37b6fa7466620436b2ab23cd00eb0de91309bb30
[linux-block.git] / drivers / nvme / host / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31
32 #define NVME_MINORS             (1U << MINORBITS)
33
34 struct nvme_ns_info {
35         struct nvme_ns_ids ids;
36         u32 nsid;
37         __le32 anagrpid;
38         bool is_shared;
39         bool is_readonly;
40         bool is_ready;
41         bool is_removed;
42 };
43
44 unsigned int admin_timeout = 60;
45 module_param(admin_timeout, uint, 0644);
46 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
47 EXPORT_SYMBOL_GPL(admin_timeout);
48
49 unsigned int nvme_io_timeout = 30;
50 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
51 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
52 EXPORT_SYMBOL_GPL(nvme_io_timeout);
53
54 static unsigned char shutdown_timeout = 5;
55 module_param(shutdown_timeout, byte, 0644);
56 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
57
58 static u8 nvme_max_retries = 5;
59 module_param_named(max_retries, nvme_max_retries, byte, 0644);
60 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
61
62 static unsigned long default_ps_max_latency_us = 100000;
63 module_param(default_ps_max_latency_us, ulong, 0644);
64 MODULE_PARM_DESC(default_ps_max_latency_us,
65                  "max power saving latency for new devices; use PM QOS to change per device");
66
67 static bool force_apst;
68 module_param(force_apst, bool, 0644);
69 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
70
71 static unsigned long apst_primary_timeout_ms = 100;
72 module_param(apst_primary_timeout_ms, ulong, 0644);
73 MODULE_PARM_DESC(apst_primary_timeout_ms,
74         "primary APST timeout in ms");
75
76 static unsigned long apst_secondary_timeout_ms = 2000;
77 module_param(apst_secondary_timeout_ms, ulong, 0644);
78 MODULE_PARM_DESC(apst_secondary_timeout_ms,
79         "secondary APST timeout in ms");
80
81 static unsigned long apst_primary_latency_tol_us = 15000;
82 module_param(apst_primary_latency_tol_us, ulong, 0644);
83 MODULE_PARM_DESC(apst_primary_latency_tol_us,
84         "primary APST latency tolerance in us");
85
86 static unsigned long apst_secondary_latency_tol_us = 100000;
87 module_param(apst_secondary_latency_tol_us, ulong, 0644);
88 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
89         "secondary APST latency tolerance in us");
90
91 /*
92  * nvme_wq - hosts nvme related works that are not reset or delete
93  * nvme_reset_wq - hosts nvme reset works
94  * nvme_delete_wq - hosts nvme delete works
95  *
96  * nvme_wq will host works such as scan, aen handling, fw activation,
97  * keep-alive, periodic reconnects etc. nvme_reset_wq
98  * runs reset works which also flush works hosted on nvme_wq for
99  * serialization purposes. nvme_delete_wq host controller deletion
100  * works which flush reset works for serialization.
101  */
102 struct workqueue_struct *nvme_wq;
103 EXPORT_SYMBOL_GPL(nvme_wq);
104
105 struct workqueue_struct *nvme_reset_wq;
106 EXPORT_SYMBOL_GPL(nvme_reset_wq);
107
108 struct workqueue_struct *nvme_delete_wq;
109 EXPORT_SYMBOL_GPL(nvme_delete_wq);
110
111 static LIST_HEAD(nvme_subsystems);
112 static DEFINE_MUTEX(nvme_subsystems_lock);
113
114 static DEFINE_IDA(nvme_instance_ida);
115 static dev_t nvme_ctrl_base_chr_devt;
116 static struct class *nvme_class;
117 static struct class *nvme_subsys_class;
118
119 static DEFINE_IDA(nvme_ns_chr_minor_ida);
120 static dev_t nvme_ns_chr_devt;
121 static struct class *nvme_ns_chr_class;
122
123 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
124 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
125                                            unsigned nsid);
126 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
127                                    struct nvme_command *cmd);
128
129 void nvme_queue_scan(struct nvme_ctrl *ctrl)
130 {
131         /*
132          * Only new queue scan work when admin and IO queues are both alive
133          */
134         if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
135                 queue_work(nvme_wq, &ctrl->scan_work);
136 }
137
138 /*
139  * Use this function to proceed with scheduling reset_work for a controller
140  * that had previously been set to the resetting state. This is intended for
141  * code paths that can't be interrupted by other reset attempts. A hot removal
142  * may prevent this from succeeding.
143  */
144 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
145 {
146         if (ctrl->state != NVME_CTRL_RESETTING)
147                 return -EBUSY;
148         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
149                 return -EBUSY;
150         return 0;
151 }
152 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
153
154 static void nvme_failfast_work(struct work_struct *work)
155 {
156         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
157                         struct nvme_ctrl, failfast_work);
158
159         if (ctrl->state != NVME_CTRL_CONNECTING)
160                 return;
161
162         set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
163         dev_info(ctrl->device, "failfast expired\n");
164         nvme_kick_requeue_lists(ctrl);
165 }
166
167 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
168 {
169         if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
170                 return;
171
172         schedule_delayed_work(&ctrl->failfast_work,
173                               ctrl->opts->fast_io_fail_tmo * HZ);
174 }
175
176 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
177 {
178         if (!ctrl->opts)
179                 return;
180
181         cancel_delayed_work_sync(&ctrl->failfast_work);
182         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
183 }
184
185
186 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
187 {
188         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
189                 return -EBUSY;
190         if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
191                 return -EBUSY;
192         return 0;
193 }
194 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
195
196 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
197 {
198         int ret;
199
200         ret = nvme_reset_ctrl(ctrl);
201         if (!ret) {
202                 flush_work(&ctrl->reset_work);
203                 if (ctrl->state != NVME_CTRL_LIVE)
204                         ret = -ENETRESET;
205         }
206
207         return ret;
208 }
209
210 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
211 {
212         dev_info(ctrl->device,
213                  "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
214
215         flush_work(&ctrl->reset_work);
216         nvme_stop_ctrl(ctrl);
217         nvme_remove_namespaces(ctrl);
218         ctrl->ops->delete_ctrl(ctrl);
219         nvme_uninit_ctrl(ctrl);
220 }
221
222 static void nvme_delete_ctrl_work(struct work_struct *work)
223 {
224         struct nvme_ctrl *ctrl =
225                 container_of(work, struct nvme_ctrl, delete_work);
226
227         nvme_do_delete_ctrl(ctrl);
228 }
229
230 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
231 {
232         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
233                 return -EBUSY;
234         if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
235                 return -EBUSY;
236         return 0;
237 }
238 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
239
240 void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
241 {
242         /*
243          * Keep a reference until nvme_do_delete_ctrl() complete,
244          * since ->delete_ctrl can free the controller.
245          */
246         nvme_get_ctrl(ctrl);
247         if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
248                 nvme_do_delete_ctrl(ctrl);
249         nvme_put_ctrl(ctrl);
250 }
251
252 static blk_status_t nvme_error_status(u16 status)
253 {
254         switch (status & 0x7ff) {
255         case NVME_SC_SUCCESS:
256                 return BLK_STS_OK;
257         case NVME_SC_CAP_EXCEEDED:
258                 return BLK_STS_NOSPC;
259         case NVME_SC_LBA_RANGE:
260         case NVME_SC_CMD_INTERRUPTED:
261         case NVME_SC_NS_NOT_READY:
262                 return BLK_STS_TARGET;
263         case NVME_SC_BAD_ATTRIBUTES:
264         case NVME_SC_ONCS_NOT_SUPPORTED:
265         case NVME_SC_INVALID_OPCODE:
266         case NVME_SC_INVALID_FIELD:
267         case NVME_SC_INVALID_NS:
268                 return BLK_STS_NOTSUPP;
269         case NVME_SC_WRITE_FAULT:
270         case NVME_SC_READ_ERROR:
271         case NVME_SC_UNWRITTEN_BLOCK:
272         case NVME_SC_ACCESS_DENIED:
273         case NVME_SC_READ_ONLY:
274         case NVME_SC_COMPARE_FAILED:
275                 return BLK_STS_MEDIUM;
276         case NVME_SC_GUARD_CHECK:
277         case NVME_SC_APPTAG_CHECK:
278         case NVME_SC_REFTAG_CHECK:
279         case NVME_SC_INVALID_PI:
280                 return BLK_STS_PROTECTION;
281         case NVME_SC_RESERVATION_CONFLICT:
282                 return BLK_STS_RESV_CONFLICT;
283         case NVME_SC_HOST_PATH_ERROR:
284                 return BLK_STS_TRANSPORT;
285         case NVME_SC_ZONE_TOO_MANY_ACTIVE:
286                 return BLK_STS_ZONE_ACTIVE_RESOURCE;
287         case NVME_SC_ZONE_TOO_MANY_OPEN:
288                 return BLK_STS_ZONE_OPEN_RESOURCE;
289         default:
290                 return BLK_STS_IOERR;
291         }
292 }
293
294 static void nvme_retry_req(struct request *req)
295 {
296         unsigned long delay = 0;
297         u16 crd;
298
299         /* The mask and shift result must be <= 3 */
300         crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
301         if (crd)
302                 delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
303
304         nvme_req(req)->retries++;
305         blk_mq_requeue_request(req, false);
306         blk_mq_delay_kick_requeue_list(req->q, delay);
307 }
308
309 static void nvme_log_error(struct request *req)
310 {
311         struct nvme_ns *ns = req->q->queuedata;
312         struct nvme_request *nr = nvme_req(req);
313
314         if (ns) {
315                 pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
316                        ns->disk ? ns->disk->disk_name : "?",
317                        nvme_get_opcode_str(nr->cmd->common.opcode),
318                        nr->cmd->common.opcode,
319                        (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
320                        (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
321                        nvme_get_error_status_str(nr->status),
322                        nr->status >> 8 & 7,     /* Status Code Type */
323                        nr->status & 0xff,       /* Status Code */
324                        nr->status & NVME_SC_MORE ? "MORE " : "",
325                        nr->status & NVME_SC_DNR  ? "DNR "  : "");
326                 return;
327         }
328
329         pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
330                            dev_name(nr->ctrl->device),
331                            nvme_get_admin_opcode_str(nr->cmd->common.opcode),
332                            nr->cmd->common.opcode,
333                            nvme_get_error_status_str(nr->status),
334                            nr->status >> 8 & 7, /* Status Code Type */
335                            nr->status & 0xff,   /* Status Code */
336                            nr->status & NVME_SC_MORE ? "MORE " : "",
337                            nr->status & NVME_SC_DNR  ? "DNR "  : "");
338 }
339
340 enum nvme_disposition {
341         COMPLETE,
342         RETRY,
343         FAILOVER,
344         AUTHENTICATE,
345 };
346
347 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
348 {
349         if (likely(nvme_req(req)->status == 0))
350                 return COMPLETE;
351
352         if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
353                 return AUTHENTICATE;
354
355         if (blk_noretry_request(req) ||
356             (nvme_req(req)->status & NVME_SC_DNR) ||
357             nvme_req(req)->retries >= nvme_max_retries)
358                 return COMPLETE;
359
360         if (req->cmd_flags & REQ_NVME_MPATH) {
361                 if (nvme_is_path_error(nvme_req(req)->status) ||
362                     blk_queue_dying(req->q))
363                         return FAILOVER;
364         } else {
365                 if (blk_queue_dying(req->q))
366                         return COMPLETE;
367         }
368
369         return RETRY;
370 }
371
372 static inline void nvme_end_req_zoned(struct request *req)
373 {
374         if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
375             req_op(req) == REQ_OP_ZONE_APPEND)
376                 req->__sector = nvme_lba_to_sect(req->q->queuedata,
377                         le64_to_cpu(nvme_req(req)->result.u64));
378 }
379
380 static inline void nvme_end_req(struct request *req)
381 {
382         blk_status_t status = nvme_error_status(nvme_req(req)->status);
383
384         if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
385                 nvme_log_error(req);
386         nvme_end_req_zoned(req);
387         nvme_trace_bio_complete(req);
388         if (req->cmd_flags & REQ_NVME_MPATH)
389                 nvme_mpath_end_request(req);
390         blk_mq_end_request(req, status);
391 }
392
393 void nvme_complete_rq(struct request *req)
394 {
395         struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
396
397         trace_nvme_complete_rq(req);
398         nvme_cleanup_cmd(req);
399
400         /*
401          * Completions of long-running commands should not be able to
402          * defer sending of periodic keep alives, since the controller
403          * may have completed processing such commands a long time ago
404          * (arbitrarily close to command submission time).
405          * req->deadline - req->timeout is the command submission time
406          * in jiffies.
407          */
408         if (ctrl->kas &&
409             req->deadline - req->timeout >= ctrl->ka_last_check_time)
410                 ctrl->comp_seen = true;
411
412         switch (nvme_decide_disposition(req)) {
413         case COMPLETE:
414                 nvme_end_req(req);
415                 return;
416         case RETRY:
417                 nvme_retry_req(req);
418                 return;
419         case FAILOVER:
420                 nvme_failover_req(req);
421                 return;
422         case AUTHENTICATE:
423 #ifdef CONFIG_NVME_AUTH
424                 queue_work(nvme_wq, &ctrl->dhchap_auth_work);
425                 nvme_retry_req(req);
426 #else
427                 nvme_end_req(req);
428 #endif
429                 return;
430         }
431 }
432 EXPORT_SYMBOL_GPL(nvme_complete_rq);
433
434 void nvme_complete_batch_req(struct request *req)
435 {
436         trace_nvme_complete_rq(req);
437         nvme_cleanup_cmd(req);
438         nvme_end_req_zoned(req);
439 }
440 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
441
442 /*
443  * Called to unwind from ->queue_rq on a failed command submission so that the
444  * multipathing code gets called to potentially failover to another path.
445  * The caller needs to unwind all transport specific resource allocations and
446  * must return propagate the return value.
447  */
448 blk_status_t nvme_host_path_error(struct request *req)
449 {
450         nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
451         blk_mq_set_request_complete(req);
452         nvme_complete_rq(req);
453         return BLK_STS_OK;
454 }
455 EXPORT_SYMBOL_GPL(nvme_host_path_error);
456
457 bool nvme_cancel_request(struct request *req, void *data)
458 {
459         dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
460                                 "Cancelling I/O %d", req->tag);
461
462         /* don't abort one completed or idle request */
463         if (blk_mq_rq_state(req) != MQ_RQ_IN_FLIGHT)
464                 return true;
465
466         nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
467         nvme_req(req)->flags |= NVME_REQ_CANCELLED;
468         blk_mq_complete_request(req);
469         return true;
470 }
471 EXPORT_SYMBOL_GPL(nvme_cancel_request);
472
473 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
474 {
475         if (ctrl->tagset) {
476                 blk_mq_tagset_busy_iter(ctrl->tagset,
477                                 nvme_cancel_request, ctrl);
478                 blk_mq_tagset_wait_completed_request(ctrl->tagset);
479         }
480 }
481 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
482
483 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
484 {
485         if (ctrl->admin_tagset) {
486                 blk_mq_tagset_busy_iter(ctrl->admin_tagset,
487                                 nvme_cancel_request, ctrl);
488                 blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
489         }
490 }
491 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
492
493 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
494                 enum nvme_ctrl_state new_state)
495 {
496         enum nvme_ctrl_state old_state;
497         unsigned long flags;
498         bool changed = false;
499
500         spin_lock_irqsave(&ctrl->lock, flags);
501
502         old_state = ctrl->state;
503         switch (new_state) {
504         case NVME_CTRL_LIVE:
505                 switch (old_state) {
506                 case NVME_CTRL_NEW:
507                 case NVME_CTRL_RESETTING:
508                 case NVME_CTRL_CONNECTING:
509                         changed = true;
510                         fallthrough;
511                 default:
512                         break;
513                 }
514                 break;
515         case NVME_CTRL_RESETTING:
516                 switch (old_state) {
517                 case NVME_CTRL_NEW:
518                 case NVME_CTRL_LIVE:
519                         changed = true;
520                         fallthrough;
521                 default:
522                         break;
523                 }
524                 break;
525         case NVME_CTRL_CONNECTING:
526                 switch (old_state) {
527                 case NVME_CTRL_NEW:
528                 case NVME_CTRL_RESETTING:
529                         changed = true;
530                         fallthrough;
531                 default:
532                         break;
533                 }
534                 break;
535         case NVME_CTRL_DELETING:
536                 switch (old_state) {
537                 case NVME_CTRL_LIVE:
538                 case NVME_CTRL_RESETTING:
539                 case NVME_CTRL_CONNECTING:
540                         changed = true;
541                         fallthrough;
542                 default:
543                         break;
544                 }
545                 break;
546         case NVME_CTRL_DELETING_NOIO:
547                 switch (old_state) {
548                 case NVME_CTRL_DELETING:
549                 case NVME_CTRL_DEAD:
550                         changed = true;
551                         fallthrough;
552                 default:
553                         break;
554                 }
555                 break;
556         case NVME_CTRL_DEAD:
557                 switch (old_state) {
558                 case NVME_CTRL_DELETING:
559                         changed = true;
560                         fallthrough;
561                 default:
562                         break;
563                 }
564                 break;
565         default:
566                 break;
567         }
568
569         if (changed) {
570                 ctrl->state = new_state;
571                 wake_up_all(&ctrl->state_wq);
572         }
573
574         spin_unlock_irqrestore(&ctrl->lock, flags);
575         if (!changed)
576                 return false;
577
578         if (ctrl->state == NVME_CTRL_LIVE) {
579                 if (old_state == NVME_CTRL_CONNECTING)
580                         nvme_stop_failfast_work(ctrl);
581                 nvme_kick_requeue_lists(ctrl);
582         } else if (ctrl->state == NVME_CTRL_CONNECTING &&
583                 old_state == NVME_CTRL_RESETTING) {
584                 nvme_start_failfast_work(ctrl);
585         }
586         return changed;
587 }
588 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
589
590 /*
591  * Returns true for sink states that can't ever transition back to live.
592  */
593 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
594 {
595         switch (ctrl->state) {
596         case NVME_CTRL_NEW:
597         case NVME_CTRL_LIVE:
598         case NVME_CTRL_RESETTING:
599         case NVME_CTRL_CONNECTING:
600                 return false;
601         case NVME_CTRL_DELETING:
602         case NVME_CTRL_DELETING_NOIO:
603         case NVME_CTRL_DEAD:
604                 return true;
605         default:
606                 WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
607                 return true;
608         }
609 }
610
611 /*
612  * Waits for the controller state to be resetting, or returns false if it is
613  * not possible to ever transition to that state.
614  */
615 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
616 {
617         wait_event(ctrl->state_wq,
618                    nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
619                    nvme_state_terminal(ctrl));
620         return ctrl->state == NVME_CTRL_RESETTING;
621 }
622 EXPORT_SYMBOL_GPL(nvme_wait_reset);
623
624 static void nvme_free_ns_head(struct kref *ref)
625 {
626         struct nvme_ns_head *head =
627                 container_of(ref, struct nvme_ns_head, ref);
628
629         nvme_mpath_remove_disk(head);
630         ida_free(&head->subsys->ns_ida, head->instance);
631         cleanup_srcu_struct(&head->srcu);
632         nvme_put_subsystem(head->subsys);
633         kfree(head);
634 }
635
636 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
637 {
638         return kref_get_unless_zero(&head->ref);
639 }
640
641 void nvme_put_ns_head(struct nvme_ns_head *head)
642 {
643         kref_put(&head->ref, nvme_free_ns_head);
644 }
645
646 static void nvme_free_ns(struct kref *kref)
647 {
648         struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
649
650         put_disk(ns->disk);
651         nvme_put_ns_head(ns->head);
652         nvme_put_ctrl(ns->ctrl);
653         kfree(ns);
654 }
655
656 static inline bool nvme_get_ns(struct nvme_ns *ns)
657 {
658         return kref_get_unless_zero(&ns->kref);
659 }
660
661 void nvme_put_ns(struct nvme_ns *ns)
662 {
663         kref_put(&ns->kref, nvme_free_ns);
664 }
665 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
666
667 static inline void nvme_clear_nvme_request(struct request *req)
668 {
669         nvme_req(req)->status = 0;
670         nvme_req(req)->retries = 0;
671         nvme_req(req)->flags = 0;
672         req->rq_flags |= RQF_DONTPREP;
673 }
674
675 /* initialize a passthrough request */
676 void nvme_init_request(struct request *req, struct nvme_command *cmd)
677 {
678         if (req->q->queuedata)
679                 req->timeout = NVME_IO_TIMEOUT;
680         else /* no queuedata implies admin queue */
681                 req->timeout = NVME_ADMIN_TIMEOUT;
682
683         /* passthru commands should let the driver set the SGL flags */
684         cmd->common.flags &= ~NVME_CMD_SGL_ALL;
685
686         req->cmd_flags |= REQ_FAILFAST_DRIVER;
687         if (req->mq_hctx->type == HCTX_TYPE_POLL)
688                 req->cmd_flags |= REQ_POLLED;
689         nvme_clear_nvme_request(req);
690         req->rq_flags |= RQF_QUIET;
691         memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
692 }
693 EXPORT_SYMBOL_GPL(nvme_init_request);
694
695 /*
696  * For something we're not in a state to send to the device the default action
697  * is to busy it and retry it after the controller state is recovered.  However,
698  * if the controller is deleting or if anything is marked for failfast or
699  * nvme multipath it is immediately failed.
700  *
701  * Note: commands used to initialize the controller will be marked for failfast.
702  * Note: nvme cli/ioctl commands are marked for failfast.
703  */
704 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
705                 struct request *rq)
706 {
707         if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
708             ctrl->state != NVME_CTRL_DELETING &&
709             ctrl->state != NVME_CTRL_DEAD &&
710             !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
711             !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
712                 return BLK_STS_RESOURCE;
713         return nvme_host_path_error(rq);
714 }
715 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
716
717 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
718                 bool queue_live)
719 {
720         struct nvme_request *req = nvme_req(rq);
721
722         /*
723          * currently we have a problem sending passthru commands
724          * on the admin_q if the controller is not LIVE because we can't
725          * make sure that they are going out after the admin connect,
726          * controller enable and/or other commands in the initialization
727          * sequence. until the controller will be LIVE, fail with
728          * BLK_STS_RESOURCE so that they will be rescheduled.
729          */
730         if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
731                 return false;
732
733         if (ctrl->ops->flags & NVME_F_FABRICS) {
734                 /*
735                  * Only allow commands on a live queue, except for the connect
736                  * command, which is require to set the queue live in the
737                  * appropinquate states.
738                  */
739                 switch (ctrl->state) {
740                 case NVME_CTRL_CONNECTING:
741                         if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
742                             (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
743                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
744                              req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
745                                 return true;
746                         break;
747                 default:
748                         break;
749                 case NVME_CTRL_DEAD:
750                         return false;
751                 }
752         }
753
754         return queue_live;
755 }
756 EXPORT_SYMBOL_GPL(__nvme_check_ready);
757
758 static inline void nvme_setup_flush(struct nvme_ns *ns,
759                 struct nvme_command *cmnd)
760 {
761         memset(cmnd, 0, sizeof(*cmnd));
762         cmnd->common.opcode = nvme_cmd_flush;
763         cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
764 }
765
766 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
767                 struct nvme_command *cmnd)
768 {
769         unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
770         struct nvme_dsm_range *range;
771         struct bio *bio;
772
773         /*
774          * Some devices do not consider the DSM 'Number of Ranges' field when
775          * determining how much data to DMA. Always allocate memory for maximum
776          * number of segments to prevent device reading beyond end of buffer.
777          */
778         static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
779
780         range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
781         if (!range) {
782                 /*
783                  * If we fail allocation our range, fallback to the controller
784                  * discard page. If that's also busy, it's safe to return
785                  * busy, as we know we can make progress once that's freed.
786                  */
787                 if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
788                         return BLK_STS_RESOURCE;
789
790                 range = page_address(ns->ctrl->discard_page);
791         }
792
793         if (queue_max_discard_segments(req->q) == 1) {
794                 u64 slba = nvme_sect_to_lba(ns, blk_rq_pos(req));
795                 u32 nlb = blk_rq_sectors(req) >> (ns->lba_shift - 9);
796
797                 range[0].cattr = cpu_to_le32(0);
798                 range[0].nlb = cpu_to_le32(nlb);
799                 range[0].slba = cpu_to_le64(slba);
800                 n = 1;
801         } else {
802                 __rq_for_each_bio(bio, req) {
803                         u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
804                         u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
805
806                         if (n < segments) {
807                                 range[n].cattr = cpu_to_le32(0);
808                                 range[n].nlb = cpu_to_le32(nlb);
809                                 range[n].slba = cpu_to_le64(slba);
810                         }
811                         n++;
812                 }
813         }
814
815         if (WARN_ON_ONCE(n != segments)) {
816                 if (virt_to_page(range) == ns->ctrl->discard_page)
817                         clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
818                 else
819                         kfree(range);
820                 return BLK_STS_IOERR;
821         }
822
823         memset(cmnd, 0, sizeof(*cmnd));
824         cmnd->dsm.opcode = nvme_cmd_dsm;
825         cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
826         cmnd->dsm.nr = cpu_to_le32(segments - 1);
827         cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
828
829         bvec_set_virt(&req->special_vec, range, alloc_size);
830         req->rq_flags |= RQF_SPECIAL_PAYLOAD;
831
832         return BLK_STS_OK;
833 }
834
835 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
836                               struct request *req)
837 {
838         u32 upper, lower;
839         u64 ref48;
840
841         /* both rw and write zeroes share the same reftag format */
842         switch (ns->guard_type) {
843         case NVME_NVM_NS_16B_GUARD:
844                 cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
845                 break;
846         case NVME_NVM_NS_64B_GUARD:
847                 ref48 = ext_pi_ref_tag(req);
848                 lower = lower_32_bits(ref48);
849                 upper = upper_32_bits(ref48);
850
851                 cmnd->rw.reftag = cpu_to_le32(lower);
852                 cmnd->rw.cdw3 = cpu_to_le32(upper);
853                 break;
854         default:
855                 break;
856         }
857 }
858
859 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
860                 struct request *req, struct nvme_command *cmnd)
861 {
862         memset(cmnd, 0, sizeof(*cmnd));
863
864         if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
865                 return nvme_setup_discard(ns, req, cmnd);
866
867         cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
868         cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
869         cmnd->write_zeroes.slba =
870                 cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
871         cmnd->write_zeroes.length =
872                 cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
873
874         if (!(req->cmd_flags & REQ_NOUNMAP) && (ns->features & NVME_NS_DEAC))
875                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_WZ_DEAC);
876
877         if (nvme_ns_has_pi(ns)) {
878                 cmnd->write_zeroes.control |= cpu_to_le16(NVME_RW_PRINFO_PRACT);
879
880                 switch (ns->pi_type) {
881                 case NVME_NS_DPS_PI_TYPE1:
882                 case NVME_NS_DPS_PI_TYPE2:
883                         nvme_set_ref_tag(ns, cmnd, req);
884                         break;
885                 }
886         }
887
888         return BLK_STS_OK;
889 }
890
891 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
892                 struct request *req, struct nvme_command *cmnd,
893                 enum nvme_opcode op)
894 {
895         u16 control = 0;
896         u32 dsmgmt = 0;
897
898         if (req->cmd_flags & REQ_FUA)
899                 control |= NVME_RW_FUA;
900         if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
901                 control |= NVME_RW_LR;
902
903         if (req->cmd_flags & REQ_RAHEAD)
904                 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
905
906         cmnd->rw.opcode = op;
907         cmnd->rw.flags = 0;
908         cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
909         cmnd->rw.cdw2 = 0;
910         cmnd->rw.cdw3 = 0;
911         cmnd->rw.metadata = 0;
912         cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
913         cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
914         cmnd->rw.reftag = 0;
915         cmnd->rw.apptag = 0;
916         cmnd->rw.appmask = 0;
917
918         if (ns->ms) {
919                 /*
920                  * If formated with metadata, the block layer always provides a
921                  * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
922                  * we enable the PRACT bit for protection information or set the
923                  * namespace capacity to zero to prevent any I/O.
924                  */
925                 if (!blk_integrity_rq(req)) {
926                         if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
927                                 return BLK_STS_NOTSUPP;
928                         control |= NVME_RW_PRINFO_PRACT;
929                 }
930
931                 switch (ns->pi_type) {
932                 case NVME_NS_DPS_PI_TYPE3:
933                         control |= NVME_RW_PRINFO_PRCHK_GUARD;
934                         break;
935                 case NVME_NS_DPS_PI_TYPE1:
936                 case NVME_NS_DPS_PI_TYPE2:
937                         control |= NVME_RW_PRINFO_PRCHK_GUARD |
938                                         NVME_RW_PRINFO_PRCHK_REF;
939                         if (op == nvme_cmd_zone_append)
940                                 control |= NVME_RW_APPEND_PIREMAP;
941                         nvme_set_ref_tag(ns, cmnd, req);
942                         break;
943                 }
944         }
945
946         cmnd->rw.control = cpu_to_le16(control);
947         cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
948         return 0;
949 }
950
951 void nvme_cleanup_cmd(struct request *req)
952 {
953         if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
954                 struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
955
956                 if (req->special_vec.bv_page == ctrl->discard_page)
957                         clear_bit_unlock(0, &ctrl->discard_page_busy);
958                 else
959                         kfree(bvec_virt(&req->special_vec));
960         }
961 }
962 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
963
964 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
965 {
966         struct nvme_command *cmd = nvme_req(req)->cmd;
967         blk_status_t ret = BLK_STS_OK;
968
969         if (!(req->rq_flags & RQF_DONTPREP))
970                 nvme_clear_nvme_request(req);
971
972         switch (req_op(req)) {
973         case REQ_OP_DRV_IN:
974         case REQ_OP_DRV_OUT:
975                 /* these are setup prior to execution in nvme_init_request() */
976                 break;
977         case REQ_OP_FLUSH:
978                 nvme_setup_flush(ns, cmd);
979                 break;
980         case REQ_OP_ZONE_RESET_ALL:
981         case REQ_OP_ZONE_RESET:
982                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
983                 break;
984         case REQ_OP_ZONE_OPEN:
985                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
986                 break;
987         case REQ_OP_ZONE_CLOSE:
988                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
989                 break;
990         case REQ_OP_ZONE_FINISH:
991                 ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
992                 break;
993         case REQ_OP_WRITE_ZEROES:
994                 ret = nvme_setup_write_zeroes(ns, req, cmd);
995                 break;
996         case REQ_OP_DISCARD:
997                 ret = nvme_setup_discard(ns, req, cmd);
998                 break;
999         case REQ_OP_READ:
1000                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
1001                 break;
1002         case REQ_OP_WRITE:
1003                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
1004                 break;
1005         case REQ_OP_ZONE_APPEND:
1006                 ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
1007                 break;
1008         default:
1009                 WARN_ON_ONCE(1);
1010                 return BLK_STS_IOERR;
1011         }
1012
1013         cmd->common.command_id = nvme_cid(req);
1014         trace_nvme_setup_cmd(req, cmd);
1015         return ret;
1016 }
1017 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
1018
1019 /*
1020  * Return values:
1021  * 0:  success
1022  * >0: nvme controller's cqe status response
1023  * <0: kernel error in lieu of controller response
1024  */
1025 int nvme_execute_rq(struct request *rq, bool at_head)
1026 {
1027         blk_status_t status;
1028
1029         status = blk_execute_rq(rq, at_head);
1030         if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1031                 return -EINTR;
1032         if (nvme_req(rq)->status)
1033                 return nvme_req(rq)->status;
1034         return blk_status_to_errno(status);
1035 }
1036 EXPORT_SYMBOL_NS_GPL(nvme_execute_rq, NVME_TARGET_PASSTHRU);
1037
1038 /*
1039  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1040  * if the result is positive, it's an NVM Express status code
1041  */
1042 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1043                 union nvme_result *result, void *buffer, unsigned bufflen,
1044                 int qid, int at_head, blk_mq_req_flags_t flags)
1045 {
1046         struct request *req;
1047         int ret;
1048
1049         if (qid == NVME_QID_ANY)
1050                 req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1051         else
1052                 req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1053                                                 qid - 1);
1054
1055         if (IS_ERR(req))
1056                 return PTR_ERR(req);
1057         nvme_init_request(req, cmd);
1058
1059         if (buffer && bufflen) {
1060                 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1061                 if (ret)
1062                         goto out;
1063         }
1064
1065         ret = nvme_execute_rq(req, at_head);
1066         if (result && ret >= 0)
1067                 *result = nvme_req(req)->result;
1068  out:
1069         blk_mq_free_request(req);
1070         return ret;
1071 }
1072 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1073
1074 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1075                 void *buffer, unsigned bufflen)
1076 {
1077         return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1078                         NVME_QID_ANY, 0, 0);
1079 }
1080 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1081
1082 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1083 {
1084         u32 effects = 0;
1085
1086         if (ns) {
1087                 effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1088                 if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1089                         dev_warn_once(ctrl->device,
1090                                 "IO command:%02x has unusual effects:%08x\n",
1091                                 opcode, effects);
1092
1093                 /*
1094                  * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1095                  * which would deadlock when done on an I/O command.  Note that
1096                  * We already warn about an unusual effect above.
1097                  */
1098                 effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1099         } else {
1100                 effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1101         }
1102
1103         return effects;
1104 }
1105 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1106
1107 u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1108 {
1109         u32 effects = nvme_command_effects(ctrl, ns, opcode);
1110
1111         /*
1112          * For simplicity, IO to all namespaces is quiesced even if the command
1113          * effects say only one namespace is affected.
1114          */
1115         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1116                 mutex_lock(&ctrl->scan_lock);
1117                 mutex_lock(&ctrl->subsys->lock);
1118                 nvme_mpath_start_freeze(ctrl->subsys);
1119                 nvme_mpath_wait_freeze(ctrl->subsys);
1120                 nvme_start_freeze(ctrl);
1121                 nvme_wait_freeze(ctrl);
1122         }
1123         return effects;
1124 }
1125 EXPORT_SYMBOL_NS_GPL(nvme_passthru_start, NVME_TARGET_PASSTHRU);
1126
1127 void nvme_passthru_end(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u32 effects,
1128                        struct nvme_command *cmd, int status)
1129 {
1130         if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1131                 nvme_unfreeze(ctrl);
1132                 nvme_mpath_unfreeze(ctrl->subsys);
1133                 mutex_unlock(&ctrl->subsys->lock);
1134                 mutex_unlock(&ctrl->scan_lock);
1135         }
1136         if (effects & NVME_CMD_EFFECTS_CCC) {
1137                 if (!test_and_set_bit(NVME_CTRL_DIRTY_CAPABILITY,
1138                                       &ctrl->flags)) {
1139                         dev_info(ctrl->device,
1140 "controller capabilities changed, reset may be required to take effect.\n");
1141                 }
1142         }
1143         if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1144                 nvme_queue_scan(ctrl);
1145                 flush_work(&ctrl->scan_work);
1146         }
1147         if (ns)
1148                 return;
1149
1150         switch (cmd->common.opcode) {
1151         case nvme_admin_set_features:
1152                 switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1153                 case NVME_FEAT_KATO:
1154                         /*
1155                          * Keep alive commands interval on the host should be
1156                          * updated when KATO is modified by Set Features
1157                          * commands.
1158                          */
1159                         if (!status)
1160                                 nvme_update_keep_alive(ctrl, cmd);
1161                         break;
1162                 default:
1163                         break;
1164                 }
1165                 break;
1166         default:
1167                 break;
1168         }
1169 }
1170 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1171
1172 /*
1173  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1174  * 
1175  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1176  *   accounting for transport roundtrip times [..].
1177  */
1178 static unsigned long nvme_keep_alive_work_period(struct nvme_ctrl *ctrl)
1179 {
1180         unsigned long delay = ctrl->kato * HZ / 2;
1181
1182         /*
1183          * When using Traffic Based Keep Alive, we need to run
1184          * nvme_keep_alive_work at twice the normal frequency, as one
1185          * command completion can postpone sending a keep alive command
1186          * by up to twice the delay between runs.
1187          */
1188         if (ctrl->ctratt & NVME_CTRL_ATTR_TBKAS)
1189                 delay /= 2;
1190         return delay;
1191 }
1192
1193 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1194 {
1195         queue_delayed_work(nvme_wq, &ctrl->ka_work,
1196                            nvme_keep_alive_work_period(ctrl));
1197 }
1198
1199 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1200                                                  blk_status_t status)
1201 {
1202         struct nvme_ctrl *ctrl = rq->end_io_data;
1203         unsigned long flags;
1204         bool startka = false;
1205         unsigned long rtt = jiffies - (rq->deadline - rq->timeout);
1206         unsigned long delay = nvme_keep_alive_work_period(ctrl);
1207
1208         /*
1209          * Subtract off the keepalive RTT so nvme_keep_alive_work runs
1210          * at the desired frequency.
1211          */
1212         if (rtt <= delay) {
1213                 delay -= rtt;
1214         } else {
1215                 dev_warn(ctrl->device, "long keepalive RTT (%u ms)\n",
1216                          jiffies_to_msecs(rtt));
1217                 delay = 0;
1218         }
1219
1220         blk_mq_free_request(rq);
1221
1222         if (status) {
1223                 dev_err(ctrl->device,
1224                         "failed nvme_keep_alive_end_io error=%d\n",
1225                                 status);
1226                 return RQ_END_IO_NONE;
1227         }
1228
1229         ctrl->ka_last_check_time = jiffies;
1230         ctrl->comp_seen = false;
1231         spin_lock_irqsave(&ctrl->lock, flags);
1232         if (ctrl->state == NVME_CTRL_LIVE ||
1233             ctrl->state == NVME_CTRL_CONNECTING)
1234                 startka = true;
1235         spin_unlock_irqrestore(&ctrl->lock, flags);
1236         if (startka)
1237                 queue_delayed_work(nvme_wq, &ctrl->ka_work, delay);
1238         return RQ_END_IO_NONE;
1239 }
1240
1241 static void nvme_keep_alive_work(struct work_struct *work)
1242 {
1243         struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1244                         struct nvme_ctrl, ka_work);
1245         bool comp_seen = ctrl->comp_seen;
1246         struct request *rq;
1247
1248         ctrl->ka_last_check_time = jiffies;
1249
1250         if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1251                 dev_dbg(ctrl->device,
1252                         "reschedule traffic based keep-alive timer\n");
1253                 ctrl->comp_seen = false;
1254                 nvme_queue_keep_alive_work(ctrl);
1255                 return;
1256         }
1257
1258         rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1259                                   BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1260         if (IS_ERR(rq)) {
1261                 /* allocation failure, reset the controller */
1262                 dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1263                 nvme_reset_ctrl(ctrl);
1264                 return;
1265         }
1266         nvme_init_request(rq, &ctrl->ka_cmd);
1267
1268         rq->timeout = ctrl->kato * HZ;
1269         rq->end_io = nvme_keep_alive_end_io;
1270         rq->end_io_data = ctrl;
1271         blk_execute_rq_nowait(rq, false);
1272 }
1273
1274 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1275 {
1276         if (unlikely(ctrl->kato == 0))
1277                 return;
1278
1279         nvme_queue_keep_alive_work(ctrl);
1280 }
1281
1282 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1283 {
1284         if (unlikely(ctrl->kato == 0))
1285                 return;
1286
1287         cancel_delayed_work_sync(&ctrl->ka_work);
1288 }
1289 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1290
1291 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1292                                    struct nvme_command *cmd)
1293 {
1294         unsigned int new_kato =
1295                 DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1296
1297         dev_info(ctrl->device,
1298                  "keep alive interval updated from %u ms to %u ms\n",
1299                  ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1300
1301         nvme_stop_keep_alive(ctrl);
1302         ctrl->kato = new_kato;
1303         nvme_start_keep_alive(ctrl);
1304 }
1305
1306 /*
1307  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1308  * flag, thus sending any new CNS opcodes has a big chance of not working.
1309  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1310  * (but not for any later version).
1311  */
1312 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1313 {
1314         if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1315                 return ctrl->vs < NVME_VS(1, 2, 0);
1316         return ctrl->vs < NVME_VS(1, 1, 0);
1317 }
1318
1319 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1320 {
1321         struct nvme_command c = { };
1322         int error;
1323
1324         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1325         c.identify.opcode = nvme_admin_identify;
1326         c.identify.cns = NVME_ID_CNS_CTRL;
1327
1328         *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1329         if (!*id)
1330                 return -ENOMEM;
1331
1332         error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1333                         sizeof(struct nvme_id_ctrl));
1334         if (error)
1335                 kfree(*id);
1336         return error;
1337 }
1338
1339 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1340                 struct nvme_ns_id_desc *cur, bool *csi_seen)
1341 {
1342         const char *warn_str = "ctrl returned bogus length:";
1343         void *data = cur;
1344
1345         switch (cur->nidt) {
1346         case NVME_NIDT_EUI64:
1347                 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1348                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1349                                  warn_str, cur->nidl);
1350                         return -1;
1351                 }
1352                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1353                         return NVME_NIDT_EUI64_LEN;
1354                 memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1355                 return NVME_NIDT_EUI64_LEN;
1356         case NVME_NIDT_NGUID:
1357                 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1358                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1359                                  warn_str, cur->nidl);
1360                         return -1;
1361                 }
1362                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1363                         return NVME_NIDT_NGUID_LEN;
1364                 memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1365                 return NVME_NIDT_NGUID_LEN;
1366         case NVME_NIDT_UUID:
1367                 if (cur->nidl != NVME_NIDT_UUID_LEN) {
1368                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1369                                  warn_str, cur->nidl);
1370                         return -1;
1371                 }
1372                 if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1373                         return NVME_NIDT_UUID_LEN;
1374                 uuid_copy(&ids->uuid, data + sizeof(*cur));
1375                 return NVME_NIDT_UUID_LEN;
1376         case NVME_NIDT_CSI:
1377                 if (cur->nidl != NVME_NIDT_CSI_LEN) {
1378                         dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1379                                  warn_str, cur->nidl);
1380                         return -1;
1381                 }
1382                 memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1383                 *csi_seen = true;
1384                 return NVME_NIDT_CSI_LEN;
1385         default:
1386                 /* Skip unknown types */
1387                 return cur->nidl;
1388         }
1389 }
1390
1391 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1392                 struct nvme_ns_info *info)
1393 {
1394         struct nvme_command c = { };
1395         bool csi_seen = false;
1396         int status, pos, len;
1397         void *data;
1398
1399         if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1400                 return 0;
1401         if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1402                 return 0;
1403
1404         c.identify.opcode = nvme_admin_identify;
1405         c.identify.nsid = cpu_to_le32(info->nsid);
1406         c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1407
1408         data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1409         if (!data)
1410                 return -ENOMEM;
1411
1412         status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1413                                       NVME_IDENTIFY_DATA_SIZE);
1414         if (status) {
1415                 dev_warn(ctrl->device,
1416                         "Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1417                         info->nsid, status);
1418                 goto free_data;
1419         }
1420
1421         for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1422                 struct nvme_ns_id_desc *cur = data + pos;
1423
1424                 if (cur->nidl == 0)
1425                         break;
1426
1427                 len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1428                 if (len < 0)
1429                         break;
1430
1431                 len += sizeof(*cur);
1432         }
1433
1434         if (nvme_multi_css(ctrl) && !csi_seen) {
1435                 dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1436                          info->nsid);
1437                 status = -EINVAL;
1438         }
1439
1440 free_data:
1441         kfree(data);
1442         return status;
1443 }
1444
1445 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1446                         struct nvme_id_ns **id)
1447 {
1448         struct nvme_command c = { };
1449         int error;
1450
1451         /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1452         c.identify.opcode = nvme_admin_identify;
1453         c.identify.nsid = cpu_to_le32(nsid);
1454         c.identify.cns = NVME_ID_CNS_NS;
1455
1456         *id = kmalloc(sizeof(**id), GFP_KERNEL);
1457         if (!*id)
1458                 return -ENOMEM;
1459
1460         error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1461         if (error) {
1462                 dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1463                 kfree(*id);
1464         }
1465         return error;
1466 }
1467
1468 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1469                 struct nvme_ns_info *info)
1470 {
1471         struct nvme_ns_ids *ids = &info->ids;
1472         struct nvme_id_ns *id;
1473         int ret;
1474
1475         ret = nvme_identify_ns(ctrl, info->nsid, &id);
1476         if (ret)
1477                 return ret;
1478
1479         if (id->ncap == 0) {
1480                 /* namespace not allocated or attached */
1481                 info->is_removed = true;
1482                 return -ENODEV;
1483         }
1484
1485         info->anagrpid = id->anagrpid;
1486         info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1487         info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1488         info->is_ready = true;
1489         if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1490                 dev_info(ctrl->device,
1491                          "Ignoring bogus Namespace Identifiers\n");
1492         } else {
1493                 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1494                     !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1495                         memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1496                 if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1497                     !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1498                         memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1499         }
1500         kfree(id);
1501         return 0;
1502 }
1503
1504 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1505                 struct nvme_ns_info *info)
1506 {
1507         struct nvme_id_ns_cs_indep *id;
1508         struct nvme_command c = {
1509                 .identify.opcode        = nvme_admin_identify,
1510                 .identify.nsid          = cpu_to_le32(info->nsid),
1511                 .identify.cns           = NVME_ID_CNS_NS_CS_INDEP,
1512         };
1513         int ret;
1514
1515         id = kmalloc(sizeof(*id), GFP_KERNEL);
1516         if (!id)
1517                 return -ENOMEM;
1518
1519         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1520         if (!ret) {
1521                 info->anagrpid = id->anagrpid;
1522                 info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1523                 info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1524                 info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1525         }
1526         kfree(id);
1527         return ret;
1528 }
1529
1530 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1531                 unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1532 {
1533         union nvme_result res = { 0 };
1534         struct nvme_command c = { };
1535         int ret;
1536
1537         c.features.opcode = op;
1538         c.features.fid = cpu_to_le32(fid);
1539         c.features.dword11 = cpu_to_le32(dword11);
1540
1541         ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1542                         buffer, buflen, NVME_QID_ANY, 0, 0);
1543         if (ret >= 0 && result)
1544                 *result = le32_to_cpu(res.u32);
1545         return ret;
1546 }
1547
1548 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1549                       unsigned int dword11, void *buffer, size_t buflen,
1550                       u32 *result)
1551 {
1552         return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1553                              buflen, result);
1554 }
1555 EXPORT_SYMBOL_GPL(nvme_set_features);
1556
1557 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1558                       unsigned int dword11, void *buffer, size_t buflen,
1559                       u32 *result)
1560 {
1561         return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1562                              buflen, result);
1563 }
1564 EXPORT_SYMBOL_GPL(nvme_get_features);
1565
1566 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1567 {
1568         u32 q_count = (*count - 1) | ((*count - 1) << 16);
1569         u32 result;
1570         int status, nr_io_queues;
1571
1572         status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1573                         &result);
1574         if (status < 0)
1575                 return status;
1576
1577         /*
1578          * Degraded controllers might return an error when setting the queue
1579          * count.  We still want to be able to bring them online and offer
1580          * access to the admin queue, as that might be only way to fix them up.
1581          */
1582         if (status > 0) {
1583                 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1584                 *count = 0;
1585         } else {
1586                 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1587                 *count = min(*count, nr_io_queues);
1588         }
1589
1590         return 0;
1591 }
1592 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1593
1594 #define NVME_AEN_SUPPORTED \
1595         (NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1596          NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1597
1598 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1599 {
1600         u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1601         int status;
1602
1603         if (!supported_aens)
1604                 return;
1605
1606         status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1607                         NULL, 0, &result);
1608         if (status)
1609                 dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1610                          supported_aens);
1611
1612         queue_work(nvme_wq, &ctrl->async_event_work);
1613 }
1614
1615 static int nvme_ns_open(struct nvme_ns *ns)
1616 {
1617
1618         /* should never be called due to GENHD_FL_HIDDEN */
1619         if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1620                 goto fail;
1621         if (!nvme_get_ns(ns))
1622                 goto fail;
1623         if (!try_module_get(ns->ctrl->ops->module))
1624                 goto fail_put_ns;
1625
1626         return 0;
1627
1628 fail_put_ns:
1629         nvme_put_ns(ns);
1630 fail:
1631         return -ENXIO;
1632 }
1633
1634 static void nvme_ns_release(struct nvme_ns *ns)
1635 {
1636
1637         module_put(ns->ctrl->ops->module);
1638         nvme_put_ns(ns);
1639 }
1640
1641 static int nvme_open(struct gendisk *disk, blk_mode_t mode)
1642 {
1643         return nvme_ns_open(disk->private_data);
1644 }
1645
1646 static void nvme_release(struct gendisk *disk)
1647 {
1648         nvme_ns_release(disk->private_data);
1649 }
1650
1651 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1652 {
1653         /* some standard values */
1654         geo->heads = 1 << 6;
1655         geo->sectors = 1 << 5;
1656         geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1657         return 0;
1658 }
1659
1660 #ifdef CONFIG_BLK_DEV_INTEGRITY
1661 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1662                                 u32 max_integrity_segments)
1663 {
1664         struct blk_integrity integrity = { };
1665
1666         switch (ns->pi_type) {
1667         case NVME_NS_DPS_PI_TYPE3:
1668                 switch (ns->guard_type) {
1669                 case NVME_NVM_NS_16B_GUARD:
1670                         integrity.profile = &t10_pi_type3_crc;
1671                         integrity.tag_size = sizeof(u16) + sizeof(u32);
1672                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1673                         break;
1674                 case NVME_NVM_NS_64B_GUARD:
1675                         integrity.profile = &ext_pi_type3_crc64;
1676                         integrity.tag_size = sizeof(u16) + 6;
1677                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1678                         break;
1679                 default:
1680                         integrity.profile = NULL;
1681                         break;
1682                 }
1683                 break;
1684         case NVME_NS_DPS_PI_TYPE1:
1685         case NVME_NS_DPS_PI_TYPE2:
1686                 switch (ns->guard_type) {
1687                 case NVME_NVM_NS_16B_GUARD:
1688                         integrity.profile = &t10_pi_type1_crc;
1689                         integrity.tag_size = sizeof(u16);
1690                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1691                         break;
1692                 case NVME_NVM_NS_64B_GUARD:
1693                         integrity.profile = &ext_pi_type1_crc64;
1694                         integrity.tag_size = sizeof(u16);
1695                         integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1696                         break;
1697                 default:
1698                         integrity.profile = NULL;
1699                         break;
1700                 }
1701                 break;
1702         default:
1703                 integrity.profile = NULL;
1704                 break;
1705         }
1706
1707         integrity.tuple_size = ns->ms;
1708         blk_integrity_register(disk, &integrity);
1709         blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1710 }
1711 #else
1712 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1713                                 u32 max_integrity_segments)
1714 {
1715 }
1716 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1717
1718 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1719 {
1720         struct nvme_ctrl *ctrl = ns->ctrl;
1721         struct request_queue *queue = disk->queue;
1722         u32 size = queue_logical_block_size(queue);
1723
1724         if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1725                 ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1726
1727         if (ctrl->max_discard_sectors == 0) {
1728                 blk_queue_max_discard_sectors(queue, 0);
1729                 return;
1730         }
1731
1732         BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1733                         NVME_DSM_MAX_RANGES);
1734
1735         queue->limits.discard_granularity = size;
1736
1737         /* If discard is already enabled, don't reset queue limits */
1738         if (queue->limits.max_discard_sectors)
1739                 return;
1740
1741         blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1742         blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1743
1744         if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1745                 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1746 }
1747
1748 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1749 {
1750         return uuid_equal(&a->uuid, &b->uuid) &&
1751                 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1752                 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1753                 a->csi == b->csi;
1754 }
1755
1756 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1757 {
1758         bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1759         unsigned lbaf = nvme_lbaf_index(id->flbas);
1760         struct nvme_ctrl *ctrl = ns->ctrl;
1761         struct nvme_command c = { };
1762         struct nvme_id_ns_nvm *nvm;
1763         int ret = 0;
1764         u32 elbaf;
1765
1766         ns->pi_size = 0;
1767         ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1768         if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1769                 ns->pi_size = sizeof(struct t10_pi_tuple);
1770                 ns->guard_type = NVME_NVM_NS_16B_GUARD;
1771                 goto set_pi;
1772         }
1773
1774         nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1775         if (!nvm)
1776                 return -ENOMEM;
1777
1778         c.identify.opcode = nvme_admin_identify;
1779         c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1780         c.identify.cns = NVME_ID_CNS_CS_NS;
1781         c.identify.csi = NVME_CSI_NVM;
1782
1783         ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1784         if (ret)
1785                 goto free_data;
1786
1787         elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1788
1789         /* no support for storage tag formats right now */
1790         if (nvme_elbaf_sts(elbaf))
1791                 goto free_data;
1792
1793         ns->guard_type = nvme_elbaf_guard_type(elbaf);
1794         switch (ns->guard_type) {
1795         case NVME_NVM_NS_64B_GUARD:
1796                 ns->pi_size = sizeof(struct crc64_pi_tuple);
1797                 break;
1798         case NVME_NVM_NS_16B_GUARD:
1799                 ns->pi_size = sizeof(struct t10_pi_tuple);
1800                 break;
1801         default:
1802                 break;
1803         }
1804
1805 free_data:
1806         kfree(nvm);
1807 set_pi:
1808         if (ns->pi_size && (first || ns->ms == ns->pi_size))
1809                 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1810         else
1811                 ns->pi_type = 0;
1812
1813         return ret;
1814 }
1815
1816 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1817 {
1818         struct nvme_ctrl *ctrl = ns->ctrl;
1819
1820         if (nvme_init_ms(ns, id))
1821                 return;
1822
1823         ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1824         if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1825                 return;
1826
1827         if (ctrl->ops->flags & NVME_F_FABRICS) {
1828                 /*
1829                  * The NVMe over Fabrics specification only supports metadata as
1830                  * part of the extended data LBA.  We rely on HCA/HBA support to
1831                  * remap the separate metadata buffer from the block layer.
1832                  */
1833                 if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1834                         return;
1835
1836                 ns->features |= NVME_NS_EXT_LBAS;
1837
1838                 /*
1839                  * The current fabrics transport drivers support namespace
1840                  * metadata formats only if nvme_ns_has_pi() returns true.
1841                  * Suppress support for all other formats so the namespace will
1842                  * have a 0 capacity and not be usable through the block stack.
1843                  *
1844                  * Note, this check will need to be modified if any drivers
1845                  * gain the ability to use other metadata formats.
1846                  */
1847                 if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1848                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1849         } else {
1850                 /*
1851                  * For PCIe controllers, we can't easily remap the separate
1852                  * metadata buffer from the block layer and thus require a
1853                  * separate metadata buffer for block layer metadata/PI support.
1854                  * We allow extended LBAs for the passthrough interface, though.
1855                  */
1856                 if (id->flbas & NVME_NS_FLBAS_META_EXT)
1857                         ns->features |= NVME_NS_EXT_LBAS;
1858                 else
1859                         ns->features |= NVME_NS_METADATA_SUPPORTED;
1860         }
1861 }
1862
1863 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1864                 struct request_queue *q)
1865 {
1866         bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1867
1868         if (ctrl->max_hw_sectors) {
1869                 u32 max_segments =
1870                         (ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1871
1872                 max_segments = min_not_zero(max_segments, ctrl->max_segments);
1873                 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1874                 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1875         }
1876         blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1877         blk_queue_dma_alignment(q, 3);
1878         blk_queue_write_cache(q, vwc, vwc);
1879 }
1880
1881 static void nvme_update_disk_info(struct gendisk *disk,
1882                 struct nvme_ns *ns, struct nvme_id_ns *id)
1883 {
1884         sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1885         u32 bs = 1U << ns->lba_shift;
1886         u32 atomic_bs, phys_bs, io_opt = 0;
1887
1888         /*
1889          * The block layer can't support LBA sizes larger than the page size
1890          * yet, so catch this early and don't allow block I/O.
1891          */
1892         if (ns->lba_shift > PAGE_SHIFT) {
1893                 capacity = 0;
1894                 bs = (1 << 9);
1895         }
1896
1897         blk_integrity_unregister(disk);
1898
1899         atomic_bs = phys_bs = bs;
1900         if (id->nabo == 0) {
1901                 /*
1902                  * Bit 1 indicates whether NAWUPF is defined for this namespace
1903                  * and whether it should be used instead of AWUPF. If NAWUPF ==
1904                  * 0 then AWUPF must be used instead.
1905                  */
1906                 if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1907                         atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1908                 else
1909                         atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1910         }
1911
1912         if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1913                 /* NPWG = Namespace Preferred Write Granularity */
1914                 phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1915                 /* NOWS = Namespace Optimal Write Size */
1916                 io_opt = bs * (1 + le16_to_cpu(id->nows));
1917         }
1918
1919         blk_queue_logical_block_size(disk->queue, bs);
1920         /*
1921          * Linux filesystems assume writing a single physical block is
1922          * an atomic operation. Hence limit the physical block size to the
1923          * value of the Atomic Write Unit Power Fail parameter.
1924          */
1925         blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1926         blk_queue_io_min(disk->queue, phys_bs);
1927         blk_queue_io_opt(disk->queue, io_opt);
1928
1929         /*
1930          * Register a metadata profile for PI, or the plain non-integrity NVMe
1931          * metadata masquerading as Type 0 if supported, otherwise reject block
1932          * I/O to namespaces with metadata except when the namespace supports
1933          * PI, as it can strip/insert in that case.
1934          */
1935         if (ns->ms) {
1936                 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1937                     (ns->features & NVME_NS_METADATA_SUPPORTED))
1938                         nvme_init_integrity(disk, ns,
1939                                             ns->ctrl->max_integrity_segments);
1940                 else if (!nvme_ns_has_pi(ns))
1941                         capacity = 0;
1942         }
1943
1944         set_capacity_and_notify(disk, capacity);
1945
1946         nvme_config_discard(disk, ns);
1947         blk_queue_max_write_zeroes_sectors(disk->queue,
1948                                            ns->ctrl->max_zeroes_sectors);
1949 }
1950
1951 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1952 {
1953         return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1954 }
1955
1956 static inline bool nvme_first_scan(struct gendisk *disk)
1957 {
1958         /* nvme_alloc_ns() scans the disk prior to adding it */
1959         return !disk_live(disk);
1960 }
1961
1962 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1963 {
1964         struct nvme_ctrl *ctrl = ns->ctrl;
1965         u32 iob;
1966
1967         if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1968             is_power_of_2(ctrl->max_hw_sectors))
1969                 iob = ctrl->max_hw_sectors;
1970         else
1971                 iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1972
1973         if (!iob)
1974                 return;
1975
1976         if (!is_power_of_2(iob)) {
1977                 if (nvme_first_scan(ns->disk))
1978                         pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1979                                 ns->disk->disk_name, iob);
1980                 return;
1981         }
1982
1983         if (blk_queue_is_zoned(ns->disk->queue)) {
1984                 if (nvme_first_scan(ns->disk))
1985                         pr_warn("%s: ignoring zoned namespace IO boundary\n",
1986                                 ns->disk->disk_name);
1987                 return;
1988         }
1989
1990         blk_queue_chunk_sectors(ns->queue, iob);
1991 }
1992
1993 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1994                 struct nvme_ns_info *info)
1995 {
1996         blk_mq_freeze_queue(ns->disk->queue);
1997         nvme_set_queue_limits(ns->ctrl, ns->queue);
1998         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1999         blk_mq_unfreeze_queue(ns->disk->queue);
2000
2001         if (nvme_ns_head_multipath(ns->head)) {
2002                 blk_mq_freeze_queue(ns->head->disk->queue);
2003                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2004                 nvme_mpath_revalidate_paths(ns);
2005                 blk_stack_limits(&ns->head->disk->queue->limits,
2006                                  &ns->queue->limits, 0);
2007                 ns->head->disk->flags |= GENHD_FL_HIDDEN;
2008                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2009         }
2010
2011         /* Hide the block-interface for these devices */
2012         ns->disk->flags |= GENHD_FL_HIDDEN;
2013         set_bit(NVME_NS_READY, &ns->flags);
2014
2015         return 0;
2016 }
2017
2018 static int nvme_update_ns_info_block(struct nvme_ns *ns,
2019                 struct nvme_ns_info *info)
2020 {
2021         struct nvme_id_ns *id;
2022         unsigned lbaf;
2023         int ret;
2024
2025         ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2026         if (ret)
2027                 return ret;
2028
2029         blk_mq_freeze_queue(ns->disk->queue);
2030         lbaf = nvme_lbaf_index(id->flbas);
2031         ns->lba_shift = id->lbaf[lbaf].ds;
2032         nvme_set_queue_limits(ns->ctrl, ns->queue);
2033
2034         nvme_configure_metadata(ns, id);
2035         nvme_set_chunk_sectors(ns, id);
2036         nvme_update_disk_info(ns->disk, ns, id);
2037
2038         if (ns->head->ids.csi == NVME_CSI_ZNS) {
2039                 ret = nvme_update_zone_info(ns, lbaf);
2040                 if (ret) {
2041                         blk_mq_unfreeze_queue(ns->disk->queue);
2042                         goto out;
2043                 }
2044         }
2045
2046         /*
2047          * Only set the DEAC bit if the device guarantees that reads from
2048          * deallocated data return zeroes.  While the DEAC bit does not
2049          * require that, it must be a no-op if reads from deallocated data
2050          * do not return zeroes.
2051          */
2052         if ((id->dlfeat & 0x7) == 0x1 && (id->dlfeat & (1 << 3)))
2053                 ns->features |= NVME_NS_DEAC;
2054         set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2055         set_bit(NVME_NS_READY, &ns->flags);
2056         blk_mq_unfreeze_queue(ns->disk->queue);
2057
2058         if (blk_queue_is_zoned(ns->queue)) {
2059                 ret = nvme_revalidate_zones(ns);
2060                 if (ret && !nvme_first_scan(ns->disk))
2061                         goto out;
2062         }
2063
2064         if (nvme_ns_head_multipath(ns->head)) {
2065                 blk_mq_freeze_queue(ns->head->disk->queue);
2066                 nvme_update_disk_info(ns->head->disk, ns, id);
2067                 set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2068                 nvme_mpath_revalidate_paths(ns);
2069                 blk_stack_limits(&ns->head->disk->queue->limits,
2070                                  &ns->queue->limits, 0);
2071                 disk_update_readahead(ns->head->disk);
2072                 blk_mq_unfreeze_queue(ns->head->disk->queue);
2073         }
2074
2075         ret = 0;
2076 out:
2077         /*
2078          * If probing fails due an unsupported feature, hide the block device,
2079          * but still allow other access.
2080          */
2081         if (ret == -ENODEV) {
2082                 ns->disk->flags |= GENHD_FL_HIDDEN;
2083                 set_bit(NVME_NS_READY, &ns->flags);
2084                 ret = 0;
2085         }
2086         kfree(id);
2087         return ret;
2088 }
2089
2090 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2091 {
2092         switch (info->ids.csi) {
2093         case NVME_CSI_ZNS:
2094                 if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2095                         dev_info(ns->ctrl->device,
2096         "block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2097                                 info->nsid);
2098                         return nvme_update_ns_info_generic(ns, info);
2099                 }
2100                 return nvme_update_ns_info_block(ns, info);
2101         case NVME_CSI_NVM:
2102                 return nvme_update_ns_info_block(ns, info);
2103         default:
2104                 dev_info(ns->ctrl->device,
2105                         "block device for nsid %u not supported (csi %u)\n",
2106                         info->nsid, info->ids.csi);
2107                 return nvme_update_ns_info_generic(ns, info);
2108         }
2109 }
2110
2111 #ifdef CONFIG_BLK_SED_OPAL
2112 static int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2113                 bool send)
2114 {
2115         struct nvme_ctrl *ctrl = data;
2116         struct nvme_command cmd = { };
2117
2118         if (send)
2119                 cmd.common.opcode = nvme_admin_security_send;
2120         else
2121                 cmd.common.opcode = nvme_admin_security_recv;
2122         cmd.common.nsid = 0;
2123         cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2124         cmd.common.cdw11 = cpu_to_le32(len);
2125
2126         return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2127                         NVME_QID_ANY, 1, 0);
2128 }
2129
2130 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2131 {
2132         if (ctrl->oacs & NVME_CTRL_OACS_SEC_SUPP) {
2133                 if (!ctrl->opal_dev)
2134                         ctrl->opal_dev = init_opal_dev(ctrl, &nvme_sec_submit);
2135                 else if (was_suspended)
2136                         opal_unlock_from_suspend(ctrl->opal_dev);
2137         } else {
2138                 free_opal_dev(ctrl->opal_dev);
2139                 ctrl->opal_dev = NULL;
2140         }
2141 }
2142 #else
2143 static void nvme_configure_opal(struct nvme_ctrl *ctrl, bool was_suspended)
2144 {
2145 }
2146 #endif /* CONFIG_BLK_SED_OPAL */
2147
2148 #ifdef CONFIG_BLK_DEV_ZONED
2149 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2150                 unsigned int nr_zones, report_zones_cb cb, void *data)
2151 {
2152         return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2153                         data);
2154 }
2155 #else
2156 #define nvme_report_zones       NULL
2157 #endif /* CONFIG_BLK_DEV_ZONED */
2158
2159 const struct block_device_operations nvme_bdev_ops = {
2160         .owner          = THIS_MODULE,
2161         .ioctl          = nvme_ioctl,
2162         .compat_ioctl   = blkdev_compat_ptr_ioctl,
2163         .open           = nvme_open,
2164         .release        = nvme_release,
2165         .getgeo         = nvme_getgeo,
2166         .report_zones   = nvme_report_zones,
2167         .pr_ops         = &nvme_pr_ops,
2168 };
2169
2170 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 mask, u32 val,
2171                 u32 timeout, const char *op)
2172 {
2173         unsigned long timeout_jiffies = jiffies + timeout * HZ;
2174         u32 csts;
2175         int ret;
2176
2177         while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2178                 if (csts == ~0)
2179                         return -ENODEV;
2180                 if ((csts & mask) == val)
2181                         break;
2182
2183                 usleep_range(1000, 2000);
2184                 if (fatal_signal_pending(current))
2185                         return -EINTR;
2186                 if (time_after(jiffies, timeout_jiffies)) {
2187                         dev_err(ctrl->device,
2188                                 "Device not ready; aborting %s, CSTS=0x%x\n",
2189                                 op, csts);
2190                         return -ENODEV;
2191                 }
2192         }
2193
2194         return ret;
2195 }
2196
2197 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2198 {
2199         int ret;
2200
2201         ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2202         if (shutdown)
2203                 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2204         else
2205                 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2206
2207         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2208         if (ret)
2209                 return ret;
2210
2211         if (shutdown) {
2212                 return nvme_wait_ready(ctrl, NVME_CSTS_SHST_MASK,
2213                                        NVME_CSTS_SHST_CMPLT,
2214                                        ctrl->shutdown_timeout, "shutdown");
2215         }
2216         if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2217                 msleep(NVME_QUIRK_DELAY_AMOUNT);
2218         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, 0,
2219                                (NVME_CAP_TIMEOUT(ctrl->cap) + 1) / 2, "reset");
2220 }
2221 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2222
2223 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2224 {
2225         unsigned dev_page_min;
2226         u32 timeout;
2227         int ret;
2228
2229         ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2230         if (ret) {
2231                 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2232                 return ret;
2233         }
2234         dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2235
2236         if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2237                 dev_err(ctrl->device,
2238                         "Minimum device page size %u too large for host (%u)\n",
2239                         1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2240                 return -ENODEV;
2241         }
2242
2243         if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2244                 ctrl->ctrl_config = NVME_CC_CSS_CSI;
2245         else
2246                 ctrl->ctrl_config = NVME_CC_CSS_NVM;
2247
2248         if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2249                 u32 crto;
2250
2251                 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2252                 if (ret) {
2253                         dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2254                                 ret);
2255                         return ret;
2256                 }
2257
2258                 if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2259                         ctrl->ctrl_config |= NVME_CC_CRIME;
2260                         timeout = NVME_CRTO_CRIMT(crto);
2261                 } else {
2262                         timeout = NVME_CRTO_CRWMT(crto);
2263                 }
2264         } else {
2265                 timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2266         }
2267
2268         ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2269         ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2270         ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2271         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2272         if (ret)
2273                 return ret;
2274
2275         /* Flush write to device (required if transport is PCI) */
2276         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2277         if (ret)
2278                 return ret;
2279
2280         ctrl->ctrl_config |= NVME_CC_ENABLE;
2281         ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2282         if (ret)
2283                 return ret;
2284         return nvme_wait_ready(ctrl, NVME_CSTS_RDY, NVME_CSTS_RDY,
2285                                (timeout + 1) / 2, "initialisation");
2286 }
2287 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2288
2289 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2290 {
2291         __le64 ts;
2292         int ret;
2293
2294         if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2295                 return 0;
2296
2297         ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2298         ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2299                         NULL);
2300         if (ret)
2301                 dev_warn_once(ctrl->device,
2302                         "could not set timestamp (%d)\n", ret);
2303         return ret;
2304 }
2305
2306 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2307 {
2308         struct nvme_feat_host_behavior *host;
2309         u8 acre = 0, lbafee = 0;
2310         int ret;
2311
2312         /* Don't bother enabling the feature if retry delay is not reported */
2313         if (ctrl->crdt[0])
2314                 acre = NVME_ENABLE_ACRE;
2315         if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2316                 lbafee = NVME_ENABLE_LBAFEE;
2317
2318         if (!acre && !lbafee)
2319                 return 0;
2320
2321         host = kzalloc(sizeof(*host), GFP_KERNEL);
2322         if (!host)
2323                 return 0;
2324
2325         host->acre = acre;
2326         host->lbafee = lbafee;
2327         ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2328                                 host, sizeof(*host), NULL);
2329         kfree(host);
2330         return ret;
2331 }
2332
2333 /*
2334  * The function checks whether the given total (exlat + enlat) latency of
2335  * a power state allows the latter to be used as an APST transition target.
2336  * It does so by comparing the latency to the primary and secondary latency
2337  * tolerances defined by module params. If there's a match, the corresponding
2338  * timeout value is returned and the matching tolerance index (1 or 2) is
2339  * reported.
2340  */
2341 static bool nvme_apst_get_transition_time(u64 total_latency,
2342                 u64 *transition_time, unsigned *last_index)
2343 {
2344         if (total_latency <= apst_primary_latency_tol_us) {
2345                 if (*last_index == 1)
2346                         return false;
2347                 *last_index = 1;
2348                 *transition_time = apst_primary_timeout_ms;
2349                 return true;
2350         }
2351         if (apst_secondary_timeout_ms &&
2352                 total_latency <= apst_secondary_latency_tol_us) {
2353                 if (*last_index <= 2)
2354                         return false;
2355                 *last_index = 2;
2356                 *transition_time = apst_secondary_timeout_ms;
2357                 return true;
2358         }
2359         return false;
2360 }
2361
2362 /*
2363  * APST (Autonomous Power State Transition) lets us program a table of power
2364  * state transitions that the controller will perform automatically.
2365  *
2366  * Depending on module params, one of the two supported techniques will be used:
2367  *
2368  * - If the parameters provide explicit timeouts and tolerances, they will be
2369  *   used to build a table with up to 2 non-operational states to transition to.
2370  *   The default parameter values were selected based on the values used by
2371  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2372  *   regeneration of the APST table in the event of switching between external
2373  *   and battery power, the timeouts and tolerances reflect a compromise
2374  *   between values used by Microsoft for AC and battery scenarios.
2375  * - If not, we'll configure the table with a simple heuristic: we are willing
2376  *   to spend at most 2% of the time transitioning between power states.
2377  *   Therefore, when running in any given state, we will enter the next
2378  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2379  *   microseconds, as long as that state's exit latency is under the requested
2380  *   maximum latency.
2381  *
2382  * We will not autonomously enter any non-operational state for which the total
2383  * latency exceeds ps_max_latency_us.
2384  *
2385  * Users can set ps_max_latency_us to zero to turn off APST.
2386  */
2387 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2388 {
2389         struct nvme_feat_auto_pst *table;
2390         unsigned apste = 0;
2391         u64 max_lat_us = 0;
2392         __le64 target = 0;
2393         int max_ps = -1;
2394         int state;
2395         int ret;
2396         unsigned last_lt_index = UINT_MAX;
2397
2398         /*
2399          * If APST isn't supported or if we haven't been initialized yet,
2400          * then don't do anything.
2401          */
2402         if (!ctrl->apsta)
2403                 return 0;
2404
2405         if (ctrl->npss > 31) {
2406                 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2407                 return 0;
2408         }
2409
2410         table = kzalloc(sizeof(*table), GFP_KERNEL);
2411         if (!table)
2412                 return 0;
2413
2414         if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2415                 /* Turn off APST. */
2416                 dev_dbg(ctrl->device, "APST disabled\n");
2417                 goto done;
2418         }
2419
2420         /*
2421          * Walk through all states from lowest- to highest-power.
2422          * According to the spec, lower-numbered states use more power.  NPSS,
2423          * despite the name, is the index of the lowest-power state, not the
2424          * number of states.
2425          */
2426         for (state = (int)ctrl->npss; state >= 0; state--) {
2427                 u64 total_latency_us, exit_latency_us, transition_ms;
2428
2429                 if (target)
2430                         table->entries[state] = target;
2431
2432                 /*
2433                  * Don't allow transitions to the deepest state if it's quirked
2434                  * off.
2435                  */
2436                 if (state == ctrl->npss &&
2437                     (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2438                         continue;
2439
2440                 /*
2441                  * Is this state a useful non-operational state for higher-power
2442                  * states to autonomously transition to?
2443                  */
2444                 if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2445                         continue;
2446
2447                 exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2448                 if (exit_latency_us > ctrl->ps_max_latency_us)
2449                         continue;
2450
2451                 total_latency_us = exit_latency_us +
2452                         le32_to_cpu(ctrl->psd[state].entry_lat);
2453
2454                 /*
2455                  * This state is good. It can be used as the APST idle target
2456                  * for higher power states.
2457                  */
2458                 if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2459                         if (!nvme_apst_get_transition_time(total_latency_us,
2460                                         &transition_ms, &last_lt_index))
2461                                 continue;
2462                 } else {
2463                         transition_ms = total_latency_us + 19;
2464                         do_div(transition_ms, 20);
2465                         if (transition_ms > (1 << 24) - 1)
2466                                 transition_ms = (1 << 24) - 1;
2467                 }
2468
2469                 target = cpu_to_le64((state << 3) | (transition_ms << 8));
2470                 if (max_ps == -1)
2471                         max_ps = state;
2472                 if (total_latency_us > max_lat_us)
2473                         max_lat_us = total_latency_us;
2474         }
2475
2476         if (max_ps == -1)
2477                 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2478         else
2479                 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2480                         max_ps, max_lat_us, (int)sizeof(*table), table);
2481         apste = 1;
2482
2483 done:
2484         ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2485                                 table, sizeof(*table), NULL);
2486         if (ret)
2487                 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2488         kfree(table);
2489         return ret;
2490 }
2491
2492 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2493 {
2494         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2495         u64 latency;
2496
2497         switch (val) {
2498         case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2499         case PM_QOS_LATENCY_ANY:
2500                 latency = U64_MAX;
2501                 break;
2502
2503         default:
2504                 latency = val;
2505         }
2506
2507         if (ctrl->ps_max_latency_us != latency) {
2508                 ctrl->ps_max_latency_us = latency;
2509                 if (ctrl->state == NVME_CTRL_LIVE)
2510                         nvme_configure_apst(ctrl);
2511         }
2512 }
2513
2514 struct nvme_core_quirk_entry {
2515         /*
2516          * NVMe model and firmware strings are padded with spaces.  For
2517          * simplicity, strings in the quirk table are padded with NULLs
2518          * instead.
2519          */
2520         u16 vid;
2521         const char *mn;
2522         const char *fr;
2523         unsigned long quirks;
2524 };
2525
2526 static const struct nvme_core_quirk_entry core_quirks[] = {
2527         {
2528                 /*
2529                  * This Toshiba device seems to die using any APST states.  See:
2530                  * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2531                  */
2532                 .vid = 0x1179,
2533                 .mn = "THNSF5256GPUK TOSHIBA",
2534                 .quirks = NVME_QUIRK_NO_APST,
2535         },
2536         {
2537                 /*
2538                  * This LiteON CL1-3D*-Q11 firmware version has a race
2539                  * condition associated with actions related to suspend to idle
2540                  * LiteON has resolved the problem in future firmware
2541                  */
2542                 .vid = 0x14a4,
2543                 .fr = "22301111",
2544                 .quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2545         },
2546         {
2547                 /*
2548                  * This Kioxia CD6-V Series / HPE PE8030 device times out and
2549                  * aborts I/O during any load, but more easily reproducible
2550                  * with discards (fstrim).
2551                  *
2552                  * The device is left in a state where it is also not possible
2553                  * to use "nvme set-feature" to disable APST, but booting with
2554                  * nvme_core.default_ps_max_latency=0 works.
2555                  */
2556                 .vid = 0x1e0f,
2557                 .mn = "KCD6XVUL6T40",
2558                 .quirks = NVME_QUIRK_NO_APST,
2559         },
2560         {
2561                 /*
2562                  * The external Samsung X5 SSD fails initialization without a
2563                  * delay before checking if it is ready and has a whole set of
2564                  * other problems.  To make this even more interesting, it
2565                  * shares the PCI ID with internal Samsung 970 Evo Plus that
2566                  * does not need or want these quirks.
2567                  */
2568                 .vid = 0x144d,
2569                 .mn = "Samsung Portable SSD X5",
2570                 .quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2571                           NVME_QUIRK_NO_DEEPEST_PS |
2572                           NVME_QUIRK_IGNORE_DEV_SUBNQN,
2573         }
2574 };
2575
2576 /* match is null-terminated but idstr is space-padded. */
2577 static bool string_matches(const char *idstr, const char *match, size_t len)
2578 {
2579         size_t matchlen;
2580
2581         if (!match)
2582                 return true;
2583
2584         matchlen = strlen(match);
2585         WARN_ON_ONCE(matchlen > len);
2586
2587         if (memcmp(idstr, match, matchlen))
2588                 return false;
2589
2590         for (; matchlen < len; matchlen++)
2591                 if (idstr[matchlen] != ' ')
2592                         return false;
2593
2594         return true;
2595 }
2596
2597 static bool quirk_matches(const struct nvme_id_ctrl *id,
2598                           const struct nvme_core_quirk_entry *q)
2599 {
2600         return q->vid == le16_to_cpu(id->vid) &&
2601                 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2602                 string_matches(id->fr, q->fr, sizeof(id->fr));
2603 }
2604
2605 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2606                 struct nvme_id_ctrl *id)
2607 {
2608         size_t nqnlen;
2609         int off;
2610
2611         if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2612                 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2613                 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2614                         strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2615                         return;
2616                 }
2617
2618                 if (ctrl->vs >= NVME_VS(1, 2, 1))
2619                         dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2620         }
2621
2622         /*
2623          * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2624          * Base Specification 2.0.  It is slightly different from the format
2625          * specified there due to historic reasons, and we can't change it now.
2626          */
2627         off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2628                         "nqn.2014.08.org.nvmexpress:%04x%04x",
2629                         le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2630         memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2631         off += sizeof(id->sn);
2632         memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2633         off += sizeof(id->mn);
2634         memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2635 }
2636
2637 static void nvme_release_subsystem(struct device *dev)
2638 {
2639         struct nvme_subsystem *subsys =
2640                 container_of(dev, struct nvme_subsystem, dev);
2641
2642         if (subsys->instance >= 0)
2643                 ida_free(&nvme_instance_ida, subsys->instance);
2644         kfree(subsys);
2645 }
2646
2647 static void nvme_destroy_subsystem(struct kref *ref)
2648 {
2649         struct nvme_subsystem *subsys =
2650                         container_of(ref, struct nvme_subsystem, ref);
2651
2652         mutex_lock(&nvme_subsystems_lock);
2653         list_del(&subsys->entry);
2654         mutex_unlock(&nvme_subsystems_lock);
2655
2656         ida_destroy(&subsys->ns_ida);
2657         device_del(&subsys->dev);
2658         put_device(&subsys->dev);
2659 }
2660
2661 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2662 {
2663         kref_put(&subsys->ref, nvme_destroy_subsystem);
2664 }
2665
2666 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2667 {
2668         struct nvme_subsystem *subsys;
2669
2670         lockdep_assert_held(&nvme_subsystems_lock);
2671
2672         /*
2673          * Fail matches for discovery subsystems. This results
2674          * in each discovery controller bound to a unique subsystem.
2675          * This avoids issues with validating controller values
2676          * that can only be true when there is a single unique subsystem.
2677          * There may be multiple and completely independent entities
2678          * that provide discovery controllers.
2679          */
2680         if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2681                 return NULL;
2682
2683         list_for_each_entry(subsys, &nvme_subsystems, entry) {
2684                 if (strcmp(subsys->subnqn, subsysnqn))
2685                         continue;
2686                 if (!kref_get_unless_zero(&subsys->ref))
2687                         continue;
2688                 return subsys;
2689         }
2690
2691         return NULL;
2692 }
2693
2694 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2695 {
2696         return ctrl->opts && ctrl->opts->discovery_nqn;
2697 }
2698
2699 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2700                 struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2701 {
2702         struct nvme_ctrl *tmp;
2703
2704         lockdep_assert_held(&nvme_subsystems_lock);
2705
2706         list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2707                 if (nvme_state_terminal(tmp))
2708                         continue;
2709
2710                 if (tmp->cntlid == ctrl->cntlid) {
2711                         dev_err(ctrl->device,
2712                                 "Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2713                                 ctrl->cntlid, dev_name(tmp->device),
2714                                 subsys->subnqn);
2715                         return false;
2716                 }
2717
2718                 if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2719                     nvme_discovery_ctrl(ctrl))
2720                         continue;
2721
2722                 dev_err(ctrl->device,
2723                         "Subsystem does not support multiple controllers\n");
2724                 return false;
2725         }
2726
2727         return true;
2728 }
2729
2730 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2731 {
2732         struct nvme_subsystem *subsys, *found;
2733         int ret;
2734
2735         subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2736         if (!subsys)
2737                 return -ENOMEM;
2738
2739         subsys->instance = -1;
2740         mutex_init(&subsys->lock);
2741         kref_init(&subsys->ref);
2742         INIT_LIST_HEAD(&subsys->ctrls);
2743         INIT_LIST_HEAD(&subsys->nsheads);
2744         nvme_init_subnqn(subsys, ctrl, id);
2745         memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2746         memcpy(subsys->model, id->mn, sizeof(subsys->model));
2747         subsys->vendor_id = le16_to_cpu(id->vid);
2748         subsys->cmic = id->cmic;
2749
2750         /* Versions prior to 1.4 don't necessarily report a valid type */
2751         if (id->cntrltype == NVME_CTRL_DISC ||
2752             !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2753                 subsys->subtype = NVME_NQN_DISC;
2754         else
2755                 subsys->subtype = NVME_NQN_NVME;
2756
2757         if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2758                 dev_err(ctrl->device,
2759                         "Subsystem %s is not a discovery controller",
2760                         subsys->subnqn);
2761                 kfree(subsys);
2762                 return -EINVAL;
2763         }
2764         subsys->awupf = le16_to_cpu(id->awupf);
2765         nvme_mpath_default_iopolicy(subsys);
2766
2767         subsys->dev.class = nvme_subsys_class;
2768         subsys->dev.release = nvme_release_subsystem;
2769         subsys->dev.groups = nvme_subsys_attrs_groups;
2770         dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2771         device_initialize(&subsys->dev);
2772
2773         mutex_lock(&nvme_subsystems_lock);
2774         found = __nvme_find_get_subsystem(subsys->subnqn);
2775         if (found) {
2776                 put_device(&subsys->dev);
2777                 subsys = found;
2778
2779                 if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2780                         ret = -EINVAL;
2781                         goto out_put_subsystem;
2782                 }
2783         } else {
2784                 ret = device_add(&subsys->dev);
2785                 if (ret) {
2786                         dev_err(ctrl->device,
2787                                 "failed to register subsystem device.\n");
2788                         put_device(&subsys->dev);
2789                         goto out_unlock;
2790                 }
2791                 ida_init(&subsys->ns_ida);
2792                 list_add_tail(&subsys->entry, &nvme_subsystems);
2793         }
2794
2795         ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2796                                 dev_name(ctrl->device));
2797         if (ret) {
2798                 dev_err(ctrl->device,
2799                         "failed to create sysfs link from subsystem.\n");
2800                 goto out_put_subsystem;
2801         }
2802
2803         if (!found)
2804                 subsys->instance = ctrl->instance;
2805         ctrl->subsys = subsys;
2806         list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2807         mutex_unlock(&nvme_subsystems_lock);
2808         return 0;
2809
2810 out_put_subsystem:
2811         nvme_put_subsystem(subsys);
2812 out_unlock:
2813         mutex_unlock(&nvme_subsystems_lock);
2814         return ret;
2815 }
2816
2817 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2818                 void *log, size_t size, u64 offset)
2819 {
2820         struct nvme_command c = { };
2821         u32 dwlen = nvme_bytes_to_numd(size);
2822
2823         c.get_log_page.opcode = nvme_admin_get_log_page;
2824         c.get_log_page.nsid = cpu_to_le32(nsid);
2825         c.get_log_page.lid = log_page;
2826         c.get_log_page.lsp = lsp;
2827         c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2828         c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2829         c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
2830         c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
2831         c.get_log_page.csi = csi;
2832
2833         return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2834 }
2835
2836 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
2837                                 struct nvme_effects_log **log)
2838 {
2839         struct nvme_effects_log *cel = xa_load(&ctrl->cels, csi);
2840         int ret;
2841
2842         if (cel)
2843                 goto out;
2844
2845         cel = kzalloc(sizeof(*cel), GFP_KERNEL);
2846         if (!cel)
2847                 return -ENOMEM;
2848
2849         ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
2850                         cel, sizeof(*cel), 0);
2851         if (ret) {
2852                 kfree(cel);
2853                 return ret;
2854         }
2855
2856         xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
2857 out:
2858         *log = cel;
2859         return 0;
2860 }
2861
2862 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
2863 {
2864         u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
2865
2866         if (check_shl_overflow(1U, units + page_shift - 9, &val))
2867                 return UINT_MAX;
2868         return val;
2869 }
2870
2871 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
2872 {
2873         struct nvme_command c = { };
2874         struct nvme_id_ctrl_nvm *id;
2875         int ret;
2876
2877         if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
2878                 ctrl->max_discard_sectors = UINT_MAX;
2879                 ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
2880         } else {
2881                 ctrl->max_discard_sectors = 0;
2882                 ctrl->max_discard_segments = 0;
2883         }
2884
2885         /*
2886          * Even though NVMe spec explicitly states that MDTS is not applicable
2887          * to the write-zeroes, we are cautious and limit the size to the
2888          * controllers max_hw_sectors value, which is based on the MDTS field
2889          * and possibly other limiting factors.
2890          */
2891         if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
2892             !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
2893                 ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
2894         else
2895                 ctrl->max_zeroes_sectors = 0;
2896
2897         if (ctrl->subsys->subtype != NVME_NQN_NVME ||
2898             nvme_ctrl_limited_cns(ctrl) ||
2899             test_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags))
2900                 return 0;
2901
2902         id = kzalloc(sizeof(*id), GFP_KERNEL);
2903         if (!id)
2904                 return -ENOMEM;
2905
2906         c.identify.opcode = nvme_admin_identify;
2907         c.identify.cns = NVME_ID_CNS_CS_CTRL;
2908         c.identify.csi = NVME_CSI_NVM;
2909
2910         ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
2911         if (ret)
2912                 goto free_data;
2913
2914         if (id->dmrl)
2915                 ctrl->max_discard_segments = id->dmrl;
2916         ctrl->dmrsl = le32_to_cpu(id->dmrsl);
2917         if (id->wzsl)
2918                 ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
2919
2920 free_data:
2921         if (ret > 0)
2922                 set_bit(NVME_CTRL_SKIP_ID_CNS_CS, &ctrl->flags);
2923         kfree(id);
2924         return ret;
2925 }
2926
2927 static void nvme_init_known_nvm_effects(struct nvme_ctrl *ctrl)
2928 {
2929         struct nvme_effects_log *log = ctrl->effects;
2930
2931         log->acs[nvme_admin_format_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2932                                                 NVME_CMD_EFFECTS_NCC |
2933                                                 NVME_CMD_EFFECTS_CSE_MASK);
2934         log->acs[nvme_admin_sanitize_nvm] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC |
2935                                                 NVME_CMD_EFFECTS_CSE_MASK);
2936
2937         /*
2938          * The spec says the result of a security receive command depends on
2939          * the previous security send command. As such, many vendors log this
2940          * command as one to submitted only when no other commands to the same
2941          * namespace are outstanding. The intention is to tell the host to
2942          * prevent mixing security send and receive.
2943          *
2944          * This driver can only enforce such exclusive access against IO
2945          * queues, though. We are not readily able to enforce such a rule for
2946          * two commands to the admin queue, which is the only queue that
2947          * matters for this command.
2948          *
2949          * Rather than blindly freezing the IO queues for this effect that
2950          * doesn't even apply to IO, mask it off.
2951          */
2952         log->acs[nvme_admin_security_recv] &= cpu_to_le32(~NVME_CMD_EFFECTS_CSE_MASK);
2953
2954         log->iocs[nvme_cmd_write] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2955         log->iocs[nvme_cmd_write_zeroes] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2956         log->iocs[nvme_cmd_write_uncor] |= cpu_to_le32(NVME_CMD_EFFECTS_LBCC);
2957 }
2958
2959 static int nvme_init_effects(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2960 {
2961         int ret = 0;
2962
2963         if (ctrl->effects)
2964                 return 0;
2965
2966         if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2967                 ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
2968                 if (ret < 0)
2969                         return ret;
2970         }
2971
2972         if (!ctrl->effects) {
2973                 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2974                 if (!ctrl->effects)
2975                         return -ENOMEM;
2976                 xa_store(&ctrl->cels, NVME_CSI_NVM, ctrl->effects, GFP_KERNEL);
2977         }
2978
2979         nvme_init_known_nvm_effects(ctrl);
2980         return 0;
2981 }
2982
2983 static int nvme_init_identify(struct nvme_ctrl *ctrl)
2984 {
2985         struct nvme_id_ctrl *id;
2986         u32 max_hw_sectors;
2987         bool prev_apst_enabled;
2988         int ret;
2989
2990         ret = nvme_identify_ctrl(ctrl, &id);
2991         if (ret) {
2992                 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2993                 return -EIO;
2994         }
2995
2996         if (!(ctrl->ops->flags & NVME_F_FABRICS))
2997                 ctrl->cntlid = le16_to_cpu(id->cntlid);
2998
2999         if (!ctrl->identified) {
3000                 unsigned int i;
3001
3002                 /*
3003                  * Check for quirks.  Quirk can depend on firmware version,
3004                  * so, in principle, the set of quirks present can change
3005                  * across a reset.  As a possible future enhancement, we
3006                  * could re-scan for quirks every time we reinitialize
3007                  * the device, but we'd have to make sure that the driver
3008                  * behaves intelligently if the quirks change.
3009                  */
3010                 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3011                         if (quirk_matches(id, &core_quirks[i]))
3012                                 ctrl->quirks |= core_quirks[i].quirks;
3013                 }
3014
3015                 ret = nvme_init_subsystem(ctrl, id);
3016                 if (ret)
3017                         goto out_free;
3018
3019                 ret = nvme_init_effects(ctrl, id);
3020                 if (ret)
3021                         goto out_free;
3022         }
3023         memcpy(ctrl->subsys->firmware_rev, id->fr,
3024                sizeof(ctrl->subsys->firmware_rev));
3025
3026         if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3027                 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3028                 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3029         }
3030
3031         ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3032         ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3033         ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3034
3035         ctrl->oacs = le16_to_cpu(id->oacs);
3036         ctrl->oncs = le16_to_cpu(id->oncs);
3037         ctrl->mtfa = le16_to_cpu(id->mtfa);
3038         ctrl->oaes = le32_to_cpu(id->oaes);
3039         ctrl->wctemp = le16_to_cpu(id->wctemp);
3040         ctrl->cctemp = le16_to_cpu(id->cctemp);
3041
3042         atomic_set(&ctrl->abort_limit, id->acl + 1);
3043         ctrl->vwc = id->vwc;
3044         if (id->mdts)
3045                 max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3046         else
3047                 max_hw_sectors = UINT_MAX;
3048         ctrl->max_hw_sectors =
3049                 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3050
3051         nvme_set_queue_limits(ctrl, ctrl->admin_q);
3052         ctrl->sgls = le32_to_cpu(id->sgls);
3053         ctrl->kas = le16_to_cpu(id->kas);
3054         ctrl->max_namespaces = le32_to_cpu(id->mnan);
3055         ctrl->ctratt = le32_to_cpu(id->ctratt);
3056
3057         ctrl->cntrltype = id->cntrltype;
3058         ctrl->dctype = id->dctype;
3059
3060         if (id->rtd3e) {
3061                 /* us -> s */
3062                 u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3063
3064                 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3065                                                  shutdown_timeout, 60);
3066
3067                 if (ctrl->shutdown_timeout != shutdown_timeout)
3068                         dev_info(ctrl->device,
3069                                  "Shutdown timeout set to %u seconds\n",
3070                                  ctrl->shutdown_timeout);
3071         } else
3072                 ctrl->shutdown_timeout = shutdown_timeout;
3073
3074         ctrl->npss = id->npss;
3075         ctrl->apsta = id->apsta;
3076         prev_apst_enabled = ctrl->apst_enabled;
3077         if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3078                 if (force_apst && id->apsta) {
3079                         dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3080                         ctrl->apst_enabled = true;
3081                 } else {
3082                         ctrl->apst_enabled = false;
3083                 }
3084         } else {
3085                 ctrl->apst_enabled = id->apsta;
3086         }
3087         memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3088
3089         if (ctrl->ops->flags & NVME_F_FABRICS) {
3090                 ctrl->icdoff = le16_to_cpu(id->icdoff);
3091                 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3092                 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3093                 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3094
3095                 /*
3096                  * In fabrics we need to verify the cntlid matches the
3097                  * admin connect
3098                  */
3099                 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3100                         dev_err(ctrl->device,
3101                                 "Mismatching cntlid: Connect %u vs Identify "
3102                                 "%u, rejecting\n",
3103                                 ctrl->cntlid, le16_to_cpu(id->cntlid));
3104                         ret = -EINVAL;
3105                         goto out_free;
3106                 }
3107
3108                 if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3109                         dev_err(ctrl->device,
3110                                 "keep-alive support is mandatory for fabrics\n");
3111                         ret = -EINVAL;
3112                         goto out_free;
3113                 }
3114         } else {
3115                 ctrl->hmpre = le32_to_cpu(id->hmpre);
3116                 ctrl->hmmin = le32_to_cpu(id->hmmin);
3117                 ctrl->hmminds = le32_to_cpu(id->hmminds);
3118                 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3119         }
3120
3121         ret = nvme_mpath_init_identify(ctrl, id);
3122         if (ret < 0)
3123                 goto out_free;
3124
3125         if (ctrl->apst_enabled && !prev_apst_enabled)
3126                 dev_pm_qos_expose_latency_tolerance(ctrl->device);
3127         else if (!ctrl->apst_enabled && prev_apst_enabled)
3128                 dev_pm_qos_hide_latency_tolerance(ctrl->device);
3129
3130 out_free:
3131         kfree(id);
3132         return ret;
3133 }
3134
3135 /*
3136  * Initialize the cached copies of the Identify data and various controller
3137  * register in our nvme_ctrl structure.  This should be called as soon as
3138  * the admin queue is fully up and running.
3139  */
3140 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl, bool was_suspended)
3141 {
3142         int ret;
3143
3144         ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3145         if (ret) {
3146                 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3147                 return ret;
3148         }
3149
3150         ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3151
3152         if (ctrl->vs >= NVME_VS(1, 1, 0))
3153                 ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3154
3155         ret = nvme_init_identify(ctrl);
3156         if (ret)
3157                 return ret;
3158
3159         ret = nvme_configure_apst(ctrl);
3160         if (ret < 0)
3161                 return ret;
3162
3163         ret = nvme_configure_timestamp(ctrl);
3164         if (ret < 0)
3165                 return ret;
3166
3167         ret = nvme_configure_host_options(ctrl);
3168         if (ret < 0)
3169                 return ret;
3170
3171         nvme_configure_opal(ctrl, was_suspended);
3172
3173         if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3174                 /*
3175                  * Do not return errors unless we are in a controller reset,
3176                  * the controller works perfectly fine without hwmon.
3177                  */
3178                 ret = nvme_hwmon_init(ctrl);
3179                 if (ret == -EINTR)
3180                         return ret;
3181         }
3182
3183         clear_bit(NVME_CTRL_DIRTY_CAPABILITY, &ctrl->flags);
3184         ctrl->identified = true;
3185
3186         return 0;
3187 }
3188 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3189
3190 static int nvme_dev_open(struct inode *inode, struct file *file)
3191 {
3192         struct nvme_ctrl *ctrl =
3193                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3194
3195         switch (ctrl->state) {
3196         case NVME_CTRL_LIVE:
3197                 break;
3198         default:
3199                 return -EWOULDBLOCK;
3200         }
3201
3202         nvme_get_ctrl(ctrl);
3203         if (!try_module_get(ctrl->ops->module)) {
3204                 nvme_put_ctrl(ctrl);
3205                 return -EINVAL;
3206         }
3207
3208         file->private_data = ctrl;
3209         return 0;
3210 }
3211
3212 static int nvme_dev_release(struct inode *inode, struct file *file)
3213 {
3214         struct nvme_ctrl *ctrl =
3215                 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3216
3217         module_put(ctrl->ops->module);
3218         nvme_put_ctrl(ctrl);
3219         return 0;
3220 }
3221
3222 static const struct file_operations nvme_dev_fops = {
3223         .owner          = THIS_MODULE,
3224         .open           = nvme_dev_open,
3225         .release        = nvme_dev_release,
3226         .unlocked_ioctl = nvme_dev_ioctl,
3227         .compat_ioctl   = compat_ptr_ioctl,
3228         .uring_cmd      = nvme_dev_uring_cmd,
3229 };
3230
3231 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3232                 unsigned nsid)
3233 {
3234         struct nvme_ns_head *h;
3235
3236         lockdep_assert_held(&ctrl->subsys->lock);
3237
3238         list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3239                 /*
3240                  * Private namespaces can share NSIDs under some conditions.
3241                  * In that case we can't use the same ns_head for namespaces
3242                  * with the same NSID.
3243                  */
3244                 if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3245                         continue;
3246                 if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3247                         return h;
3248         }
3249
3250         return NULL;
3251 }
3252
3253 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3254                 struct nvme_ns_ids *ids)
3255 {
3256         bool has_uuid = !uuid_is_null(&ids->uuid);
3257         bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3258         bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3259         struct nvme_ns_head *h;
3260
3261         lockdep_assert_held(&subsys->lock);
3262
3263         list_for_each_entry(h, &subsys->nsheads, entry) {
3264                 if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3265                         return -EINVAL;
3266                 if (has_nguid &&
3267                     memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3268                         return -EINVAL;
3269                 if (has_eui64 &&
3270                     memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3271                         return -EINVAL;
3272         }
3273
3274         return 0;
3275 }
3276
3277 static void nvme_cdev_rel(struct device *dev)
3278 {
3279         ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3280 }
3281
3282 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3283 {
3284         cdev_device_del(cdev, cdev_device);
3285         put_device(cdev_device);
3286 }
3287
3288 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3289                 const struct file_operations *fops, struct module *owner)
3290 {
3291         int minor, ret;
3292
3293         minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3294         if (minor < 0)
3295                 return minor;
3296         cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3297         cdev_device->class = nvme_ns_chr_class;
3298         cdev_device->release = nvme_cdev_rel;
3299         device_initialize(cdev_device);
3300         cdev_init(cdev, fops);
3301         cdev->owner = owner;
3302         ret = cdev_device_add(cdev, cdev_device);
3303         if (ret)
3304                 put_device(cdev_device);
3305
3306         return ret;
3307 }
3308
3309 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3310 {
3311         return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3312 }
3313
3314 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
3315 {
3316         nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
3317         return 0;
3318 }
3319
3320 static const struct file_operations nvme_ns_chr_fops = {
3321         .owner          = THIS_MODULE,
3322         .open           = nvme_ns_chr_open,
3323         .release        = nvme_ns_chr_release,
3324         .unlocked_ioctl = nvme_ns_chr_ioctl,
3325         .compat_ioctl   = compat_ptr_ioctl,
3326         .uring_cmd      = nvme_ns_chr_uring_cmd,
3327         .uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
3328 };
3329
3330 static int nvme_add_ns_cdev(struct nvme_ns *ns)
3331 {
3332         int ret;
3333
3334         ns->cdev_device.parent = ns->ctrl->device;
3335         ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
3336                            ns->ctrl->instance, ns->head->instance);
3337         if (ret)
3338                 return ret;
3339
3340         return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
3341                              ns->ctrl->ops->module);
3342 }
3343
3344 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
3345                 struct nvme_ns_info *info)
3346 {
3347         struct nvme_ns_head *head;
3348         size_t size = sizeof(*head);
3349         int ret = -ENOMEM;
3350
3351 #ifdef CONFIG_NVME_MULTIPATH
3352         size += num_possible_nodes() * sizeof(struct nvme_ns *);
3353 #endif
3354
3355         head = kzalloc(size, GFP_KERNEL);
3356         if (!head)
3357                 goto out;
3358         ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
3359         if (ret < 0)
3360                 goto out_free_head;
3361         head->instance = ret;
3362         INIT_LIST_HEAD(&head->list);
3363         ret = init_srcu_struct(&head->srcu);
3364         if (ret)
3365                 goto out_ida_remove;
3366         head->subsys = ctrl->subsys;
3367         head->ns_id = info->nsid;
3368         head->ids = info->ids;
3369         head->shared = info->is_shared;
3370         kref_init(&head->ref);
3371
3372         if (head->ids.csi) {
3373                 ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
3374                 if (ret)
3375                         goto out_cleanup_srcu;
3376         } else
3377                 head->effects = ctrl->effects;
3378
3379         ret = nvme_mpath_alloc_disk(ctrl, head);
3380         if (ret)
3381                 goto out_cleanup_srcu;
3382
3383         list_add_tail(&head->entry, &ctrl->subsys->nsheads);
3384
3385         kref_get(&ctrl->subsys->ref);
3386
3387         return head;
3388 out_cleanup_srcu:
3389         cleanup_srcu_struct(&head->srcu);
3390 out_ida_remove:
3391         ida_free(&ctrl->subsys->ns_ida, head->instance);
3392 out_free_head:
3393         kfree(head);
3394 out:
3395         if (ret > 0)
3396                 ret = blk_status_to_errno(nvme_error_status(ret));
3397         return ERR_PTR(ret);
3398 }
3399
3400 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
3401                 struct nvme_ns_ids *ids)
3402 {
3403         struct nvme_subsystem *s;
3404         int ret = 0;
3405
3406         /*
3407          * Note that this check is racy as we try to avoid holding the global
3408          * lock over the whole ns_head creation.  But it is only intended as
3409          * a sanity check anyway.
3410          */
3411         mutex_lock(&nvme_subsystems_lock);
3412         list_for_each_entry(s, &nvme_subsystems, entry) {
3413                 if (s == this)
3414                         continue;
3415                 mutex_lock(&s->lock);
3416                 ret = nvme_subsys_check_duplicate_ids(s, ids);
3417                 mutex_unlock(&s->lock);
3418                 if (ret)
3419                         break;
3420         }
3421         mutex_unlock(&nvme_subsystems_lock);
3422
3423         return ret;
3424 }
3425
3426 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
3427 {
3428         struct nvme_ctrl *ctrl = ns->ctrl;
3429         struct nvme_ns_head *head = NULL;
3430         int ret;
3431
3432         ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
3433         if (ret) {
3434                 /*
3435                  * We've found two different namespaces on two different
3436                  * subsystems that report the same ID.  This is pretty nasty
3437                  * for anything that actually requires unique device
3438                  * identification.  In the kernel we need this for multipathing,
3439                  * and in user space the /dev/disk/by-id/ links rely on it.
3440                  *
3441                  * If the device also claims to be multi-path capable back off
3442                  * here now and refuse the probe the second device as this is a
3443                  * recipe for data corruption.  If not this is probably a
3444                  * cheap consumer device if on the PCIe bus, so let the user
3445                  * proceed and use the shiny toy, but warn that with changing
3446                  * probing order (which due to our async probing could just be
3447                  * device taking longer to startup) the other device could show
3448                  * up at any time.
3449                  */
3450                 nvme_print_device_info(ctrl);
3451                 if ((ns->ctrl->ops->flags & NVME_F_FABRICS) || /* !PCIe */
3452                     ((ns->ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) &&
3453                      info->is_shared)) {
3454                         dev_err(ctrl->device,
3455                                 "ignoring nsid %d because of duplicate IDs\n",
3456                                 info->nsid);
3457                         return ret;
3458                 }
3459
3460                 dev_err(ctrl->device,
3461                         "clearing duplicate IDs for nsid %d\n", info->nsid);
3462                 dev_err(ctrl->device,
3463                         "use of /dev/disk/by-id/ may cause data corruption\n");
3464                 memset(&info->ids.nguid, 0, sizeof(info->ids.nguid));
3465                 memset(&info->ids.uuid, 0, sizeof(info->ids.uuid));
3466                 memset(&info->ids.eui64, 0, sizeof(info->ids.eui64));
3467                 ctrl->quirks |= NVME_QUIRK_BOGUS_NID;
3468         }
3469
3470         mutex_lock(&ctrl->subsys->lock);
3471         head = nvme_find_ns_head(ctrl, info->nsid);
3472         if (!head) {
3473                 ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
3474                 if (ret) {
3475                         dev_err(ctrl->device,
3476                                 "duplicate IDs in subsystem for nsid %d\n",
3477                                 info->nsid);
3478                         goto out_unlock;
3479                 }
3480                 head = nvme_alloc_ns_head(ctrl, info);
3481                 if (IS_ERR(head)) {
3482                         ret = PTR_ERR(head);
3483                         goto out_unlock;
3484                 }
3485         } else {
3486                 ret = -EINVAL;
3487                 if (!info->is_shared || !head->shared) {
3488                         dev_err(ctrl->device,
3489                                 "Duplicate unshared namespace %d\n",
3490                                 info->nsid);
3491                         goto out_put_ns_head;
3492                 }
3493                 if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
3494                         dev_err(ctrl->device,
3495                                 "IDs don't match for shared namespace %d\n",
3496                                         info->nsid);
3497                         goto out_put_ns_head;
3498                 }
3499
3500                 if (!multipath) {
3501                         dev_warn(ctrl->device,
3502                                 "Found shared namespace %d, but multipathing not supported.\n",
3503                                 info->nsid);
3504                         dev_warn_once(ctrl->device,
3505                                 "Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
3506                 }
3507         }
3508
3509         list_add_tail_rcu(&ns->siblings, &head->list);
3510         ns->head = head;
3511         mutex_unlock(&ctrl->subsys->lock);
3512         return 0;
3513
3514 out_put_ns_head:
3515         nvme_put_ns_head(head);
3516 out_unlock:
3517         mutex_unlock(&ctrl->subsys->lock);
3518         return ret;
3519 }
3520
3521 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3522 {
3523         struct nvme_ns *ns, *ret = NULL;
3524
3525         down_read(&ctrl->namespaces_rwsem);
3526         list_for_each_entry(ns, &ctrl->namespaces, list) {
3527                 if (ns->head->ns_id == nsid) {
3528                         if (!nvme_get_ns(ns))
3529                                 continue;
3530                         ret = ns;
3531                         break;
3532                 }
3533                 if (ns->head->ns_id > nsid)
3534                         break;
3535         }
3536         up_read(&ctrl->namespaces_rwsem);
3537         return ret;
3538 }
3539 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
3540
3541 /*
3542  * Add the namespace to the controller list while keeping the list ordered.
3543  */
3544 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
3545 {
3546         struct nvme_ns *tmp;
3547
3548         list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
3549                 if (tmp->head->ns_id < ns->head->ns_id) {
3550                         list_add(&ns->list, &tmp->list);
3551                         return;
3552                 }
3553         }
3554         list_add(&ns->list, &ns->ctrl->namespaces);
3555 }
3556
3557 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
3558 {
3559         struct nvme_ns *ns;
3560         struct gendisk *disk;
3561         int node = ctrl->numa_node;
3562
3563         ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
3564         if (!ns)
3565                 return;
3566
3567         disk = blk_mq_alloc_disk(ctrl->tagset, ns);
3568         if (IS_ERR(disk))
3569                 goto out_free_ns;
3570         disk->fops = &nvme_bdev_ops;
3571         disk->private_data = ns;
3572
3573         ns->disk = disk;
3574         ns->queue = disk->queue;
3575
3576         if (ctrl->opts && ctrl->opts->data_digest)
3577                 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
3578
3579         blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
3580         if (ctrl->ops->supports_pci_p2pdma &&
3581             ctrl->ops->supports_pci_p2pdma(ctrl))
3582                 blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
3583
3584         ns->ctrl = ctrl;
3585         kref_init(&ns->kref);
3586
3587         if (nvme_init_ns_head(ns, info))
3588                 goto out_cleanup_disk;
3589
3590         /*
3591          * If multipathing is enabled, the device name for all disks and not
3592          * just those that represent shared namespaces needs to be based on the
3593          * subsystem instance.  Using the controller instance for private
3594          * namespaces could lead to naming collisions between shared and private
3595          * namespaces if they don't use a common numbering scheme.
3596          *
3597          * If multipathing is not enabled, disk names must use the controller
3598          * instance as shared namespaces will show up as multiple block
3599          * devices.
3600          */
3601         if (nvme_ns_head_multipath(ns->head)) {
3602                 sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3603                         ctrl->instance, ns->head->instance);
3604                 disk->flags |= GENHD_FL_HIDDEN;
3605         } else if (multipath) {
3606                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
3607                         ns->head->instance);
3608         } else {
3609                 sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
3610                         ns->head->instance);
3611         }
3612
3613         if (nvme_update_ns_info(ns, info))
3614                 goto out_unlink_ns;
3615
3616         down_write(&ctrl->namespaces_rwsem);
3617         nvme_ns_add_to_ctrl_list(ns);
3618         up_write(&ctrl->namespaces_rwsem);
3619         nvme_get_ctrl(ctrl);
3620
3621         if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
3622                 goto out_cleanup_ns_from_list;
3623
3624         if (!nvme_ns_head_multipath(ns->head))
3625                 nvme_add_ns_cdev(ns);
3626
3627         nvme_mpath_add_disk(ns, info->anagrpid);
3628         nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
3629
3630         return;
3631
3632  out_cleanup_ns_from_list:
3633         nvme_put_ctrl(ctrl);
3634         down_write(&ctrl->namespaces_rwsem);
3635         list_del_init(&ns->list);
3636         up_write(&ctrl->namespaces_rwsem);
3637  out_unlink_ns:
3638         mutex_lock(&ctrl->subsys->lock);
3639         list_del_rcu(&ns->siblings);
3640         if (list_empty(&ns->head->list))
3641                 list_del_init(&ns->head->entry);
3642         mutex_unlock(&ctrl->subsys->lock);
3643         nvme_put_ns_head(ns->head);
3644  out_cleanup_disk:
3645         put_disk(disk);
3646  out_free_ns:
3647         kfree(ns);
3648 }
3649
3650 static void nvme_ns_remove(struct nvme_ns *ns)
3651 {
3652         bool last_path = false;
3653
3654         if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3655                 return;
3656
3657         clear_bit(NVME_NS_READY, &ns->flags);
3658         set_capacity(ns->disk, 0);
3659         nvme_fault_inject_fini(&ns->fault_inject);
3660
3661         /*
3662          * Ensure that !NVME_NS_READY is seen by other threads to prevent
3663          * this ns going back into current_path.
3664          */
3665         synchronize_srcu(&ns->head->srcu);
3666
3667         /* wait for concurrent submissions */
3668         if (nvme_mpath_clear_current_path(ns))
3669                 synchronize_srcu(&ns->head->srcu);
3670
3671         mutex_lock(&ns->ctrl->subsys->lock);
3672         list_del_rcu(&ns->siblings);
3673         if (list_empty(&ns->head->list)) {
3674                 list_del_init(&ns->head->entry);
3675                 last_path = true;
3676         }
3677         mutex_unlock(&ns->ctrl->subsys->lock);
3678
3679         /* guarantee not available in head->list */
3680         synchronize_srcu(&ns->head->srcu);
3681
3682         if (!nvme_ns_head_multipath(ns->head))
3683                 nvme_cdev_del(&ns->cdev, &ns->cdev_device);
3684         del_gendisk(ns->disk);
3685
3686         down_write(&ns->ctrl->namespaces_rwsem);
3687         list_del_init(&ns->list);
3688         up_write(&ns->ctrl->namespaces_rwsem);
3689
3690         if (last_path)
3691                 nvme_mpath_shutdown_disk(ns->head);
3692         nvme_put_ns(ns);
3693 }
3694
3695 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
3696 {
3697         struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
3698
3699         if (ns) {
3700                 nvme_ns_remove(ns);
3701                 nvme_put_ns(ns);
3702         }
3703 }
3704
3705 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
3706 {
3707         int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
3708
3709         if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
3710                 dev_err(ns->ctrl->device,
3711                         "identifiers changed for nsid %d\n", ns->head->ns_id);
3712                 goto out;
3713         }
3714
3715         ret = nvme_update_ns_info(ns, info);
3716 out:
3717         /*
3718          * Only remove the namespace if we got a fatal error back from the
3719          * device, otherwise ignore the error and just move on.
3720          *
3721          * TODO: we should probably schedule a delayed retry here.
3722          */
3723         if (ret > 0 && (ret & NVME_SC_DNR))
3724                 nvme_ns_remove(ns);
3725 }
3726
3727 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3728 {
3729         struct nvme_ns_info info = { .nsid = nsid };
3730         struct nvme_ns *ns;
3731         int ret;
3732
3733         if (nvme_identify_ns_descs(ctrl, &info))
3734                 return;
3735
3736         if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
3737                 dev_warn(ctrl->device,
3738                         "command set not reported for nsid: %d\n", nsid);
3739                 return;
3740         }
3741
3742         /*
3743          * If available try to use the Command Set Idependent Identify Namespace
3744          * data structure to find all the generic information that is needed to
3745          * set up a namespace.  If not fall back to the legacy version.
3746          */
3747         if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
3748             (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS))
3749                 ret = nvme_ns_info_from_id_cs_indep(ctrl, &info);
3750         else
3751                 ret = nvme_ns_info_from_identify(ctrl, &info);
3752
3753         if (info.is_removed)
3754                 nvme_ns_remove_by_nsid(ctrl, nsid);
3755
3756         /*
3757          * Ignore the namespace if it is not ready. We will get an AEN once it
3758          * becomes ready and restart the scan.
3759          */
3760         if (ret || !info.is_ready)
3761                 return;
3762
3763         ns = nvme_find_get_ns(ctrl, nsid);
3764         if (ns) {
3765                 nvme_validate_ns(ns, &info);
3766                 nvme_put_ns(ns);
3767         } else {
3768                 nvme_alloc_ns(ctrl, &info);
3769         }
3770 }
3771
3772 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3773                                         unsigned nsid)
3774 {
3775         struct nvme_ns *ns, *next;
3776         LIST_HEAD(rm_list);
3777
3778         down_write(&ctrl->namespaces_rwsem);
3779         list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3780                 if (ns->head->ns_id > nsid)
3781                         list_move_tail(&ns->list, &rm_list);
3782         }
3783         up_write(&ctrl->namespaces_rwsem);
3784
3785         list_for_each_entry_safe(ns, next, &rm_list, list)
3786                 nvme_ns_remove(ns);
3787
3788 }
3789
3790 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
3791 {
3792         const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
3793         __le32 *ns_list;
3794         u32 prev = 0;
3795         int ret = 0, i;
3796
3797         ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3798         if (!ns_list)
3799                 return -ENOMEM;
3800
3801         for (;;) {
3802                 struct nvme_command cmd = {
3803                         .identify.opcode        = nvme_admin_identify,
3804                         .identify.cns           = NVME_ID_CNS_NS_ACTIVE_LIST,
3805                         .identify.nsid          = cpu_to_le32(prev),
3806                 };
3807
3808                 ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
3809                                             NVME_IDENTIFY_DATA_SIZE);
3810                 if (ret) {
3811                         dev_warn(ctrl->device,
3812                                 "Identify NS List failed (status=0x%x)\n", ret);
3813                         goto free;
3814                 }
3815
3816                 for (i = 0; i < nr_entries; i++) {
3817                         u32 nsid = le32_to_cpu(ns_list[i]);
3818
3819                         if (!nsid)      /* end of the list? */
3820                                 goto out;
3821                         nvme_scan_ns(ctrl, nsid);
3822                         while (++prev < nsid)
3823                                 nvme_ns_remove_by_nsid(ctrl, prev);
3824                 }
3825         }
3826  out:
3827         nvme_remove_invalid_namespaces(ctrl, prev);
3828  free:
3829         kfree(ns_list);
3830         return ret;
3831 }
3832
3833 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
3834 {
3835         struct nvme_id_ctrl *id;
3836         u32 nn, i;
3837
3838         if (nvme_identify_ctrl(ctrl, &id))
3839                 return;
3840         nn = le32_to_cpu(id->nn);
3841         kfree(id);
3842
3843         for (i = 1; i <= nn; i++)
3844                 nvme_scan_ns(ctrl, i);
3845
3846         nvme_remove_invalid_namespaces(ctrl, nn);
3847 }
3848
3849 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
3850 {
3851         size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
3852         __le32 *log;
3853         int error;
3854
3855         log = kzalloc(log_size, GFP_KERNEL);
3856         if (!log)
3857                 return;
3858
3859         /*
3860          * We need to read the log to clear the AEN, but we don't want to rely
3861          * on it for the changed namespace information as userspace could have
3862          * raced with us in reading the log page, which could cause us to miss
3863          * updates.
3864          */
3865         error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
3866                         NVME_CSI_NVM, log, log_size, 0);
3867         if (error)
3868                 dev_warn(ctrl->device,
3869                         "reading changed ns log failed: %d\n", error);
3870
3871         kfree(log);
3872 }
3873
3874 static void nvme_scan_work(struct work_struct *work)
3875 {
3876         struct nvme_ctrl *ctrl =
3877                 container_of(work, struct nvme_ctrl, scan_work);
3878         int ret;
3879
3880         /* No tagset on a live ctrl means IO queues could not created */
3881         if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
3882                 return;
3883
3884         /*
3885          * Identify controller limits can change at controller reset due to
3886          * new firmware download, even though it is not common we cannot ignore
3887          * such scenario. Controller's non-mdts limits are reported in the unit
3888          * of logical blocks that is dependent on the format of attached
3889          * namespace. Hence re-read the limits at the time of ns allocation.
3890          */
3891         ret = nvme_init_non_mdts_limits(ctrl);
3892         if (ret < 0) {
3893                 dev_warn(ctrl->device,
3894                         "reading non-mdts-limits failed: %d\n", ret);
3895                 return;
3896         }
3897
3898         if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
3899                 dev_info(ctrl->device, "rescanning namespaces.\n");
3900                 nvme_clear_changed_ns_log(ctrl);
3901         }
3902
3903         mutex_lock(&ctrl->scan_lock);
3904         if (nvme_ctrl_limited_cns(ctrl)) {
3905                 nvme_scan_ns_sequential(ctrl);
3906         } else {
3907                 /*
3908                  * Fall back to sequential scan if DNR is set to handle broken
3909                  * devices which should support Identify NS List (as per the VS
3910                  * they report) but don't actually support it.
3911                  */
3912                 ret = nvme_scan_ns_list(ctrl);
3913                 if (ret > 0 && ret & NVME_SC_DNR)
3914                         nvme_scan_ns_sequential(ctrl);
3915         }
3916         mutex_unlock(&ctrl->scan_lock);
3917 }
3918
3919 /*
3920  * This function iterates the namespace list unlocked to allow recovery from
3921  * controller failure. It is up to the caller to ensure the namespace list is
3922  * not modified by scan work while this function is executing.
3923  */
3924 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3925 {
3926         struct nvme_ns *ns, *next;
3927         LIST_HEAD(ns_list);
3928
3929         /*
3930          * make sure to requeue I/O to all namespaces as these
3931          * might result from the scan itself and must complete
3932          * for the scan_work to make progress
3933          */
3934         nvme_mpath_clear_ctrl_paths(ctrl);
3935
3936         /* prevent racing with ns scanning */
3937         flush_work(&ctrl->scan_work);
3938
3939         /*
3940          * The dead states indicates the controller was not gracefully
3941          * disconnected. In that case, we won't be able to flush any data while
3942          * removing the namespaces' disks; fail all the queues now to avoid
3943          * potentially having to clean up the failed sync later.
3944          */
3945         if (ctrl->state == NVME_CTRL_DEAD) {
3946                 nvme_mark_namespaces_dead(ctrl);
3947                 nvme_unquiesce_io_queues(ctrl);
3948         }
3949
3950         /* this is a no-op when called from the controller reset handler */
3951         nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
3952
3953         down_write(&ctrl->namespaces_rwsem);
3954         list_splice_init(&ctrl->namespaces, &ns_list);
3955         up_write(&ctrl->namespaces_rwsem);
3956
3957         list_for_each_entry_safe(ns, next, &ns_list, list)
3958                 nvme_ns_remove(ns);
3959 }
3960 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3961
3962 static int nvme_class_uevent(const struct device *dev, struct kobj_uevent_env *env)
3963 {
3964         const struct nvme_ctrl *ctrl =
3965                 container_of(dev, struct nvme_ctrl, ctrl_device);
3966         struct nvmf_ctrl_options *opts = ctrl->opts;
3967         int ret;
3968
3969         ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
3970         if (ret)
3971                 return ret;
3972
3973         if (opts) {
3974                 ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
3975                 if (ret)
3976                         return ret;
3977
3978                 ret = add_uevent_var(env, "NVME_TRSVCID=%s",
3979                                 opts->trsvcid ?: "none");
3980                 if (ret)
3981                         return ret;
3982
3983                 ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
3984                                 opts->host_traddr ?: "none");
3985                 if (ret)
3986                         return ret;
3987
3988                 ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
3989                                 opts->host_iface ?: "none");
3990         }
3991         return ret;
3992 }
3993
3994 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
3995 {
3996         char *envp[2] = { envdata, NULL };
3997
3998         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3999 }
4000
4001 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4002 {
4003         char *envp[2] = { NULL, NULL };
4004         u32 aen_result = ctrl->aen_result;
4005
4006         ctrl->aen_result = 0;
4007         if (!aen_result)
4008                 return;
4009
4010         envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4011         if (!envp[0])
4012                 return;
4013         kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4014         kfree(envp[0]);
4015 }
4016
4017 static void nvme_async_event_work(struct work_struct *work)
4018 {
4019         struct nvme_ctrl *ctrl =
4020                 container_of(work, struct nvme_ctrl, async_event_work);
4021
4022         nvme_aen_uevent(ctrl);
4023
4024         /*
4025          * The transport drivers must guarantee AER submission here is safe by
4026          * flushing ctrl async_event_work after changing the controller state
4027          * from LIVE and before freeing the admin queue.
4028         */
4029         if (ctrl->state == NVME_CTRL_LIVE)
4030                 ctrl->ops->submit_async_event(ctrl);
4031 }
4032
4033 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4034 {
4035
4036         u32 csts;
4037
4038         if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4039                 return false;
4040
4041         if (csts == ~0)
4042                 return false;
4043
4044         return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4045 }
4046
4047 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4048 {
4049         struct nvme_fw_slot_info_log *log;
4050
4051         log = kmalloc(sizeof(*log), GFP_KERNEL);
4052         if (!log)
4053                 return;
4054
4055         if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4056                         log, sizeof(*log), 0))
4057                 dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4058         kfree(log);
4059 }
4060
4061 static void nvme_fw_act_work(struct work_struct *work)
4062 {
4063         struct nvme_ctrl *ctrl = container_of(work,
4064                                 struct nvme_ctrl, fw_act_work);
4065         unsigned long fw_act_timeout;
4066
4067         if (ctrl->mtfa)
4068                 fw_act_timeout = jiffies +
4069                                 msecs_to_jiffies(ctrl->mtfa * 100);
4070         else
4071                 fw_act_timeout = jiffies +
4072                                 msecs_to_jiffies(admin_timeout * 1000);
4073
4074         nvme_quiesce_io_queues(ctrl);
4075         while (nvme_ctrl_pp_status(ctrl)) {
4076                 if (time_after(jiffies, fw_act_timeout)) {
4077                         dev_warn(ctrl->device,
4078                                 "Fw activation timeout, reset controller\n");
4079                         nvme_try_sched_reset(ctrl);
4080                         return;
4081                 }
4082                 msleep(100);
4083         }
4084
4085         if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4086                 return;
4087
4088         nvme_unquiesce_io_queues(ctrl);
4089         /* read FW slot information to clear the AER */
4090         nvme_get_fw_slot_info(ctrl);
4091
4092         queue_work(nvme_wq, &ctrl->async_event_work);
4093 }
4094
4095 static u32 nvme_aer_type(u32 result)
4096 {
4097         return result & 0x7;
4098 }
4099
4100 static u32 nvme_aer_subtype(u32 result)
4101 {
4102         return (result & 0xff00) >> 8;
4103 }
4104
4105 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4106 {
4107         u32 aer_notice_type = nvme_aer_subtype(result);
4108         bool requeue = true;
4109
4110         switch (aer_notice_type) {
4111         case NVME_AER_NOTICE_NS_CHANGED:
4112                 set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4113                 nvme_queue_scan(ctrl);
4114                 break;
4115         case NVME_AER_NOTICE_FW_ACT_STARTING:
4116                 /*
4117                  * We are (ab)using the RESETTING state to prevent subsequent
4118                  * recovery actions from interfering with the controller's
4119                  * firmware activation.
4120                  */
4121                 if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4122                         nvme_auth_stop(ctrl);
4123                         requeue = false;
4124                         queue_work(nvme_wq, &ctrl->fw_act_work);
4125                 }
4126                 break;
4127 #ifdef CONFIG_NVME_MULTIPATH
4128         case NVME_AER_NOTICE_ANA:
4129                 if (!ctrl->ana_log_buf)
4130                         break;
4131                 queue_work(nvme_wq, &ctrl->ana_work);
4132                 break;
4133 #endif
4134         case NVME_AER_NOTICE_DISC_CHANGED:
4135                 ctrl->aen_result = result;
4136                 break;
4137         default:
4138                 dev_warn(ctrl->device, "async event result %08x\n", result);
4139         }
4140         return requeue;
4141 }
4142
4143 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4144 {
4145         dev_warn(ctrl->device, "resetting controller due to AER\n");
4146         nvme_reset_ctrl(ctrl);
4147 }
4148
4149 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4150                 volatile union nvme_result *res)
4151 {
4152         u32 result = le32_to_cpu(res->u32);
4153         u32 aer_type = nvme_aer_type(result);
4154         u32 aer_subtype = nvme_aer_subtype(result);
4155         bool requeue = true;
4156
4157         if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4158                 return;
4159
4160         trace_nvme_async_event(ctrl, result);
4161         switch (aer_type) {
4162         case NVME_AER_NOTICE:
4163                 requeue = nvme_handle_aen_notice(ctrl, result);
4164                 break;
4165         case NVME_AER_ERROR:
4166                 /*
4167                  * For a persistent internal error, don't run async_event_work
4168                  * to submit a new AER. The controller reset will do it.
4169                  */
4170                 if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4171                         nvme_handle_aer_persistent_error(ctrl);
4172                         return;
4173                 }
4174                 fallthrough;
4175         case NVME_AER_SMART:
4176         case NVME_AER_CSS:
4177         case NVME_AER_VS:
4178                 ctrl->aen_result = result;
4179                 break;
4180         default:
4181                 break;
4182         }
4183
4184         if (requeue)
4185                 queue_work(nvme_wq, &ctrl->async_event_work);
4186 }
4187 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4188
4189 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4190                 const struct blk_mq_ops *ops, unsigned int cmd_size)
4191 {
4192         int ret;
4193
4194         memset(set, 0, sizeof(*set));
4195         set->ops = ops;
4196         set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4197         if (ctrl->ops->flags & NVME_F_FABRICS)
4198                 set->reserved_tags = NVMF_RESERVED_TAGS;
4199         set->numa_node = ctrl->numa_node;
4200         set->flags = BLK_MQ_F_NO_SCHED;
4201         if (ctrl->ops->flags & NVME_F_BLOCKING)
4202                 set->flags |= BLK_MQ_F_BLOCKING;
4203         set->cmd_size = cmd_size;
4204         set->driver_data = ctrl;
4205         set->nr_hw_queues = 1;
4206         set->timeout = NVME_ADMIN_TIMEOUT;
4207         ret = blk_mq_alloc_tag_set(set);
4208         if (ret)
4209                 return ret;
4210
4211         ctrl->admin_q = blk_mq_init_queue(set);
4212         if (IS_ERR(ctrl->admin_q)) {
4213                 ret = PTR_ERR(ctrl->admin_q);
4214                 goto out_free_tagset;
4215         }
4216
4217         if (ctrl->ops->flags & NVME_F_FABRICS) {
4218                 ctrl->fabrics_q = blk_mq_init_queue(set);
4219                 if (IS_ERR(ctrl->fabrics_q)) {
4220                         ret = PTR_ERR(ctrl->fabrics_q);
4221                         goto out_cleanup_admin_q;
4222                 }
4223         }
4224
4225         ctrl->admin_tagset = set;
4226         return 0;
4227
4228 out_cleanup_admin_q:
4229         blk_mq_destroy_queue(ctrl->admin_q);
4230         blk_put_queue(ctrl->admin_q);
4231 out_free_tagset:
4232         blk_mq_free_tag_set(set);
4233         ctrl->admin_q = NULL;
4234         ctrl->fabrics_q = NULL;
4235         return ret;
4236 }
4237 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4238
4239 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4240 {
4241         blk_mq_destroy_queue(ctrl->admin_q);
4242         blk_put_queue(ctrl->admin_q);
4243         if (ctrl->ops->flags & NVME_F_FABRICS) {
4244                 blk_mq_destroy_queue(ctrl->fabrics_q);
4245                 blk_put_queue(ctrl->fabrics_q);
4246         }
4247         blk_mq_free_tag_set(ctrl->admin_tagset);
4248 }
4249 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4250
4251 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4252                 const struct blk_mq_ops *ops, unsigned int nr_maps,
4253                 unsigned int cmd_size)
4254 {
4255         int ret;
4256
4257         memset(set, 0, sizeof(*set));
4258         set->ops = ops;
4259         set->queue_depth = min_t(unsigned, ctrl->sqsize, BLK_MQ_MAX_DEPTH - 1);
4260         /*
4261          * Some Apple controllers requires tags to be unique across admin and
4262          * the (only) I/O queue, so reserve the first 32 tags of the I/O queue.
4263          */
4264         if (ctrl->quirks & NVME_QUIRK_SHARED_TAGS)
4265                 set->reserved_tags = NVME_AQ_DEPTH;
4266         else if (ctrl->ops->flags & NVME_F_FABRICS)
4267                 set->reserved_tags = NVMF_RESERVED_TAGS;
4268         set->numa_node = ctrl->numa_node;
4269         set->flags = BLK_MQ_F_SHOULD_MERGE;
4270         if (ctrl->ops->flags & NVME_F_BLOCKING)
4271                 set->flags |= BLK_MQ_F_BLOCKING;
4272         set->cmd_size = cmd_size,
4273         set->driver_data = ctrl;
4274         set->nr_hw_queues = ctrl->queue_count - 1;
4275         set->timeout = NVME_IO_TIMEOUT;
4276         set->nr_maps = nr_maps;
4277         ret = blk_mq_alloc_tag_set(set);
4278         if (ret)
4279                 return ret;
4280
4281         if (ctrl->ops->flags & NVME_F_FABRICS) {
4282                 ctrl->connect_q = blk_mq_init_queue(set);
4283                 if (IS_ERR(ctrl->connect_q)) {
4284                         ret = PTR_ERR(ctrl->connect_q);
4285                         goto out_free_tag_set;
4286                 }
4287                 blk_queue_flag_set(QUEUE_FLAG_SKIP_TAGSET_QUIESCE,
4288                                    ctrl->connect_q);
4289         }
4290
4291         ctrl->tagset = set;
4292         return 0;
4293
4294 out_free_tag_set:
4295         blk_mq_free_tag_set(set);
4296         ctrl->connect_q = NULL;
4297         return ret;
4298 }
4299 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4300
4301 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4302 {
4303         if (ctrl->ops->flags & NVME_F_FABRICS) {
4304                 blk_mq_destroy_queue(ctrl->connect_q);
4305                 blk_put_queue(ctrl->connect_q);
4306         }
4307         blk_mq_free_tag_set(ctrl->tagset);
4308 }
4309 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4310
4311 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4312 {
4313         nvme_mpath_stop(ctrl);
4314         nvme_auth_stop(ctrl);
4315         nvme_stop_keep_alive(ctrl);
4316         nvme_stop_failfast_work(ctrl);
4317         flush_work(&ctrl->async_event_work);
4318         cancel_work_sync(&ctrl->fw_act_work);
4319         if (ctrl->ops->stop_ctrl)
4320                 ctrl->ops->stop_ctrl(ctrl);
4321 }
4322 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4323
4324 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4325 {
4326         nvme_start_keep_alive(ctrl);
4327
4328         nvme_enable_aen(ctrl);
4329
4330         /*
4331          * persistent discovery controllers need to send indication to userspace
4332          * to re-read the discovery log page to learn about possible changes
4333          * that were missed. We identify persistent discovery controllers by
4334          * checking that they started once before, hence are reconnecting back.
4335          */
4336         if (test_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4337             nvme_discovery_ctrl(ctrl))
4338                 nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4339
4340         if (ctrl->queue_count > 1) {
4341                 nvme_queue_scan(ctrl);
4342                 nvme_unquiesce_io_queues(ctrl);
4343                 nvme_mpath_update(ctrl);
4344         }
4345
4346         nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4347         set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags);
4348 }
4349 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4350
4351 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4352 {
4353         nvme_hwmon_exit(ctrl);
4354         nvme_fault_inject_fini(&ctrl->fault_inject);
4355         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4356         cdev_device_del(&ctrl->cdev, ctrl->device);
4357         nvme_put_ctrl(ctrl);
4358 }
4359 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4360
4361 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4362 {
4363         struct nvme_effects_log *cel;
4364         unsigned long i;
4365
4366         xa_for_each(&ctrl->cels, i, cel) {
4367                 xa_erase(&ctrl->cels, i);
4368                 kfree(cel);
4369         }
4370
4371         xa_destroy(&ctrl->cels);
4372 }
4373
4374 static void nvme_free_ctrl(struct device *dev)
4375 {
4376         struct nvme_ctrl *ctrl =
4377                 container_of(dev, struct nvme_ctrl, ctrl_device);
4378         struct nvme_subsystem *subsys = ctrl->subsys;
4379
4380         if (!subsys || ctrl->instance != subsys->instance)
4381                 ida_free(&nvme_instance_ida, ctrl->instance);
4382
4383         nvme_free_cels(ctrl);
4384         nvme_mpath_uninit(ctrl);
4385         nvme_auth_stop(ctrl);
4386         nvme_auth_free(ctrl);
4387         __free_page(ctrl->discard_page);
4388         free_opal_dev(ctrl->opal_dev);
4389
4390         if (subsys) {
4391                 mutex_lock(&nvme_subsystems_lock);
4392                 list_del(&ctrl->subsys_entry);
4393                 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
4394                 mutex_unlock(&nvme_subsystems_lock);
4395         }
4396
4397         ctrl->ops->free_ctrl(ctrl);
4398
4399         if (subsys)
4400                 nvme_put_subsystem(subsys);
4401 }
4402
4403 /*
4404  * Initialize a NVMe controller structures.  This needs to be called during
4405  * earliest initialization so that we have the initialized structured around
4406  * during probing.
4407  */
4408 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
4409                 const struct nvme_ctrl_ops *ops, unsigned long quirks)
4410 {
4411         int ret;
4412
4413         ctrl->state = NVME_CTRL_NEW;
4414         clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
4415         spin_lock_init(&ctrl->lock);
4416         mutex_init(&ctrl->scan_lock);
4417         INIT_LIST_HEAD(&ctrl->namespaces);
4418         xa_init(&ctrl->cels);
4419         init_rwsem(&ctrl->namespaces_rwsem);
4420         ctrl->dev = dev;
4421         ctrl->ops = ops;
4422         ctrl->quirks = quirks;
4423         ctrl->numa_node = NUMA_NO_NODE;
4424         INIT_WORK(&ctrl->scan_work, nvme_scan_work);
4425         INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
4426         INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
4427         INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
4428         init_waitqueue_head(&ctrl->state_wq);
4429
4430         INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
4431         INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
4432         memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
4433         ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
4434
4435         BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
4436                         PAGE_SIZE);
4437         ctrl->discard_page = alloc_page(GFP_KERNEL);
4438         if (!ctrl->discard_page) {
4439                 ret = -ENOMEM;
4440                 goto out;
4441         }
4442
4443         ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
4444         if (ret < 0)
4445                 goto out;
4446         ctrl->instance = ret;
4447
4448         device_initialize(&ctrl->ctrl_device);
4449         ctrl->device = &ctrl->ctrl_device;
4450         ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
4451                         ctrl->instance);
4452         ctrl->device->class = nvme_class;
4453         ctrl->device->parent = ctrl->dev;
4454         if (ops->dev_attr_groups)
4455                 ctrl->device->groups = ops->dev_attr_groups;
4456         else
4457                 ctrl->device->groups = nvme_dev_attr_groups;
4458         ctrl->device->release = nvme_free_ctrl;
4459         dev_set_drvdata(ctrl->device, ctrl);
4460         ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
4461         if (ret)
4462                 goto out_release_instance;
4463
4464         nvme_get_ctrl(ctrl);
4465         cdev_init(&ctrl->cdev, &nvme_dev_fops);
4466         ctrl->cdev.owner = ops->module;
4467         ret = cdev_device_add(&ctrl->cdev, ctrl->device);
4468         if (ret)
4469                 goto out_free_name;
4470
4471         /*
4472          * Initialize latency tolerance controls.  The sysfs files won't
4473          * be visible to userspace unless the device actually supports APST.
4474          */
4475         ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
4476         dev_pm_qos_update_user_latency_tolerance(ctrl->device,
4477                 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
4478
4479         nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
4480         nvme_mpath_init_ctrl(ctrl);
4481         ret = nvme_auth_init_ctrl(ctrl);
4482         if (ret)
4483                 goto out_free_cdev;
4484
4485         return 0;
4486 out_free_cdev:
4487         nvme_fault_inject_fini(&ctrl->fault_inject);
4488         dev_pm_qos_hide_latency_tolerance(ctrl->device);
4489         cdev_device_del(&ctrl->cdev, ctrl->device);
4490 out_free_name:
4491         nvme_put_ctrl(ctrl);
4492         kfree_const(ctrl->device->kobj.name);
4493 out_release_instance:
4494         ida_free(&nvme_instance_ida, ctrl->instance);
4495 out:
4496         if (ctrl->discard_page)
4497                 __free_page(ctrl->discard_page);
4498         return ret;
4499 }
4500 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
4501
4502 /* let I/O to all namespaces fail in preparation for surprise removal */
4503 void nvme_mark_namespaces_dead(struct nvme_ctrl *ctrl)
4504 {
4505         struct nvme_ns *ns;
4506
4507         down_read(&ctrl->namespaces_rwsem);
4508         list_for_each_entry(ns, &ctrl->namespaces, list)
4509                 blk_mark_disk_dead(ns->disk);
4510         up_read(&ctrl->namespaces_rwsem);
4511 }
4512 EXPORT_SYMBOL_GPL(nvme_mark_namespaces_dead);
4513
4514 void nvme_unfreeze(struct nvme_ctrl *ctrl)
4515 {
4516         struct nvme_ns *ns;
4517
4518         down_read(&ctrl->namespaces_rwsem);
4519         list_for_each_entry(ns, &ctrl->namespaces, list)
4520                 blk_mq_unfreeze_queue(ns->queue);
4521         up_read(&ctrl->namespaces_rwsem);
4522 }
4523 EXPORT_SYMBOL_GPL(nvme_unfreeze);
4524
4525 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
4526 {
4527         struct nvme_ns *ns;
4528
4529         down_read(&ctrl->namespaces_rwsem);
4530         list_for_each_entry(ns, &ctrl->namespaces, list) {
4531                 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
4532                 if (timeout <= 0)
4533                         break;
4534         }
4535         up_read(&ctrl->namespaces_rwsem);
4536         return timeout;
4537 }
4538 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
4539
4540 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
4541 {
4542         struct nvme_ns *ns;
4543
4544         down_read(&ctrl->namespaces_rwsem);
4545         list_for_each_entry(ns, &ctrl->namespaces, list)
4546                 blk_mq_freeze_queue_wait(ns->queue);
4547         up_read(&ctrl->namespaces_rwsem);
4548 }
4549 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
4550
4551 void nvme_start_freeze(struct nvme_ctrl *ctrl)
4552 {
4553         struct nvme_ns *ns;
4554
4555         down_read(&ctrl->namespaces_rwsem);
4556         list_for_each_entry(ns, &ctrl->namespaces, list)
4557                 blk_freeze_queue_start(ns->queue);
4558         up_read(&ctrl->namespaces_rwsem);
4559 }
4560 EXPORT_SYMBOL_GPL(nvme_start_freeze);
4561
4562 void nvme_quiesce_io_queues(struct nvme_ctrl *ctrl)
4563 {
4564         if (!ctrl->tagset)
4565                 return;
4566         if (!test_and_set_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4567                 blk_mq_quiesce_tagset(ctrl->tagset);
4568         else
4569                 blk_mq_wait_quiesce_done(ctrl->tagset);
4570 }
4571 EXPORT_SYMBOL_GPL(nvme_quiesce_io_queues);
4572
4573 void nvme_unquiesce_io_queues(struct nvme_ctrl *ctrl)
4574 {
4575         if (!ctrl->tagset)
4576                 return;
4577         if (test_and_clear_bit(NVME_CTRL_STOPPED, &ctrl->flags))
4578                 blk_mq_unquiesce_tagset(ctrl->tagset);
4579 }
4580 EXPORT_SYMBOL_GPL(nvme_unquiesce_io_queues);
4581
4582 void nvme_quiesce_admin_queue(struct nvme_ctrl *ctrl)
4583 {
4584         if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4585                 blk_mq_quiesce_queue(ctrl->admin_q);
4586         else
4587                 blk_mq_wait_quiesce_done(ctrl->admin_q->tag_set);
4588 }
4589 EXPORT_SYMBOL_GPL(nvme_quiesce_admin_queue);
4590
4591 void nvme_unquiesce_admin_queue(struct nvme_ctrl *ctrl)
4592 {
4593         if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
4594                 blk_mq_unquiesce_queue(ctrl->admin_q);
4595 }
4596 EXPORT_SYMBOL_GPL(nvme_unquiesce_admin_queue);
4597
4598 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
4599 {
4600         struct nvme_ns *ns;
4601
4602         down_read(&ctrl->namespaces_rwsem);
4603         list_for_each_entry(ns, &ctrl->namespaces, list)
4604                 blk_sync_queue(ns->queue);
4605         up_read(&ctrl->namespaces_rwsem);
4606 }
4607 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
4608
4609 void nvme_sync_queues(struct nvme_ctrl *ctrl)
4610 {
4611         nvme_sync_io_queues(ctrl);
4612         if (ctrl->admin_q)
4613                 blk_sync_queue(ctrl->admin_q);
4614 }
4615 EXPORT_SYMBOL_GPL(nvme_sync_queues);
4616
4617 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
4618 {
4619         if (file->f_op != &nvme_dev_fops)
4620                 return NULL;
4621         return file->private_data;
4622 }
4623 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
4624
4625 /*
4626  * Check we didn't inadvertently grow the command structure sizes:
4627  */
4628 static inline void _nvme_check_size(void)
4629 {
4630         BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
4631         BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
4632         BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
4633         BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
4634         BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
4635         BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
4636         BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
4637         BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
4638         BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
4639         BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
4640         BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
4641         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
4642         BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
4643         BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
4644                         NVME_IDENTIFY_DATA_SIZE);
4645         BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
4646         BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
4647         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
4648         BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
4649         BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
4650         BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
4651         BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
4652         BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
4653         BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
4654 }
4655
4656
4657 static int __init nvme_core_init(void)
4658 {
4659         int result = -ENOMEM;
4660
4661         _nvme_check_size();
4662
4663         nvme_wq = alloc_workqueue("nvme-wq",
4664                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4665         if (!nvme_wq)
4666                 goto out;
4667
4668         nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
4669                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4670         if (!nvme_reset_wq)
4671                 goto destroy_wq;
4672
4673         nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
4674                         WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
4675         if (!nvme_delete_wq)
4676                 goto destroy_reset_wq;
4677
4678         result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
4679                         NVME_MINORS, "nvme");
4680         if (result < 0)
4681                 goto destroy_delete_wq;
4682
4683         nvme_class = class_create("nvme");
4684         if (IS_ERR(nvme_class)) {
4685                 result = PTR_ERR(nvme_class);
4686                 goto unregister_chrdev;
4687         }
4688         nvme_class->dev_uevent = nvme_class_uevent;
4689
4690         nvme_subsys_class = class_create("nvme-subsystem");
4691         if (IS_ERR(nvme_subsys_class)) {
4692                 result = PTR_ERR(nvme_subsys_class);
4693                 goto destroy_class;
4694         }
4695
4696         result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
4697                                      "nvme-generic");
4698         if (result < 0)
4699                 goto destroy_subsys_class;
4700
4701         nvme_ns_chr_class = class_create("nvme-generic");
4702         if (IS_ERR(nvme_ns_chr_class)) {
4703                 result = PTR_ERR(nvme_ns_chr_class);
4704                 goto unregister_generic_ns;
4705         }
4706
4707         result = nvme_init_auth();
4708         if (result)
4709                 goto destroy_ns_chr;
4710         return 0;
4711
4712 destroy_ns_chr:
4713         class_destroy(nvme_ns_chr_class);
4714 unregister_generic_ns:
4715         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4716 destroy_subsys_class:
4717         class_destroy(nvme_subsys_class);
4718 destroy_class:
4719         class_destroy(nvme_class);
4720 unregister_chrdev:
4721         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4722 destroy_delete_wq:
4723         destroy_workqueue(nvme_delete_wq);
4724 destroy_reset_wq:
4725         destroy_workqueue(nvme_reset_wq);
4726 destroy_wq:
4727         destroy_workqueue(nvme_wq);
4728 out:
4729         return result;
4730 }
4731
4732 static void __exit nvme_core_exit(void)
4733 {
4734         nvme_exit_auth();
4735         class_destroy(nvme_ns_chr_class);
4736         class_destroy(nvme_subsys_class);
4737         class_destroy(nvme_class);
4738         unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
4739         unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
4740         destroy_workqueue(nvme_delete_wq);
4741         destroy_workqueue(nvme_reset_wq);
4742         destroy_workqueue(nvme_wq);
4743         ida_destroy(&nvme_ns_chr_minor_ida);
4744         ida_destroy(&nvme_instance_ida);
4745 }
4746
4747 MODULE_LICENSE("GPL");
4748 MODULE_VERSION("1.0");
4749 module_init(nvme_core_init);
4750 module_exit(nvme_core_exit);