splice: Make splice from a DAX file use copy_splice_read()
[linux-block.git] / fs / splice.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * "splice": joining two ropes together by interweaving their strands.
4  *
5  * This is the "extended pipe" functionality, where a pipe is used as
6  * an arbitrary in-memory buffer. Think of a pipe as a small kernel
7  * buffer that you can use to transfer data from one end to the other.
8  *
9  * The traditional unix read/write is extended with a "splice()" operation
10  * that transfers data buffers to or from a pipe buffer.
11  *
12  * Named by Larry McVoy, original implementation from Linus, extended by
13  * Jens to support splicing to files, network, direct splicing, etc and
14  * fixing lots of bugs.
15  *
16  * Copyright (C) 2005-2006 Jens Axboe <axboe@kernel.dk>
17  * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
18  * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
19  *
20  */
21 #include <linux/bvec.h>
22 #include <linux/fs.h>
23 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/splice.h>
26 #include <linux/memcontrol.h>
27 #include <linux/mm_inline.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/export.h>
31 #include <linux/syscalls.h>
32 #include <linux/uio.h>
33 #include <linux/fsnotify.h>
34 #include <linux/security.h>
35 #include <linux/gfp.h>
36 #include <linux/socket.h>
37 #include <linux/sched/signal.h>
38
39 #include "internal.h"
40
41 /*
42  * Splice doesn't support FMODE_NOWAIT. Since pipes may set this flag to
43  * indicate they support non-blocking reads or writes, we must clear it
44  * here if set to avoid blocking other users of this pipe if splice is
45  * being done on it.
46  */
47 static noinline void noinline pipe_clear_nowait(struct file *file)
48 {
49         fmode_t fmode = READ_ONCE(file->f_mode);
50
51         do {
52                 if (!(fmode & FMODE_NOWAIT))
53                         break;
54         } while (!try_cmpxchg(&file->f_mode, &fmode, fmode & ~FMODE_NOWAIT));
55 }
56
57 /*
58  * Attempt to steal a page from a pipe buffer. This should perhaps go into
59  * a vm helper function, it's already simplified quite a bit by the
60  * addition of remove_mapping(). If success is returned, the caller may
61  * attempt to reuse this page for another destination.
62  */
63 static bool page_cache_pipe_buf_try_steal(struct pipe_inode_info *pipe,
64                 struct pipe_buffer *buf)
65 {
66         struct folio *folio = page_folio(buf->page);
67         struct address_space *mapping;
68
69         folio_lock(folio);
70
71         mapping = folio_mapping(folio);
72         if (mapping) {
73                 WARN_ON(!folio_test_uptodate(folio));
74
75                 /*
76                  * At least for ext2 with nobh option, we need to wait on
77                  * writeback completing on this folio, since we'll remove it
78                  * from the pagecache.  Otherwise truncate wont wait on the
79                  * folio, allowing the disk blocks to be reused by someone else
80                  * before we actually wrote our data to them. fs corruption
81                  * ensues.
82                  */
83                 folio_wait_writeback(folio);
84
85                 if (folio_has_private(folio) &&
86                     !filemap_release_folio(folio, GFP_KERNEL))
87                         goto out_unlock;
88
89                 /*
90                  * If we succeeded in removing the mapping, set LRU flag
91                  * and return good.
92                  */
93                 if (remove_mapping(mapping, folio)) {
94                         buf->flags |= PIPE_BUF_FLAG_LRU;
95                         return true;
96                 }
97         }
98
99         /*
100          * Raced with truncate or failed to remove folio from current
101          * address space, unlock and return failure.
102          */
103 out_unlock:
104         folio_unlock(folio);
105         return false;
106 }
107
108 static void page_cache_pipe_buf_release(struct pipe_inode_info *pipe,
109                                         struct pipe_buffer *buf)
110 {
111         put_page(buf->page);
112         buf->flags &= ~PIPE_BUF_FLAG_LRU;
113 }
114
115 /*
116  * Check whether the contents of buf is OK to access. Since the content
117  * is a page cache page, IO may be in flight.
118  */
119 static int page_cache_pipe_buf_confirm(struct pipe_inode_info *pipe,
120                                        struct pipe_buffer *buf)
121 {
122         struct page *page = buf->page;
123         int err;
124
125         if (!PageUptodate(page)) {
126                 lock_page(page);
127
128                 /*
129                  * Page got truncated/unhashed. This will cause a 0-byte
130                  * splice, if this is the first page.
131                  */
132                 if (!page->mapping) {
133                         err = -ENODATA;
134                         goto error;
135                 }
136
137                 /*
138                  * Uh oh, read-error from disk.
139                  */
140                 if (!PageUptodate(page)) {
141                         err = -EIO;
142                         goto error;
143                 }
144
145                 /*
146                  * Page is ok afterall, we are done.
147                  */
148                 unlock_page(page);
149         }
150
151         return 0;
152 error:
153         unlock_page(page);
154         return err;
155 }
156
157 const struct pipe_buf_operations page_cache_pipe_buf_ops = {
158         .confirm        = page_cache_pipe_buf_confirm,
159         .release        = page_cache_pipe_buf_release,
160         .try_steal      = page_cache_pipe_buf_try_steal,
161         .get            = generic_pipe_buf_get,
162 };
163
164 static bool user_page_pipe_buf_try_steal(struct pipe_inode_info *pipe,
165                 struct pipe_buffer *buf)
166 {
167         if (!(buf->flags & PIPE_BUF_FLAG_GIFT))
168                 return false;
169
170         buf->flags |= PIPE_BUF_FLAG_LRU;
171         return generic_pipe_buf_try_steal(pipe, buf);
172 }
173
174 static const struct pipe_buf_operations user_page_pipe_buf_ops = {
175         .release        = page_cache_pipe_buf_release,
176         .try_steal      = user_page_pipe_buf_try_steal,
177         .get            = generic_pipe_buf_get,
178 };
179
180 static void wakeup_pipe_readers(struct pipe_inode_info *pipe)
181 {
182         smp_mb();
183         if (waitqueue_active(&pipe->rd_wait))
184                 wake_up_interruptible(&pipe->rd_wait);
185         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
186 }
187
188 /**
189  * splice_to_pipe - fill passed data into a pipe
190  * @pipe:       pipe to fill
191  * @spd:        data to fill
192  *
193  * Description:
194  *    @spd contains a map of pages and len/offset tuples, along with
195  *    the struct pipe_buf_operations associated with these pages. This
196  *    function will link that data to the pipe.
197  *
198  */
199 ssize_t splice_to_pipe(struct pipe_inode_info *pipe,
200                        struct splice_pipe_desc *spd)
201 {
202         unsigned int spd_pages = spd->nr_pages;
203         unsigned int tail = pipe->tail;
204         unsigned int head = pipe->head;
205         unsigned int mask = pipe->ring_size - 1;
206         int ret = 0, page_nr = 0;
207
208         if (!spd_pages)
209                 return 0;
210
211         if (unlikely(!pipe->readers)) {
212                 send_sig(SIGPIPE, current, 0);
213                 ret = -EPIPE;
214                 goto out;
215         }
216
217         while (!pipe_full(head, tail, pipe->max_usage)) {
218                 struct pipe_buffer *buf = &pipe->bufs[head & mask];
219
220                 buf->page = spd->pages[page_nr];
221                 buf->offset = spd->partial[page_nr].offset;
222                 buf->len = spd->partial[page_nr].len;
223                 buf->private = spd->partial[page_nr].private;
224                 buf->ops = spd->ops;
225                 buf->flags = 0;
226
227                 head++;
228                 pipe->head = head;
229                 page_nr++;
230                 ret += buf->len;
231
232                 if (!--spd->nr_pages)
233                         break;
234         }
235
236         if (!ret)
237                 ret = -EAGAIN;
238
239 out:
240         while (page_nr < spd_pages)
241                 spd->spd_release(spd, page_nr++);
242
243         return ret;
244 }
245 EXPORT_SYMBOL_GPL(splice_to_pipe);
246
247 ssize_t add_to_pipe(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
248 {
249         unsigned int head = pipe->head;
250         unsigned int tail = pipe->tail;
251         unsigned int mask = pipe->ring_size - 1;
252         int ret;
253
254         if (unlikely(!pipe->readers)) {
255                 send_sig(SIGPIPE, current, 0);
256                 ret = -EPIPE;
257         } else if (pipe_full(head, tail, pipe->max_usage)) {
258                 ret = -EAGAIN;
259         } else {
260                 pipe->bufs[head & mask] = *buf;
261                 pipe->head = head + 1;
262                 return buf->len;
263         }
264         pipe_buf_release(pipe, buf);
265         return ret;
266 }
267 EXPORT_SYMBOL(add_to_pipe);
268
269 /*
270  * Check if we need to grow the arrays holding pages and partial page
271  * descriptions.
272  */
273 int splice_grow_spd(const struct pipe_inode_info *pipe, struct splice_pipe_desc *spd)
274 {
275         unsigned int max_usage = READ_ONCE(pipe->max_usage);
276
277         spd->nr_pages_max = max_usage;
278         if (max_usage <= PIPE_DEF_BUFFERS)
279                 return 0;
280
281         spd->pages = kmalloc_array(max_usage, sizeof(struct page *), GFP_KERNEL);
282         spd->partial = kmalloc_array(max_usage, sizeof(struct partial_page),
283                                      GFP_KERNEL);
284
285         if (spd->pages && spd->partial)
286                 return 0;
287
288         kfree(spd->pages);
289         kfree(spd->partial);
290         return -ENOMEM;
291 }
292
293 void splice_shrink_spd(struct splice_pipe_desc *spd)
294 {
295         if (spd->nr_pages_max <= PIPE_DEF_BUFFERS)
296                 return;
297
298         kfree(spd->pages);
299         kfree(spd->partial);
300 }
301
302 /*
303  * Copy data from a file into pages and then splice those into the output pipe.
304  */
305 ssize_t copy_splice_read(struct file *in, loff_t *ppos,
306                          struct pipe_inode_info *pipe,
307                          size_t len, unsigned int flags)
308 {
309         struct iov_iter to;
310         struct bio_vec *bv;
311         struct kiocb kiocb;
312         struct page **pages;
313         ssize_t ret;
314         size_t used, npages, chunk, remain, keep = 0;
315         int i;
316
317         /* Work out how much data we can actually add into the pipe */
318         used = pipe_occupancy(pipe->head, pipe->tail);
319         npages = max_t(ssize_t, pipe->max_usage - used, 0);
320         len = min_t(size_t, len, npages * PAGE_SIZE);
321         npages = DIV_ROUND_UP(len, PAGE_SIZE);
322
323         bv = kzalloc(array_size(npages, sizeof(bv[0])) +
324                      array_size(npages, sizeof(struct page *)), GFP_KERNEL);
325         if (!bv)
326                 return -ENOMEM;
327
328         pages = (struct page **)(bv + npages);
329         npages = alloc_pages_bulk_array(GFP_USER, npages, pages);
330         if (!npages) {
331                 kfree(bv);
332                 return -ENOMEM;
333         }
334
335         remain = len = min_t(size_t, len, npages * PAGE_SIZE);
336
337         for (i = 0; i < npages; i++) {
338                 chunk = min_t(size_t, PAGE_SIZE, remain);
339                 bv[i].bv_page = pages[i];
340                 bv[i].bv_offset = 0;
341                 bv[i].bv_len = chunk;
342                 remain -= chunk;
343         }
344
345         /* Do the I/O */
346         iov_iter_bvec(&to, ITER_DEST, bv, npages, len);
347         init_sync_kiocb(&kiocb, in);
348         kiocb.ki_pos = *ppos;
349         ret = call_read_iter(in, &kiocb, &to);
350
351         if (ret > 0) {
352                 keep = DIV_ROUND_UP(ret, PAGE_SIZE);
353                 *ppos = kiocb.ki_pos;
354                 file_accessed(in);
355         } else if (ret < 0) {
356                 /*
357                  * callers of ->splice_read() expect -EAGAIN on
358                  * "can't put anything in there", rather than -EFAULT.
359                  */
360                 if (ret == -EFAULT)
361                         ret = -EAGAIN;
362         }
363
364         /* Free any pages that didn't get touched at all. */
365         if (keep < npages)
366                 release_pages(pages + keep, npages - keep);
367
368         /* Push the remaining pages into the pipe. */
369         remain = ret;
370         for (i = 0; i < keep; i++) {
371                 struct pipe_buffer *buf = pipe_head_buf(pipe);
372
373                 chunk = min_t(size_t, remain, PAGE_SIZE);
374                 *buf = (struct pipe_buffer) {
375                         .ops    = &default_pipe_buf_ops,
376                         .page   = bv[i].bv_page,
377                         .offset = 0,
378                         .len    = chunk,
379                 };
380                 pipe->head++;
381                 remain -= chunk;
382         }
383
384         kfree(bv);
385         return ret;
386 }
387 EXPORT_SYMBOL(copy_splice_read);
388
389 /**
390  * generic_file_splice_read - splice data from file to a pipe
391  * @in:         file to splice from
392  * @ppos:       position in @in
393  * @pipe:       pipe to splice to
394  * @len:        number of bytes to splice
395  * @flags:      splice modifier flags
396  *
397  * Description:
398  *    Will read pages from given file and fill them into a pipe. Can be
399  *    used as long as it has more or less sane ->read_iter().
400  *
401  */
402 ssize_t generic_file_splice_read(struct file *in, loff_t *ppos,
403                                  struct pipe_inode_info *pipe, size_t len,
404                                  unsigned int flags)
405 {
406         struct iov_iter to;
407         struct kiocb kiocb;
408         int ret;
409
410         iov_iter_pipe(&to, ITER_DEST, pipe, len);
411         init_sync_kiocb(&kiocb, in);
412         kiocb.ki_pos = *ppos;
413         ret = call_read_iter(in, &kiocb, &to);
414         if (ret > 0) {
415                 *ppos = kiocb.ki_pos;
416                 file_accessed(in);
417         } else if (ret < 0) {
418                 /* free what was emitted */
419                 pipe_discard_from(pipe, to.start_head);
420                 /*
421                  * callers of ->splice_read() expect -EAGAIN on
422                  * "can't put anything in there", rather than -EFAULT.
423                  */
424                 if (ret == -EFAULT)
425                         ret = -EAGAIN;
426         }
427
428         return ret;
429 }
430 EXPORT_SYMBOL(generic_file_splice_read);
431
432 const struct pipe_buf_operations default_pipe_buf_ops = {
433         .release        = generic_pipe_buf_release,
434         .try_steal      = generic_pipe_buf_try_steal,
435         .get            = generic_pipe_buf_get,
436 };
437
438 /* Pipe buffer operations for a socket and similar. */
439 const struct pipe_buf_operations nosteal_pipe_buf_ops = {
440         .release        = generic_pipe_buf_release,
441         .get            = generic_pipe_buf_get,
442 };
443 EXPORT_SYMBOL(nosteal_pipe_buf_ops);
444
445 /*
446  * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
447  * using sendpage(). Return the number of bytes sent.
448  */
449 static int pipe_to_sendpage(struct pipe_inode_info *pipe,
450                             struct pipe_buffer *buf, struct splice_desc *sd)
451 {
452         struct file *file = sd->u.file;
453         loff_t pos = sd->pos;
454         int more;
455
456         if (!likely(file->f_op->sendpage))
457                 return -EINVAL;
458
459         more = (sd->flags & SPLICE_F_MORE) ? MSG_MORE : 0;
460
461         if (sd->len < sd->total_len &&
462             pipe_occupancy(pipe->head, pipe->tail) > 1)
463                 more |= MSG_SENDPAGE_NOTLAST;
464
465         return file->f_op->sendpage(file, buf->page, buf->offset,
466                                     sd->len, &pos, more);
467 }
468
469 static void wakeup_pipe_writers(struct pipe_inode_info *pipe)
470 {
471         smp_mb();
472         if (waitqueue_active(&pipe->wr_wait))
473                 wake_up_interruptible(&pipe->wr_wait);
474         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
475 }
476
477 /**
478  * splice_from_pipe_feed - feed available data from a pipe to a file
479  * @pipe:       pipe to splice from
480  * @sd:         information to @actor
481  * @actor:      handler that splices the data
482  *
483  * Description:
484  *    This function loops over the pipe and calls @actor to do the
485  *    actual moving of a single struct pipe_buffer to the desired
486  *    destination.  It returns when there's no more buffers left in
487  *    the pipe or if the requested number of bytes (@sd->total_len)
488  *    have been copied.  It returns a positive number (one) if the
489  *    pipe needs to be filled with more data, zero if the required
490  *    number of bytes have been copied and -errno on error.
491  *
492  *    This, together with splice_from_pipe_{begin,end,next}, may be
493  *    used to implement the functionality of __splice_from_pipe() when
494  *    locking is required around copying the pipe buffers to the
495  *    destination.
496  */
497 static int splice_from_pipe_feed(struct pipe_inode_info *pipe, struct splice_desc *sd,
498                           splice_actor *actor)
499 {
500         unsigned int head = pipe->head;
501         unsigned int tail = pipe->tail;
502         unsigned int mask = pipe->ring_size - 1;
503         int ret;
504
505         while (!pipe_empty(head, tail)) {
506                 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
507
508                 sd->len = buf->len;
509                 if (sd->len > sd->total_len)
510                         sd->len = sd->total_len;
511
512                 ret = pipe_buf_confirm(pipe, buf);
513                 if (unlikely(ret)) {
514                         if (ret == -ENODATA)
515                                 ret = 0;
516                         return ret;
517                 }
518
519                 ret = actor(pipe, buf, sd);
520                 if (ret <= 0)
521                         return ret;
522
523                 buf->offset += ret;
524                 buf->len -= ret;
525
526                 sd->num_spliced += ret;
527                 sd->len -= ret;
528                 sd->pos += ret;
529                 sd->total_len -= ret;
530
531                 if (!buf->len) {
532                         pipe_buf_release(pipe, buf);
533                         tail++;
534                         pipe->tail = tail;
535                         if (pipe->files)
536                                 sd->need_wakeup = true;
537                 }
538
539                 if (!sd->total_len)
540                         return 0;
541         }
542
543         return 1;
544 }
545
546 /* We know we have a pipe buffer, but maybe it's empty? */
547 static inline bool eat_empty_buffer(struct pipe_inode_info *pipe)
548 {
549         unsigned int tail = pipe->tail;
550         unsigned int mask = pipe->ring_size - 1;
551         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
552
553         if (unlikely(!buf->len)) {
554                 pipe_buf_release(pipe, buf);
555                 pipe->tail = tail+1;
556                 return true;
557         }
558
559         return false;
560 }
561
562 /**
563  * splice_from_pipe_next - wait for some data to splice from
564  * @pipe:       pipe to splice from
565  * @sd:         information about the splice operation
566  *
567  * Description:
568  *    This function will wait for some data and return a positive
569  *    value (one) if pipe buffers are available.  It will return zero
570  *    or -errno if no more data needs to be spliced.
571  */
572 static int splice_from_pipe_next(struct pipe_inode_info *pipe, struct splice_desc *sd)
573 {
574         /*
575          * Check for signal early to make process killable when there are
576          * always buffers available
577          */
578         if (signal_pending(current))
579                 return -ERESTARTSYS;
580
581 repeat:
582         while (pipe_empty(pipe->head, pipe->tail)) {
583                 if (!pipe->writers)
584                         return 0;
585
586                 if (sd->num_spliced)
587                         return 0;
588
589                 if (sd->flags & SPLICE_F_NONBLOCK)
590                         return -EAGAIN;
591
592                 if (signal_pending(current))
593                         return -ERESTARTSYS;
594
595                 if (sd->need_wakeup) {
596                         wakeup_pipe_writers(pipe);
597                         sd->need_wakeup = false;
598                 }
599
600                 pipe_wait_readable(pipe);
601         }
602
603         if (eat_empty_buffer(pipe))
604                 goto repeat;
605
606         return 1;
607 }
608
609 /**
610  * splice_from_pipe_begin - start splicing from pipe
611  * @sd:         information about the splice operation
612  *
613  * Description:
614  *    This function should be called before a loop containing
615  *    splice_from_pipe_next() and splice_from_pipe_feed() to
616  *    initialize the necessary fields of @sd.
617  */
618 static void splice_from_pipe_begin(struct splice_desc *sd)
619 {
620         sd->num_spliced = 0;
621         sd->need_wakeup = false;
622 }
623
624 /**
625  * splice_from_pipe_end - finish splicing from pipe
626  * @pipe:       pipe to splice from
627  * @sd:         information about the splice operation
628  *
629  * Description:
630  *    This function will wake up pipe writers if necessary.  It should
631  *    be called after a loop containing splice_from_pipe_next() and
632  *    splice_from_pipe_feed().
633  */
634 static void splice_from_pipe_end(struct pipe_inode_info *pipe, struct splice_desc *sd)
635 {
636         if (sd->need_wakeup)
637                 wakeup_pipe_writers(pipe);
638 }
639
640 /**
641  * __splice_from_pipe - splice data from a pipe to given actor
642  * @pipe:       pipe to splice from
643  * @sd:         information to @actor
644  * @actor:      handler that splices the data
645  *
646  * Description:
647  *    This function does little more than loop over the pipe and call
648  *    @actor to do the actual moving of a single struct pipe_buffer to
649  *    the desired destination. See pipe_to_file, pipe_to_sendpage, or
650  *    pipe_to_user.
651  *
652  */
653 ssize_t __splice_from_pipe(struct pipe_inode_info *pipe, struct splice_desc *sd,
654                            splice_actor *actor)
655 {
656         int ret;
657
658         splice_from_pipe_begin(sd);
659         do {
660                 cond_resched();
661                 ret = splice_from_pipe_next(pipe, sd);
662                 if (ret > 0)
663                         ret = splice_from_pipe_feed(pipe, sd, actor);
664         } while (ret > 0);
665         splice_from_pipe_end(pipe, sd);
666
667         return sd->num_spliced ? sd->num_spliced : ret;
668 }
669 EXPORT_SYMBOL(__splice_from_pipe);
670
671 /**
672  * splice_from_pipe - splice data from a pipe to a file
673  * @pipe:       pipe to splice from
674  * @out:        file to splice to
675  * @ppos:       position in @out
676  * @len:        how many bytes to splice
677  * @flags:      splice modifier flags
678  * @actor:      handler that splices the data
679  *
680  * Description:
681  *    See __splice_from_pipe. This function locks the pipe inode,
682  *    otherwise it's identical to __splice_from_pipe().
683  *
684  */
685 ssize_t splice_from_pipe(struct pipe_inode_info *pipe, struct file *out,
686                          loff_t *ppos, size_t len, unsigned int flags,
687                          splice_actor *actor)
688 {
689         ssize_t ret;
690         struct splice_desc sd = {
691                 .total_len = len,
692                 .flags = flags,
693                 .pos = *ppos,
694                 .u.file = out,
695         };
696
697         pipe_lock(pipe);
698         ret = __splice_from_pipe(pipe, &sd, actor);
699         pipe_unlock(pipe);
700
701         return ret;
702 }
703
704 /**
705  * iter_file_splice_write - splice data from a pipe to a file
706  * @pipe:       pipe info
707  * @out:        file to write to
708  * @ppos:       position in @out
709  * @len:        number of bytes to splice
710  * @flags:      splice modifier flags
711  *
712  * Description:
713  *    Will either move or copy pages (determined by @flags options) from
714  *    the given pipe inode to the given file.
715  *    This one is ->write_iter-based.
716  *
717  */
718 ssize_t
719 iter_file_splice_write(struct pipe_inode_info *pipe, struct file *out,
720                           loff_t *ppos, size_t len, unsigned int flags)
721 {
722         struct splice_desc sd = {
723                 .total_len = len,
724                 .flags = flags,
725                 .pos = *ppos,
726                 .u.file = out,
727         };
728         int nbufs = pipe->max_usage;
729         struct bio_vec *array = kcalloc(nbufs, sizeof(struct bio_vec),
730                                         GFP_KERNEL);
731         ssize_t ret;
732
733         if (unlikely(!array))
734                 return -ENOMEM;
735
736         pipe_lock(pipe);
737
738         splice_from_pipe_begin(&sd);
739         while (sd.total_len) {
740                 struct iov_iter from;
741                 unsigned int head, tail, mask;
742                 size_t left;
743                 int n;
744
745                 ret = splice_from_pipe_next(pipe, &sd);
746                 if (ret <= 0)
747                         break;
748
749                 if (unlikely(nbufs < pipe->max_usage)) {
750                         kfree(array);
751                         nbufs = pipe->max_usage;
752                         array = kcalloc(nbufs, sizeof(struct bio_vec),
753                                         GFP_KERNEL);
754                         if (!array) {
755                                 ret = -ENOMEM;
756                                 break;
757                         }
758                 }
759
760                 head = pipe->head;
761                 tail = pipe->tail;
762                 mask = pipe->ring_size - 1;
763
764                 /* build the vector */
765                 left = sd.total_len;
766                 for (n = 0; !pipe_empty(head, tail) && left && n < nbufs; tail++) {
767                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
768                         size_t this_len = buf->len;
769
770                         /* zero-length bvecs are not supported, skip them */
771                         if (!this_len)
772                                 continue;
773                         this_len = min(this_len, left);
774
775                         ret = pipe_buf_confirm(pipe, buf);
776                         if (unlikely(ret)) {
777                                 if (ret == -ENODATA)
778                                         ret = 0;
779                                 goto done;
780                         }
781
782                         bvec_set_page(&array[n], buf->page, this_len,
783                                       buf->offset);
784                         left -= this_len;
785                         n++;
786                 }
787
788                 iov_iter_bvec(&from, ITER_SOURCE, array, n, sd.total_len - left);
789                 ret = vfs_iter_write(out, &from, &sd.pos, 0);
790                 if (ret <= 0)
791                         break;
792
793                 sd.num_spliced += ret;
794                 sd.total_len -= ret;
795                 *ppos = sd.pos;
796
797                 /* dismiss the fully eaten buffers, adjust the partial one */
798                 tail = pipe->tail;
799                 while (ret) {
800                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
801                         if (ret >= buf->len) {
802                                 ret -= buf->len;
803                                 buf->len = 0;
804                                 pipe_buf_release(pipe, buf);
805                                 tail++;
806                                 pipe->tail = tail;
807                                 if (pipe->files)
808                                         sd.need_wakeup = true;
809                         } else {
810                                 buf->offset += ret;
811                                 buf->len -= ret;
812                                 ret = 0;
813                         }
814                 }
815         }
816 done:
817         kfree(array);
818         splice_from_pipe_end(pipe, &sd);
819
820         pipe_unlock(pipe);
821
822         if (sd.num_spliced)
823                 ret = sd.num_spliced;
824
825         return ret;
826 }
827
828 EXPORT_SYMBOL(iter_file_splice_write);
829
830 /**
831  * generic_splice_sendpage - splice data from a pipe to a socket
832  * @pipe:       pipe to splice from
833  * @out:        socket to write to
834  * @ppos:       position in @out
835  * @len:        number of bytes to splice
836  * @flags:      splice modifier flags
837  *
838  * Description:
839  *    Will send @len bytes from the pipe to a network socket. No data copying
840  *    is involved.
841  *
842  */
843 ssize_t generic_splice_sendpage(struct pipe_inode_info *pipe, struct file *out,
844                                 loff_t *ppos, size_t len, unsigned int flags)
845 {
846         return splice_from_pipe(pipe, out, ppos, len, flags, pipe_to_sendpage);
847 }
848
849 EXPORT_SYMBOL(generic_splice_sendpage);
850
851 static int warn_unsupported(struct file *file, const char *op)
852 {
853         pr_debug_ratelimited(
854                 "splice %s not supported for file %pD4 (pid: %d comm: %.20s)\n",
855                 op, file, current->pid, current->comm);
856         return -EINVAL;
857 }
858
859 /*
860  * Attempt to initiate a splice from pipe to file.
861  */
862 static long do_splice_from(struct pipe_inode_info *pipe, struct file *out,
863                            loff_t *ppos, size_t len, unsigned int flags)
864 {
865         if (unlikely(!out->f_op->splice_write))
866                 return warn_unsupported(out, "write");
867         return out->f_op->splice_write(pipe, out, ppos, len, flags);
868 }
869
870 /**
871  * vfs_splice_read - Read data from a file and splice it into a pipe
872  * @in:         File to splice from
873  * @ppos:       Input file offset
874  * @pipe:       Pipe to splice to
875  * @len:        Number of bytes to splice
876  * @flags:      Splice modifier flags (SPLICE_F_*)
877  *
878  * Splice the requested amount of data from the input file to the pipe.  This
879  * is synchronous as the caller must hold the pipe lock across the entire
880  * operation.
881  *
882  * If successful, it returns the amount of data spliced, 0 if it hit the EOF or
883  * a hole and a negative error code otherwise.
884  */
885 long vfs_splice_read(struct file *in, loff_t *ppos,
886                      struct pipe_inode_info *pipe, size_t len,
887                      unsigned int flags)
888 {
889         unsigned int p_space;
890         int ret;
891
892         if (unlikely(!(in->f_mode & FMODE_READ)))
893                 return -EBADF;
894         if (!len)
895                 return 0;
896
897         /* Don't try to read more the pipe has space for. */
898         p_space = pipe->max_usage - pipe_occupancy(pipe->head, pipe->tail);
899         len = min_t(size_t, len, p_space << PAGE_SHIFT);
900
901         ret = rw_verify_area(READ, in, ppos, len);
902         if (unlikely(ret < 0))
903                 return ret;
904
905         if (unlikely(len > MAX_RW_COUNT))
906                 len = MAX_RW_COUNT;
907
908         if (unlikely(!in->f_op->splice_read))
909                 return warn_unsupported(in, "read");
910         /*
911          * O_DIRECT and DAX don't deal with the pagecache, so we allocate a
912          * buffer, copy into it and splice that into the pipe.
913          */
914         if ((in->f_flags & O_DIRECT) || IS_DAX(in->f_mapping->host))
915                 return copy_splice_read(in, ppos, pipe, len, flags);
916         return in->f_op->splice_read(in, ppos, pipe, len, flags);
917 }
918 EXPORT_SYMBOL_GPL(vfs_splice_read);
919
920 /**
921  * splice_direct_to_actor - splices data directly between two non-pipes
922  * @in:         file to splice from
923  * @sd:         actor information on where to splice to
924  * @actor:      handles the data splicing
925  *
926  * Description:
927  *    This is a special case helper to splice directly between two
928  *    points, without requiring an explicit pipe. Internally an allocated
929  *    pipe is cached in the process, and reused during the lifetime of
930  *    that process.
931  *
932  */
933 ssize_t splice_direct_to_actor(struct file *in, struct splice_desc *sd,
934                                splice_direct_actor *actor)
935 {
936         struct pipe_inode_info *pipe;
937         long ret, bytes;
938         size_t len;
939         int i, flags, more;
940
941         /*
942          * We require the input to be seekable, as we don't want to randomly
943          * drop data for eg socket -> socket splicing. Use the piped splicing
944          * for that!
945          */
946         if (unlikely(!(in->f_mode & FMODE_LSEEK)))
947                 return -EINVAL;
948
949         /*
950          * neither in nor out is a pipe, setup an internal pipe attached to
951          * 'out' and transfer the wanted data from 'in' to 'out' through that
952          */
953         pipe = current->splice_pipe;
954         if (unlikely(!pipe)) {
955                 pipe = alloc_pipe_info();
956                 if (!pipe)
957                         return -ENOMEM;
958
959                 /*
960                  * We don't have an immediate reader, but we'll read the stuff
961                  * out of the pipe right after the splice_to_pipe(). So set
962                  * PIPE_READERS appropriately.
963                  */
964                 pipe->readers = 1;
965
966                 current->splice_pipe = pipe;
967         }
968
969         /*
970          * Do the splice.
971          */
972         bytes = 0;
973         len = sd->total_len;
974         flags = sd->flags;
975
976         /*
977          * Don't block on output, we have to drain the direct pipe.
978          */
979         sd->flags &= ~SPLICE_F_NONBLOCK;
980         more = sd->flags & SPLICE_F_MORE;
981
982         WARN_ON_ONCE(!pipe_empty(pipe->head, pipe->tail));
983
984         while (len) {
985                 size_t read_len;
986                 loff_t pos = sd->pos, prev_pos = pos;
987
988                 ret = vfs_splice_read(in, &pos, pipe, len, flags);
989                 if (unlikely(ret <= 0))
990                         goto out_release;
991
992                 read_len = ret;
993                 sd->total_len = read_len;
994
995                 /*
996                  * If more data is pending, set SPLICE_F_MORE
997                  * If this is the last data and SPLICE_F_MORE was not set
998                  * initially, clears it.
999                  */
1000                 if (read_len < len)
1001                         sd->flags |= SPLICE_F_MORE;
1002                 else if (!more)
1003                         sd->flags &= ~SPLICE_F_MORE;
1004                 /*
1005                  * NOTE: nonblocking mode only applies to the input. We
1006                  * must not do the output in nonblocking mode as then we
1007                  * could get stuck data in the internal pipe:
1008                  */
1009                 ret = actor(pipe, sd);
1010                 if (unlikely(ret <= 0)) {
1011                         sd->pos = prev_pos;
1012                         goto out_release;
1013                 }
1014
1015                 bytes += ret;
1016                 len -= ret;
1017                 sd->pos = pos;
1018
1019                 if (ret < read_len) {
1020                         sd->pos = prev_pos + ret;
1021                         goto out_release;
1022                 }
1023         }
1024
1025 done:
1026         pipe->tail = pipe->head = 0;
1027         file_accessed(in);
1028         return bytes;
1029
1030 out_release:
1031         /*
1032          * If we did an incomplete transfer we must release
1033          * the pipe buffers in question:
1034          */
1035         for (i = 0; i < pipe->ring_size; i++) {
1036                 struct pipe_buffer *buf = &pipe->bufs[i];
1037
1038                 if (buf->ops)
1039                         pipe_buf_release(pipe, buf);
1040         }
1041
1042         if (!bytes)
1043                 bytes = ret;
1044
1045         goto done;
1046 }
1047 EXPORT_SYMBOL(splice_direct_to_actor);
1048
1049 static int direct_splice_actor(struct pipe_inode_info *pipe,
1050                                struct splice_desc *sd)
1051 {
1052         struct file *file = sd->u.file;
1053
1054         return do_splice_from(pipe, file, sd->opos, sd->total_len,
1055                               sd->flags);
1056 }
1057
1058 /**
1059  * do_splice_direct - splices data directly between two files
1060  * @in:         file to splice from
1061  * @ppos:       input file offset
1062  * @out:        file to splice to
1063  * @opos:       output file offset
1064  * @len:        number of bytes to splice
1065  * @flags:      splice modifier flags
1066  *
1067  * Description:
1068  *    For use by do_sendfile(). splice can easily emulate sendfile, but
1069  *    doing it in the application would incur an extra system call
1070  *    (splice in + splice out, as compared to just sendfile()). So this helper
1071  *    can splice directly through a process-private pipe.
1072  *
1073  */
1074 long do_splice_direct(struct file *in, loff_t *ppos, struct file *out,
1075                       loff_t *opos, size_t len, unsigned int flags)
1076 {
1077         struct splice_desc sd = {
1078                 .len            = len,
1079                 .total_len      = len,
1080                 .flags          = flags,
1081                 .pos            = *ppos,
1082                 .u.file         = out,
1083                 .opos           = opos,
1084         };
1085         long ret;
1086
1087         if (unlikely(!(out->f_mode & FMODE_WRITE)))
1088                 return -EBADF;
1089
1090         if (unlikely(out->f_flags & O_APPEND))
1091                 return -EINVAL;
1092
1093         ret = rw_verify_area(WRITE, out, opos, len);
1094         if (unlikely(ret < 0))
1095                 return ret;
1096
1097         ret = splice_direct_to_actor(in, &sd, direct_splice_actor);
1098         if (ret > 0)
1099                 *ppos = sd.pos;
1100
1101         return ret;
1102 }
1103 EXPORT_SYMBOL(do_splice_direct);
1104
1105 static int wait_for_space(struct pipe_inode_info *pipe, unsigned flags)
1106 {
1107         for (;;) {
1108                 if (unlikely(!pipe->readers)) {
1109                         send_sig(SIGPIPE, current, 0);
1110                         return -EPIPE;
1111                 }
1112                 if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1113                         return 0;
1114                 if (flags & SPLICE_F_NONBLOCK)
1115                         return -EAGAIN;
1116                 if (signal_pending(current))
1117                         return -ERESTARTSYS;
1118                 pipe_wait_writable(pipe);
1119         }
1120 }
1121
1122 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1123                                struct pipe_inode_info *opipe,
1124                                size_t len, unsigned int flags);
1125
1126 long splice_file_to_pipe(struct file *in,
1127                          struct pipe_inode_info *opipe,
1128                          loff_t *offset,
1129                          size_t len, unsigned int flags)
1130 {
1131         long ret;
1132
1133         pipe_lock(opipe);
1134         ret = wait_for_space(opipe, flags);
1135         if (!ret)
1136                 ret = vfs_splice_read(in, offset, opipe, len, flags);
1137         pipe_unlock(opipe);
1138         if (ret > 0)
1139                 wakeup_pipe_readers(opipe);
1140         return ret;
1141 }
1142
1143 /*
1144  * Determine where to splice to/from.
1145  */
1146 long do_splice(struct file *in, loff_t *off_in, struct file *out,
1147                loff_t *off_out, size_t len, unsigned int flags)
1148 {
1149         struct pipe_inode_info *ipipe;
1150         struct pipe_inode_info *opipe;
1151         loff_t offset;
1152         long ret;
1153
1154         if (unlikely(!(in->f_mode & FMODE_READ) ||
1155                      !(out->f_mode & FMODE_WRITE)))
1156                 return -EBADF;
1157
1158         ipipe = get_pipe_info(in, true);
1159         opipe = get_pipe_info(out, true);
1160
1161         if (ipipe && opipe) {
1162                 if (off_in || off_out)
1163                         return -ESPIPE;
1164
1165                 /* Splicing to self would be fun, but... */
1166                 if (ipipe == opipe)
1167                         return -EINVAL;
1168
1169                 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1170                         flags |= SPLICE_F_NONBLOCK;
1171
1172                 return splice_pipe_to_pipe(ipipe, opipe, len, flags);
1173         }
1174
1175         if (ipipe) {
1176                 if (off_in)
1177                         return -ESPIPE;
1178                 if (off_out) {
1179                         if (!(out->f_mode & FMODE_PWRITE))
1180                                 return -EINVAL;
1181                         offset = *off_out;
1182                 } else {
1183                         offset = out->f_pos;
1184                 }
1185
1186                 if (unlikely(out->f_flags & O_APPEND))
1187                         return -EINVAL;
1188
1189                 ret = rw_verify_area(WRITE, out, &offset, len);
1190                 if (unlikely(ret < 0))
1191                         return ret;
1192
1193                 if (in->f_flags & O_NONBLOCK)
1194                         flags |= SPLICE_F_NONBLOCK;
1195
1196                 file_start_write(out);
1197                 ret = do_splice_from(ipipe, out, &offset, len, flags);
1198                 file_end_write(out);
1199
1200                 if (ret > 0)
1201                         fsnotify_modify(out);
1202
1203                 if (!off_out)
1204                         out->f_pos = offset;
1205                 else
1206                         *off_out = offset;
1207
1208                 return ret;
1209         }
1210
1211         if (opipe) {
1212                 if (off_out)
1213                         return -ESPIPE;
1214                 if (off_in) {
1215                         if (!(in->f_mode & FMODE_PREAD))
1216                                 return -EINVAL;
1217                         offset = *off_in;
1218                 } else {
1219                         offset = in->f_pos;
1220                 }
1221
1222                 if (out->f_flags & O_NONBLOCK)
1223                         flags |= SPLICE_F_NONBLOCK;
1224
1225                 ret = splice_file_to_pipe(in, opipe, &offset, len, flags);
1226
1227                 if (ret > 0)
1228                         fsnotify_access(in);
1229
1230                 if (!off_in)
1231                         in->f_pos = offset;
1232                 else
1233                         *off_in = offset;
1234
1235                 return ret;
1236         }
1237
1238         return -EINVAL;
1239 }
1240
1241 static long __do_splice(struct file *in, loff_t __user *off_in,
1242                         struct file *out, loff_t __user *off_out,
1243                         size_t len, unsigned int flags)
1244 {
1245         struct pipe_inode_info *ipipe;
1246         struct pipe_inode_info *opipe;
1247         loff_t offset, *__off_in = NULL, *__off_out = NULL;
1248         long ret;
1249
1250         ipipe = get_pipe_info(in, true);
1251         opipe = get_pipe_info(out, true);
1252
1253         if (ipipe) {
1254                 if (off_in)
1255                         return -ESPIPE;
1256                 pipe_clear_nowait(in);
1257         }
1258         if (opipe) {
1259                 if (off_out)
1260                         return -ESPIPE;
1261                 pipe_clear_nowait(out);
1262         }
1263
1264         if (off_out) {
1265                 if (copy_from_user(&offset, off_out, sizeof(loff_t)))
1266                         return -EFAULT;
1267                 __off_out = &offset;
1268         }
1269         if (off_in) {
1270                 if (copy_from_user(&offset, off_in, sizeof(loff_t)))
1271                         return -EFAULT;
1272                 __off_in = &offset;
1273         }
1274
1275         ret = do_splice(in, __off_in, out, __off_out, len, flags);
1276         if (ret < 0)
1277                 return ret;
1278
1279         if (__off_out && copy_to_user(off_out, __off_out, sizeof(loff_t)))
1280                 return -EFAULT;
1281         if (__off_in && copy_to_user(off_in, __off_in, sizeof(loff_t)))
1282                 return -EFAULT;
1283
1284         return ret;
1285 }
1286
1287 static int iter_to_pipe(struct iov_iter *from,
1288                         struct pipe_inode_info *pipe,
1289                         unsigned flags)
1290 {
1291         struct pipe_buffer buf = {
1292                 .ops = &user_page_pipe_buf_ops,
1293                 .flags = flags
1294         };
1295         size_t total = 0;
1296         int ret = 0;
1297
1298         while (iov_iter_count(from)) {
1299                 struct page *pages[16];
1300                 ssize_t left;
1301                 size_t start;
1302                 int i, n;
1303
1304                 left = iov_iter_get_pages2(from, pages, ~0UL, 16, &start);
1305                 if (left <= 0) {
1306                         ret = left;
1307                         break;
1308                 }
1309
1310                 n = DIV_ROUND_UP(left + start, PAGE_SIZE);
1311                 for (i = 0; i < n; i++) {
1312                         int size = min_t(int, left, PAGE_SIZE - start);
1313
1314                         buf.page = pages[i];
1315                         buf.offset = start;
1316                         buf.len = size;
1317                         ret = add_to_pipe(pipe, &buf);
1318                         if (unlikely(ret < 0)) {
1319                                 iov_iter_revert(from, left);
1320                                 // this one got dropped by add_to_pipe()
1321                                 while (++i < n)
1322                                         put_page(pages[i]);
1323                                 goto out;
1324                         }
1325                         total += ret;
1326                         left -= size;
1327                         start = 0;
1328                 }
1329         }
1330 out:
1331         return total ? total : ret;
1332 }
1333
1334 static int pipe_to_user(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
1335                         struct splice_desc *sd)
1336 {
1337         int n = copy_page_to_iter(buf->page, buf->offset, sd->len, sd->u.data);
1338         return n == sd->len ? n : -EFAULT;
1339 }
1340
1341 /*
1342  * For lack of a better implementation, implement vmsplice() to userspace
1343  * as a simple copy of the pipes pages to the user iov.
1344  */
1345 static long vmsplice_to_user(struct file *file, struct iov_iter *iter,
1346                              unsigned int flags)
1347 {
1348         struct pipe_inode_info *pipe = get_pipe_info(file, true);
1349         struct splice_desc sd = {
1350                 .total_len = iov_iter_count(iter),
1351                 .flags = flags,
1352                 .u.data = iter
1353         };
1354         long ret = 0;
1355
1356         if (!pipe)
1357                 return -EBADF;
1358
1359         pipe_clear_nowait(file);
1360
1361         if (sd.total_len) {
1362                 pipe_lock(pipe);
1363                 ret = __splice_from_pipe(pipe, &sd, pipe_to_user);
1364                 pipe_unlock(pipe);
1365         }
1366
1367         return ret;
1368 }
1369
1370 /*
1371  * vmsplice splices a user address range into a pipe. It can be thought of
1372  * as splice-from-memory, where the regular splice is splice-from-file (or
1373  * to file). In both cases the output is a pipe, naturally.
1374  */
1375 static long vmsplice_to_pipe(struct file *file, struct iov_iter *iter,
1376                              unsigned int flags)
1377 {
1378         struct pipe_inode_info *pipe;
1379         long ret = 0;
1380         unsigned buf_flag = 0;
1381
1382         if (flags & SPLICE_F_GIFT)
1383                 buf_flag = PIPE_BUF_FLAG_GIFT;
1384
1385         pipe = get_pipe_info(file, true);
1386         if (!pipe)
1387                 return -EBADF;
1388
1389         pipe_clear_nowait(file);
1390
1391         pipe_lock(pipe);
1392         ret = wait_for_space(pipe, flags);
1393         if (!ret)
1394                 ret = iter_to_pipe(iter, pipe, buf_flag);
1395         pipe_unlock(pipe);
1396         if (ret > 0)
1397                 wakeup_pipe_readers(pipe);
1398         return ret;
1399 }
1400
1401 static int vmsplice_type(struct fd f, int *type)
1402 {
1403         if (!f.file)
1404                 return -EBADF;
1405         if (f.file->f_mode & FMODE_WRITE) {
1406                 *type = ITER_SOURCE;
1407         } else if (f.file->f_mode & FMODE_READ) {
1408                 *type = ITER_DEST;
1409         } else {
1410                 fdput(f);
1411                 return -EBADF;
1412         }
1413         return 0;
1414 }
1415
1416 /*
1417  * Note that vmsplice only really supports true splicing _from_ user memory
1418  * to a pipe, not the other way around. Splicing from user memory is a simple
1419  * operation that can be supported without any funky alignment restrictions
1420  * or nasty vm tricks. We simply map in the user memory and fill them into
1421  * a pipe. The reverse isn't quite as easy, though. There are two possible
1422  * solutions for that:
1423  *
1424  *      - memcpy() the data internally, at which point we might as well just
1425  *        do a regular read() on the buffer anyway.
1426  *      - Lots of nasty vm tricks, that are neither fast nor flexible (it
1427  *        has restriction limitations on both ends of the pipe).
1428  *
1429  * Currently we punt and implement it as a normal copy, see pipe_to_user().
1430  *
1431  */
1432 SYSCALL_DEFINE4(vmsplice, int, fd, const struct iovec __user *, uiov,
1433                 unsigned long, nr_segs, unsigned int, flags)
1434 {
1435         struct iovec iovstack[UIO_FASTIOV];
1436         struct iovec *iov = iovstack;
1437         struct iov_iter iter;
1438         ssize_t error;
1439         struct fd f;
1440         int type;
1441
1442         if (unlikely(flags & ~SPLICE_F_ALL))
1443                 return -EINVAL;
1444
1445         f = fdget(fd);
1446         error = vmsplice_type(f, &type);
1447         if (error)
1448                 return error;
1449
1450         error = import_iovec(type, uiov, nr_segs,
1451                              ARRAY_SIZE(iovstack), &iov, &iter);
1452         if (error < 0)
1453                 goto out_fdput;
1454
1455         if (!iov_iter_count(&iter))
1456                 error = 0;
1457         else if (type == ITER_SOURCE)
1458                 error = vmsplice_to_pipe(f.file, &iter, flags);
1459         else
1460                 error = vmsplice_to_user(f.file, &iter, flags);
1461
1462         kfree(iov);
1463 out_fdput:
1464         fdput(f);
1465         return error;
1466 }
1467
1468 SYSCALL_DEFINE6(splice, int, fd_in, loff_t __user *, off_in,
1469                 int, fd_out, loff_t __user *, off_out,
1470                 size_t, len, unsigned int, flags)
1471 {
1472         struct fd in, out;
1473         long error;
1474
1475         if (unlikely(!len))
1476                 return 0;
1477
1478         if (unlikely(flags & ~SPLICE_F_ALL))
1479                 return -EINVAL;
1480
1481         error = -EBADF;
1482         in = fdget(fd_in);
1483         if (in.file) {
1484                 out = fdget(fd_out);
1485                 if (out.file) {
1486                         error = __do_splice(in.file, off_in, out.file, off_out,
1487                                                 len, flags);
1488                         fdput(out);
1489                 }
1490                 fdput(in);
1491         }
1492         return error;
1493 }
1494
1495 /*
1496  * Make sure there's data to read. Wait for input if we can, otherwise
1497  * return an appropriate error.
1498  */
1499 static int ipipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1500 {
1501         int ret;
1502
1503         /*
1504          * Check the pipe occupancy without the inode lock first. This function
1505          * is speculative anyways, so missing one is ok.
1506          */
1507         if (!pipe_empty(pipe->head, pipe->tail))
1508                 return 0;
1509
1510         ret = 0;
1511         pipe_lock(pipe);
1512
1513         while (pipe_empty(pipe->head, pipe->tail)) {
1514                 if (signal_pending(current)) {
1515                         ret = -ERESTARTSYS;
1516                         break;
1517                 }
1518                 if (!pipe->writers)
1519                         break;
1520                 if (flags & SPLICE_F_NONBLOCK) {
1521                         ret = -EAGAIN;
1522                         break;
1523                 }
1524                 pipe_wait_readable(pipe);
1525         }
1526
1527         pipe_unlock(pipe);
1528         return ret;
1529 }
1530
1531 /*
1532  * Make sure there's writeable room. Wait for room if we can, otherwise
1533  * return an appropriate error.
1534  */
1535 static int opipe_prep(struct pipe_inode_info *pipe, unsigned int flags)
1536 {
1537         int ret;
1538
1539         /*
1540          * Check pipe occupancy without the inode lock first. This function
1541          * is speculative anyways, so missing one is ok.
1542          */
1543         if (!pipe_full(pipe->head, pipe->tail, pipe->max_usage))
1544                 return 0;
1545
1546         ret = 0;
1547         pipe_lock(pipe);
1548
1549         while (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
1550                 if (!pipe->readers) {
1551                         send_sig(SIGPIPE, current, 0);
1552                         ret = -EPIPE;
1553                         break;
1554                 }
1555                 if (flags & SPLICE_F_NONBLOCK) {
1556                         ret = -EAGAIN;
1557                         break;
1558                 }
1559                 if (signal_pending(current)) {
1560                         ret = -ERESTARTSYS;
1561                         break;
1562                 }
1563                 pipe_wait_writable(pipe);
1564         }
1565
1566         pipe_unlock(pipe);
1567         return ret;
1568 }
1569
1570 /*
1571  * Splice contents of ipipe to opipe.
1572  */
1573 static int splice_pipe_to_pipe(struct pipe_inode_info *ipipe,
1574                                struct pipe_inode_info *opipe,
1575                                size_t len, unsigned int flags)
1576 {
1577         struct pipe_buffer *ibuf, *obuf;
1578         unsigned int i_head, o_head;
1579         unsigned int i_tail, o_tail;
1580         unsigned int i_mask, o_mask;
1581         int ret = 0;
1582         bool input_wakeup = false;
1583
1584
1585 retry:
1586         ret = ipipe_prep(ipipe, flags);
1587         if (ret)
1588                 return ret;
1589
1590         ret = opipe_prep(opipe, flags);
1591         if (ret)
1592                 return ret;
1593
1594         /*
1595          * Potential ABBA deadlock, work around it by ordering lock
1596          * grabbing by pipe info address. Otherwise two different processes
1597          * could deadlock (one doing tee from A -> B, the other from B -> A).
1598          */
1599         pipe_double_lock(ipipe, opipe);
1600
1601         i_tail = ipipe->tail;
1602         i_mask = ipipe->ring_size - 1;
1603         o_head = opipe->head;
1604         o_mask = opipe->ring_size - 1;
1605
1606         do {
1607                 size_t o_len;
1608
1609                 if (!opipe->readers) {
1610                         send_sig(SIGPIPE, current, 0);
1611                         if (!ret)
1612                                 ret = -EPIPE;
1613                         break;
1614                 }
1615
1616                 i_head = ipipe->head;
1617                 o_tail = opipe->tail;
1618
1619                 if (pipe_empty(i_head, i_tail) && !ipipe->writers)
1620                         break;
1621
1622                 /*
1623                  * Cannot make any progress, because either the input
1624                  * pipe is empty or the output pipe is full.
1625                  */
1626                 if (pipe_empty(i_head, i_tail) ||
1627                     pipe_full(o_head, o_tail, opipe->max_usage)) {
1628                         /* Already processed some buffers, break */
1629                         if (ret)
1630                                 break;
1631
1632                         if (flags & SPLICE_F_NONBLOCK) {
1633                                 ret = -EAGAIN;
1634                                 break;
1635                         }
1636
1637                         /*
1638                          * We raced with another reader/writer and haven't
1639                          * managed to process any buffers.  A zero return
1640                          * value means EOF, so retry instead.
1641                          */
1642                         pipe_unlock(ipipe);
1643                         pipe_unlock(opipe);
1644                         goto retry;
1645                 }
1646
1647                 ibuf = &ipipe->bufs[i_tail & i_mask];
1648                 obuf = &opipe->bufs[o_head & o_mask];
1649
1650                 if (len >= ibuf->len) {
1651                         /*
1652                          * Simply move the whole buffer from ipipe to opipe
1653                          */
1654                         *obuf = *ibuf;
1655                         ibuf->ops = NULL;
1656                         i_tail++;
1657                         ipipe->tail = i_tail;
1658                         input_wakeup = true;
1659                         o_len = obuf->len;
1660                         o_head++;
1661                         opipe->head = o_head;
1662                 } else {
1663                         /*
1664                          * Get a reference to this pipe buffer,
1665                          * so we can copy the contents over.
1666                          */
1667                         if (!pipe_buf_get(ipipe, ibuf)) {
1668                                 if (ret == 0)
1669                                         ret = -EFAULT;
1670                                 break;
1671                         }
1672                         *obuf = *ibuf;
1673
1674                         /*
1675                          * Don't inherit the gift and merge flags, we need to
1676                          * prevent multiple steals of this page.
1677                          */
1678                         obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1679                         obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1680
1681                         obuf->len = len;
1682                         ibuf->offset += len;
1683                         ibuf->len -= len;
1684                         o_len = len;
1685                         o_head++;
1686                         opipe->head = o_head;
1687                 }
1688                 ret += o_len;
1689                 len -= o_len;
1690         } while (len);
1691
1692         pipe_unlock(ipipe);
1693         pipe_unlock(opipe);
1694
1695         /*
1696          * If we put data in the output pipe, wakeup any potential readers.
1697          */
1698         if (ret > 0)
1699                 wakeup_pipe_readers(opipe);
1700
1701         if (input_wakeup)
1702                 wakeup_pipe_writers(ipipe);
1703
1704         return ret;
1705 }
1706
1707 /*
1708  * Link contents of ipipe to opipe.
1709  */
1710 static int link_pipe(struct pipe_inode_info *ipipe,
1711                      struct pipe_inode_info *opipe,
1712                      size_t len, unsigned int flags)
1713 {
1714         struct pipe_buffer *ibuf, *obuf;
1715         unsigned int i_head, o_head;
1716         unsigned int i_tail, o_tail;
1717         unsigned int i_mask, o_mask;
1718         int ret = 0;
1719
1720         /*
1721          * Potential ABBA deadlock, work around it by ordering lock
1722          * grabbing by pipe info address. Otherwise two different processes
1723          * could deadlock (one doing tee from A -> B, the other from B -> A).
1724          */
1725         pipe_double_lock(ipipe, opipe);
1726
1727         i_tail = ipipe->tail;
1728         i_mask = ipipe->ring_size - 1;
1729         o_head = opipe->head;
1730         o_mask = opipe->ring_size - 1;
1731
1732         do {
1733                 if (!opipe->readers) {
1734                         send_sig(SIGPIPE, current, 0);
1735                         if (!ret)
1736                                 ret = -EPIPE;
1737                         break;
1738                 }
1739
1740                 i_head = ipipe->head;
1741                 o_tail = opipe->tail;
1742
1743                 /*
1744                  * If we have iterated all input buffers or run out of
1745                  * output room, break.
1746                  */
1747                 if (pipe_empty(i_head, i_tail) ||
1748                     pipe_full(o_head, o_tail, opipe->max_usage))
1749                         break;
1750
1751                 ibuf = &ipipe->bufs[i_tail & i_mask];
1752                 obuf = &opipe->bufs[o_head & o_mask];
1753
1754                 /*
1755                  * Get a reference to this pipe buffer,
1756                  * so we can copy the contents over.
1757                  */
1758                 if (!pipe_buf_get(ipipe, ibuf)) {
1759                         if (ret == 0)
1760                                 ret = -EFAULT;
1761                         break;
1762                 }
1763
1764                 *obuf = *ibuf;
1765
1766                 /*
1767                  * Don't inherit the gift and merge flag, we need to prevent
1768                  * multiple steals of this page.
1769                  */
1770                 obuf->flags &= ~PIPE_BUF_FLAG_GIFT;
1771                 obuf->flags &= ~PIPE_BUF_FLAG_CAN_MERGE;
1772
1773                 if (obuf->len > len)
1774                         obuf->len = len;
1775                 ret += obuf->len;
1776                 len -= obuf->len;
1777
1778                 o_head++;
1779                 opipe->head = o_head;
1780                 i_tail++;
1781         } while (len);
1782
1783         pipe_unlock(ipipe);
1784         pipe_unlock(opipe);
1785
1786         /*
1787          * If we put data in the output pipe, wakeup any potential readers.
1788          */
1789         if (ret > 0)
1790                 wakeup_pipe_readers(opipe);
1791
1792         return ret;
1793 }
1794
1795 /*
1796  * This is a tee(1) implementation that works on pipes. It doesn't copy
1797  * any data, it simply references the 'in' pages on the 'out' pipe.
1798  * The 'flags' used are the SPLICE_F_* variants, currently the only
1799  * applicable one is SPLICE_F_NONBLOCK.
1800  */
1801 long do_tee(struct file *in, struct file *out, size_t len, unsigned int flags)
1802 {
1803         struct pipe_inode_info *ipipe = get_pipe_info(in, true);
1804         struct pipe_inode_info *opipe = get_pipe_info(out, true);
1805         int ret = -EINVAL;
1806
1807         if (unlikely(!(in->f_mode & FMODE_READ) ||
1808                      !(out->f_mode & FMODE_WRITE)))
1809                 return -EBADF;
1810
1811         /*
1812          * Duplicate the contents of ipipe to opipe without actually
1813          * copying the data.
1814          */
1815         if (ipipe && opipe && ipipe != opipe) {
1816                 if ((in->f_flags | out->f_flags) & O_NONBLOCK)
1817                         flags |= SPLICE_F_NONBLOCK;
1818
1819                 /*
1820                  * Keep going, unless we encounter an error. The ipipe/opipe
1821                  * ordering doesn't really matter.
1822                  */
1823                 ret = ipipe_prep(ipipe, flags);
1824                 if (!ret) {
1825                         ret = opipe_prep(opipe, flags);
1826                         if (!ret)
1827                                 ret = link_pipe(ipipe, opipe, len, flags);
1828                 }
1829         }
1830
1831         return ret;
1832 }
1833
1834 SYSCALL_DEFINE4(tee, int, fdin, int, fdout, size_t, len, unsigned int, flags)
1835 {
1836         struct fd in, out;
1837         int error;
1838
1839         if (unlikely(flags & ~SPLICE_F_ALL))
1840                 return -EINVAL;
1841
1842         if (unlikely(!len))
1843                 return 0;
1844
1845         error = -EBADF;
1846         in = fdget(fdin);
1847         if (in.file) {
1848                 out = fdget(fdout);
1849                 if (out.file) {
1850                         error = do_tee(in.file, out.file, len, flags);
1851                         fdput(out);
1852                 }
1853                 fdput(in);
1854         }
1855
1856         return error;
1857 }