overlayfs: Implement splice-read
[linux-block.git] / fs / pipe.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/pipe.c
4  *
5  *  Copyright (C) 1991, 1992, 1999  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/file.h>
10 #include <linux/poll.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/fs.h>
15 #include <linux/log2.h>
16 #include <linux/mount.h>
17 #include <linux/pseudo_fs.h>
18 #include <linux/magic.h>
19 #include <linux/pipe_fs_i.h>
20 #include <linux/uio.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/audit.h>
24 #include <linux/syscalls.h>
25 #include <linux/fcntl.h>
26 #include <linux/memcontrol.h>
27 #include <linux/watch_queue.h>
28 #include <linux/sysctl.h>
29
30 #include <linux/uaccess.h>
31 #include <asm/ioctls.h>
32
33 #include "internal.h"
34
35 /*
36  * New pipe buffers will be restricted to this size while the user is exceeding
37  * their pipe buffer quota. The general pipe use case needs at least two
38  * buffers: one for data yet to be read, and one for new data. If this is less
39  * than two, then a write to a non-empty pipe may block even if the pipe is not
40  * full. This can occur with GNU make jobserver or similar uses of pipes as
41  * semaphores: multiple processes may be waiting to write tokens back to the
42  * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43  *
44  * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45  * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46  * emptied.
47  */
48 #define PIPE_MIN_DEF_BUFFERS 2
49
50 /*
51  * The max size that a non-root user is allowed to grow the pipe. Can
52  * be set by root in /proc/sys/fs/pipe-max-size
53  */
54 static unsigned int pipe_max_size = 1048576;
55
56 /* Maximum allocatable pages per user. Hard limit is unset by default, soft
57  * matches default values.
58  */
59 static unsigned long pipe_user_pages_hard;
60 static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62 /*
63  * We use head and tail indices that aren't masked off, except at the point of
64  * dereference, but rather they're allowed to wrap naturally.  This means there
65  * isn't a dead spot in the buffer, but the ring has to be a power of two and
66  * <= 2^31.
67  * -- David Howells 2019-09-23.
68  *
69  * Reads with count = 0 should always return 0.
70  * -- Julian Bradfield 1999-06-07.
71  *
72  * FIFOs and Pipes now generate SIGIO for both readers and writers.
73  * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74  *
75  * pipe_read & write cleanup
76  * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77  */
78
79 static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80 {
81         if (pipe->files)
82                 mutex_lock_nested(&pipe->mutex, subclass);
83 }
84
85 void pipe_lock(struct pipe_inode_info *pipe)
86 {
87         /*
88          * pipe_lock() nests non-pipe inode locks (for writing to a file)
89          */
90         pipe_lock_nested(pipe, I_MUTEX_PARENT);
91 }
92 EXPORT_SYMBOL(pipe_lock);
93
94 void pipe_unlock(struct pipe_inode_info *pipe)
95 {
96         if (pipe->files)
97                 mutex_unlock(&pipe->mutex);
98 }
99 EXPORT_SYMBOL(pipe_unlock);
100
101 static inline void __pipe_lock(struct pipe_inode_info *pipe)
102 {
103         mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104 }
105
106 static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107 {
108         mutex_unlock(&pipe->mutex);
109 }
110
111 void pipe_double_lock(struct pipe_inode_info *pipe1,
112                       struct pipe_inode_info *pipe2)
113 {
114         BUG_ON(pipe1 == pipe2);
115
116         if (pipe1 < pipe2) {
117                 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118                 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119         } else {
120                 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121                 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122         }
123 }
124
125 static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126                                   struct pipe_buffer *buf)
127 {
128         struct page *page = buf->page;
129
130         /*
131          * If nobody else uses this page, and we don't already have a
132          * temporary page, let's keep track of it as a one-deep
133          * allocation cache. (Otherwise just release our reference to it)
134          */
135         if (page_count(page) == 1 && !pipe->tmp_page)
136                 pipe->tmp_page = page;
137         else
138                 put_page(page);
139 }
140
141 static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142                 struct pipe_buffer *buf)
143 {
144         struct page *page = buf->page;
145
146         if (page_count(page) != 1)
147                 return false;
148         memcg_kmem_uncharge_page(page, 0);
149         __SetPageLocked(page);
150         return true;
151 }
152
153 /**
154  * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155  * @pipe:       the pipe that the buffer belongs to
156  * @buf:        the buffer to attempt to steal
157  *
158  * Description:
159  *      This function attempts to steal the &struct page attached to
160  *      @buf. If successful, this function returns 0 and returns with
161  *      the page locked. The caller may then reuse the page for whatever
162  *      he wishes; the typical use is insertion into a different file
163  *      page cache.
164  */
165 bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166                 struct pipe_buffer *buf)
167 {
168         struct page *page = buf->page;
169
170         /*
171          * A reference of one is golden, that means that the owner of this
172          * page is the only one holding a reference to it. lock the page
173          * and return OK.
174          */
175         if (page_count(page) == 1) {
176                 lock_page(page);
177                 return true;
178         }
179         return false;
180 }
181 EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183 /**
184  * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185  * @pipe:       the pipe that the buffer belongs to
186  * @buf:        the buffer to get a reference to
187  *
188  * Description:
189  *      This function grabs an extra reference to @buf. It's used in
190  *      the tee() system call, when we duplicate the buffers in one
191  *      pipe into another.
192  */
193 bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194 {
195         return try_get_page(buf->page);
196 }
197 EXPORT_SYMBOL(generic_pipe_buf_get);
198
199 /**
200  * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201  * @pipe:       the pipe that the buffer belongs to
202  * @buf:        the buffer to put a reference to
203  *
204  * Description:
205  *      This function releases a reference to @buf.
206  */
207 void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208                               struct pipe_buffer *buf)
209 {
210         put_page(buf->page);
211 }
212 EXPORT_SYMBOL(generic_pipe_buf_release);
213
214 static const struct pipe_buf_operations anon_pipe_buf_ops = {
215         .release        = anon_pipe_buf_release,
216         .try_steal      = anon_pipe_buf_try_steal,
217         .get            = generic_pipe_buf_get,
218 };
219
220 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221 static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222 {
223         unsigned int head = READ_ONCE(pipe->head);
224         unsigned int tail = READ_ONCE(pipe->tail);
225         unsigned int writers = READ_ONCE(pipe->writers);
226
227         return !pipe_empty(head, tail) || !writers;
228 }
229
230 static ssize_t
231 pipe_read(struct kiocb *iocb, struct iov_iter *to)
232 {
233         size_t total_len = iov_iter_count(to);
234         struct file *filp = iocb->ki_filp;
235         struct pipe_inode_info *pipe = filp->private_data;
236         bool was_full, wake_next_reader = false;
237         ssize_t ret;
238
239         /* Null read succeeds. */
240         if (unlikely(total_len == 0))
241                 return 0;
242
243         ret = 0;
244         __pipe_lock(pipe);
245
246         /*
247          * We only wake up writers if the pipe was full when we started
248          * reading in order to avoid unnecessary wakeups.
249          *
250          * But when we do wake up writers, we do so using a sync wakeup
251          * (WF_SYNC), because we want them to get going and generate more
252          * data for us.
253          */
254         was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255         for (;;) {
256                 /* Read ->head with a barrier vs post_one_notification() */
257                 unsigned int head = smp_load_acquire(&pipe->head);
258                 unsigned int tail = pipe->tail;
259                 unsigned int mask = pipe->ring_size - 1;
260
261 #ifdef CONFIG_WATCH_QUEUE
262                 if (pipe->note_loss) {
263                         struct watch_notification n;
264
265                         if (total_len < 8) {
266                                 if (ret == 0)
267                                         ret = -ENOBUFS;
268                                 break;
269                         }
270
271                         n.type = WATCH_TYPE_META;
272                         n.subtype = WATCH_META_LOSS_NOTIFICATION;
273                         n.info = watch_sizeof(n);
274                         if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275                                 if (ret == 0)
276                                         ret = -EFAULT;
277                                 break;
278                         }
279                         ret += sizeof(n);
280                         total_len -= sizeof(n);
281                         pipe->note_loss = false;
282                 }
283 #endif
284
285                 if (!pipe_empty(head, tail)) {
286                         struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287                         size_t chars = buf->len;
288                         size_t written;
289                         int error;
290
291                         if (chars > total_len) {
292                                 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293                                         if (ret == 0)
294                                                 ret = -ENOBUFS;
295                                         break;
296                                 }
297                                 chars = total_len;
298                         }
299
300                         error = pipe_buf_confirm(pipe, buf);
301                         if (error) {
302                                 if (!ret)
303                                         ret = error;
304                                 break;
305                         }
306
307                         written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308                         if (unlikely(written < chars)) {
309                                 if (!ret)
310                                         ret = -EFAULT;
311                                 break;
312                         }
313                         ret += chars;
314                         buf->offset += chars;
315                         buf->len -= chars;
316
317                         /* Was it a packet buffer? Clean up and exit */
318                         if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319                                 total_len = chars;
320                                 buf->len = 0;
321                         }
322
323                         if (!buf->len) {
324                                 pipe_buf_release(pipe, buf);
325                                 spin_lock_irq(&pipe->rd_wait.lock);
326 #ifdef CONFIG_WATCH_QUEUE
327                                 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328                                         pipe->note_loss = true;
329 #endif
330                                 tail++;
331                                 pipe->tail = tail;
332                                 spin_unlock_irq(&pipe->rd_wait.lock);
333                         }
334                         total_len -= chars;
335                         if (!total_len)
336                                 break;  /* common path: read succeeded */
337                         if (!pipe_empty(head, tail))    /* More to do? */
338                                 continue;
339                 }
340
341                 if (!pipe->writers)
342                         break;
343                 if (ret)
344                         break;
345                 if ((filp->f_flags & O_NONBLOCK) ||
346                     (iocb->ki_flags & IOCB_NOWAIT)) {
347                         ret = -EAGAIN;
348                         break;
349                 }
350                 __pipe_unlock(pipe);
351
352                 /*
353                  * We only get here if we didn't actually read anything.
354                  *
355                  * However, we could have seen (and removed) a zero-sized
356                  * pipe buffer, and might have made space in the buffers
357                  * that way.
358                  *
359                  * You can't make zero-sized pipe buffers by doing an empty
360                  * write (not even in packet mode), but they can happen if
361                  * the writer gets an EFAULT when trying to fill a buffer
362                  * that already got allocated and inserted in the buffer
363                  * array.
364                  *
365                  * So we still need to wake up any pending writers in the
366                  * _very_ unlikely case that the pipe was full, but we got
367                  * no data.
368                  */
369                 if (unlikely(was_full))
370                         wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
371                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
372
373                 /*
374                  * But because we didn't read anything, at this point we can
375                  * just return directly with -ERESTARTSYS if we're interrupted,
376                  * since we've done any required wakeups and there's no need
377                  * to mark anything accessed. And we've dropped the lock.
378                  */
379                 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
380                         return -ERESTARTSYS;
381
382                 __pipe_lock(pipe);
383                 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
384                 wake_next_reader = true;
385         }
386         if (pipe_empty(pipe->head, pipe->tail))
387                 wake_next_reader = false;
388         __pipe_unlock(pipe);
389
390         if (was_full)
391                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392         if (wake_next_reader)
393                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
394         kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395         if (ret > 0)
396                 file_accessed(filp);
397         return ret;
398 }
399
400 static inline int is_packetized(struct file *file)
401 {
402         return (file->f_flags & O_DIRECT) != 0;
403 }
404
405 /* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
406 static inline bool pipe_writable(const struct pipe_inode_info *pipe)
407 {
408         unsigned int head = READ_ONCE(pipe->head);
409         unsigned int tail = READ_ONCE(pipe->tail);
410         unsigned int max_usage = READ_ONCE(pipe->max_usage);
411
412         return !pipe_full(head, tail, max_usage) ||
413                 !READ_ONCE(pipe->readers);
414 }
415
416 static ssize_t
417 pipe_write(struct kiocb *iocb, struct iov_iter *from)
418 {
419         struct file *filp = iocb->ki_filp;
420         struct pipe_inode_info *pipe = filp->private_data;
421         unsigned int head;
422         ssize_t ret = 0;
423         size_t total_len = iov_iter_count(from);
424         ssize_t chars;
425         bool was_empty = false;
426         bool wake_next_writer = false;
427
428         /* Null write succeeds. */
429         if (unlikely(total_len == 0))
430                 return 0;
431
432         __pipe_lock(pipe);
433
434         if (!pipe->readers) {
435                 send_sig(SIGPIPE, current, 0);
436                 ret = -EPIPE;
437                 goto out;
438         }
439
440 #ifdef CONFIG_WATCH_QUEUE
441         if (pipe->watch_queue) {
442                 ret = -EXDEV;
443                 goto out;
444         }
445 #endif
446
447         /*
448          * If it wasn't empty we try to merge new data into
449          * the last buffer.
450          *
451          * That naturally merges small writes, but it also
452          * page-aligns the rest of the writes for large writes
453          * spanning multiple pages.
454          */
455         head = pipe->head;
456         was_empty = pipe_empty(head, pipe->tail);
457         chars = total_len & (PAGE_SIZE-1);
458         if (chars && !was_empty) {
459                 unsigned int mask = pipe->ring_size - 1;
460                 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
461                 int offset = buf->offset + buf->len;
462
463                 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
464                     offset + chars <= PAGE_SIZE) {
465                         ret = pipe_buf_confirm(pipe, buf);
466                         if (ret)
467                                 goto out;
468
469                         ret = copy_page_from_iter(buf->page, offset, chars, from);
470                         if (unlikely(ret < chars)) {
471                                 ret = -EFAULT;
472                                 goto out;
473                         }
474
475                         buf->len += ret;
476                         if (!iov_iter_count(from))
477                                 goto out;
478                 }
479         }
480
481         for (;;) {
482                 if (!pipe->readers) {
483                         send_sig(SIGPIPE, current, 0);
484                         if (!ret)
485                                 ret = -EPIPE;
486                         break;
487                 }
488
489                 head = pipe->head;
490                 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
491                         unsigned int mask = pipe->ring_size - 1;
492                         struct pipe_buffer *buf = &pipe->bufs[head & mask];
493                         struct page *page = pipe->tmp_page;
494                         int copied;
495
496                         if (!page) {
497                                 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
498                                 if (unlikely(!page)) {
499                                         ret = ret ? : -ENOMEM;
500                                         break;
501                                 }
502                                 pipe->tmp_page = page;
503                         }
504
505                         /* Allocate a slot in the ring in advance and attach an
506                          * empty buffer.  If we fault or otherwise fail to use
507                          * it, either the reader will consume it or it'll still
508                          * be there for the next write.
509                          */
510                         spin_lock_irq(&pipe->rd_wait.lock);
511
512                         head = pipe->head;
513                         if (pipe_full(head, pipe->tail, pipe->max_usage)) {
514                                 spin_unlock_irq(&pipe->rd_wait.lock);
515                                 continue;
516                         }
517
518                         pipe->head = head + 1;
519                         spin_unlock_irq(&pipe->rd_wait.lock);
520
521                         /* Insert it into the buffer array */
522                         buf = &pipe->bufs[head & mask];
523                         buf->page = page;
524                         buf->ops = &anon_pipe_buf_ops;
525                         buf->offset = 0;
526                         buf->len = 0;
527                         if (is_packetized(filp))
528                                 buf->flags = PIPE_BUF_FLAG_PACKET;
529                         else
530                                 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
531                         pipe->tmp_page = NULL;
532
533                         copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
534                         if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
535                                 if (!ret)
536                                         ret = -EFAULT;
537                                 break;
538                         }
539                         ret += copied;
540                         buf->offset = 0;
541                         buf->len = copied;
542
543                         if (!iov_iter_count(from))
544                                 break;
545                 }
546
547                 if (!pipe_full(head, pipe->tail, pipe->max_usage))
548                         continue;
549
550                 /* Wait for buffer space to become available. */
551                 if ((filp->f_flags & O_NONBLOCK) ||
552                     (iocb->ki_flags & IOCB_NOWAIT)) {
553                         if (!ret)
554                                 ret = -EAGAIN;
555                         break;
556                 }
557                 if (signal_pending(current)) {
558                         if (!ret)
559                                 ret = -ERESTARTSYS;
560                         break;
561                 }
562
563                 /*
564                  * We're going to release the pipe lock and wait for more
565                  * space. We wake up any readers if necessary, and then
566                  * after waiting we need to re-check whether the pipe
567                  * become empty while we dropped the lock.
568                  */
569                 __pipe_unlock(pipe);
570                 if (was_empty)
571                         wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
572                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
573                 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
574                 __pipe_lock(pipe);
575                 was_empty = pipe_empty(pipe->head, pipe->tail);
576                 wake_next_writer = true;
577         }
578 out:
579         if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
580                 wake_next_writer = false;
581         __pipe_unlock(pipe);
582
583         /*
584          * If we do do a wakeup event, we do a 'sync' wakeup, because we
585          * want the reader to start processing things asap, rather than
586          * leave the data pending.
587          *
588          * This is particularly important for small writes, because of
589          * how (for example) the GNU make jobserver uses small writes to
590          * wake up pending jobs
591          *
592          * Epoll nonsensically wants a wakeup whether the pipe
593          * was already empty or not.
594          */
595         if (was_empty || pipe->poll_usage)
596                 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
597         kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
598         if (wake_next_writer)
599                 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
600         if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
601                 int err = file_update_time(filp);
602                 if (err)
603                         ret = err;
604                 sb_end_write(file_inode(filp)->i_sb);
605         }
606         return ret;
607 }
608
609 static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
610 {
611         struct pipe_inode_info *pipe = filp->private_data;
612         unsigned int count, head, tail, mask;
613
614         switch (cmd) {
615         case FIONREAD:
616                 __pipe_lock(pipe);
617                 count = 0;
618                 head = pipe->head;
619                 tail = pipe->tail;
620                 mask = pipe->ring_size - 1;
621
622                 while (tail != head) {
623                         count += pipe->bufs[tail & mask].len;
624                         tail++;
625                 }
626                 __pipe_unlock(pipe);
627
628                 return put_user(count, (int __user *)arg);
629
630 #ifdef CONFIG_WATCH_QUEUE
631         case IOC_WATCH_QUEUE_SET_SIZE: {
632                 int ret;
633                 __pipe_lock(pipe);
634                 ret = watch_queue_set_size(pipe, arg);
635                 __pipe_unlock(pipe);
636                 return ret;
637         }
638
639         case IOC_WATCH_QUEUE_SET_FILTER:
640                 return watch_queue_set_filter(
641                         pipe, (struct watch_notification_filter __user *)arg);
642 #endif
643
644         default:
645                 return -ENOIOCTLCMD;
646         }
647 }
648
649 /* No kernel lock held - fine */
650 static __poll_t
651 pipe_poll(struct file *filp, poll_table *wait)
652 {
653         __poll_t mask;
654         struct pipe_inode_info *pipe = filp->private_data;
655         unsigned int head, tail;
656
657         /* Epoll has some historical nasty semantics, this enables them */
658         WRITE_ONCE(pipe->poll_usage, true);
659
660         /*
661          * Reading pipe state only -- no need for acquiring the semaphore.
662          *
663          * But because this is racy, the code has to add the
664          * entry to the poll table _first_ ..
665          */
666         if (filp->f_mode & FMODE_READ)
667                 poll_wait(filp, &pipe->rd_wait, wait);
668         if (filp->f_mode & FMODE_WRITE)
669                 poll_wait(filp, &pipe->wr_wait, wait);
670
671         /*
672          * .. and only then can you do the racy tests. That way,
673          * if something changes and you got it wrong, the poll
674          * table entry will wake you up and fix it.
675          */
676         head = READ_ONCE(pipe->head);
677         tail = READ_ONCE(pipe->tail);
678
679         mask = 0;
680         if (filp->f_mode & FMODE_READ) {
681                 if (!pipe_empty(head, tail))
682                         mask |= EPOLLIN | EPOLLRDNORM;
683                 if (!pipe->writers && filp->f_version != pipe->w_counter)
684                         mask |= EPOLLHUP;
685         }
686
687         if (filp->f_mode & FMODE_WRITE) {
688                 if (!pipe_full(head, tail, pipe->max_usage))
689                         mask |= EPOLLOUT | EPOLLWRNORM;
690                 /*
691                  * Most Unices do not set EPOLLERR for FIFOs but on Linux they
692                  * behave exactly like pipes for poll().
693                  */
694                 if (!pipe->readers)
695                         mask |= EPOLLERR;
696         }
697
698         return mask;
699 }
700
701 static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
702 {
703         int kill = 0;
704
705         spin_lock(&inode->i_lock);
706         if (!--pipe->files) {
707                 inode->i_pipe = NULL;
708                 kill = 1;
709         }
710         spin_unlock(&inode->i_lock);
711
712         if (kill)
713                 free_pipe_info(pipe);
714 }
715
716 static int
717 pipe_release(struct inode *inode, struct file *file)
718 {
719         struct pipe_inode_info *pipe = file->private_data;
720
721         __pipe_lock(pipe);
722         if (file->f_mode & FMODE_READ)
723                 pipe->readers--;
724         if (file->f_mode & FMODE_WRITE)
725                 pipe->writers--;
726
727         /* Was that the last reader or writer, but not the other side? */
728         if (!pipe->readers != !pipe->writers) {
729                 wake_up_interruptible_all(&pipe->rd_wait);
730                 wake_up_interruptible_all(&pipe->wr_wait);
731                 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
732                 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
733         }
734         __pipe_unlock(pipe);
735
736         put_pipe_info(inode, pipe);
737         return 0;
738 }
739
740 static int
741 pipe_fasync(int fd, struct file *filp, int on)
742 {
743         struct pipe_inode_info *pipe = filp->private_data;
744         int retval = 0;
745
746         __pipe_lock(pipe);
747         if (filp->f_mode & FMODE_READ)
748                 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
749         if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
750                 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
751                 if (retval < 0 && (filp->f_mode & FMODE_READ))
752                         /* this can happen only if on == T */
753                         fasync_helper(-1, filp, 0, &pipe->fasync_readers);
754         }
755         __pipe_unlock(pipe);
756         return retval;
757 }
758
759 unsigned long account_pipe_buffers(struct user_struct *user,
760                                    unsigned long old, unsigned long new)
761 {
762         return atomic_long_add_return(new - old, &user->pipe_bufs);
763 }
764
765 bool too_many_pipe_buffers_soft(unsigned long user_bufs)
766 {
767         unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
768
769         return soft_limit && user_bufs > soft_limit;
770 }
771
772 bool too_many_pipe_buffers_hard(unsigned long user_bufs)
773 {
774         unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
775
776         return hard_limit && user_bufs > hard_limit;
777 }
778
779 bool pipe_is_unprivileged_user(void)
780 {
781         return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
782 }
783
784 struct pipe_inode_info *alloc_pipe_info(void)
785 {
786         struct pipe_inode_info *pipe;
787         unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
788         struct user_struct *user = get_current_user();
789         unsigned long user_bufs;
790         unsigned int max_size = READ_ONCE(pipe_max_size);
791
792         pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
793         if (pipe == NULL)
794                 goto out_free_uid;
795
796         if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
797                 pipe_bufs = max_size >> PAGE_SHIFT;
798
799         user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
800
801         if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
802                 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
803                 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
804         }
805
806         if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
807                 goto out_revert_acct;
808
809         pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
810                              GFP_KERNEL_ACCOUNT);
811
812         if (pipe->bufs) {
813                 init_waitqueue_head(&pipe->rd_wait);
814                 init_waitqueue_head(&pipe->wr_wait);
815                 pipe->r_counter = pipe->w_counter = 1;
816                 pipe->max_usage = pipe_bufs;
817                 pipe->ring_size = pipe_bufs;
818                 pipe->nr_accounted = pipe_bufs;
819                 pipe->user = user;
820                 mutex_init(&pipe->mutex);
821                 return pipe;
822         }
823
824 out_revert_acct:
825         (void) account_pipe_buffers(user, pipe_bufs, 0);
826         kfree(pipe);
827 out_free_uid:
828         free_uid(user);
829         return NULL;
830 }
831
832 void free_pipe_info(struct pipe_inode_info *pipe)
833 {
834         unsigned int i;
835
836 #ifdef CONFIG_WATCH_QUEUE
837         if (pipe->watch_queue)
838                 watch_queue_clear(pipe->watch_queue);
839 #endif
840
841         (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
842         free_uid(pipe->user);
843         for (i = 0; i < pipe->ring_size; i++) {
844                 struct pipe_buffer *buf = pipe->bufs + i;
845                 if (buf->ops)
846                         pipe_buf_release(pipe, buf);
847         }
848 #ifdef CONFIG_WATCH_QUEUE
849         if (pipe->watch_queue)
850                 put_watch_queue(pipe->watch_queue);
851 #endif
852         if (pipe->tmp_page)
853                 __free_page(pipe->tmp_page);
854         kfree(pipe->bufs);
855         kfree(pipe);
856 }
857
858 static struct vfsmount *pipe_mnt __read_mostly;
859
860 /*
861  * pipefs_dname() is called from d_path().
862  */
863 static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
864 {
865         return dynamic_dname(buffer, buflen, "pipe:[%lu]",
866                                 d_inode(dentry)->i_ino);
867 }
868
869 static const struct dentry_operations pipefs_dentry_operations = {
870         .d_dname        = pipefs_dname,
871 };
872
873 static struct inode * get_pipe_inode(void)
874 {
875         struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
876         struct pipe_inode_info *pipe;
877
878         if (!inode)
879                 goto fail_inode;
880
881         inode->i_ino = get_next_ino();
882
883         pipe = alloc_pipe_info();
884         if (!pipe)
885                 goto fail_iput;
886
887         inode->i_pipe = pipe;
888         pipe->files = 2;
889         pipe->readers = pipe->writers = 1;
890         inode->i_fop = &pipefifo_fops;
891
892         /*
893          * Mark the inode dirty from the very beginning,
894          * that way it will never be moved to the dirty
895          * list because "mark_inode_dirty()" will think
896          * that it already _is_ on the dirty list.
897          */
898         inode->i_state = I_DIRTY;
899         inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
900         inode->i_uid = current_fsuid();
901         inode->i_gid = current_fsgid();
902         inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
903
904         return inode;
905
906 fail_iput:
907         iput(inode);
908
909 fail_inode:
910         return NULL;
911 }
912
913 int create_pipe_files(struct file **res, int flags)
914 {
915         struct inode *inode = get_pipe_inode();
916         struct file *f;
917         int error;
918
919         if (!inode)
920                 return -ENFILE;
921
922         if (flags & O_NOTIFICATION_PIPE) {
923                 error = watch_queue_init(inode->i_pipe);
924                 if (error) {
925                         free_pipe_info(inode->i_pipe);
926                         iput(inode);
927                         return error;
928                 }
929         }
930
931         f = alloc_file_pseudo(inode, pipe_mnt, "",
932                                 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
933                                 &pipefifo_fops);
934         if (IS_ERR(f)) {
935                 free_pipe_info(inode->i_pipe);
936                 iput(inode);
937                 return PTR_ERR(f);
938         }
939
940         f->private_data = inode->i_pipe;
941
942         res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
943                                   &pipefifo_fops);
944         if (IS_ERR(res[0])) {
945                 put_pipe_info(inode, inode->i_pipe);
946                 fput(f);
947                 return PTR_ERR(res[0]);
948         }
949         res[0]->private_data = inode->i_pipe;
950         res[1] = f;
951         stream_open(inode, res[0]);
952         stream_open(inode, res[1]);
953         return 0;
954 }
955
956 static int __do_pipe_flags(int *fd, struct file **files, int flags)
957 {
958         int error;
959         int fdw, fdr;
960
961         if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
962                 return -EINVAL;
963
964         error = create_pipe_files(files, flags);
965         if (error)
966                 return error;
967
968         error = get_unused_fd_flags(flags);
969         if (error < 0)
970                 goto err_read_pipe;
971         fdr = error;
972
973         error = get_unused_fd_flags(flags);
974         if (error < 0)
975                 goto err_fdr;
976         fdw = error;
977
978         audit_fd_pair(fdr, fdw);
979         fd[0] = fdr;
980         fd[1] = fdw;
981         /* pipe groks IOCB_NOWAIT */
982         files[0]->f_mode |= FMODE_NOWAIT;
983         files[1]->f_mode |= FMODE_NOWAIT;
984         return 0;
985
986  err_fdr:
987         put_unused_fd(fdr);
988  err_read_pipe:
989         fput(files[0]);
990         fput(files[1]);
991         return error;
992 }
993
994 int do_pipe_flags(int *fd, int flags)
995 {
996         struct file *files[2];
997         int error = __do_pipe_flags(fd, files, flags);
998         if (!error) {
999                 fd_install(fd[0], files[0]);
1000                 fd_install(fd[1], files[1]);
1001         }
1002         return error;
1003 }
1004
1005 /*
1006  * sys_pipe() is the normal C calling standard for creating
1007  * a pipe. It's not the way Unix traditionally does this, though.
1008  */
1009 static int do_pipe2(int __user *fildes, int flags)
1010 {
1011         struct file *files[2];
1012         int fd[2];
1013         int error;
1014
1015         error = __do_pipe_flags(fd, files, flags);
1016         if (!error) {
1017                 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1018                         fput(files[0]);
1019                         fput(files[1]);
1020                         put_unused_fd(fd[0]);
1021                         put_unused_fd(fd[1]);
1022                         error = -EFAULT;
1023                 } else {
1024                         fd_install(fd[0], files[0]);
1025                         fd_install(fd[1], files[1]);
1026                 }
1027         }
1028         return error;
1029 }
1030
1031 SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1032 {
1033         return do_pipe2(fildes, flags);
1034 }
1035
1036 SYSCALL_DEFINE1(pipe, int __user *, fildes)
1037 {
1038         return do_pipe2(fildes, 0);
1039 }
1040
1041 /*
1042  * This is the stupid "wait for pipe to be readable or writable"
1043  * model.
1044  *
1045  * See pipe_read/write() for the proper kind of exclusive wait,
1046  * but that requires that we wake up any other readers/writers
1047  * if we then do not end up reading everything (ie the whole
1048  * "wake_next_reader/writer" logic in pipe_read/write()).
1049  */
1050 void pipe_wait_readable(struct pipe_inode_info *pipe)
1051 {
1052         pipe_unlock(pipe);
1053         wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1054         pipe_lock(pipe);
1055 }
1056
1057 void pipe_wait_writable(struct pipe_inode_info *pipe)
1058 {
1059         pipe_unlock(pipe);
1060         wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1061         pipe_lock(pipe);
1062 }
1063
1064 /*
1065  * This depends on both the wait (here) and the wakeup (wake_up_partner)
1066  * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1067  * race with the count check and waitqueue prep.
1068  *
1069  * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1070  * then check the condition you're waiting for, and only then sleep. But
1071  * because of the pipe lock, we can check the condition before being on
1072  * the wait queue.
1073  *
1074  * We use the 'rd_wait' waitqueue for pipe partner waiting.
1075  */
1076 static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1077 {
1078         DEFINE_WAIT(rdwait);
1079         int cur = *cnt;
1080
1081         while (cur == *cnt) {
1082                 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1083                 pipe_unlock(pipe);
1084                 schedule();
1085                 finish_wait(&pipe->rd_wait, &rdwait);
1086                 pipe_lock(pipe);
1087                 if (signal_pending(current))
1088                         break;
1089         }
1090         return cur == *cnt ? -ERESTARTSYS : 0;
1091 }
1092
1093 static void wake_up_partner(struct pipe_inode_info *pipe)
1094 {
1095         wake_up_interruptible_all(&pipe->rd_wait);
1096 }
1097
1098 static int fifo_open(struct inode *inode, struct file *filp)
1099 {
1100         struct pipe_inode_info *pipe;
1101         bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1102         int ret;
1103
1104         filp->f_version = 0;
1105
1106         spin_lock(&inode->i_lock);
1107         if (inode->i_pipe) {
1108                 pipe = inode->i_pipe;
1109                 pipe->files++;
1110                 spin_unlock(&inode->i_lock);
1111         } else {
1112                 spin_unlock(&inode->i_lock);
1113                 pipe = alloc_pipe_info();
1114                 if (!pipe)
1115                         return -ENOMEM;
1116                 pipe->files = 1;
1117                 spin_lock(&inode->i_lock);
1118                 if (unlikely(inode->i_pipe)) {
1119                         inode->i_pipe->files++;
1120                         spin_unlock(&inode->i_lock);
1121                         free_pipe_info(pipe);
1122                         pipe = inode->i_pipe;
1123                 } else {
1124                         inode->i_pipe = pipe;
1125                         spin_unlock(&inode->i_lock);
1126                 }
1127         }
1128         filp->private_data = pipe;
1129         /* OK, we have a pipe and it's pinned down */
1130
1131         __pipe_lock(pipe);
1132
1133         /* We can only do regular read/write on fifos */
1134         stream_open(inode, filp);
1135
1136         switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1137         case FMODE_READ:
1138         /*
1139          *  O_RDONLY
1140          *  POSIX.1 says that O_NONBLOCK means return with the FIFO
1141          *  opened, even when there is no process writing the FIFO.
1142          */
1143                 pipe->r_counter++;
1144                 if (pipe->readers++ == 0)
1145                         wake_up_partner(pipe);
1146
1147                 if (!is_pipe && !pipe->writers) {
1148                         if ((filp->f_flags & O_NONBLOCK)) {
1149                                 /* suppress EPOLLHUP until we have
1150                                  * seen a writer */
1151                                 filp->f_version = pipe->w_counter;
1152                         } else {
1153                                 if (wait_for_partner(pipe, &pipe->w_counter))
1154                                         goto err_rd;
1155                         }
1156                 }
1157                 break;
1158
1159         case FMODE_WRITE:
1160         /*
1161          *  O_WRONLY
1162          *  POSIX.1 says that O_NONBLOCK means return -1 with
1163          *  errno=ENXIO when there is no process reading the FIFO.
1164          */
1165                 ret = -ENXIO;
1166                 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1167                         goto err;
1168
1169                 pipe->w_counter++;
1170                 if (!pipe->writers++)
1171                         wake_up_partner(pipe);
1172
1173                 if (!is_pipe && !pipe->readers) {
1174                         if (wait_for_partner(pipe, &pipe->r_counter))
1175                                 goto err_wr;
1176                 }
1177                 break;
1178
1179         case FMODE_READ | FMODE_WRITE:
1180         /*
1181          *  O_RDWR
1182          *  POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1183          *  This implementation will NEVER block on a O_RDWR open, since
1184          *  the process can at least talk to itself.
1185          */
1186
1187                 pipe->readers++;
1188                 pipe->writers++;
1189                 pipe->r_counter++;
1190                 pipe->w_counter++;
1191                 if (pipe->readers == 1 || pipe->writers == 1)
1192                         wake_up_partner(pipe);
1193                 break;
1194
1195         default:
1196                 ret = -EINVAL;
1197                 goto err;
1198         }
1199
1200         /* Ok! */
1201         __pipe_unlock(pipe);
1202         return 0;
1203
1204 err_rd:
1205         if (!--pipe->readers)
1206                 wake_up_interruptible(&pipe->wr_wait);
1207         ret = -ERESTARTSYS;
1208         goto err;
1209
1210 err_wr:
1211         if (!--pipe->writers)
1212                 wake_up_interruptible_all(&pipe->rd_wait);
1213         ret = -ERESTARTSYS;
1214         goto err;
1215
1216 err:
1217         __pipe_unlock(pipe);
1218
1219         put_pipe_info(inode, pipe);
1220         return ret;
1221 }
1222
1223 const struct file_operations pipefifo_fops = {
1224         .open           = fifo_open,
1225         .llseek         = no_llseek,
1226         .read_iter      = pipe_read,
1227         .write_iter     = pipe_write,
1228         .poll           = pipe_poll,
1229         .unlocked_ioctl = pipe_ioctl,
1230         .release        = pipe_release,
1231         .fasync         = pipe_fasync,
1232         .splice_write   = iter_file_splice_write,
1233 };
1234
1235 /*
1236  * Currently we rely on the pipe array holding a power-of-2 number
1237  * of pages. Returns 0 on error.
1238  */
1239 unsigned int round_pipe_size(unsigned long size)
1240 {
1241         if (size > (1U << 31))
1242                 return 0;
1243
1244         /* Minimum pipe size, as required by POSIX */
1245         if (size < PAGE_SIZE)
1246                 return PAGE_SIZE;
1247
1248         return roundup_pow_of_two(size);
1249 }
1250
1251 /*
1252  * Resize the pipe ring to a number of slots.
1253  *
1254  * Note the pipe can be reduced in capacity, but only if the current
1255  * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1256  * returned instead.
1257  */
1258 int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1259 {
1260         struct pipe_buffer *bufs;
1261         unsigned int head, tail, mask, n;
1262
1263         bufs = kcalloc(nr_slots, sizeof(*bufs),
1264                        GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1265         if (unlikely(!bufs))
1266                 return -ENOMEM;
1267
1268         spin_lock_irq(&pipe->rd_wait.lock);
1269         mask = pipe->ring_size - 1;
1270         head = pipe->head;
1271         tail = pipe->tail;
1272
1273         n = pipe_occupancy(head, tail);
1274         if (nr_slots < n) {
1275                 spin_unlock_irq(&pipe->rd_wait.lock);
1276                 kfree(bufs);
1277                 return -EBUSY;
1278         }
1279
1280         /*
1281          * The pipe array wraps around, so just start the new one at zero
1282          * and adjust the indices.
1283          */
1284         if (n > 0) {
1285                 unsigned int h = head & mask;
1286                 unsigned int t = tail & mask;
1287                 if (h > t) {
1288                         memcpy(bufs, pipe->bufs + t,
1289                                n * sizeof(struct pipe_buffer));
1290                 } else {
1291                         unsigned int tsize = pipe->ring_size - t;
1292                         if (h > 0)
1293                                 memcpy(bufs + tsize, pipe->bufs,
1294                                        h * sizeof(struct pipe_buffer));
1295                         memcpy(bufs, pipe->bufs + t,
1296                                tsize * sizeof(struct pipe_buffer));
1297                 }
1298         }
1299
1300         head = n;
1301         tail = 0;
1302
1303         kfree(pipe->bufs);
1304         pipe->bufs = bufs;
1305         pipe->ring_size = nr_slots;
1306         if (pipe->max_usage > nr_slots)
1307                 pipe->max_usage = nr_slots;
1308         pipe->tail = tail;
1309         pipe->head = head;
1310
1311         spin_unlock_irq(&pipe->rd_wait.lock);
1312
1313         /* This might have made more room for writers */
1314         wake_up_interruptible(&pipe->wr_wait);
1315         return 0;
1316 }
1317
1318 /*
1319  * Allocate a new array of pipe buffers and copy the info over. Returns the
1320  * pipe size if successful, or return -ERROR on error.
1321  */
1322 static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1323 {
1324         unsigned long user_bufs;
1325         unsigned int nr_slots, size;
1326         long ret = 0;
1327
1328 #ifdef CONFIG_WATCH_QUEUE
1329         if (pipe->watch_queue)
1330                 return -EBUSY;
1331 #endif
1332
1333         size = round_pipe_size(arg);
1334         nr_slots = size >> PAGE_SHIFT;
1335
1336         if (!nr_slots)
1337                 return -EINVAL;
1338
1339         /*
1340          * If trying to increase the pipe capacity, check that an
1341          * unprivileged user is not trying to exceed various limits
1342          * (soft limit check here, hard limit check just below).
1343          * Decreasing the pipe capacity is always permitted, even
1344          * if the user is currently over a limit.
1345          */
1346         if (nr_slots > pipe->max_usage &&
1347                         size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1348                 return -EPERM;
1349
1350         user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1351
1352         if (nr_slots > pipe->max_usage &&
1353                         (too_many_pipe_buffers_hard(user_bufs) ||
1354                          too_many_pipe_buffers_soft(user_bufs)) &&
1355                         pipe_is_unprivileged_user()) {
1356                 ret = -EPERM;
1357                 goto out_revert_acct;
1358         }
1359
1360         ret = pipe_resize_ring(pipe, nr_slots);
1361         if (ret < 0)
1362                 goto out_revert_acct;
1363
1364         pipe->max_usage = nr_slots;
1365         pipe->nr_accounted = nr_slots;
1366         return pipe->max_usage * PAGE_SIZE;
1367
1368 out_revert_acct:
1369         (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1370         return ret;
1371 }
1372
1373 /*
1374  * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1375  * not enough to verify that this is a pipe.
1376  */
1377 struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1378 {
1379         struct pipe_inode_info *pipe = file->private_data;
1380
1381         if (file->f_op != &pipefifo_fops || !pipe)
1382                 return NULL;
1383 #ifdef CONFIG_WATCH_QUEUE
1384         if (for_splice && pipe->watch_queue)
1385                 return NULL;
1386 #endif
1387         return pipe;
1388 }
1389
1390 long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1391 {
1392         struct pipe_inode_info *pipe;
1393         long ret;
1394
1395         pipe = get_pipe_info(file, false);
1396         if (!pipe)
1397                 return -EBADF;
1398
1399         __pipe_lock(pipe);
1400
1401         switch (cmd) {
1402         case F_SETPIPE_SZ:
1403                 ret = pipe_set_size(pipe, arg);
1404                 break;
1405         case F_GETPIPE_SZ:
1406                 ret = pipe->max_usage * PAGE_SIZE;
1407                 break;
1408         default:
1409                 ret = -EINVAL;
1410                 break;
1411         }
1412
1413         __pipe_unlock(pipe);
1414         return ret;
1415 }
1416
1417 static const struct super_operations pipefs_ops = {
1418         .destroy_inode = free_inode_nonrcu,
1419         .statfs = simple_statfs,
1420 };
1421
1422 /*
1423  * pipefs should _never_ be mounted by userland - too much of security hassle,
1424  * no real gain from having the whole whorehouse mounted. So we don't need
1425  * any operations on the root directory. However, we need a non-trivial
1426  * d_name - pipe: will go nicely and kill the special-casing in procfs.
1427  */
1428
1429 static int pipefs_init_fs_context(struct fs_context *fc)
1430 {
1431         struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1432         if (!ctx)
1433                 return -ENOMEM;
1434         ctx->ops = &pipefs_ops;
1435         ctx->dops = &pipefs_dentry_operations;
1436         return 0;
1437 }
1438
1439 static struct file_system_type pipe_fs_type = {
1440         .name           = "pipefs",
1441         .init_fs_context = pipefs_init_fs_context,
1442         .kill_sb        = kill_anon_super,
1443 };
1444
1445 #ifdef CONFIG_SYSCTL
1446 static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1447                                         unsigned int *valp,
1448                                         int write, void *data)
1449 {
1450         if (write) {
1451                 unsigned int val;
1452
1453                 val = round_pipe_size(*lvalp);
1454                 if (val == 0)
1455                         return -EINVAL;
1456
1457                 *valp = val;
1458         } else {
1459                 unsigned int val = *valp;
1460                 *lvalp = (unsigned long) val;
1461         }
1462
1463         return 0;
1464 }
1465
1466 static int proc_dopipe_max_size(struct ctl_table *table, int write,
1467                                 void *buffer, size_t *lenp, loff_t *ppos)
1468 {
1469         return do_proc_douintvec(table, write, buffer, lenp, ppos,
1470                                  do_proc_dopipe_max_size_conv, NULL);
1471 }
1472
1473 static struct ctl_table fs_pipe_sysctls[] = {
1474         {
1475                 .procname       = "pipe-max-size",
1476                 .data           = &pipe_max_size,
1477                 .maxlen         = sizeof(pipe_max_size),
1478                 .mode           = 0644,
1479                 .proc_handler   = proc_dopipe_max_size,
1480         },
1481         {
1482                 .procname       = "pipe-user-pages-hard",
1483                 .data           = &pipe_user_pages_hard,
1484                 .maxlen         = sizeof(pipe_user_pages_hard),
1485                 .mode           = 0644,
1486                 .proc_handler   = proc_doulongvec_minmax,
1487         },
1488         {
1489                 .procname       = "pipe-user-pages-soft",
1490                 .data           = &pipe_user_pages_soft,
1491                 .maxlen         = sizeof(pipe_user_pages_soft),
1492                 .mode           = 0644,
1493                 .proc_handler   = proc_doulongvec_minmax,
1494         },
1495         { }
1496 };
1497 #endif
1498
1499 static int __init init_pipe_fs(void)
1500 {
1501         int err = register_filesystem(&pipe_fs_type);
1502
1503         if (!err) {
1504                 pipe_mnt = kern_mount(&pipe_fs_type);
1505                 if (IS_ERR(pipe_mnt)) {
1506                         err = PTR_ERR(pipe_mnt);
1507                         unregister_filesystem(&pipe_fs_type);
1508                 }
1509         }
1510 #ifdef CONFIG_SYSCTL
1511         register_sysctl_init("fs", fs_pipe_sysctls);
1512 #endif
1513         return err;
1514 }
1515
1516 fs_initcall(init_pipe_fs);