         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1383         if (!memslot->dirty_bitmap)
1384                 return -ENOMEM;
1385
1386         return 0;
1387 }
1388
1389 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1390 {
1391         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1392         int node_idx_inactive = active->node_idx ^ 1;
1393
1394         return &kvm->__memslots[as_id][node_idx_inactive];
1395 }
1396
1397 /*
1398  * Helper to get the address space ID when one of memslot pointers may be NULL.
1399  * This also serves as a sanity that at least one of the pointers is non-NULL,
1400  * and that their address space IDs don't diverge.
1401  */
1402 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1403                                   struct kvm_memory_slot *b)
1404 {
1405         if (WARN_ON_ONCE(!a && !b))
1406                 return 0;
1407
1408         if (!a)
1409                 return b->as_id;
1410         if (!b)
1411                 return a->as_id;
1412
1413         WARN_ON_ONCE(a->as_id != b->as_id);
1414         return a->as_id;
1415 }
1416
1417 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1418                                 struct kvm_memory_slot *slot)
1419 {
1420         struct rb_root *gfn_tree = &slots->gfn_tree;
1421         struct rb_node **node, *parent;
1422         int idx = slots->node_idx;
1423
1424         parent = NULL;
1425         for (node = &gfn_tree->rb_node; *node; ) {
1426                 struct kvm_memory_slot *tmp;
1427
1428                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1429                 parent = *node;
1430                 if (slot->base_gfn < tmp->base_gfn)
1431                         node = &(*node)->rb_left;
1432                 else if (slot->base_gfn > tmp->base_gfn)
1433                         node = &(*node)->rb_right;
1434                 else
1435                         BUG();
1436         }
1437
1438         rb_link_node(&slot->gfn_node[idx], parent, node);
1439         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1440 }
1441
1442 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1443                                struct kvm_memory_slot *slot)
1444 {
1445         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1446 }
1447
1448 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1449                                  struct kvm_memory_slot *old,
1450                                  struct kvm_memory_slot *new)
1451 {
1452         int idx = slots->node_idx;
1453
1454         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1455
1456         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1457                         &slots->gfn_tree);
1458 }
1459
1460 /*
1461  * Replace @old with @new in the inactive memslots.
1462  *
1463  * With NULL @old this simply adds @new.
1464  * With NULL @new this simply removes @old.
1465  *
1466  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1467  * appropriately.
1468  */
1469 static void kvm_replace_memslot(struct kvm *kvm,
1470                                 struct kvm_memory_slot *old,
1471                                 struct kvm_memory_slot *new)
1472 {
1473         int as_id = kvm_memslots_get_as_id(old, new);
1474         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1475         int idx = slots->node_idx;
1476
1477         if (old) {
1478                 hash_del(&old->id_node[idx]);
1479                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1480
1481                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1482                         atomic_long_set(&slots->last_used_slot, (long)new);
1483
1484                 if (!new) {
1485                         kvm_erase_gfn_node(slots, old);
1486                         return;
1487                 }
1488         }
1489
1490         /*
1491          * Initialize @new's hva range.  Do this even when replacing an @old
1492          * slot, kvm_copy_memslot() deliberately does not touch node data.
1493          */
1494         new->hva_node[idx].start = new->userspace_addr;
1495         new->hva_node[idx].last = new->userspace_addr +
1496                                   (new->npages << PAGE_SHIFT) - 1;
1497
1498         /*
1499          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1500          * hva_node needs to be swapped with remove+insert even though hva can't
1501          * change when replacing an existing slot.
1502          */
1503         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1504         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1505
1506         /*
1507          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1508          * switch the node in the gfn tree instead of removing the old and
1509          * inserting the new as two separate operations. Replacement is a
1510          * single O(1) operation versus two O(log(n)) operations for
1511          * remove+insert.
1512          */
1513         if (old && old->base_gfn == new->base_gfn) {
1514                 kvm_replace_gfn_node(slots, old, new);
1515         } else {
1516                 if (old)
1517                         kvm_erase_gfn_node(slots, old);
1518                 kvm_insert_gfn_node(slots, new);
1519         }
1520 }
1521
1522 static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
1523 {
1524         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1525
1526 #ifdef __KVM_HAVE_READONLY_MEM
1527         valid_flags |= KVM_MEM_READONLY;
1528 #endif
1529
1530         if (mem->flags & ~valid_flags)
1531                 return -EINVAL;
1532
1533         return 0;
1534 }
1535
1536 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1537 {
1538         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1539
1540         /* Grab the generation from the activate memslots. */
1541         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1542
1543         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1544         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1545
1546         /*
1547          * Do not store the new memslots while there are invalidations in
1548          * progress, otherwise the locking in invalidate_range_start and
1549          * invalidate_range_end will be unbalanced.
1550          */
1551         spin_lock(&kvm->mn_invalidate_lock);
1552         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1553         while (kvm->mn_active_invalidate_count) {
1554                 set_current_state(TASK_UNINTERRUPTIBLE);
1555                 spin_unlock(&kvm->mn_invalidate_lock);
1556                 schedule();
1557                 spin_lock(&kvm->mn_invalidate_lock);
1558         }
1559         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1560         rcu_assign_pointer(kvm->memslots[as_id], slots);
1561         spin_unlock(&kvm->mn_invalidate_lock);
1562
1563         /*
1564          * Acquired in kvm_set_memslot. Must be released before synchronize
1565          * SRCU below in order to avoid deadlock with another thread
1566          * acquiring the slots_arch_lock in an srcu critical section.
1567          */
1568         mutex_unlock(&kvm->slots_arch_lock);
1569
1570         synchronize_srcu_expedited(&kvm->srcu);
1571
1572         /*
1573          * Increment the new memslot generation a second time, dropping the
1574          * update in-progress flag and incrementing the generation based on
1575          * the number of address spaces.  This provides a unique and easily
1576          * identifiable generation number while the memslots are in flux.
1577          */
1578         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1579
1580         /*
1581          * Generations must be unique even across address spaces.  We do not need
1582          * a global counter for that, instead the generation space is evenly split
1583          * across address spaces.  For example, with two address spaces, address
1584          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1585          * use generations 1, 3, 5, ...
1586          */
1587         gen += KVM_ADDRESS_SPACE_NUM;
1588
1589         kvm_arch_memslots_updated(kvm, gen);
1590
1591         slots->generation = gen;
1592 }
1593
1594 static int kvm_prepare_memory_region(struct kvm *kvm,
1595                                      const struct kvm_memory_slot *old,
1596                                      struct kvm_memory_slot *new,
1597                                      enum kvm_mr_change change)
1598 {
1599         int r;
1600
1601         /*
1602          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1603          * will be freed on "commit".  If logging is enabled in both old and
1604          * new, reuse the existing bitmap.  If logging is enabled only in the
1605          * new and KVM isn't using a ring buffer, allocate and initialize a
1606          * new bitmap.
1607          */
1608         if (change != KVM_MR_DELETE) {
1609                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1610                         new->dirty_bitmap = NULL;
1611                 else if (old && old->dirty_bitmap)
1612                         new->dirty_bitmap = old->dirty_bitmap;
1613                 else if (kvm_use_dirty_bitmap(kvm)) {
1614                         r = kvm_alloc_dirty_bitmap(new);
1615                         if (r)
1616                                 return r;
1617
1618                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1619                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1620                 }
1621         }
1622
1623         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1624
1625         /* Free the bitmap on failure if it was allocated above. */
1626         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1627                 kvm_destroy_dirty_bitmap(new);
1628
1629         return r;
1630 }
1631
1632 static void kvm_commit_memory_region(struct kvm *kvm,
1633                                      struct kvm_memory_slot *old,
1634                                      const struct kvm_memory_slot *new,
1635                                      enum kvm_mr_change change)
1636 {
1637         int old_flags = old ? old->flags : 0;
1638         int new_flags = new ? new->flags : 0;
1639         /*
1640          * Update the total number of memslot pages before calling the arch
1641          * hook so that architectures can consume the result directly.
1642          */
1643         if (change == KVM_MR_DELETE)
1644                 kvm->nr_memslot_pages -= old->npages;
1645         else if (change == KVM_MR_CREATE)
1646                 kvm->nr_memslot_pages += new->npages;
1647
1648         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1649                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1650                 atomic_set(&kvm->nr_memslots_dirty_logging,
1651                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1652         }
1653
1654         kvm_arch_commit_memory_region(kvm, old, new, change);
1655
1656         switch (change) {
1657         case KVM_MR_CREATE:
1658                 /* Nothing more to do. */
1659                 break;
1660         case KVM_MR_DELETE:
1661                 /* Free the old memslot and all its metadata. */
1662                 kvm_free_memslot(kvm, old);
1663                 break;
1664         case KVM_MR_MOVE:
1665         case KVM_MR_FLAGS_ONLY:
1666                 /*
1667                  * Free the dirty bitmap as needed; the below check encompasses
1668                  * both the flags and whether a ring buffer is being used)
1669                  */
1670                 if (old->dirty_bitmap && !new->dirty_bitmap)
1671                         kvm_destroy_dirty_bitmap(old);
1672
1673                 /*
1674                  * The final quirk.  Free the detached, old slot, but only its
1675                  * memory, not any metadata.  Metadata, including arch specific
1676                  * data, may be reused by @new.
1677                  */
1678                 kfree(old);
1679                 break;
1680         default:
1681                 BUG();
1682         }
1683 }
1684
1685 /*
1686  * Activate @new, which must be installed in the inactive slots by the caller,
1687  * by swapping the active slots and then propagating @new to @old once @old is
1688  * unreachable and can be safely modified.
1689  *
1690  * With NULL @old this simply adds @new to @active (while swapping the sets).
1691  * With NULL @new this simply removes @old from @active and frees it
1692  * (while also swapping the sets).
1693  */
1694 static void kvm_activate_memslot(struct kvm *kvm,
1695                                  struct kvm_memory_slot *old,
1696                                  struct kvm_memory_slot *new)
1697 {
1698         int as_id = kvm_memslots_get_as_id(old, new);
1699
1700         kvm_swap_active_memslots(kvm, as_id);
1701
1702         /* Propagate the new memslot to the now inactive memslots. */
1703         kvm_replace_memslot(kvm, old, new);
1704 }
1705
1706 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1707                              const struct kvm_memory_slot *src)
1708 {
1709         dest->base_gfn = src->base_gfn;
1710         dest->npages = src->npages;
1711         dest->dirty_bitmap = src->dirty_bitmap;
1712         dest->arch = src->arch;
1713         dest->userspace_addr = src->userspace_addr;
1714         dest->flags = src->flags;
1715         dest->id = src->id;
1716         dest->as_id = src->as_id;
1717 }
1718
1719 static void kvm_invalidate_memslot(struct kvm *kvm,
1720                                    struct kvm_memory_slot *old,
1721                                    struct kvm_memory_slot *invalid_slot)
1722 {
1723         /*
1724          * Mark the current slot INVALID.  As with all memslot modifications,
1725          * this must be done on an unreachable slot to avoid modifying the
1726          * current slot in the active tree.
1727          */
1728         kvm_copy_memslot(invalid_slot, old);
1729         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1730         kvm_replace_memslot(kvm, old, invalid_slot);
1731
1732         /*
1733          * Activate the slot that is now marked INVALID, but don't propagate
1734          * the slot to the now inactive slots. The slot is either going to be
1735          * deleted or recreated as a new slot.
1736          */
1737         kvm_swap_active_memslots(kvm, old->as_id);
1738
1739         /*
1740          * From this point no new shadow pages pointing to a deleted, or moved,
1741          * memslot will be created.  Validation of sp->gfn happens in:
1742          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1743          *      - kvm_is_visible_gfn (mmu_check_root)
1744          */
1745         kvm_arch_flush_shadow_memslot(kvm, old);
1746         kvm_arch_guest_memory_reclaimed(kvm);
1747
1748         /* Was released by kvm_swap_active_memslots, reacquire. */
1749         mutex_lock(&kvm->slots_arch_lock);
1750
1751         /*
1752          * Copy the arch-specific field of the newly-installed slot back to the
1753          * old slot as the arch data could have changed between releasing
1754          * slots_arch_lock in install_new_memslots() and re-acquiring the lock
1755          * above.  Writers are required to retrieve memslots *after* acquiring
1756          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1757          */
1758         old->arch = invalid_slot->arch;
1759 }
1760
1761 static void kvm_create_memslot(struct kvm *kvm,
1762                                struct kvm_memory_slot *new)
1763 {
1764         /* Add the new memslot to the inactive set and activate. */
1765         kvm_replace_memslot(kvm, NULL, new);
1766         kvm_activate_memslot(kvm, NULL, new);
1767 }
1768
1769 static void kvm_delete_memslot(struct kvm *kvm,
1770                                struct kvm_memory_slot *old,
1771                                struct kvm_memory_slot *invalid_slot)
1772 {
1773         /*
1774          * Remove the old memslot (in the inactive memslots) by passing NULL as
1775          * the "new" slot, and for the invalid version in the active slots.
1776          */
1777         kvm_replace_memslot(kvm, old, NULL);
1778         kvm_activate_memslot(kvm, invalid_slot, NULL);
1779 }
1780
1781 static void kvm_move_memslot(struct kvm *kvm,
1782                              struct kvm_memory_slot *old,
1783                              struct kvm_memory_slot *new,
1784                              struct kvm_memory_slot *invalid_slot)
1785 {
1786         /*
1787          * Replace the old memslot in the inactive slots, and then swap slots
1788          * and replace the current INVALID with the new as well.
1789          */
1790         kvm_replace_memslot(kvm, old, new);
1791         kvm_activate_memslot(kvm, invalid_slot, new);
1792 }
1793
1794 static void kvm_update_flags_memslot(struct kvm *kvm,
1795                                      struct kvm_memory_slot *old,
1796                                      struct kvm_memory_slot *new)
1797 {
1798         /*
1799          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1800          * an intermediate step. Instead, the old memslot is simply replaced
1801          * with a new, updated copy in both memslot sets.
1802          */
1803         kvm_replace_memslot(kvm, old, new);
1804         kvm_activate_memslot(kvm, old, new);
1805 }
1806
1807 static int kvm_set_memslot(struct kvm *kvm,
1808                            struct kvm_memory_slot *old,
1809                            struct kvm_memory_slot *new,
1810                            enum kvm_mr_change change)
1811 {
1812         struct kvm_memory_slot *invalid_slot;
1813         int r;
1814
1815         /*
1816          * Released in kvm_swap_active_memslots.
1817          *
1818          * Must be held from before the current memslots are copied until
1819          * after the new memslots are installed with rcu_assign_pointer,
1820          * then released before the synchronize srcu in kvm_swap_active_memslots.
1821          *
1822          * When modifying memslots outside of the slots_lock, must be held
1823          * before reading the pointer to the current memslots until after all
1824          * changes to those memslots are complete.
1825          *
1826          * These rules ensure that installing new memslots does not lose
1827          * changes made to the previous memslots.
1828          */
1829         mutex_lock(&kvm->slots_arch_lock);
1830
1831         /*
1832          * Invalidate the old slot if it's being deleted or moved.  This is
1833          * done prior to actually deleting/moving the memslot to allow vCPUs to
1834          * continue running by ensuring there are no mappings or shadow pages
1835          * for the memslot when it is deleted/moved.  Without pre-invalidation
1836          * (and without a lock), a window would exist between effecting the
1837          * delete/move and committing the changes in arch code where KVM or a
1838          * guest could access a non-existent memslot.
1839          *
1840          * Modifications are done on a temporary, unreachable slot.  The old
1841          * slot needs to be preserved in case a later step fails and the
1842          * invalidation needs to be reverted.
1843          */
1844         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1845                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1846                 if (!invalid_slot) {
1847                         mutex_unlock(&kvm->slots_arch_lock);
1848                         return -ENOMEM;
1849                 }
1850                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1851         }
1852
1853         r = kvm_prepare_memory_region(kvm, old, new, change);
1854         if (r) {
1855                 /*
1856                  * For DELETE/MOVE, revert the above INVALID change.  No
1857                  * modifications required since the original slot was preserved
1858                  * in the inactive slots.  Changing the active memslots also
1859                  * release slots_arch_lock.
1860                  */
1861                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1862                         kvm_activate_memslot(kvm, invalid_slot, old);
1863                         kfree(invalid_slot);
1864                 } else {
1865                         mutex_unlock(&kvm->slots_arch_lock);
1866                 }
1867                 return r;
1868         }
1869
1870         /*
1871          * For DELETE and MOVE, the working slot is now active as the INVALID
1872          * version of the old slot.  MOVE is particularly special as it reuses
1873          * the old slot and returns a copy of the old slot (in working_slot).
1874          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1875          * old slot is detached but otherwise preserved.
1876          */
1877         if (change == KVM_MR_CREATE)
1878                 kvm_create_memslot(kvm, new);
1879         else if (change == KVM_MR_DELETE)
1880                 kvm_delete_memslot(kvm, old, invalid_slot);
1881         else if (change == KVM_MR_MOVE)
1882                 kvm_move_memslot(kvm, old, new, invalid_slot);
1883         else if (change == KVM_MR_FLAGS_ONLY)
1884                 kvm_update_flags_memslot(kvm, old, new);
1885         else
1886                 BUG();
1887
1888         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1889         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1890                 kfree(invalid_slot);
1891
1892         /*
1893          * No need to refresh new->arch, changes after dropping slots_arch_lock
1894          * will directly hit the final, active memslot.  Architectures are
1895          * responsible for knowing that new->arch may be stale.
1896          */
1897         kvm_commit_memory_region(kvm, old, new, change);
1898
1899         return 0;
1900 }
1901
1902 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1903                                       gfn_t start, gfn_t end)
1904 {
1905         struct kvm_memslot_iter iter;
1906
1907         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1908                 if (iter.slot->id != id)
1909                         return true;
1910         }
1911
1912         return false;
1913 }
1914
1915 /*
1916  * Allocate some memory and give it an address in the guest physical address
1917  * space.
1918  *
1919  * Discontiguous memory is allowed, mostly for framebuffers.
1920  *
1921  * Must be called holding kvm->slots_lock for write.
1922  */
1923 int __kvm_set_memory_region(struct kvm *kvm,
1924                             const struct kvm_userspace_memory_region *mem)
1925 {
1926         struct kvm_memory_slot *old, *new;
1927         struct kvm_memslots *slots;
1928         enum kvm_mr_change change;
1929         unsigned long npages;
1930         gfn_t base_gfn;
1931         int as_id, id;
1932         int r;
1933
1934         r = check_memory_region_flags(mem);
1935         if (r)
1936                 return r;
1937
1938         as_id = mem->slot >> 16;
1939         id = (u16)mem->slot;
1940
1941         /* General sanity checks */
1942         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1943             (mem->memory_size != (unsigned long)mem->memory_size))
1944                 return -EINVAL;
1945         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1946                 return -EINVAL;
1947         /* We can read the guest memory with __xxx_user() later on. */
1948         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1949             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1950              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1951                         mem->memory_size))
1952                 return -EINVAL;
1953         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
1954                 return -EINVAL;
1955         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1956                 return -EINVAL;
1957         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1958                 return -EINVAL;
1959
1960         slots = __kvm_memslots(kvm, as_id);
1961
1962         /*
1963          * Note, the old memslot (and the pointer itself!) may be invalidated
1964          * and/or destroyed by kvm_set_memslot().
1965          */
1966         old = id_to_memslot(slots, id);
1967
1968         if (!mem->memory_size) {
1969                 if (!old || !old->npages)
1970                         return -EINVAL;
1971
1972                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1973                         return -EIO;
1974
1975                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1976         }
1977
1978         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1979         npages = (mem->memory_size >> PAGE_SHIFT);
1980
1981         if (!old || !old->npages) {
1982                 change = KVM_MR_CREATE;
1983
1984                 /*
1985                  * To simplify KVM internals, the total number of pages across
1986                  * all memslots must fit in an unsigned long.
1987                  */
1988                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
1989                         return -EINVAL;
1990         } else { /* Modify an existing slot. */
1991                 if ((mem->userspace_addr != old->userspace_addr) ||
1992                     (npages != old->npages) ||
1993                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
1994                         return -EINVAL;
1995
1996                 if (base_gfn != old->base_gfn)
1997                         change = KVM_MR_MOVE;
1998                 else if (mem->flags != old->flags)
1999                         change = KVM_MR_FLAGS_ONLY;
2000                 else /* Nothing to change. */
2001                         return 0;
2002         }
2003
2004         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2005             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2006                 return -EEXIST;
2007
2008         /* Allocate a slot that will persist in the memslot. */
2009         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2010         if (!new)
2011                 return -ENOMEM;
2012
2013         new->as_id = as_id;
2014         new->id = id;
2015         new->base_gfn = base_gfn;
2016         new->npages = npages;
2017         new->flags = mem->flags;
2018         new->userspace_addr = mem->userspace_addr;
2019
2020         r = kvm_set_memslot(kvm, old, new, change);
2021         if (r)
2022                 kfree(new);
2023         return r;
2024 }
2025 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2026
2027 int kvm_set_memory_region(struct kvm *kvm,
2028                           const struct kvm_userspace_memory_region *mem)
2029 {
2030         int r;
2031
2032         mutex_lock(&kvm->slots_lock);
2033         r = __kvm_set_memory_region(kvm, mem);
2034         mutex_unlock(&kvm->slots_lock);
2035         return r;
2036 }
2037 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2038
2039 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2040                                           struct kvm_userspace_memory_region *mem)
2041 {
2042         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2043                 return -EINVAL;
2044
2045         return kvm_set_memory_region(kvm, mem);
2046 }
2047
2048 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2049 /**
2050  * kvm_get_dirty_log - get a snapshot of dirty pages
2051  * @kvm:        pointer to kvm instance
2052  * @log:        slot id and address to which we copy the log
2053  * @is_dirty:   set to '1' if any dirty pages were found
2054  * @memslot:    set to the associated memslot, always valid on success
2055  */
2056 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2057                       int *is_dirty, struct kvm_memory_slot **memslot)
2058 {
2059         struct kvm_memslots *slots;
2060         int i, as_id, id;
2061         unsigned long n;
2062         unsigned long any = 0;
2063
2064         /* Dirty ring tracking may be exclusive to dirty log tracking */
2065         if (!kvm_use_dirty_bitmap(kvm))
2066                 return -ENXIO;
2067
2068         *memslot = NULL;
2069         *is_dirty = 0;
2070
2071         as_id = log->slot >> 16;
2072         id = (u16)log->slot;
2073         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2074                 return -EINVAL;
2075
2076         slots = __kvm_memslots(kvm, as_id);
2077         *memslot = id_to_memslot(slots, id);
2078         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2079                 return -ENOENT;
2080
2081         kvm_arch_sync_dirty_log(kvm, *memslot);
2082
2083         n = kvm_dirty_bitmap_bytes(*memslot);
2084
2085         for (i = 0; !any && i < n/sizeof(long); ++i)
2086                 any = (*memslot)->dirty_bitmap[i];
2087
2088         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2089                 return -EFAULT;
2090
2091         if (any)
2092                 *is_dirty = 1;
2093         return 0;
2094 }
2095 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2096
2097 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2098 /**
2099  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2100  *      and reenable dirty page tracking for the corresponding pages.
2101  * @kvm:        pointer to kvm instance
2102  * @log:        slot id and address to which we copy the log
2103  *
2104  * We need to keep it in mind that VCPU threads can write to the bitmap
2105  * concurrently. So, to avoid losing track of dirty pages we keep the
2106  * following order:
2107  *
2108  *    1. Take a snapshot of the bit and clear it if needed.
2109  *    2. Write protect the corresponding page.
2110  *    3. Copy the snapshot to the userspace.
2111  *    4. Upon return caller flushes TLB's if needed.
2112  *
2113  * Between 2 and 4, the guest may write to the page using the remaining TLB
2114  * entry.  This is not a problem because the page is reported dirty using
2115  * the snapshot taken before and step 4 ensures that writes done after
2116  * exiting to userspace will be logged for the next call.
2117  *
2118  */
2119 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2120 {
2121         struct kvm_memslots *slots;
2122         struct kvm_memory_slot *memslot;
2123         int i, as_id, id;
2124         unsigned long n;
2125         unsigned long *dirty_bitmap;
2126         unsigned long *dirty_bitmap_buffer;
2127         bool flush;
2128
2129         /* Dirty ring tracking may be exclusive to dirty log tracking */
2130         if (!kvm_use_dirty_bitmap(kvm))
2131                 return -ENXIO;
2132
2133         as_id = log->slot >> 16;
2134         id = (u16)log->slot;
2135         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2136                 return -EINVAL;
2137
2138         slots = __kvm_memslots(kvm, as_id);
2139         memslot = id_to_memslot(slots, id);
2140         if (!memslot || !memslot->dirty_bitmap)
2141                 return -ENOENT;
2142
2143         dirty_bitmap = memslot->dirty_bitmap;
2144
2145         kvm_arch_sync_dirty_log(kvm, memslot);
2146
2147         n = kvm_dirty_bitmap_bytes(memslot);
2148         flush = false;
2149         if (kvm->manual_dirty_log_protect) {
2150                 /*
2151                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2152                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2153                  * is some code duplication between this function and
2154                  * kvm_get_dirty_log, but hopefully all architecture
2155                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2156                  * can be eliminated.
2157                  */
2158                 dirty_bitmap_buffer = dirty_bitmap;
2159         } else {
2160                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2161                 memset(dirty_bitmap_buffer, 0, n);
2162
2163                 KVM_MMU_LOCK(kvm);
2164                 for (i = 0; i < n / sizeof(long); i++) {
2165                         unsigned long mask;
2166                         gfn_t offset;
2167
2168                         if (!dirty_bitmap[i])
2169                                 continue;
2170
2171                         flush = true;
2172                         mask = xchg(&dirty_bitmap[i], 0);
2173                         dirty_bitmap_buffer[i] = mask;
2174
2175                         offset = i * BITS_PER_LONG;
2176                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2177                                                                 offset, mask);
2178                 }
2179                 KVM_MMU_UNLOCK(kvm);
2180         }
2181
2182         if (flush)
2183                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2184
2185         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2186                 return -EFAULT;
2187         return 0;
2188 }
2189
2190
2191 /**
2192  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2193  * @kvm: kvm instance
2194  * @log: slot id and address to which we copy the log
2195  *
2196  * Steps 1-4 below provide general overview of dirty page logging. See
2197  * kvm_get_dirty_log_protect() function description for additional details.
2198  *
2199  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2200  * always flush the TLB (step 4) even if previous step failed  and the dirty
2201  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2202  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2203  * writes will be marked dirty for next log read.
2204  *
2205  *   1. Take a snapshot of the bit and clear it if needed.
2206  *   2. Write protect the corresponding page.
2207  *   3. Copy the snapshot to the userspace.
2208  *   4. Flush TLB's if needed.
2209  */
2210 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2211                                       struct kvm_dirty_log *log)
2212 {
2213         int r;
2214
2215         mutex_lock(&kvm->slots_lock);
2216
2217         r = kvm_get_dirty_log_protect(kvm, log);
2218
2219         mutex_unlock(&kvm->slots_lock);
2220         return r;
2221 }
2222
2223 /**
2224  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2225  *      and reenable dirty page tracking for the corresponding pages.
2226  * @kvm:        pointer to kvm instance
2227  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2228  */
2229 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2230                                        struct kvm_clear_dirty_log *log)
2231 {
2232         struct kvm_memslots *slots;
2233         struct kvm_memory_slot *memslot;
2234         int as_id, id;
2235         gfn_t offset;
2236         unsigned long i, n;
2237         unsigned long *dirty_bitmap;
2238         unsigned long *dirty_bitmap_buffer;
2239         bool flush;
2240
2241         /* Dirty ring tracking may be exclusive to dirty log tracking */
2242         if (!kvm_use_dirty_bitmap(kvm))
2243                 return -ENXIO;
2244
2245         as_id = log->slot >> 16;
2246         id = (u16)log->slot;
2247         if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
2248                 return -EINVAL;
2249
2250         if (log->first_page & 63)
2251                 return -EINVAL;
2252
2253         slots = __kvm_memslots(kvm, as_id);
2254         memslot = id_to_memslot(slots, id);
2255         if (!memslot || !memslot->dirty_bitmap)
2256                 return -ENOENT;
2257
2258         dirty_bitmap = memslot->dirty_bitmap;
2259
2260         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2261
2262         if (log->first_page > memslot->npages ||
2263             log->num_pages > memslot->npages - log->first_page ||
2264             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2265             return -EINVAL;
2266
2267         kvm_arch_sync_dirty_log(kvm, memslot);
2268
2269         flush = false;
2270         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2271         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2272                 return -EFAULT;
2273
2274         KVM_MMU_LOCK(kvm);
2275         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2276                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2277              i++, offset += BITS_PER_LONG) {
2278                 unsigned long mask = *dirty_bitmap_buffer++;
2279                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2280                 if (!mask)
2281                         continue;
2282
2283                 mask &= atomic_long_fetch_andnot(mask, p);
2284
2285                 /*
2286                  * mask contains the bits that really have been cleared.  This
2287                  * never includes any bits beyond the length of the memslot (if
2288                  * the length is not aligned to 64 pages), therefore it is not
2289                  * a problem if userspace sets them in log->dirty_bitmap.
2290                 */
2291                 if (mask) {
2292                         flush = true;
2293                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2294                                                                 offset, mask);
2295                 }
2296         }
2297         KVM_MMU_UNLOCK(kvm);
2298
2299         if (flush)
2300                 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
2301
2302         return 0;
2303 }
2304
2305 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2306                                         struct kvm_clear_dirty_log *log)
2307 {
2308         int r;
2309
2310         mutex_lock(&kvm->slots_lock);
2311
2312         r = kvm_clear_dirty_log_protect(kvm, log);
2313
2314         mutex_unlock(&kvm->slots_lock);
2315         return r;
2316 }
2317 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2318
2319 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2320 {
2321         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2322 }
2323 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2324
2325 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2326 {
2327         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2328         u64 gen = slots->generation;
2329         struct kvm_memory_slot *slot;
2330
2331         /*
2332          * This also protects against using a memslot from a different address space,
2333          * since different address spaces have different generation numbers.
2334          */
2335         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2336                 vcpu->last_used_slot = NULL;
2337                 vcpu->last_used_slot_gen = gen;
2338         }
2339
2340         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2341         if (slot)
2342                 return slot;
2343
2344         /*
2345          * Fall back to searching all memslots. We purposely use
2346          * search_memslots() instead of __gfn_to_memslot() to avoid
2347          * thrashing the VM-wide last_used_slot in kvm_memslots.
2348          */
2349         slot = search_memslots(slots, gfn, false);
2350         if (slot) {
2351                 vcpu->last_used_slot = slot;
2352                 return slot;
2353         }
2354
2355         return NULL;
2356 }
2357
2358 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2359 {
2360         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2361
2362         return kvm_is_visible_memslot(memslot);
2363 }
2364 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2365
2366 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2367 {
2368         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2369
2370         return kvm_is_visible_memslot(memslot);
2371 }
2372 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2373
2374 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2375 {
2376         struct vm_area_struct *vma;
2377         unsigned long addr, size;
2378
2379         size = PAGE_SIZE;
2380
2381         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2382         if (kvm_is_error_hva(addr))
2383                 return PAGE_SIZE;
2384
2385         mmap_read_lock(current->mm);
2386         vma = find_vma(current->mm, addr);
2387         if (!vma)
2388                 goto out;
2389
2390         size = vma_kernel_pagesize(vma);
2391
2392 out:
2393         mmap_read_unlock(current->mm);
2394
2395         return size;
2396 }
2397
2398 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2399 {
2400         return slot->flags & KVM_MEM_READONLY;
2401 }
2402
2403 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2404                                        gfn_t *nr_pages, bool write)
2405 {
2406         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2407                 return KVM_HVA_ERR_BAD;
2408
2409         if (memslot_is_readonly(slot) && write)
2410                 return KVM_HVA_ERR_RO_BAD;
2411
2412         if (nr_pages)
2413                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2414
2415         return __gfn_to_hva_memslot(slot, gfn);
2416 }
2417
2418 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2419                                      gfn_t *nr_pages)
2420 {
2421         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2422 }
2423
2424 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2425                                         gfn_t gfn)
2426 {
2427         return gfn_to_hva_many(slot, gfn, NULL);
2428 }
2429 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2430
2431 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2432 {
2433         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2434 }
2435 EXPORT_SYMBOL_GPL(gfn_to_hva);
2436
2437 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2438 {
2439         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2440 }
2441 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2442
2443 /*
2444  * Return the hva of a @gfn and the R/W attribute if possible.
2445  *
2446  * @slot: the kvm_memory_slot which contains @gfn
2447  * @gfn: the gfn to be translated
2448  * @writable: used to return the read/write attribute of the @slot if the hva
2449  * is valid and @writable is not NULL
2450  */
2451 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2452                                       gfn_t gfn, bool *writable)
2453 {
2454         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2455
2456         if (!kvm_is_error_hva(hva) && writable)
2457                 *writable = !memslot_is_readonly(slot);
2458
2459         return hva;
2460 }
2461
2462 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2463 {
2464         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2465
2466         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2467 }
2468
2469 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2470 {
2471         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2472
2473         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2474 }
2475
2476 static inline int check_user_page_hwpoison(unsigned long addr)
2477 {
2478         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2479
2480         rc = get_user_pages(addr, 1, flags, NULL, NULL);
2481         return rc == -EHWPOISON;
2482 }
2483
2484 /*
2485  * The fast path to get the writable pfn which will be stored in @pfn,
2486  * true indicates success, otherwise false is returned.  It's also the
2487  * only part that runs if we can in atomic context.
2488  */
2489 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2490                             bool *writable, kvm_pfn_t *pfn)
2491 {
2492         struct page *page[1];
2493
2494         /*
2495          * Fast pin a writable pfn only if it is a write fault request
2496          * or the caller allows to map a writable pfn for a read fault
2497          * request.
2498          */
2499         if (!(write_fault || writable))
2500                 return false;
2501
2502         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2503                 *pfn = page_to_pfn(page[0]);
2504
2505                 if (writable)
2506                         *writable = true;
2507                 return true;
2508         }
2509
2510         return false;
2511 }
2512
2513 /*
2514  * The slow path to get the pfn of the specified host virtual address,
2515  * 1 indicates success, -errno is returned if error is detected.
2516  */
2517 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2518                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2519 {
2520         unsigned int flags = FOLL_HWPOISON;
2521         struct page *page;
2522         int npages;
2523
2524         might_sleep();
2525
2526         if (writable)
2527                 *writable = write_fault;
2528
2529         if (write_fault)
2530                 flags |= FOLL_WRITE;
2531         if (async)
2532                 flags |= FOLL_NOWAIT;
2533         if (interruptible)
2534                 flags |= FOLL_INTERRUPTIBLE;
2535
2536         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2537         if (npages != 1)
2538                 return npages;
2539
2540         /* map read fault as writable if possible */
2541         if (unlikely(!write_fault) && writable) {
2542                 struct page *wpage;
2543
2544                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2545                         *writable = true;
2546                         put_page(page);
2547                         page = wpage;
2548                 }
2549         }
2550         *pfn = page_to_pfn(page);
2551         return npages;
2552 }
2553
2554 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2555 {
2556         if (unlikely(!(vma->vm_flags & VM_READ)))
2557                 return false;
2558
2559         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2560                 return false;
2561
2562         return true;
2563 }
2564
2565 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2566 {
2567         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2568
2569         if (!page)
2570                 return 1;
2571
2572         return get_page_unless_zero(page);
2573 }
2574
2575 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2576                                unsigned long addr, bool write_fault,
2577                                bool *writable, kvm_pfn_t *p_pfn)
2578 {
2579         kvm_pfn_t pfn;
2580         pte_t *ptep;
2581         spinlock_t *ptl;
2582         int r;
2583
2584         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2585         if (r) {
2586                 /*
2587                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2588                  * not call the fault handler, so do it here.
2589                  */
2590                 bool unlocked = false;
2591                 r = fixup_user_fault(current->mm, addr,
2592                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2593                                      &unlocked);
2594                 if (unlocked)
2595                         return -EAGAIN;
2596                 if (r)
2597                         return r;
2598
2599                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2600                 if (r)
2601                         return r;
2602         }
2603
2604         if (write_fault && !pte_write(*ptep)) {
2605                 pfn = KVM_PFN_ERR_RO_FAULT;
2606                 goto out;
2607         }
2608
2609         if (writable)
2610                 *writable = pte_write(*ptep);
2611         pfn = pte_pfn(*ptep);
2612
2613         /*
2614          * Get a reference here because callers of *hva_to_pfn* and
2615          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2616          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2617          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2618          * simply do nothing for reserved pfns.
2619          *
2620          * Whoever called remap_pfn_range is also going to call e.g.
2621          * unmap_mapping_range before the underlying pages are freed,
2622          * causing a call to our MMU notifier.
2623          *
2624          * Certain IO or PFNMAP mappings can be backed with valid
2625          * struct pages, but be allocated without refcounting e.g.,
2626          * tail pages of non-compound higher order allocations, which
2627          * would then underflow the refcount when the caller does the
2628          * required put_page. Don't allow those pages here.
2629          */ 
2630         if (!kvm_try_get_pfn(pfn))
2631                 r = -EFAULT;
2632
2633 out:
2634         pte_unmap_unlock(ptep, ptl);
2635         *p_pfn = pfn;
2636
2637         return r;
2638 }
2639
2640 /*
2641  * Pin guest page in memory and return its pfn.
2642  * @addr: host virtual address which maps memory to the guest
2643  * @atomic: whether this function can sleep
2644  * @interruptible: whether the process can be interrupted by non-fatal signals
2645  * @async: whether this function need to wait IO complete if the
2646  *         host page is not in the memory
2647  * @write_fault: whether we should get a writable host page
2648  * @writable: whether it allows to map a writable host page for !@write_fault
2649  *
2650  * The function will map a writable host page for these two cases:
2651  * 1): @write_fault = true
2652  * 2): @write_fault = false && @writable, @writable will tell the caller
2653  *     whether the mapping is writable.
2654  */
2655 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2656                      bool *async, bool write_fault, bool *writable)
2657 {
2658         struct vm_area_struct *vma;
2659         kvm_pfn_t pfn;
2660         int npages, r;
2661
2662         /* we can do it either atomically or asynchronously, not both */
2663         BUG_ON(atomic && async);
2664
2665         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2666                 return pfn;
2667
2668         if (atomic)
2669                 return KVM_PFN_ERR_FAULT;
2670
2671         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2672                                  writable, &pfn);
2673         if (npages == 1)
2674                 return pfn;
2675         if (npages == -EINTR)
2676                 return KVM_PFN_ERR_SIGPENDING;
2677
2678         mmap_read_lock(current->mm);
2679         if (npages == -EHWPOISON ||
2680               (!async && check_user_page_hwpoison(addr))) {
2681                 pfn = KVM_PFN_ERR_HWPOISON;
2682                 goto exit;
2683         }
2684
2685 retry:
2686         vma = vma_lookup(current->mm, addr);
2687
2688         if (vma == NULL)
2689                 pfn = KVM_PFN_ERR_FAULT;
2690         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2691                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
2692                 if (r == -EAGAIN)
2693                         goto retry;
2694                 if (r < 0)
2695                         pfn = KVM_PFN_ERR_FAULT;
2696         } else {
2697                 if (async && vma_is_valid(vma, write_fault))
2698                         *async = true;
2699                 pfn = KVM_PFN_ERR_FAULT;
2700         }
2701 exit:
2702         mmap_read_unlock(current->mm);
2703         return pfn;
2704 }
2705
2706 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
2707                                bool atomic, bool interruptible, bool *async,
2708                                bool write_fault, bool *writable, hva_t *hva)
2709 {
2710         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
2711
2712         if (hva)
2713                 *hva = addr;
2714
2715         if (addr == KVM_HVA_ERR_RO_BAD) {
2716                 if (writable)
2717                         *writable = false;
2718                 return KVM_PFN_ERR_RO_FAULT;
2719         }
2720
2721         if (kvm_is_error_hva(addr)) {
2722                 if (writable)
2723                         *writable = false;
2724                 return KVM_PFN_NOSLOT;
2725         }
2726
2727         /* Do not map writable pfn in the readonly memslot. */
2728         if (writable && memslot_is_readonly(slot)) {
2729                 *writable = false;
2730                 writable = NULL;
2731         }
2732
2733         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
2734                           writable);
2735 }
2736 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
2737
2738 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
2739                       bool *writable)
2740 {
2741         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
2742                                     NULL, write_fault, writable, NULL);
2743 }
2744 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
2745
2746 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
2747 {
2748         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
2749                                     NULL, NULL);
2750 }
2751 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
2752
2753 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
2754 {
2755         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
2756                                     NULL, NULL);
2757 }
2758 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
2759
2760 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
2761 {
2762         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2763 }
2764 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
2765
2766 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
2767 {
2768         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
2769 }
2770 EXPORT_SYMBOL_GPL(gfn_to_pfn);
2771
2772 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2773 {
2774         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
2775 }
2776 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
2777
2778 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
2779                             struct page **pages, int nr_pages)
2780 {
2781         unsigned long addr;
2782         gfn_t entry = 0;
2783
2784         addr = gfn_to_hva_many(slot, gfn, &entry);
2785         if (kvm_is_error_hva(addr))
2786                 return -1;
2787
2788         if (entry < nr_pages)
2789                 return 0;
2790
2791         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
2792 }
2793 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
2794
2795 /*
2796  * Do not use this helper unless you are absolutely certain the gfn _must_ be
2797  * backed by 'struct page'.  A valid example is if the backing memslot is
2798  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
2799  * been elevated by gfn_to_pfn().
2800  */
2801 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
2802 {
2803         struct page *page;
2804         kvm_pfn_t pfn;
2805
2806         pfn = gfn_to_pfn(kvm, gfn);
2807
2808         if (is_error_noslot_pfn(pfn))
2809                 return KVM_ERR_PTR_BAD_PAGE;
2810
2811         page = kvm_pfn_to_refcounted_page(pfn);
2812         if (!page)
2813                 return KVM_ERR_PTR_BAD_PAGE;
2814
2815         return page;
2816 }
2817 EXPORT_SYMBOL_GPL(gfn_to_page);
2818
2819 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
2820 {
2821         if (dirty)
2822                 kvm_release_pfn_dirty(pfn);
2823         else
2824                 kvm_release_pfn_clean(pfn);
2825 }
2826
2827 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
2828 {
2829         kvm_pfn_t pfn;
2830         void *hva = NULL;
2831         struct page *page = KVM_UNMAPPED_PAGE;
2832
2833         if (!map)
2834                 return -EINVAL;
2835
2836         pfn = gfn_to_pfn(vcpu->kvm, gfn);
2837         if (is_error_noslot_pfn(pfn))
2838                 return -EINVAL;
2839
2840         if (pfn_valid(pfn)) {
2841                 page = pfn_to_page(pfn);
2842                 hva = kmap(page);
2843 #ifdef CONFIG_HAS_IOMEM
2844         } else {
2845                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
2846 #endif
2847         }
2848
2849         if (!hva)
2850                 return -EFAULT;
2851
2852         map->page = page;
2853         map->hva = hva;
2854         map->pfn = pfn;
2855         map->gfn = gfn;
2856
2857         return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
2860
2861 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
2862 {
2863         if (!map)
2864                 return;
2865
2866         if (!map->hva)
2867                 return;
2868
2869         if (map->page != KVM_UNMAPPED_PAGE)
2870                 kunmap(map->page);
2871 #ifdef CONFIG_HAS_IOMEM
2872         else
2873                 memunmap(map->hva);
2874 #endif
2875
2876         if (dirty)
2877                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
2878
2879         kvm_release_pfn(map->pfn, dirty);
2880
2881         map->hva = NULL;
2882         map->page = NULL;
2883 }
2884 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
2885
2886 static bool kvm_is_ad_tracked_page(struct page *page)
2887 {
2888         /*
2889          * Per page-flags.h, pages tagged PG_reserved "should in general not be
2890          * touched (e.g. set dirty) except by its owner".
2891          */
2892         return !PageReserved(page);
2893 }
2894
2895 static void kvm_set_page_dirty(struct page *page)
2896 {
2897         if (kvm_is_ad_tracked_page(page))
2898                 SetPageDirty(page);
2899 }
2900
2901 static void kvm_set_page_accessed(struct page *page)
2902 {
2903         if (kvm_is_ad_tracked_page(page))
2904                 mark_page_accessed(page);
2905 }
2906
2907 void kvm_release_page_clean(struct page *page)
2908 {
2909         WARN_ON(is_error_page(page));
2910
2911         kvm_set_page_accessed(page);
2912         put_page(page);
2913 }
2914 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2915
2916 void kvm_release_pfn_clean(kvm_pfn_t pfn)
2917 {
2918         struct page *page;
2919
2920         if (is_error_noslot_pfn(pfn))
2921                 return;
2922
2923         page = kvm_pfn_to_refcounted_page(pfn);
2924         if (!page)
2925                 return;
2926
2927         kvm_release_page_clean(page);
2928 }
2929 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
2930
2931 void kvm_release_page_dirty(struct page *page)
2932 {
2933         WARN_ON(is_error_page(page));
2934
2935         kvm_set_page_dirty(page);
2936         kvm_release_page_clean(page);
2937 }
2938 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2939
2940 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
2941 {
2942         struct page *page;
2943
2944         if (is_error_noslot_pfn(pfn))
2945                 return;
2946
2947         page = kvm_pfn_to_refcounted_page(pfn);
2948         if (!page)
2949                 return;
2950
2951         kvm_release_page_dirty(page);
2952 }
2953 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
2954
2955 /*
2956  * Note, checking for an error/noslot pfn is the caller's responsibility when
2957  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
2958  * "set" helpers are not to be used when the pfn might point at garbage.
2959  */
2960 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
2961 {
2962         if (WARN_ON(is_error_noslot_pfn(pfn)))
2963                 return;
2964
2965         if (pfn_valid(pfn))
2966                 kvm_set_page_dirty(pfn_to_page(pfn));
2967 }
2968 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
2969
2970 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
2971 {
2972         if (WARN_ON(is_error_noslot_pfn(pfn)))
2973                 return;
2974
2975         if (pfn_valid(pfn))
2976                 kvm_set_page_accessed(pfn_to_page(pfn));
2977 }
2978 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
2979
2980 static int next_segment(unsigned long len, int offset)
2981 {
2982         if (len > PAGE_SIZE - offset)
2983                 return PAGE_SIZE - offset;
2984         else
2985                 return len;
2986 }
2987
2988 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
2989                                  void *data, int offset, int len)
2990 {
2991         int r;
2992         unsigned long addr;
2993
2994         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
2995         if (kvm_is_error_hva(addr))
2996                 return -EFAULT;
2997         r = __copy_from_user(data, (void __user *)addr + offset, len);
2998         if (r)
2999                 return -EFAULT;
3000         return 0;
3001 }
3002
3003 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3004                         int len)
3005 {
3006         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3007
3008         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3009 }
3010 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3011
3012 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3013                              int offset, int len)
3014 {
3015         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3016
3017         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3018 }
3019 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3020
3021 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3022 {
3023         gfn_t gfn = gpa >> PAGE_SHIFT;
3024         int seg;
3025         int offset = offset_in_page(gpa);
3026         int ret;
3027
3028         while ((seg = next_segment(len, offset)) != 0) {
3029                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3030                 if (ret < 0)
3031                         return ret;
3032                 offset = 0;
3033                 len -= seg;
3034                 data += seg;
3035                 ++gfn;
3036         }
3037         return 0;
3038 }
3039 EXPORT_SYMBOL_GPL(kvm_read_guest);
3040
3041 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3042 {
3043         gfn_t gfn = gpa >> PAGE_SHIFT;
3044         int seg;
3045         int offset = offset_in_page(gpa);
3046         int ret;
3047
3048         while ((seg = next_segment(len, offset)) != 0) {
3049                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3050                 if (ret < 0)
3051                         return ret;
3052                 offset = 0;
3053                 len -= seg;
3054                 data += seg;
3055                 ++gfn;
3056         }
3057         return 0;
3058 }
3059 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3060
3061 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3062                                    void *data, int offset, unsigned long len)
3063 {
3064         int r;
3065         unsigned long addr;
3066
3067         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3068         if (kvm_is_error_hva(addr))
3069                 return -EFAULT;
3070         pagefault_disable();
3071         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3072         pagefault_enable();
3073         if (r)
3074                 return -EFAULT;
3075         return 0;
3076 }
3077
3078 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3079                                void *data, unsigned long len)
3080 {
3081         gfn_t gfn = gpa >> PAGE_SHIFT;
3082         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3083         int offset = offset_in_page(gpa);
3084
3085         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3086 }
3087 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3088
3089 static int __kvm_write_guest_page(struct kvm *kvm,
3090                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3091                                   const void *data, int offset, int len)
3092 {
3093         int r;
3094         unsigned long addr;
3095
3096         addr = gfn_to_hva_memslot(memslot, gfn);
3097         if (kvm_is_error_hva(addr))
3098                 return -EFAULT;
3099         r = __copy_to_user((void __user *)addr + offset, data, len);
3100         if (r)
3101                 return -EFAULT;
3102         mark_page_dirty_in_slot(kvm, memslot, gfn);
3103         return 0;
3104 }
3105
3106 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3107                          const void *data, int offset, int len)
3108 {
3109         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3110
3111         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3112 }
3113 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3114
3115 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3116                               const void *data, int offset, int len)
3117 {
3118         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3119
3120         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3121 }
3122 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3123
3124 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3125                     unsigned long len)
3126 {
3127         gfn_t gfn = gpa >> PAGE_SHIFT;
3128         int seg;
3129         int offset = offset_in_page(gpa);
3130         int ret;
3131
3132         while ((seg = next_segment(len, offset)) != 0) {
3133                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3134                 if (ret < 0)
3135                         return ret;
3136                 offset = 0;
3137                 len -= seg;
3138                 data += seg;
3139                 ++gfn;
3140         }
3141         return 0;
3142 }
3143 EXPORT_SYMBOL_GPL(kvm_write_guest);
3144
3145 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3146                          unsigned long len)
3147 {
3148         gfn_t gfn = gpa >> PAGE_SHIFT;
3149         int seg;
3150         int offset = offset_in_page(gpa);
3151         int ret;
3152
3153         while ((seg = next_segment(len, offset)) != 0) {
3154                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3155                 if (ret < 0)
3156                         return ret;
3157                 offset = 0;
3158                 len -= seg;
3159                 data += seg;
3160                 ++gfn;
3161         }
3162         return 0;
3163 }
3164 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3165
3166 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3167                                        struct gfn_to_hva_cache *ghc,
3168                                        gpa_t gpa, unsigned long len)
3169 {
3170         int offset = offset_in_page(gpa);
3171         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3172         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3173         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3174         gfn_t nr_pages_avail;
3175
3176         /* Update ghc->generation before performing any error checks. */
3177         ghc->generation = slots->generation;
3178
3179         if (start_gfn > end_gfn) {
3180                 ghc->hva = KVM_HVA_ERR_BAD;
3181                 return -EINVAL;
3182         }
3183
3184         /*
3185          * If the requested region crosses two memslots, we still
3186          * verify that the entire region is valid here.
3187          */
3188         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3189                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3190                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3191                                            &nr_pages_avail);
3192                 if (kvm_is_error_hva(ghc->hva))
3193                         return -EFAULT;
3194         }
3195
3196         /* Use the slow path for cross page reads and writes. */
3197         if (nr_pages_needed == 1)
3198                 ghc->hva += offset;
3199         else
3200                 ghc->memslot = NULL;
3201
3202         ghc->gpa = gpa;
3203         ghc->len = len;
3204         return 0;
3205 }
3206
3207 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3208                               gpa_t gpa, unsigned long len)
3209 {
3210         struct kvm_memslots *slots = kvm_memslots(kvm);
3211         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3212 }
3213 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3214
3215 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3216                                   void *data, unsigned int offset,
3217                                   unsigned long len)
3218 {
3219         struct kvm_memslots *slots = kvm_memslots(kvm);
3220         int r;
3221         gpa_t gpa = ghc->gpa + offset;
3222
3223         if (WARN_ON_ONCE(len + offset > ghc->len))
3224                 return -EINVAL;
3225
3226         if (slots->generation != ghc->generation) {
3227                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3228                         return -EFAULT;
3229         }
3230
3231         if (kvm_is_error_hva(ghc->hva))
3232                 return -EFAULT;
3233
3234         if (unlikely(!ghc->memslot))
3235                 return kvm_write_guest(kvm, gpa, data, len);
3236
3237         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3238         if (r)
3239                 return -EFAULT;
3240         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3241
3242         return 0;
3243 }
3244 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3245
3246 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3247                            void *data, unsigned long len)
3248 {
3249         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3252
3253 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3254                                  void *data, unsigned int offset,
3255                                  unsigned long len)
3256 {
3257         struct kvm_memslots *slots = kvm_memslots(kvm);
3258         int r;
3259         gpa_t gpa = ghc->gpa + offset;
3260
3261         if (WARN_ON_ONCE(len + offset > ghc->len))
3262                 return -EINVAL;
3263
3264         if (slots->generation != ghc->generation) {
3265                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3266                         return -EFAULT;
3267         }
3268
3269         if (kvm_is_error_hva(ghc->hva))
3270                 return -EFAULT;
3271
3272         if (unlikely(!ghc->memslot))
3273                 return kvm_read_guest(kvm, gpa, data, len);
3274
3275         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3276         if (r)
3277                 return -EFAULT;
3278
3279         return 0;
3280 }
3281 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3282
3283 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3284                           void *data, unsigned long len)
3285 {
3286         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3287 }
3288 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3289
3290 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3291 {
3292         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3293         gfn_t gfn = gpa >> PAGE_SHIFT;
3294         int seg;
3295         int offset = offset_in_page(gpa);
3296         int ret;
3297
3298         while ((seg = next_segment(len, offset)) != 0) {
3299                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3300                 if (ret < 0)
3301                         return ret;
3302                 offset = 0;
3303                 len -= seg;
3304                 ++gfn;
3305         }
3306         return 0;
3307 }
3308 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3309
3310 void mark_page_dirty_in_slot(struct kvm *kvm,
3311                              const struct kvm_memory_slot *memslot,
3312                              gfn_t gfn)
3313 {
3314         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3315
3316 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3317         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3318                 return;
3319
3320         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3321 #endif
3322
3323         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3324                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3325                 u32 slot = (memslot->as_id << 16) | memslot->id;
3326
3327                 if (kvm->dirty_ring_size && vcpu)
3328                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3329                 else if (memslot->dirty_bitmap)
3330                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3331         }
3332 }
3333 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3334
3335 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3336 {
3337         struct kvm_memory_slot *memslot;
3338
3339         memslot = gfn_to_memslot(kvm, gfn);
3340         mark_page_dirty_in_slot(kvm, memslot, gfn);
3341 }
3342 EXPORT_SYMBOL_GPL(mark_page_dirty);
3343
3344 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3345 {
3346         struct kvm_memory_slot *memslot;
3347
3348         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3349         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3350 }
3351 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3352
3353 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3354 {
3355         if (!vcpu->sigset_active)
3356                 return;
3357
3358         /*
3359          * This does a lockless modification of ->real_blocked, which is fine
3360          * because, only current can change ->real_blocked and all readers of
3361          * ->real_blocked don't care as long ->real_blocked is always a subset
3362          * of ->blocked.
3363          */
3364         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3365 }
3366
3367 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3368 {
3369         if (!vcpu->sigset_active)
3370                 return;
3371
3372         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3373         sigemptyset(&current->real_blocked);
3374 }
3375
3376 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3377 {
3378         unsigned int old, val, grow, grow_start;
3379
3380         old = val = vcpu->halt_poll_ns;
3381         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3382         grow = READ_ONCE(halt_poll_ns_grow);
3383         if (!grow)
3384                 goto out;
3385
3386         val *= grow;
3387         if (val < grow_start)
3388                 val = grow_start;
3389
3390         vcpu->halt_poll_ns = val;
3391 out:
3392         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3393 }
3394
3395 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3396 {
3397         unsigned int old, val, shrink, grow_start;
3398
3399         old = val = vcpu->halt_poll_ns;
3400         shrink = READ_ONCE(halt_poll_ns_shrink);
3401         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3402         if (shrink == 0)
3403                 val = 0;
3404         else
3405                 val /= shrink;
3406
3407         if (val < grow_start)
3408                 val = 0;
3409
3410         vcpu->halt_poll_ns = val;
3411         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3412 }
3413
3414 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3415 {
3416         int ret = -EINTR;
3417         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3418
3419         if (kvm_arch_vcpu_runnable(vcpu))
3420                 goto out;
3421         if (kvm_cpu_has_pending_timer(vcpu))
3422                 goto out;
3423         if (signal_pending(current))
3424                 goto out;
3425         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3426                 goto out;
3427
3428         ret = 0;
3429 out:
3430         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3431         return ret;
3432 }
3433
3434 /*
3435  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3436  * pending.  This is mostly used when halting a vCPU, but may also be used
3437  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3438  */
3439 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3440 {
3441         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3442         bool waited = false;
3443
3444         vcpu->stat.generic.blocking = 1;
3445
3446         preempt_disable();
3447         kvm_arch_vcpu_blocking(vcpu);
3448         prepare_to_rcuwait(wait);
3449         preempt_enable();
3450
3451         for (;;) {
3452                 set_current_state(TASK_INTERRUPTIBLE);
3453
3454                 if (kvm_vcpu_check_block(vcpu) < 0)
3455                         break;
3456
3457                 waited = true;
3458                 schedule();
3459         }
3460
3461         preempt_disable();
3462         finish_rcuwait(wait);
3463         kvm_arch_vcpu_unblocking(vcpu);
3464         preempt_enable();
3465
3466         vcpu->stat.generic.blocking = 0;
3467
3468         return waited;
3469 }
3470
3471 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3472                                           ktime_t end, bool success)
3473 {
3474         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3475         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3476
3477         ++vcpu->stat.generic.halt_attempted_poll;
3478
3479         if (success) {
3480                 ++vcpu->stat.generic.halt_successful_poll;
3481
3482                 if (!vcpu_valid_wakeup(vcpu))
3483                         ++vcpu->stat.generic.halt_poll_invalid;
3484
3485                 stats->halt_poll_success_ns += poll_ns;
3486                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3487         } else {
3488                 stats->halt_poll_fail_ns += poll_ns;
3489                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3490         }
3491 }
3492
3493 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3494 {
3495         struct kvm *kvm = vcpu->kvm;
3496
3497         if (kvm->override_halt_poll_ns) {
3498                 /*
3499                  * Ensure kvm->max_halt_poll_ns is not read before
3500                  * kvm->override_halt_poll_ns.
3501                  *
3502                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3503                  */
3504                 smp_rmb();
3505                 return READ_ONCE(kvm->max_halt_poll_ns);
3506         }
3507
3508         return READ_ONCE(halt_poll_ns);
3509 }
3510
3511 /*
3512  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3513  * polling is enabled, busy wait for a short time before blocking to avoid the
3514  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3515  * is halted.
3516  */
3517 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3518 {
3519         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3520         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3521         ktime_t start, cur, poll_end;
3522         bool waited = false;
3523         bool do_halt_poll;
3524         u64 halt_ns;
3525
3526         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3527                 vcpu->halt_poll_ns = max_halt_poll_ns;
3528
3529         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3530
3531         start = cur = poll_end = ktime_get();
3532         if (do_halt_poll) {
3533                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3534
3535                 do {
3536                         if (kvm_vcpu_check_block(vcpu) < 0)
3537                                 goto out;
3538                         cpu_relax();
3539                         poll_end = cur = ktime_get();
3540                 } while (kvm_vcpu_can_poll(cur, stop));
3541         }
3542
3543         waited = kvm_vcpu_block(vcpu);
3544
3545         cur = ktime_get();
3546         if (waited) {
3547                 vcpu->stat.generic.halt_wait_ns +=
3548                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3549                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3550                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3551         }
3552 out:
3553         /* The total time the vCPU was "halted", including polling time. */
3554         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3555
3556         /*
3557          * Note, halt-polling is considered successful so long as the vCPU was
3558          * never actually scheduled out, i.e. even if the wake event arrived
3559          * after of the halt-polling loop itself, but before the full wait.
3560          */
3561         if (do_halt_poll)
3562                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3563
3564         if (halt_poll_allowed) {
3565                 /* Recompute the max halt poll time in case it changed. */
3566                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3567
3568                 if (!vcpu_valid_wakeup(vcpu)) {
3569                         shrink_halt_poll_ns(vcpu);
3570                 } else if (max_halt_poll_ns) {
3571                         if (halt_ns <= vcpu->halt_poll_ns)
3572                                 ;
3573                         /* we had a long block, shrink polling */
3574                         else if (vcpu->halt_poll_ns &&
3575                                  halt_ns > max_halt_poll_ns)
3576                                 shrink_halt_poll_ns(vcpu);
3577                         /* we had a short halt and our poll time is too small */
3578                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3579                                  halt_ns < max_halt_poll_ns)
3580                                 grow_halt_poll_ns(vcpu);
3581                 } else {
3582                         vcpu->halt_poll_ns = 0;
3583                 }
3584         }
3585
3586         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3587 }
3588 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3589
3590 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3591 {
3592         if (__kvm_vcpu_wake_up(vcpu)) {
3593                 WRITE_ONCE(vcpu->ready, true);
3594                 ++vcpu->stat.generic.halt_wakeup;
3595                 return true;
3596         }
3597
3598         return false;
3599 }
3600 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3601
3602 #ifndef CONFIG_S390
3603 /*
3604  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3605  */
3606 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3607 {
3608         int me, cpu;
3609
3610         if (kvm_vcpu_wake_up(vcpu))
3611                 return;
3612
3613         me = get_cpu();
3614         /*
3615          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3616          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3617          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3618          * within the vCPU thread itself.
3619          */
3620         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3621                 if (vcpu->mode == IN_GUEST_MODE)
3622                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3623                 goto out;
3624         }
3625
3626         /*
3627          * Note, the vCPU could get migrated to a different pCPU at any point
3628          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3629          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3630          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3631          * vCPU also requires it to leave IN_GUEST_MODE.
3632          */
3633         if (kvm_arch_vcpu_should_kick(vcpu)) {
3634                 cpu = READ_ONCE(vcpu->cpu);
3635                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3636                         smp_send_reschedule(cpu);
3637         }
3638 out:
3639         put_cpu();
3640 }
3641 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3642 #endif /* !CONFIG_S390 */
3643
3644 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3645 {
3646         struct pid *pid;
3647         struct task_struct *task = NULL;
3648         int ret = 0;
3649
3650         rcu_read_lock();
3651         pid = rcu_dereference(target->pid);
3652         if (pid)
3653                 task = get_pid_task(pid, PIDTYPE_PID);
3654         rcu_read_unlock();
3655         if (!task)
3656                 return ret;
3657         ret = yield_to(task, 1);
3658         put_task_struct(task);
3659
3660         return ret;
3661 }
3662 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3663
3664 /*
3665  * Helper that checks whether a VCPU is eligible for directed yield.
3666  * Most eligible candidate to yield is decided by following heuristics:
3667  *
3668  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3669  *  (preempted lock holder), indicated by @in_spin_loop.
3670  *  Set at the beginning and cleared at the end of interception/PLE handler.
3671  *
3672  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3673  *  chance last time (mostly it has become eligible now since we have probably
3674  *  yielded to lockholder in last iteration. This is done by toggling
3675  *  @dy_eligible each time a VCPU checked for eligibility.)
3676  *
3677  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3678  *  to preempted lock-holder could result in wrong VCPU selection and CPU
3679  *  burning. Giving priority for a potential lock-holder increases lock
3680  *  progress.
3681  *
3682  *  Since algorithm is based on heuristics, accessing another VCPU data without
3683  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
3684  *  and continue with next VCPU and so on.
3685  */
3686 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3687 {
3688 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3689         bool eligible;
3690
3691         eligible = !vcpu->spin_loop.in_spin_loop ||
3692                     vcpu->spin_loop.dy_eligible;
3693
3694         if (vcpu->spin_loop.in_spin_loop)
3695                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3696
3697         return eligible;
3698 #else
3699         return true;
3700 #endif
3701 }
3702
3703 /*
3704  * Unlike kvm_arch_vcpu_runnable, this function is called outside
3705  * a vcpu_load/vcpu_put pair.  However, for most architectures
3706  * kvm_arch_vcpu_runnable does not require vcpu_load.
3707  */
3708 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3709 {
3710         return kvm_arch_vcpu_runnable(vcpu);
3711 }
3712
3713 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3714 {
3715         if (kvm_arch_dy_runnable(vcpu))
3716                 return true;
3717
3718 #ifdef CONFIG_KVM_ASYNC_PF
3719         if (!list_empty_careful(&vcpu->async_pf.done))
3720                 return true;
3721 #endif
3722
3723         return false;
3724 }
3725
3726 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3727 {
3728         return false;
3729 }
3730
3731 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3732 {
3733         struct kvm *kvm = me->kvm;
3734         struct kvm_vcpu *vcpu;
3735         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
3736         unsigned long i;
3737         int yielded = 0;
3738         int try = 3;
3739         int pass;
3740
3741         kvm_vcpu_set_in_spin_loop(me, true);
3742         /*
3743          * We boost the priority of a VCPU that is runnable but not
3744          * currently running, because it got preempted by something
3745          * else and called schedule in __vcpu_run.  Hopefully that
3746          * VCPU is holding the lock that we need and will release it.
3747          * We approximate round-robin by starting at the last boosted VCPU.
3748          */
3749         for (pass = 0; pass < 2 && !yielded && try; pass++) {
3750                 kvm_for_each_vcpu(i, vcpu, kvm) {
3751                         if (!pass && i <= last_boosted_vcpu) {
3752                                 i = last_boosted_vcpu;
3753                                 continue;
3754                         } else if (pass && i > last_boosted_vcpu)
3755                                 break;
3756                         if (!READ_ONCE(vcpu->ready))
3757                                 continue;
3758                         if (vcpu == me)
3759                                 continue;
3760                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3761                                 continue;
3762                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3763                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3764                             !kvm_arch_vcpu_in_kernel(vcpu))
3765                                 continue;
3766                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3767                                 continue;
3768
3769                         yielded = kvm_vcpu_yield_to(vcpu);
3770                         if (yielded > 0) {
3771                                 kvm->last_boosted_vcpu = i;
3772                                 break;
3773                         } else if (yielded < 0) {
3774                                 try--;
3775                                 if (!try)
3776                                         break;
3777                         }
3778                 }
3779         }
3780         kvm_vcpu_set_in_spin_loop(me, false);
3781
3782         /* Ensure vcpu is not eligible during next spinloop */
3783         kvm_vcpu_set_dy_eligible(me, false);
3784 }
3785 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3786
3787 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3788 {
3789 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3790         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3791             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3792              kvm->dirty_ring_size / PAGE_SIZE);
3793 #else
3794         return false;
3795 #endif
3796 }
3797
3798 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3799 {
3800         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3801         struct page *page;
3802
3803         if (vmf->pgoff == 0)
3804                 page = virt_to_page(vcpu->run);
3805 #ifdef CONFIG_X86
3806         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3807                 page = virt_to_page(vcpu->arch.pio_data);
3808 #endif
3809 #ifdef CONFIG_KVM_MMIO
3810         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3811                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3812 #endif
3813         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3814                 page = kvm_dirty_ring_get_page(
3815                     &vcpu->dirty_ring,
3816                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3817         else
3818                 return kvm_arch_vcpu_fault(vcpu, vmf);
3819         get_page(page);
3820         vmf->page = page;
3821         return 0;
3822 }
3823
3824 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3825         .fault = kvm_vcpu_fault,
3826 };
3827
3828 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3829 {
3830         struct kvm_vcpu *vcpu = file->private_data;
3831         unsigned long pages = vma_pages(vma);
3832
3833         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3834              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3835             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3836                 return -EINVAL;
3837
3838         vma->vm_ops = &kvm_vcpu_vm_ops;
3839         return 0;
3840 }
3841
3842 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3843 {
3844         struct kvm_vcpu *vcpu = filp->private_data;
3845
3846         kvm_put_kvm(vcpu->kvm);
3847         return 0;
3848 }
3849
3850 static const struct file_operations kvm_vcpu_fops = {
3851         .release        = kvm_vcpu_release,
3852         .unlocked_ioctl = kvm_vcpu_ioctl,
3853         .mmap           = kvm_vcpu_mmap,
3854         .llseek         = noop_llseek,
3855         KVM_COMPAT(kvm_vcpu_compat_ioctl),
3856 };
3857
3858 /*
3859  * Allocates an inode for the vcpu.
3860  */
3861 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
3862 {
3863         char name[8 + 1 + ITOA_MAX_LEN + 1];
3864
3865         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
3866         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
3867 }
3868
3869 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
3870 static int vcpu_get_pid(void *data, u64 *val)
3871 {
3872         struct kvm_vcpu *vcpu = (struct kvm_vcpu *) data;
3873         *val = pid_nr(rcu_access_pointer(vcpu->pid));
3874         return 0;
3875 }
3876
3877 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
3878
3879 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
3880 {
3881         struct dentry *debugfs_dentry;
3882         char dir_name[ITOA_MAX_LEN * 2];
3883
3884         if (!debugfs_initialized())
3885                 return;
3886
3887         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
3888         debugfs_dentry = debugfs_create_dir(dir_name,
3889                                             vcpu->kvm->debugfs_dentry);
3890         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
3891                             &vcpu_get_pid_fops);
3892
3893         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
3894 }
3895 #endif
3896
3897 /*
3898  * Creates some virtual cpus.  Good luck creating more than one.
3899  */
3900 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
3901 {
3902         int r;
3903         struct kvm_vcpu *vcpu;
3904         struct page *page;
3905
3906         if (id >= KVM_MAX_VCPU_IDS)
3907                 return -EINVAL;
3908
3909         mutex_lock(&kvm->lock);
3910         if (kvm->created_vcpus >= kvm->max_vcpus) {
3911                 mutex_unlock(&kvm->lock);
3912                 return -EINVAL;
3913         }
3914
3915         r = kvm_arch_vcpu_precreate(kvm, id);
3916         if (r) {
3917                 mutex_unlock(&kvm->lock);
3918                 return r;
3919         }
3920
3921         kvm->created_vcpus++;
3922         mutex_unlock(&kvm->lock);
3923
3924         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
3925         if (!vcpu) {
3926                 r = -ENOMEM;
3927                 goto vcpu_decrement;
3928         }
3929
3930         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
3931         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3932         if (!page) {
3933                 r = -ENOMEM;
3934                 goto vcpu_free;
3935         }
3936         vcpu->run = page_address(page);
3937
3938         kvm_vcpu_init(vcpu, kvm, id);
3939
3940         r = kvm_arch_vcpu_create(vcpu);
3941         if (r)
3942                 goto vcpu_free_run_page;
3943
3944         if (kvm->dirty_ring_size) {
3945                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
3946                                          id, kvm->dirty_ring_size);
3947                 if (r)
3948                         goto arch_vcpu_destroy;
3949         }
3950
3951         mutex_lock(&kvm->lock);
3952
3953 #ifdef CONFIG_LOCKDEP
3954         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
3955         mutex_lock(&vcpu->mutex);
3956         mutex_unlock(&vcpu->mutex);
3957 #endif
3958
3959         if (kvm_get_vcpu_by_id(kvm, id)) {
3960                 r = -EEXIST;
3961                 goto unlock_vcpu_destroy;
3962         }
3963
3964         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
3965         r = xa_insert(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, GFP_KERNEL_ACCOUNT);
3966         BUG_ON(r == -EBUSY);
3967         if (r)
3968                 goto unlock_vcpu_destroy;
3969
3970         /* Now it's all set up, let userspace reach it */
3971         kvm_get_kvm(kvm);
3972         r = create_vcpu_fd(vcpu);
3973         if (r < 0) {
3974                 xa_erase(&kvm->vcpu_array, vcpu->vcpu_idx);
3975                 kvm_put_kvm_no_destroy(kvm);
3976                 goto unlock_vcpu_destroy;
3977         }
3978
3979         /*
3980          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
3981          * pointer before kvm->online_vcpu's incremented value.
3982          */
3983         smp_wmb();
3984         atomic_inc(&kvm->online_vcpus);
3985
3986         mutex_unlock(&kvm->lock);
3987         kvm_arch_vcpu_postcreate(vcpu);
3988         kvm_create_vcpu_debugfs(vcpu);
3989         return r;
3990
3991 unlock_vcpu_destroy:
3992         mutex_unlock(&kvm->lock);
3993         kvm_dirty_ring_free(&vcpu->dirty_ring);
3994 arch_vcpu_destroy:
3995         kvm_arch_vcpu_destroy(vcpu);
3996 vcpu_free_run_page:
3997         free_page((unsigned long)vcpu->run);
3998 vcpu_free:
3999         kmem_cache_free(kvm_vcpu_cache, vcpu);
4000 vcpu_decrement:
4001         mutex_lock(&kvm->lock);
4002         kvm->created_vcpus--;
4003         mutex_unlock(&kvm->lock);
4004         return r;
4005 }
4006
4007 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4008 {
4009         if (sigset) {
4010                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4011                 vcpu->sigset_active = 1;
4012                 vcpu->sigset = *sigset;
4013         } else
4014                 vcpu->sigset_active = 0;
4015         return 0;
4016 }
4017
4018 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4019                               size_t size, loff_t *offset)
4020 {
4021         struct kvm_vcpu *vcpu = file->private_data;
4022
4023         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4024                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4025                         sizeof(vcpu->stat), user_buffer, size, offset);
4026 }
4027
4028 static const struct file_operations kvm_vcpu_stats_fops = {
4029         .read = kvm_vcpu_stats_read,
4030         .llseek = noop_llseek,
4031 };
4032
4033 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4034 {
4035         int fd;
4036         struct file *file;
4037         char name[15 + ITOA_MAX_LEN + 1];
4038
4039         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4040
4041         fd = get_unused_fd_flags(O_CLOEXEC);
4042         if (fd < 0)
4043                 return fd;
4044
4045         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4046         if (IS_ERR(file)) {
4047                 put_unused_fd(fd);
4048                 return PTR_ERR(file);
4049         }
4050         file->f_mode |= FMODE_PREAD;
4051         fd_install(fd, file);
4052
4053         return fd;
4054 }
4055
4056 static long kvm_vcpu_ioctl(struct file *filp,
4057                            unsigned int ioctl, unsigned long arg)
4058 {
4059         struct kvm_vcpu *vcpu = filp->private_data;
4060         void __user *argp = (void __user *)arg;
4061         int r;
4062         struct kvm_fpu *fpu = NULL;
4063         struct kvm_sregs *kvm_sregs = NULL;
4064
4065         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4066                 return -EIO;
4067
4068         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4069                 return -EINVAL;
4070
4071         /*
4072          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4073          * execution; mutex_lock() would break them.
4074          */
4075         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4076         if (r != -ENOIOCTLCMD)
4077                 return r;
4078
4079         if (mutex_lock_killable(&vcpu->mutex))
4080                 return -EINTR;
4081         switch (ioctl) {
4082         case KVM_RUN: {
4083                 struct pid *oldpid;
4084                 r = -EINVAL;
4085                 if (arg)
4086                         goto out;
4087                 oldpid = rcu_access_pointer(vcpu->pid);
4088                 if (unlikely(oldpid != task_pid(current))) {
4089                         /* The thread running this VCPU changed. */
4090                         struct pid *newpid;
4091
4092                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4093                         if (r)
4094                                 break;
4095
4096                         newpid = get_task_pid(current, PIDTYPE_PID);
4097                         rcu_assign_pointer(vcpu->pid, newpid);
4098                         if (oldpid)
4099                                 synchronize_rcu();
4100                         put_pid(oldpid);
4101                 }
4102                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4103                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4104                 break;
4105         }
4106         case KVM_GET_REGS: {
4107                 struct kvm_regs *kvm_regs;
4108
4109                 r = -ENOMEM;
4110                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4111                 if (!kvm_regs)
4112                         goto out;
4113                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4114                 if (r)
4115                         goto out_free1;
4116                 r = -EFAULT;
4117                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4118                         goto out_free1;
4119                 r = 0;
4120 out_free1:
4121                 kfree(kvm_regs);
4122                 break;
4123         }
4124         case KVM_SET_REGS: {
4125                 struct kvm_regs *kvm_regs;
4126
4127                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4128                 if (IS_ERR(kvm_regs)) {
4129                         r = PTR_ERR(kvm_regs);
4130                         goto out;
4131                 }
4132                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4133                 kfree(kvm_regs);
4134                 break;
4135         }
4136         case KVM_GET_SREGS: {
4137                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4138                                     GFP_KERNEL_ACCOUNT);
4139                 r = -ENOMEM;
4140                 if (!kvm_sregs)
4141                         goto out;
4142                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4143                 if (r)
4144                         goto out;
4145                 r = -EFAULT;
4146                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4147                         goto out;
4148                 r = 0;
4149                 break;
4150         }
4151         case KVM_SET_SREGS: {
4152                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4153                 if (IS_ERR(kvm_sregs)) {
4154                         r = PTR_ERR(kvm_sregs);
4155                         kvm_sregs = NULL;
4156                         goto out;
4157                 }
4158                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4159                 break;
4160         }
4161         case KVM_GET_MP_STATE: {
4162                 struct kvm_mp_state mp_state;
4163
4164                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4165                 if (r)
4166                         goto out;
4167                 r = -EFAULT;
4168                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4169                         goto out;
4170                 r = 0;
4171                 break;
4172         }
4173         case KVM_SET_MP_STATE: {
4174                 struct kvm_mp_state mp_state;
4175
4176                 r = -EFAULT;
4177                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4178                         goto out;
4179                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4180                 break;
4181         }
4182         case KVM_TRANSLATE: {
4183                 struct kvm_translation tr;
4184
4185                 r = -EFAULT;
4186                 if (copy_from_user(&tr, argp, sizeof(tr)))
4187                         goto out;
4188                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4189                 if (r)
4190                         goto out;
4191                 r = -EFAULT;
4192                 if (copy_to_user(argp, &tr, sizeof(tr)))
4193                         goto out;
4194                 r = 0;
4195                 break;
4196         }
4197         case KVM_SET_GUEST_DEBUG: {
4198                 struct kvm_guest_debug dbg;
4199
4200                 r = -EFAULT;
4201                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4202                         goto out;
4203                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4204                 break;
4205         }
4206         case KVM_SET_SIGNAL_MASK: {
4207                 struct kvm_signal_mask __user *sigmask_arg = argp;
4208                 struct kvm_signal_mask kvm_sigmask;
4209                 sigset_t sigset, *p;
4210
4211                 p = NULL;
4212                 if (argp) {
4213                         r = -EFAULT;
4214                         if (copy_from_user(&kvm_sigmask, argp,
4215                                            sizeof(kvm_sigmask)))
4216                                 goto out;
4217                         r = -EINVAL;
4218                         if (kvm_sigmask.len != sizeof(sigset))
4219                                 goto out;
4220                         r = -EFAULT;
4221                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4222                                            sizeof(sigset)))
4223                                 goto out;
4224                         p = &sigset;
4225                 }
4226                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4227                 break;
4228         }
4229         case KVM_GET_FPU: {
4230                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4231                 r = -ENOMEM;
4232                 if (!fpu)
4233                         goto out;
4234                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4235                 if (r)
4236                         goto out;
4237                 r = -EFAULT;
4238                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4239                         goto out;
4240                 r = 0;
4241                 break;
4242         }
4243         case KVM_SET_FPU: {
4244                 fpu = memdup_user(argp, sizeof(*fpu));
4245                 if (IS_ERR(fpu)) {
4246                         r = PTR_ERR(fpu);
4247                         fpu = NULL;
4248                         goto out;
4249                 }
4250                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4251                 break;
4252         }
4253         case KVM_GET_STATS_FD: {
4254                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4255                 break;
4256         }
4257         default:
4258                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4259         }
4260 out:
4261         mutex_unlock(&vcpu->mutex);
4262         kfree(fpu);
4263         kfree(kvm_sregs);
4264         return r;
4265 }
4266
4267 #ifdef CONFIG_KVM_COMPAT
4268 static long kvm_vcpu_compat_ioctl(struct file *filp,
4269                                   unsigned int ioctl, unsigned long arg)
4270 {
4271         struct kvm_vcpu *vcpu = filp->private_data;
4272         void __user *argp = compat_ptr(arg);
4273         int r;
4274
4275         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4276                 return -EIO;
4277
4278         switch (ioctl) {
4279         case KVM_SET_SIGNAL_MASK: {
4280                 struct kvm_signal_mask __user *sigmask_arg = argp;
4281                 struct kvm_signal_mask kvm_sigmask;
4282                 sigset_t sigset;
4283
4284                 if (argp) {
4285                         r = -EFAULT;
4286                         if (copy_from_user(&kvm_sigmask, argp,
4287                                            sizeof(kvm_sigmask)))
4288                                 goto out;
4289                         r = -EINVAL;
4290                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4291                                 goto out;
4292                         r = -EFAULT;
4293                         if (get_compat_sigset(&sigset,
4294                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4295                                 goto out;
4296                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4297                 } else
4298                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4299                 break;
4300         }
4301         default:
4302                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4303         }
4304
4305 out:
4306         return r;
4307 }
4308 #endif
4309
4310 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4311 {
4312         struct kvm_device *dev = filp->private_data;
4313
4314         if (dev->ops->mmap)
4315                 return dev->ops->mmap(dev, vma);
4316
4317         return -ENODEV;
4318 }
4319
4320 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4321                                  int (*accessor)(struct kvm_device *dev,
4322                                                  struct kvm_device_attr *attr),
4323                                  unsigned long arg)
4324 {
4325         struct kvm_device_attr attr;
4326
4327         if (!accessor)
4328                 return -EPERM;
4329
4330         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4331                 return -EFAULT;
4332
4333         return accessor(dev, &attr);
4334 }
4335
4336 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4337                              unsigned long arg)
4338 {
4339         struct kvm_device *dev = filp->private_data;
4340
4341         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4342                 return -EIO;
4343
4344         switch (ioctl) {
4345         case KVM_SET_DEVICE_ATTR:
4346                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4347         case KVM_GET_DEVICE_ATTR:
4348                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4349         case KVM_HAS_DEVICE_ATTR:
4350                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4351         default:
4352                 if (dev->ops->ioctl)
4353                         return dev->ops->ioctl(dev, ioctl, arg);
4354
4355                 return -ENOTTY;
4356         }
4357 }
4358
4359 static int kvm_device_release(struct inode *inode, struct file *filp)
4360 {
4361         struct kvm_device *dev = filp->private_data;
4362         struct kvm *kvm = dev->kvm;
4363
4364         if (dev->ops->release) {
4365                 mutex_lock(&kvm->lock);
4366                 list_del(&dev->vm_node);
4367                 dev->ops->release(dev);
4368                 mutex_unlock(&kvm->lock);
4369         }
4370
4371         kvm_put_kvm(kvm);
4372         return 0;
4373 }
4374
4375 static const struct file_operations kvm_device_fops = {
4376         .unlocked_ioctl = kvm_device_ioctl,
4377         .release = kvm_device_release,
4378         KVM_COMPAT(kvm_device_ioctl),
4379         .mmap = kvm_device_mmap,
4380 };
4381
4382 struct kvm_device *kvm_device_from_filp(struct file *filp)
4383 {
4384         if (filp->f_op != &kvm_device_fops)
4385                 return NULL;
4386
4387         return filp->private_data;
4388 }
4389
4390 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4391 #ifdef CONFIG_KVM_MPIC
4392         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4393         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4394 #endif
4395 };
4396
4397 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4398 {
4399         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4400                 return -ENOSPC;
4401
4402         if (kvm_device_ops_table[type] != NULL)
4403                 return -EEXIST;
4404
4405         kvm_device_ops_table[type] = ops;
4406         return 0;
4407 }
4408
4409 void kvm_unregister_device_ops(u32 type)
4410 {
4411         if (kvm_device_ops_table[type] != NULL)
4412                 kvm_device_ops_table[type] = NULL;
4413 }
4414
4415 static int kvm_ioctl_create_device(struct kvm *kvm,
4416                                    struct kvm_create_device *cd)
4417 {
4418         const struct kvm_device_ops *ops;
4419         struct kvm_device *dev;
4420         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4421         int type;
4422         int ret;
4423
4424         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4425                 return -ENODEV;
4426
4427         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4428         ops = kvm_device_ops_table[type];
4429         if (ops == NULL)
4430                 return -ENODEV;
4431
4432         if (test)
4433                 return 0;
4434
4435         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4436         if (!dev)
4437                 return -ENOMEM;
4438
4439         dev->ops = ops;
4440         dev->kvm = kvm;
4441
4442         mutex_lock(&kvm->lock);
4443         ret = ops->create(dev, type);
4444         if (ret < 0) {
4445                 mutex_unlock(&kvm->lock);
4446                 kfree(dev);
4447                 return ret;
4448         }
4449         list_add(&dev->vm_node, &kvm->devices);
4450         mutex_unlock(&kvm->lock);
4451
4452         if (ops->init)
4453                 ops->init(dev);
4454
4455         kvm_get_kvm(kvm);
4456         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4457         if (ret < 0) {
4458                 kvm_put_kvm_no_destroy(kvm);
4459                 mutex_lock(&kvm->lock);
4460                 list_del(&dev->vm_node);
4461                 if (ops->release)
4462                         ops->release(dev);
4463                 mutex_unlock(&kvm->lock);
4464                 if (ops->destroy)
4465                         ops->destroy(dev);
4466                 return ret;
4467         }
4468
4469         cd->fd = ret;
4470         return 0;
4471 }
4472
4473 static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4474 {
4475         switch (arg) {
4476         case KVM_CAP_USER_MEMORY:
4477         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4478         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4479         case KVM_CAP_INTERNAL_ERROR_DATA:
4480 #ifdef CONFIG_HAVE_KVM_MSI
4481         case KVM_CAP_SIGNAL_MSI:
4482 #endif
4483 #ifdef CONFIG_HAVE_KVM_IRQFD
4484         case KVM_CAP_IRQFD:
4485 #endif
4486         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4487         case KVM_CAP_CHECK_EXTENSION_VM:
4488         case KVM_CAP_ENABLE_CAP_VM:
4489         case KVM_CAP_HALT_POLL:
4490                 return 1;
4491 #ifdef CONFIG_KVM_MMIO
4492         case KVM_CAP_COALESCED_MMIO:
4493                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4494         case KVM_CAP_COALESCED_PIO:
4495                 return 1;
4496 #endif
4497 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4498         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4499                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4500 #endif
4501 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4502         case KVM_CAP_IRQ_ROUTING:
4503                 return KVM_MAX_IRQ_ROUTES;
4504 #endif
4505 #if KVM_ADDRESS_SPACE_NUM > 1
4506         case KVM_CAP_MULTI_ADDRESS_SPACE:
4507                 return KVM_ADDRESS_SPACE_NUM;
4508 #endif
4509         case KVM_CAP_NR_MEMSLOTS:
4510                 return KVM_USER_MEM_SLOTS;
4511         case KVM_CAP_DIRTY_LOG_RING:
4512 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4513                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4514 #else
4515                 return 0;
4516 #endif
4517         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4518 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4519                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4520 #else
4521                 return 0;
4522 #endif
4523 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4524         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4525 #endif
4526         case KVM_CAP_BINARY_STATS_FD:
4527         case KVM_CAP_SYSTEM_EVENT_DATA:
4528                 return 1;
4529         default:
4530                 break;
4531         }
4532         return kvm_vm_ioctl_check_extension(kvm, arg);
4533 }
4534
4535 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4536 {
4537         int r;
4538
4539         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4540                 return -EINVAL;
4541
4542         /* the size should be power of 2 */
4543         if (!size || (size & (size - 1)))
4544                 return -EINVAL;
4545
4546         /* Should be bigger to keep the reserved entries, or a page */
4547         if (size < kvm_dirty_ring_get_rsvd_entries() *
4548             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4549                 return -EINVAL;
4550
4551         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4552             sizeof(struct kvm_dirty_gfn))
4553                 return -E2BIG;
4554
4555         /* We only allow it to set once */
4556         if (kvm->dirty_ring_size)
4557                 return -EINVAL;
4558
4559         mutex_lock(&kvm->lock);
4560
4561         if (kvm->created_vcpus) {
4562                 /* We don't allow to change this value after vcpu created */
4563                 r = -EINVAL;
4564         } else {
4565                 kvm->dirty_ring_size = size;
4566                 r = 0;
4567         }
4568
4569         mutex_unlock(&kvm->lock);
4570         return r;
4571 }
4572
4573 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4574 {
4575         unsigned long i;
4576         struct kvm_vcpu *vcpu;
4577         int cleared = 0;
4578
4579         if (!kvm->dirty_ring_size)
4580                 return -EINVAL;
4581
4582         mutex_lock(&kvm->slots_lock);
4583
4584         kvm_for_each_vcpu(i, vcpu, kvm)
4585                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4586
4587         mutex_unlock(&kvm->slots_lock);
4588
4589         if (cleared)
4590                 kvm_flush_remote_tlbs(kvm);
4591
4592         return cleared;
4593 }
4594
4595 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4596                                                   struct kvm_enable_cap *cap)
4597 {
4598         return -EINVAL;
4599 }
4600
4601 static bool kvm_are_all_memslots_empty(struct kvm *kvm)
4602 {
4603         int i;
4604
4605         lockdep_assert_held(&kvm->slots_lock);
4606
4607         for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
4608                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4609                         return false;
4610         }
4611
4612         return true;
4613 }
4614
4615 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4616                                            struct kvm_enable_cap *cap)
4617 {
4618         switch (cap->cap) {
4619 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4620         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4621                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4622
4623                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4624                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4625
4626                 if (cap->flags || (cap->args[0] & ~allowed_options))
4627                         return -EINVAL;
4628                 kvm->manual_dirty_log_protect = cap->args[0];
4629                 return 0;
4630         }
4631 #endif
4632         case KVM_CAP_HALT_POLL: {
4633                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4634                         return -EINVAL;
4635
4636                 kvm->max_halt_poll_ns = cap->args[0];
4637
4638                 /*
4639                  * Ensure kvm->override_halt_poll_ns does not become visible
4640                  * before kvm->max_halt_poll_ns.
4641                  *
4642                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4643                  */
4644                 smp_wmb();
4645                 kvm->override_halt_poll_ns = true;
4646
4647                 return 0;
4648         }
4649         case KVM_CAP_DIRTY_LOG_RING:
4650         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4651                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4652                         return -EINVAL;
4653
4654                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4655         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4656                 int r = -EINVAL;
4657
4658                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4659                     !kvm->dirty_ring_size || cap->flags)
4660                         return r;
4661
4662                 mutex_lock(&kvm->slots_lock);
4663
4664                 /*
4665                  * For simplicity, allow enabling ring+bitmap if and only if
4666                  * there are no memslots, e.g. to ensure all memslots allocate
4667                  * a bitmap after the capability is enabled.
4668                  */
4669                 if (kvm_are_all_memslots_empty(kvm)) {
4670                         kvm->dirty_ring_with_bitmap = true;
4671                         r = 0;
4672                 }
4673
4674                 mutex_unlock(&kvm->slots_lock);
4675
4676                 return r;
4677         }
4678         default:
4679                 return kvm_vm_ioctl_enable_cap(kvm, cap);
4680         }
4681 }
4682
4683 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4684                               size_t size, loff_t *offset)
4685 {
4686         struct kvm *kvm = file->private_data;
4687
4688         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4689                                 &kvm_vm_stats_desc[0], &kvm->stat,
4690                                 sizeof(kvm->stat), user_buffer, size, offset);
4691 }
4692
4693 static const struct file_operations kvm_vm_stats_fops = {
4694         .read = kvm_vm_stats_read,
4695         .llseek = noop_llseek,
4696 };
4697
4698 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4699 {
4700         int fd;
4701         struct file *file;
4702
4703         fd = get_unused_fd_flags(O_CLOEXEC);
4704         if (fd < 0)
4705                 return fd;
4706
4707         file = anon_inode_getfile("kvm-vm-stats",
4708                         &kvm_vm_stats_fops, kvm, O_RDONLY);
4709         if (IS_ERR(file)) {
4710                 put_unused_fd(fd);
4711                 return PTR_ERR(file);
4712         }
4713         file->f_mode |= FMODE_PREAD;
4714         fd_install(fd, file);
4715
4716         return fd;
4717 }
4718
4719 static long kvm_vm_ioctl(struct file *filp,
4720                            unsigned int ioctl, unsigned long arg)
4721 {
4722         struct kvm *kvm = filp->private_data;
4723         void __user *argp = (void __user *)arg;
4724         int r;
4725
4726         if (kvm->mm != current->mm || kvm->vm_dead)
4727                 return -EIO;
4728         switch (ioctl) {
4729         case KVM_CREATE_VCPU:
4730                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
4731                 break;
4732         case KVM_ENABLE_CAP: {
4733                 struct kvm_enable_cap cap;
4734
4735                 r = -EFAULT;
4736                 if (copy_from_user(&cap, argp, sizeof(cap)))
4737                         goto out;
4738                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
4739                 break;
4740         }
4741         case KVM_SET_USER_MEMORY_REGION: {
4742                 struct kvm_userspace_memory_region kvm_userspace_mem;
4743
4744                 r = -EFAULT;
4745                 if (copy_from_user(&kvm_userspace_mem, argp,
4746                                                 sizeof(kvm_userspace_mem)))
4747                         goto out;
4748
4749                 r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
4750                 break;
4751         }
4752         case KVM_GET_DIRTY_LOG: {
4753                 struct kvm_dirty_log log;
4754
4755                 r = -EFAULT;
4756                 if (copy_from_user(&log, argp, sizeof(log)))
4757                         goto out;
4758                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4759                 break;
4760         }
4761 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4762         case KVM_CLEAR_DIRTY_LOG: {
4763                 struct kvm_clear_dirty_log log;
4764
4765                 r = -EFAULT;
4766                 if (copy_from_user(&log, argp, sizeof(log)))
4767                         goto out;
4768                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4769                 break;
4770         }
4771 #endif
4772 #ifdef CONFIG_KVM_MMIO
4773         case KVM_REGISTER_COALESCED_MMIO: {
4774                 struct kvm_coalesced_mmio_zone zone;
4775
4776                 r = -EFAULT;
4777                 if (copy_from_user(&zone, argp, sizeof(zone)))
4778                         goto out;
4779                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
4780                 break;
4781         }
4782         case KVM_UNREGISTER_COALESCED_MMIO: {
4783                 struct kvm_coalesced_mmio_zone zone;
4784
4785                 r = -EFAULT;
4786                 if (copy_from_user(&zone, argp, sizeof(zone)))
4787                         goto out;
4788                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
4789                 break;
4790         }
4791 #endif
4792         case KVM_IRQFD: {
4793                 struct kvm_irqfd data;
4794
4795                 r = -EFAULT;
4796                 if (copy_from_user(&data, argp, sizeof(data)))
4797                         goto out;
4798                 r = kvm_irqfd(kvm, &data);
4799                 break;
4800         }
4801         case KVM_IOEVENTFD: {
4802                 struct kvm_ioeventfd data;
4803
4804                 r = -EFAULT;
4805                 if (copy_from_user(&data, argp, sizeof(data)))
4806                         goto out;
4807                 r = kvm_ioeventfd(kvm, &data);
4808                 break;
4809         }
4810 #ifdef CONFIG_HAVE_KVM_MSI
4811         case KVM_SIGNAL_MSI: {
4812                 struct kvm_msi msi;
4813
4814                 r = -EFAULT;
4815                 if (copy_from_user(&msi, argp, sizeof(msi)))
4816                         goto out;
4817                 r = kvm_send_userspace_msi(kvm, &msi);
4818                 break;
4819         }
4820 #endif
4821 #ifdef __KVM_HAVE_IRQ_LINE
4822         case KVM_IRQ_LINE_STATUS:
4823         case KVM_IRQ_LINE: {
4824                 struct kvm_irq_level irq_event;
4825
4826                 r = -EFAULT;
4827                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
4828                         goto out;
4829
4830                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
4831                                         ioctl == KVM_IRQ_LINE_STATUS);
4832                 if (r)
4833                         goto out;
4834
4835                 r = -EFAULT;
4836                 if (ioctl == KVM_IRQ_LINE_STATUS) {
4837                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
4838                                 goto out;
4839                 }
4840
4841                 r = 0;
4842                 break;
4843         }
4844 #endif
4845 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4846         case KVM_SET_GSI_ROUTING: {
4847                 struct kvm_irq_routing routing;
4848                 struct kvm_irq_routing __user *urouting;
4849                 struct kvm_irq_routing_entry *entries = NULL;
4850
4851                 r = -EFAULT;
4852                 if (copy_from_user(&routing, argp, sizeof(routing)))
4853                         goto out;
4854                 r = -EINVAL;
4855                 if (!kvm_arch_can_set_irq_routing(kvm))
4856                         goto out;
4857                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
4858                         goto out;
4859                 if (routing.flags)
4860                         goto out;
4861                 if (routing.nr) {
4862                         urouting = argp;
4863                         entries = vmemdup_user(urouting->entries,
4864                                                array_size(sizeof(*entries),
4865                                                           routing.nr));
4866                         if (IS_ERR(entries)) {
4867                                 r = PTR_ERR(entries);
4868                                 goto out;
4869                         }
4870                 }
4871                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
4872                                         routing.flags);
4873                 kvfree(entries);
4874                 break;
4875         }
4876 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
4877         case KVM_CREATE_DEVICE: {
4878                 struct kvm_create_device cd;
4879
4880                 r = -EFAULT;
4881                 if (copy_from_user(&cd, argp, sizeof(cd)))
4882                         goto out;
4883
4884                 r = kvm_ioctl_create_device(kvm, &cd);
4885                 if (r)
4886                         goto out;
4887
4888                 r = -EFAULT;
4889                 if (copy_to_user(argp, &cd, sizeof(cd)))
4890                         goto out;
4891
4892                 r = 0;
4893                 break;
4894         }
4895         case KVM_CHECK_EXTENSION:
4896                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
4897                 break;
4898         case KVM_RESET_DIRTY_RINGS:
4899                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
4900                 break;
4901         case KVM_GET_STATS_FD:
4902                 r = kvm_vm_ioctl_get_stats_fd(kvm);
4903                 break;
4904         default:
4905                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
4906         }
4907 out:
4908         return r;
4909 }
4910
4911 #ifdef CONFIG_KVM_COMPAT
4912 struct compat_kvm_dirty_log {
4913         __u32 slot;
4914         __u32 padding1;
4915         union {
4916                 compat_uptr_t dirty_bitmap; /* one bit per page */
4917                 __u64 padding2;
4918         };
4919 };
4920
4921 struct compat_kvm_clear_dirty_log {
4922         __u32 slot;
4923         __u32 num_pages;
4924         __u64 first_page;
4925         union {
4926                 compat_uptr_t dirty_bitmap; /* one bit per page */
4927                 __u64 padding2;
4928         };
4929 };
4930
4931 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
4932                                      unsigned long arg)
4933 {
4934         return -ENOTTY;
4935 }
4936
4937 static long kvm_vm_compat_ioctl(struct file *filp,
4938                            unsigned int ioctl, unsigned long arg)
4939 {
4940         struct kvm *kvm = filp->private_data;
4941         int r;
4942
4943         if (kvm->mm != current->mm || kvm->vm_dead)
4944                 return -EIO;
4945
4946         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
4947         if (r != -ENOTTY)
4948                 return r;
4949
4950         switch (ioctl) {
4951 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4952         case KVM_CLEAR_DIRTY_LOG: {
4953                 struct compat_kvm_clear_dirty_log compat_log;
4954                 struct kvm_clear_dirty_log log;
4955
4956                 if (copy_from_user(&compat_log, (void __user *)arg,
4957                                    sizeof(compat_log)))
4958                         return -EFAULT;
4959                 log.slot         = compat_log.slot;
4960                 log.num_pages    = compat_log.num_pages;
4961                 log.first_page   = compat_log.first_page;
4962                 log.padding2     = compat_log.padding2;
4963                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4964
4965                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
4966                 break;
4967         }
4968 #endif
4969         case KVM_GET_DIRTY_LOG: {
4970                 struct compat_kvm_dirty_log compat_log;
4971                 struct kvm_dirty_log log;
4972
4973                 if (copy_from_user(&compat_log, (void __user *)arg,
4974                                    sizeof(compat_log)))
4975                         return -EFAULT;
4976                 log.slot         = compat_log.slot;
4977                 log.padding1     = compat_log.padding1;
4978                 log.padding2     = compat_log.padding2;
4979                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
4980
4981                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
4982                 break;
4983         }
4984         default:
4985                 r = kvm_vm_ioctl(filp, ioctl, arg);
4986         }
4987         return r;
4988 }
4989 #endif
4990
4991 static const struct file_operations kvm_vm_fops = {
4992         .release        = kvm_vm_release,
4993         .unlocked_ioctl = kvm_vm_ioctl,
4994         .llseek         = noop_llseek,
4995         KVM_COMPAT(kvm_vm_compat_ioctl),
4996 };
4997
4998 bool file_is_kvm(struct file *file)
4999 {
5000         return file && file->f_op == &kvm_vm_fops;
5001 }
5002 EXPORT_SYMBOL_GPL(file_is_kvm);
5003
5004 static int kvm_dev_ioctl_create_vm(unsigned long type)
5005 {
5006         char fdname[ITOA_MAX_LEN + 1];
5007         int r, fd;
5008         struct kvm *kvm;
5009         struct file *file;
5010
5011         fd = get_unused_fd_flags(O_CLOEXEC);
5012         if (fd < 0)
5013                 return fd;
5014
5015         snprintf(fdname, sizeof(fdname), "%d", fd);
5016
5017         kvm = kvm_create_vm(type, fdname);
5018         if (IS_ERR(kvm)) {
5019                 r = PTR_ERR(kvm);
5020                 goto put_fd;
5021         }
5022
5023         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5024         if (IS_ERR(file)) {
5025                 r = PTR_ERR(file);
5026                 goto put_kvm;
5027         }
5028
5029         /*
5030          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5031          * already set, with ->release() being kvm_vm_release().  In error
5032          * cases it will be called by the final fput(file) and will take
5033          * care of doing kvm_put_kvm(kvm).
5034          */
5035         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5036
5037         fd_install(fd, file);
5038         return fd;
5039
5040 put_kvm:
5041         kvm_put_kvm(kvm);
5042 put_fd:
5043         put_unused_fd(fd);
5044         return r;
5045 }
5046
5047 static long kvm_dev_ioctl(struct file *filp,
5048                           unsigned int ioctl, unsigned long arg)
5049 {
5050         long r = -EINVAL;
5051
5052         switch (ioctl) {
5053         case KVM_GET_API_VERSION:
5054                 if (arg)
5055                         goto out;
5056                 r = KVM_API_VERSION;
5057                 break;
5058         case KVM_CREATE_VM:
5059                 r = kvm_dev_ioctl_create_vm(arg);
5060                 break;
5061         case KVM_CHECK_EXTENSION:
5062                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5063                 break;
5064         case KVM_GET_VCPU_MMAP_SIZE:
5065                 if (arg)
5066                         goto out;
5067                 r = PAGE_SIZE;     /* struct kvm_run */
5068 #ifdef CONFIG_X86
5069                 r += PAGE_SIZE;    /* pio data page */
5070 #endif
5071 #ifdef CONFIG_KVM_MMIO
5072                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5073 #endif
5074                 break;
5075         case KVM_TRACE_ENABLE:
5076         case KVM_TRACE_PAUSE:
5077         case KVM_TRACE_DISABLE:
5078                 r = -EOPNOTSUPP;
5079                 break;
5080         default:
5081                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5082         }
5083 out:
5084         return r;
5085 }
5086
5087 static struct file_operations kvm_chardev_ops = {
5088         .unlocked_ioctl = kvm_dev_ioctl,
5089         .llseek         = noop_llseek,
5090         KVM_COMPAT(kvm_dev_ioctl),
5091 };
5092
5093 static struct miscdevice kvm_dev = {
5094         KVM_MINOR,
5095         "kvm",
5096         &kvm_chardev_ops,
5097 };
5098
5099 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5100 __visible bool kvm_rebooting;
5101 EXPORT_SYMBOL_GPL(kvm_rebooting);
5102
5103 static DEFINE_PER_CPU(bool, hardware_enabled);
5104 static int kvm_usage_count;
5105
5106 static int __hardware_enable_nolock(void)
5107 {
5108         if (__this_cpu_read(hardware_enabled))
5109                 return 0;
5110
5111         if (kvm_arch_hardware_enable()) {
5112                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5113                         raw_smp_processor_id());
5114                 return -EIO;
5115         }
5116
5117         __this_cpu_write(hardware_enabled, true);
5118         return 0;
5119 }
5120
5121 static void hardware_enable_nolock(void *failed)
5122 {
5123         if (__hardware_enable_nolock())
5124                 atomic_inc(failed);
5125 }
5126
5127 static int kvm_online_cpu(unsigned int cpu)
5128 {
5129         int ret = 0;
5130
5131         /*
5132          * Abort the CPU online process if hardware virtualization cannot
5133          * be enabled. Otherwise running VMs would encounter unrecoverable
5134          * errors when scheduled to this CPU.
5135          */
5136         mutex_lock(&kvm_lock);
5137         if (kvm_usage_count)
5138                 ret = __hardware_enable_nolock();
5139         mutex_unlock(&kvm_lock);
5140         return ret;
5141 }
5142
5143 static void hardware_disable_nolock(void *junk)
5144 {
5145         /*
5146          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5147          * hardware, not just CPUs that successfully enabled hardware!
5148          */
5149         if (!__this_cpu_read(hardware_enabled))
5150                 return;
5151
5152         kvm_arch_hardware_disable();
5153
5154         __this_cpu_write(hardware_enabled, false);
5155 }
5156
5157 static int kvm_offline_cpu(unsigned int cpu)
5158 {
5159         mutex_lock(&kvm_lock);
5160         if (kvm_usage_count)
5161                 hardware_disable_nolock(NULL);
5162         mutex_unlock(&kvm_lock);
5163         return 0;
5164 }
5165
5166 static void hardware_disable_all_nolock(void)
5167 {
5168         BUG_ON(!kvm_usage_count);
5169
5170         kvm_usage_count--;
5171         if (!kvm_usage_count)
5172                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5173 }
5174
5175 static void hardware_disable_all(void)
5176 {
5177         cpus_read_lock();
5178         mutex_lock(&kvm_lock);
5179         hardware_disable_all_nolock();
5180         mutex_unlock(&kvm_lock);
5181         cpus_read_unlock();
5182 }
5183
5184 static int hardware_enable_all(void)
5185 {
5186         atomic_t failed = ATOMIC_INIT(0);
5187         int r = 0;
5188
5189         /*
5190          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5191          * is called, and so on_each_cpu() between them includes the CPU that
5192          * is being onlined.  As a result, hardware_enable_nolock() may get
5193          * invoked before kvm_online_cpu(), which also enables hardware if the
5194          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5195          * enable hardware multiple times.
5196          */
5197         cpus_read_lock();
5198         mutex_lock(&kvm_lock);
5199
5200         kvm_usage_count++;
5201         if (kvm_usage_count == 1) {
5202                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5203
5204                 if (atomic_read(&failed)) {
5205                         hardware_disable_all_nolock();
5206                         r = -EBUSY;
5207                 }
5208         }
5209
5210         mutex_unlock(&kvm_lock);
5211         cpus_read_unlock();
5212
5213         return r;
5214 }
5215
5216 static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
5217                       void *v)
5218 {
5219         /*
5220          * Some (well, at least mine) BIOSes hang on reboot if
5221          * in vmx root mode.
5222          *
5223          * And Intel TXT required VMX off for all cpu when system shutdown.
5224          */
5225         pr_info("kvm: exiting hardware virtualization\n");
5226         kvm_rebooting = true;
5227         on_each_cpu(hardware_disable_nolock, NULL, 1);
5228         return NOTIFY_OK;
5229 }
5230
5231 static struct notifier_block kvm_reboot_notifier = {
5232         .notifier_call = kvm_reboot,
5233         .priority = 0,
5234 };
5235
5236 static int kvm_suspend(void)
5237 {
5238         /*
5239          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5240          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5241          * is stable.  Assert that kvm_lock is not held to ensure the system
5242          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5243          * can be preempted, but the task cannot be frozen until it has dropped
5244          * all locks (userspace tasks are frozen via a fake signal).
5245          */
5246         lockdep_assert_not_held(&kvm_lock);
5247         lockdep_assert_irqs_disabled();
5248
5249         if (kvm_usage_count)
5250                 hardware_disable_nolock(NULL);
5251         return 0;
5252 }
5253
5254 static void kvm_resume(void)
5255 {
5256         lockdep_assert_not_held(&kvm_lock);
5257         lockdep_assert_irqs_disabled();
5258
5259         if (kvm_usage_count)
5260                 WARN_ON_ONCE(__hardware_enable_nolock());
5261 }
5262
5263 static struct syscore_ops kvm_syscore_ops = {
5264         .suspend = kvm_suspend,
5265         .resume = kvm_resume,
5266 };
5267 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5268 static int hardware_enable_all(void)
5269 {
5270         return 0;
5271 }
5272
5273 static void hardware_disable_all(void)
5274 {
5275
5276 }
5277 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5278
5279 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5280 {
5281         int i;
5282
5283         for (i = 0; i < bus->dev_count; i++) {
5284                 struct kvm_io_device *pos = bus->range[i].dev;
5285
5286                 kvm_iodevice_destructor(pos);
5287         }
5288         kfree(bus);
5289 }
5290
5291 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5292                                  const struct kvm_io_range *r2)
5293 {
5294         gpa_t addr1 = r1->addr;
5295         gpa_t addr2 = r2->addr;
5296
5297         if (addr1 < addr2)
5298                 return -1;
5299
5300         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5301          * accept any overlapping write.  Any order is acceptable for
5302          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5303          * we process all of them.
5304          */
5305         if (r2->len) {
5306                 addr1 += r1->len;
5307                 addr2 += r2->len;
5308         }
5309
5310         if (addr1 > addr2)
5311                 return 1;
5312
5313         return 0;
5314 }
5315
5316 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5317 {
5318         return kvm_io_bus_cmp(p1, p2);
5319 }
5320
5321 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5322                              gpa_t addr, int len)
5323 {
5324         struct kvm_io_range *range, key;
5325         int off;
5326
5327         key = (struct kvm_io_range) {
5328                 .addr = addr,
5329                 .len = len,
5330         };
5331
5332         range = bsearch(&key, bus->range, bus->dev_count,
5333                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5334         if (range == NULL)
5335                 return -ENOENT;
5336
5337         off = range - bus->range;
5338
5339         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5340                 off--;
5341
5342         return off;
5343 }
5344
5345 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5346                               struct kvm_io_range *range, const void *val)
5347 {
5348         int idx;
5349
5350         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5351         if (idx < 0)
5352                 return -EOPNOTSUPP;
5353
5354         while (idx < bus->dev_count &&
5355                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5356                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5357                                         range->len, val))
5358                         return idx;
5359                 idx++;
5360         }
5361
5362         return -EOPNOTSUPP;
5363 }
5364
5365 /* kvm_io_bus_write - called under kvm->slots_lock */
5366 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5367                      int len, const void *val)
5368 {
5369         struct kvm_io_bus *bus;
5370         struct kvm_io_range range;
5371         int r;
5372
5373         range = (struct kvm_io_range) {
5374                 .addr = addr,
5375                 .len = len,
5376         };
5377
5378         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5379         if (!bus)
5380                 return -ENOMEM;
5381         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5382         return r < 0 ? r : 0;
5383 }
5384 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5385
5386 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5387 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5388                             gpa_t addr, int len, const void *val, long cookie)
5389 {
5390         struct kvm_io_bus *bus;
5391         struct kvm_io_range range;
5392
5393         range = (struct kvm_io_range) {
5394                 .addr = addr,
5395                 .len = len,
5396         };
5397
5398         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5399         if (!bus)
5400                 return -ENOMEM;
5401
5402         /* First try the device referenced by cookie. */
5403         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5404             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5405                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5406                                         val))
5407                         return cookie;
5408
5409         /*
5410          * cookie contained garbage; fall back to search and return the
5411          * correct cookie value.
5412          */
5413         return __kvm_io_bus_write(vcpu, bus, &range, val);
5414 }
5415
5416 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5417                              struct kvm_io_range *range, void *val)
5418 {
5419         int idx;
5420
5421         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5422         if (idx < 0)
5423                 return -EOPNOTSUPP;
5424
5425         while (idx < bus->dev_count &&
5426                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5427                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5428                                        range->len, val))
5429                         return idx;
5430                 idx++;
5431         }
5432
5433         return -EOPNOTSUPP;
5434 }
5435
5436 /* kvm_io_bus_read - called under kvm->slots_lock */
5437 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5438                     int len, void *val)
5439 {
5440         struct kvm_io_bus *bus;
5441         struct kvm_io_range range;
5442         int r;
5443
5444         range = (struct kvm_io_range) {
5445                 .addr = addr,
5446                 .len = len,
5447         };
5448
5449         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5450         if (!bus)
5451                 return -ENOMEM;
5452         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5453         return r < 0 ? r : 0;
5454 }
5455
5456 /* Caller must hold slots_lock. */
5457 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5458                             int len, struct kvm_io_device *dev)
5459 {
5460         int i;
5461         struct kvm_io_bus *new_bus, *bus;
5462         struct kvm_io_range range;
5463
5464         bus = kvm_get_bus(kvm, bus_idx);
5465         if (!bus)
5466                 return -ENOMEM;
5467
5468         /* exclude ioeventfd which is limited by maximum fd */
5469         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5470                 return -ENOSPC;
5471
5472         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5473                           GFP_KERNEL_ACCOUNT);
5474         if (!new_bus)
5475                 return -ENOMEM;
5476
5477         range = (struct kvm_io_range) {
5478                 .addr = addr,
5479                 .len = len,
5480                 .dev = dev,
5481         };
5482
5483         for (i = 0; i < bus->dev_count; i++)
5484                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5485                         break;
5486
5487         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5488         new_bus->dev_count++;
5489         new_bus->range[i] = range;
5490         memcpy(new_bus->range + i + 1, bus->range + i,
5491                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5492         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5493         synchronize_srcu_expedited(&kvm->srcu);
5494         kfree(bus);
5495
5496         return 0;
5497 }
5498
5499 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5500                               struct kvm_io_device *dev)
5501 {
5502         int i, j;
5503         struct kvm_io_bus *new_bus, *bus;
5504
5505         lockdep_assert_held(&kvm->slots_lock);
5506
5507         bus = kvm_get_bus(kvm, bus_idx);
5508         if (!bus)
5509                 return 0;
5510
5511         for (i = 0; i < bus->dev_count; i++) {
5512                 if (bus->range[i].dev == dev) {
5513                         break;
5514                 }
5515         }
5516
5517         if (i == bus->dev_count)
5518                 return 0;
5519
5520         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5521                           GFP_KERNEL_ACCOUNT);
5522         if (new_bus) {
5523                 memcpy(new_bus, bus, struct_size(bus, range, i));
5524                 new_bus->dev_count--;
5525                 memcpy(new_bus->range + i, bus->range + i + 1,
5526                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5527         }
5528
5529         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5530         synchronize_srcu_expedited(&kvm->srcu);
5531
5532         /* Destroy the old bus _after_ installing the (null) bus. */
5533         if (!new_bus) {
5534                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5535                 for (j = 0; j < bus->dev_count; j++) {
5536                         if (j == i)
5537                                 continue;
5538                         kvm_iodevice_destructor(bus->range[j].dev);
5539                 }
5540         }
5541
5542         kfree(bus);
5543         return new_bus ? 0 : -ENOMEM;
5544 }
5545
5546 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5547                                          gpa_t addr)
5548 {
5549         struct kvm_io_bus *bus;
5550         int dev_idx, srcu_idx;
5551         struct kvm_io_device *iodev = NULL;
5552
5553         srcu_idx = srcu_read_lock(&kvm->srcu);
5554
5555         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5556         if (!bus)
5557                 goto out_unlock;
5558
5559         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5560         if (dev_idx < 0)
5561                 goto out_unlock;
5562
5563         iodev = bus->range[dev_idx].dev;
5564
5565 out_unlock:
5566         srcu_read_unlock(&kvm->srcu, srcu_idx);
5567
5568         return iodev;
5569 }
5570 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5571
5572 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5573                            int (*get)(void *, u64 *), int (*set)(void *, u64),
5574                            const char *fmt)
5575 {
5576         int ret;
5577         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5578                                           inode->i_private;
5579
5580         /*
5581          * The debugfs files are a reference to the kvm struct which
5582         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
5583         * avoids the race between open and the removal of the debugfs directory.
5584          */
5585         if (!kvm_get_kvm_safe(stat_data->kvm))
5586                 return -ENOENT;
5587
5588         ret = simple_attr_open(inode, file, get,
5589                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
5590                                ? set : NULL, fmt);
5591         if (ret)
5592                 kvm_put_kvm(stat_data->kvm);
5593
5594         return ret;
5595 }
5596
5597 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5598 {
5599         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
5600                                           inode->i_private;
5601
5602         simple_attr_release(inode, file);
5603         kvm_put_kvm(stat_data->kvm);
5604
5605         return 0;
5606 }
5607
5608 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5609 {
5610         *val = *(u64 *)((void *)(&kvm->stat) + offset);
5611
5612         return 0;
5613 }
5614
5615 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5616 {
5617         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5618
5619         return 0;
5620 }
5621
5622 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5623 {
5624         unsigned long i;
5625         struct kvm_vcpu *vcpu;
5626
5627         *val = 0;
5628
5629         kvm_for_each_vcpu(i, vcpu, kvm)
5630                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5631
5632         return 0;
5633 }
5634
5635 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5636 {
5637         unsigned long i;
5638         struct kvm_vcpu *vcpu;
5639
5640         kvm_for_each_vcpu(i, vcpu, kvm)
5641                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
5642
5643         return 0;
5644 }
5645
5646 static int kvm_stat_data_get(void *data, u64 *val)
5647 {
5648         int r = -EFAULT;
5649         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5650
5651         switch (stat_data->kind) {
5652         case KVM_STAT_VM:
5653                 r = kvm_get_stat_per_vm(stat_data->kvm,
5654                                         stat_data->desc->desc.offset, val);
5655                 break;
5656         case KVM_STAT_VCPU:
5657                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
5658                                           stat_data->desc->desc.offset, val);
5659                 break;
5660         }
5661
5662         return r;
5663 }
5664
5665 static int kvm_stat_data_clear(void *data, u64 val)
5666 {
5667         int r = -EFAULT;
5668         struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
5669
5670         if (val)
5671                 return -EINVAL;
5672
5673         switch (stat_data->kind) {
5674         case KVM_STAT_VM:
5675                 r = kvm_clear_stat_per_vm(stat_data->kvm,
5676                                           stat_data->desc->desc.offset);
5677                 break;
5678         case KVM_STAT_VCPU:
5679                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
5680                                             stat_data->desc->desc.offset);
5681                 break;
5682         }
5683
5684         return r;
5685 }
5686
5687 static int kvm_stat_data_open(struct inode *inode, struct file *file)
5688 {
5689         __simple_attr_check_format("%llu\n", 0ull);
5690         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
5691                                 kvm_stat_data_clear, "%llu\n");
5692 }
5693
5694 static const struct file_operations stat_fops_per_vm = {
5695         .owner = THIS_MODULE,
5696         .open = kvm_stat_data_open,
5697         .release = kvm_debugfs_release,
5698         .read = simple_attr_read,
5699         .write = simple_attr_write,
5700         .llseek = no_llseek,
5701 };
5702
5703 static int vm_stat_get(void *_offset, u64 *val)
5704 {
5705         unsigned offset = (long)_offset;
5706         struct kvm *kvm;
5707         u64 tmp_val;
5708
5709         *val = 0;
5710         mutex_lock(&kvm_lock);
5711         list_for_each_entry(kvm, &vm_list, vm_list) {
5712                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
5713                 *val += tmp_val;
5714         }
5715         mutex_unlock(&kvm_lock);
5716         return 0;
5717 }
5718
5719 static int vm_stat_clear(void *_offset, u64 val)
5720 {
5721         unsigned offset = (long)_offset;
5722         struct kvm *kvm;
5723
5724         if (val)
5725                 return -EINVAL;
5726
5727         mutex_lock(&kvm_lock);
5728         list_for_each_entry(kvm, &vm_list, vm_list) {
5729                 kvm_clear_stat_per_vm(kvm, offset);
5730         }
5731         mutex_unlock(&kvm_lock);
5732
5733         return 0;
5734 }
5735
5736 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
5737 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
5738
5739 static int vcpu_stat_get(void *_offset, u64 *val)
5740 {
5741         unsigned offset = (long)_offset;
5742         struct kvm *kvm;
5743         u64 tmp_val;
5744
5745         *val = 0;
5746         mutex_lock(&kvm_lock);
5747         list_for_each_entry(kvm, &vm_list, vm_list) {
5748                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
5749                 *val += tmp_val;
5750         }
5751         mutex_unlock(&kvm_lock);
5752         return 0;
5753 }
5754
5755 static int vcpu_stat_clear(void *_offset, u64 val)
5756 {
5757         unsigned offset = (long)_offset;
5758         struct kvm *kvm;
5759
5760         if (val)
5761                 return -EINVAL;
5762
5763         mutex_lock(&kvm_lock);
5764         list_for_each_entry(kvm, &vm_list, vm_list) {
5765                 kvm_clear_stat_per_vcpu(kvm, offset);
5766         }
5767         mutex_unlock(&kvm_lock);
5768
5769         return 0;
5770 }
5771
5772 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
5773                         "%llu\n");
5774 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
5775
5776 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
5777 {
5778         struct kobj_uevent_env *env;
5779         unsigned long long created, active;
5780
5781         if (!kvm_dev.this_device || !kvm)
5782                 return;
5783
5784         mutex_lock(&kvm_lock);
5785         if (type == KVM_EVENT_CREATE_VM) {
5786                 kvm_createvm_count++;
5787                 kvm_active_vms++;
5788         } else if (type == KVM_EVENT_DESTROY_VM) {
5789                 kvm_active_vms--;
5790         }
5791         created = kvm_createvm_count;
5792         active = kvm_active_vms;
5793         mutex_unlock(&kvm_lock);
5794
5795         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
5796         if (!env)
5797                 return;
5798
5799         add_uevent_var(env, "CREATED=%llu", created);
5800         add_uevent_var(env, "COUNT=%llu", active);
5801
5802         if (type == KVM_EVENT_CREATE_VM) {
5803                 add_uevent_var(env, "EVENT=create");
5804                 kvm->userspace_pid = task_pid_nr(current);
5805         } else if (type == KVM_EVENT_DESTROY_VM) {
5806                 add_uevent_var(env, "EVENT=destroy");
5807         }
5808         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
5809
5810         if (!IS_ERR(kvm->debugfs_dentry)) {
5811                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
5812
5813                 if (p) {
5814                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
5815                         if (!IS_ERR(tmp))
5816                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
5817                         kfree(p);
5818                 }
5819         }
5820         /* no need for checks, since we are adding at most only 5 keys */
5821         env->envp[env->envp_idx++] = NULL;
5822         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
5823         kfree(env);
5824 }
5825
5826 static void kvm_init_debug(void)
5827 {
5828         const struct file_operations *fops;
5829         const struct _kvm_stats_desc *pdesc;
5830         int i;
5831
5832         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
5833
5834         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
5835                 pdesc = &kvm_vm_stats_desc[i];
5836                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5837                         fops = &vm_stat_fops;
5838                 else
5839                         fops = &vm_stat_readonly_fops;
5840                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5841                                 kvm_debugfs_dir,
5842                                 (void *)(long)pdesc->desc.offset, fops);
5843         }
5844
5845         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
5846                 pdesc = &kvm_vcpu_stats_desc[i];
5847                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
5848                         fops = &vcpu_stat_fops;
5849                 else
5850                         fops = &vcpu_stat_readonly_fops;
5851                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
5852                                 kvm_debugfs_dir,
5853                                 (void *)(long)pdesc->desc.offset, fops);
5854         }
5855 }
5856
5857 static inline
5858 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
5859 {
5860         return container_of(pn, struct kvm_vcpu, preempt_notifier);
5861 }
5862
5863 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
5864 {
5865         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5866
5867         WRITE_ONCE(vcpu->preempted, false);
5868         WRITE_ONCE(vcpu->ready, false);
5869
5870         __this_cpu_write(kvm_running_vcpu, vcpu);
5871         kvm_arch_sched_in(vcpu, cpu);
5872         kvm_arch_vcpu_load(vcpu, cpu);
5873 }
5874
5875 static void kvm_sched_out(struct preempt_notifier *pn,
5876                           struct task_struct *next)
5877 {
5878         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
5879
5880         if (current->on_rq) {
5881                 WRITE_ONCE(vcpu->preempted, true);
5882                 WRITE_ONCE(vcpu->ready, true);
5883         }
5884         kvm_arch_vcpu_put(vcpu);
5885         __this_cpu_write(kvm_running_vcpu, NULL);
5886 }
5887
5888 /**
5889  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
5890  *
5891  * We can disable preemption locally around accessing the per-CPU variable,
5892  * and use the resolved vcpu pointer after enabling preemption again,
5893  * because even if the current thread is migrated to another CPU, reading
5894  * the per-CPU value later will give us the same value as we update the
5895  * per-CPU variable in the preempt notifier handlers.
5896  */
5897 struct kvm_vcpu *kvm_get_running_vcpu(void)
5898 {
5899         struct kvm_vcpu *vcpu;
5900
5901         preempt_disable();
5902         vcpu = __this_cpu_read(kvm_running_vcpu);
5903         preempt_enable();
5904
5905         return vcpu;
5906 }
5907 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
5908
5909 /**
5910  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
5911  */
5912 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
5913 {
5914         return &kvm_running_vcpu;
5915 }
5916
5917 #ifdef CONFIG_GUEST_PERF_EVENTS
5918 static unsigned int kvm_guest_state(void)
5919 {
5920         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5921         unsigned int state;
5922
5923         if (!kvm_arch_pmi_in_guest(vcpu))
5924                 return 0;
5925
5926         state = PERF_GUEST_ACTIVE;
5927         if (!kvm_arch_vcpu_in_kernel(vcpu))
5928                 state |= PERF_GUEST_USER;
5929
5930         return state;
5931 }
5932
5933 static unsigned long kvm_guest_get_ip(void)
5934 {
5935         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
5936
5937         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
5938         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
5939                 return 0;
5940
5941         return kvm_arch_vcpu_get_ip(vcpu);
5942 }
5943
5944 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5945         .state                  = kvm_guest_state,
5946         .get_ip                 = kvm_guest_get_ip,
5947         .handle_intel_pt_intr   = NULL,
5948 };
5949
5950 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
5951 {
5952         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
5953         perf_register_guest_info_callbacks(&kvm_guest_cbs);
5954 }
5955 void kvm_unregister_perf_callbacks(void)
5956 {
5957         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5958 }
5959 #endif
5960
5961 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
5962 {
5963         int r;
5964         int cpu;
5965
5966 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5967         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5968                                       kvm_online_cpu, kvm_offline_cpu);
5969         if (r)
5970                 return r;
5971
5972         register_reboot_notifier(&kvm_reboot_notifier);
5973         register_syscore_ops(&kvm_syscore_ops);
5974 #endif
5975
5976         /* A kmem cache lets us meet the alignment requirements of fx_save. */
5977         if (!vcpu_align)
5978                 vcpu_align = __alignof__(struct kvm_vcpu);
5979         kvm_vcpu_cache =
5980                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
5981                                            SLAB_ACCOUNT,
5982                                            offsetof(struct kvm_vcpu, arch),
5983                                            offsetofend(struct kvm_vcpu, stats_id)
5984                                            - offsetof(struct kvm_vcpu, arch),
5985                                            NULL);
5986         if (!kvm_vcpu_cache) {
5987                 r = -ENOMEM;
5988                 goto err_vcpu_cache;
5989         }
5990
5991         for_each_possible_cpu(cpu) {
5992                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
5993                                             GFP_KERNEL, cpu_to_node(cpu))) {
5994                         r = -ENOMEM;
5995                         goto err_cpu_kick_mask;
5996                 }
5997         }
5998
5999         r = kvm_irqfd_init();
6000         if (r)
6001                 goto err_irqfd;
6002
6003         r = kvm_async_pf_init();
6004         if (r)
6005                 goto err_async_pf;
6006
6007         kvm_chardev_ops.owner = module;
6008
6009         kvm_preempt_ops.sched_in = kvm_sched_in;
6010         kvm_preempt_ops.sched_out = kvm_sched_out;
6011
6012         kvm_init_debug();
6013
6014         r = kvm_vfio_ops_init();
6015         if (WARN_ON_ONCE(r))
6016                 goto err_vfio;
6017
6018         /*
6019          * Registration _must_ be the very last thing done, as this exposes
6020          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6021          */
6022         r = misc_register(&kvm_dev);
6023         if (r) {
6024                 pr_err("kvm: misc device register failed\n");
6025                 goto err_register;
6026         }
6027
6028         return 0;
6029
6030 err_register:
6031         kvm_vfio_ops_exit();
6032 err_vfio:
6033         kvm_async_pf_deinit();
6034 err_async_pf:
6035         kvm_irqfd_exit();
6036 err_irqfd:
6037 err_cpu_kick_mask:
6038         for_each_possible_cpu(cpu)
6039                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6040         kmem_cache_destroy(kvm_vcpu_cache);
6041 err_vcpu_cache:
6042 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6043         unregister_syscore_ops(&kvm_syscore_ops);
6044         unregister_reboot_notifier(&kvm_reboot_notifier);
6045         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6046 #endif
6047         return r;
6048 }
6049 EXPORT_SYMBOL_GPL(kvm_init);
6050
6051 void kvm_exit(void)
6052 {
6053         int cpu;
6054
6055         /*
6056          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6057          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6058          * to KVM while the module is being stopped.
6059          */
6060         misc_deregister(&kvm_dev);
6061
6062         debugfs_remove_recursive(kvm_debugfs_dir);
6063         for_each_possible_cpu(cpu)
6064                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6065         kmem_cache_destroy(kvm_vcpu_cache);
6066         kvm_vfio_ops_exit();
6067         kvm_async_pf_deinit();
6068 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6069         unregister_syscore_ops(&kvm_syscore_ops);
6070         unregister_reboot_notifier(&kvm_reboot_notifier);
6071         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6072 #endif
6073         kvm_irqfd_exit();
6074 }
6075 EXPORT_SYMBOL_GPL(kvm_exit);
6076
6077 struct kvm_vm_worker_thread_context {
6078         struct kvm *kvm;
6079         struct task_struct *parent;
6080         struct completion init_done;
6081         kvm_vm_thread_fn_t thread_fn;
6082         uintptr_t data;
6083         int err;
6084 };
6085
6086 static int kvm_vm_worker_thread(void *context)
6087 {
6088         /*
6089          * The init_context is allocated on the stack of the parent thread, so
6090          * we have to locally copy anything that is needed beyond initialization
6091          */
6092         struct kvm_vm_worker_thread_context *init_context = context;
6093         struct task_struct *parent;
6094         struct kvm *kvm = init_context->kvm;
6095         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6096         uintptr_t data = init_context->data;
6097         int err;
6098
6099         err = kthread_park(current);
6100         /* kthread_park(current) is never supposed to return an error */
6101         WARN_ON(err != 0);
6102         if (err)
6103                 goto init_complete;
6104
6105         err = cgroup_attach_task_all(init_context->parent, current);
6106         if (err) {
6107                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6108                         __func__, err);
6109                 goto init_complete;
6110         }
6111
6112         set_user_nice(current, task_nice(init_context->parent));
6113
6114 init_complete:
6115         init_context->err = err;
6116         complete(&init_context->init_done);
6117         init_context = NULL;
6118
6119         if (err)
6120                 goto out;
6121
6122         /* Wait to be woken up by the spawner before proceeding. */
6123         kthread_parkme();
6124
6125         if (!kthread_should_stop())
6126                 err = thread_fn(kvm, data);
6127
6128 out:
6129         /*
6130          * Move kthread back to its original cgroup to prevent it lingering in
6131          * the cgroup of the VM process, after the latter finishes its
6132          * execution.
6133          *
6134          * kthread_stop() waits on the 'exited' completion condition which is
6135          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6136          * kthread is removed from the cgroup in the cgroup_exit() which is
6137          * called after the exit_mm(). This causes the kthread_stop() to return
6138          * before the kthread actually quits the cgroup.
6139          */
6140         rcu_read_lock();
6141         parent = rcu_dereference(current->real_parent);
6142         get_task_struct(parent);
6143         rcu_read_unlock();
6144         cgroup_attach_task_all(parent, current);
6145         put_task_struct(parent);
6146
6147         return err;
6148 }
6149
6150 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6151                                 uintptr_t data, const char *name,
6152                                 struct task_struct **thread_ptr)
6153 {
6154         struct kvm_vm_worker_thread_context init_context = {};
6155         struct task_struct *thread;
6156
6157         *thread_ptr = NULL;
6158         init_context.kvm = kvm;
6159         init_context.parent = current;
6160         init_context.thread_fn = thread_fn;
6161         init_context.data = data;
6162         init_completion(&init_context.init_done);
6163
6164         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6165                              "%s-%d", name, task_pid_nr(current));
6166         if (IS_ERR(thread))
6167                 return PTR_ERR(thread);
6168
6169         /* kthread_run is never supposed to return NULL */
6170         WARN_ON(thread == NULL);
6171
6172         wait_for_completion(&init_context.init_done);
6173
6174         if (!init_context.err)
6175                 *thread_ptr = thread;
6176
6177         return init_context.err;
6178 }