aac67bc3d3680cb0f641efc26cd360c5841f2233
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52
53 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
54                 blk_qc_t qc)
55 {
56         return xa_load(&q->hctx_table, qc);
57 }
58
59 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
60 {
61         return rq->mq_hctx->queue_num;
62 }
63
64 /*
65  * Check if any of the ctx, dispatch list or elevator
66  * have pending work in this hardware queue.
67  */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70         return !list_empty_careful(&hctx->dispatch) ||
71                 sbitmap_any_bit_set(&hctx->ctx_map) ||
72                         blk_mq_sched_has_work(hctx);
73 }
74
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79                                      struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84                 sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88                                       struct blk_mq_ctx *ctx)
89 {
90         const int bit = ctx->index_hw[hctx->type];
91
92         sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94
95 struct mq_inflight {
96         struct block_device *part;
97         unsigned int inflight[2];
98 };
99
100 static bool blk_mq_check_inflight(struct request *rq, void *priv)
101 {
102         struct mq_inflight *mi = priv;
103
104         if (rq->part && blk_do_io_stat(rq) &&
105             (!mi->part->bd_partno || rq->part == mi->part) &&
106             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
107                 mi->inflight[rq_data_dir(rq)]++;
108
109         return true;
110 }
111
112 unsigned int blk_mq_in_flight(struct request_queue *q,
113                 struct block_device *part)
114 {
115         struct mq_inflight mi = { .part = part };
116
117         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119         return mi.inflight[0] + mi.inflight[1];
120 }
121
122 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
123                 unsigned int inflight[2])
124 {
125         struct mq_inflight mi = { .part = part };
126
127         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
128         inflight[0] = mi.inflight[0];
129         inflight[1] = mi.inflight[1];
130 }
131
132 void blk_freeze_queue_start(struct request_queue *q)
133 {
134         mutex_lock(&q->mq_freeze_lock);
135         if (++q->mq_freeze_depth == 1) {
136                 percpu_ref_kill(&q->q_usage_counter);
137                 mutex_unlock(&q->mq_freeze_lock);
138                 if (queue_is_mq(q))
139                         blk_mq_run_hw_queues(q, false);
140         } else {
141                 mutex_unlock(&q->mq_freeze_lock);
142         }
143 }
144 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
145
146 void blk_mq_freeze_queue_wait(struct request_queue *q)
147 {
148         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
151
152 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
153                                      unsigned long timeout)
154 {
155         return wait_event_timeout(q->mq_freeze_wq,
156                                         percpu_ref_is_zero(&q->q_usage_counter),
157                                         timeout);
158 }
159 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
160
161 /*
162  * Guarantee no request is in use, so we can change any data structure of
163  * the queue afterward.
164  */
165 void blk_freeze_queue(struct request_queue *q)
166 {
167         /*
168          * In the !blk_mq case we are only calling this to kill the
169          * q_usage_counter, otherwise this increases the freeze depth
170          * and waits for it to return to zero.  For this reason there is
171          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
172          * exported to drivers as the only user for unfreeze is blk_mq.
173          */
174         blk_freeze_queue_start(q);
175         blk_mq_freeze_queue_wait(q);
176 }
177
178 void blk_mq_freeze_queue(struct request_queue *q)
179 {
180         /*
181          * ...just an alias to keep freeze and unfreeze actions balanced
182          * in the blk_mq_* namespace
183          */
184         blk_freeze_queue(q);
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
187
188 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
189 {
190         mutex_lock(&q->mq_freeze_lock);
191         if (force_atomic)
192                 q->q_usage_counter.data->force_atomic = true;
193         q->mq_freeze_depth--;
194         WARN_ON_ONCE(q->mq_freeze_depth < 0);
195         if (!q->mq_freeze_depth) {
196                 percpu_ref_resurrect(&q->q_usage_counter);
197                 wake_up_all(&q->mq_freeze_wq);
198         }
199         mutex_unlock(&q->mq_freeze_lock);
200 }
201
202 void blk_mq_unfreeze_queue(struct request_queue *q)
203 {
204         __blk_mq_unfreeze_queue(q, false);
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207
208 /*
209  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210  * mpt3sas driver such that this function can be removed.
211  */
212 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 {
214         unsigned long flags;
215
216         spin_lock_irqsave(&q->queue_lock, flags);
217         if (!q->quiesce_depth++)
218                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219         spin_unlock_irqrestore(&q->queue_lock, flags);
220 }
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222
223 /**
224  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
225  * @set: tag_set to wait on
226  *
227  * Note: it is driver's responsibility for making sure that quiesce has
228  * been started on or more of the request_queues of the tag_set.  This
229  * function only waits for the quiesce on those request_queues that had
230  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
231  */
232 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
233 {
234         if (set->flags & BLK_MQ_F_BLOCKING)
235                 synchronize_srcu(set->srcu);
236         else
237                 synchronize_rcu();
238 }
239 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
240
241 /**
242  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
243  * @q: request queue.
244  *
245  * Note: this function does not prevent that the struct request end_io()
246  * callback function is invoked. Once this function is returned, we make
247  * sure no dispatch can happen until the queue is unquiesced via
248  * blk_mq_unquiesce_queue().
249  */
250 void blk_mq_quiesce_queue(struct request_queue *q)
251 {
252         blk_mq_quiesce_queue_nowait(q);
253         /* nothing to wait for non-mq queues */
254         if (queue_is_mq(q))
255                 blk_mq_wait_quiesce_done(q->tag_set);
256 }
257 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
258
259 /*
260  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
261  * @q: request queue.
262  *
263  * This function recovers queue into the state before quiescing
264  * which is done by blk_mq_quiesce_queue.
265  */
266 void blk_mq_unquiesce_queue(struct request_queue *q)
267 {
268         unsigned long flags;
269         bool run_queue = false;
270
271         spin_lock_irqsave(&q->queue_lock, flags);
272         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
273                 ;
274         } else if (!--q->quiesce_depth) {
275                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
276                 run_queue = true;
277         }
278         spin_unlock_irqrestore(&q->queue_lock, flags);
279
280         /* dispatch requests which are inserted during quiescing */
281         if (run_queue)
282                 blk_mq_run_hw_queues(q, true);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
285
286 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
287 {
288         struct request_queue *q;
289
290         mutex_lock(&set->tag_list_lock);
291         list_for_each_entry(q, &set->tag_list, tag_set_list) {
292                 if (!blk_queue_skip_tagset_quiesce(q))
293                         blk_mq_quiesce_queue_nowait(q);
294         }
295         blk_mq_wait_quiesce_done(set);
296         mutex_unlock(&set->tag_list_lock);
297 }
298 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
299
300 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
301 {
302         struct request_queue *q;
303
304         mutex_lock(&set->tag_list_lock);
305         list_for_each_entry(q, &set->tag_list, tag_set_list) {
306                 if (!blk_queue_skip_tagset_quiesce(q))
307                         blk_mq_unquiesce_queue(q);
308         }
309         mutex_unlock(&set->tag_list_lock);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
312
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         unsigned long i;
317
318         queue_for_each_hw_ctx(q, hctx, i)
319                 if (blk_mq_hw_queue_mapped(hctx))
320                         blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325         memset(rq, 0, sizeof(*rq));
326
327         INIT_LIST_HEAD(&rq->queuelist);
328         rq->q = q;
329         rq->__sector = (sector_t) -1;
330         INIT_HLIST_NODE(&rq->hash);
331         RB_CLEAR_NODE(&rq->rb_node);
332         rq->tag = BLK_MQ_NO_TAG;
333         rq->internal_tag = BLK_MQ_NO_TAG;
334         rq->start_time_ns = ktime_get_ns();
335         rq->part = NULL;
336         blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343         struct blk_mq_ctx *ctx = data->ctx;
344         struct blk_mq_hw_ctx *hctx = data->hctx;
345         struct request_queue *q = data->q;
346         struct request *rq = tags->static_rqs[tag];
347
348         rq->q = q;
349         rq->mq_ctx = ctx;
350         rq->mq_hctx = hctx;
351         rq->cmd_flags = data->cmd_flags;
352
353         if (data->flags & BLK_MQ_REQ_PM)
354                 data->rq_flags |= RQF_PM;
355         if (blk_queue_io_stat(q))
356                 data->rq_flags |= RQF_IO_STAT;
357         rq->rq_flags = data->rq_flags;
358
359         if (data->rq_flags & RQF_SCHED_TAGS) {
360                 rq->tag = BLK_MQ_NO_TAG;
361                 rq->internal_tag = tag;
362         } else {
363                 rq->tag = tag;
364                 rq->internal_tag = BLK_MQ_NO_TAG;
365         }
366         rq->timeout = 0;
367
368         if (blk_mq_need_time_stamp(rq))
369                 rq->start_time_ns = ktime_get_ns();
370         else
371                 rq->start_time_ns = 0;
372         rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374         rq->alloc_time_ns = alloc_time_ns;
375 #endif
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
406                 u64 alloc_time_ns)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         /* caller already holds a reference, add for remainder */
430         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431         data->nr_tags -= nr;
432
433         return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438         struct request_queue *q = data->q;
439         u64 alloc_time_ns = 0;
440         struct request *rq;
441         unsigned int tag;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         if (data->cmd_flags & REQ_NOWAIT)
448                 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450         if (q->elevator) {
451                 /*
452                  * All requests use scheduler tags when an I/O scheduler is
453                  * enabled for the queue.
454                  */
455                 data->rq_flags |= RQF_SCHED_TAGS;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list.
460                  */
461                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462                     !blk_op_is_passthrough(data->cmd_flags)) {
463                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467                         data->rq_flags |= RQF_USE_SCHED;
468                         if (ops->limit_depth)
469                                 ops->limit_depth(data->cmd_flags, data);
470                 }
471         }
472
473 retry:
474         data->ctx = blk_mq_get_ctx(q);
475         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_tag_busy(data->hctx);
478
479         if (data->flags & BLK_MQ_REQ_RESERVED)
480                 data->rq_flags |= RQF_RESV;
481
482         /*
483          * Try batched alloc if we want more than 1 tag.
484          */
485         if (data->nr_tags > 1) {
486                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
487                 if (rq)
488                         return rq;
489                 data->nr_tags = 1;
490         }
491
492         /*
493          * Waiting allocations only fail because of an inactive hctx.  In that
494          * case just retry the hctx assignment and tag allocation as CPU hotplug
495          * should have migrated us to an online CPU by now.
496          */
497         tag = blk_mq_get_tag(data);
498         if (tag == BLK_MQ_NO_TAG) {
499                 if (data->flags & BLK_MQ_REQ_NOWAIT)
500                         return NULL;
501                 /*
502                  * Give up the CPU and sleep for a random short time to
503                  * ensure that thread using a realtime scheduling class
504                  * are migrated off the CPU, and thus off the hctx that
505                  * is going away.
506                  */
507                 msleep(3);
508                 goto retry;
509         }
510
511         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
512                                         alloc_time_ns);
513 }
514
515 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
516                                             struct blk_plug *plug,
517                                             blk_opf_t opf,
518                                             blk_mq_req_flags_t flags)
519 {
520         struct blk_mq_alloc_data data = {
521                 .q              = q,
522                 .flags          = flags,
523                 .cmd_flags      = opf,
524                 .nr_tags        = plug->nr_ios,
525                 .cached_rq      = &plug->cached_rq,
526         };
527         struct request *rq;
528
529         if (blk_queue_enter(q, flags))
530                 return NULL;
531
532         plug->nr_ios = 1;
533
534         rq = __blk_mq_alloc_requests(&data);
535         if (unlikely(!rq))
536                 blk_queue_exit(q);
537         return rq;
538 }
539
540 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
541                                                    blk_opf_t opf,
542                                                    blk_mq_req_flags_t flags)
543 {
544         struct blk_plug *plug = current->plug;
545         struct request *rq;
546
547         if (!plug)
548                 return NULL;
549
550         if (rq_list_empty(plug->cached_rq)) {
551                 if (plug->nr_ios == 1)
552                         return NULL;
553                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
554                 if (!rq)
555                         return NULL;
556         } else {
557                 rq = rq_list_peek(&plug->cached_rq);
558                 if (!rq || rq->q != q)
559                         return NULL;
560
561                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
562                         return NULL;
563                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
564                         return NULL;
565
566                 plug->cached_rq = rq_list_next(rq);
567         }
568
569         rq->cmd_flags = opf;
570         INIT_LIST_HEAD(&rq->queuelist);
571         return rq;
572 }
573
574 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
575                 blk_mq_req_flags_t flags)
576 {
577         struct request *rq;
578
579         rq = blk_mq_alloc_cached_request(q, opf, flags);
580         if (!rq) {
581                 struct blk_mq_alloc_data data = {
582                         .q              = q,
583                         .flags          = flags,
584                         .cmd_flags      = opf,
585                         .nr_tags        = 1,
586                 };
587                 int ret;
588
589                 ret = blk_queue_enter(q, flags);
590                 if (ret)
591                         return ERR_PTR(ret);
592
593                 rq = __blk_mq_alloc_requests(&data);
594                 if (!rq)
595                         goto out_queue_exit;
596         }
597         rq->__data_len = 0;
598         rq->__sector = (sector_t) -1;
599         rq->bio = rq->biotail = NULL;
600         return rq;
601 out_queue_exit:
602         blk_queue_exit(q);
603         return ERR_PTR(-EWOULDBLOCK);
604 }
605 EXPORT_SYMBOL(blk_mq_alloc_request);
606
607 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
608         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
609 {
610         struct blk_mq_alloc_data data = {
611                 .q              = q,
612                 .flags          = flags,
613                 .cmd_flags      = opf,
614                 .nr_tags        = 1,
615         };
616         u64 alloc_time_ns = 0;
617         struct request *rq;
618         unsigned int cpu;
619         unsigned int tag;
620         int ret;
621
622         /* alloc_time includes depth and tag waits */
623         if (blk_queue_rq_alloc_time(q))
624                 alloc_time_ns = ktime_get_ns();
625
626         /*
627          * If the tag allocator sleeps we could get an allocation for a
628          * different hardware context.  No need to complicate the low level
629          * allocator for this for the rare use case of a command tied to
630          * a specific queue.
631          */
632         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
633             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
634                 return ERR_PTR(-EINVAL);
635
636         if (hctx_idx >= q->nr_hw_queues)
637                 return ERR_PTR(-EIO);
638
639         ret = blk_queue_enter(q, flags);
640         if (ret)
641                 return ERR_PTR(ret);
642
643         /*
644          * Check if the hardware context is actually mapped to anything.
645          * If not tell the caller that it should skip this queue.
646          */
647         ret = -EXDEV;
648         data.hctx = xa_load(&q->hctx_table, hctx_idx);
649         if (!blk_mq_hw_queue_mapped(data.hctx))
650                 goto out_queue_exit;
651         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
652         if (cpu >= nr_cpu_ids)
653                 goto out_queue_exit;
654         data.ctx = __blk_mq_get_ctx(q, cpu);
655
656         if (q->elevator)
657                 data.rq_flags |= RQF_SCHED_TAGS;
658         else
659                 blk_mq_tag_busy(data.hctx);
660
661         if (flags & BLK_MQ_REQ_RESERVED)
662                 data.rq_flags |= RQF_RESV;
663
664         ret = -EWOULDBLOCK;
665         tag = blk_mq_get_tag(&data);
666         if (tag == BLK_MQ_NO_TAG)
667                 goto out_queue_exit;
668         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
669                                         alloc_time_ns);
670         rq->__data_len = 0;
671         rq->__sector = (sector_t) -1;
672         rq->bio = rq->biotail = NULL;
673         return rq;
674
675 out_queue_exit:
676         blk_queue_exit(q);
677         return ERR_PTR(ret);
678 }
679 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
680
681 static void __blk_mq_free_request(struct request *rq)
682 {
683         struct request_queue *q = rq->q;
684         struct blk_mq_ctx *ctx = rq->mq_ctx;
685         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
686         const int sched_tag = rq->internal_tag;
687
688         blk_crypto_free_request(rq);
689         blk_pm_mark_last_busy(rq);
690         rq->mq_hctx = NULL;
691         if (rq->tag != BLK_MQ_NO_TAG)
692                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
693         if (sched_tag != BLK_MQ_NO_TAG)
694                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
695         blk_mq_sched_restart(hctx);
696         blk_queue_exit(q);
697 }
698
699 void blk_mq_free_request(struct request *rq)
700 {
701         struct request_queue *q = rq->q;
702         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
703
704         if ((rq->rq_flags & RQF_USE_SCHED) &&
705             q->elevator->type->ops.finish_request)
706                 q->elevator->type->ops.finish_request(rq);
707
708         if (rq->rq_flags & RQF_MQ_INFLIGHT)
709                 __blk_mq_dec_active_requests(hctx);
710
711         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
712                 laptop_io_completion(q->disk->bdi);
713
714         rq_qos_done(q, rq);
715
716         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
717         if (req_ref_put_and_test(rq))
718                 __blk_mq_free_request(rq);
719 }
720 EXPORT_SYMBOL_GPL(blk_mq_free_request);
721
722 void blk_mq_free_plug_rqs(struct blk_plug *plug)
723 {
724         struct request *rq;
725
726         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
727                 blk_mq_free_request(rq);
728 }
729
730 void blk_dump_rq_flags(struct request *rq, char *msg)
731 {
732         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
733                 rq->q->disk ? rq->q->disk->disk_name : "?",
734                 (__force unsigned long long) rq->cmd_flags);
735
736         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
737                (unsigned long long)blk_rq_pos(rq),
738                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
739         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
740                rq->bio, rq->biotail, blk_rq_bytes(rq));
741 }
742 EXPORT_SYMBOL(blk_dump_rq_flags);
743
744 static void req_bio_endio(struct request *rq, struct bio *bio,
745                           unsigned int nbytes, blk_status_t error)
746 {
747         if (unlikely(error)) {
748                 bio->bi_status = error;
749         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
750                 /*
751                  * Partial zone append completions cannot be supported as the
752                  * BIO fragments may end up not being written sequentially.
753                  */
754                 if (bio->bi_iter.bi_size != nbytes)
755                         bio->bi_status = BLK_STS_IOERR;
756                 else
757                         bio->bi_iter.bi_sector = rq->__sector;
758         }
759
760         bio_advance(bio, nbytes);
761
762         if (unlikely(rq->rq_flags & RQF_QUIET))
763                 bio_set_flag(bio, BIO_QUIET);
764         /* don't actually finish bio if it's part of flush sequence */
765         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
766                 bio_endio(bio);
767 }
768
769 static void blk_account_io_completion(struct request *req, unsigned int bytes)
770 {
771         if (req->part && blk_do_io_stat(req)) {
772                 const int sgrp = op_stat_group(req_op(req));
773
774                 part_stat_lock();
775                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
776                 part_stat_unlock();
777         }
778 }
779
780 static void blk_print_req_error(struct request *req, blk_status_t status)
781 {
782         printk_ratelimited(KERN_ERR
783                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
784                 "phys_seg %u prio class %u\n",
785                 blk_status_to_str(status),
786                 req->q->disk ? req->q->disk->disk_name : "?",
787                 blk_rq_pos(req), (__force u32)req_op(req),
788                 blk_op_str(req_op(req)),
789                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
790                 req->nr_phys_segments,
791                 IOPRIO_PRIO_CLASS(req->ioprio));
792 }
793
794 /*
795  * Fully end IO on a request. Does not support partial completions, or
796  * errors.
797  */
798 static void blk_complete_request(struct request *req)
799 {
800         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
801         int total_bytes = blk_rq_bytes(req);
802         struct bio *bio = req->bio;
803
804         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
805
806         if (!bio)
807                 return;
808
809 #ifdef CONFIG_BLK_DEV_INTEGRITY
810         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
811                 req->q->integrity.profile->complete_fn(req, total_bytes);
812 #endif
813
814         /*
815          * Upper layers may call blk_crypto_evict_key() anytime after the last
816          * bio_endio().  Therefore, the keyslot must be released before that.
817          */
818         blk_crypto_rq_put_keyslot(req);
819
820         blk_account_io_completion(req, total_bytes);
821
822         do {
823                 struct bio *next = bio->bi_next;
824
825                 /* Completion has already been traced */
826                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
827
828                 if (req_op(req) == REQ_OP_ZONE_APPEND)
829                         bio->bi_iter.bi_sector = req->__sector;
830
831                 if (!is_flush)
832                         bio_endio(bio);
833                 bio = next;
834         } while (bio);
835
836         /*
837          * Reset counters so that the request stacking driver
838          * can find how many bytes remain in the request
839          * later.
840          */
841         if (!req->end_io) {
842                 req->bio = NULL;
843                 req->__data_len = 0;
844         }
845 }
846
847 /**
848  * blk_update_request - Complete multiple bytes without completing the request
849  * @req:      the request being processed
850  * @error:    block status code
851  * @nr_bytes: number of bytes to complete for @req
852  *
853  * Description:
854  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
855  *     the request structure even if @req doesn't have leftover.
856  *     If @req has leftover, sets it up for the next range of segments.
857  *
858  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
859  *     %false return from this function.
860  *
861  * Note:
862  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
863  *      except in the consistency check at the end of this function.
864  *
865  * Return:
866  *     %false - this request doesn't have any more data
867  *     %true  - this request has more data
868  **/
869 bool blk_update_request(struct request *req, blk_status_t error,
870                 unsigned int nr_bytes)
871 {
872         int total_bytes;
873
874         trace_block_rq_complete(req, error, nr_bytes);
875
876         if (!req->bio)
877                 return false;
878
879 #ifdef CONFIG_BLK_DEV_INTEGRITY
880         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
881             error == BLK_STS_OK)
882                 req->q->integrity.profile->complete_fn(req, nr_bytes);
883 #endif
884
885         /*
886          * Upper layers may call blk_crypto_evict_key() anytime after the last
887          * bio_endio().  Therefore, the keyslot must be released before that.
888          */
889         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
890                 __blk_crypto_rq_put_keyslot(req);
891
892         if (unlikely(error && !blk_rq_is_passthrough(req) &&
893                      !(req->rq_flags & RQF_QUIET)) &&
894                      !test_bit(GD_DEAD, &req->q->disk->state)) {
895                 blk_print_req_error(req, error);
896                 trace_block_rq_error(req, error, nr_bytes);
897         }
898
899         blk_account_io_completion(req, nr_bytes);
900
901         total_bytes = 0;
902         while (req->bio) {
903                 struct bio *bio = req->bio;
904                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
905
906                 if (bio_bytes == bio->bi_iter.bi_size)
907                         req->bio = bio->bi_next;
908
909                 /* Completion has already been traced */
910                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
911                 req_bio_endio(req, bio, bio_bytes, error);
912
913                 total_bytes += bio_bytes;
914                 nr_bytes -= bio_bytes;
915
916                 if (!nr_bytes)
917                         break;
918         }
919
920         /*
921          * completely done
922          */
923         if (!req->bio) {
924                 /*
925                  * Reset counters so that the request stacking driver
926                  * can find how many bytes remain in the request
927                  * later.
928                  */
929                 req->__data_len = 0;
930                 return false;
931         }
932
933         req->__data_len -= total_bytes;
934
935         /* update sector only for requests with clear definition of sector */
936         if (!blk_rq_is_passthrough(req))
937                 req->__sector += total_bytes >> 9;
938
939         /* mixed attributes always follow the first bio */
940         if (req->rq_flags & RQF_MIXED_MERGE) {
941                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
942                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
943         }
944
945         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
946                 /*
947                  * If total number of sectors is less than the first segment
948                  * size, something has gone terribly wrong.
949                  */
950                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
951                         blk_dump_rq_flags(req, "request botched");
952                         req->__data_len = blk_rq_cur_bytes(req);
953                 }
954
955                 /* recalculate the number of segments */
956                 req->nr_phys_segments = blk_recalc_rq_segments(req);
957         }
958
959         return true;
960 }
961 EXPORT_SYMBOL_GPL(blk_update_request);
962
963 static inline void blk_account_io_done(struct request *req, u64 now)
964 {
965         /*
966          * Account IO completion.  flush_rq isn't accounted as a
967          * normal IO on queueing nor completion.  Accounting the
968          * containing request is enough.
969          */
970         if (blk_do_io_stat(req) && req->part &&
971             !(req->rq_flags & RQF_FLUSH_SEQ)) {
972                 const int sgrp = op_stat_group(req_op(req));
973
974                 part_stat_lock();
975                 update_io_ticks(req->part, jiffies, true);
976                 part_stat_inc(req->part, ios[sgrp]);
977                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
978                 part_stat_unlock();
979         }
980 }
981
982 static inline void blk_account_io_start(struct request *req)
983 {
984         if (blk_do_io_stat(req)) {
985                 /*
986                  * All non-passthrough requests are created from a bio with one
987                  * exception: when a flush command that is part of a flush sequence
988                  * generated by the state machine in blk-flush.c is cloned onto the
989                  * lower device by dm-multipath we can get here without a bio.
990                  */
991                 if (req->bio)
992                         req->part = req->bio->bi_bdev;
993                 else
994                         req->part = req->q->disk->part0;
995
996                 part_stat_lock();
997                 update_io_ticks(req->part, jiffies, false);
998                 part_stat_unlock();
999         }
1000 }
1001
1002 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1003 {
1004         if (rq->rq_flags & RQF_STATS)
1005                 blk_stat_add(rq, now);
1006
1007         blk_mq_sched_completed_request(rq, now);
1008         blk_account_io_done(rq, now);
1009 }
1010
1011 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1012 {
1013         if (blk_mq_need_time_stamp(rq))
1014                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1015
1016         if (rq->end_io) {
1017                 rq_qos_done(rq->q, rq);
1018                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1019                         blk_mq_free_request(rq);
1020         } else {
1021                 blk_mq_free_request(rq);
1022         }
1023 }
1024 EXPORT_SYMBOL(__blk_mq_end_request);
1025
1026 void blk_mq_end_request(struct request *rq, blk_status_t error)
1027 {
1028         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1029                 BUG();
1030         __blk_mq_end_request(rq, error);
1031 }
1032 EXPORT_SYMBOL(blk_mq_end_request);
1033
1034 #define TAG_COMP_BATCH          32
1035
1036 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1037                                           int *tag_array, int nr_tags)
1038 {
1039         struct request_queue *q = hctx->queue;
1040
1041         /*
1042          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1043          * update hctx->nr_active in batch
1044          */
1045         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1046                 __blk_mq_sub_active_requests(hctx, nr_tags);
1047
1048         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1049         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1050 }
1051
1052 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1053 {
1054         int tags[TAG_COMP_BATCH], nr_tags = 0;
1055         struct blk_mq_hw_ctx *cur_hctx = NULL;
1056         struct request *rq;
1057         u64 now = 0;
1058
1059         if (iob->need_ts)
1060                 now = ktime_get_ns();
1061
1062         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1063                 prefetch(rq->bio);
1064                 prefetch(rq->rq_next);
1065
1066                 blk_complete_request(rq);
1067                 if (iob->need_ts)
1068                         __blk_mq_end_request_acct(rq, now);
1069
1070                 rq_qos_done(rq->q, rq);
1071
1072                 /*
1073                  * If end_io handler returns NONE, then it still has
1074                  * ownership of the request.
1075                  */
1076                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1077                         continue;
1078
1079                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1080                 if (!req_ref_put_and_test(rq))
1081                         continue;
1082
1083                 blk_crypto_free_request(rq);
1084                 blk_pm_mark_last_busy(rq);
1085
1086                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1087                         if (cur_hctx)
1088                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1089                         nr_tags = 0;
1090                         cur_hctx = rq->mq_hctx;
1091                 }
1092                 tags[nr_tags++] = rq->tag;
1093         }
1094
1095         if (nr_tags)
1096                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1097 }
1098 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1099
1100 static void blk_complete_reqs(struct llist_head *list)
1101 {
1102         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1103         struct request *rq, *next;
1104
1105         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1106                 rq->q->mq_ops->complete(rq);
1107 }
1108
1109 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1110 {
1111         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1112 }
1113
1114 static int blk_softirq_cpu_dead(unsigned int cpu)
1115 {
1116         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1117         return 0;
1118 }
1119
1120 static void __blk_mq_complete_request_remote(void *data)
1121 {
1122         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1123 }
1124
1125 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1126 {
1127         int cpu = raw_smp_processor_id();
1128
1129         if (!IS_ENABLED(CONFIG_SMP) ||
1130             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1131                 return false;
1132         /*
1133          * With force threaded interrupts enabled, raising softirq from an SMP
1134          * function call will always result in waking the ksoftirqd thread.
1135          * This is probably worse than completing the request on a different
1136          * cache domain.
1137          */
1138         if (force_irqthreads())
1139                 return false;
1140
1141         /* same CPU or cache domain?  Complete locally */
1142         if (cpu == rq->mq_ctx->cpu ||
1143             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1144              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1145                 return false;
1146
1147         /* don't try to IPI to an offline CPU */
1148         return cpu_online(rq->mq_ctx->cpu);
1149 }
1150
1151 static void blk_mq_complete_send_ipi(struct request *rq)
1152 {
1153         struct llist_head *list;
1154         unsigned int cpu;
1155
1156         cpu = rq->mq_ctx->cpu;
1157         list = &per_cpu(blk_cpu_done, cpu);
1158         if (llist_add(&rq->ipi_list, list)) {
1159                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1160                 smp_call_function_single_async(cpu, &rq->csd);
1161         }
1162 }
1163
1164 static void blk_mq_raise_softirq(struct request *rq)
1165 {
1166         struct llist_head *list;
1167
1168         preempt_disable();
1169         list = this_cpu_ptr(&blk_cpu_done);
1170         if (llist_add(&rq->ipi_list, list))
1171                 raise_softirq(BLOCK_SOFTIRQ);
1172         preempt_enable();
1173 }
1174
1175 bool blk_mq_complete_request_remote(struct request *rq)
1176 {
1177         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1178
1179         /*
1180          * For request which hctx has only one ctx mapping,
1181          * or a polled request, always complete locally,
1182          * it's pointless to redirect the completion.
1183          */
1184         if (rq->mq_hctx->nr_ctx == 1 ||
1185                 rq->cmd_flags & REQ_POLLED)
1186                 return false;
1187
1188         if (blk_mq_complete_need_ipi(rq)) {
1189                 blk_mq_complete_send_ipi(rq);
1190                 return true;
1191         }
1192
1193         if (rq->q->nr_hw_queues == 1) {
1194                 blk_mq_raise_softirq(rq);
1195                 return true;
1196         }
1197         return false;
1198 }
1199 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1200
1201 /**
1202  * blk_mq_complete_request - end I/O on a request
1203  * @rq:         the request being processed
1204  *
1205  * Description:
1206  *      Complete a request by scheduling the ->complete_rq operation.
1207  **/
1208 void blk_mq_complete_request(struct request *rq)
1209 {
1210         if (!blk_mq_complete_request_remote(rq))
1211                 rq->q->mq_ops->complete(rq);
1212 }
1213 EXPORT_SYMBOL(blk_mq_complete_request);
1214
1215 /**
1216  * blk_mq_start_request - Start processing a request
1217  * @rq: Pointer to request to be started
1218  *
1219  * Function used by device drivers to notify the block layer that a request
1220  * is going to be processed now, so blk layer can do proper initializations
1221  * such as starting the timeout timer.
1222  */
1223 void blk_mq_start_request(struct request *rq)
1224 {
1225         struct request_queue *q = rq->q;
1226
1227         trace_block_rq_issue(rq);
1228
1229         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1230                 rq->io_start_time_ns = ktime_get_ns();
1231                 rq->stats_sectors = blk_rq_sectors(rq);
1232                 rq->rq_flags |= RQF_STATS;
1233                 rq_qos_issue(q, rq);
1234         }
1235
1236         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1237
1238         blk_add_timer(rq);
1239         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1240
1241 #ifdef CONFIG_BLK_DEV_INTEGRITY
1242         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1243                 q->integrity.profile->prepare_fn(rq);
1244 #endif
1245         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1246                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1247 }
1248 EXPORT_SYMBOL(blk_mq_start_request);
1249
1250 /*
1251  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1252  * queues. This is important for md arrays to benefit from merging
1253  * requests.
1254  */
1255 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1256 {
1257         if (plug->multiple_queues)
1258                 return BLK_MAX_REQUEST_COUNT * 2;
1259         return BLK_MAX_REQUEST_COUNT;
1260 }
1261
1262 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1263 {
1264         struct request *last = rq_list_peek(&plug->mq_list);
1265
1266         if (!plug->rq_count) {
1267                 trace_block_plug(rq->q);
1268         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1269                    (!blk_queue_nomerges(rq->q) &&
1270                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1271                 blk_mq_flush_plug_list(plug, false);
1272                 last = NULL;
1273                 trace_block_plug(rq->q);
1274         }
1275
1276         if (!plug->multiple_queues && last && last->q != rq->q)
1277                 plug->multiple_queues = true;
1278         if (!plug->has_elevator && (rq->rq_flags & RQF_USE_SCHED))
1279                 plug->has_elevator = true;
1280         rq->rq_next = NULL;
1281         rq_list_add(&plug->mq_list, rq);
1282         plug->rq_count++;
1283 }
1284
1285 /**
1286  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1287  * @rq:         request to insert
1288  * @at_head:    insert request at head or tail of queue
1289  *
1290  * Description:
1291  *    Insert a fully prepared request at the back of the I/O scheduler queue
1292  *    for execution.  Don't wait for completion.
1293  *
1294  * Note:
1295  *    This function will invoke @done directly if the queue is dead.
1296  */
1297 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1298 {
1299         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1300
1301         WARN_ON(irqs_disabled());
1302         WARN_ON(!blk_rq_is_passthrough(rq));
1303
1304         blk_account_io_start(rq);
1305
1306         /*
1307          * As plugging can be enabled for passthrough requests on a zoned
1308          * device, directly accessing the plug instead of using blk_mq_plug()
1309          * should not have any consequences.
1310          */
1311         if (current->plug && !at_head) {
1312                 blk_add_rq_to_plug(current->plug, rq);
1313                 return;
1314         }
1315
1316         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1317         blk_mq_run_hw_queue(hctx, false);
1318 }
1319 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1320
1321 struct blk_rq_wait {
1322         struct completion done;
1323         blk_status_t ret;
1324 };
1325
1326 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1327 {
1328         struct blk_rq_wait *wait = rq->end_io_data;
1329
1330         wait->ret = ret;
1331         complete(&wait->done);
1332         return RQ_END_IO_NONE;
1333 }
1334
1335 bool blk_rq_is_poll(struct request *rq)
1336 {
1337         if (!rq->mq_hctx)
1338                 return false;
1339         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1340                 return false;
1341         return true;
1342 }
1343 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1344
1345 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1346 {
1347         do {
1348                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1349                 cond_resched();
1350         } while (!completion_done(wait));
1351 }
1352
1353 /**
1354  * blk_execute_rq - insert a request into queue for execution
1355  * @rq:         request to insert
1356  * @at_head:    insert request at head or tail of queue
1357  *
1358  * Description:
1359  *    Insert a fully prepared request at the back of the I/O scheduler queue
1360  *    for execution and wait for completion.
1361  * Return: The blk_status_t result provided to blk_mq_end_request().
1362  */
1363 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1364 {
1365         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1366         struct blk_rq_wait wait = {
1367                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1368         };
1369
1370         WARN_ON(irqs_disabled());
1371         WARN_ON(!blk_rq_is_passthrough(rq));
1372
1373         rq->end_io_data = &wait;
1374         rq->end_io = blk_end_sync_rq;
1375
1376         blk_account_io_start(rq);
1377         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1378         blk_mq_run_hw_queue(hctx, false);
1379
1380         if (blk_rq_is_poll(rq)) {
1381                 blk_rq_poll_completion(rq, &wait.done);
1382         } else {
1383                 /*
1384                  * Prevent hang_check timer from firing at us during very long
1385                  * I/O
1386                  */
1387                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1388
1389                 if (hang_check)
1390                         while (!wait_for_completion_io_timeout(&wait.done,
1391                                         hang_check * (HZ/2)))
1392                                 ;
1393                 else
1394                         wait_for_completion_io(&wait.done);
1395         }
1396
1397         return wait.ret;
1398 }
1399 EXPORT_SYMBOL(blk_execute_rq);
1400
1401 static void __blk_mq_requeue_request(struct request *rq)
1402 {
1403         struct request_queue *q = rq->q;
1404
1405         blk_mq_put_driver_tag(rq);
1406
1407         trace_block_rq_requeue(rq);
1408         rq_qos_requeue(q, rq);
1409
1410         if (blk_mq_request_started(rq)) {
1411                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1412                 rq->rq_flags &= ~RQF_TIMED_OUT;
1413         }
1414 }
1415
1416 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1417 {
1418         struct request_queue *q = rq->q;
1419
1420         __blk_mq_requeue_request(rq);
1421
1422         /* this request will be re-inserted to io scheduler queue */
1423         blk_mq_sched_requeue_request(rq);
1424
1425         blk_mq_add_to_requeue_list(rq, BLK_MQ_INSERT_AT_HEAD);
1426
1427         if (kick_requeue_list)
1428                 blk_mq_kick_requeue_list(q);
1429 }
1430 EXPORT_SYMBOL(blk_mq_requeue_request);
1431
1432 static void blk_mq_requeue_work(struct work_struct *work)
1433 {
1434         struct request_queue *q =
1435                 container_of(work, struct request_queue, requeue_work.work);
1436         LIST_HEAD(rq_list);
1437         struct request *rq, *next;
1438
1439         spin_lock_irq(&q->requeue_lock);
1440         list_splice_init(&q->requeue_list, &rq_list);
1441         spin_unlock_irq(&q->requeue_lock);
1442
1443         list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
1444                 /*
1445                  * If RQF_DONTPREP ist set, the request has been started by the
1446                  * driver already and might have driver-specific data allocated
1447                  * already.  Insert it into the hctx dispatch list to avoid
1448                  * block layer merges for the request.
1449                  */
1450                 if (rq->rq_flags & RQF_DONTPREP) {
1451                         rq->rq_flags &= ~RQF_SOFTBARRIER;
1452                         list_del_init(&rq->queuelist);
1453                         blk_mq_request_bypass_insert(rq, 0);
1454                 } else if (rq->rq_flags & RQF_SOFTBARRIER) {
1455                         rq->rq_flags &= ~RQF_SOFTBARRIER;
1456                         list_del_init(&rq->queuelist);
1457                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1458                 }
1459         }
1460
1461         while (!list_empty(&rq_list)) {
1462                 rq = list_entry(rq_list.next, struct request, queuelist);
1463                 list_del_init(&rq->queuelist);
1464                 blk_mq_insert_request(rq, 0);
1465         }
1466
1467         blk_mq_run_hw_queues(q, false);
1468 }
1469
1470 void blk_mq_add_to_requeue_list(struct request *rq, blk_insert_t insert_flags)
1471 {
1472         struct request_queue *q = rq->q;
1473         unsigned long flags;
1474
1475         /*
1476          * We abuse this flag that is otherwise used by the I/O scheduler to
1477          * request head insertion from the workqueue.
1478          */
1479         BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
1480
1481         spin_lock_irqsave(&q->requeue_lock, flags);
1482         if (insert_flags & BLK_MQ_INSERT_AT_HEAD) {
1483                 rq->rq_flags |= RQF_SOFTBARRIER;
1484                 list_add(&rq->queuelist, &q->requeue_list);
1485         } else {
1486                 list_add_tail(&rq->queuelist, &q->requeue_list);
1487         }
1488         spin_unlock_irqrestore(&q->requeue_lock, flags);
1489 }
1490
1491 void blk_mq_kick_requeue_list(struct request_queue *q)
1492 {
1493         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1494 }
1495 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1496
1497 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1498                                     unsigned long msecs)
1499 {
1500         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1501                                     msecs_to_jiffies(msecs));
1502 }
1503 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1504
1505 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1506 {
1507         /*
1508          * If we find a request that isn't idle we know the queue is busy
1509          * as it's checked in the iter.
1510          * Return false to stop the iteration.
1511          */
1512         if (blk_mq_request_started(rq)) {
1513                 bool *busy = priv;
1514
1515                 *busy = true;
1516                 return false;
1517         }
1518
1519         return true;
1520 }
1521
1522 bool blk_mq_queue_inflight(struct request_queue *q)
1523 {
1524         bool busy = false;
1525
1526         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1527         return busy;
1528 }
1529 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1530
1531 static void blk_mq_rq_timed_out(struct request *req)
1532 {
1533         req->rq_flags |= RQF_TIMED_OUT;
1534         if (req->q->mq_ops->timeout) {
1535                 enum blk_eh_timer_return ret;
1536
1537                 ret = req->q->mq_ops->timeout(req);
1538                 if (ret == BLK_EH_DONE)
1539                         return;
1540                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1541         }
1542
1543         blk_add_timer(req);
1544 }
1545
1546 struct blk_expired_data {
1547         bool has_timedout_rq;
1548         unsigned long next;
1549         unsigned long timeout_start;
1550 };
1551
1552 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1553 {
1554         unsigned long deadline;
1555
1556         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1557                 return false;
1558         if (rq->rq_flags & RQF_TIMED_OUT)
1559                 return false;
1560
1561         deadline = READ_ONCE(rq->deadline);
1562         if (time_after_eq(expired->timeout_start, deadline))
1563                 return true;
1564
1565         if (expired->next == 0)
1566                 expired->next = deadline;
1567         else if (time_after(expired->next, deadline))
1568                 expired->next = deadline;
1569         return false;
1570 }
1571
1572 void blk_mq_put_rq_ref(struct request *rq)
1573 {
1574         if (is_flush_rq(rq)) {
1575                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1576                         blk_mq_free_request(rq);
1577         } else if (req_ref_put_and_test(rq)) {
1578                 __blk_mq_free_request(rq);
1579         }
1580 }
1581
1582 static bool blk_mq_check_expired(struct request *rq, void *priv)
1583 {
1584         struct blk_expired_data *expired = priv;
1585
1586         /*
1587          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1588          * be reallocated underneath the timeout handler's processing, then
1589          * the expire check is reliable. If the request is not expired, then
1590          * it was completed and reallocated as a new request after returning
1591          * from blk_mq_check_expired().
1592          */
1593         if (blk_mq_req_expired(rq, expired)) {
1594                 expired->has_timedout_rq = true;
1595                 return false;
1596         }
1597         return true;
1598 }
1599
1600 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1601 {
1602         struct blk_expired_data *expired = priv;
1603
1604         if (blk_mq_req_expired(rq, expired))
1605                 blk_mq_rq_timed_out(rq);
1606         return true;
1607 }
1608
1609 static void blk_mq_timeout_work(struct work_struct *work)
1610 {
1611         struct request_queue *q =
1612                 container_of(work, struct request_queue, timeout_work);
1613         struct blk_expired_data expired = {
1614                 .timeout_start = jiffies,
1615         };
1616         struct blk_mq_hw_ctx *hctx;
1617         unsigned long i;
1618
1619         /* A deadlock might occur if a request is stuck requiring a
1620          * timeout at the same time a queue freeze is waiting
1621          * completion, since the timeout code would not be able to
1622          * acquire the queue reference here.
1623          *
1624          * That's why we don't use blk_queue_enter here; instead, we use
1625          * percpu_ref_tryget directly, because we need to be able to
1626          * obtain a reference even in the short window between the queue
1627          * starting to freeze, by dropping the first reference in
1628          * blk_freeze_queue_start, and the moment the last request is
1629          * consumed, marked by the instant q_usage_counter reaches
1630          * zero.
1631          */
1632         if (!percpu_ref_tryget(&q->q_usage_counter))
1633                 return;
1634
1635         /* check if there is any timed-out request */
1636         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1637         if (expired.has_timedout_rq) {
1638                 /*
1639                  * Before walking tags, we must ensure any submit started
1640                  * before the current time has finished. Since the submit
1641                  * uses srcu or rcu, wait for a synchronization point to
1642                  * ensure all running submits have finished
1643                  */
1644                 blk_mq_wait_quiesce_done(q->tag_set);
1645
1646                 expired.next = 0;
1647                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1648         }
1649
1650         if (expired.next != 0) {
1651                 mod_timer(&q->timeout, expired.next);
1652         } else {
1653                 /*
1654                  * Request timeouts are handled as a forward rolling timer. If
1655                  * we end up here it means that no requests are pending and
1656                  * also that no request has been pending for a while. Mark
1657                  * each hctx as idle.
1658                  */
1659                 queue_for_each_hw_ctx(q, hctx, i) {
1660                         /* the hctx may be unmapped, so check it here */
1661                         if (blk_mq_hw_queue_mapped(hctx))
1662                                 blk_mq_tag_idle(hctx);
1663                 }
1664         }
1665         blk_queue_exit(q);
1666 }
1667
1668 struct flush_busy_ctx_data {
1669         struct blk_mq_hw_ctx *hctx;
1670         struct list_head *list;
1671 };
1672
1673 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1674 {
1675         struct flush_busy_ctx_data *flush_data = data;
1676         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1677         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1678         enum hctx_type type = hctx->type;
1679
1680         spin_lock(&ctx->lock);
1681         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1682         sbitmap_clear_bit(sb, bitnr);
1683         spin_unlock(&ctx->lock);
1684         return true;
1685 }
1686
1687 /*
1688  * Process software queues that have been marked busy, splicing them
1689  * to the for-dispatch
1690  */
1691 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1692 {
1693         struct flush_busy_ctx_data data = {
1694                 .hctx = hctx,
1695                 .list = list,
1696         };
1697
1698         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1699 }
1700 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1701
1702 struct dispatch_rq_data {
1703         struct blk_mq_hw_ctx *hctx;
1704         struct request *rq;
1705 };
1706
1707 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1708                 void *data)
1709 {
1710         struct dispatch_rq_data *dispatch_data = data;
1711         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1712         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1713         enum hctx_type type = hctx->type;
1714
1715         spin_lock(&ctx->lock);
1716         if (!list_empty(&ctx->rq_lists[type])) {
1717                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1718                 list_del_init(&dispatch_data->rq->queuelist);
1719                 if (list_empty(&ctx->rq_lists[type]))
1720                         sbitmap_clear_bit(sb, bitnr);
1721         }
1722         spin_unlock(&ctx->lock);
1723
1724         return !dispatch_data->rq;
1725 }
1726
1727 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1728                                         struct blk_mq_ctx *start)
1729 {
1730         unsigned off = start ? start->index_hw[hctx->type] : 0;
1731         struct dispatch_rq_data data = {
1732                 .hctx = hctx,
1733                 .rq   = NULL,
1734         };
1735
1736         __sbitmap_for_each_set(&hctx->ctx_map, off,
1737                                dispatch_rq_from_ctx, &data);
1738
1739         return data.rq;
1740 }
1741
1742 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1743 {
1744         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1745         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1746         int tag;
1747
1748         blk_mq_tag_busy(rq->mq_hctx);
1749
1750         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1751                 bt = &rq->mq_hctx->tags->breserved_tags;
1752                 tag_offset = 0;
1753         } else {
1754                 if (!hctx_may_queue(rq->mq_hctx, bt))
1755                         return false;
1756         }
1757
1758         tag = __sbitmap_queue_get(bt);
1759         if (tag == BLK_MQ_NO_TAG)
1760                 return false;
1761
1762         rq->tag = tag + tag_offset;
1763         return true;
1764 }
1765
1766 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1767 {
1768         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1769                 return false;
1770
1771         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1772                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1773                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1774                 __blk_mq_inc_active_requests(hctx);
1775         }
1776         hctx->tags->rqs[rq->tag] = rq;
1777         return true;
1778 }
1779
1780 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1781                                 int flags, void *key)
1782 {
1783         struct blk_mq_hw_ctx *hctx;
1784
1785         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1786
1787         spin_lock(&hctx->dispatch_wait_lock);
1788         if (!list_empty(&wait->entry)) {
1789                 struct sbitmap_queue *sbq;
1790
1791                 list_del_init(&wait->entry);
1792                 sbq = &hctx->tags->bitmap_tags;
1793                 atomic_dec(&sbq->ws_active);
1794         }
1795         spin_unlock(&hctx->dispatch_wait_lock);
1796
1797         blk_mq_run_hw_queue(hctx, true);
1798         return 1;
1799 }
1800
1801 /*
1802  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1803  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1804  * restart. For both cases, take care to check the condition again after
1805  * marking us as waiting.
1806  */
1807 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1808                                  struct request *rq)
1809 {
1810         struct sbitmap_queue *sbq;
1811         struct wait_queue_head *wq;
1812         wait_queue_entry_t *wait;
1813         bool ret;
1814
1815         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1816             !(blk_mq_is_shared_tags(hctx->flags))) {
1817                 blk_mq_sched_mark_restart_hctx(hctx);
1818
1819                 /*
1820                  * It's possible that a tag was freed in the window between the
1821                  * allocation failure and adding the hardware queue to the wait
1822                  * queue.
1823                  *
1824                  * Don't clear RESTART here, someone else could have set it.
1825                  * At most this will cost an extra queue run.
1826                  */
1827                 return blk_mq_get_driver_tag(rq);
1828         }
1829
1830         wait = &hctx->dispatch_wait;
1831         if (!list_empty_careful(&wait->entry))
1832                 return false;
1833
1834         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1835                 sbq = &hctx->tags->breserved_tags;
1836         else
1837                 sbq = &hctx->tags->bitmap_tags;
1838         wq = &bt_wait_ptr(sbq, hctx)->wait;
1839
1840         spin_lock_irq(&wq->lock);
1841         spin_lock(&hctx->dispatch_wait_lock);
1842         if (!list_empty(&wait->entry)) {
1843                 spin_unlock(&hctx->dispatch_wait_lock);
1844                 spin_unlock_irq(&wq->lock);
1845                 return false;
1846         }
1847
1848         atomic_inc(&sbq->ws_active);
1849         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1850         __add_wait_queue(wq, wait);
1851
1852         /*
1853          * It's possible that a tag was freed in the window between the
1854          * allocation failure and adding the hardware queue to the wait
1855          * queue.
1856          */
1857         ret = blk_mq_get_driver_tag(rq);
1858         if (!ret) {
1859                 spin_unlock(&hctx->dispatch_wait_lock);
1860                 spin_unlock_irq(&wq->lock);
1861                 return false;
1862         }
1863
1864         /*
1865          * We got a tag, remove ourselves from the wait queue to ensure
1866          * someone else gets the wakeup.
1867          */
1868         list_del_init(&wait->entry);
1869         atomic_dec(&sbq->ws_active);
1870         spin_unlock(&hctx->dispatch_wait_lock);
1871         spin_unlock_irq(&wq->lock);
1872
1873         return true;
1874 }
1875
1876 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1877 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1878 /*
1879  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1880  * - EWMA is one simple way to compute running average value
1881  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1882  * - take 4 as factor for avoiding to get too small(0) result, and this
1883  *   factor doesn't matter because EWMA decreases exponentially
1884  */
1885 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1886 {
1887         unsigned int ewma;
1888
1889         ewma = hctx->dispatch_busy;
1890
1891         if (!ewma && !busy)
1892                 return;
1893
1894         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1895         if (busy)
1896                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1897         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1898
1899         hctx->dispatch_busy = ewma;
1900 }
1901
1902 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1903
1904 static void blk_mq_handle_dev_resource(struct request *rq,
1905                                        struct list_head *list)
1906 {
1907         list_add(&rq->queuelist, list);
1908         __blk_mq_requeue_request(rq);
1909 }
1910
1911 static void blk_mq_handle_zone_resource(struct request *rq,
1912                                         struct list_head *zone_list)
1913 {
1914         /*
1915          * If we end up here it is because we cannot dispatch a request to a
1916          * specific zone due to LLD level zone-write locking or other zone
1917          * related resource not being available. In this case, set the request
1918          * aside in zone_list for retrying it later.
1919          */
1920         list_add(&rq->queuelist, zone_list);
1921         __blk_mq_requeue_request(rq);
1922 }
1923
1924 enum prep_dispatch {
1925         PREP_DISPATCH_OK,
1926         PREP_DISPATCH_NO_TAG,
1927         PREP_DISPATCH_NO_BUDGET,
1928 };
1929
1930 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1931                                                   bool need_budget)
1932 {
1933         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1934         int budget_token = -1;
1935
1936         if (need_budget) {
1937                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1938                 if (budget_token < 0) {
1939                         blk_mq_put_driver_tag(rq);
1940                         return PREP_DISPATCH_NO_BUDGET;
1941                 }
1942                 blk_mq_set_rq_budget_token(rq, budget_token);
1943         }
1944
1945         if (!blk_mq_get_driver_tag(rq)) {
1946                 /*
1947                  * The initial allocation attempt failed, so we need to
1948                  * rerun the hardware queue when a tag is freed. The
1949                  * waitqueue takes care of that. If the queue is run
1950                  * before we add this entry back on the dispatch list,
1951                  * we'll re-run it below.
1952                  */
1953                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1954                         /*
1955                          * All budgets not got from this function will be put
1956                          * together during handling partial dispatch
1957                          */
1958                         if (need_budget)
1959                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1960                         return PREP_DISPATCH_NO_TAG;
1961                 }
1962         }
1963
1964         return PREP_DISPATCH_OK;
1965 }
1966
1967 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1968 static void blk_mq_release_budgets(struct request_queue *q,
1969                 struct list_head *list)
1970 {
1971         struct request *rq;
1972
1973         list_for_each_entry(rq, list, queuelist) {
1974                 int budget_token = blk_mq_get_rq_budget_token(rq);
1975
1976                 if (budget_token >= 0)
1977                         blk_mq_put_dispatch_budget(q, budget_token);
1978         }
1979 }
1980
1981 /*
1982  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1983  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1984  * details)
1985  * Attention, we should explicitly call this in unusual cases:
1986  *  1) did not queue everything initially scheduled to queue
1987  *  2) the last attempt to queue a request failed
1988  */
1989 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1990                               bool from_schedule)
1991 {
1992         if (hctx->queue->mq_ops->commit_rqs && queued) {
1993                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1994                 hctx->queue->mq_ops->commit_rqs(hctx);
1995         }
1996 }
1997
1998 /*
1999  * Returns true if we did some work AND can potentially do more.
2000  */
2001 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
2002                              unsigned int nr_budgets)
2003 {
2004         enum prep_dispatch prep;
2005         struct request_queue *q = hctx->queue;
2006         struct request *rq;
2007         int queued;
2008         blk_status_t ret = BLK_STS_OK;
2009         LIST_HEAD(zone_list);
2010         bool needs_resource = false;
2011
2012         if (list_empty(list))
2013                 return false;
2014
2015         /*
2016          * Now process all the entries, sending them to the driver.
2017          */
2018         queued = 0;
2019         do {
2020                 struct blk_mq_queue_data bd;
2021
2022                 rq = list_first_entry(list, struct request, queuelist);
2023
2024                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2025                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2026                 if (prep != PREP_DISPATCH_OK)
2027                         break;
2028
2029                 list_del_init(&rq->queuelist);
2030
2031                 bd.rq = rq;
2032                 bd.last = list_empty(list);
2033
2034                 /*
2035                  * once the request is queued to lld, no need to cover the
2036                  * budget any more
2037                  */
2038                 if (nr_budgets)
2039                         nr_budgets--;
2040                 ret = q->mq_ops->queue_rq(hctx, &bd);
2041                 switch (ret) {
2042                 case BLK_STS_OK:
2043                         queued++;
2044                         break;
2045                 case BLK_STS_RESOURCE:
2046                         needs_resource = true;
2047                         fallthrough;
2048                 case BLK_STS_DEV_RESOURCE:
2049                         blk_mq_handle_dev_resource(rq, list);
2050                         goto out;
2051                 case BLK_STS_ZONE_RESOURCE:
2052                         /*
2053                          * Move the request to zone_list and keep going through
2054                          * the dispatch list to find more requests the drive can
2055                          * accept.
2056                          */
2057                         blk_mq_handle_zone_resource(rq, &zone_list);
2058                         needs_resource = true;
2059                         break;
2060                 default:
2061                         blk_mq_end_request(rq, ret);
2062                 }
2063         } while (!list_empty(list));
2064 out:
2065         if (!list_empty(&zone_list))
2066                 list_splice_tail_init(&zone_list, list);
2067
2068         /* If we didn't flush the entire list, we could have told the driver
2069          * there was more coming, but that turned out to be a lie.
2070          */
2071         if (!list_empty(list) || ret != BLK_STS_OK)
2072                 blk_mq_commit_rqs(hctx, queued, false);
2073
2074         /*
2075          * Any items that need requeuing? Stuff them into hctx->dispatch,
2076          * that is where we will continue on next queue run.
2077          */
2078         if (!list_empty(list)) {
2079                 bool needs_restart;
2080                 /* For non-shared tags, the RESTART check will suffice */
2081                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2082                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2083                         blk_mq_is_shared_tags(hctx->flags));
2084
2085                 if (nr_budgets)
2086                         blk_mq_release_budgets(q, list);
2087
2088                 spin_lock(&hctx->lock);
2089                 list_splice_tail_init(list, &hctx->dispatch);
2090                 spin_unlock(&hctx->lock);
2091
2092                 /*
2093                  * Order adding requests to hctx->dispatch and checking
2094                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2095                  * in blk_mq_sched_restart(). Avoid restart code path to
2096                  * miss the new added requests to hctx->dispatch, meantime
2097                  * SCHED_RESTART is observed here.
2098                  */
2099                 smp_mb();
2100
2101                 /*
2102                  * If SCHED_RESTART was set by the caller of this function and
2103                  * it is no longer set that means that it was cleared by another
2104                  * thread and hence that a queue rerun is needed.
2105                  *
2106                  * If 'no_tag' is set, that means that we failed getting
2107                  * a driver tag with an I/O scheduler attached. If our dispatch
2108                  * waitqueue is no longer active, ensure that we run the queue
2109                  * AFTER adding our entries back to the list.
2110                  *
2111                  * If no I/O scheduler has been configured it is possible that
2112                  * the hardware queue got stopped and restarted before requests
2113                  * were pushed back onto the dispatch list. Rerun the queue to
2114                  * avoid starvation. Notes:
2115                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2116                  *   been stopped before rerunning a queue.
2117                  * - Some but not all block drivers stop a queue before
2118                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2119                  *   and dm-rq.
2120                  *
2121                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2122                  * bit is set, run queue after a delay to avoid IO stalls
2123                  * that could otherwise occur if the queue is idle.  We'll do
2124                  * similar if we couldn't get budget or couldn't lock a zone
2125                  * and SCHED_RESTART is set.
2126                  */
2127                 needs_restart = blk_mq_sched_needs_restart(hctx);
2128                 if (prep == PREP_DISPATCH_NO_BUDGET)
2129                         needs_resource = true;
2130                 if (!needs_restart ||
2131                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2132                         blk_mq_run_hw_queue(hctx, true);
2133                 else if (needs_resource)
2134                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2135
2136                 blk_mq_update_dispatch_busy(hctx, true);
2137                 return false;
2138         }
2139
2140         blk_mq_update_dispatch_busy(hctx, false);
2141         return true;
2142 }
2143
2144 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2145 {
2146         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2147
2148         if (cpu >= nr_cpu_ids)
2149                 cpu = cpumask_first(hctx->cpumask);
2150         return cpu;
2151 }
2152
2153 /*
2154  * It'd be great if the workqueue API had a way to pass
2155  * in a mask and had some smarts for more clever placement.
2156  * For now we just round-robin here, switching for every
2157  * BLK_MQ_CPU_WORK_BATCH queued items.
2158  */
2159 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2160 {
2161         bool tried = false;
2162         int next_cpu = hctx->next_cpu;
2163
2164         if (hctx->queue->nr_hw_queues == 1)
2165                 return WORK_CPU_UNBOUND;
2166
2167         if (--hctx->next_cpu_batch <= 0) {
2168 select_cpu:
2169                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2170                                 cpu_online_mask);
2171                 if (next_cpu >= nr_cpu_ids)
2172                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2173                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2174         }
2175
2176         /*
2177          * Do unbound schedule if we can't find a online CPU for this hctx,
2178          * and it should only happen in the path of handling CPU DEAD.
2179          */
2180         if (!cpu_online(next_cpu)) {
2181                 if (!tried) {
2182                         tried = true;
2183                         goto select_cpu;
2184                 }
2185
2186                 /*
2187                  * Make sure to re-select CPU next time once after CPUs
2188                  * in hctx->cpumask become online again.
2189                  */
2190                 hctx->next_cpu = next_cpu;
2191                 hctx->next_cpu_batch = 1;
2192                 return WORK_CPU_UNBOUND;
2193         }
2194
2195         hctx->next_cpu = next_cpu;
2196         return next_cpu;
2197 }
2198
2199 /**
2200  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2201  * @hctx: Pointer to the hardware queue to run.
2202  * @msecs: Milliseconds of delay to wait before running the queue.
2203  *
2204  * Run a hardware queue asynchronously with a delay of @msecs.
2205  */
2206 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2207 {
2208         if (unlikely(blk_mq_hctx_stopped(hctx)))
2209                 return;
2210         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2211                                     msecs_to_jiffies(msecs));
2212 }
2213 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2214
2215 /**
2216  * blk_mq_run_hw_queue - Start to run a hardware queue.
2217  * @hctx: Pointer to the hardware queue to run.
2218  * @async: If we want to run the queue asynchronously.
2219  *
2220  * Check if the request queue is not in a quiesced state and if there are
2221  * pending requests to be sent. If this is true, run the queue to send requests
2222  * to hardware.
2223  */
2224 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2225 {
2226         bool need_run;
2227
2228         /*
2229          * We can't run the queue inline with interrupts disabled.
2230          */
2231         WARN_ON_ONCE(!async && in_interrupt());
2232
2233         /*
2234          * When queue is quiesced, we may be switching io scheduler, or
2235          * updating nr_hw_queues, or other things, and we can't run queue
2236          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2237          *
2238          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2239          * quiesced.
2240          */
2241         __blk_mq_run_dispatch_ops(hctx->queue, false,
2242                 need_run = !blk_queue_quiesced(hctx->queue) &&
2243                 blk_mq_hctx_has_pending(hctx));
2244
2245         if (!need_run)
2246                 return;
2247
2248         if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2249             !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2250                 blk_mq_delay_run_hw_queue(hctx, 0);
2251                 return;
2252         }
2253
2254         blk_mq_run_dispatch_ops(hctx->queue,
2255                                 blk_mq_sched_dispatch_requests(hctx));
2256 }
2257 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2258
2259 /*
2260  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2261  * scheduler.
2262  */
2263 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2264 {
2265         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2266         /*
2267          * If the IO scheduler does not respect hardware queues when
2268          * dispatching, we just don't bother with multiple HW queues and
2269          * dispatch from hctx for the current CPU since running multiple queues
2270          * just causes lock contention inside the scheduler and pointless cache
2271          * bouncing.
2272          */
2273         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2274
2275         if (!blk_mq_hctx_stopped(hctx))
2276                 return hctx;
2277         return NULL;
2278 }
2279
2280 /**
2281  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2282  * @q: Pointer to the request queue to run.
2283  * @async: If we want to run the queue asynchronously.
2284  */
2285 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2286 {
2287         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2288         unsigned long i;
2289
2290         sq_hctx = NULL;
2291         if (blk_queue_sq_sched(q))
2292                 sq_hctx = blk_mq_get_sq_hctx(q);
2293         queue_for_each_hw_ctx(q, hctx, i) {
2294                 if (blk_mq_hctx_stopped(hctx))
2295                         continue;
2296                 /*
2297                  * Dispatch from this hctx either if there's no hctx preferred
2298                  * by IO scheduler or if it has requests that bypass the
2299                  * scheduler.
2300                  */
2301                 if (!sq_hctx || sq_hctx == hctx ||
2302                     !list_empty_careful(&hctx->dispatch))
2303                         blk_mq_run_hw_queue(hctx, async);
2304         }
2305 }
2306 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2307
2308 /**
2309  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2310  * @q: Pointer to the request queue to run.
2311  * @msecs: Milliseconds of delay to wait before running the queues.
2312  */
2313 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2314 {
2315         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2316         unsigned long i;
2317
2318         sq_hctx = NULL;
2319         if (blk_queue_sq_sched(q))
2320                 sq_hctx = blk_mq_get_sq_hctx(q);
2321         queue_for_each_hw_ctx(q, hctx, i) {
2322                 if (blk_mq_hctx_stopped(hctx))
2323                         continue;
2324                 /*
2325                  * If there is already a run_work pending, leave the
2326                  * pending delay untouched. Otherwise, a hctx can stall
2327                  * if another hctx is re-delaying the other's work
2328                  * before the work executes.
2329                  */
2330                 if (delayed_work_pending(&hctx->run_work))
2331                         continue;
2332                 /*
2333                  * Dispatch from this hctx either if there's no hctx preferred
2334                  * by IO scheduler or if it has requests that bypass the
2335                  * scheduler.
2336                  */
2337                 if (!sq_hctx || sq_hctx == hctx ||
2338                     !list_empty_careful(&hctx->dispatch))
2339                         blk_mq_delay_run_hw_queue(hctx, msecs);
2340         }
2341 }
2342 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2343
2344 /*
2345  * This function is often used for pausing .queue_rq() by driver when
2346  * there isn't enough resource or some conditions aren't satisfied, and
2347  * BLK_STS_RESOURCE is usually returned.
2348  *
2349  * We do not guarantee that dispatch can be drained or blocked
2350  * after blk_mq_stop_hw_queue() returns. Please use
2351  * blk_mq_quiesce_queue() for that requirement.
2352  */
2353 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2354 {
2355         cancel_delayed_work(&hctx->run_work);
2356
2357         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2358 }
2359 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2360
2361 /*
2362  * This function is often used for pausing .queue_rq() by driver when
2363  * there isn't enough resource or some conditions aren't satisfied, and
2364  * BLK_STS_RESOURCE is usually returned.
2365  *
2366  * We do not guarantee that dispatch can be drained or blocked
2367  * after blk_mq_stop_hw_queues() returns. Please use
2368  * blk_mq_quiesce_queue() for that requirement.
2369  */
2370 void blk_mq_stop_hw_queues(struct request_queue *q)
2371 {
2372         struct blk_mq_hw_ctx *hctx;
2373         unsigned long i;
2374
2375         queue_for_each_hw_ctx(q, hctx, i)
2376                 blk_mq_stop_hw_queue(hctx);
2377 }
2378 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2379
2380 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2381 {
2382         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2383
2384         blk_mq_run_hw_queue(hctx, false);
2385 }
2386 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2387
2388 void blk_mq_start_hw_queues(struct request_queue *q)
2389 {
2390         struct blk_mq_hw_ctx *hctx;
2391         unsigned long i;
2392
2393         queue_for_each_hw_ctx(q, hctx, i)
2394                 blk_mq_start_hw_queue(hctx);
2395 }
2396 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2397
2398 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2399 {
2400         if (!blk_mq_hctx_stopped(hctx))
2401                 return;
2402
2403         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2404         blk_mq_run_hw_queue(hctx, async);
2405 }
2406 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2407
2408 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2409 {
2410         struct blk_mq_hw_ctx *hctx;
2411         unsigned long i;
2412
2413         queue_for_each_hw_ctx(q, hctx, i)
2414                 blk_mq_start_stopped_hw_queue(hctx, async);
2415 }
2416 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2417
2418 static void blk_mq_run_work_fn(struct work_struct *work)
2419 {
2420         struct blk_mq_hw_ctx *hctx =
2421                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2422
2423         blk_mq_run_dispatch_ops(hctx->queue,
2424                                 blk_mq_sched_dispatch_requests(hctx));
2425 }
2426
2427 /**
2428  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2429  * @rq: Pointer to request to be inserted.
2430  * @flags: BLK_MQ_INSERT_*
2431  *
2432  * Should only be used carefully, when the caller knows we want to
2433  * bypass a potential IO scheduler on the target device.
2434  */
2435 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2436 {
2437         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2438
2439         spin_lock(&hctx->lock);
2440         if (flags & BLK_MQ_INSERT_AT_HEAD)
2441                 list_add(&rq->queuelist, &hctx->dispatch);
2442         else
2443                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2444         spin_unlock(&hctx->lock);
2445 }
2446
2447 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2448                 struct blk_mq_ctx *ctx, struct list_head *list,
2449                 bool run_queue_async)
2450 {
2451         struct request *rq;
2452         enum hctx_type type = hctx->type;
2453
2454         /*
2455          * Try to issue requests directly if the hw queue isn't busy to save an
2456          * extra enqueue & dequeue to the sw queue.
2457          */
2458         if (!hctx->dispatch_busy && !run_queue_async) {
2459                 blk_mq_run_dispatch_ops(hctx->queue,
2460                         blk_mq_try_issue_list_directly(hctx, list));
2461                 if (list_empty(list))
2462                         goto out;
2463         }
2464
2465         /*
2466          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2467          * offline now
2468          */
2469         list_for_each_entry(rq, list, queuelist) {
2470                 BUG_ON(rq->mq_ctx != ctx);
2471                 trace_block_rq_insert(rq);
2472         }
2473
2474         spin_lock(&ctx->lock);
2475         list_splice_tail_init(list, &ctx->rq_lists[type]);
2476         blk_mq_hctx_mark_pending(hctx, ctx);
2477         spin_unlock(&ctx->lock);
2478 out:
2479         blk_mq_run_hw_queue(hctx, run_queue_async);
2480 }
2481
2482 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2483 {
2484         struct request_queue *q = rq->q;
2485         struct blk_mq_ctx *ctx = rq->mq_ctx;
2486         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2487
2488         if (blk_rq_is_passthrough(rq)) {
2489                 /*
2490                  * Passthrough request have to be added to hctx->dispatch
2491                  * directly.  The device may be in a situation where it can't
2492                  * handle FS request, and always returns BLK_STS_RESOURCE for
2493                  * them, which gets them added to hctx->dispatch.
2494                  *
2495                  * If a passthrough request is required to unblock the queues,
2496                  * and it is added to the scheduler queue, there is no chance to
2497                  * dispatch it given we prioritize requests in hctx->dispatch.
2498                  */
2499                 blk_mq_request_bypass_insert(rq, flags);
2500         } else if (req_op(rq) == REQ_OP_FLUSH) {
2501                 /*
2502                  * Firstly normal IO request is inserted to scheduler queue or
2503                  * sw queue, meantime we add flush request to dispatch queue(
2504                  * hctx->dispatch) directly and there is at most one in-flight
2505                  * flush request for each hw queue, so it doesn't matter to add
2506                  * flush request to tail or front of the dispatch queue.
2507                  *
2508                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2509                  * command, and queueing it will fail when there is any
2510                  * in-flight normal IO request(NCQ command). When adding flush
2511                  * rq to the front of hctx->dispatch, it is easier to introduce
2512                  * extra time to flush rq's latency because of S_SCHED_RESTART
2513                  * compared with adding to the tail of dispatch queue, then
2514                  * chance of flush merge is increased, and less flush requests
2515                  * will be issued to controller. It is observed that ~10% time
2516                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2517                  * drive when adding flush rq to the front of hctx->dispatch.
2518                  *
2519                  * Simply queue flush rq to the front of hctx->dispatch so that
2520                  * intensive flush workloads can benefit in case of NCQ HW.
2521                  */
2522                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2523         } else if (q->elevator) {
2524                 LIST_HEAD(list);
2525
2526                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2527
2528                 list_add(&rq->queuelist, &list);
2529                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2530         } else {
2531                 trace_block_rq_insert(rq);
2532
2533                 spin_lock(&ctx->lock);
2534                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2535                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2536                 else
2537                         list_add_tail(&rq->queuelist,
2538                                       &ctx->rq_lists[hctx->type]);
2539                 blk_mq_hctx_mark_pending(hctx, ctx);
2540                 spin_unlock(&ctx->lock);
2541         }
2542 }
2543
2544 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2545                 unsigned int nr_segs)
2546 {
2547         int err;
2548
2549         if (bio->bi_opf & REQ_RAHEAD)
2550                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2551
2552         rq->__sector = bio->bi_iter.bi_sector;
2553         blk_rq_bio_prep(rq, bio, nr_segs);
2554
2555         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2556         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2557         WARN_ON_ONCE(err);
2558
2559         blk_account_io_start(rq);
2560 }
2561
2562 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2563                                             struct request *rq, bool last)
2564 {
2565         struct request_queue *q = rq->q;
2566         struct blk_mq_queue_data bd = {
2567                 .rq = rq,
2568                 .last = last,
2569         };
2570         blk_status_t ret;
2571
2572         /*
2573          * For OK queue, we are done. For error, caller may kill it.
2574          * Any other error (busy), just add it to our list as we
2575          * previously would have done.
2576          */
2577         ret = q->mq_ops->queue_rq(hctx, &bd);
2578         switch (ret) {
2579         case BLK_STS_OK:
2580                 blk_mq_update_dispatch_busy(hctx, false);
2581                 break;
2582         case BLK_STS_RESOURCE:
2583         case BLK_STS_DEV_RESOURCE:
2584                 blk_mq_update_dispatch_busy(hctx, true);
2585                 __blk_mq_requeue_request(rq);
2586                 break;
2587         default:
2588                 blk_mq_update_dispatch_busy(hctx, false);
2589                 break;
2590         }
2591
2592         return ret;
2593 }
2594
2595 static bool blk_mq_get_budget_and_tag(struct request *rq)
2596 {
2597         int budget_token;
2598
2599         budget_token = blk_mq_get_dispatch_budget(rq->q);
2600         if (budget_token < 0)
2601                 return false;
2602         blk_mq_set_rq_budget_token(rq, budget_token);
2603         if (!blk_mq_get_driver_tag(rq)) {
2604                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2605                 return false;
2606         }
2607         return true;
2608 }
2609
2610 /**
2611  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2612  * @hctx: Pointer of the associated hardware queue.
2613  * @rq: Pointer to request to be sent.
2614  *
2615  * If the device has enough resources to accept a new request now, send the
2616  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2617  * we can try send it another time in the future. Requests inserted at this
2618  * queue have higher priority.
2619  */
2620 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2621                 struct request *rq)
2622 {
2623         blk_status_t ret;
2624
2625         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2626                 blk_mq_insert_request(rq, 0);
2627                 return;
2628         }
2629
2630         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2631                 blk_mq_insert_request(rq, 0);
2632                 blk_mq_run_hw_queue(hctx, false);
2633                 return;
2634         }
2635
2636         ret = __blk_mq_issue_directly(hctx, rq, true);
2637         switch (ret) {
2638         case BLK_STS_OK:
2639                 break;
2640         case BLK_STS_RESOURCE:
2641         case BLK_STS_DEV_RESOURCE:
2642                 blk_mq_request_bypass_insert(rq, 0);
2643                 blk_mq_run_hw_queue(hctx, false);
2644                 break;
2645         default:
2646                 blk_mq_end_request(rq, ret);
2647                 break;
2648         }
2649 }
2650
2651 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2652 {
2653         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2654
2655         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2656                 blk_mq_insert_request(rq, 0);
2657                 return BLK_STS_OK;
2658         }
2659
2660         if (!blk_mq_get_budget_and_tag(rq))
2661                 return BLK_STS_RESOURCE;
2662         return __blk_mq_issue_directly(hctx, rq, last);
2663 }
2664
2665 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2666 {
2667         struct blk_mq_hw_ctx *hctx = NULL;
2668         struct request *rq;
2669         int queued = 0;
2670         blk_status_t ret = BLK_STS_OK;
2671
2672         while ((rq = rq_list_pop(&plug->mq_list))) {
2673                 bool last = rq_list_empty(plug->mq_list);
2674
2675                 if (hctx != rq->mq_hctx) {
2676                         if (hctx) {
2677                                 blk_mq_commit_rqs(hctx, queued, false);
2678                                 queued = 0;
2679                         }
2680                         hctx = rq->mq_hctx;
2681                 }
2682
2683                 ret = blk_mq_request_issue_directly(rq, last);
2684                 switch (ret) {
2685                 case BLK_STS_OK:
2686                         queued++;
2687                         break;
2688                 case BLK_STS_RESOURCE:
2689                 case BLK_STS_DEV_RESOURCE:
2690                         blk_mq_request_bypass_insert(rq, 0);
2691                         blk_mq_run_hw_queue(hctx, false);
2692                         goto out;
2693                 default:
2694                         blk_mq_end_request(rq, ret);
2695                         break;
2696                 }
2697         }
2698
2699 out:
2700         if (ret != BLK_STS_OK)
2701                 blk_mq_commit_rqs(hctx, queued, false);
2702 }
2703
2704 static void __blk_mq_flush_plug_list(struct request_queue *q,
2705                                      struct blk_plug *plug)
2706 {
2707         if (blk_queue_quiesced(q))
2708                 return;
2709         q->mq_ops->queue_rqs(&plug->mq_list);
2710 }
2711
2712 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2713 {
2714         struct blk_mq_hw_ctx *this_hctx = NULL;
2715         struct blk_mq_ctx *this_ctx = NULL;
2716         struct request *requeue_list = NULL;
2717         struct request **requeue_lastp = &requeue_list;
2718         unsigned int depth = 0;
2719         bool is_passthrough = false;
2720         LIST_HEAD(list);
2721
2722         do {
2723                 struct request *rq = rq_list_pop(&plug->mq_list);
2724
2725                 if (!this_hctx) {
2726                         this_hctx = rq->mq_hctx;
2727                         this_ctx = rq->mq_ctx;
2728                         is_passthrough = blk_rq_is_passthrough(rq);
2729                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2730                            is_passthrough != blk_rq_is_passthrough(rq)) {
2731                         rq_list_add_tail(&requeue_lastp, rq);
2732                         continue;
2733                 }
2734                 list_add(&rq->queuelist, &list);
2735                 depth++;
2736         } while (!rq_list_empty(plug->mq_list));
2737
2738         plug->mq_list = requeue_list;
2739         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2740
2741         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2742         /* passthrough requests should never be issued to the I/O scheduler */
2743         if (this_hctx->queue->elevator && !is_passthrough) {
2744                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2745                                 &list, 0);
2746                 blk_mq_run_hw_queue(this_hctx, from_sched);
2747         } else {
2748                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2749         }
2750         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2751 }
2752
2753 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2754 {
2755         struct request *rq;
2756
2757         if (rq_list_empty(plug->mq_list))
2758                 return;
2759         plug->rq_count = 0;
2760
2761         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2762                 struct request_queue *q;
2763
2764                 rq = rq_list_peek(&plug->mq_list);
2765                 q = rq->q;
2766
2767                 /*
2768                  * Peek first request and see if we have a ->queue_rqs() hook.
2769                  * If we do, we can dispatch the whole plug list in one go. We
2770                  * already know at this point that all requests belong to the
2771                  * same queue, caller must ensure that's the case.
2772                  *
2773                  * Since we pass off the full list to the driver at this point,
2774                  * we do not increment the active request count for the queue.
2775                  * Bypass shared tags for now because of that.
2776                  */
2777                 if (q->mq_ops->queue_rqs &&
2778                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2779                         blk_mq_run_dispatch_ops(q,
2780                                 __blk_mq_flush_plug_list(q, plug));
2781                         if (rq_list_empty(plug->mq_list))
2782                                 return;
2783                 }
2784
2785                 blk_mq_run_dispatch_ops(q,
2786                                 blk_mq_plug_issue_direct(plug));
2787                 if (rq_list_empty(plug->mq_list))
2788                         return;
2789         }
2790
2791         do {
2792                 blk_mq_dispatch_plug_list(plug, from_schedule);
2793         } while (!rq_list_empty(plug->mq_list));
2794 }
2795
2796 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2797                 struct list_head *list)
2798 {
2799         int queued = 0;
2800         blk_status_t ret = BLK_STS_OK;
2801
2802         while (!list_empty(list)) {
2803                 struct request *rq = list_first_entry(list, struct request,
2804                                 queuelist);
2805
2806                 list_del_init(&rq->queuelist);
2807                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2808                 switch (ret) {
2809                 case BLK_STS_OK:
2810                         queued++;
2811                         break;
2812                 case BLK_STS_RESOURCE:
2813                 case BLK_STS_DEV_RESOURCE:
2814                         blk_mq_request_bypass_insert(rq, 0);
2815                         if (list_empty(list))
2816                                 blk_mq_run_hw_queue(hctx, false);
2817                         goto out;
2818                 default:
2819                         blk_mq_end_request(rq, ret);
2820                         break;
2821                 }
2822         }
2823
2824 out:
2825         if (ret != BLK_STS_OK)
2826                 blk_mq_commit_rqs(hctx, queued, false);
2827 }
2828
2829 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2830                                      struct bio *bio, unsigned int nr_segs)
2831 {
2832         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2833                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2834                         return true;
2835                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2836                         return true;
2837         }
2838         return false;
2839 }
2840
2841 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2842                                                struct blk_plug *plug,
2843                                                struct bio *bio,
2844                                                unsigned int nsegs)
2845 {
2846         struct blk_mq_alloc_data data = {
2847                 .q              = q,
2848                 .nr_tags        = 1,
2849                 .cmd_flags      = bio->bi_opf,
2850         };
2851         struct request *rq;
2852
2853         if (unlikely(bio_queue_enter(bio)))
2854                 return NULL;
2855
2856         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2857                 goto queue_exit;
2858
2859         rq_qos_throttle(q, bio);
2860
2861         if (plug) {
2862                 data.nr_tags = plug->nr_ios;
2863                 plug->nr_ios = 1;
2864                 data.cached_rq = &plug->cached_rq;
2865         }
2866
2867         rq = __blk_mq_alloc_requests(&data);
2868         if (rq)
2869                 return rq;
2870         rq_qos_cleanup(q, bio);
2871         if (bio->bi_opf & REQ_NOWAIT)
2872                 bio_wouldblock_error(bio);
2873 queue_exit:
2874         blk_queue_exit(q);
2875         return NULL;
2876 }
2877
2878 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2879                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2880 {
2881         struct request *rq;
2882         enum hctx_type type, hctx_type;
2883
2884         if (!plug)
2885                 return NULL;
2886         rq = rq_list_peek(&plug->cached_rq);
2887         if (!rq || rq->q != q)
2888                 return NULL;
2889
2890         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2891                 *bio = NULL;
2892                 return NULL;
2893         }
2894
2895         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2896         hctx_type = rq->mq_hctx->type;
2897         if (type != hctx_type &&
2898             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2899                 return NULL;
2900         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2901                 return NULL;
2902
2903         /*
2904          * If any qos ->throttle() end up blocking, we will have flushed the
2905          * plug and hence killed the cached_rq list as well. Pop this entry
2906          * before we throttle.
2907          */
2908         plug->cached_rq = rq_list_next(rq);
2909         rq_qos_throttle(q, *bio);
2910
2911         rq->cmd_flags = (*bio)->bi_opf;
2912         INIT_LIST_HEAD(&rq->queuelist);
2913         return rq;
2914 }
2915
2916 static void bio_set_ioprio(struct bio *bio)
2917 {
2918         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2919         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2920                 bio->bi_ioprio = get_current_ioprio();
2921         blkcg_set_ioprio(bio);
2922 }
2923
2924 /**
2925  * blk_mq_submit_bio - Create and send a request to block device.
2926  * @bio: Bio pointer.
2927  *
2928  * Builds up a request structure from @q and @bio and send to the device. The
2929  * request may not be queued directly to hardware if:
2930  * * This request can be merged with another one
2931  * * We want to place request at plug queue for possible future merging
2932  * * There is an IO scheduler active at this queue
2933  *
2934  * It will not queue the request if there is an error with the bio, or at the
2935  * request creation.
2936  */
2937 void blk_mq_submit_bio(struct bio *bio)
2938 {
2939         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2940         struct blk_plug *plug = blk_mq_plug(bio);
2941         const int is_sync = op_is_sync(bio->bi_opf);
2942         struct blk_mq_hw_ctx *hctx;
2943         struct request *rq;
2944         unsigned int nr_segs = 1;
2945         blk_status_t ret;
2946
2947         bio = blk_queue_bounce(bio, q);
2948         if (bio_may_exceed_limits(bio, &q->limits)) {
2949                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2950                 if (!bio)
2951                         return;
2952         }
2953
2954         if (!bio_integrity_prep(bio))
2955                 return;
2956
2957         bio_set_ioprio(bio);
2958
2959         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2960         if (!rq) {
2961                 if (!bio)
2962                         return;
2963                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2964                 if (unlikely(!rq))
2965                         return;
2966         }
2967
2968         trace_block_getrq(bio);
2969
2970         rq_qos_track(q, rq, bio);
2971
2972         blk_mq_bio_to_request(rq, bio, nr_segs);
2973
2974         ret = blk_crypto_rq_get_keyslot(rq);
2975         if (ret != BLK_STS_OK) {
2976                 bio->bi_status = ret;
2977                 bio_endio(bio);
2978                 blk_mq_free_request(rq);
2979                 return;
2980         }
2981
2982         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2983                 return;
2984
2985         if (plug) {
2986                 blk_add_rq_to_plug(plug, rq);
2987                 return;
2988         }
2989
2990         hctx = rq->mq_hctx;
2991         if ((rq->rq_flags & RQF_USE_SCHED) ||
2992             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2993                 blk_mq_insert_request(rq, 0);
2994                 blk_mq_run_hw_queue(hctx, true);
2995         } else {
2996                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2997         }
2998 }
2999
3000 #ifdef CONFIG_BLK_MQ_STACKING
3001 /**
3002  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
3003  * @rq: the request being queued
3004  */
3005 blk_status_t blk_insert_cloned_request(struct request *rq)
3006 {
3007         struct request_queue *q = rq->q;
3008         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3009         unsigned int max_segments = blk_rq_get_max_segments(rq);
3010         blk_status_t ret;
3011
3012         if (blk_rq_sectors(rq) > max_sectors) {
3013                 /*
3014                  * SCSI device does not have a good way to return if
3015                  * Write Same/Zero is actually supported. If a device rejects
3016                  * a non-read/write command (discard, write same,etc.) the
3017                  * low-level device driver will set the relevant queue limit to
3018                  * 0 to prevent blk-lib from issuing more of the offending
3019                  * operations. Commands queued prior to the queue limit being
3020                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3021                  * errors being propagated to upper layers.
3022                  */
3023                 if (max_sectors == 0)
3024                         return BLK_STS_NOTSUPP;
3025
3026                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3027                         __func__, blk_rq_sectors(rq), max_sectors);
3028                 return BLK_STS_IOERR;
3029         }
3030
3031         /*
3032          * The queue settings related to segment counting may differ from the
3033          * original queue.
3034          */
3035         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3036         if (rq->nr_phys_segments > max_segments) {
3037                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3038                         __func__, rq->nr_phys_segments, max_segments);
3039                 return BLK_STS_IOERR;
3040         }
3041
3042         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3043                 return BLK_STS_IOERR;
3044
3045         ret = blk_crypto_rq_get_keyslot(rq);
3046         if (ret != BLK_STS_OK)
3047                 return ret;
3048
3049         blk_account_io_start(rq);
3050
3051         /*
3052          * Since we have a scheduler attached on the top device,
3053          * bypass a potential scheduler on the bottom device for
3054          * insert.
3055          */
3056         blk_mq_run_dispatch_ops(q,
3057                         ret = blk_mq_request_issue_directly(rq, true));
3058         if (ret)
3059                 blk_account_io_done(rq, ktime_get_ns());
3060         return ret;
3061 }
3062 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3063
3064 /**
3065  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3066  * @rq: the clone request to be cleaned up
3067  *
3068  * Description:
3069  *     Free all bios in @rq for a cloned request.
3070  */
3071 void blk_rq_unprep_clone(struct request *rq)
3072 {
3073         struct bio *bio;
3074
3075         while ((bio = rq->bio) != NULL) {
3076                 rq->bio = bio->bi_next;
3077
3078                 bio_put(bio);
3079         }
3080 }
3081 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3082
3083 /**
3084  * blk_rq_prep_clone - Helper function to setup clone request
3085  * @rq: the request to be setup
3086  * @rq_src: original request to be cloned
3087  * @bs: bio_set that bios for clone are allocated from
3088  * @gfp_mask: memory allocation mask for bio
3089  * @bio_ctr: setup function to be called for each clone bio.
3090  *           Returns %0 for success, non %0 for failure.
3091  * @data: private data to be passed to @bio_ctr
3092  *
3093  * Description:
3094  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3095  *     Also, pages which the original bios are pointing to are not copied
3096  *     and the cloned bios just point same pages.
3097  *     So cloned bios must be completed before original bios, which means
3098  *     the caller must complete @rq before @rq_src.
3099  */
3100 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3101                       struct bio_set *bs, gfp_t gfp_mask,
3102                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3103                       void *data)
3104 {
3105         struct bio *bio, *bio_src;
3106
3107         if (!bs)
3108                 bs = &fs_bio_set;
3109
3110         __rq_for_each_bio(bio_src, rq_src) {
3111                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3112                                       bs);
3113                 if (!bio)
3114                         goto free_and_out;
3115
3116                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3117                         goto free_and_out;
3118
3119                 if (rq->bio) {
3120                         rq->biotail->bi_next = bio;
3121                         rq->biotail = bio;
3122                 } else {
3123                         rq->bio = rq->biotail = bio;
3124                 }
3125                 bio = NULL;
3126         }
3127
3128         /* Copy attributes of the original request to the clone request. */
3129         rq->__sector = blk_rq_pos(rq_src);
3130         rq->__data_len = blk_rq_bytes(rq_src);
3131         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3132                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3133                 rq->special_vec = rq_src->special_vec;
3134         }
3135         rq->nr_phys_segments = rq_src->nr_phys_segments;
3136         rq->ioprio = rq_src->ioprio;
3137
3138         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3139                 goto free_and_out;
3140
3141         return 0;
3142
3143 free_and_out:
3144         if (bio)
3145                 bio_put(bio);
3146         blk_rq_unprep_clone(rq);
3147
3148         return -ENOMEM;
3149 }
3150 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3151 #endif /* CONFIG_BLK_MQ_STACKING */
3152
3153 /*
3154  * Steal bios from a request and add them to a bio list.
3155  * The request must not have been partially completed before.
3156  */
3157 void blk_steal_bios(struct bio_list *list, struct request *rq)
3158 {
3159         if (rq->bio) {
3160                 if (list->tail)
3161                         list->tail->bi_next = rq->bio;
3162                 else
3163                         list->head = rq->bio;
3164                 list->tail = rq->biotail;
3165
3166                 rq->bio = NULL;
3167                 rq->biotail = NULL;
3168         }
3169
3170         rq->__data_len = 0;
3171 }
3172 EXPORT_SYMBOL_GPL(blk_steal_bios);
3173
3174 static size_t order_to_size(unsigned int order)
3175 {
3176         return (size_t)PAGE_SIZE << order;
3177 }
3178
3179 /* called before freeing request pool in @tags */
3180 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3181                                     struct blk_mq_tags *tags)
3182 {
3183         struct page *page;
3184         unsigned long flags;
3185
3186         /*
3187          * There is no need to clear mapping if driver tags is not initialized
3188          * or the mapping belongs to the driver tags.
3189          */
3190         if (!drv_tags || drv_tags == tags)
3191                 return;
3192
3193         list_for_each_entry(page, &tags->page_list, lru) {
3194                 unsigned long start = (unsigned long)page_address(page);
3195                 unsigned long end = start + order_to_size(page->private);
3196                 int i;
3197
3198                 for (i = 0; i < drv_tags->nr_tags; i++) {
3199                         struct request *rq = drv_tags->rqs[i];
3200                         unsigned long rq_addr = (unsigned long)rq;
3201
3202                         if (rq_addr >= start && rq_addr < end) {
3203                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3204                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3205                         }
3206                 }
3207         }
3208
3209         /*
3210          * Wait until all pending iteration is done.
3211          *
3212          * Request reference is cleared and it is guaranteed to be observed
3213          * after the ->lock is released.
3214          */
3215         spin_lock_irqsave(&drv_tags->lock, flags);
3216         spin_unlock_irqrestore(&drv_tags->lock, flags);
3217 }
3218
3219 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3220                      unsigned int hctx_idx)
3221 {
3222         struct blk_mq_tags *drv_tags;
3223         struct page *page;
3224
3225         if (list_empty(&tags->page_list))
3226                 return;
3227
3228         if (blk_mq_is_shared_tags(set->flags))
3229                 drv_tags = set->shared_tags;
3230         else
3231                 drv_tags = set->tags[hctx_idx];
3232
3233         if (tags->static_rqs && set->ops->exit_request) {
3234                 int i;
3235
3236                 for (i = 0; i < tags->nr_tags; i++) {
3237                         struct request *rq = tags->static_rqs[i];
3238
3239                         if (!rq)
3240                                 continue;
3241                         set->ops->exit_request(set, rq, hctx_idx);
3242                         tags->static_rqs[i] = NULL;
3243                 }
3244         }
3245
3246         blk_mq_clear_rq_mapping(drv_tags, tags);
3247
3248         while (!list_empty(&tags->page_list)) {
3249                 page = list_first_entry(&tags->page_list, struct page, lru);
3250                 list_del_init(&page->lru);
3251                 /*
3252                  * Remove kmemleak object previously allocated in
3253                  * blk_mq_alloc_rqs().
3254                  */
3255                 kmemleak_free(page_address(page));
3256                 __free_pages(page, page->private);
3257         }
3258 }
3259
3260 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3261 {
3262         kfree(tags->rqs);
3263         tags->rqs = NULL;
3264         kfree(tags->static_rqs);
3265         tags->static_rqs = NULL;
3266
3267         blk_mq_free_tags(tags);
3268 }
3269
3270 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3271                 unsigned int hctx_idx)
3272 {
3273         int i;
3274
3275         for (i = 0; i < set->nr_maps; i++) {
3276                 unsigned int start = set->map[i].queue_offset;
3277                 unsigned int end = start + set->map[i].nr_queues;
3278
3279                 if (hctx_idx >= start && hctx_idx < end)
3280                         break;
3281         }
3282
3283         if (i >= set->nr_maps)
3284                 i = HCTX_TYPE_DEFAULT;
3285
3286         return i;
3287 }
3288
3289 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3290                 unsigned int hctx_idx)
3291 {
3292         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3293
3294         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3295 }
3296
3297 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3298                                                unsigned int hctx_idx,
3299                                                unsigned int nr_tags,
3300                                                unsigned int reserved_tags)
3301 {
3302         int node = blk_mq_get_hctx_node(set, hctx_idx);
3303         struct blk_mq_tags *tags;
3304
3305         if (node == NUMA_NO_NODE)
3306                 node = set->numa_node;
3307
3308         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3309                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3310         if (!tags)
3311                 return NULL;
3312
3313         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3314                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3315                                  node);
3316         if (!tags->rqs)
3317                 goto err_free_tags;
3318
3319         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3320                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3321                                         node);
3322         if (!tags->static_rqs)
3323                 goto err_free_rqs;
3324
3325         return tags;
3326
3327 err_free_rqs:
3328         kfree(tags->rqs);
3329 err_free_tags:
3330         blk_mq_free_tags(tags);
3331         return NULL;
3332 }
3333
3334 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3335                                unsigned int hctx_idx, int node)
3336 {
3337         int ret;
3338
3339         if (set->ops->init_request) {
3340                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3341                 if (ret)
3342                         return ret;
3343         }
3344
3345         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3346         return 0;
3347 }
3348
3349 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3350                             struct blk_mq_tags *tags,
3351                             unsigned int hctx_idx, unsigned int depth)
3352 {
3353         unsigned int i, j, entries_per_page, max_order = 4;
3354         int node = blk_mq_get_hctx_node(set, hctx_idx);
3355         size_t rq_size, left;
3356
3357         if (node == NUMA_NO_NODE)
3358                 node = set->numa_node;
3359
3360         INIT_LIST_HEAD(&tags->page_list);
3361
3362         /*
3363          * rq_size is the size of the request plus driver payload, rounded
3364          * to the cacheline size
3365          */
3366         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3367                                 cache_line_size());
3368         left = rq_size * depth;
3369
3370         for (i = 0; i < depth; ) {
3371                 int this_order = max_order;
3372                 struct page *page;
3373                 int to_do;
3374                 void *p;
3375
3376                 while (this_order && left < order_to_size(this_order - 1))
3377                         this_order--;
3378
3379                 do {
3380                         page = alloc_pages_node(node,
3381                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3382                                 this_order);
3383                         if (page)
3384                                 break;
3385                         if (!this_order--)
3386                                 break;
3387                         if (order_to_size(this_order) < rq_size)
3388                                 break;
3389                 } while (1);
3390
3391                 if (!page)
3392                         goto fail;
3393
3394                 page->private = this_order;
3395                 list_add_tail(&page->lru, &tags->page_list);
3396
3397                 p = page_address(page);
3398                 /*
3399                  * Allow kmemleak to scan these pages as they contain pointers
3400                  * to additional allocations like via ops->init_request().
3401                  */
3402                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3403                 entries_per_page = order_to_size(this_order) / rq_size;
3404                 to_do = min(entries_per_page, depth - i);
3405                 left -= to_do * rq_size;
3406                 for (j = 0; j < to_do; j++) {
3407                         struct request *rq = p;
3408
3409                         tags->static_rqs[i] = rq;
3410                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3411                                 tags->static_rqs[i] = NULL;
3412                                 goto fail;
3413                         }
3414
3415                         p += rq_size;
3416                         i++;
3417                 }
3418         }
3419         return 0;
3420
3421 fail:
3422         blk_mq_free_rqs(set, tags, hctx_idx);
3423         return -ENOMEM;
3424 }
3425
3426 struct rq_iter_data {
3427         struct blk_mq_hw_ctx *hctx;
3428         bool has_rq;
3429 };
3430
3431 static bool blk_mq_has_request(struct request *rq, void *data)
3432 {
3433         struct rq_iter_data *iter_data = data;
3434
3435         if (rq->mq_hctx != iter_data->hctx)
3436                 return true;
3437         iter_data->has_rq = true;
3438         return false;
3439 }
3440
3441 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3442 {
3443         struct blk_mq_tags *tags = hctx->sched_tags ?
3444                         hctx->sched_tags : hctx->tags;
3445         struct rq_iter_data data = {
3446                 .hctx   = hctx,
3447         };
3448
3449         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3450         return data.has_rq;
3451 }
3452
3453 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3454                 struct blk_mq_hw_ctx *hctx)
3455 {
3456         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3457                 return false;
3458         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3459                 return false;
3460         return true;
3461 }
3462
3463 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3464 {
3465         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3466                         struct blk_mq_hw_ctx, cpuhp_online);
3467
3468         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3469             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3470                 return 0;
3471
3472         /*
3473          * Prevent new request from being allocated on the current hctx.
3474          *
3475          * The smp_mb__after_atomic() Pairs with the implied barrier in
3476          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3477          * seen once we return from the tag allocator.
3478          */
3479         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3480         smp_mb__after_atomic();
3481
3482         /*
3483          * Try to grab a reference to the queue and wait for any outstanding
3484          * requests.  If we could not grab a reference the queue has been
3485          * frozen and there are no requests.
3486          */
3487         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3488                 while (blk_mq_hctx_has_requests(hctx))
3489                         msleep(5);
3490                 percpu_ref_put(&hctx->queue->q_usage_counter);
3491         }
3492
3493         return 0;
3494 }
3495
3496 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3497 {
3498         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3499                         struct blk_mq_hw_ctx, cpuhp_online);
3500
3501         if (cpumask_test_cpu(cpu, hctx->cpumask))
3502                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3503         return 0;
3504 }
3505
3506 /*
3507  * 'cpu' is going away. splice any existing rq_list entries from this
3508  * software queue to the hw queue dispatch list, and ensure that it
3509  * gets run.
3510  */
3511 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3512 {
3513         struct blk_mq_hw_ctx *hctx;
3514         struct blk_mq_ctx *ctx;
3515         LIST_HEAD(tmp);
3516         enum hctx_type type;
3517
3518         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3519         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3520                 return 0;
3521
3522         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3523         type = hctx->type;
3524
3525         spin_lock(&ctx->lock);
3526         if (!list_empty(&ctx->rq_lists[type])) {
3527                 list_splice_init(&ctx->rq_lists[type], &tmp);
3528                 blk_mq_hctx_clear_pending(hctx, ctx);
3529         }
3530         spin_unlock(&ctx->lock);
3531
3532         if (list_empty(&tmp))
3533                 return 0;
3534
3535         spin_lock(&hctx->lock);
3536         list_splice_tail_init(&tmp, &hctx->dispatch);
3537         spin_unlock(&hctx->lock);
3538
3539         blk_mq_run_hw_queue(hctx, true);
3540         return 0;
3541 }
3542
3543 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3544 {
3545         if (!(hctx->flags & BLK_MQ_F_STACKING))
3546                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3547                                                     &hctx->cpuhp_online);
3548         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3549                                             &hctx->cpuhp_dead);
3550 }
3551
3552 /*
3553  * Before freeing hw queue, clearing the flush request reference in
3554  * tags->rqs[] for avoiding potential UAF.
3555  */
3556 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3557                 unsigned int queue_depth, struct request *flush_rq)
3558 {
3559         int i;
3560         unsigned long flags;
3561
3562         /* The hw queue may not be mapped yet */
3563         if (!tags)
3564                 return;
3565
3566         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3567
3568         for (i = 0; i < queue_depth; i++)
3569                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3570
3571         /*
3572          * Wait until all pending iteration is done.
3573          *
3574          * Request reference is cleared and it is guaranteed to be observed
3575          * after the ->lock is released.
3576          */
3577         spin_lock_irqsave(&tags->lock, flags);
3578         spin_unlock_irqrestore(&tags->lock, flags);
3579 }
3580
3581 /* hctx->ctxs will be freed in queue's release handler */
3582 static void blk_mq_exit_hctx(struct request_queue *q,
3583                 struct blk_mq_tag_set *set,
3584                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3585 {
3586         struct request *flush_rq = hctx->fq->flush_rq;
3587
3588         if (blk_mq_hw_queue_mapped(hctx))
3589                 blk_mq_tag_idle(hctx);
3590
3591         if (blk_queue_init_done(q))
3592                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3593                                 set->queue_depth, flush_rq);
3594         if (set->ops->exit_request)
3595                 set->ops->exit_request(set, flush_rq, hctx_idx);
3596
3597         if (set->ops->exit_hctx)
3598                 set->ops->exit_hctx(hctx, hctx_idx);
3599
3600         blk_mq_remove_cpuhp(hctx);
3601
3602         xa_erase(&q->hctx_table, hctx_idx);
3603
3604         spin_lock(&q->unused_hctx_lock);
3605         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3606         spin_unlock(&q->unused_hctx_lock);
3607 }
3608
3609 static void blk_mq_exit_hw_queues(struct request_queue *q,
3610                 struct blk_mq_tag_set *set, int nr_queue)
3611 {
3612         struct blk_mq_hw_ctx *hctx;
3613         unsigned long i;
3614
3615         queue_for_each_hw_ctx(q, hctx, i) {
3616                 if (i == nr_queue)
3617                         break;
3618                 blk_mq_exit_hctx(q, set, hctx, i);
3619         }
3620 }
3621
3622 static int blk_mq_init_hctx(struct request_queue *q,
3623                 struct blk_mq_tag_set *set,
3624                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3625 {
3626         hctx->queue_num = hctx_idx;
3627
3628         if (!(hctx->flags & BLK_MQ_F_STACKING))
3629                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3630                                 &hctx->cpuhp_online);
3631         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3632
3633         hctx->tags = set->tags[hctx_idx];
3634
3635         if (set->ops->init_hctx &&
3636             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3637                 goto unregister_cpu_notifier;
3638
3639         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3640                                 hctx->numa_node))
3641                 goto exit_hctx;
3642
3643         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3644                 goto exit_flush_rq;
3645
3646         return 0;
3647
3648  exit_flush_rq:
3649         if (set->ops->exit_request)
3650                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3651  exit_hctx:
3652         if (set->ops->exit_hctx)
3653                 set->ops->exit_hctx(hctx, hctx_idx);
3654  unregister_cpu_notifier:
3655         blk_mq_remove_cpuhp(hctx);
3656         return -1;
3657 }
3658
3659 static struct blk_mq_hw_ctx *
3660 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3661                 int node)
3662 {
3663         struct blk_mq_hw_ctx *hctx;
3664         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3665
3666         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3667         if (!hctx)
3668                 goto fail_alloc_hctx;
3669
3670         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3671                 goto free_hctx;
3672
3673         atomic_set(&hctx->nr_active, 0);
3674         if (node == NUMA_NO_NODE)
3675                 node = set->numa_node;
3676         hctx->numa_node = node;
3677
3678         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3679         spin_lock_init(&hctx->lock);
3680         INIT_LIST_HEAD(&hctx->dispatch);
3681         hctx->queue = q;
3682         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3683
3684         INIT_LIST_HEAD(&hctx->hctx_list);
3685
3686         /*
3687          * Allocate space for all possible cpus to avoid allocation at
3688          * runtime
3689          */
3690         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3691                         gfp, node);
3692         if (!hctx->ctxs)
3693                 goto free_cpumask;
3694
3695         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3696                                 gfp, node, false, false))
3697                 goto free_ctxs;
3698         hctx->nr_ctx = 0;
3699
3700         spin_lock_init(&hctx->dispatch_wait_lock);
3701         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3702         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3703
3704         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3705         if (!hctx->fq)
3706                 goto free_bitmap;
3707
3708         blk_mq_hctx_kobj_init(hctx);
3709
3710         return hctx;
3711
3712  free_bitmap:
3713         sbitmap_free(&hctx->ctx_map);
3714  free_ctxs:
3715         kfree(hctx->ctxs);
3716  free_cpumask:
3717         free_cpumask_var(hctx->cpumask);
3718  free_hctx:
3719         kfree(hctx);
3720  fail_alloc_hctx:
3721         return NULL;
3722 }
3723
3724 static void blk_mq_init_cpu_queues(struct request_queue *q,
3725                                    unsigned int nr_hw_queues)
3726 {
3727         struct blk_mq_tag_set *set = q->tag_set;
3728         unsigned int i, j;
3729
3730         for_each_possible_cpu(i) {
3731                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3732                 struct blk_mq_hw_ctx *hctx;
3733                 int k;
3734
3735                 __ctx->cpu = i;
3736                 spin_lock_init(&__ctx->lock);
3737                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3738                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3739
3740                 __ctx->queue = q;
3741
3742                 /*
3743                  * Set local node, IFF we have more than one hw queue. If
3744                  * not, we remain on the home node of the device
3745                  */
3746                 for (j = 0; j < set->nr_maps; j++) {
3747                         hctx = blk_mq_map_queue_type(q, j, i);
3748                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3749                                 hctx->numa_node = cpu_to_node(i);
3750                 }
3751         }
3752 }
3753
3754 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3755                                              unsigned int hctx_idx,
3756                                              unsigned int depth)
3757 {
3758         struct blk_mq_tags *tags;
3759         int ret;
3760
3761         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3762         if (!tags)
3763                 return NULL;
3764
3765         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3766         if (ret) {
3767                 blk_mq_free_rq_map(tags);
3768                 return NULL;
3769         }
3770
3771         return tags;
3772 }
3773
3774 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3775                                        int hctx_idx)
3776 {
3777         if (blk_mq_is_shared_tags(set->flags)) {
3778                 set->tags[hctx_idx] = set->shared_tags;
3779
3780                 return true;
3781         }
3782
3783         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3784                                                        set->queue_depth);
3785
3786         return set->tags[hctx_idx];
3787 }
3788
3789 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3790                              struct blk_mq_tags *tags,
3791                              unsigned int hctx_idx)
3792 {
3793         if (tags) {
3794                 blk_mq_free_rqs(set, tags, hctx_idx);
3795                 blk_mq_free_rq_map(tags);
3796         }
3797 }
3798
3799 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3800                                       unsigned int hctx_idx)
3801 {
3802         if (!blk_mq_is_shared_tags(set->flags))
3803                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3804
3805         set->tags[hctx_idx] = NULL;
3806 }
3807
3808 static void blk_mq_map_swqueue(struct request_queue *q)
3809 {
3810         unsigned int j, hctx_idx;
3811         unsigned long i;
3812         struct blk_mq_hw_ctx *hctx;
3813         struct blk_mq_ctx *ctx;
3814         struct blk_mq_tag_set *set = q->tag_set;
3815
3816         queue_for_each_hw_ctx(q, hctx, i) {
3817                 cpumask_clear(hctx->cpumask);
3818                 hctx->nr_ctx = 0;
3819                 hctx->dispatch_from = NULL;
3820         }
3821
3822         /*
3823          * Map software to hardware queues.
3824          *
3825          * If the cpu isn't present, the cpu is mapped to first hctx.
3826          */
3827         for_each_possible_cpu(i) {
3828
3829                 ctx = per_cpu_ptr(q->queue_ctx, i);
3830                 for (j = 0; j < set->nr_maps; j++) {
3831                         if (!set->map[j].nr_queues) {
3832                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3833                                                 HCTX_TYPE_DEFAULT, i);
3834                                 continue;
3835                         }
3836                         hctx_idx = set->map[j].mq_map[i];
3837                         /* unmapped hw queue can be remapped after CPU topo changed */
3838                         if (!set->tags[hctx_idx] &&
3839                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3840                                 /*
3841                                  * If tags initialization fail for some hctx,
3842                                  * that hctx won't be brought online.  In this
3843                                  * case, remap the current ctx to hctx[0] which
3844                                  * is guaranteed to always have tags allocated
3845                                  */
3846                                 set->map[j].mq_map[i] = 0;
3847                         }
3848
3849                         hctx = blk_mq_map_queue_type(q, j, i);
3850                         ctx->hctxs[j] = hctx;
3851                         /*
3852                          * If the CPU is already set in the mask, then we've
3853                          * mapped this one already. This can happen if
3854                          * devices share queues across queue maps.
3855                          */
3856                         if (cpumask_test_cpu(i, hctx->cpumask))
3857                                 continue;
3858
3859                         cpumask_set_cpu(i, hctx->cpumask);
3860                         hctx->type = j;
3861                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3862                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3863
3864                         /*
3865                          * If the nr_ctx type overflows, we have exceeded the
3866                          * amount of sw queues we can support.
3867                          */
3868                         BUG_ON(!hctx->nr_ctx);
3869                 }
3870
3871                 for (; j < HCTX_MAX_TYPES; j++)
3872                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3873                                         HCTX_TYPE_DEFAULT, i);
3874         }
3875
3876         queue_for_each_hw_ctx(q, hctx, i) {
3877                 /*
3878                  * If no software queues are mapped to this hardware queue,
3879                  * disable it and free the request entries.
3880                  */
3881                 if (!hctx->nr_ctx) {
3882                         /* Never unmap queue 0.  We need it as a
3883                          * fallback in case of a new remap fails
3884                          * allocation
3885                          */
3886                         if (i)
3887                                 __blk_mq_free_map_and_rqs(set, i);
3888
3889                         hctx->tags = NULL;
3890                         continue;
3891                 }
3892
3893                 hctx->tags = set->tags[i];
3894                 WARN_ON(!hctx->tags);
3895
3896                 /*
3897                  * Set the map size to the number of mapped software queues.
3898                  * This is more accurate and more efficient than looping
3899                  * over all possibly mapped software queues.
3900                  */
3901                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3902
3903                 /*
3904                  * Initialize batch roundrobin counts
3905                  */
3906                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3907                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3908         }
3909 }
3910
3911 /*
3912  * Caller needs to ensure that we're either frozen/quiesced, or that
3913  * the queue isn't live yet.
3914  */
3915 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3916 {
3917         struct blk_mq_hw_ctx *hctx;
3918         unsigned long i;
3919
3920         queue_for_each_hw_ctx(q, hctx, i) {
3921                 if (shared) {
3922                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3923                 } else {
3924                         blk_mq_tag_idle(hctx);
3925                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3926                 }
3927         }
3928 }
3929
3930 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3931                                          bool shared)
3932 {
3933         struct request_queue *q;
3934
3935         lockdep_assert_held(&set->tag_list_lock);
3936
3937         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3938                 blk_mq_freeze_queue(q);
3939                 queue_set_hctx_shared(q, shared);
3940                 blk_mq_unfreeze_queue(q);
3941         }
3942 }
3943
3944 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3945 {
3946         struct blk_mq_tag_set *set = q->tag_set;
3947
3948         mutex_lock(&set->tag_list_lock);
3949         list_del(&q->tag_set_list);
3950         if (list_is_singular(&set->tag_list)) {
3951                 /* just transitioned to unshared */
3952                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3953                 /* update existing queue */
3954                 blk_mq_update_tag_set_shared(set, false);
3955         }
3956         mutex_unlock(&set->tag_list_lock);
3957         INIT_LIST_HEAD(&q->tag_set_list);
3958 }
3959
3960 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3961                                      struct request_queue *q)
3962 {
3963         mutex_lock(&set->tag_list_lock);
3964
3965         /*
3966          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3967          */
3968         if (!list_empty(&set->tag_list) &&
3969             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3970                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3971                 /* update existing queue */
3972                 blk_mq_update_tag_set_shared(set, true);
3973         }
3974         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3975                 queue_set_hctx_shared(q, true);
3976         list_add_tail(&q->tag_set_list, &set->tag_list);
3977
3978         mutex_unlock(&set->tag_list_lock);
3979 }
3980
3981 /* All allocations will be freed in release handler of q->mq_kobj */
3982 static int blk_mq_alloc_ctxs(struct request_queue *q)
3983 {
3984         struct blk_mq_ctxs *ctxs;
3985         int cpu;
3986
3987         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3988         if (!ctxs)
3989                 return -ENOMEM;
3990
3991         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3992         if (!ctxs->queue_ctx)
3993                 goto fail;
3994
3995         for_each_possible_cpu(cpu) {
3996                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3997                 ctx->ctxs = ctxs;
3998         }
3999
4000         q->mq_kobj = &ctxs->kobj;
4001         q->queue_ctx = ctxs->queue_ctx;
4002
4003         return 0;
4004  fail:
4005         kfree(ctxs);
4006         return -ENOMEM;
4007 }
4008
4009 /*
4010  * It is the actual release handler for mq, but we do it from
4011  * request queue's release handler for avoiding use-after-free
4012  * and headache because q->mq_kobj shouldn't have been introduced,
4013  * but we can't group ctx/kctx kobj without it.
4014  */
4015 void blk_mq_release(struct request_queue *q)
4016 {
4017         struct blk_mq_hw_ctx *hctx, *next;
4018         unsigned long i;
4019
4020         queue_for_each_hw_ctx(q, hctx, i)
4021                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4022
4023         /* all hctx are in .unused_hctx_list now */
4024         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4025                 list_del_init(&hctx->hctx_list);
4026                 kobject_put(&hctx->kobj);
4027         }
4028
4029         xa_destroy(&q->hctx_table);
4030
4031         /*
4032          * release .mq_kobj and sw queue's kobject now because
4033          * both share lifetime with request queue.
4034          */
4035         blk_mq_sysfs_deinit(q);
4036 }
4037
4038 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4039                 void *queuedata)
4040 {
4041         struct request_queue *q;
4042         int ret;
4043
4044         q = blk_alloc_queue(set->numa_node);
4045         if (!q)
4046                 return ERR_PTR(-ENOMEM);
4047         q->queuedata = queuedata;
4048         ret = blk_mq_init_allocated_queue(set, q);
4049         if (ret) {
4050                 blk_put_queue(q);
4051                 return ERR_PTR(ret);
4052         }
4053         return q;
4054 }
4055
4056 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4057 {
4058         return blk_mq_init_queue_data(set, NULL);
4059 }
4060 EXPORT_SYMBOL(blk_mq_init_queue);
4061
4062 /**
4063  * blk_mq_destroy_queue - shutdown a request queue
4064  * @q: request queue to shutdown
4065  *
4066  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4067  * requests will be failed with -ENODEV. The caller is responsible for dropping
4068  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4069  *
4070  * Context: can sleep
4071  */
4072 void blk_mq_destroy_queue(struct request_queue *q)
4073 {
4074         WARN_ON_ONCE(!queue_is_mq(q));
4075         WARN_ON_ONCE(blk_queue_registered(q));
4076
4077         might_sleep();
4078
4079         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4080         blk_queue_start_drain(q);
4081         blk_mq_freeze_queue_wait(q);
4082
4083         blk_sync_queue(q);
4084         blk_mq_cancel_work_sync(q);
4085         blk_mq_exit_queue(q);
4086 }
4087 EXPORT_SYMBOL(blk_mq_destroy_queue);
4088
4089 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4090                 struct lock_class_key *lkclass)
4091 {
4092         struct request_queue *q;
4093         struct gendisk *disk;
4094
4095         q = blk_mq_init_queue_data(set, queuedata);
4096         if (IS_ERR(q))
4097                 return ERR_CAST(q);
4098
4099         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4100         if (!disk) {
4101                 blk_mq_destroy_queue(q);
4102                 blk_put_queue(q);
4103                 return ERR_PTR(-ENOMEM);
4104         }
4105         set_bit(GD_OWNS_QUEUE, &disk->state);
4106         return disk;
4107 }
4108 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4109
4110 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4111                 struct lock_class_key *lkclass)
4112 {
4113         struct gendisk *disk;
4114
4115         if (!blk_get_queue(q))
4116                 return NULL;
4117         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4118         if (!disk)
4119                 blk_put_queue(q);
4120         return disk;
4121 }
4122 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4123
4124 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4125                 struct blk_mq_tag_set *set, struct request_queue *q,
4126                 int hctx_idx, int node)
4127 {
4128         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4129
4130         /* reuse dead hctx first */
4131         spin_lock(&q->unused_hctx_lock);
4132         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4133                 if (tmp->numa_node == node) {
4134                         hctx = tmp;
4135                         break;
4136                 }
4137         }
4138         if (hctx)
4139                 list_del_init(&hctx->hctx_list);
4140         spin_unlock(&q->unused_hctx_lock);
4141
4142         if (!hctx)
4143                 hctx = blk_mq_alloc_hctx(q, set, node);
4144         if (!hctx)
4145                 goto fail;
4146
4147         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4148                 goto free_hctx;
4149
4150         return hctx;
4151
4152  free_hctx:
4153         kobject_put(&hctx->kobj);
4154  fail:
4155         return NULL;
4156 }
4157
4158 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4159                                                 struct request_queue *q)
4160 {
4161         struct blk_mq_hw_ctx *hctx;
4162         unsigned long i, j;
4163
4164         /* protect against switching io scheduler  */
4165         mutex_lock(&q->sysfs_lock);
4166         for (i = 0; i < set->nr_hw_queues; i++) {
4167                 int old_node;
4168                 int node = blk_mq_get_hctx_node(set, i);
4169                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4170
4171                 if (old_hctx) {
4172                         old_node = old_hctx->numa_node;
4173                         blk_mq_exit_hctx(q, set, old_hctx, i);
4174                 }
4175
4176                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4177                         if (!old_hctx)
4178                                 break;
4179                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4180                                         node, old_node);
4181                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4182                         WARN_ON_ONCE(!hctx);
4183                 }
4184         }
4185         /*
4186          * Increasing nr_hw_queues fails. Free the newly allocated
4187          * hctxs and keep the previous q->nr_hw_queues.
4188          */
4189         if (i != set->nr_hw_queues) {
4190                 j = q->nr_hw_queues;
4191         } else {
4192                 j = i;
4193                 q->nr_hw_queues = set->nr_hw_queues;
4194         }
4195
4196         xa_for_each_start(&q->hctx_table, j, hctx, j)
4197                 blk_mq_exit_hctx(q, set, hctx, j);
4198         mutex_unlock(&q->sysfs_lock);
4199 }
4200
4201 static void blk_mq_update_poll_flag(struct request_queue *q)
4202 {
4203         struct blk_mq_tag_set *set = q->tag_set;
4204
4205         if (set->nr_maps > HCTX_TYPE_POLL &&
4206             set->map[HCTX_TYPE_POLL].nr_queues)
4207                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4208         else
4209                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4210 }
4211
4212 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4213                 struct request_queue *q)
4214 {
4215         /* mark the queue as mq asap */
4216         q->mq_ops = set->ops;
4217
4218         if (blk_mq_alloc_ctxs(q))
4219                 goto err_exit;
4220
4221         /* init q->mq_kobj and sw queues' kobjects */
4222         blk_mq_sysfs_init(q);
4223
4224         INIT_LIST_HEAD(&q->unused_hctx_list);
4225         spin_lock_init(&q->unused_hctx_lock);
4226
4227         xa_init(&q->hctx_table);
4228
4229         blk_mq_realloc_hw_ctxs(set, q);
4230         if (!q->nr_hw_queues)
4231                 goto err_hctxs;
4232
4233         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4234         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4235
4236         q->tag_set = set;
4237
4238         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4239         blk_mq_update_poll_flag(q);
4240
4241         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4242         INIT_LIST_HEAD(&q->requeue_list);
4243         spin_lock_init(&q->requeue_lock);
4244
4245         q->nr_requests = set->queue_depth;
4246
4247         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4248         blk_mq_add_queue_tag_set(set, q);
4249         blk_mq_map_swqueue(q);
4250         return 0;
4251
4252 err_hctxs:
4253         blk_mq_release(q);
4254 err_exit:
4255         q->mq_ops = NULL;
4256         return -ENOMEM;
4257 }
4258 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4259
4260 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4261 void blk_mq_exit_queue(struct request_queue *q)
4262 {
4263         struct blk_mq_tag_set *set = q->tag_set;
4264
4265         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4266         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4267         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4268         blk_mq_del_queue_tag_set(q);
4269 }
4270
4271 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4272 {
4273         int i;
4274
4275         if (blk_mq_is_shared_tags(set->flags)) {
4276                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4277                                                 BLK_MQ_NO_HCTX_IDX,
4278                                                 set->queue_depth);
4279                 if (!set->shared_tags)
4280                         return -ENOMEM;
4281         }
4282
4283         for (i = 0; i < set->nr_hw_queues; i++) {
4284                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4285                         goto out_unwind;
4286                 cond_resched();
4287         }
4288
4289         return 0;
4290
4291 out_unwind:
4292         while (--i >= 0)
4293                 __blk_mq_free_map_and_rqs(set, i);
4294
4295         if (blk_mq_is_shared_tags(set->flags)) {
4296                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4297                                         BLK_MQ_NO_HCTX_IDX);
4298         }
4299
4300         return -ENOMEM;
4301 }
4302
4303 /*
4304  * Allocate the request maps associated with this tag_set. Note that this
4305  * may reduce the depth asked for, if memory is tight. set->queue_depth
4306  * will be updated to reflect the allocated depth.
4307  */
4308 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4309 {
4310         unsigned int depth;
4311         int err;
4312
4313         depth = set->queue_depth;
4314         do {
4315                 err = __blk_mq_alloc_rq_maps(set);
4316                 if (!err)
4317                         break;
4318
4319                 set->queue_depth >>= 1;
4320                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4321                         err = -ENOMEM;
4322                         break;
4323                 }
4324         } while (set->queue_depth);
4325
4326         if (!set->queue_depth || err) {
4327                 pr_err("blk-mq: failed to allocate request map\n");
4328                 return -ENOMEM;
4329         }
4330
4331         if (depth != set->queue_depth)
4332                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4333                                                 depth, set->queue_depth);
4334
4335         return 0;
4336 }
4337
4338 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4339 {
4340         /*
4341          * blk_mq_map_queues() and multiple .map_queues() implementations
4342          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4343          * number of hardware queues.
4344          */
4345         if (set->nr_maps == 1)
4346                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4347
4348         if (set->ops->map_queues && !is_kdump_kernel()) {
4349                 int i;
4350
4351                 /*
4352                  * transport .map_queues is usually done in the following
4353                  * way:
4354                  *
4355                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4356                  *      mask = get_cpu_mask(queue)
4357                  *      for_each_cpu(cpu, mask)
4358                  *              set->map[x].mq_map[cpu] = queue;
4359                  * }
4360                  *
4361                  * When we need to remap, the table has to be cleared for
4362                  * killing stale mapping since one CPU may not be mapped
4363                  * to any hw queue.
4364                  */
4365                 for (i = 0; i < set->nr_maps; i++)
4366                         blk_mq_clear_mq_map(&set->map[i]);
4367
4368                 set->ops->map_queues(set);
4369         } else {
4370                 BUG_ON(set->nr_maps > 1);
4371                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4372         }
4373 }
4374
4375 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4376                                        int new_nr_hw_queues)
4377 {
4378         struct blk_mq_tags **new_tags;
4379
4380         if (set->nr_hw_queues >= new_nr_hw_queues)
4381                 goto done;
4382
4383         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4384                                 GFP_KERNEL, set->numa_node);
4385         if (!new_tags)
4386                 return -ENOMEM;
4387
4388         if (set->tags)
4389                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4390                        sizeof(*set->tags));
4391         kfree(set->tags);
4392         set->tags = new_tags;
4393 done:
4394         set->nr_hw_queues = new_nr_hw_queues;
4395         return 0;
4396 }
4397
4398 /*
4399  * Alloc a tag set to be associated with one or more request queues.
4400  * May fail with EINVAL for various error conditions. May adjust the
4401  * requested depth down, if it's too large. In that case, the set
4402  * value will be stored in set->queue_depth.
4403  */
4404 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4405 {
4406         int i, ret;
4407
4408         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4409
4410         if (!set->nr_hw_queues)
4411                 return -EINVAL;
4412         if (!set->queue_depth)
4413                 return -EINVAL;
4414         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4415                 return -EINVAL;
4416
4417         if (!set->ops->queue_rq)
4418                 return -EINVAL;
4419
4420         if (!set->ops->get_budget ^ !set->ops->put_budget)
4421                 return -EINVAL;
4422
4423         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4424                 pr_info("blk-mq: reduced tag depth to %u\n",
4425                         BLK_MQ_MAX_DEPTH);
4426                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4427         }
4428
4429         if (!set->nr_maps)
4430                 set->nr_maps = 1;
4431         else if (set->nr_maps > HCTX_MAX_TYPES)
4432                 return -EINVAL;
4433
4434         /*
4435          * If a crashdump is active, then we are potentially in a very
4436          * memory constrained environment. Limit us to 1 queue and
4437          * 64 tags to prevent using too much memory.
4438          */
4439         if (is_kdump_kernel()) {
4440                 set->nr_hw_queues = 1;
4441                 set->nr_maps = 1;
4442                 set->queue_depth = min(64U, set->queue_depth);
4443         }
4444         /*
4445          * There is no use for more h/w queues than cpus if we just have
4446          * a single map
4447          */
4448         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4449                 set->nr_hw_queues = nr_cpu_ids;
4450
4451         if (set->flags & BLK_MQ_F_BLOCKING) {
4452                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4453                 if (!set->srcu)
4454                         return -ENOMEM;
4455                 ret = init_srcu_struct(set->srcu);
4456                 if (ret)
4457                         goto out_free_srcu;
4458         }
4459
4460         ret = -ENOMEM;
4461         set->tags = kcalloc_node(set->nr_hw_queues,
4462                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4463                                  set->numa_node);
4464         if (!set->tags)
4465                 goto out_cleanup_srcu;
4466
4467         for (i = 0; i < set->nr_maps; i++) {
4468                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4469                                                   sizeof(set->map[i].mq_map[0]),
4470                                                   GFP_KERNEL, set->numa_node);
4471                 if (!set->map[i].mq_map)
4472                         goto out_free_mq_map;
4473                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4474         }
4475
4476         blk_mq_update_queue_map(set);
4477
4478         ret = blk_mq_alloc_set_map_and_rqs(set);
4479         if (ret)
4480                 goto out_free_mq_map;
4481
4482         mutex_init(&set->tag_list_lock);
4483         INIT_LIST_HEAD(&set->tag_list);
4484
4485         return 0;
4486
4487 out_free_mq_map:
4488         for (i = 0; i < set->nr_maps; i++) {
4489                 kfree(set->map[i].mq_map);
4490                 set->map[i].mq_map = NULL;
4491         }
4492         kfree(set->tags);
4493         set->tags = NULL;
4494 out_cleanup_srcu:
4495         if (set->flags & BLK_MQ_F_BLOCKING)
4496                 cleanup_srcu_struct(set->srcu);
4497 out_free_srcu:
4498         if (set->flags & BLK_MQ_F_BLOCKING)
4499                 kfree(set->srcu);
4500         return ret;
4501 }
4502 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4503
4504 /* allocate and initialize a tagset for a simple single-queue device */
4505 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4506                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4507                 unsigned int set_flags)
4508 {
4509         memset(set, 0, sizeof(*set));
4510         set->ops = ops;
4511         set->nr_hw_queues = 1;
4512         set->nr_maps = 1;
4513         set->queue_depth = queue_depth;
4514         set->numa_node = NUMA_NO_NODE;
4515         set->flags = set_flags;
4516         return blk_mq_alloc_tag_set(set);
4517 }
4518 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4519
4520 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4521 {
4522         int i, j;
4523
4524         for (i = 0; i < set->nr_hw_queues; i++)
4525                 __blk_mq_free_map_and_rqs(set, i);
4526
4527         if (blk_mq_is_shared_tags(set->flags)) {
4528                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4529                                         BLK_MQ_NO_HCTX_IDX);
4530         }
4531
4532         for (j = 0; j < set->nr_maps; j++) {
4533                 kfree(set->map[j].mq_map);
4534                 set->map[j].mq_map = NULL;
4535         }
4536
4537         kfree(set->tags);
4538         set->tags = NULL;
4539         if (set->flags & BLK_MQ_F_BLOCKING) {
4540                 cleanup_srcu_struct(set->srcu);
4541                 kfree(set->srcu);
4542         }
4543 }
4544 EXPORT_SYMBOL(blk_mq_free_tag_set);
4545
4546 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4547 {
4548         struct blk_mq_tag_set *set = q->tag_set;
4549         struct blk_mq_hw_ctx *hctx;
4550         int ret;
4551         unsigned long i;
4552
4553         if (!set)
4554                 return -EINVAL;
4555
4556         if (q->nr_requests == nr)
4557                 return 0;
4558
4559         blk_mq_freeze_queue(q);
4560         blk_mq_quiesce_queue(q);
4561
4562         ret = 0;
4563         queue_for_each_hw_ctx(q, hctx, i) {
4564                 if (!hctx->tags)
4565                         continue;
4566                 /*
4567                  * If we're using an MQ scheduler, just update the scheduler
4568                  * queue depth. This is similar to what the old code would do.
4569                  */
4570                 if (hctx->sched_tags) {
4571                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4572                                                       nr, true);
4573                 } else {
4574                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4575                                                       false);
4576                 }
4577                 if (ret)
4578                         break;
4579                 if (q->elevator && q->elevator->type->ops.depth_updated)
4580                         q->elevator->type->ops.depth_updated(hctx);
4581         }
4582         if (!ret) {
4583                 q->nr_requests = nr;
4584                 if (blk_mq_is_shared_tags(set->flags)) {
4585                         if (q->elevator)
4586                                 blk_mq_tag_update_sched_shared_tags(q);
4587                         else
4588                                 blk_mq_tag_resize_shared_tags(set, nr);
4589                 }
4590         }
4591
4592         blk_mq_unquiesce_queue(q);
4593         blk_mq_unfreeze_queue(q);
4594
4595         return ret;
4596 }
4597
4598 /*
4599  * request_queue and elevator_type pair.
4600  * It is just used by __blk_mq_update_nr_hw_queues to cache
4601  * the elevator_type associated with a request_queue.
4602  */
4603 struct blk_mq_qe_pair {
4604         struct list_head node;
4605         struct request_queue *q;
4606         struct elevator_type *type;
4607 };
4608
4609 /*
4610  * Cache the elevator_type in qe pair list and switch the
4611  * io scheduler to 'none'
4612  */
4613 static bool blk_mq_elv_switch_none(struct list_head *head,
4614                 struct request_queue *q)
4615 {
4616         struct blk_mq_qe_pair *qe;
4617
4618         if (!q->elevator)
4619                 return true;
4620
4621         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4622         if (!qe)
4623                 return false;
4624
4625         /* q->elevator needs protection from ->sysfs_lock */
4626         mutex_lock(&q->sysfs_lock);
4627
4628         INIT_LIST_HEAD(&qe->node);
4629         qe->q = q;
4630         qe->type = q->elevator->type;
4631         /* keep a reference to the elevator module as we'll switch back */
4632         __elevator_get(qe->type);
4633         list_add(&qe->node, head);
4634         elevator_disable(q);
4635         mutex_unlock(&q->sysfs_lock);
4636
4637         return true;
4638 }
4639
4640 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4641                                                 struct request_queue *q)
4642 {
4643         struct blk_mq_qe_pair *qe;
4644
4645         list_for_each_entry(qe, head, node)
4646                 if (qe->q == q)
4647                         return qe;
4648
4649         return NULL;
4650 }
4651
4652 static void blk_mq_elv_switch_back(struct list_head *head,
4653                                   struct request_queue *q)
4654 {
4655         struct blk_mq_qe_pair *qe;
4656         struct elevator_type *t;
4657
4658         qe = blk_lookup_qe_pair(head, q);
4659         if (!qe)
4660                 return;
4661         t = qe->type;
4662         list_del(&qe->node);
4663         kfree(qe);
4664
4665         mutex_lock(&q->sysfs_lock);
4666         elevator_switch(q, t);
4667         /* drop the reference acquired in blk_mq_elv_switch_none */
4668         elevator_put(t);
4669         mutex_unlock(&q->sysfs_lock);
4670 }
4671
4672 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4673                                                         int nr_hw_queues)
4674 {
4675         struct request_queue *q;
4676         LIST_HEAD(head);
4677         int prev_nr_hw_queues;
4678
4679         lockdep_assert_held(&set->tag_list_lock);
4680
4681         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4682                 nr_hw_queues = nr_cpu_ids;
4683         if (nr_hw_queues < 1)
4684                 return;
4685         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4686                 return;
4687
4688         list_for_each_entry(q, &set->tag_list, tag_set_list)
4689                 blk_mq_freeze_queue(q);
4690         /*
4691          * Switch IO scheduler to 'none', cleaning up the data associated
4692          * with the previous scheduler. We will switch back once we are done
4693          * updating the new sw to hw queue mappings.
4694          */
4695         list_for_each_entry(q, &set->tag_list, tag_set_list)
4696                 if (!blk_mq_elv_switch_none(&head, q))
4697                         goto switch_back;
4698
4699         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4700                 blk_mq_debugfs_unregister_hctxs(q);
4701                 blk_mq_sysfs_unregister_hctxs(q);
4702         }
4703
4704         prev_nr_hw_queues = set->nr_hw_queues;
4705         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4706                 goto reregister;
4707
4708 fallback:
4709         blk_mq_update_queue_map(set);
4710         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4711                 blk_mq_realloc_hw_ctxs(set, q);
4712                 blk_mq_update_poll_flag(q);
4713                 if (q->nr_hw_queues != set->nr_hw_queues) {
4714                         int i = prev_nr_hw_queues;
4715
4716                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4717                                         nr_hw_queues, prev_nr_hw_queues);
4718                         for (; i < set->nr_hw_queues; i++)
4719                                 __blk_mq_free_map_and_rqs(set, i);
4720
4721                         set->nr_hw_queues = prev_nr_hw_queues;
4722                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4723                         goto fallback;
4724                 }
4725                 blk_mq_map_swqueue(q);
4726         }
4727
4728 reregister:
4729         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4730                 blk_mq_sysfs_register_hctxs(q);
4731                 blk_mq_debugfs_register_hctxs(q);
4732         }
4733
4734 switch_back:
4735         list_for_each_entry(q, &set->tag_list, tag_set_list)
4736                 blk_mq_elv_switch_back(&head, q);
4737
4738         list_for_each_entry(q, &set->tag_list, tag_set_list)
4739                 blk_mq_unfreeze_queue(q);
4740 }
4741
4742 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4743 {
4744         mutex_lock(&set->tag_list_lock);
4745         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4746         mutex_unlock(&set->tag_list_lock);
4747 }
4748 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4749
4750 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4751                 unsigned int flags)
4752 {
4753         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4754         long state = get_current_state();
4755         int ret;
4756
4757         do {
4758                 ret = q->mq_ops->poll(hctx, iob);
4759                 if (ret > 0) {
4760                         __set_current_state(TASK_RUNNING);
4761                         return ret;
4762                 }
4763
4764                 if (signal_pending_state(state, current))
4765                         __set_current_state(TASK_RUNNING);
4766                 if (task_is_running(current))
4767                         return 1;
4768
4769                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4770                         break;
4771                 cpu_relax();
4772         } while (!need_resched());
4773
4774         __set_current_state(TASK_RUNNING);
4775         return 0;
4776 }
4777
4778 unsigned int blk_mq_rq_cpu(struct request *rq)
4779 {
4780         return rq->mq_ctx->cpu;
4781 }
4782 EXPORT_SYMBOL(blk_mq_rq_cpu);
4783
4784 void blk_mq_cancel_work_sync(struct request_queue *q)
4785 {
4786         struct blk_mq_hw_ctx *hctx;
4787         unsigned long i;
4788
4789         cancel_delayed_work_sync(&q->requeue_work);
4790
4791         queue_for_each_hw_ctx(q, hctx, i)
4792                 cancel_delayed_work_sync(&hctx->run_work);
4793 }
4794
4795 static int __init blk_mq_init(void)
4796 {
4797         int i;
4798
4799         for_each_possible_cpu(i)
4800                 init_llist_head(&per_cpu(blk_cpu_done, i));
4801         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4802
4803         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4804                                   "block/softirq:dead", NULL,
4805                                   blk_softirq_cpu_dead);
4806         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4807                                 blk_mq_hctx_notify_dead);
4808         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4809                                 blk_mq_hctx_notify_online,
4810                                 blk_mq_hctx_notify_offline);
4811         return 0;
4812 }
4813 subsys_initcall(blk_mq_init);