afs: Provide a splice-read wrapper
[linux-block.git] / fs / exec.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/stat.h>
32 #include <linux/fcntl.h>
33 #include <linux/swap.h>
34 #include <linux/string.h>
35 #include <linux/init.h>
36 #include <linux/sched/mm.h>
37 #include <linux/sched/coredump.h>
38 #include <linux/sched/signal.h>
39 #include <linux/sched/numa_balancing.h>
40 #include <linux/sched/task.h>
41 #include <linux/pagemap.h>
42 #include <linux/perf_event.h>
43 #include <linux/highmem.h>
44 #include <linux/spinlock.h>
45 #include <linux/key.h>
46 #include <linux/personality.h>
47 #include <linux/binfmts.h>
48 #include <linux/utsname.h>
49 #include <linux/pid_namespace.h>
50 #include <linux/module.h>
51 #include <linux/namei.h>
52 #include <linux/mount.h>
53 #include <linux/security.h>
54 #include <linux/syscalls.h>
55 #include <linux/tsacct_kern.h>
56 #include <linux/cn_proc.h>
57 #include <linux/audit.h>
58 #include <linux/kmod.h>
59 #include <linux/fsnotify.h>
60 #include <linux/fs_struct.h>
61 #include <linux/oom.h>
62 #include <linux/compat.h>
63 #include <linux/vmalloc.h>
64 #include <linux/io_uring.h>
65 #include <linux/syscall_user_dispatch.h>
66 #include <linux/coredump.h>
67 #include <linux/time_namespace.h>
68 #include <linux/user_events.h>
69
70 #include <linux/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/tlb.h>
73
74 #include <trace/events/task.h>
75 #include "internal.h"
76
77 #include <trace/events/sched.h>
78
79 static int bprm_creds_from_file(struct linux_binprm *bprm);
80
81 int suid_dumpable = 0;
82
83 static LIST_HEAD(formats);
84 static DEFINE_RWLOCK(binfmt_lock);
85
86 void __register_binfmt(struct linux_binfmt * fmt, int insert)
87 {
88         write_lock(&binfmt_lock);
89         insert ? list_add(&fmt->lh, &formats) :
90                  list_add_tail(&fmt->lh, &formats);
91         write_unlock(&binfmt_lock);
92 }
93
94 EXPORT_SYMBOL(__register_binfmt);
95
96 void unregister_binfmt(struct linux_binfmt * fmt)
97 {
98         write_lock(&binfmt_lock);
99         list_del(&fmt->lh);
100         write_unlock(&binfmt_lock);
101 }
102
103 EXPORT_SYMBOL(unregister_binfmt);
104
105 static inline void put_binfmt(struct linux_binfmt * fmt)
106 {
107         module_put(fmt->module);
108 }
109
110 bool path_noexec(const struct path *path)
111 {
112         return (path->mnt->mnt_flags & MNT_NOEXEC) ||
113                (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
114 }
115
116 #ifdef CONFIG_USELIB
117 /*
118  * Note that a shared library must be both readable and executable due to
119  * security reasons.
120  *
121  * Also note that we take the address to load from the file itself.
122  */
123 SYSCALL_DEFINE1(uselib, const char __user *, library)
124 {
125         struct linux_binfmt *fmt;
126         struct file *file;
127         struct filename *tmp = getname(library);
128         int error = PTR_ERR(tmp);
129         static const struct open_flags uselib_flags = {
130                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
131                 .acc_mode = MAY_READ | MAY_EXEC,
132                 .intent = LOOKUP_OPEN,
133                 .lookup_flags = LOOKUP_FOLLOW,
134         };
135
136         if (IS_ERR(tmp))
137                 goto out;
138
139         file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
140         putname(tmp);
141         error = PTR_ERR(file);
142         if (IS_ERR(file))
143                 goto out;
144
145         /*
146          * may_open() has already checked for this, so it should be
147          * impossible to trip now. But we need to be extra cautious
148          * and check again at the very end too.
149          */
150         error = -EACCES;
151         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
152                          path_noexec(&file->f_path)))
153                 goto exit;
154
155         fsnotify_open(file);
156
157         error = -ENOEXEC;
158
159         read_lock(&binfmt_lock);
160         list_for_each_entry(fmt, &formats, lh) {
161                 if (!fmt->load_shlib)
162                         continue;
163                 if (!try_module_get(fmt->module))
164                         continue;
165                 read_unlock(&binfmt_lock);
166                 error = fmt->load_shlib(file);
167                 read_lock(&binfmt_lock);
168                 put_binfmt(fmt);
169                 if (error != -ENOEXEC)
170                         break;
171         }
172         read_unlock(&binfmt_lock);
173 exit:
174         fput(file);
175 out:
176         return error;
177 }
178 #endif /* #ifdef CONFIG_USELIB */
179
180 #ifdef CONFIG_MMU
181 /*
182  * The nascent bprm->mm is not visible until exec_mmap() but it can
183  * use a lot of memory, account these pages in current->mm temporary
184  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
185  * change the counter back via acct_arg_size(0).
186  */
187 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
188 {
189         struct mm_struct *mm = current->mm;
190         long diff = (long)(pages - bprm->vma_pages);
191
192         if (!mm || !diff)
193                 return;
194
195         bprm->vma_pages = pages;
196         add_mm_counter(mm, MM_ANONPAGES, diff);
197 }
198
199 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
200                 int write)
201 {
202         struct page *page;
203         int ret;
204         unsigned int gup_flags = 0;
205
206 #ifdef CONFIG_STACK_GROWSUP
207         if (write) {
208                 ret = expand_downwards(bprm->vma, pos);
209                 if (ret < 0)
210                         return NULL;
211         }
212 #endif
213
214         if (write)
215                 gup_flags |= FOLL_WRITE;
216
217         /*
218          * We are doing an exec().  'current' is the process
219          * doing the exec and bprm->mm is the new process's mm.
220          */
221         mmap_read_lock(bprm->mm);
222         ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
223                         &page, NULL, NULL);
224         mmap_read_unlock(bprm->mm);
225         if (ret <= 0)
226                 return NULL;
227
228         if (write)
229                 acct_arg_size(bprm, vma_pages(bprm->vma));
230
231         return page;
232 }
233
234 static void put_arg_page(struct page *page)
235 {
236         put_page(page);
237 }
238
239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242
243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244                 struct page *page)
245 {
246         flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248
249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251         int err;
252         struct vm_area_struct *vma = NULL;
253         struct mm_struct *mm = bprm->mm;
254
255         bprm->vma = vma = vm_area_alloc(mm);
256         if (!vma)
257                 return -ENOMEM;
258         vma_set_anonymous(vma);
259
260         if (mmap_write_lock_killable(mm)) {
261                 err = -EINTR;
262                 goto err_free;
263         }
264
265         /*
266          * Place the stack at the largest stack address the architecture
267          * supports. Later, we'll move this to an appropriate place. We don't
268          * use STACK_TOP because that can depend on attributes which aren't
269          * configured yet.
270          */
271         BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272         vma->vm_end = STACK_TOP_MAX;
273         vma->vm_start = vma->vm_end - PAGE_SIZE;
274         vm_flags_init(vma, VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP);
275         vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
276
277         err = insert_vm_struct(mm, vma);
278         if (err)
279                 goto err;
280
281         mm->stack_vm = mm->total_vm = 1;
282         mmap_write_unlock(mm);
283         bprm->p = vma->vm_end - sizeof(void *);
284         return 0;
285 err:
286         mmap_write_unlock(mm);
287 err_free:
288         bprm->vma = NULL;
289         vm_area_free(vma);
290         return err;
291 }
292
293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
294 {
295         return len <= MAX_ARG_STRLEN;
296 }
297
298 #else
299
300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301 {
302 }
303
304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305                 int write)
306 {
307         struct page *page;
308
309         page = bprm->page[pos / PAGE_SIZE];
310         if (!page && write) {
311                 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312                 if (!page)
313                         return NULL;
314                 bprm->page[pos / PAGE_SIZE] = page;
315         }
316
317         return page;
318 }
319
320 static void put_arg_page(struct page *page)
321 {
322 }
323
324 static void free_arg_page(struct linux_binprm *bprm, int i)
325 {
326         if (bprm->page[i]) {
327                 __free_page(bprm->page[i]);
328                 bprm->page[i] = NULL;
329         }
330 }
331
332 static void free_arg_pages(struct linux_binprm *bprm)
333 {
334         int i;
335
336         for (i = 0; i < MAX_ARG_PAGES; i++)
337                 free_arg_page(bprm, i);
338 }
339
340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341                 struct page *page)
342 {
343 }
344
345 static int __bprm_mm_init(struct linux_binprm *bprm)
346 {
347         bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348         return 0;
349 }
350
351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
352 {
353         return len <= bprm->p;
354 }
355
356 #endif /* CONFIG_MMU */
357
358 /*
359  * Create a new mm_struct and populate it with a temporary stack
360  * vm_area_struct.  We don't have enough context at this point to set the stack
361  * flags, permissions, and offset, so we use temporary values.  We'll update
362  * them later in setup_arg_pages().
363  */
364 static int bprm_mm_init(struct linux_binprm *bprm)
365 {
366         int err;
367         struct mm_struct *mm = NULL;
368
369         bprm->mm = mm = mm_alloc();
370         err = -ENOMEM;
371         if (!mm)
372                 goto err;
373
374         /* Save current stack limit for all calculations made during exec. */
375         task_lock(current->group_leader);
376         bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377         task_unlock(current->group_leader);
378
379         err = __bprm_mm_init(bprm);
380         if (err)
381                 goto err;
382
383         return 0;
384
385 err:
386         if (mm) {
387                 bprm->mm = NULL;
388                 mmdrop(mm);
389         }
390
391         return err;
392 }
393
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396         bool is_compat;
397 #endif
398         union {
399                 const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401                 const compat_uptr_t __user *compat;
402 #endif
403         } ptr;
404 };
405
406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408         const char __user *native;
409
410 #ifdef CONFIG_COMPAT
411         if (unlikely(argv.is_compat)) {
412                 compat_uptr_t compat;
413
414                 if (get_user(compat, argv.ptr.compat + nr))
415                         return ERR_PTR(-EFAULT);
416
417                 return compat_ptr(compat);
418         }
419 #endif
420
421         if (get_user(native, argv.ptr.native + nr))
422                 return ERR_PTR(-EFAULT);
423
424         return native;
425 }
426
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
430 static int count(struct user_arg_ptr argv, int max)
431 {
432         int i = 0;
433
434         if (argv.ptr.native != NULL) {
435                 for (;;) {
436                         const char __user *p = get_user_arg_ptr(argv, i);
437
438                         if (!p)
439                                 break;
440
441                         if (IS_ERR(p))
442                                 return -EFAULT;
443
444                         if (i >= max)
445                                 return -E2BIG;
446                         ++i;
447
448                         if (fatal_signal_pending(current))
449                                 return -ERESTARTNOHAND;
450                         cond_resched();
451                 }
452         }
453         return i;
454 }
455
456 static int count_strings_kernel(const char *const *argv)
457 {
458         int i;
459
460         if (!argv)
461                 return 0;
462
463         for (i = 0; argv[i]; ++i) {
464                 if (i >= MAX_ARG_STRINGS)
465                         return -E2BIG;
466                 if (fatal_signal_pending(current))
467                         return -ERESTARTNOHAND;
468                 cond_resched();
469         }
470         return i;
471 }
472
473 static int bprm_stack_limits(struct linux_binprm *bprm)
474 {
475         unsigned long limit, ptr_size;
476
477         /*
478          * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479          * (whichever is smaller) for the argv+env strings.
480          * This ensures that:
481          *  - the remaining binfmt code will not run out of stack space,
482          *  - the program will have a reasonable amount of stack left
483          *    to work from.
484          */
485         limit = _STK_LIM / 4 * 3;
486         limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
487         /*
488          * We've historically supported up to 32 pages (ARG_MAX)
489          * of argument strings even with small stacks
490          */
491         limit = max_t(unsigned long, limit, ARG_MAX);
492         /*
493          * We must account for the size of all the argv and envp pointers to
494          * the argv and envp strings, since they will also take up space in
495          * the stack. They aren't stored until much later when we can't
496          * signal to the parent that the child has run out of stack space.
497          * Instead, calculate it here so it's possible to fail gracefully.
498          *
499          * In the case of argc = 0, make sure there is space for adding a
500          * empty string (which will bump argc to 1), to ensure confused
501          * userspace programs don't start processing from argv[1], thinking
502          * argc can never be 0, to keep them from walking envp by accident.
503          * See do_execveat_common().
504          */
505         ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
506         if (limit <= ptr_size)
507                 return -E2BIG;
508         limit -= ptr_size;
509
510         bprm->argmin = bprm->p - limit;
511         return 0;
512 }
513
514 /*
515  * 'copy_strings()' copies argument/environment strings from the old
516  * processes's memory to the new process's stack.  The call to get_user_pages()
517  * ensures the destination page is created and not swapped out.
518  */
519 static int copy_strings(int argc, struct user_arg_ptr argv,
520                         struct linux_binprm *bprm)
521 {
522         struct page *kmapped_page = NULL;
523         char *kaddr = NULL;
524         unsigned long kpos = 0;
525         int ret;
526
527         while (argc-- > 0) {
528                 const char __user *str;
529                 int len;
530                 unsigned long pos;
531
532                 ret = -EFAULT;
533                 str = get_user_arg_ptr(argv, argc);
534                 if (IS_ERR(str))
535                         goto out;
536
537                 len = strnlen_user(str, MAX_ARG_STRLEN);
538                 if (!len)
539                         goto out;
540
541                 ret = -E2BIG;
542                 if (!valid_arg_len(bprm, len))
543                         goto out;
544
545                 /* We're going to work our way backwards. */
546                 pos = bprm->p;
547                 str += len;
548                 bprm->p -= len;
549 #ifdef CONFIG_MMU
550                 if (bprm->p < bprm->argmin)
551                         goto out;
552 #endif
553
554                 while (len > 0) {
555                         int offset, bytes_to_copy;
556
557                         if (fatal_signal_pending(current)) {
558                                 ret = -ERESTARTNOHAND;
559                                 goto out;
560                         }
561                         cond_resched();
562
563                         offset = pos % PAGE_SIZE;
564                         if (offset == 0)
565                                 offset = PAGE_SIZE;
566
567                         bytes_to_copy = offset;
568                         if (bytes_to_copy > len)
569                                 bytes_to_copy = len;
570
571                         offset -= bytes_to_copy;
572                         pos -= bytes_to_copy;
573                         str -= bytes_to_copy;
574                         len -= bytes_to_copy;
575
576                         if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
577                                 struct page *page;
578
579                                 page = get_arg_page(bprm, pos, 1);
580                                 if (!page) {
581                                         ret = -E2BIG;
582                                         goto out;
583                                 }
584
585                                 if (kmapped_page) {
586                                         flush_dcache_page(kmapped_page);
587                                         kunmap_local(kaddr);
588                                         put_arg_page(kmapped_page);
589                                 }
590                                 kmapped_page = page;
591                                 kaddr = kmap_local_page(kmapped_page);
592                                 kpos = pos & PAGE_MASK;
593                                 flush_arg_page(bprm, kpos, kmapped_page);
594                         }
595                         if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
596                                 ret = -EFAULT;
597                                 goto out;
598                         }
599                 }
600         }
601         ret = 0;
602 out:
603         if (kmapped_page) {
604                 flush_dcache_page(kmapped_page);
605                 kunmap_local(kaddr);
606                 put_arg_page(kmapped_page);
607         }
608         return ret;
609 }
610
611 /*
612  * Copy and argument/environment string from the kernel to the processes stack.
613  */
614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
615 {
616         int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
617         unsigned long pos = bprm->p;
618
619         if (len == 0)
620                 return -EFAULT;
621         if (!valid_arg_len(bprm, len))
622                 return -E2BIG;
623
624         /* We're going to work our way backwards. */
625         arg += len;
626         bprm->p -= len;
627         if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
628                 return -E2BIG;
629
630         while (len > 0) {
631                 unsigned int bytes_to_copy = min_t(unsigned int, len,
632                                 min_not_zero(offset_in_page(pos), PAGE_SIZE));
633                 struct page *page;
634
635                 pos -= bytes_to_copy;
636                 arg -= bytes_to_copy;
637                 len -= bytes_to_copy;
638
639                 page = get_arg_page(bprm, pos, 1);
640                 if (!page)
641                         return -E2BIG;
642                 flush_arg_page(bprm, pos & PAGE_MASK, page);
643                 memcpy_to_page(page, offset_in_page(pos), arg, bytes_to_copy);
644                 put_arg_page(page);
645         }
646
647         return 0;
648 }
649 EXPORT_SYMBOL(copy_string_kernel);
650
651 static int copy_strings_kernel(int argc, const char *const *argv,
652                                struct linux_binprm *bprm)
653 {
654         while (argc-- > 0) {
655                 int ret = copy_string_kernel(argv[argc], bprm);
656                 if (ret < 0)
657                         return ret;
658                 if (fatal_signal_pending(current))
659                         return -ERESTARTNOHAND;
660                 cond_resched();
661         }
662         return 0;
663 }
664
665 #ifdef CONFIG_MMU
666
667 /*
668  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
669  * the binfmt code determines where the new stack should reside, we shift it to
670  * its final location.  The process proceeds as follows:
671  *
672  * 1) Use shift to calculate the new vma endpoints.
673  * 2) Extend vma to cover both the old and new ranges.  This ensures the
674  *    arguments passed to subsequent functions are consistent.
675  * 3) Move vma's page tables to the new range.
676  * 4) Free up any cleared pgd range.
677  * 5) Shrink the vma to cover only the new range.
678  */
679 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
680 {
681         struct mm_struct *mm = vma->vm_mm;
682         unsigned long old_start = vma->vm_start;
683         unsigned long old_end = vma->vm_end;
684         unsigned long length = old_end - old_start;
685         unsigned long new_start = old_start - shift;
686         unsigned long new_end = old_end - shift;
687         VMA_ITERATOR(vmi, mm, new_start);
688         struct vm_area_struct *next;
689         struct mmu_gather tlb;
690
691         BUG_ON(new_start > new_end);
692
693         /*
694          * ensure there are no vmas between where we want to go
695          * and where we are
696          */
697         if (vma != vma_next(&vmi))
698                 return -EFAULT;
699
700         /*
701          * cover the whole range: [new_start, old_end)
702          */
703         if (vma_expand(&vmi, vma, new_start, old_end, vma->vm_pgoff, NULL))
704                 return -ENOMEM;
705
706         /*
707          * move the page tables downwards, on failure we rely on
708          * process cleanup to remove whatever mess we made.
709          */
710         if (length != move_page_tables(vma, old_start,
711                                        vma, new_start, length, false))
712                 return -ENOMEM;
713
714         lru_add_drain();
715         tlb_gather_mmu(&tlb, mm);
716         next = vma_next(&vmi);
717         if (new_end > old_start) {
718                 /*
719                  * when the old and new regions overlap clear from new_end.
720                  */
721                 free_pgd_range(&tlb, new_end, old_end, new_end,
722                         next ? next->vm_start : USER_PGTABLES_CEILING);
723         } else {
724                 /*
725                  * otherwise, clean from old_start; this is done to not touch
726                  * the address space in [new_end, old_start) some architectures
727                  * have constraints on va-space that make this illegal (IA64) -
728                  * for the others its just a little faster.
729                  */
730                 free_pgd_range(&tlb, old_start, old_end, new_end,
731                         next ? next->vm_start : USER_PGTABLES_CEILING);
732         }
733         tlb_finish_mmu(&tlb);
734
735         vma_prev(&vmi);
736         /* Shrink the vma to just the new range */
737         return vma_shrink(&vmi, vma, new_start, new_end, vma->vm_pgoff);
738 }
739
740 /*
741  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
742  * the stack is optionally relocated, and some extra space is added.
743  */
744 int setup_arg_pages(struct linux_binprm *bprm,
745                     unsigned long stack_top,
746                     int executable_stack)
747 {
748         unsigned long ret;
749         unsigned long stack_shift;
750         struct mm_struct *mm = current->mm;
751         struct vm_area_struct *vma = bprm->vma;
752         struct vm_area_struct *prev = NULL;
753         unsigned long vm_flags;
754         unsigned long stack_base;
755         unsigned long stack_size;
756         unsigned long stack_expand;
757         unsigned long rlim_stack;
758         struct mmu_gather tlb;
759         struct vma_iterator vmi;
760
761 #ifdef CONFIG_STACK_GROWSUP
762         /* Limit stack size */
763         stack_base = bprm->rlim_stack.rlim_max;
764
765         stack_base = calc_max_stack_size(stack_base);
766
767         /* Add space for stack randomization. */
768         stack_base += (STACK_RND_MASK << PAGE_SHIFT);
769
770         /* Make sure we didn't let the argument array grow too large. */
771         if (vma->vm_end - vma->vm_start > stack_base)
772                 return -ENOMEM;
773
774         stack_base = PAGE_ALIGN(stack_top - stack_base);
775
776         stack_shift = vma->vm_start - stack_base;
777         mm->arg_start = bprm->p - stack_shift;
778         bprm->p = vma->vm_end - stack_shift;
779 #else
780         stack_top = arch_align_stack(stack_top);
781         stack_top = PAGE_ALIGN(stack_top);
782
783         if (unlikely(stack_top < mmap_min_addr) ||
784             unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
785                 return -ENOMEM;
786
787         stack_shift = vma->vm_end - stack_top;
788
789         bprm->p -= stack_shift;
790         mm->arg_start = bprm->p;
791 #endif
792
793         if (bprm->loader)
794                 bprm->loader -= stack_shift;
795         bprm->exec -= stack_shift;
796
797         if (mmap_write_lock_killable(mm))
798                 return -EINTR;
799
800         vm_flags = VM_STACK_FLAGS;
801
802         /*
803          * Adjust stack execute permissions; explicitly enable for
804          * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
805          * (arch default) otherwise.
806          */
807         if (unlikely(executable_stack == EXSTACK_ENABLE_X))
808                 vm_flags |= VM_EXEC;
809         else if (executable_stack == EXSTACK_DISABLE_X)
810                 vm_flags &= ~VM_EXEC;
811         vm_flags |= mm->def_flags;
812         vm_flags |= VM_STACK_INCOMPLETE_SETUP;
813
814         vma_iter_init(&vmi, mm, vma->vm_start);
815
816         tlb_gather_mmu(&tlb, mm);
817         ret = mprotect_fixup(&vmi, &tlb, vma, &prev, vma->vm_start, vma->vm_end,
818                         vm_flags);
819         tlb_finish_mmu(&tlb);
820
821         if (ret)
822                 goto out_unlock;
823         BUG_ON(prev != vma);
824
825         if (unlikely(vm_flags & VM_EXEC)) {
826                 pr_warn_once("process '%pD4' started with executable stack\n",
827                              bprm->file);
828         }
829
830         /* Move stack pages down in memory. */
831         if (stack_shift) {
832                 ret = shift_arg_pages(vma, stack_shift);
833                 if (ret)
834                         goto out_unlock;
835         }
836
837         /* mprotect_fixup is overkill to remove the temporary stack flags */
838         vm_flags_clear(vma, VM_STACK_INCOMPLETE_SETUP);
839
840         stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
841         stack_size = vma->vm_end - vma->vm_start;
842         /*
843          * Align this down to a page boundary as expand_stack
844          * will align it up.
845          */
846         rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
847
848         stack_expand = min(rlim_stack, stack_size + stack_expand);
849
850 #ifdef CONFIG_STACK_GROWSUP
851         stack_base = vma->vm_start + stack_expand;
852 #else
853         stack_base = vma->vm_end - stack_expand;
854 #endif
855         current->mm->start_stack = bprm->p;
856         ret = expand_stack(vma, stack_base);
857         if (ret)
858                 ret = -EFAULT;
859
860 out_unlock:
861         mmap_write_unlock(mm);
862         return ret;
863 }
864 EXPORT_SYMBOL(setup_arg_pages);
865
866 #else
867
868 /*
869  * Transfer the program arguments and environment from the holding pages
870  * onto the stack. The provided stack pointer is adjusted accordingly.
871  */
872 int transfer_args_to_stack(struct linux_binprm *bprm,
873                            unsigned long *sp_location)
874 {
875         unsigned long index, stop, sp;
876         int ret = 0;
877
878         stop = bprm->p >> PAGE_SHIFT;
879         sp = *sp_location;
880
881         for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
882                 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
883                 char *src = kmap_local_page(bprm->page[index]) + offset;
884                 sp -= PAGE_SIZE - offset;
885                 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
886                         ret = -EFAULT;
887                 kunmap_local(src);
888                 if (ret)
889                         goto out;
890         }
891
892         *sp_location = sp;
893
894 out:
895         return ret;
896 }
897 EXPORT_SYMBOL(transfer_args_to_stack);
898
899 #endif /* CONFIG_MMU */
900
901 static struct file *do_open_execat(int fd, struct filename *name, int flags)
902 {
903         struct file *file;
904         int err;
905         struct open_flags open_exec_flags = {
906                 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
907                 .acc_mode = MAY_EXEC,
908                 .intent = LOOKUP_OPEN,
909                 .lookup_flags = LOOKUP_FOLLOW,
910         };
911
912         if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
913                 return ERR_PTR(-EINVAL);
914         if (flags & AT_SYMLINK_NOFOLLOW)
915                 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
916         if (flags & AT_EMPTY_PATH)
917                 open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
918
919         file = do_filp_open(fd, name, &open_exec_flags);
920         if (IS_ERR(file))
921                 goto out;
922
923         /*
924          * may_open() has already checked for this, so it should be
925          * impossible to trip now. But we need to be extra cautious
926          * and check again at the very end too.
927          */
928         err = -EACCES;
929         if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
930                          path_noexec(&file->f_path)))
931                 goto exit;
932
933         err = deny_write_access(file);
934         if (err)
935                 goto exit;
936
937         if (name->name[0] != '\0')
938                 fsnotify_open(file);
939
940 out:
941         return file;
942
943 exit:
944         fput(file);
945         return ERR_PTR(err);
946 }
947
948 struct file *open_exec(const char *name)
949 {
950         struct filename *filename = getname_kernel(name);
951         struct file *f = ERR_CAST(filename);
952
953         if (!IS_ERR(filename)) {
954                 f = do_open_execat(AT_FDCWD, filename, 0);
955                 putname(filename);
956         }
957         return f;
958 }
959 EXPORT_SYMBOL(open_exec);
960
961 #if defined(CONFIG_BINFMT_FLAT) || defined(CONFIG_BINFMT_ELF_FDPIC)
962 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
963 {
964         ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
965         if (res > 0)
966                 flush_icache_user_range(addr, addr + len);
967         return res;
968 }
969 EXPORT_SYMBOL(read_code);
970 #endif
971
972 /*
973  * Maps the mm_struct mm into the current task struct.
974  * On success, this function returns with exec_update_lock
975  * held for writing.
976  */
977 static int exec_mmap(struct mm_struct *mm)
978 {
979         struct task_struct *tsk;
980         struct mm_struct *old_mm, *active_mm;
981         int ret;
982
983         /* Notify parent that we're no longer interested in the old VM */
984         tsk = current;
985         old_mm = current->mm;
986         exec_mm_release(tsk, old_mm);
987         if (old_mm)
988                 sync_mm_rss(old_mm);
989
990         ret = down_write_killable(&tsk->signal->exec_update_lock);
991         if (ret)
992                 return ret;
993
994         if (old_mm) {
995                 /*
996                  * If there is a pending fatal signal perhaps a signal
997                  * whose default action is to create a coredump get
998                  * out and die instead of going through with the exec.
999                  */
1000                 ret = mmap_read_lock_killable(old_mm);
1001                 if (ret) {
1002                         up_write(&tsk->signal->exec_update_lock);
1003                         return ret;
1004                 }
1005         }
1006
1007         task_lock(tsk);
1008         membarrier_exec_mmap(mm);
1009
1010         local_irq_disable();
1011         active_mm = tsk->active_mm;
1012         tsk->active_mm = mm;
1013         tsk->mm = mm;
1014         mm_init_cid(mm);
1015         /*
1016          * This prevents preemption while active_mm is being loaded and
1017          * it and mm are being updated, which could cause problems for
1018          * lazy tlb mm refcounting when these are updated by context
1019          * switches. Not all architectures can handle irqs off over
1020          * activate_mm yet.
1021          */
1022         if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1023                 local_irq_enable();
1024         activate_mm(active_mm, mm);
1025         if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1026                 local_irq_enable();
1027         lru_gen_add_mm(mm);
1028         task_unlock(tsk);
1029         lru_gen_use_mm(mm);
1030         if (old_mm) {
1031                 mmap_read_unlock(old_mm);
1032                 BUG_ON(active_mm != old_mm);
1033                 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1034                 mm_update_next_owner(old_mm);
1035                 mmput(old_mm);
1036                 return 0;
1037         }
1038         mmdrop_lazy_tlb(active_mm);
1039         return 0;
1040 }
1041
1042 static int de_thread(struct task_struct *tsk)
1043 {
1044         struct signal_struct *sig = tsk->signal;
1045         struct sighand_struct *oldsighand = tsk->sighand;
1046         spinlock_t *lock = &oldsighand->siglock;
1047
1048         if (thread_group_empty(tsk))
1049                 goto no_thread_group;
1050
1051         /*
1052          * Kill all other threads in the thread group.
1053          */
1054         spin_lock_irq(lock);
1055         if ((sig->flags & SIGNAL_GROUP_EXIT) || sig->group_exec_task) {
1056                 /*
1057                  * Another group action in progress, just
1058                  * return so that the signal is processed.
1059                  */
1060                 spin_unlock_irq(lock);
1061                 return -EAGAIN;
1062         }
1063
1064         sig->group_exec_task = tsk;
1065         sig->notify_count = zap_other_threads(tsk);
1066         if (!thread_group_leader(tsk))
1067                 sig->notify_count--;
1068
1069         while (sig->notify_count) {
1070                 __set_current_state(TASK_KILLABLE);
1071                 spin_unlock_irq(lock);
1072                 schedule();
1073                 if (__fatal_signal_pending(tsk))
1074                         goto killed;
1075                 spin_lock_irq(lock);
1076         }
1077         spin_unlock_irq(lock);
1078
1079         /*
1080          * At this point all other threads have exited, all we have to
1081          * do is to wait for the thread group leader to become inactive,
1082          * and to assume its PID:
1083          */
1084         if (!thread_group_leader(tsk)) {
1085                 struct task_struct *leader = tsk->group_leader;
1086
1087                 for (;;) {
1088                         cgroup_threadgroup_change_begin(tsk);
1089                         write_lock_irq(&tasklist_lock);
1090                         /*
1091                          * Do this under tasklist_lock to ensure that
1092                          * exit_notify() can't miss ->group_exec_task
1093                          */
1094                         sig->notify_count = -1;
1095                         if (likely(leader->exit_state))
1096                                 break;
1097                         __set_current_state(TASK_KILLABLE);
1098                         write_unlock_irq(&tasklist_lock);
1099                         cgroup_threadgroup_change_end(tsk);
1100                         schedule();
1101                         if (__fatal_signal_pending(tsk))
1102                                 goto killed;
1103                 }
1104
1105                 /*
1106                  * The only record we have of the real-time age of a
1107                  * process, regardless of execs it's done, is start_time.
1108                  * All the past CPU time is accumulated in signal_struct
1109                  * from sister threads now dead.  But in this non-leader
1110                  * exec, nothing survives from the original leader thread,
1111                  * whose birth marks the true age of this process now.
1112                  * When we take on its identity by switching to its PID, we
1113                  * also take its birthdate (always earlier than our own).
1114                  */
1115                 tsk->start_time = leader->start_time;
1116                 tsk->start_boottime = leader->start_boottime;
1117
1118                 BUG_ON(!same_thread_group(leader, tsk));
1119                 /*
1120                  * An exec() starts a new thread group with the
1121                  * TGID of the previous thread group. Rehash the
1122                  * two threads with a switched PID, and release
1123                  * the former thread group leader:
1124                  */
1125
1126                 /* Become a process group leader with the old leader's pid.
1127                  * The old leader becomes a thread of the this thread group.
1128                  */
1129                 exchange_tids(tsk, leader);
1130                 transfer_pid(leader, tsk, PIDTYPE_TGID);
1131                 transfer_pid(leader, tsk, PIDTYPE_PGID);
1132                 transfer_pid(leader, tsk, PIDTYPE_SID);
1133
1134                 list_replace_rcu(&leader->tasks, &tsk->tasks);
1135                 list_replace_init(&leader->sibling, &tsk->sibling);
1136
1137                 tsk->group_leader = tsk;
1138                 leader->group_leader = tsk;
1139
1140                 tsk->exit_signal = SIGCHLD;
1141                 leader->exit_signal = -1;
1142
1143                 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1144                 leader->exit_state = EXIT_DEAD;
1145
1146                 /*
1147                  * We are going to release_task()->ptrace_unlink() silently,
1148                  * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1149                  * the tracer won't block again waiting for this thread.
1150                  */
1151                 if (unlikely(leader->ptrace))
1152                         __wake_up_parent(leader, leader->parent);
1153                 write_unlock_irq(&tasklist_lock);
1154                 cgroup_threadgroup_change_end(tsk);
1155
1156                 release_task(leader);
1157         }
1158
1159         sig->group_exec_task = NULL;
1160         sig->notify_count = 0;
1161
1162 no_thread_group:
1163         /* we have changed execution domain */
1164         tsk->exit_signal = SIGCHLD;
1165
1166         BUG_ON(!thread_group_leader(tsk));
1167         return 0;
1168
1169 killed:
1170         /* protects against exit_notify() and __exit_signal() */
1171         read_lock(&tasklist_lock);
1172         sig->group_exec_task = NULL;
1173         sig->notify_count = 0;
1174         read_unlock(&tasklist_lock);
1175         return -EAGAIN;
1176 }
1177
1178
1179 /*
1180  * This function makes sure the current process has its own signal table,
1181  * so that flush_signal_handlers can later reset the handlers without
1182  * disturbing other processes.  (Other processes might share the signal
1183  * table via the CLONE_SIGHAND option to clone().)
1184  */
1185 static int unshare_sighand(struct task_struct *me)
1186 {
1187         struct sighand_struct *oldsighand = me->sighand;
1188
1189         if (refcount_read(&oldsighand->count) != 1) {
1190                 struct sighand_struct *newsighand;
1191                 /*
1192                  * This ->sighand is shared with the CLONE_SIGHAND
1193                  * but not CLONE_THREAD task, switch to the new one.
1194                  */
1195                 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1196                 if (!newsighand)
1197                         return -ENOMEM;
1198
1199                 refcount_set(&newsighand->count, 1);
1200
1201                 write_lock_irq(&tasklist_lock);
1202                 spin_lock(&oldsighand->siglock);
1203                 memcpy(newsighand->action, oldsighand->action,
1204                        sizeof(newsighand->action));
1205                 rcu_assign_pointer(me->sighand, newsighand);
1206                 spin_unlock(&oldsighand->siglock);
1207                 write_unlock_irq(&tasklist_lock);
1208
1209                 __cleanup_sighand(oldsighand);
1210         }
1211         return 0;
1212 }
1213
1214 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1215 {
1216         task_lock(tsk);
1217         /* Always NUL terminated and zero-padded */
1218         strscpy_pad(buf, tsk->comm, buf_size);
1219         task_unlock(tsk);
1220         return buf;
1221 }
1222 EXPORT_SYMBOL_GPL(__get_task_comm);
1223
1224 /*
1225  * These functions flushes out all traces of the currently running executable
1226  * so that a new one can be started
1227  */
1228
1229 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1230 {
1231         task_lock(tsk);
1232         trace_task_rename(tsk, buf);
1233         strscpy_pad(tsk->comm, buf, sizeof(tsk->comm));
1234         task_unlock(tsk);
1235         perf_event_comm(tsk, exec);
1236 }
1237
1238 /*
1239  * Calling this is the point of no return. None of the failures will be
1240  * seen by userspace since either the process is already taking a fatal
1241  * signal (via de_thread() or coredump), or will have SEGV raised
1242  * (after exec_mmap()) by search_binary_handler (see below).
1243  */
1244 int begin_new_exec(struct linux_binprm * bprm)
1245 {
1246         struct task_struct *me = current;
1247         int retval;
1248
1249         /* Once we are committed compute the creds */
1250         retval = bprm_creds_from_file(bprm);
1251         if (retval)
1252                 return retval;
1253
1254         /*
1255          * Ensure all future errors are fatal.
1256          */
1257         bprm->point_of_no_return = true;
1258
1259         /*
1260          * Make this the only thread in the thread group.
1261          */
1262         retval = de_thread(me);
1263         if (retval)
1264                 goto out;
1265
1266         /*
1267          * Cancel any io_uring activity across execve
1268          */
1269         io_uring_task_cancel();
1270
1271         /* Ensure the files table is not shared. */
1272         retval = unshare_files();
1273         if (retval)
1274                 goto out;
1275
1276         /*
1277          * Must be called _before_ exec_mmap() as bprm->mm is
1278          * not visible until then. This also enables the update
1279          * to be lockless.
1280          */
1281         retval = set_mm_exe_file(bprm->mm, bprm->file);
1282         if (retval)
1283                 goto out;
1284
1285         /* If the binary is not readable then enforce mm->dumpable=0 */
1286         would_dump(bprm, bprm->file);
1287         if (bprm->have_execfd)
1288                 would_dump(bprm, bprm->executable);
1289
1290         /*
1291          * Release all of the old mmap stuff
1292          */
1293         acct_arg_size(bprm, 0);
1294         retval = exec_mmap(bprm->mm);
1295         if (retval)
1296                 goto out;
1297
1298         bprm->mm = NULL;
1299
1300         retval = exec_task_namespaces();
1301         if (retval)
1302                 goto out_unlock;
1303
1304 #ifdef CONFIG_POSIX_TIMERS
1305         spin_lock_irq(&me->sighand->siglock);
1306         posix_cpu_timers_exit(me);
1307         spin_unlock_irq(&me->sighand->siglock);
1308         exit_itimers(me);
1309         flush_itimer_signals();
1310 #endif
1311
1312         /*
1313          * Make the signal table private.
1314          */
1315         retval = unshare_sighand(me);
1316         if (retval)
1317                 goto out_unlock;
1318
1319         me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC |
1320                                         PF_NOFREEZE | PF_NO_SETAFFINITY);
1321         flush_thread();
1322         me->personality &= ~bprm->per_clear;
1323
1324         clear_syscall_work_syscall_user_dispatch(me);
1325
1326         /*
1327          * We have to apply CLOEXEC before we change whether the process is
1328          * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1329          * trying to access the should-be-closed file descriptors of a process
1330          * undergoing exec(2).
1331          */
1332         do_close_on_exec(me->files);
1333
1334         if (bprm->secureexec) {
1335                 /* Make sure parent cannot signal privileged process. */
1336                 me->pdeath_signal = 0;
1337
1338                 /*
1339                  * For secureexec, reset the stack limit to sane default to
1340                  * avoid bad behavior from the prior rlimits. This has to
1341                  * happen before arch_pick_mmap_layout(), which examines
1342                  * RLIMIT_STACK, but after the point of no return to avoid
1343                  * needing to clean up the change on failure.
1344                  */
1345                 if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1346                         bprm->rlim_stack.rlim_cur = _STK_LIM;
1347         }
1348
1349         me->sas_ss_sp = me->sas_ss_size = 0;
1350
1351         /*
1352          * Figure out dumpability. Note that this checking only of current
1353          * is wrong, but userspace depends on it. This should be testing
1354          * bprm->secureexec instead.
1355          */
1356         if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1357             !(uid_eq(current_euid(), current_uid()) &&
1358               gid_eq(current_egid(), current_gid())))
1359                 set_dumpable(current->mm, suid_dumpable);
1360         else
1361                 set_dumpable(current->mm, SUID_DUMP_USER);
1362
1363         perf_event_exec();
1364         __set_task_comm(me, kbasename(bprm->filename), true);
1365
1366         /* An exec changes our domain. We are no longer part of the thread
1367            group */
1368         WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1369         flush_signal_handlers(me, 0);
1370
1371         retval = set_cred_ucounts(bprm->cred);
1372         if (retval < 0)
1373                 goto out_unlock;
1374
1375         /*
1376          * install the new credentials for this executable
1377          */
1378         security_bprm_committing_creds(bprm);
1379
1380         commit_creds(bprm->cred);
1381         bprm->cred = NULL;
1382
1383         /*
1384          * Disable monitoring for regular users
1385          * when executing setuid binaries. Must
1386          * wait until new credentials are committed
1387          * by commit_creds() above
1388          */
1389         if (get_dumpable(me->mm) != SUID_DUMP_USER)
1390                 perf_event_exit_task(me);
1391         /*
1392          * cred_guard_mutex must be held at least to this point to prevent
1393          * ptrace_attach() from altering our determination of the task's
1394          * credentials; any time after this it may be unlocked.
1395          */
1396         security_bprm_committed_creds(bprm);
1397
1398         /* Pass the opened binary to the interpreter. */
1399         if (bprm->have_execfd) {
1400                 retval = get_unused_fd_flags(0);
1401                 if (retval < 0)
1402                         goto out_unlock;
1403                 fd_install(retval, bprm->executable);
1404                 bprm->executable = NULL;
1405                 bprm->execfd = retval;
1406         }
1407         return 0;
1408
1409 out_unlock:
1410         up_write(&me->signal->exec_update_lock);
1411 out:
1412         return retval;
1413 }
1414 EXPORT_SYMBOL(begin_new_exec);
1415
1416 void would_dump(struct linux_binprm *bprm, struct file *file)
1417 {
1418         struct inode *inode = file_inode(file);
1419         struct mnt_idmap *idmap = file_mnt_idmap(file);
1420         if (inode_permission(idmap, inode, MAY_READ) < 0) {
1421                 struct user_namespace *old, *user_ns;
1422                 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1423
1424                 /* Ensure mm->user_ns contains the executable */
1425                 user_ns = old = bprm->mm->user_ns;
1426                 while ((user_ns != &init_user_ns) &&
1427                        !privileged_wrt_inode_uidgid(user_ns, idmap, inode))
1428                         user_ns = user_ns->parent;
1429
1430                 if (old != user_ns) {
1431                         bprm->mm->user_ns = get_user_ns(user_ns);
1432                         put_user_ns(old);
1433                 }
1434         }
1435 }
1436 EXPORT_SYMBOL(would_dump);
1437
1438 void setup_new_exec(struct linux_binprm * bprm)
1439 {
1440         /* Setup things that can depend upon the personality */
1441         struct task_struct *me = current;
1442
1443         arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1444
1445         arch_setup_new_exec();
1446
1447         /* Set the new mm task size. We have to do that late because it may
1448          * depend on TIF_32BIT which is only updated in flush_thread() on
1449          * some architectures like powerpc
1450          */
1451         me->mm->task_size = TASK_SIZE;
1452         up_write(&me->signal->exec_update_lock);
1453         mutex_unlock(&me->signal->cred_guard_mutex);
1454 }
1455 EXPORT_SYMBOL(setup_new_exec);
1456
1457 /* Runs immediately before start_thread() takes over. */
1458 void finalize_exec(struct linux_binprm *bprm)
1459 {
1460         /* Store any stack rlimit changes before starting thread. */
1461         task_lock(current->group_leader);
1462         current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1463         task_unlock(current->group_leader);
1464 }
1465 EXPORT_SYMBOL(finalize_exec);
1466
1467 /*
1468  * Prepare credentials and lock ->cred_guard_mutex.
1469  * setup_new_exec() commits the new creds and drops the lock.
1470  * Or, if exec fails before, free_bprm() should release ->cred
1471  * and unlock.
1472  */
1473 static int prepare_bprm_creds(struct linux_binprm *bprm)
1474 {
1475         if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1476                 return -ERESTARTNOINTR;
1477
1478         bprm->cred = prepare_exec_creds();
1479         if (likely(bprm->cred))
1480                 return 0;
1481
1482         mutex_unlock(&current->signal->cred_guard_mutex);
1483         return -ENOMEM;
1484 }
1485
1486 static void free_bprm(struct linux_binprm *bprm)
1487 {
1488         if (bprm->mm) {
1489                 acct_arg_size(bprm, 0);
1490                 mmput(bprm->mm);
1491         }
1492         free_arg_pages(bprm);
1493         if (bprm->cred) {
1494                 mutex_unlock(&current->signal->cred_guard_mutex);
1495                 abort_creds(bprm->cred);
1496         }
1497         if (bprm->file) {
1498                 allow_write_access(bprm->file);
1499                 fput(bprm->file);
1500         }
1501         if (bprm->executable)
1502                 fput(bprm->executable);
1503         /* If a binfmt changed the interp, free it. */
1504         if (bprm->interp != bprm->filename)
1505                 kfree(bprm->interp);
1506         kfree(bprm->fdpath);
1507         kfree(bprm);
1508 }
1509
1510 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1511 {
1512         struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1513         int retval = -ENOMEM;
1514         if (!bprm)
1515                 goto out;
1516
1517         if (fd == AT_FDCWD || filename->name[0] == '/') {
1518                 bprm->filename = filename->name;
1519         } else {
1520                 if (filename->name[0] == '\0')
1521                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1522                 else
1523                         bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1524                                                   fd, filename->name);
1525                 if (!bprm->fdpath)
1526                         goto out_free;
1527
1528                 bprm->filename = bprm->fdpath;
1529         }
1530         bprm->interp = bprm->filename;
1531
1532         retval = bprm_mm_init(bprm);
1533         if (retval)
1534                 goto out_free;
1535         return bprm;
1536
1537 out_free:
1538         free_bprm(bprm);
1539 out:
1540         return ERR_PTR(retval);
1541 }
1542
1543 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1544 {
1545         /* If a binfmt changed the interp, free it first. */
1546         if (bprm->interp != bprm->filename)
1547                 kfree(bprm->interp);
1548         bprm->interp = kstrdup(interp, GFP_KERNEL);
1549         if (!bprm->interp)
1550                 return -ENOMEM;
1551         return 0;
1552 }
1553 EXPORT_SYMBOL(bprm_change_interp);
1554
1555 /*
1556  * determine how safe it is to execute the proposed program
1557  * - the caller must hold ->cred_guard_mutex to protect against
1558  *   PTRACE_ATTACH or seccomp thread-sync
1559  */
1560 static void check_unsafe_exec(struct linux_binprm *bprm)
1561 {
1562         struct task_struct *p = current, *t;
1563         unsigned n_fs;
1564
1565         if (p->ptrace)
1566                 bprm->unsafe |= LSM_UNSAFE_PTRACE;
1567
1568         /*
1569          * This isn't strictly necessary, but it makes it harder for LSMs to
1570          * mess up.
1571          */
1572         if (task_no_new_privs(current))
1573                 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1574
1575         /*
1576          * If another task is sharing our fs, we cannot safely
1577          * suid exec because the differently privileged task
1578          * will be able to manipulate the current directory, etc.
1579          * It would be nice to force an unshare instead...
1580          */
1581         t = p;
1582         n_fs = 1;
1583         spin_lock(&p->fs->lock);
1584         rcu_read_lock();
1585         while_each_thread(p, t) {
1586                 if (t->fs == p->fs)
1587                         n_fs++;
1588         }
1589         rcu_read_unlock();
1590
1591         if (p->fs->users > n_fs)
1592                 bprm->unsafe |= LSM_UNSAFE_SHARE;
1593         else
1594                 p->fs->in_exec = 1;
1595         spin_unlock(&p->fs->lock);
1596 }
1597
1598 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1599 {
1600         /* Handle suid and sgid on files */
1601         struct mnt_idmap *idmap;
1602         struct inode *inode = file_inode(file);
1603         unsigned int mode;
1604         vfsuid_t vfsuid;
1605         vfsgid_t vfsgid;
1606
1607         if (!mnt_may_suid(file->f_path.mnt))
1608                 return;
1609
1610         if (task_no_new_privs(current))
1611                 return;
1612
1613         mode = READ_ONCE(inode->i_mode);
1614         if (!(mode & (S_ISUID|S_ISGID)))
1615                 return;
1616
1617         idmap = file_mnt_idmap(file);
1618
1619         /* Be careful if suid/sgid is set */
1620         inode_lock(inode);
1621
1622         /* reload atomically mode/uid/gid now that lock held */
1623         mode = inode->i_mode;
1624         vfsuid = i_uid_into_vfsuid(idmap, inode);
1625         vfsgid = i_gid_into_vfsgid(idmap, inode);
1626         inode_unlock(inode);
1627
1628         /* We ignore suid/sgid if there are no mappings for them in the ns */
1629         if (!vfsuid_has_mapping(bprm->cred->user_ns, vfsuid) ||
1630             !vfsgid_has_mapping(bprm->cred->user_ns, vfsgid))
1631                 return;
1632
1633         if (mode & S_ISUID) {
1634                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1635                 bprm->cred->euid = vfsuid_into_kuid(vfsuid);
1636         }
1637
1638         if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1639                 bprm->per_clear |= PER_CLEAR_ON_SETID;
1640                 bprm->cred->egid = vfsgid_into_kgid(vfsgid);
1641         }
1642 }
1643
1644 /*
1645  * Compute brpm->cred based upon the final binary.
1646  */
1647 static int bprm_creds_from_file(struct linux_binprm *bprm)
1648 {
1649         /* Compute creds based on which file? */
1650         struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1651
1652         bprm_fill_uid(bprm, file);
1653         return security_bprm_creds_from_file(bprm, file);
1654 }
1655
1656 /*
1657  * Fill the binprm structure from the inode.
1658  * Read the first BINPRM_BUF_SIZE bytes
1659  *
1660  * This may be called multiple times for binary chains (scripts for example).
1661  */
1662 static int prepare_binprm(struct linux_binprm *bprm)
1663 {
1664         loff_t pos = 0;
1665
1666         memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1667         return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1668 }
1669
1670 /*
1671  * Arguments are '\0' separated strings found at the location bprm->p
1672  * points to; chop off the first by relocating brpm->p to right after
1673  * the first '\0' encountered.
1674  */
1675 int remove_arg_zero(struct linux_binprm *bprm)
1676 {
1677         int ret = 0;
1678         unsigned long offset;
1679         char *kaddr;
1680         struct page *page;
1681
1682         if (!bprm->argc)
1683                 return 0;
1684
1685         do {
1686                 offset = bprm->p & ~PAGE_MASK;
1687                 page = get_arg_page(bprm, bprm->p, 0);
1688                 if (!page) {
1689                         ret = -EFAULT;
1690                         goto out;
1691                 }
1692                 kaddr = kmap_local_page(page);
1693
1694                 for (; offset < PAGE_SIZE && kaddr[offset];
1695                                 offset++, bprm->p++)
1696                         ;
1697
1698                 kunmap_local(kaddr);
1699                 put_arg_page(page);
1700         } while (offset == PAGE_SIZE);
1701
1702         bprm->p++;
1703         bprm->argc--;
1704         ret = 0;
1705
1706 out:
1707         return ret;
1708 }
1709 EXPORT_SYMBOL(remove_arg_zero);
1710
1711 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1712 /*
1713  * cycle the list of binary formats handler, until one recognizes the image
1714  */
1715 static int search_binary_handler(struct linux_binprm *bprm)
1716 {
1717         bool need_retry = IS_ENABLED(CONFIG_MODULES);
1718         struct linux_binfmt *fmt;
1719         int retval;
1720
1721         retval = prepare_binprm(bprm);
1722         if (retval < 0)
1723                 return retval;
1724
1725         retval = security_bprm_check(bprm);
1726         if (retval)
1727                 return retval;
1728
1729         retval = -ENOENT;
1730  retry:
1731         read_lock(&binfmt_lock);
1732         list_for_each_entry(fmt, &formats, lh) {
1733                 if (!try_module_get(fmt->module))
1734                         continue;
1735                 read_unlock(&binfmt_lock);
1736
1737                 retval = fmt->load_binary(bprm);
1738
1739                 read_lock(&binfmt_lock);
1740                 put_binfmt(fmt);
1741                 if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1742                         read_unlock(&binfmt_lock);
1743                         return retval;
1744                 }
1745         }
1746         read_unlock(&binfmt_lock);
1747
1748         if (need_retry) {
1749                 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1750                     printable(bprm->buf[2]) && printable(bprm->buf[3]))
1751                         return retval;
1752                 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1753                         return retval;
1754                 need_retry = false;
1755                 goto retry;
1756         }
1757
1758         return retval;
1759 }
1760
1761 /* binfmt handlers will call back into begin_new_exec() on success. */
1762 static int exec_binprm(struct linux_binprm *bprm)
1763 {
1764         pid_t old_pid, old_vpid;
1765         int ret, depth;
1766
1767         /* Need to fetch pid before load_binary changes it */
1768         old_pid = current->pid;
1769         rcu_read_lock();
1770         old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1771         rcu_read_unlock();
1772
1773         /* This allows 4 levels of binfmt rewrites before failing hard. */
1774         for (depth = 0;; depth++) {
1775                 struct file *exec;
1776                 if (depth > 5)
1777                         return -ELOOP;
1778
1779                 ret = search_binary_handler(bprm);
1780                 if (ret < 0)
1781                         return ret;
1782                 if (!bprm->interpreter)
1783                         break;
1784
1785                 exec = bprm->file;
1786                 bprm->file = bprm->interpreter;
1787                 bprm->interpreter = NULL;
1788
1789                 allow_write_access(exec);
1790                 if (unlikely(bprm->have_execfd)) {
1791                         if (bprm->executable) {
1792                                 fput(exec);
1793                                 return -ENOEXEC;
1794                         }
1795                         bprm->executable = exec;
1796                 } else
1797                         fput(exec);
1798         }
1799
1800         audit_bprm(bprm);
1801         trace_sched_process_exec(current, old_pid, bprm);
1802         ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1803         proc_exec_connector(current);
1804         return 0;
1805 }
1806
1807 /*
1808  * sys_execve() executes a new program.
1809  */
1810 static int bprm_execve(struct linux_binprm *bprm,
1811                        int fd, struct filename *filename, int flags)
1812 {
1813         struct file *file;
1814         int retval;
1815
1816         retval = prepare_bprm_creds(bprm);
1817         if (retval)
1818                 return retval;
1819
1820         /*
1821          * Check for unsafe execution states before exec_binprm(), which
1822          * will call back into begin_new_exec(), into bprm_creds_from_file(),
1823          * where setuid-ness is evaluated.
1824          */
1825         check_unsafe_exec(bprm);
1826         current->in_execve = 1;
1827         sched_mm_cid_before_execve(current);
1828
1829         file = do_open_execat(fd, filename, flags);
1830         retval = PTR_ERR(file);
1831         if (IS_ERR(file))
1832                 goto out_unmark;
1833
1834         sched_exec();
1835
1836         bprm->file = file;
1837         /*
1838          * Record that a name derived from an O_CLOEXEC fd will be
1839          * inaccessible after exec.  This allows the code in exec to
1840          * choose to fail when the executable is not mmaped into the
1841          * interpreter and an open file descriptor is not passed to
1842          * the interpreter.  This makes for a better user experience
1843          * than having the interpreter start and then immediately fail
1844          * when it finds the executable is inaccessible.
1845          */
1846         if (bprm->fdpath && get_close_on_exec(fd))
1847                 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1848
1849         /* Set the unchanging part of bprm->cred */
1850         retval = security_bprm_creds_for_exec(bprm);
1851         if (retval)
1852                 goto out;
1853
1854         retval = exec_binprm(bprm);
1855         if (retval < 0)
1856                 goto out;
1857
1858         sched_mm_cid_after_execve(current);
1859         /* execve succeeded */
1860         current->fs->in_exec = 0;
1861         current->in_execve = 0;
1862         rseq_execve(current);
1863         user_events_execve(current);
1864         acct_update_integrals(current);
1865         task_numa_free(current, false);
1866         return retval;
1867
1868 out:
1869         /*
1870          * If past the point of no return ensure the code never
1871          * returns to the userspace process.  Use an existing fatal
1872          * signal if present otherwise terminate the process with
1873          * SIGSEGV.
1874          */
1875         if (bprm->point_of_no_return && !fatal_signal_pending(current))
1876                 force_fatal_sig(SIGSEGV);
1877
1878 out_unmark:
1879         sched_mm_cid_after_execve(current);
1880         current->fs->in_exec = 0;
1881         current->in_execve = 0;
1882
1883         return retval;
1884 }
1885
1886 static int do_execveat_common(int fd, struct filename *filename,
1887                               struct user_arg_ptr argv,
1888                               struct user_arg_ptr envp,
1889                               int flags)
1890 {
1891         struct linux_binprm *bprm;
1892         int retval;
1893
1894         if (IS_ERR(filename))
1895                 return PTR_ERR(filename);
1896
1897         /*
1898          * We move the actual failure in case of RLIMIT_NPROC excess from
1899          * set*uid() to execve() because too many poorly written programs
1900          * don't check setuid() return code.  Here we additionally recheck
1901          * whether NPROC limit is still exceeded.
1902          */
1903         if ((current->flags & PF_NPROC_EXCEEDED) &&
1904             is_rlimit_overlimit(current_ucounts(), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
1905                 retval = -EAGAIN;
1906                 goto out_ret;
1907         }
1908
1909         /* We're below the limit (still or again), so we don't want to make
1910          * further execve() calls fail. */
1911         current->flags &= ~PF_NPROC_EXCEEDED;
1912
1913         bprm = alloc_bprm(fd, filename);
1914         if (IS_ERR(bprm)) {
1915                 retval = PTR_ERR(bprm);
1916                 goto out_ret;
1917         }
1918
1919         retval = count(argv, MAX_ARG_STRINGS);
1920         if (retval == 0)
1921                 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1922                              current->comm, bprm->filename);
1923         if (retval < 0)
1924                 goto out_free;
1925         bprm->argc = retval;
1926
1927         retval = count(envp, MAX_ARG_STRINGS);
1928         if (retval < 0)
1929                 goto out_free;
1930         bprm->envc = retval;
1931
1932         retval = bprm_stack_limits(bprm);
1933         if (retval < 0)
1934                 goto out_free;
1935
1936         retval = copy_string_kernel(bprm->filename, bprm);
1937         if (retval < 0)
1938                 goto out_free;
1939         bprm->exec = bprm->p;
1940
1941         retval = copy_strings(bprm->envc, envp, bprm);
1942         if (retval < 0)
1943                 goto out_free;
1944
1945         retval = copy_strings(bprm->argc, argv, bprm);
1946         if (retval < 0)
1947                 goto out_free;
1948
1949         /*
1950          * When argv is empty, add an empty string ("") as argv[0] to
1951          * ensure confused userspace programs that start processing
1952          * from argv[1] won't end up walking envp. See also
1953          * bprm_stack_limits().
1954          */
1955         if (bprm->argc == 0) {
1956                 retval = copy_string_kernel("", bprm);
1957                 if (retval < 0)
1958                         goto out_free;
1959                 bprm->argc = 1;
1960         }
1961
1962         retval = bprm_execve(bprm, fd, filename, flags);
1963 out_free:
1964         free_bprm(bprm);
1965
1966 out_ret:
1967         putname(filename);
1968         return retval;
1969 }
1970
1971 int kernel_execve(const char *kernel_filename,
1972                   const char *const *argv, const char *const *envp)
1973 {
1974         struct filename *filename;
1975         struct linux_binprm *bprm;
1976         int fd = AT_FDCWD;
1977         int retval;
1978
1979         /* It is non-sense for kernel threads to call execve */
1980         if (WARN_ON_ONCE(current->flags & PF_KTHREAD))
1981                 return -EINVAL;
1982
1983         filename = getname_kernel(kernel_filename);
1984         if (IS_ERR(filename))
1985                 return PTR_ERR(filename);
1986
1987         bprm = alloc_bprm(fd, filename);
1988         if (IS_ERR(bprm)) {
1989                 retval = PTR_ERR(bprm);
1990                 goto out_ret;
1991         }
1992
1993         retval = count_strings_kernel(argv);
1994         if (WARN_ON_ONCE(retval == 0))
1995                 retval = -EINVAL;
1996         if (retval < 0)
1997                 goto out_free;
1998         bprm->argc = retval;
1999
2000         retval = count_strings_kernel(envp);
2001         if (retval < 0)
2002                 goto out_free;
2003         bprm->envc = retval;
2004
2005         retval = bprm_stack_limits(bprm);
2006         if (retval < 0)
2007                 goto out_free;
2008
2009         retval = copy_string_kernel(bprm->filename, bprm);
2010         if (retval < 0)
2011                 goto out_free;
2012         bprm->exec = bprm->p;
2013
2014         retval = copy_strings_kernel(bprm->envc, envp, bprm);
2015         if (retval < 0)
2016                 goto out_free;
2017
2018         retval = copy_strings_kernel(bprm->argc, argv, bprm);
2019         if (retval < 0)
2020                 goto out_free;
2021
2022         retval = bprm_execve(bprm, fd, filename, 0);
2023 out_free:
2024         free_bprm(bprm);
2025 out_ret:
2026         putname(filename);
2027         return retval;
2028 }
2029
2030 static int do_execve(struct filename *filename,
2031         const char __user *const __user *__argv,
2032         const char __user *const __user *__envp)
2033 {
2034         struct user_arg_ptr argv = { .ptr.native = __argv };
2035         struct user_arg_ptr envp = { .ptr.native = __envp };
2036         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2037 }
2038
2039 static int do_execveat(int fd, struct filename *filename,
2040                 const char __user *const __user *__argv,
2041                 const char __user *const __user *__envp,
2042                 int flags)
2043 {
2044         struct user_arg_ptr argv = { .ptr.native = __argv };
2045         struct user_arg_ptr envp = { .ptr.native = __envp };
2046
2047         return do_execveat_common(fd, filename, argv, envp, flags);
2048 }
2049
2050 #ifdef CONFIG_COMPAT
2051 static int compat_do_execve(struct filename *filename,
2052         const compat_uptr_t __user *__argv,
2053         const compat_uptr_t __user *__envp)
2054 {
2055         struct user_arg_ptr argv = {
2056                 .is_compat = true,
2057                 .ptr.compat = __argv,
2058         };
2059         struct user_arg_ptr envp = {
2060                 .is_compat = true,
2061                 .ptr.compat = __envp,
2062         };
2063         return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2064 }
2065
2066 static int compat_do_execveat(int fd, struct filename *filename,
2067                               const compat_uptr_t __user *__argv,
2068                               const compat_uptr_t __user *__envp,
2069                               int flags)
2070 {
2071         struct user_arg_ptr argv = {
2072                 .is_compat = true,
2073                 .ptr.compat = __argv,
2074         };
2075         struct user_arg_ptr envp = {
2076                 .is_compat = true,
2077                 .ptr.compat = __envp,
2078         };
2079         return do_execveat_common(fd, filename, argv, envp, flags);
2080 }
2081 #endif
2082
2083 void set_binfmt(struct linux_binfmt *new)
2084 {
2085         struct mm_struct *mm = current->mm;
2086
2087         if (mm->binfmt)
2088                 module_put(mm->binfmt->module);
2089
2090         mm->binfmt = new;
2091         if (new)
2092                 __module_get(new->module);
2093 }
2094 EXPORT_SYMBOL(set_binfmt);
2095
2096 /*
2097  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2098  */
2099 void set_dumpable(struct mm_struct *mm, int value)
2100 {
2101         if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2102                 return;
2103
2104         set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2105 }
2106
2107 SYSCALL_DEFINE3(execve,
2108                 const char __user *, filename,
2109                 const char __user *const __user *, argv,
2110                 const char __user *const __user *, envp)
2111 {
2112         return do_execve(getname(filename), argv, envp);
2113 }
2114
2115 SYSCALL_DEFINE5(execveat,
2116                 int, fd, const char __user *, filename,
2117                 const char __user *const __user *, argv,
2118                 const char __user *const __user *, envp,
2119                 int, flags)
2120 {
2121         return do_execveat(fd,
2122                            getname_uflags(filename, flags),
2123                            argv, envp, flags);
2124 }
2125
2126 #ifdef CONFIG_COMPAT
2127 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2128         const compat_uptr_t __user *, argv,
2129         const compat_uptr_t __user *, envp)
2130 {
2131         return compat_do_execve(getname(filename), argv, envp);
2132 }
2133
2134 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2135                        const char __user *, filename,
2136                        const compat_uptr_t __user *, argv,
2137                        const compat_uptr_t __user *, envp,
2138                        int,  flags)
2139 {
2140         return compat_do_execveat(fd,
2141                                   getname_uflags(filename, flags),
2142                                   argv, envp, flags);
2143 }
2144 #endif
2145
2146 #ifdef CONFIG_SYSCTL
2147
2148 static int proc_dointvec_minmax_coredump(struct ctl_table *table, int write,
2149                 void *buffer, size_t *lenp, loff_t *ppos)
2150 {
2151         int error = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2152
2153         if (!error)
2154                 validate_coredump_safety();
2155         return error;
2156 }
2157
2158 static struct ctl_table fs_exec_sysctls[] = {
2159         {
2160                 .procname       = "suid_dumpable",
2161                 .data           = &suid_dumpable,
2162                 .maxlen         = sizeof(int),
2163                 .mode           = 0644,
2164                 .proc_handler   = proc_dointvec_minmax_coredump,
2165                 .extra1         = SYSCTL_ZERO,
2166                 .extra2         = SYSCTL_TWO,
2167         },
2168         { }
2169 };
2170
2171 static int __init init_fs_exec_sysctls(void)
2172 {
2173         register_sysctl_init("fs", fs_exec_sysctls);
2174         return 0;
2175 }
2176
2177 fs_initcall(init_fs_exec_sysctls);
2178 #endif /* CONFIG_SYSCTL */