Merge branch 'next' into for-linus
[linux-block.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52
53 #include "internal.h"
54
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57                           struct writeback_control *wbc);
58
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63         trace_block_touch_buffer(bh);
64         folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67
68 void __lock_buffer(struct buffer_head *bh)
69 {
70         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73
74 void unlock_buffer(struct buffer_head *bh)
75 {
76         clear_bit_unlock(BH_Lock, &bh->b_state);
77         smp_mb__after_atomic();
78         wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88                                      bool *dirty, bool *writeback)
89 {
90         struct buffer_head *head, *bh;
91         *dirty = false;
92         *writeback = false;
93
94         BUG_ON(!folio_test_locked(folio));
95
96         head = folio_buffers(folio);
97         if (!head)
98                 return;
99
100         if (folio_test_writeback(folio))
101                 *writeback = true;
102
103         bh = head;
104         do {
105                 if (buffer_locked(bh))
106                         *writeback = true;
107
108                 if (buffer_dirty(bh))
109                         *dirty = true;
110
111                 bh = bh->b_this_page;
112         } while (bh != head);
113 }
114 EXPORT_SYMBOL(buffer_check_dirty_writeback);
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129         if (!test_bit(BH_Quiet, &bh->b_state))
130                 printk_ratelimited(KERN_ERR
131                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
132                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 /* This happens, due to failed read-ahead attempts. */
149                 clear_buffer_uptodate(bh);
150         }
151         unlock_buffer(bh);
152 }
153
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160         __end_buffer_read_notouch(bh, uptodate);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167         if (uptodate) {
168                 set_buffer_uptodate(bh);
169         } else {
170                 buffer_io_error(bh, ", lost sync page write");
171                 mark_buffer_write_io_error(bh);
172                 clear_buffer_uptodate(bh);
173         }
174         unlock_buffer(bh);
175         put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192         struct inode *bd_inode = bdev->bd_inode;
193         struct address_space *bd_mapping = bd_inode->i_mapping;
194         struct buffer_head *ret = NULL;
195         pgoff_t index;
196         struct buffer_head *bh;
197         struct buffer_head *head;
198         struct page *page;
199         int all_mapped = 1;
200         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
204         if (!page)
205                 goto out;
206
207         spin_lock(&bd_mapping->private_lock);
208         if (!page_has_buffers(page))
209                 goto out_unlock;
210         head = page_buffers(page);
211         bh = head;
212         do {
213                 if (!buffer_mapped(bh))
214                         all_mapped = 0;
215                 else if (bh->b_blocknr == block) {
216                         ret = bh;
217                         get_bh(bh);
218                         goto out_unlock;
219                 }
220                 bh = bh->b_this_page;
221         } while (bh != head);
222
223         /* we might be here because some of the buffers on this page are
224          * not mapped.  This is due to various races between
225          * file io on the block device and getblk.  It gets dealt with
226          * elsewhere, don't buffer_error if we had some unmapped buffers
227          */
228         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229         if (all_mapped && __ratelimit(&last_warned)) {
230                 printk("__find_get_block_slow() failed. block=%llu, "
231                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232                        "device %pg blocksize: %d\n",
233                        (unsigned long long)block,
234                        (unsigned long long)bh->b_blocknr,
235                        bh->b_state, bh->b_size, bdev,
236                        1 << bd_inode->i_blkbits);
237         }
238 out_unlock:
239         spin_unlock(&bd_mapping->private_lock);
240         put_page(page);
241 out:
242         return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247         unsigned long flags;
248         struct buffer_head *first;
249         struct buffer_head *tmp;
250         struct folio *folio;
251         int folio_uptodate = 1;
252
253         BUG_ON(!buffer_async_read(bh));
254
255         folio = bh->b_folio;
256         if (uptodate) {
257                 set_buffer_uptodate(bh);
258         } else {
259                 clear_buffer_uptodate(bh);
260                 buffer_io_error(bh, ", async page read");
261                 folio_set_error(folio);
262         }
263
264         /*
265          * Be _very_ careful from here on. Bad things can happen if
266          * two buffer heads end IO at almost the same time and both
267          * decide that the page is now completely done.
268          */
269         first = folio_buffers(folio);
270         spin_lock_irqsave(&first->b_uptodate_lock, flags);
271         clear_buffer_async_read(bh);
272         unlock_buffer(bh);
273         tmp = bh;
274         do {
275                 if (!buffer_uptodate(tmp))
276                         folio_uptodate = 0;
277                 if (buffer_async_read(tmp)) {
278                         BUG_ON(!buffer_locked(tmp));
279                         goto still_busy;
280                 }
281                 tmp = tmp->b_this_page;
282         } while (tmp != bh);
283         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285         /*
286          * If all of the buffers are uptodate then we can set the page
287          * uptodate.
288          */
289         if (folio_uptodate)
290                 folio_mark_uptodate(folio);
291         folio_unlock(folio);
292         return;
293
294 still_busy:
295         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
296         return;
297 }
298
299 struct postprocess_bh_ctx {
300         struct work_struct work;
301         struct buffer_head *bh;
302 };
303
304 static void verify_bh(struct work_struct *work)
305 {
306         struct postprocess_bh_ctx *ctx =
307                 container_of(work, struct postprocess_bh_ctx, work);
308         struct buffer_head *bh = ctx->bh;
309         bool valid;
310
311         valid = fsverity_verify_blocks(page_folio(bh->b_page), bh->b_size,
312                                        bh_offset(bh));
313         end_buffer_async_read(bh, valid);
314         kfree(ctx);
315 }
316
317 static bool need_fsverity(struct buffer_head *bh)
318 {
319         struct page *page = bh->b_page;
320         struct inode *inode = page->mapping->host;
321
322         return fsverity_active(inode) &&
323                 /* needed by ext4 */
324                 page->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
325 }
326
327 static void decrypt_bh(struct work_struct *work)
328 {
329         struct postprocess_bh_ctx *ctx =
330                 container_of(work, struct postprocess_bh_ctx, work);
331         struct buffer_head *bh = ctx->bh;
332         int err;
333
334         err = fscrypt_decrypt_pagecache_blocks(page_folio(bh->b_page),
335                                                bh->b_size, bh_offset(bh));
336         if (err == 0 && need_fsverity(bh)) {
337                 /*
338                  * We use different work queues for decryption and for verity
339                  * because verity may require reading metadata pages that need
340                  * decryption, and we shouldn't recurse to the same workqueue.
341                  */
342                 INIT_WORK(&ctx->work, verify_bh);
343                 fsverity_enqueue_verify_work(&ctx->work);
344                 return;
345         }
346         end_buffer_async_read(bh, err == 0);
347         kfree(ctx);
348 }
349
350 /*
351  * I/O completion handler for block_read_full_folio() - pages
352  * which come unlocked at the end of I/O.
353  */
354 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
355 {
356         struct inode *inode = bh->b_folio->mapping->host;
357         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
358         bool verify = need_fsverity(bh);
359
360         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
361         if (uptodate && (decrypt || verify)) {
362                 struct postprocess_bh_ctx *ctx =
363                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
364
365                 if (ctx) {
366                         ctx->bh = bh;
367                         if (decrypt) {
368                                 INIT_WORK(&ctx->work, decrypt_bh);
369                                 fscrypt_enqueue_decrypt_work(&ctx->work);
370                         } else {
371                                 INIT_WORK(&ctx->work, verify_bh);
372                                 fsverity_enqueue_verify_work(&ctx->work);
373                         }
374                         return;
375                 }
376                 uptodate = 0;
377         }
378         end_buffer_async_read(bh, uptodate);
379 }
380
381 /*
382  * Completion handler for block_write_full_page() - pages which are unlocked
383  * during I/O, and which have PageWriteback cleared upon I/O completion.
384  */
385 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
386 {
387         unsigned long flags;
388         struct buffer_head *first;
389         struct buffer_head *tmp;
390         struct folio *folio;
391
392         BUG_ON(!buffer_async_write(bh));
393
394         folio = bh->b_folio;
395         if (uptodate) {
396                 set_buffer_uptodate(bh);
397         } else {
398                 buffer_io_error(bh, ", lost async page write");
399                 mark_buffer_write_io_error(bh);
400                 clear_buffer_uptodate(bh);
401                 folio_set_error(folio);
402         }
403
404         first = folio_buffers(folio);
405         spin_lock_irqsave(&first->b_uptodate_lock, flags);
406
407         clear_buffer_async_write(bh);
408         unlock_buffer(bh);
409         tmp = bh->b_this_page;
410         while (tmp != bh) {
411                 if (buffer_async_write(tmp)) {
412                         BUG_ON(!buffer_locked(tmp));
413                         goto still_busy;
414                 }
415                 tmp = tmp->b_this_page;
416         }
417         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
418         folio_end_writeback(folio);
419         return;
420
421 still_busy:
422         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
423         return;
424 }
425 EXPORT_SYMBOL(end_buffer_async_write);
426
427 /*
428  * If a page's buffers are under async readin (end_buffer_async_read
429  * completion) then there is a possibility that another thread of
430  * control could lock one of the buffers after it has completed
431  * but while some of the other buffers have not completed.  This
432  * locked buffer would confuse end_buffer_async_read() into not unlocking
433  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
434  * that this buffer is not under async I/O.
435  *
436  * The page comes unlocked when it has no locked buffer_async buffers
437  * left.
438  *
439  * PageLocked prevents anyone starting new async I/O reads any of
440  * the buffers.
441  *
442  * PageWriteback is used to prevent simultaneous writeout of the same
443  * page.
444  *
445  * PageLocked prevents anyone from starting writeback of a page which is
446  * under read I/O (PageWriteback is only ever set against a locked page).
447  */
448 static void mark_buffer_async_read(struct buffer_head *bh)
449 {
450         bh->b_end_io = end_buffer_async_read_io;
451         set_buffer_async_read(bh);
452 }
453
454 static void mark_buffer_async_write_endio(struct buffer_head *bh,
455                                           bh_end_io_t *handler)
456 {
457         bh->b_end_io = handler;
458         set_buffer_async_write(bh);
459 }
460
461 void mark_buffer_async_write(struct buffer_head *bh)
462 {
463         mark_buffer_async_write_endio(bh, end_buffer_async_write);
464 }
465 EXPORT_SYMBOL(mark_buffer_async_write);
466
467
468 /*
469  * fs/buffer.c contains helper functions for buffer-backed address space's
470  * fsync functions.  A common requirement for buffer-based filesystems is
471  * that certain data from the backing blockdev needs to be written out for
472  * a successful fsync().  For example, ext2 indirect blocks need to be
473  * written back and waited upon before fsync() returns.
474  *
475  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
476  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
477  * management of a list of dependent buffers at ->i_mapping->private_list.
478  *
479  * Locking is a little subtle: try_to_free_buffers() will remove buffers
480  * from their controlling inode's queue when they are being freed.  But
481  * try_to_free_buffers() will be operating against the *blockdev* mapping
482  * at the time, not against the S_ISREG file which depends on those buffers.
483  * So the locking for private_list is via the private_lock in the address_space
484  * which backs the buffers.  Which is different from the address_space 
485  * against which the buffers are listed.  So for a particular address_space,
486  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
487  * mapping->private_list will always be protected by the backing blockdev's
488  * ->private_lock.
489  *
490  * Which introduces a requirement: all buffers on an address_space's
491  * ->private_list must be from the same address_space: the blockdev's.
492  *
493  * address_spaces which do not place buffers at ->private_list via these
494  * utility functions are free to use private_lock and private_list for
495  * whatever they want.  The only requirement is that list_empty(private_list)
496  * be true at clear_inode() time.
497  *
498  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
499  * filesystems should do that.  invalidate_inode_buffers() should just go
500  * BUG_ON(!list_empty).
501  *
502  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
503  * take an address_space, not an inode.  And it should be called
504  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
505  * queued up.
506  *
507  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
508  * list if it is already on a list.  Because if the buffer is on a list,
509  * it *must* already be on the right one.  If not, the filesystem is being
510  * silly.  This will save a ton of locking.  But first we have to ensure
511  * that buffers are taken *off* the old inode's list when they are freed
512  * (presumably in truncate).  That requires careful auditing of all
513  * filesystems (do it inside bforget()).  It could also be done by bringing
514  * b_inode back.
515  */
516
517 /*
518  * The buffer's backing address_space's private_lock must be held
519  */
520 static void __remove_assoc_queue(struct buffer_head *bh)
521 {
522         list_del_init(&bh->b_assoc_buffers);
523         WARN_ON(!bh->b_assoc_map);
524         bh->b_assoc_map = NULL;
525 }
526
527 int inode_has_buffers(struct inode *inode)
528 {
529         return !list_empty(&inode->i_data.private_list);
530 }
531
532 /*
533  * osync is designed to support O_SYNC io.  It waits synchronously for
534  * all already-submitted IO to complete, but does not queue any new
535  * writes to the disk.
536  *
537  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
538  * as you dirty the buffers, and then use osync_inode_buffers to wait for
539  * completion.  Any other dirty buffers which are not yet queued for
540  * write will not be flushed to disk by the osync.
541  */
542 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
543 {
544         struct buffer_head *bh;
545         struct list_head *p;
546         int err = 0;
547
548         spin_lock(lock);
549 repeat:
550         list_for_each_prev(p, list) {
551                 bh = BH_ENTRY(p);
552                 if (buffer_locked(bh)) {
553                         get_bh(bh);
554                         spin_unlock(lock);
555                         wait_on_buffer(bh);
556                         if (!buffer_uptodate(bh))
557                                 err = -EIO;
558                         brelse(bh);
559                         spin_lock(lock);
560                         goto repeat;
561                 }
562         }
563         spin_unlock(lock);
564         return err;
565 }
566
567 void emergency_thaw_bdev(struct super_block *sb)
568 {
569         while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
570                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
571 }
572
573 /**
574  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
575  * @mapping: the mapping which wants those buffers written
576  *
577  * Starts I/O against the buffers at mapping->private_list, and waits upon
578  * that I/O.
579  *
580  * Basically, this is a convenience function for fsync().
581  * @mapping is a file or directory which needs those buffers to be written for
582  * a successful fsync().
583  */
584 int sync_mapping_buffers(struct address_space *mapping)
585 {
586         struct address_space *buffer_mapping = mapping->private_data;
587
588         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
589                 return 0;
590
591         return fsync_buffers_list(&buffer_mapping->private_lock,
592                                         &mapping->private_list);
593 }
594 EXPORT_SYMBOL(sync_mapping_buffers);
595
596 /*
597  * Called when we've recently written block `bblock', and it is known that
598  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
599  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
600  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
601  */
602 void write_boundary_block(struct block_device *bdev,
603                         sector_t bblock, unsigned blocksize)
604 {
605         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
606         if (bh) {
607                 if (buffer_dirty(bh))
608                         write_dirty_buffer(bh, 0);
609                 put_bh(bh);
610         }
611 }
612
613 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
614 {
615         struct address_space *mapping = inode->i_mapping;
616         struct address_space *buffer_mapping = bh->b_folio->mapping;
617
618         mark_buffer_dirty(bh);
619         if (!mapping->private_data) {
620                 mapping->private_data = buffer_mapping;
621         } else {
622                 BUG_ON(mapping->private_data != buffer_mapping);
623         }
624         if (!bh->b_assoc_map) {
625                 spin_lock(&buffer_mapping->private_lock);
626                 list_move_tail(&bh->b_assoc_buffers,
627                                 &mapping->private_list);
628                 bh->b_assoc_map = mapping;
629                 spin_unlock(&buffer_mapping->private_lock);
630         }
631 }
632 EXPORT_SYMBOL(mark_buffer_dirty_inode);
633
634 /*
635  * Add a page to the dirty page list.
636  *
637  * It is a sad fact of life that this function is called from several places
638  * deeply under spinlocking.  It may not sleep.
639  *
640  * If the page has buffers, the uptodate buffers are set dirty, to preserve
641  * dirty-state coherency between the page and the buffers.  It the page does
642  * not have buffers then when they are later attached they will all be set
643  * dirty.
644  *
645  * The buffers are dirtied before the page is dirtied.  There's a small race
646  * window in which a writepage caller may see the page cleanness but not the
647  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
648  * before the buffers, a concurrent writepage caller could clear the page dirty
649  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
650  * page on the dirty page list.
651  *
652  * We use private_lock to lock against try_to_free_buffers while using the
653  * page's buffer list.  Also use this to protect against clean buffers being
654  * added to the page after it was set dirty.
655  *
656  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
657  * address_space though.
658  */
659 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
660 {
661         struct buffer_head *head;
662         bool newly_dirty;
663
664         spin_lock(&mapping->private_lock);
665         head = folio_buffers(folio);
666         if (head) {
667                 struct buffer_head *bh = head;
668
669                 do {
670                         set_buffer_dirty(bh);
671                         bh = bh->b_this_page;
672                 } while (bh != head);
673         }
674         /*
675          * Lock out page's memcg migration to keep PageDirty
676          * synchronized with per-memcg dirty page counters.
677          */
678         folio_memcg_lock(folio);
679         newly_dirty = !folio_test_set_dirty(folio);
680         spin_unlock(&mapping->private_lock);
681
682         if (newly_dirty)
683                 __folio_mark_dirty(folio, mapping, 1);
684
685         folio_memcg_unlock(folio);
686
687         if (newly_dirty)
688                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
689
690         return newly_dirty;
691 }
692 EXPORT_SYMBOL(block_dirty_folio);
693
694 /*
695  * Write out and wait upon a list of buffers.
696  *
697  * We have conflicting pressures: we want to make sure that all
698  * initially dirty buffers get waited on, but that any subsequently
699  * dirtied buffers don't.  After all, we don't want fsync to last
700  * forever if somebody is actively writing to the file.
701  *
702  * Do this in two main stages: first we copy dirty buffers to a
703  * temporary inode list, queueing the writes as we go.  Then we clean
704  * up, waiting for those writes to complete.
705  * 
706  * During this second stage, any subsequent updates to the file may end
707  * up refiling the buffer on the original inode's dirty list again, so
708  * there is a chance we will end up with a buffer queued for write but
709  * not yet completed on that list.  So, as a final cleanup we go through
710  * the osync code to catch these locked, dirty buffers without requeuing
711  * any newly dirty buffers for write.
712  */
713 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
714 {
715         struct buffer_head *bh;
716         struct list_head tmp;
717         struct address_space *mapping;
718         int err = 0, err2;
719         struct blk_plug plug;
720
721         INIT_LIST_HEAD(&tmp);
722         blk_start_plug(&plug);
723
724         spin_lock(lock);
725         while (!list_empty(list)) {
726                 bh = BH_ENTRY(list->next);
727                 mapping = bh->b_assoc_map;
728                 __remove_assoc_queue(bh);
729                 /* Avoid race with mark_buffer_dirty_inode() which does
730                  * a lockless check and we rely on seeing the dirty bit */
731                 smp_mb();
732                 if (buffer_dirty(bh) || buffer_locked(bh)) {
733                         list_add(&bh->b_assoc_buffers, &tmp);
734                         bh->b_assoc_map = mapping;
735                         if (buffer_dirty(bh)) {
736                                 get_bh(bh);
737                                 spin_unlock(lock);
738                                 /*
739                                  * Ensure any pending I/O completes so that
740                                  * write_dirty_buffer() actually writes the
741                                  * current contents - it is a noop if I/O is
742                                  * still in flight on potentially older
743                                  * contents.
744                                  */
745                                 write_dirty_buffer(bh, REQ_SYNC);
746
747                                 /*
748                                  * Kick off IO for the previous mapping. Note
749                                  * that we will not run the very last mapping,
750                                  * wait_on_buffer() will do that for us
751                                  * through sync_buffer().
752                                  */
753                                 brelse(bh);
754                                 spin_lock(lock);
755                         }
756                 }
757         }
758
759         spin_unlock(lock);
760         blk_finish_plug(&plug);
761         spin_lock(lock);
762
763         while (!list_empty(&tmp)) {
764                 bh = BH_ENTRY(tmp.prev);
765                 get_bh(bh);
766                 mapping = bh->b_assoc_map;
767                 __remove_assoc_queue(bh);
768                 /* Avoid race with mark_buffer_dirty_inode() which does
769                  * a lockless check and we rely on seeing the dirty bit */
770                 smp_mb();
771                 if (buffer_dirty(bh)) {
772                         list_add(&bh->b_assoc_buffers,
773                                  &mapping->private_list);
774                         bh->b_assoc_map = mapping;
775                 }
776                 spin_unlock(lock);
777                 wait_on_buffer(bh);
778                 if (!buffer_uptodate(bh))
779                         err = -EIO;
780                 brelse(bh);
781                 spin_lock(lock);
782         }
783         
784         spin_unlock(lock);
785         err2 = osync_buffers_list(lock, list);
786         if (err)
787                 return err;
788         else
789                 return err2;
790 }
791
792 /*
793  * Invalidate any and all dirty buffers on a given inode.  We are
794  * probably unmounting the fs, but that doesn't mean we have already
795  * done a sync().  Just drop the buffers from the inode list.
796  *
797  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
798  * assumes that all the buffers are against the blockdev.  Not true
799  * for reiserfs.
800  */
801 void invalidate_inode_buffers(struct inode *inode)
802 {
803         if (inode_has_buffers(inode)) {
804                 struct address_space *mapping = &inode->i_data;
805                 struct list_head *list = &mapping->private_list;
806                 struct address_space *buffer_mapping = mapping->private_data;
807
808                 spin_lock(&buffer_mapping->private_lock);
809                 while (!list_empty(list))
810                         __remove_assoc_queue(BH_ENTRY(list->next));
811                 spin_unlock(&buffer_mapping->private_lock);
812         }
813 }
814 EXPORT_SYMBOL(invalidate_inode_buffers);
815
816 /*
817  * Remove any clean buffers from the inode's buffer list.  This is called
818  * when we're trying to free the inode itself.  Those buffers can pin it.
819  *
820  * Returns true if all buffers were removed.
821  */
822 int remove_inode_buffers(struct inode *inode)
823 {
824         int ret = 1;
825
826         if (inode_has_buffers(inode)) {
827                 struct address_space *mapping = &inode->i_data;
828                 struct list_head *list = &mapping->private_list;
829                 struct address_space *buffer_mapping = mapping->private_data;
830
831                 spin_lock(&buffer_mapping->private_lock);
832                 while (!list_empty(list)) {
833                         struct buffer_head *bh = BH_ENTRY(list->next);
834                         if (buffer_dirty(bh)) {
835                                 ret = 0;
836                                 break;
837                         }
838                         __remove_assoc_queue(bh);
839                 }
840                 spin_unlock(&buffer_mapping->private_lock);
841         }
842         return ret;
843 }
844
845 /*
846  * Create the appropriate buffers when given a page for data area and
847  * the size of each buffer.. Use the bh->b_this_page linked list to
848  * follow the buffers created.  Return NULL if unable to create more
849  * buffers.
850  *
851  * The retry flag is used to differentiate async IO (paging, swapping)
852  * which may not fail from ordinary buffer allocations.
853  */
854 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
855                 bool retry)
856 {
857         struct buffer_head *bh, *head;
858         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
859         long offset;
860         struct mem_cgroup *memcg, *old_memcg;
861
862         if (retry)
863                 gfp |= __GFP_NOFAIL;
864
865         /* The page lock pins the memcg */
866         memcg = page_memcg(page);
867         old_memcg = set_active_memcg(memcg);
868
869         head = NULL;
870         offset = PAGE_SIZE;
871         while ((offset -= size) >= 0) {
872                 bh = alloc_buffer_head(gfp);
873                 if (!bh)
874                         goto no_grow;
875
876                 bh->b_this_page = head;
877                 bh->b_blocknr = -1;
878                 head = bh;
879
880                 bh->b_size = size;
881
882                 /* Link the buffer to its page */
883                 set_bh_page(bh, page, offset);
884         }
885 out:
886         set_active_memcg(old_memcg);
887         return head;
888 /*
889  * In case anything failed, we just free everything we got.
890  */
891 no_grow:
892         if (head) {
893                 do {
894                         bh = head;
895                         head = head->b_this_page;
896                         free_buffer_head(bh);
897                 } while (head);
898         }
899
900         goto out;
901 }
902 EXPORT_SYMBOL_GPL(alloc_page_buffers);
903
904 static inline void
905 link_dev_buffers(struct page *page, struct buffer_head *head)
906 {
907         struct buffer_head *bh, *tail;
908
909         bh = head;
910         do {
911                 tail = bh;
912                 bh = bh->b_this_page;
913         } while (bh);
914         tail->b_this_page = head;
915         attach_page_private(page, head);
916 }
917
918 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
919 {
920         sector_t retval = ~((sector_t)0);
921         loff_t sz = bdev_nr_bytes(bdev);
922
923         if (sz) {
924                 unsigned int sizebits = blksize_bits(size);
925                 retval = (sz >> sizebits);
926         }
927         return retval;
928 }
929
930 /*
931  * Initialise the state of a blockdev page's buffers.
932  */ 
933 static sector_t
934 init_page_buffers(struct page *page, struct block_device *bdev,
935                         sector_t block, int size)
936 {
937         struct buffer_head *head = page_buffers(page);
938         struct buffer_head *bh = head;
939         int uptodate = PageUptodate(page);
940         sector_t end_block = blkdev_max_block(bdev, size);
941
942         do {
943                 if (!buffer_mapped(bh)) {
944                         bh->b_end_io = NULL;
945                         bh->b_private = NULL;
946                         bh->b_bdev = bdev;
947                         bh->b_blocknr = block;
948                         if (uptodate)
949                                 set_buffer_uptodate(bh);
950                         if (block < end_block)
951                                 set_buffer_mapped(bh);
952                 }
953                 block++;
954                 bh = bh->b_this_page;
955         } while (bh != head);
956
957         /*
958          * Caller needs to validate requested block against end of device.
959          */
960         return end_block;
961 }
962
963 /*
964  * Create the page-cache page that contains the requested block.
965  *
966  * This is used purely for blockdev mappings.
967  */
968 static int
969 grow_dev_page(struct block_device *bdev, sector_t block,
970               pgoff_t index, int size, int sizebits, gfp_t gfp)
971 {
972         struct inode *inode = bdev->bd_inode;
973         struct page *page;
974         struct buffer_head *bh;
975         sector_t end_block;
976         int ret = 0;
977         gfp_t gfp_mask;
978
979         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
980
981         /*
982          * XXX: __getblk_slow() can not really deal with failure and
983          * will endlessly loop on improvised global reclaim.  Prefer
984          * looping in the allocator rather than here, at least that
985          * code knows what it's doing.
986          */
987         gfp_mask |= __GFP_NOFAIL;
988
989         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
990
991         BUG_ON(!PageLocked(page));
992
993         if (page_has_buffers(page)) {
994                 bh = page_buffers(page);
995                 if (bh->b_size == size) {
996                         end_block = init_page_buffers(page, bdev,
997                                                 (sector_t)index << sizebits,
998                                                 size);
999                         goto done;
1000                 }
1001                 if (!try_to_free_buffers(page_folio(page)))
1002                         goto failed;
1003         }
1004
1005         /*
1006          * Allocate some buffers for this page
1007          */
1008         bh = alloc_page_buffers(page, size, true);
1009
1010         /*
1011          * Link the page to the buffers and initialise them.  Take the
1012          * lock to be atomic wrt __find_get_block(), which does not
1013          * run under the page lock.
1014          */
1015         spin_lock(&inode->i_mapping->private_lock);
1016         link_dev_buffers(page, bh);
1017         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
1018                         size);
1019         spin_unlock(&inode->i_mapping->private_lock);
1020 done:
1021         ret = (block < end_block) ? 1 : -ENXIO;
1022 failed:
1023         unlock_page(page);
1024         put_page(page);
1025         return ret;
1026 }
1027
1028 /*
1029  * Create buffers for the specified block device block's page.  If
1030  * that page was dirty, the buffers are set dirty also.
1031  */
1032 static int
1033 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1034 {
1035         pgoff_t index;
1036         int sizebits;
1037
1038         sizebits = PAGE_SHIFT - __ffs(size);
1039         index = block >> sizebits;
1040
1041         /*
1042          * Check for a block which wants to lie outside our maximum possible
1043          * pagecache index.  (this comparison is done using sector_t types).
1044          */
1045         if (unlikely(index != block >> sizebits)) {
1046                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1047                         "device %pg\n",
1048                         __func__, (unsigned long long)block,
1049                         bdev);
1050                 return -EIO;
1051         }
1052
1053         /* Create a page with the proper size buffers.. */
1054         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1055 }
1056
1057 static struct buffer_head *
1058 __getblk_slow(struct block_device *bdev, sector_t block,
1059              unsigned size, gfp_t gfp)
1060 {
1061         /* Size must be multiple of hard sectorsize */
1062         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1063                         (size < 512 || size > PAGE_SIZE))) {
1064                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1065                                         size);
1066                 printk(KERN_ERR "logical block size: %d\n",
1067                                         bdev_logical_block_size(bdev));
1068
1069                 dump_stack();
1070                 return NULL;
1071         }
1072
1073         for (;;) {
1074                 struct buffer_head *bh;
1075                 int ret;
1076
1077                 bh = __find_get_block(bdev, block, size);
1078                 if (bh)
1079                         return bh;
1080
1081                 ret = grow_buffers(bdev, block, size, gfp);
1082                 if (ret < 0)
1083                         return NULL;
1084         }
1085 }
1086
1087 /*
1088  * The relationship between dirty buffers and dirty pages:
1089  *
1090  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1091  * the page is tagged dirty in the page cache.
1092  *
1093  * At all times, the dirtiness of the buffers represents the dirtiness of
1094  * subsections of the page.  If the page has buffers, the page dirty bit is
1095  * merely a hint about the true dirty state.
1096  *
1097  * When a page is set dirty in its entirety, all its buffers are marked dirty
1098  * (if the page has buffers).
1099  *
1100  * When a buffer is marked dirty, its page is dirtied, but the page's other
1101  * buffers are not.
1102  *
1103  * Also.  When blockdev buffers are explicitly read with bread(), they
1104  * individually become uptodate.  But their backing page remains not
1105  * uptodate - even if all of its buffers are uptodate.  A subsequent
1106  * block_read_full_folio() against that folio will discover all the uptodate
1107  * buffers, will set the folio uptodate and will perform no I/O.
1108  */
1109
1110 /**
1111  * mark_buffer_dirty - mark a buffer_head as needing writeout
1112  * @bh: the buffer_head to mark dirty
1113  *
1114  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1115  * its backing page dirty, then tag the page as dirty in the page cache
1116  * and then attach the address_space's inode to its superblock's dirty
1117  * inode list.
1118  *
1119  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1120  * i_pages lock and mapping->host->i_lock.
1121  */
1122 void mark_buffer_dirty(struct buffer_head *bh)
1123 {
1124         WARN_ON_ONCE(!buffer_uptodate(bh));
1125
1126         trace_block_dirty_buffer(bh);
1127
1128         /*
1129          * Very *carefully* optimize the it-is-already-dirty case.
1130          *
1131          * Don't let the final "is it dirty" escape to before we
1132          * perhaps modified the buffer.
1133          */
1134         if (buffer_dirty(bh)) {
1135                 smp_mb();
1136                 if (buffer_dirty(bh))
1137                         return;
1138         }
1139
1140         if (!test_set_buffer_dirty(bh)) {
1141                 struct folio *folio = bh->b_folio;
1142                 struct address_space *mapping = NULL;
1143
1144                 folio_memcg_lock(folio);
1145                 if (!folio_test_set_dirty(folio)) {
1146                         mapping = folio->mapping;
1147                         if (mapping)
1148                                 __folio_mark_dirty(folio, mapping, 0);
1149                 }
1150                 folio_memcg_unlock(folio);
1151                 if (mapping)
1152                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1153         }
1154 }
1155 EXPORT_SYMBOL(mark_buffer_dirty);
1156
1157 void mark_buffer_write_io_error(struct buffer_head *bh)
1158 {
1159         struct super_block *sb;
1160
1161         set_buffer_write_io_error(bh);
1162         /* FIXME: do we need to set this in both places? */
1163         if (bh->b_folio && bh->b_folio->mapping)
1164                 mapping_set_error(bh->b_folio->mapping, -EIO);
1165         if (bh->b_assoc_map)
1166                 mapping_set_error(bh->b_assoc_map, -EIO);
1167         rcu_read_lock();
1168         sb = READ_ONCE(bh->b_bdev->bd_super);
1169         if (sb)
1170                 errseq_set(&sb->s_wb_err, -EIO);
1171         rcu_read_unlock();
1172 }
1173 EXPORT_SYMBOL(mark_buffer_write_io_error);
1174
1175 /*
1176  * Decrement a buffer_head's reference count.  If all buffers against a page
1177  * have zero reference count, are clean and unlocked, and if the page is clean
1178  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1179  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1180  * a page but it ends up not being freed, and buffers may later be reattached).
1181  */
1182 void __brelse(struct buffer_head * buf)
1183 {
1184         if (atomic_read(&buf->b_count)) {
1185                 put_bh(buf);
1186                 return;
1187         }
1188         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1189 }
1190 EXPORT_SYMBOL(__brelse);
1191
1192 /*
1193  * bforget() is like brelse(), except it discards any
1194  * potentially dirty data.
1195  */
1196 void __bforget(struct buffer_head *bh)
1197 {
1198         clear_buffer_dirty(bh);
1199         if (bh->b_assoc_map) {
1200                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1201
1202                 spin_lock(&buffer_mapping->private_lock);
1203                 list_del_init(&bh->b_assoc_buffers);
1204                 bh->b_assoc_map = NULL;
1205                 spin_unlock(&buffer_mapping->private_lock);
1206         }
1207         __brelse(bh);
1208 }
1209 EXPORT_SYMBOL(__bforget);
1210
1211 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1212 {
1213         lock_buffer(bh);
1214         if (buffer_uptodate(bh)) {
1215                 unlock_buffer(bh);
1216                 return bh;
1217         } else {
1218                 get_bh(bh);
1219                 bh->b_end_io = end_buffer_read_sync;
1220                 submit_bh(REQ_OP_READ, bh);
1221                 wait_on_buffer(bh);
1222                 if (buffer_uptodate(bh))
1223                         return bh;
1224         }
1225         brelse(bh);
1226         return NULL;
1227 }
1228
1229 /*
1230  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1231  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1232  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1233  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1234  * CPU's LRUs at the same time.
1235  *
1236  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1237  * sb_find_get_block().
1238  *
1239  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1240  * a local interrupt disable for that.
1241  */
1242
1243 #define BH_LRU_SIZE     16
1244
1245 struct bh_lru {
1246         struct buffer_head *bhs[BH_LRU_SIZE];
1247 };
1248
1249 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1250
1251 #ifdef CONFIG_SMP
1252 #define bh_lru_lock()   local_irq_disable()
1253 #define bh_lru_unlock() local_irq_enable()
1254 #else
1255 #define bh_lru_lock()   preempt_disable()
1256 #define bh_lru_unlock() preempt_enable()
1257 #endif
1258
1259 static inline void check_irqs_on(void)
1260 {
1261 #ifdef irqs_disabled
1262         BUG_ON(irqs_disabled());
1263 #endif
1264 }
1265
1266 /*
1267  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1268  * inserted at the front, and the buffer_head at the back if any is evicted.
1269  * Or, if already in the LRU it is moved to the front.
1270  */
1271 static void bh_lru_install(struct buffer_head *bh)
1272 {
1273         struct buffer_head *evictee = bh;
1274         struct bh_lru *b;
1275         int i;
1276
1277         check_irqs_on();
1278         bh_lru_lock();
1279
1280         /*
1281          * the refcount of buffer_head in bh_lru prevents dropping the
1282          * attached page(i.e., try_to_free_buffers) so it could cause
1283          * failing page migration.
1284          * Skip putting upcoming bh into bh_lru until migration is done.
1285          */
1286         if (lru_cache_disabled()) {
1287                 bh_lru_unlock();
1288                 return;
1289         }
1290
1291         b = this_cpu_ptr(&bh_lrus);
1292         for (i = 0; i < BH_LRU_SIZE; i++) {
1293                 swap(evictee, b->bhs[i]);
1294                 if (evictee == bh) {
1295                         bh_lru_unlock();
1296                         return;
1297                 }
1298         }
1299
1300         get_bh(bh);
1301         bh_lru_unlock();
1302         brelse(evictee);
1303 }
1304
1305 /*
1306  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1307  */
1308 static struct buffer_head *
1309 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1310 {
1311         struct buffer_head *ret = NULL;
1312         unsigned int i;
1313
1314         check_irqs_on();
1315         bh_lru_lock();
1316         for (i = 0; i < BH_LRU_SIZE; i++) {
1317                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1318
1319                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1320                     bh->b_size == size) {
1321                         if (i) {
1322                                 while (i) {
1323                                         __this_cpu_write(bh_lrus.bhs[i],
1324                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1325                                         i--;
1326                                 }
1327                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1328                         }
1329                         get_bh(bh);
1330                         ret = bh;
1331                         break;
1332                 }
1333         }
1334         bh_lru_unlock();
1335         return ret;
1336 }
1337
1338 /*
1339  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1340  * it in the LRU and mark it as accessed.  If it is not present then return
1341  * NULL
1342  */
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347
1348         if (bh == NULL) {
1349                 /* __find_get_block_slow will mark the page accessed */
1350                 bh = __find_get_block_slow(bdev, block);
1351                 if (bh)
1352                         bh_lru_install(bh);
1353         } else
1354                 touch_buffer(bh);
1355
1356         return bh;
1357 }
1358 EXPORT_SYMBOL(__find_get_block);
1359
1360 /*
1361  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1362  * which corresponds to the passed block_device, block and size. The
1363  * returned buffer has its reference count incremented.
1364  *
1365  * __getblk_gfp() will lock up the machine if grow_dev_page's
1366  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1367  */
1368 struct buffer_head *
1369 __getblk_gfp(struct block_device *bdev, sector_t block,
1370              unsigned size, gfp_t gfp)
1371 {
1372         struct buffer_head *bh = __find_get_block(bdev, block, size);
1373
1374         might_sleep();
1375         if (bh == NULL)
1376                 bh = __getblk_slow(bdev, block, size, gfp);
1377         return bh;
1378 }
1379 EXPORT_SYMBOL(__getblk_gfp);
1380
1381 /*
1382  * Do async read-ahead on a buffer..
1383  */
1384 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1385 {
1386         struct buffer_head *bh = __getblk(bdev, block, size);
1387         if (likely(bh)) {
1388                 bh_readahead(bh, REQ_RAHEAD);
1389                 brelse(bh);
1390         }
1391 }
1392 EXPORT_SYMBOL(__breadahead);
1393
1394 /**
1395  *  __bread_gfp() - reads a specified block and returns the bh
1396  *  @bdev: the block_device to read from
1397  *  @block: number of block
1398  *  @size: size (in bytes) to read
1399  *  @gfp: page allocation flag
1400  *
1401  *  Reads a specified block, and returns buffer head that contains it.
1402  *  The page cache can be allocated from non-movable area
1403  *  not to prevent page migration if you set gfp to zero.
1404  *  It returns NULL if the block was unreadable.
1405  */
1406 struct buffer_head *
1407 __bread_gfp(struct block_device *bdev, sector_t block,
1408                    unsigned size, gfp_t gfp)
1409 {
1410         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1411
1412         if (likely(bh) && !buffer_uptodate(bh))
1413                 bh = __bread_slow(bh);
1414         return bh;
1415 }
1416 EXPORT_SYMBOL(__bread_gfp);
1417
1418 static void __invalidate_bh_lrus(struct bh_lru *b)
1419 {
1420         int i;
1421
1422         for (i = 0; i < BH_LRU_SIZE; i++) {
1423                 brelse(b->bhs[i]);
1424                 b->bhs[i] = NULL;
1425         }
1426 }
1427 /*
1428  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1429  * This doesn't race because it runs in each cpu either in irq
1430  * or with preempt disabled.
1431  */
1432 static void invalidate_bh_lru(void *arg)
1433 {
1434         struct bh_lru *b = &get_cpu_var(bh_lrus);
1435
1436         __invalidate_bh_lrus(b);
1437         put_cpu_var(bh_lrus);
1438 }
1439
1440 bool has_bh_in_lru(int cpu, void *dummy)
1441 {
1442         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1443         int i;
1444         
1445         for (i = 0; i < BH_LRU_SIZE; i++) {
1446                 if (b->bhs[i])
1447                         return true;
1448         }
1449
1450         return false;
1451 }
1452
1453 void invalidate_bh_lrus(void)
1454 {
1455         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1456 }
1457 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1458
1459 /*
1460  * It's called from workqueue context so we need a bh_lru_lock to close
1461  * the race with preemption/irq.
1462  */
1463 void invalidate_bh_lrus_cpu(void)
1464 {
1465         struct bh_lru *b;
1466
1467         bh_lru_lock();
1468         b = this_cpu_ptr(&bh_lrus);
1469         __invalidate_bh_lrus(b);
1470         bh_lru_unlock();
1471 }
1472
1473 void set_bh_page(struct buffer_head *bh,
1474                 struct page *page, unsigned long offset)
1475 {
1476         bh->b_page = page;
1477         BUG_ON(offset >= PAGE_SIZE);
1478         if (PageHighMem(page))
1479                 /*
1480                  * This catches illegal uses and preserves the offset:
1481                  */
1482                 bh->b_data = (char *)(0 + offset);
1483         else
1484                 bh->b_data = page_address(page) + offset;
1485 }
1486 EXPORT_SYMBOL(set_bh_page);
1487
1488 /*
1489  * Called when truncating a buffer on a page completely.
1490  */
1491
1492 /* Bits that are cleared during an invalidate */
1493 #define BUFFER_FLAGS_DISCARD \
1494         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1495          1 << BH_Delay | 1 << BH_Unwritten)
1496
1497 static void discard_buffer(struct buffer_head * bh)
1498 {
1499         unsigned long b_state;
1500
1501         lock_buffer(bh);
1502         clear_buffer_dirty(bh);
1503         bh->b_bdev = NULL;
1504         b_state = READ_ONCE(bh->b_state);
1505         do {
1506         } while (!try_cmpxchg(&bh->b_state, &b_state,
1507                               b_state & ~BUFFER_FLAGS_DISCARD));
1508         unlock_buffer(bh);
1509 }
1510
1511 /**
1512  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1513  * @folio: The folio which is affected.
1514  * @offset: start of the range to invalidate
1515  * @length: length of the range to invalidate
1516  *
1517  * block_invalidate_folio() is called when all or part of the folio has been
1518  * invalidated by a truncate operation.
1519  *
1520  * block_invalidate_folio() does not have to release all buffers, but it must
1521  * ensure that no dirty buffer is left outside @offset and that no I/O
1522  * is underway against any of the blocks which are outside the truncation
1523  * point.  Because the caller is about to free (and possibly reuse) those
1524  * blocks on-disk.
1525  */
1526 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1527 {
1528         struct buffer_head *head, *bh, *next;
1529         size_t curr_off = 0;
1530         size_t stop = length + offset;
1531
1532         BUG_ON(!folio_test_locked(folio));
1533
1534         /*
1535          * Check for overflow
1536          */
1537         BUG_ON(stop > folio_size(folio) || stop < length);
1538
1539         head = folio_buffers(folio);
1540         if (!head)
1541                 return;
1542
1543         bh = head;
1544         do {
1545                 size_t next_off = curr_off + bh->b_size;
1546                 next = bh->b_this_page;
1547
1548                 /*
1549                  * Are we still fully in range ?
1550                  */
1551                 if (next_off > stop)
1552                         goto out;
1553
1554                 /*
1555                  * is this block fully invalidated?
1556                  */
1557                 if (offset <= curr_off)
1558                         discard_buffer(bh);
1559                 curr_off = next_off;
1560                 bh = next;
1561         } while (bh != head);
1562
1563         /*
1564          * We release buffers only if the entire folio is being invalidated.
1565          * The get_block cached value has been unconditionally invalidated,
1566          * so real IO is not possible anymore.
1567          */
1568         if (length == folio_size(folio))
1569                 filemap_release_folio(folio, 0);
1570 out:
1571         return;
1572 }
1573 EXPORT_SYMBOL(block_invalidate_folio);
1574
1575
1576 /*
1577  * We attach and possibly dirty the buffers atomically wrt
1578  * block_dirty_folio() via private_lock.  try_to_free_buffers
1579  * is already excluded via the page lock.
1580  */
1581 void create_empty_buffers(struct page *page,
1582                         unsigned long blocksize, unsigned long b_state)
1583 {
1584         struct buffer_head *bh, *head, *tail;
1585
1586         head = alloc_page_buffers(page, blocksize, true);
1587         bh = head;
1588         do {
1589                 bh->b_state |= b_state;
1590                 tail = bh;
1591                 bh = bh->b_this_page;
1592         } while (bh);
1593         tail->b_this_page = head;
1594
1595         spin_lock(&page->mapping->private_lock);
1596         if (PageUptodate(page) || PageDirty(page)) {
1597                 bh = head;
1598                 do {
1599                         if (PageDirty(page))
1600                                 set_buffer_dirty(bh);
1601                         if (PageUptodate(page))
1602                                 set_buffer_uptodate(bh);
1603                         bh = bh->b_this_page;
1604                 } while (bh != head);
1605         }
1606         attach_page_private(page, head);
1607         spin_unlock(&page->mapping->private_lock);
1608 }
1609 EXPORT_SYMBOL(create_empty_buffers);
1610
1611 /**
1612  * clean_bdev_aliases: clean a range of buffers in block device
1613  * @bdev: Block device to clean buffers in
1614  * @block: Start of a range of blocks to clean
1615  * @len: Number of blocks to clean
1616  *
1617  * We are taking a range of blocks for data and we don't want writeback of any
1618  * buffer-cache aliases starting from return from this function and until the
1619  * moment when something will explicitly mark the buffer dirty (hopefully that
1620  * will not happen until we will free that block ;-) We don't even need to mark
1621  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1622  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1623  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1624  * would confuse anyone who might pick it with bread() afterwards...
1625  *
1626  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1627  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1628  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1629  * need to.  That happens here.
1630  */
1631 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1632 {
1633         struct inode *bd_inode = bdev->bd_inode;
1634         struct address_space *bd_mapping = bd_inode->i_mapping;
1635         struct folio_batch fbatch;
1636         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1637         pgoff_t end;
1638         int i, count;
1639         struct buffer_head *bh;
1640         struct buffer_head *head;
1641
1642         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1643         folio_batch_init(&fbatch);
1644         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1645                 count = folio_batch_count(&fbatch);
1646                 for (i = 0; i < count; i++) {
1647                         struct folio *folio = fbatch.folios[i];
1648
1649                         if (!folio_buffers(folio))
1650                                 continue;
1651                         /*
1652                          * We use folio lock instead of bd_mapping->private_lock
1653                          * to pin buffers here since we can afford to sleep and
1654                          * it scales better than a global spinlock lock.
1655                          */
1656                         folio_lock(folio);
1657                         /* Recheck when the folio is locked which pins bhs */
1658                         head = folio_buffers(folio);
1659                         if (!head)
1660                                 goto unlock_page;
1661                         bh = head;
1662                         do {
1663                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1664                                         goto next;
1665                                 if (bh->b_blocknr >= block + len)
1666                                         break;
1667                                 clear_buffer_dirty(bh);
1668                                 wait_on_buffer(bh);
1669                                 clear_buffer_req(bh);
1670 next:
1671                                 bh = bh->b_this_page;
1672                         } while (bh != head);
1673 unlock_page:
1674                         folio_unlock(folio);
1675                 }
1676                 folio_batch_release(&fbatch);
1677                 cond_resched();
1678                 /* End of range already reached? */
1679                 if (index > end || !index)
1680                         break;
1681         }
1682 }
1683 EXPORT_SYMBOL(clean_bdev_aliases);
1684
1685 /*
1686  * Size is a power-of-two in the range 512..PAGE_SIZE,
1687  * and the case we care about most is PAGE_SIZE.
1688  *
1689  * So this *could* possibly be written with those
1690  * constraints in mind (relevant mostly if some
1691  * architecture has a slow bit-scan instruction)
1692  */
1693 static inline int block_size_bits(unsigned int blocksize)
1694 {
1695         return ilog2(blocksize);
1696 }
1697
1698 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1699 {
1700         BUG_ON(!PageLocked(page));
1701
1702         if (!page_has_buffers(page))
1703                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1704                                      b_state);
1705         return page_buffers(page);
1706 }
1707
1708 /*
1709  * NOTE! All mapped/uptodate combinations are valid:
1710  *
1711  *      Mapped  Uptodate        Meaning
1712  *
1713  *      No      No              "unknown" - must do get_block()
1714  *      No      Yes             "hole" - zero-filled
1715  *      Yes     No              "allocated" - allocated on disk, not read in
1716  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1717  *
1718  * "Dirty" is valid only with the last case (mapped+uptodate).
1719  */
1720
1721 /*
1722  * While block_write_full_page is writing back the dirty buffers under
1723  * the page lock, whoever dirtied the buffers may decide to clean them
1724  * again at any time.  We handle that by only looking at the buffer
1725  * state inside lock_buffer().
1726  *
1727  * If block_write_full_page() is called for regular writeback
1728  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1729  * locked buffer.   This only can happen if someone has written the buffer
1730  * directly, with submit_bh().  At the address_space level PageWriteback
1731  * prevents this contention from occurring.
1732  *
1733  * If block_write_full_page() is called with wbc->sync_mode ==
1734  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1735  * causes the writes to be flagged as synchronous writes.
1736  */
1737 int __block_write_full_page(struct inode *inode, struct page *page,
1738                         get_block_t *get_block, struct writeback_control *wbc,
1739                         bh_end_io_t *handler)
1740 {
1741         int err;
1742         sector_t block;
1743         sector_t last_block;
1744         struct buffer_head *bh, *head;
1745         unsigned int blocksize, bbits;
1746         int nr_underway = 0;
1747         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1748
1749         head = create_page_buffers(page, inode,
1750                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1751
1752         /*
1753          * Be very careful.  We have no exclusion from block_dirty_folio
1754          * here, and the (potentially unmapped) buffers may become dirty at
1755          * any time.  If a buffer becomes dirty here after we've inspected it
1756          * then we just miss that fact, and the page stays dirty.
1757          *
1758          * Buffers outside i_size may be dirtied by block_dirty_folio;
1759          * handle that here by just cleaning them.
1760          */
1761
1762         bh = head;
1763         blocksize = bh->b_size;
1764         bbits = block_size_bits(blocksize);
1765
1766         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1767         last_block = (i_size_read(inode) - 1) >> bbits;
1768
1769         /*
1770          * Get all the dirty buffers mapped to disk addresses and
1771          * handle any aliases from the underlying blockdev's mapping.
1772          */
1773         do {
1774                 if (block > last_block) {
1775                         /*
1776                          * mapped buffers outside i_size will occur, because
1777                          * this page can be outside i_size when there is a
1778                          * truncate in progress.
1779                          */
1780                         /*
1781                          * The buffer was zeroed by block_write_full_page()
1782                          */
1783                         clear_buffer_dirty(bh);
1784                         set_buffer_uptodate(bh);
1785                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1786                            buffer_dirty(bh)) {
1787                         WARN_ON(bh->b_size != blocksize);
1788                         err = get_block(inode, block, bh, 1);
1789                         if (err)
1790                                 goto recover;
1791                         clear_buffer_delay(bh);
1792                         if (buffer_new(bh)) {
1793                                 /* blockdev mappings never come here */
1794                                 clear_buffer_new(bh);
1795                                 clean_bdev_bh_alias(bh);
1796                         }
1797                 }
1798                 bh = bh->b_this_page;
1799                 block++;
1800         } while (bh != head);
1801
1802         do {
1803                 if (!buffer_mapped(bh))
1804                         continue;
1805                 /*
1806                  * If it's a fully non-blocking write attempt and we cannot
1807                  * lock the buffer then redirty the page.  Note that this can
1808                  * potentially cause a busy-wait loop from writeback threads
1809                  * and kswapd activity, but those code paths have their own
1810                  * higher-level throttling.
1811                  */
1812                 if (wbc->sync_mode != WB_SYNC_NONE) {
1813                         lock_buffer(bh);
1814                 } else if (!trylock_buffer(bh)) {
1815                         redirty_page_for_writepage(wbc, page);
1816                         continue;
1817                 }
1818                 if (test_clear_buffer_dirty(bh)) {
1819                         mark_buffer_async_write_endio(bh, handler);
1820                 } else {
1821                         unlock_buffer(bh);
1822                 }
1823         } while ((bh = bh->b_this_page) != head);
1824
1825         /*
1826          * The page and its buffers are protected by PageWriteback(), so we can
1827          * drop the bh refcounts early.
1828          */
1829         BUG_ON(PageWriteback(page));
1830         set_page_writeback(page);
1831
1832         do {
1833                 struct buffer_head *next = bh->b_this_page;
1834                 if (buffer_async_write(bh)) {
1835                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1836                         nr_underway++;
1837                 }
1838                 bh = next;
1839         } while (bh != head);
1840         unlock_page(page);
1841
1842         err = 0;
1843 done:
1844         if (nr_underway == 0) {
1845                 /*
1846                  * The page was marked dirty, but the buffers were
1847                  * clean.  Someone wrote them back by hand with
1848                  * write_dirty_buffer/submit_bh.  A rare case.
1849                  */
1850                 end_page_writeback(page);
1851
1852                 /*
1853                  * The page and buffer_heads can be released at any time from
1854                  * here on.
1855                  */
1856         }
1857         return err;
1858
1859 recover:
1860         /*
1861          * ENOSPC, or some other error.  We may already have added some
1862          * blocks to the file, so we need to write these out to avoid
1863          * exposing stale data.
1864          * The page is currently locked and not marked for writeback
1865          */
1866         bh = head;
1867         /* Recovery: lock and submit the mapped buffers */
1868         do {
1869                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1870                     !buffer_delay(bh)) {
1871                         lock_buffer(bh);
1872                         mark_buffer_async_write_endio(bh, handler);
1873                 } else {
1874                         /*
1875                          * The buffer may have been set dirty during
1876                          * attachment to a dirty page.
1877                          */
1878                         clear_buffer_dirty(bh);
1879                 }
1880         } while ((bh = bh->b_this_page) != head);
1881         SetPageError(page);
1882         BUG_ON(PageWriteback(page));
1883         mapping_set_error(page->mapping, err);
1884         set_page_writeback(page);
1885         do {
1886                 struct buffer_head *next = bh->b_this_page;
1887                 if (buffer_async_write(bh)) {
1888                         clear_buffer_dirty(bh);
1889                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1890                         nr_underway++;
1891                 }
1892                 bh = next;
1893         } while (bh != head);
1894         unlock_page(page);
1895         goto done;
1896 }
1897 EXPORT_SYMBOL(__block_write_full_page);
1898
1899 /*
1900  * If a page has any new buffers, zero them out here, and mark them uptodate
1901  * and dirty so they'll be written out (in order to prevent uninitialised
1902  * block data from leaking). And clear the new bit.
1903  */
1904 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1905 {
1906         unsigned int block_start, block_end;
1907         struct buffer_head *head, *bh;
1908
1909         BUG_ON(!PageLocked(page));
1910         if (!page_has_buffers(page))
1911                 return;
1912
1913         bh = head = page_buffers(page);
1914         block_start = 0;
1915         do {
1916                 block_end = block_start + bh->b_size;
1917
1918                 if (buffer_new(bh)) {
1919                         if (block_end > from && block_start < to) {
1920                                 if (!PageUptodate(page)) {
1921                                         unsigned start, size;
1922
1923                                         start = max(from, block_start);
1924                                         size = min(to, block_end) - start;
1925
1926                                         zero_user(page, start, size);
1927                                         set_buffer_uptodate(bh);
1928                                 }
1929
1930                                 clear_buffer_new(bh);
1931                                 mark_buffer_dirty(bh);
1932                         }
1933                 }
1934
1935                 block_start = block_end;
1936                 bh = bh->b_this_page;
1937         } while (bh != head);
1938 }
1939 EXPORT_SYMBOL(page_zero_new_buffers);
1940
1941 static void
1942 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1943                 const struct iomap *iomap)
1944 {
1945         loff_t offset = block << inode->i_blkbits;
1946
1947         bh->b_bdev = iomap->bdev;
1948
1949         /*
1950          * Block points to offset in file we need to map, iomap contains
1951          * the offset at which the map starts. If the map ends before the
1952          * current block, then do not map the buffer and let the caller
1953          * handle it.
1954          */
1955         BUG_ON(offset >= iomap->offset + iomap->length);
1956
1957         switch (iomap->type) {
1958         case IOMAP_HOLE:
1959                 /*
1960                  * If the buffer is not up to date or beyond the current EOF,
1961                  * we need to mark it as new to ensure sub-block zeroing is
1962                  * executed if necessary.
1963                  */
1964                 if (!buffer_uptodate(bh) ||
1965                     (offset >= i_size_read(inode)))
1966                         set_buffer_new(bh);
1967                 break;
1968         case IOMAP_DELALLOC:
1969                 if (!buffer_uptodate(bh) ||
1970                     (offset >= i_size_read(inode)))
1971                         set_buffer_new(bh);
1972                 set_buffer_uptodate(bh);
1973                 set_buffer_mapped(bh);
1974                 set_buffer_delay(bh);
1975                 break;
1976         case IOMAP_UNWRITTEN:
1977                 /*
1978                  * For unwritten regions, we always need to ensure that regions
1979                  * in the block we are not writing to are zeroed. Mark the
1980                  * buffer as new to ensure this.
1981                  */
1982                 set_buffer_new(bh);
1983                 set_buffer_unwritten(bh);
1984                 fallthrough;
1985         case IOMAP_MAPPED:
1986                 if ((iomap->flags & IOMAP_F_NEW) ||
1987                     offset >= i_size_read(inode))
1988                         set_buffer_new(bh);
1989                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1990                                 inode->i_blkbits;
1991                 set_buffer_mapped(bh);
1992                 break;
1993         }
1994 }
1995
1996 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
1997                 get_block_t *get_block, const struct iomap *iomap)
1998 {
1999         unsigned from = pos & (PAGE_SIZE - 1);
2000         unsigned to = from + len;
2001         struct inode *inode = folio->mapping->host;
2002         unsigned block_start, block_end;
2003         sector_t block;
2004         int err = 0;
2005         unsigned blocksize, bbits;
2006         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2007
2008         BUG_ON(!folio_test_locked(folio));
2009         BUG_ON(from > PAGE_SIZE);
2010         BUG_ON(to > PAGE_SIZE);
2011         BUG_ON(from > to);
2012
2013         head = create_page_buffers(&folio->page, inode, 0);
2014         blocksize = head->b_size;
2015         bbits = block_size_bits(blocksize);
2016
2017         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2018
2019         for(bh = head, block_start = 0; bh != head || !block_start;
2020             block++, block_start=block_end, bh = bh->b_this_page) {
2021                 block_end = block_start + blocksize;
2022                 if (block_end <= from || block_start >= to) {
2023                         if (folio_test_uptodate(folio)) {
2024                                 if (!buffer_uptodate(bh))
2025                                         set_buffer_uptodate(bh);
2026                         }
2027                         continue;
2028                 }
2029                 if (buffer_new(bh))
2030                         clear_buffer_new(bh);
2031                 if (!buffer_mapped(bh)) {
2032                         WARN_ON(bh->b_size != blocksize);
2033                         if (get_block) {
2034                                 err = get_block(inode, block, bh, 1);
2035                                 if (err)
2036                                         break;
2037                         } else {
2038                                 iomap_to_bh(inode, block, bh, iomap);
2039                         }
2040
2041                         if (buffer_new(bh)) {
2042                                 clean_bdev_bh_alias(bh);
2043                                 if (folio_test_uptodate(folio)) {
2044                                         clear_buffer_new(bh);
2045                                         set_buffer_uptodate(bh);
2046                                         mark_buffer_dirty(bh);
2047                                         continue;
2048                                 }
2049                                 if (block_end > to || block_start < from)
2050                                         folio_zero_segments(folio,
2051                                                 to, block_end,
2052                                                 block_start, from);
2053                                 continue;
2054                         }
2055                 }
2056                 if (folio_test_uptodate(folio)) {
2057                         if (!buffer_uptodate(bh))
2058                                 set_buffer_uptodate(bh);
2059                         continue; 
2060                 }
2061                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2062                     !buffer_unwritten(bh) &&
2063                      (block_start < from || block_end > to)) {
2064                         bh_read_nowait(bh, 0);
2065                         *wait_bh++=bh;
2066                 }
2067         }
2068         /*
2069          * If we issued read requests - let them complete.
2070          */
2071         while(wait_bh > wait) {
2072                 wait_on_buffer(*--wait_bh);
2073                 if (!buffer_uptodate(*wait_bh))
2074                         err = -EIO;
2075         }
2076         if (unlikely(err))
2077                 page_zero_new_buffers(&folio->page, from, to);
2078         return err;
2079 }
2080
2081 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2082                 get_block_t *get_block)
2083 {
2084         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2085                                        NULL);
2086 }
2087 EXPORT_SYMBOL(__block_write_begin);
2088
2089 static int __block_commit_write(struct inode *inode, struct page *page,
2090                 unsigned from, unsigned to)
2091 {
2092         unsigned block_start, block_end;
2093         int partial = 0;
2094         unsigned blocksize;
2095         struct buffer_head *bh, *head;
2096
2097         bh = head = page_buffers(page);
2098         blocksize = bh->b_size;
2099
2100         block_start = 0;
2101         do {
2102                 block_end = block_start + blocksize;
2103                 if (block_end <= from || block_start >= to) {
2104                         if (!buffer_uptodate(bh))
2105                                 partial = 1;
2106                 } else {
2107                         set_buffer_uptodate(bh);
2108                         mark_buffer_dirty(bh);
2109                 }
2110                 if (buffer_new(bh))
2111                         clear_buffer_new(bh);
2112
2113                 block_start = block_end;
2114                 bh = bh->b_this_page;
2115         } while (bh != head);
2116
2117         /*
2118          * If this is a partial write which happened to make all buffers
2119          * uptodate then we can optimize away a bogus read_folio() for
2120          * the next read(). Here we 'discover' whether the page went
2121          * uptodate as a result of this (potentially partial) write.
2122          */
2123         if (!partial)
2124                 SetPageUptodate(page);
2125         return 0;
2126 }
2127
2128 /*
2129  * block_write_begin takes care of the basic task of block allocation and
2130  * bringing partial write blocks uptodate first.
2131  *
2132  * The filesystem needs to handle block truncation upon failure.
2133  */
2134 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2135                 struct page **pagep, get_block_t *get_block)
2136 {
2137         pgoff_t index = pos >> PAGE_SHIFT;
2138         struct page *page;
2139         int status;
2140
2141         page = grab_cache_page_write_begin(mapping, index);
2142         if (!page)
2143                 return -ENOMEM;
2144
2145         status = __block_write_begin(page, pos, len, get_block);
2146         if (unlikely(status)) {
2147                 unlock_page(page);
2148                 put_page(page);
2149                 page = NULL;
2150         }
2151
2152         *pagep = page;
2153         return status;
2154 }
2155 EXPORT_SYMBOL(block_write_begin);
2156
2157 int block_write_end(struct file *file, struct address_space *mapping,
2158                         loff_t pos, unsigned len, unsigned copied,
2159                         struct page *page, void *fsdata)
2160 {
2161         struct inode *inode = mapping->host;
2162         unsigned start;
2163
2164         start = pos & (PAGE_SIZE - 1);
2165
2166         if (unlikely(copied < len)) {
2167                 /*
2168                  * The buffers that were written will now be uptodate, so
2169                  * we don't have to worry about a read_folio reading them
2170                  * and overwriting a partial write. However if we have
2171                  * encountered a short write and only partially written
2172                  * into a buffer, it will not be marked uptodate, so a
2173                  * read_folio might come in and destroy our partial write.
2174                  *
2175                  * Do the simplest thing, and just treat any short write to a
2176                  * non uptodate page as a zero-length write, and force the
2177                  * caller to redo the whole thing.
2178                  */
2179                 if (!PageUptodate(page))
2180                         copied = 0;
2181
2182                 page_zero_new_buffers(page, start+copied, start+len);
2183         }
2184         flush_dcache_page(page);
2185
2186         /* This could be a short (even 0-length) commit */
2187         __block_commit_write(inode, page, start, start+copied);
2188
2189         return copied;
2190 }
2191 EXPORT_SYMBOL(block_write_end);
2192
2193 int generic_write_end(struct file *file, struct address_space *mapping,
2194                         loff_t pos, unsigned len, unsigned copied,
2195                         struct page *page, void *fsdata)
2196 {
2197         struct inode *inode = mapping->host;
2198         loff_t old_size = inode->i_size;
2199         bool i_size_changed = false;
2200
2201         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2202
2203         /*
2204          * No need to use i_size_read() here, the i_size cannot change under us
2205          * because we hold i_rwsem.
2206          *
2207          * But it's important to update i_size while still holding page lock:
2208          * page writeout could otherwise come in and zero beyond i_size.
2209          */
2210         if (pos + copied > inode->i_size) {
2211                 i_size_write(inode, pos + copied);
2212                 i_size_changed = true;
2213         }
2214
2215         unlock_page(page);
2216         put_page(page);
2217
2218         if (old_size < pos)
2219                 pagecache_isize_extended(inode, old_size, pos);
2220         /*
2221          * Don't mark the inode dirty under page lock. First, it unnecessarily
2222          * makes the holding time of page lock longer. Second, it forces lock
2223          * ordering of page lock and transaction start for journaling
2224          * filesystems.
2225          */
2226         if (i_size_changed)
2227                 mark_inode_dirty(inode);
2228         return copied;
2229 }
2230 EXPORT_SYMBOL(generic_write_end);
2231
2232 /*
2233  * block_is_partially_uptodate checks whether buffers within a folio are
2234  * uptodate or not.
2235  *
2236  * Returns true if all buffers which correspond to the specified part
2237  * of the folio are uptodate.
2238  */
2239 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2240 {
2241         unsigned block_start, block_end, blocksize;
2242         unsigned to;
2243         struct buffer_head *bh, *head;
2244         bool ret = true;
2245
2246         head = folio_buffers(folio);
2247         if (!head)
2248                 return false;
2249         blocksize = head->b_size;
2250         to = min_t(unsigned, folio_size(folio) - from, count);
2251         to = from + to;
2252         if (from < blocksize && to > folio_size(folio) - blocksize)
2253                 return false;
2254
2255         bh = head;
2256         block_start = 0;
2257         do {
2258                 block_end = block_start + blocksize;
2259                 if (block_end > from && block_start < to) {
2260                         if (!buffer_uptodate(bh)) {
2261                                 ret = false;
2262                                 break;
2263                         }
2264                         if (block_end >= to)
2265                                 break;
2266                 }
2267                 block_start = block_end;
2268                 bh = bh->b_this_page;
2269         } while (bh != head);
2270
2271         return ret;
2272 }
2273 EXPORT_SYMBOL(block_is_partially_uptodate);
2274
2275 /*
2276  * Generic "read_folio" function for block devices that have the normal
2277  * get_block functionality. This is most of the block device filesystems.
2278  * Reads the folio asynchronously --- the unlock_buffer() and
2279  * set/clear_buffer_uptodate() functions propagate buffer state into the
2280  * folio once IO has completed.
2281  */
2282 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2283 {
2284         struct inode *inode = folio->mapping->host;
2285         sector_t iblock, lblock;
2286         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2287         unsigned int blocksize, bbits;
2288         int nr, i;
2289         int fully_mapped = 1;
2290         bool page_error = false;
2291         loff_t limit = i_size_read(inode);
2292
2293         /* This is needed for ext4. */
2294         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2295                 limit = inode->i_sb->s_maxbytes;
2296
2297         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2298
2299         head = create_page_buffers(&folio->page, inode, 0);
2300         blocksize = head->b_size;
2301         bbits = block_size_bits(blocksize);
2302
2303         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2304         lblock = (limit+blocksize-1) >> bbits;
2305         bh = head;
2306         nr = 0;
2307         i = 0;
2308
2309         do {
2310                 if (buffer_uptodate(bh))
2311                         continue;
2312
2313                 if (!buffer_mapped(bh)) {
2314                         int err = 0;
2315
2316                         fully_mapped = 0;
2317                         if (iblock < lblock) {
2318                                 WARN_ON(bh->b_size != blocksize);
2319                                 err = get_block(inode, iblock, bh, 0);
2320                                 if (err) {
2321                                         folio_set_error(folio);
2322                                         page_error = true;
2323                                 }
2324                         }
2325                         if (!buffer_mapped(bh)) {
2326                                 folio_zero_range(folio, i * blocksize,
2327                                                 blocksize);
2328                                 if (!err)
2329                                         set_buffer_uptodate(bh);
2330                                 continue;
2331                         }
2332                         /*
2333                          * get_block() might have updated the buffer
2334                          * synchronously
2335                          */
2336                         if (buffer_uptodate(bh))
2337                                 continue;
2338                 }
2339                 arr[nr++] = bh;
2340         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2341
2342         if (fully_mapped)
2343                 folio_set_mappedtodisk(folio);
2344
2345         if (!nr) {
2346                 /*
2347                  * All buffers are uptodate - we can set the folio uptodate
2348                  * as well. But not if get_block() returned an error.
2349                  */
2350                 if (!page_error)
2351                         folio_mark_uptodate(folio);
2352                 folio_unlock(folio);
2353                 return 0;
2354         }
2355
2356         /* Stage two: lock the buffers */
2357         for (i = 0; i < nr; i++) {
2358                 bh = arr[i];
2359                 lock_buffer(bh);
2360                 mark_buffer_async_read(bh);
2361         }
2362
2363         /*
2364          * Stage 3: start the IO.  Check for uptodateness
2365          * inside the buffer lock in case another process reading
2366          * the underlying blockdev brought it uptodate (the sct fix).
2367          */
2368         for (i = 0; i < nr; i++) {
2369                 bh = arr[i];
2370                 if (buffer_uptodate(bh))
2371                         end_buffer_async_read(bh, 1);
2372                 else
2373                         submit_bh(REQ_OP_READ, bh);
2374         }
2375         return 0;
2376 }
2377 EXPORT_SYMBOL(block_read_full_folio);
2378
2379 /* utility function for filesystems that need to do work on expanding
2380  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2381  * deal with the hole.  
2382  */
2383 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2384 {
2385         struct address_space *mapping = inode->i_mapping;
2386         const struct address_space_operations *aops = mapping->a_ops;
2387         struct page *page;
2388         void *fsdata = NULL;
2389         int err;
2390
2391         err = inode_newsize_ok(inode, size);
2392         if (err)
2393                 goto out;
2394
2395         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2396         if (err)
2397                 goto out;
2398
2399         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2400         BUG_ON(err > 0);
2401
2402 out:
2403         return err;
2404 }
2405 EXPORT_SYMBOL(generic_cont_expand_simple);
2406
2407 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2408                             loff_t pos, loff_t *bytes)
2409 {
2410         struct inode *inode = mapping->host;
2411         const struct address_space_operations *aops = mapping->a_ops;
2412         unsigned int blocksize = i_blocksize(inode);
2413         struct page *page;
2414         void *fsdata = NULL;
2415         pgoff_t index, curidx;
2416         loff_t curpos;
2417         unsigned zerofrom, offset, len;
2418         int err = 0;
2419
2420         index = pos >> PAGE_SHIFT;
2421         offset = pos & ~PAGE_MASK;
2422
2423         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2424                 zerofrom = curpos & ~PAGE_MASK;
2425                 if (zerofrom & (blocksize-1)) {
2426                         *bytes |= (blocksize-1);
2427                         (*bytes)++;
2428                 }
2429                 len = PAGE_SIZE - zerofrom;
2430
2431                 err = aops->write_begin(file, mapping, curpos, len,
2432                                             &page, &fsdata);
2433                 if (err)
2434                         goto out;
2435                 zero_user(page, zerofrom, len);
2436                 err = aops->write_end(file, mapping, curpos, len, len,
2437                                                 page, fsdata);
2438                 if (err < 0)
2439                         goto out;
2440                 BUG_ON(err != len);
2441                 err = 0;
2442
2443                 balance_dirty_pages_ratelimited(mapping);
2444
2445                 if (fatal_signal_pending(current)) {
2446                         err = -EINTR;
2447                         goto out;
2448                 }
2449         }
2450
2451         /* page covers the boundary, find the boundary offset */
2452         if (index == curidx) {
2453                 zerofrom = curpos & ~PAGE_MASK;
2454                 /* if we will expand the thing last block will be filled */
2455                 if (offset <= zerofrom) {
2456                         goto out;
2457                 }
2458                 if (zerofrom & (blocksize-1)) {
2459                         *bytes |= (blocksize-1);
2460                         (*bytes)++;
2461                 }
2462                 len = offset - zerofrom;
2463
2464                 err = aops->write_begin(file, mapping, curpos, len,
2465                                             &page, &fsdata);
2466                 if (err)
2467                         goto out;
2468                 zero_user(page, zerofrom, len);
2469                 err = aops->write_end(file, mapping, curpos, len, len,
2470                                                 page, fsdata);
2471                 if (err < 0)
2472                         goto out;
2473                 BUG_ON(err != len);
2474                 err = 0;
2475         }
2476 out:
2477         return err;
2478 }
2479
2480 /*
2481  * For moronic filesystems that do not allow holes in file.
2482  * We may have to extend the file.
2483  */
2484 int cont_write_begin(struct file *file, struct address_space *mapping,
2485                         loff_t pos, unsigned len,
2486                         struct page **pagep, void **fsdata,
2487                         get_block_t *get_block, loff_t *bytes)
2488 {
2489         struct inode *inode = mapping->host;
2490         unsigned int blocksize = i_blocksize(inode);
2491         unsigned int zerofrom;
2492         int err;
2493
2494         err = cont_expand_zero(file, mapping, pos, bytes);
2495         if (err)
2496                 return err;
2497
2498         zerofrom = *bytes & ~PAGE_MASK;
2499         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2500                 *bytes |= (blocksize-1);
2501                 (*bytes)++;
2502         }
2503
2504         return block_write_begin(mapping, pos, len, pagep, get_block);
2505 }
2506 EXPORT_SYMBOL(cont_write_begin);
2507
2508 int block_commit_write(struct page *page, unsigned from, unsigned to)
2509 {
2510         struct inode *inode = page->mapping->host;
2511         __block_commit_write(inode,page,from,to);
2512         return 0;
2513 }
2514 EXPORT_SYMBOL(block_commit_write);
2515
2516 /*
2517  * block_page_mkwrite() is not allowed to change the file size as it gets
2518  * called from a page fault handler when a page is first dirtied. Hence we must
2519  * be careful to check for EOF conditions here. We set the page up correctly
2520  * for a written page which means we get ENOSPC checking when writing into
2521  * holes and correct delalloc and unwritten extent mapping on filesystems that
2522  * support these features.
2523  *
2524  * We are not allowed to take the i_mutex here so we have to play games to
2525  * protect against truncate races as the page could now be beyond EOF.  Because
2526  * truncate writes the inode size before removing pages, once we have the
2527  * page lock we can determine safely if the page is beyond EOF. If it is not
2528  * beyond EOF, then the page is guaranteed safe against truncation until we
2529  * unlock the page.
2530  *
2531  * Direct callers of this function should protect against filesystem freezing
2532  * using sb_start_pagefault() - sb_end_pagefault() functions.
2533  */
2534 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2535                          get_block_t get_block)
2536 {
2537         struct page *page = vmf->page;
2538         struct inode *inode = file_inode(vma->vm_file);
2539         unsigned long end;
2540         loff_t size;
2541         int ret;
2542
2543         lock_page(page);
2544         size = i_size_read(inode);
2545         if ((page->mapping != inode->i_mapping) ||
2546             (page_offset(page) > size)) {
2547                 /* We overload EFAULT to mean page got truncated */
2548                 ret = -EFAULT;
2549                 goto out_unlock;
2550         }
2551
2552         /* page is wholly or partially inside EOF */
2553         if (((page->index + 1) << PAGE_SHIFT) > size)
2554                 end = size & ~PAGE_MASK;
2555         else
2556                 end = PAGE_SIZE;
2557
2558         ret = __block_write_begin(page, 0, end, get_block);
2559         if (!ret)
2560                 ret = block_commit_write(page, 0, end);
2561
2562         if (unlikely(ret < 0))
2563                 goto out_unlock;
2564         set_page_dirty(page);
2565         wait_for_stable_page(page);
2566         return 0;
2567 out_unlock:
2568         unlock_page(page);
2569         return ret;
2570 }
2571 EXPORT_SYMBOL(block_page_mkwrite);
2572
2573 int block_truncate_page(struct address_space *mapping,
2574                         loff_t from, get_block_t *get_block)
2575 {
2576         pgoff_t index = from >> PAGE_SHIFT;
2577         unsigned offset = from & (PAGE_SIZE-1);
2578         unsigned blocksize;
2579         sector_t iblock;
2580         unsigned length, pos;
2581         struct inode *inode = mapping->host;
2582         struct page *page;
2583         struct buffer_head *bh;
2584         int err;
2585
2586         blocksize = i_blocksize(inode);
2587         length = offset & (blocksize - 1);
2588
2589         /* Block boundary? Nothing to do */
2590         if (!length)
2591                 return 0;
2592
2593         length = blocksize - length;
2594         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2595         
2596         page = grab_cache_page(mapping, index);
2597         err = -ENOMEM;
2598         if (!page)
2599                 goto out;
2600
2601         if (!page_has_buffers(page))
2602                 create_empty_buffers(page, blocksize, 0);
2603
2604         /* Find the buffer that contains "offset" */
2605         bh = page_buffers(page);
2606         pos = blocksize;
2607         while (offset >= pos) {
2608                 bh = bh->b_this_page;
2609                 iblock++;
2610                 pos += blocksize;
2611         }
2612
2613         err = 0;
2614         if (!buffer_mapped(bh)) {
2615                 WARN_ON(bh->b_size != blocksize);
2616                 err = get_block(inode, iblock, bh, 0);
2617                 if (err)
2618                         goto unlock;
2619                 /* unmapped? It's a hole - nothing to do */
2620                 if (!buffer_mapped(bh))
2621                         goto unlock;
2622         }
2623
2624         /* Ok, it's mapped. Make sure it's up-to-date */
2625         if (PageUptodate(page))
2626                 set_buffer_uptodate(bh);
2627
2628         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2629                 err = bh_read(bh, 0);
2630                 /* Uhhuh. Read error. Complain and punt. */
2631                 if (err < 0)
2632                         goto unlock;
2633         }
2634
2635         zero_user(page, offset, length);
2636         mark_buffer_dirty(bh);
2637         err = 0;
2638
2639 unlock:
2640         unlock_page(page);
2641         put_page(page);
2642 out:
2643         return err;
2644 }
2645 EXPORT_SYMBOL(block_truncate_page);
2646
2647 /*
2648  * The generic ->writepage function for buffer-backed address_spaces
2649  */
2650 int block_write_full_page(struct page *page, get_block_t *get_block,
2651                         struct writeback_control *wbc)
2652 {
2653         struct inode * const inode = page->mapping->host;
2654         loff_t i_size = i_size_read(inode);
2655         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2656         unsigned offset;
2657
2658         /* Is the page fully inside i_size? */
2659         if (page->index < end_index)
2660                 return __block_write_full_page(inode, page, get_block, wbc,
2661                                                end_buffer_async_write);
2662
2663         /* Is the page fully outside i_size? (truncate in progress) */
2664         offset = i_size & (PAGE_SIZE-1);
2665         if (page->index >= end_index+1 || !offset) {
2666                 unlock_page(page);
2667                 return 0; /* don't care */
2668         }
2669
2670         /*
2671          * The page straddles i_size.  It must be zeroed out on each and every
2672          * writepage invocation because it may be mmapped.  "A file is mapped
2673          * in multiples of the page size.  For a file that is not a multiple of
2674          * the  page size, the remaining memory is zeroed when mapped, and
2675          * writes to that region are not written out to the file."
2676          */
2677         zero_user_segment(page, offset, PAGE_SIZE);
2678         return __block_write_full_page(inode, page, get_block, wbc,
2679                                                         end_buffer_async_write);
2680 }
2681 EXPORT_SYMBOL(block_write_full_page);
2682
2683 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2684                             get_block_t *get_block)
2685 {
2686         struct inode *inode = mapping->host;
2687         struct buffer_head tmp = {
2688                 .b_size = i_blocksize(inode),
2689         };
2690
2691         get_block(inode, block, &tmp, 0);
2692         return tmp.b_blocknr;
2693 }
2694 EXPORT_SYMBOL(generic_block_bmap);
2695
2696 static void end_bio_bh_io_sync(struct bio *bio)
2697 {
2698         struct buffer_head *bh = bio->bi_private;
2699
2700         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2701                 set_bit(BH_Quiet, &bh->b_state);
2702
2703         bh->b_end_io(bh, !bio->bi_status);
2704         bio_put(bio);
2705 }
2706
2707 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2708                           struct writeback_control *wbc)
2709 {
2710         const enum req_op op = opf & REQ_OP_MASK;
2711         struct bio *bio;
2712
2713         BUG_ON(!buffer_locked(bh));
2714         BUG_ON(!buffer_mapped(bh));
2715         BUG_ON(!bh->b_end_io);
2716         BUG_ON(buffer_delay(bh));
2717         BUG_ON(buffer_unwritten(bh));
2718
2719         /*
2720          * Only clear out a write error when rewriting
2721          */
2722         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2723                 clear_buffer_write_io_error(bh);
2724
2725         if (buffer_meta(bh))
2726                 opf |= REQ_META;
2727         if (buffer_prio(bh))
2728                 opf |= REQ_PRIO;
2729
2730         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2731
2732         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2733
2734         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2735
2736         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2737         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
2738
2739         bio->bi_end_io = end_bio_bh_io_sync;
2740         bio->bi_private = bh;
2741
2742         /* Take care of bh's that straddle the end of the device */
2743         guard_bio_eod(bio);
2744
2745         if (wbc) {
2746                 wbc_init_bio(wbc, bio);
2747                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2748         }
2749
2750         submit_bio(bio);
2751 }
2752
2753 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2754 {
2755         submit_bh_wbc(opf, bh, NULL);
2756 }
2757 EXPORT_SYMBOL(submit_bh);
2758
2759 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2760 {
2761         lock_buffer(bh);
2762         if (!test_clear_buffer_dirty(bh)) {
2763                 unlock_buffer(bh);
2764                 return;
2765         }
2766         bh->b_end_io = end_buffer_write_sync;
2767         get_bh(bh);
2768         submit_bh(REQ_OP_WRITE | op_flags, bh);
2769 }
2770 EXPORT_SYMBOL(write_dirty_buffer);
2771
2772 /*
2773  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2774  * and then start new I/O and then wait upon it.  The caller must have a ref on
2775  * the buffer_head.
2776  */
2777 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2778 {
2779         WARN_ON(atomic_read(&bh->b_count) < 1);
2780         lock_buffer(bh);
2781         if (test_clear_buffer_dirty(bh)) {
2782                 /*
2783                  * The bh should be mapped, but it might not be if the
2784                  * device was hot-removed. Not much we can do but fail the I/O.
2785                  */
2786                 if (!buffer_mapped(bh)) {
2787                         unlock_buffer(bh);
2788                         return -EIO;
2789                 }
2790
2791                 get_bh(bh);
2792                 bh->b_end_io = end_buffer_write_sync;
2793                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2794                 wait_on_buffer(bh);
2795                 if (!buffer_uptodate(bh))
2796                         return -EIO;
2797         } else {
2798                 unlock_buffer(bh);
2799         }
2800         return 0;
2801 }
2802 EXPORT_SYMBOL(__sync_dirty_buffer);
2803
2804 int sync_dirty_buffer(struct buffer_head *bh)
2805 {
2806         return __sync_dirty_buffer(bh, REQ_SYNC);
2807 }
2808 EXPORT_SYMBOL(sync_dirty_buffer);
2809
2810 /*
2811  * try_to_free_buffers() checks if all the buffers on this particular folio
2812  * are unused, and releases them if so.
2813  *
2814  * Exclusion against try_to_free_buffers may be obtained by either
2815  * locking the folio or by holding its mapping's private_lock.
2816  *
2817  * If the folio is dirty but all the buffers are clean then we need to
2818  * be sure to mark the folio clean as well.  This is because the folio
2819  * may be against a block device, and a later reattachment of buffers
2820  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2821  * filesystem data on the same device.
2822  *
2823  * The same applies to regular filesystem folios: if all the buffers are
2824  * clean then we set the folio clean and proceed.  To do that, we require
2825  * total exclusion from block_dirty_folio().  That is obtained with
2826  * private_lock.
2827  *
2828  * try_to_free_buffers() is non-blocking.
2829  */
2830 static inline int buffer_busy(struct buffer_head *bh)
2831 {
2832         return atomic_read(&bh->b_count) |
2833                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2834 }
2835
2836 static bool
2837 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2838 {
2839         struct buffer_head *head = folio_buffers(folio);
2840         struct buffer_head *bh;
2841
2842         bh = head;
2843         do {
2844                 if (buffer_busy(bh))
2845                         goto failed;
2846                 bh = bh->b_this_page;
2847         } while (bh != head);
2848
2849         do {
2850                 struct buffer_head *next = bh->b_this_page;
2851
2852                 if (bh->b_assoc_map)
2853                         __remove_assoc_queue(bh);
2854                 bh = next;
2855         } while (bh != head);
2856         *buffers_to_free = head;
2857         folio_detach_private(folio);
2858         return true;
2859 failed:
2860         return false;
2861 }
2862
2863 bool try_to_free_buffers(struct folio *folio)
2864 {
2865         struct address_space * const mapping = folio->mapping;
2866         struct buffer_head *buffers_to_free = NULL;
2867         bool ret = 0;
2868
2869         BUG_ON(!folio_test_locked(folio));
2870         if (folio_test_writeback(folio))
2871                 return false;
2872
2873         if (mapping == NULL) {          /* can this still happen? */
2874                 ret = drop_buffers(folio, &buffers_to_free);
2875                 goto out;
2876         }
2877
2878         spin_lock(&mapping->private_lock);
2879         ret = drop_buffers(folio, &buffers_to_free);
2880
2881         /*
2882          * If the filesystem writes its buffers by hand (eg ext3)
2883          * then we can have clean buffers against a dirty folio.  We
2884          * clean the folio here; otherwise the VM will never notice
2885          * that the filesystem did any IO at all.
2886          *
2887          * Also, during truncate, discard_buffer will have marked all
2888          * the folio's buffers clean.  We discover that here and clean
2889          * the folio also.
2890          *
2891          * private_lock must be held over this entire operation in order
2892          * to synchronise against block_dirty_folio and prevent the
2893          * dirty bit from being lost.
2894          */
2895         if (ret)
2896                 folio_cancel_dirty(folio);
2897         spin_unlock(&mapping->private_lock);
2898 out:
2899         if (buffers_to_free) {
2900                 struct buffer_head *bh = buffers_to_free;
2901
2902                 do {
2903                         struct buffer_head *next = bh->b_this_page;
2904                         free_buffer_head(bh);
2905                         bh = next;
2906                 } while (bh != buffers_to_free);
2907         }
2908         return ret;
2909 }
2910 EXPORT_SYMBOL(try_to_free_buffers);
2911
2912 /*
2913  * Buffer-head allocation
2914  */
2915 static struct kmem_cache *bh_cachep __read_mostly;
2916
2917 /*
2918  * Once the number of bh's in the machine exceeds this level, we start
2919  * stripping them in writeback.
2920  */
2921 static unsigned long max_buffer_heads;
2922
2923 int buffer_heads_over_limit;
2924
2925 struct bh_accounting {
2926         int nr;                 /* Number of live bh's */
2927         int ratelimit;          /* Limit cacheline bouncing */
2928 };
2929
2930 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2931
2932 static void recalc_bh_state(void)
2933 {
2934         int i;
2935         int tot = 0;
2936
2937         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
2938                 return;
2939         __this_cpu_write(bh_accounting.ratelimit, 0);
2940         for_each_online_cpu(i)
2941                 tot += per_cpu(bh_accounting, i).nr;
2942         buffer_heads_over_limit = (tot > max_buffer_heads);
2943 }
2944
2945 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2946 {
2947         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
2948         if (ret) {
2949                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
2950                 spin_lock_init(&ret->b_uptodate_lock);
2951                 preempt_disable();
2952                 __this_cpu_inc(bh_accounting.nr);
2953                 recalc_bh_state();
2954                 preempt_enable();
2955         }
2956         return ret;
2957 }
2958 EXPORT_SYMBOL(alloc_buffer_head);
2959
2960 void free_buffer_head(struct buffer_head *bh)
2961 {
2962         BUG_ON(!list_empty(&bh->b_assoc_buffers));
2963         kmem_cache_free(bh_cachep, bh);
2964         preempt_disable();
2965         __this_cpu_dec(bh_accounting.nr);
2966         recalc_bh_state();
2967         preempt_enable();
2968 }
2969 EXPORT_SYMBOL(free_buffer_head);
2970
2971 static int buffer_exit_cpu_dead(unsigned int cpu)
2972 {
2973         int i;
2974         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2975
2976         for (i = 0; i < BH_LRU_SIZE; i++) {
2977                 brelse(b->bhs[i]);
2978                 b->bhs[i] = NULL;
2979         }
2980         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
2981         per_cpu(bh_accounting, cpu).nr = 0;
2982         return 0;
2983 }
2984
2985 /**
2986  * bh_uptodate_or_lock - Test whether the buffer is uptodate
2987  * @bh: struct buffer_head
2988  *
2989  * Return true if the buffer is up-to-date and false,
2990  * with the buffer locked, if not.
2991  */
2992 int bh_uptodate_or_lock(struct buffer_head *bh)
2993 {
2994         if (!buffer_uptodate(bh)) {
2995                 lock_buffer(bh);
2996                 if (!buffer_uptodate(bh))
2997                         return 0;
2998                 unlock_buffer(bh);
2999         }
3000         return 1;
3001 }
3002 EXPORT_SYMBOL(bh_uptodate_or_lock);
3003
3004 /**
3005  * __bh_read - Submit read for a locked buffer
3006  * @bh: struct buffer_head
3007  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3008  * @wait: wait until reading finish
3009  *
3010  * Returns zero on success or don't wait, and -EIO on error.
3011  */
3012 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3013 {
3014         int ret = 0;
3015
3016         BUG_ON(!buffer_locked(bh));
3017
3018         get_bh(bh);
3019         bh->b_end_io = end_buffer_read_sync;
3020         submit_bh(REQ_OP_READ | op_flags, bh);
3021         if (wait) {
3022                 wait_on_buffer(bh);
3023                 if (!buffer_uptodate(bh))
3024                         ret = -EIO;
3025         }
3026         return ret;
3027 }
3028 EXPORT_SYMBOL(__bh_read);
3029
3030 /**
3031  * __bh_read_batch - Submit read for a batch of unlocked buffers
3032  * @nr: entry number of the buffer batch
3033  * @bhs: a batch of struct buffer_head
3034  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3035  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3036  *              buffer that cannot lock.
3037  *
3038  * Returns zero on success or don't wait, and -EIO on error.
3039  */
3040 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3041                      blk_opf_t op_flags, bool force_lock)
3042 {
3043         int i;
3044
3045         for (i = 0; i < nr; i++) {
3046                 struct buffer_head *bh = bhs[i];
3047
3048                 if (buffer_uptodate(bh))
3049                         continue;
3050
3051                 if (force_lock)
3052                         lock_buffer(bh);
3053                 else
3054                         if (!trylock_buffer(bh))
3055                                 continue;
3056
3057                 if (buffer_uptodate(bh)) {
3058                         unlock_buffer(bh);
3059                         continue;
3060                 }
3061
3062                 bh->b_end_io = end_buffer_read_sync;
3063                 get_bh(bh);
3064                 submit_bh(REQ_OP_READ | op_flags, bh);
3065         }
3066 }
3067 EXPORT_SYMBOL(__bh_read_batch);
3068
3069 void __init buffer_init(void)
3070 {
3071         unsigned long nrpages;
3072         int ret;
3073
3074         bh_cachep = kmem_cache_create("buffer_head",
3075                         sizeof(struct buffer_head), 0,
3076                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3077                                 SLAB_MEM_SPREAD),
3078                                 NULL);
3079
3080         /*
3081          * Limit the bh occupancy to 10% of ZONE_NORMAL
3082          */
3083         nrpages = (nr_free_buffer_pages() * 10) / 100;
3084         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3085         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3086                                         NULL, buffer_exit_cpu_dead);
3087         WARN_ON(ret < 0);
3088 }