720b5061ffe880496d7a0264904459ec920291b2
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52
53 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
54                 blk_qc_t qc)
55 {
56         return xa_load(&q->hctx_table, qc);
57 }
58
59 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
60 {
61         return rq->mq_hctx->queue_num;
62 }
63
64 /*
65  * Check if any of the ctx, dispatch list or elevator
66  * have pending work in this hardware queue.
67  */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70         return !list_empty_careful(&hctx->dispatch) ||
71                 sbitmap_any_bit_set(&hctx->ctx_map) ||
72                         blk_mq_sched_has_work(hctx);
73 }
74
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79                                      struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84                 sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88                                       struct blk_mq_ctx *ctx)
89 {
90         const int bit = ctx->index_hw[hctx->type];
91
92         sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94
95 struct mq_inflight {
96         struct block_device *part;
97         unsigned int inflight[2];
98 };
99
100 static bool blk_mq_check_inflight(struct request *rq, void *priv)
101 {
102         struct mq_inflight *mi = priv;
103
104         if (rq->part && blk_do_io_stat(rq) &&
105             (!mi->part->bd_partno || rq->part == mi->part) &&
106             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
107                 mi->inflight[rq_data_dir(rq)]++;
108
109         return true;
110 }
111
112 unsigned int blk_mq_in_flight(struct request_queue *q,
113                 struct block_device *part)
114 {
115         struct mq_inflight mi = { .part = part };
116
117         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119         return mi.inflight[0] + mi.inflight[1];
120 }
121
122 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
123                 unsigned int inflight[2])
124 {
125         struct mq_inflight mi = { .part = part };
126
127         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
128         inflight[0] = mi.inflight[0];
129         inflight[1] = mi.inflight[1];
130 }
131
132 void blk_freeze_queue_start(struct request_queue *q)
133 {
134         mutex_lock(&q->mq_freeze_lock);
135         if (++q->mq_freeze_depth == 1) {
136                 percpu_ref_kill(&q->q_usage_counter);
137                 mutex_unlock(&q->mq_freeze_lock);
138                 if (queue_is_mq(q))
139                         blk_mq_run_hw_queues(q, false);
140         } else {
141                 mutex_unlock(&q->mq_freeze_lock);
142         }
143 }
144 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
145
146 void blk_mq_freeze_queue_wait(struct request_queue *q)
147 {
148         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
151
152 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
153                                      unsigned long timeout)
154 {
155         return wait_event_timeout(q->mq_freeze_wq,
156                                         percpu_ref_is_zero(&q->q_usage_counter),
157                                         timeout);
158 }
159 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
160
161 /*
162  * Guarantee no request is in use, so we can change any data structure of
163  * the queue afterward.
164  */
165 void blk_freeze_queue(struct request_queue *q)
166 {
167         /*
168          * In the !blk_mq case we are only calling this to kill the
169          * q_usage_counter, otherwise this increases the freeze depth
170          * and waits for it to return to zero.  For this reason there is
171          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
172          * exported to drivers as the only user for unfreeze is blk_mq.
173          */
174         blk_freeze_queue_start(q);
175         blk_mq_freeze_queue_wait(q);
176 }
177
178 void blk_mq_freeze_queue(struct request_queue *q)
179 {
180         /*
181          * ...just an alias to keep freeze and unfreeze actions balanced
182          * in the blk_mq_* namespace
183          */
184         blk_freeze_queue(q);
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
187
188 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
189 {
190         mutex_lock(&q->mq_freeze_lock);
191         if (force_atomic)
192                 q->q_usage_counter.data->force_atomic = true;
193         q->mq_freeze_depth--;
194         WARN_ON_ONCE(q->mq_freeze_depth < 0);
195         if (!q->mq_freeze_depth) {
196                 percpu_ref_resurrect(&q->q_usage_counter);
197                 wake_up_all(&q->mq_freeze_wq);
198         }
199         mutex_unlock(&q->mq_freeze_lock);
200 }
201
202 void blk_mq_unfreeze_queue(struct request_queue *q)
203 {
204         __blk_mq_unfreeze_queue(q, false);
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207
208 /*
209  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210  * mpt3sas driver such that this function can be removed.
211  */
212 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 {
214         unsigned long flags;
215
216         spin_lock_irqsave(&q->queue_lock, flags);
217         if (!q->quiesce_depth++)
218                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219         spin_unlock_irqrestore(&q->queue_lock, flags);
220 }
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222
223 /**
224  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
225  * @set: tag_set to wait on
226  *
227  * Note: it is driver's responsibility for making sure that quiesce has
228  * been started on or more of the request_queues of the tag_set.  This
229  * function only waits for the quiesce on those request_queues that had
230  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
231  */
232 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
233 {
234         if (set->flags & BLK_MQ_F_BLOCKING)
235                 synchronize_srcu(set->srcu);
236         else
237                 synchronize_rcu();
238 }
239 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
240
241 /**
242  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
243  * @q: request queue.
244  *
245  * Note: this function does not prevent that the struct request end_io()
246  * callback function is invoked. Once this function is returned, we make
247  * sure no dispatch can happen until the queue is unquiesced via
248  * blk_mq_unquiesce_queue().
249  */
250 void blk_mq_quiesce_queue(struct request_queue *q)
251 {
252         blk_mq_quiesce_queue_nowait(q);
253         /* nothing to wait for non-mq queues */
254         if (queue_is_mq(q))
255                 blk_mq_wait_quiesce_done(q->tag_set);
256 }
257 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
258
259 /*
260  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
261  * @q: request queue.
262  *
263  * This function recovers queue into the state before quiescing
264  * which is done by blk_mq_quiesce_queue.
265  */
266 void blk_mq_unquiesce_queue(struct request_queue *q)
267 {
268         unsigned long flags;
269         bool run_queue = false;
270
271         spin_lock_irqsave(&q->queue_lock, flags);
272         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
273                 ;
274         } else if (!--q->quiesce_depth) {
275                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
276                 run_queue = true;
277         }
278         spin_unlock_irqrestore(&q->queue_lock, flags);
279
280         /* dispatch requests which are inserted during quiescing */
281         if (run_queue)
282                 blk_mq_run_hw_queues(q, true);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
285
286 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
287 {
288         struct request_queue *q;
289
290         mutex_lock(&set->tag_list_lock);
291         list_for_each_entry(q, &set->tag_list, tag_set_list) {
292                 if (!blk_queue_skip_tagset_quiesce(q))
293                         blk_mq_quiesce_queue_nowait(q);
294         }
295         blk_mq_wait_quiesce_done(set);
296         mutex_unlock(&set->tag_list_lock);
297 }
298 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
299
300 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
301 {
302         struct request_queue *q;
303
304         mutex_lock(&set->tag_list_lock);
305         list_for_each_entry(q, &set->tag_list, tag_set_list) {
306                 if (!blk_queue_skip_tagset_quiesce(q))
307                         blk_mq_unquiesce_queue(q);
308         }
309         mutex_unlock(&set->tag_list_lock);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
312
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         unsigned long i;
317
318         queue_for_each_hw_ctx(q, hctx, i)
319                 if (blk_mq_hw_queue_mapped(hctx))
320                         blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325         memset(rq, 0, sizeof(*rq));
326
327         INIT_LIST_HEAD(&rq->queuelist);
328         rq->q = q;
329         rq->__sector = (sector_t) -1;
330         INIT_HLIST_NODE(&rq->hash);
331         RB_CLEAR_NODE(&rq->rb_node);
332         rq->tag = BLK_MQ_NO_TAG;
333         rq->internal_tag = BLK_MQ_NO_TAG;
334         rq->start_time_ns = ktime_get_ns();
335         rq->part = NULL;
336         blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343         struct blk_mq_ctx *ctx = data->ctx;
344         struct blk_mq_hw_ctx *hctx = data->hctx;
345         struct request_queue *q = data->q;
346         struct request *rq = tags->static_rqs[tag];
347
348         rq->q = q;
349         rq->mq_ctx = ctx;
350         rq->mq_hctx = hctx;
351         rq->cmd_flags = data->cmd_flags;
352
353         if (data->flags & BLK_MQ_REQ_PM)
354                 data->rq_flags |= RQF_PM;
355         if (blk_queue_io_stat(q))
356                 data->rq_flags |= RQF_IO_STAT;
357         rq->rq_flags = data->rq_flags;
358
359         if (data->rq_flags & RQF_SCHED_TAGS) {
360                 rq->tag = BLK_MQ_NO_TAG;
361                 rq->internal_tag = tag;
362         } else {
363                 rq->tag = tag;
364                 rq->internal_tag = BLK_MQ_NO_TAG;
365         }
366         rq->timeout = 0;
367
368         if (blk_mq_need_time_stamp(rq))
369                 rq->start_time_ns = ktime_get_ns();
370         else
371                 rq->start_time_ns = 0;
372         rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374         rq->alloc_time_ns = alloc_time_ns;
375 #endif
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
406                 u64 alloc_time_ns)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         /* caller already holds a reference, add for remainder */
430         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431         data->nr_tags -= nr;
432
433         return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438         struct request_queue *q = data->q;
439         u64 alloc_time_ns = 0;
440         struct request *rq;
441         unsigned int tag;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         if (data->cmd_flags & REQ_NOWAIT)
448                 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450         if (q->elevator) {
451                 /*
452                  * All requests use scheduler tags when an I/O scheduler is
453                  * enabled for the queue.
454                  */
455                 data->rq_flags |= RQF_SCHED_TAGS;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list.
460                  */
461                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462                     !blk_op_is_passthrough(data->cmd_flags)) {
463                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467                         data->rq_flags |= RQF_USE_SCHED;
468                         if (ops->limit_depth)
469                                 ops->limit_depth(data->cmd_flags, data);
470                 }
471         }
472
473 retry:
474         data->ctx = blk_mq_get_ctx(q);
475         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_tag_busy(data->hctx);
478
479         if (data->flags & BLK_MQ_REQ_RESERVED)
480                 data->rq_flags |= RQF_RESV;
481
482         /*
483          * Try batched alloc if we want more than 1 tag.
484          */
485         if (data->nr_tags > 1) {
486                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
487                 if (rq)
488                         return rq;
489                 data->nr_tags = 1;
490         }
491
492         /*
493          * Waiting allocations only fail because of an inactive hctx.  In that
494          * case just retry the hctx assignment and tag allocation as CPU hotplug
495          * should have migrated us to an online CPU by now.
496          */
497         tag = blk_mq_get_tag(data);
498         if (tag == BLK_MQ_NO_TAG) {
499                 if (data->flags & BLK_MQ_REQ_NOWAIT)
500                         return NULL;
501                 /*
502                  * Give up the CPU and sleep for a random short time to
503                  * ensure that thread using a realtime scheduling class
504                  * are migrated off the CPU, and thus off the hctx that
505                  * is going away.
506                  */
507                 msleep(3);
508                 goto retry;
509         }
510
511         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
512                                         alloc_time_ns);
513 }
514
515 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
516                                             struct blk_plug *plug,
517                                             blk_opf_t opf,
518                                             blk_mq_req_flags_t flags)
519 {
520         struct blk_mq_alloc_data data = {
521                 .q              = q,
522                 .flags          = flags,
523                 .cmd_flags      = opf,
524                 .nr_tags        = plug->nr_ios,
525                 .cached_rq      = &plug->cached_rq,
526         };
527         struct request *rq;
528
529         if (blk_queue_enter(q, flags))
530                 return NULL;
531
532         plug->nr_ios = 1;
533
534         rq = __blk_mq_alloc_requests(&data);
535         if (unlikely(!rq))
536                 blk_queue_exit(q);
537         return rq;
538 }
539
540 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
541                                                    blk_opf_t opf,
542                                                    blk_mq_req_flags_t flags)
543 {
544         struct blk_plug *plug = current->plug;
545         struct request *rq;
546
547         if (!plug)
548                 return NULL;
549
550         if (rq_list_empty(plug->cached_rq)) {
551                 if (plug->nr_ios == 1)
552                         return NULL;
553                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
554                 if (!rq)
555                         return NULL;
556         } else {
557                 rq = rq_list_peek(&plug->cached_rq);
558                 if (!rq || rq->q != q)
559                         return NULL;
560
561                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
562                         return NULL;
563                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
564                         return NULL;
565
566                 plug->cached_rq = rq_list_next(rq);
567         }
568
569         rq->cmd_flags = opf;
570         INIT_LIST_HEAD(&rq->queuelist);
571         return rq;
572 }
573
574 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
575                 blk_mq_req_flags_t flags)
576 {
577         struct request *rq;
578
579         rq = blk_mq_alloc_cached_request(q, opf, flags);
580         if (!rq) {
581                 struct blk_mq_alloc_data data = {
582                         .q              = q,
583                         .flags          = flags,
584                         .cmd_flags      = opf,
585                         .nr_tags        = 1,
586                 };
587                 int ret;
588
589                 ret = blk_queue_enter(q, flags);
590                 if (ret)
591                         return ERR_PTR(ret);
592
593                 rq = __blk_mq_alloc_requests(&data);
594                 if (!rq)
595                         goto out_queue_exit;
596         }
597         rq->__data_len = 0;
598         rq->__sector = (sector_t) -1;
599         rq->bio = rq->biotail = NULL;
600         return rq;
601 out_queue_exit:
602         blk_queue_exit(q);
603         return ERR_PTR(-EWOULDBLOCK);
604 }
605 EXPORT_SYMBOL(blk_mq_alloc_request);
606
607 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
608         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
609 {
610         struct blk_mq_alloc_data data = {
611                 .q              = q,
612                 .flags          = flags,
613                 .cmd_flags      = opf,
614                 .nr_tags        = 1,
615         };
616         u64 alloc_time_ns = 0;
617         struct request *rq;
618         unsigned int cpu;
619         unsigned int tag;
620         int ret;
621
622         /* alloc_time includes depth and tag waits */
623         if (blk_queue_rq_alloc_time(q))
624                 alloc_time_ns = ktime_get_ns();
625
626         /*
627          * If the tag allocator sleeps we could get an allocation for a
628          * different hardware context.  No need to complicate the low level
629          * allocator for this for the rare use case of a command tied to
630          * a specific queue.
631          */
632         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
633             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
634                 return ERR_PTR(-EINVAL);
635
636         if (hctx_idx >= q->nr_hw_queues)
637                 return ERR_PTR(-EIO);
638
639         ret = blk_queue_enter(q, flags);
640         if (ret)
641                 return ERR_PTR(ret);
642
643         /*
644          * Check if the hardware context is actually mapped to anything.
645          * If not tell the caller that it should skip this queue.
646          */
647         ret = -EXDEV;
648         data.hctx = xa_load(&q->hctx_table, hctx_idx);
649         if (!blk_mq_hw_queue_mapped(data.hctx))
650                 goto out_queue_exit;
651         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
652         if (cpu >= nr_cpu_ids)
653                 goto out_queue_exit;
654         data.ctx = __blk_mq_get_ctx(q, cpu);
655
656         if (q->elevator)
657                 data.rq_flags |= RQF_SCHED_TAGS;
658         else
659                 blk_mq_tag_busy(data.hctx);
660
661         if (flags & BLK_MQ_REQ_RESERVED)
662                 data.rq_flags |= RQF_RESV;
663
664         ret = -EWOULDBLOCK;
665         tag = blk_mq_get_tag(&data);
666         if (tag == BLK_MQ_NO_TAG)
667                 goto out_queue_exit;
668         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
669                                         alloc_time_ns);
670         rq->__data_len = 0;
671         rq->__sector = (sector_t) -1;
672         rq->bio = rq->biotail = NULL;
673         return rq;
674
675 out_queue_exit:
676         blk_queue_exit(q);
677         return ERR_PTR(ret);
678 }
679 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
680
681 static void __blk_mq_free_request(struct request *rq)
682 {
683         struct request_queue *q = rq->q;
684         struct blk_mq_ctx *ctx = rq->mq_ctx;
685         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
686         const int sched_tag = rq->internal_tag;
687
688         blk_crypto_free_request(rq);
689         blk_pm_mark_last_busy(rq);
690         rq->mq_hctx = NULL;
691         if (rq->tag != BLK_MQ_NO_TAG)
692                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
693         if (sched_tag != BLK_MQ_NO_TAG)
694                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
695         blk_mq_sched_restart(hctx);
696         blk_queue_exit(q);
697 }
698
699 void blk_mq_free_request(struct request *rq)
700 {
701         struct request_queue *q = rq->q;
702         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
703
704         if ((rq->rq_flags & RQF_USE_SCHED) &&
705             q->elevator->type->ops.finish_request)
706                 q->elevator->type->ops.finish_request(rq);
707
708         if (rq->rq_flags & RQF_MQ_INFLIGHT)
709                 __blk_mq_dec_active_requests(hctx);
710
711         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
712                 laptop_io_completion(q->disk->bdi);
713
714         rq_qos_done(q, rq);
715
716         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
717         if (req_ref_put_and_test(rq))
718                 __blk_mq_free_request(rq);
719 }
720 EXPORT_SYMBOL_GPL(blk_mq_free_request);
721
722 void blk_mq_free_plug_rqs(struct blk_plug *plug)
723 {
724         struct request *rq;
725
726         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
727                 blk_mq_free_request(rq);
728 }
729
730 void blk_dump_rq_flags(struct request *rq, char *msg)
731 {
732         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
733                 rq->q->disk ? rq->q->disk->disk_name : "?",
734                 (__force unsigned long long) rq->cmd_flags);
735
736         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
737                (unsigned long long)blk_rq_pos(rq),
738                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
739         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
740                rq->bio, rq->biotail, blk_rq_bytes(rq));
741 }
742 EXPORT_SYMBOL(blk_dump_rq_flags);
743
744 static void req_bio_endio(struct request *rq, struct bio *bio,
745                           unsigned int nbytes, blk_status_t error)
746 {
747         if (unlikely(error)) {
748                 bio->bi_status = error;
749         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
750                 /*
751                  * Partial zone append completions cannot be supported as the
752                  * BIO fragments may end up not being written sequentially.
753                  */
754                 if (bio->bi_iter.bi_size != nbytes)
755                         bio->bi_status = BLK_STS_IOERR;
756                 else
757                         bio->bi_iter.bi_sector = rq->__sector;
758         }
759
760         bio_advance(bio, nbytes);
761
762         if (unlikely(rq->rq_flags & RQF_QUIET))
763                 bio_set_flag(bio, BIO_QUIET);
764         /* don't actually finish bio if it's part of flush sequence */
765         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
766                 bio_endio(bio);
767 }
768
769 static void blk_account_io_completion(struct request *req, unsigned int bytes)
770 {
771         if (req->part && blk_do_io_stat(req)) {
772                 const int sgrp = op_stat_group(req_op(req));
773
774                 part_stat_lock();
775                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
776                 part_stat_unlock();
777         }
778 }
779
780 static void blk_print_req_error(struct request *req, blk_status_t status)
781 {
782         printk_ratelimited(KERN_ERR
783                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
784                 "phys_seg %u prio class %u\n",
785                 blk_status_to_str(status),
786                 req->q->disk ? req->q->disk->disk_name : "?",
787                 blk_rq_pos(req), (__force u32)req_op(req),
788                 blk_op_str(req_op(req)),
789                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
790                 req->nr_phys_segments,
791                 IOPRIO_PRIO_CLASS(req->ioprio));
792 }
793
794 /*
795  * Fully end IO on a request. Does not support partial completions, or
796  * errors.
797  */
798 static void blk_complete_request(struct request *req)
799 {
800         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
801         int total_bytes = blk_rq_bytes(req);
802         struct bio *bio = req->bio;
803
804         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
805
806         if (!bio)
807                 return;
808
809 #ifdef CONFIG_BLK_DEV_INTEGRITY
810         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
811                 req->q->integrity.profile->complete_fn(req, total_bytes);
812 #endif
813
814         /*
815          * Upper layers may call blk_crypto_evict_key() anytime after the last
816          * bio_endio().  Therefore, the keyslot must be released before that.
817          */
818         blk_crypto_rq_put_keyslot(req);
819
820         blk_account_io_completion(req, total_bytes);
821
822         do {
823                 struct bio *next = bio->bi_next;
824
825                 /* Completion has already been traced */
826                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
827
828                 if (req_op(req) == REQ_OP_ZONE_APPEND)
829                         bio->bi_iter.bi_sector = req->__sector;
830
831                 if (!is_flush)
832                         bio_endio(bio);
833                 bio = next;
834         } while (bio);
835
836         /*
837          * Reset counters so that the request stacking driver
838          * can find how many bytes remain in the request
839          * later.
840          */
841         if (!req->end_io) {
842                 req->bio = NULL;
843                 req->__data_len = 0;
844         }
845 }
846
847 /**
848  * blk_update_request - Complete multiple bytes without completing the request
849  * @req:      the request being processed
850  * @error:    block status code
851  * @nr_bytes: number of bytes to complete for @req
852  *
853  * Description:
854  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
855  *     the request structure even if @req doesn't have leftover.
856  *     If @req has leftover, sets it up for the next range of segments.
857  *
858  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
859  *     %false return from this function.
860  *
861  * Note:
862  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
863  *      except in the consistency check at the end of this function.
864  *
865  * Return:
866  *     %false - this request doesn't have any more data
867  *     %true  - this request has more data
868  **/
869 bool blk_update_request(struct request *req, blk_status_t error,
870                 unsigned int nr_bytes)
871 {
872         int total_bytes;
873
874         trace_block_rq_complete(req, error, nr_bytes);
875
876         if (!req->bio)
877                 return false;
878
879 #ifdef CONFIG_BLK_DEV_INTEGRITY
880         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
881             error == BLK_STS_OK)
882                 req->q->integrity.profile->complete_fn(req, nr_bytes);
883 #endif
884
885         /*
886          * Upper layers may call blk_crypto_evict_key() anytime after the last
887          * bio_endio().  Therefore, the keyslot must be released before that.
888          */
889         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
890                 __blk_crypto_rq_put_keyslot(req);
891
892         if (unlikely(error && !blk_rq_is_passthrough(req) &&
893                      !(req->rq_flags & RQF_QUIET)) &&
894                      !test_bit(GD_DEAD, &req->q->disk->state)) {
895                 blk_print_req_error(req, error);
896                 trace_block_rq_error(req, error, nr_bytes);
897         }
898
899         blk_account_io_completion(req, nr_bytes);
900
901         total_bytes = 0;
902         while (req->bio) {
903                 struct bio *bio = req->bio;
904                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
905
906                 if (bio_bytes == bio->bi_iter.bi_size)
907                         req->bio = bio->bi_next;
908
909                 /* Completion has already been traced */
910                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
911                 req_bio_endio(req, bio, bio_bytes, error);
912
913                 total_bytes += bio_bytes;
914                 nr_bytes -= bio_bytes;
915
916                 if (!nr_bytes)
917                         break;
918         }
919
920         /*
921          * completely done
922          */
923         if (!req->bio) {
924                 /*
925                  * Reset counters so that the request stacking driver
926                  * can find how many bytes remain in the request
927                  * later.
928                  */
929                 req->__data_len = 0;
930                 return false;
931         }
932
933         req->__data_len -= total_bytes;
934
935         /* update sector only for requests with clear definition of sector */
936         if (!blk_rq_is_passthrough(req))
937                 req->__sector += total_bytes >> 9;
938
939         /* mixed attributes always follow the first bio */
940         if (req->rq_flags & RQF_MIXED_MERGE) {
941                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
942                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
943         }
944
945         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
946                 /*
947                  * If total number of sectors is less than the first segment
948                  * size, something has gone terribly wrong.
949                  */
950                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
951                         blk_dump_rq_flags(req, "request botched");
952                         req->__data_len = blk_rq_cur_bytes(req);
953                 }
954
955                 /* recalculate the number of segments */
956                 req->nr_phys_segments = blk_recalc_rq_segments(req);
957         }
958
959         return true;
960 }
961 EXPORT_SYMBOL_GPL(blk_update_request);
962
963 static inline void blk_account_io_done(struct request *req, u64 now)
964 {
965         trace_block_io_done(req);
966
967         /*
968          * Account IO completion.  flush_rq isn't accounted as a
969          * normal IO on queueing nor completion.  Accounting the
970          * containing request is enough.
971          */
972         if (blk_do_io_stat(req) && req->part &&
973             !(req->rq_flags & RQF_FLUSH_SEQ)) {
974                 const int sgrp = op_stat_group(req_op(req));
975
976                 part_stat_lock();
977                 update_io_ticks(req->part, jiffies, true);
978                 part_stat_inc(req->part, ios[sgrp]);
979                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
980                 part_stat_unlock();
981         }
982 }
983
984 static inline void blk_account_io_start(struct request *req)
985 {
986         trace_block_io_start(req);
987
988         if (blk_do_io_stat(req)) {
989                 /*
990                  * All non-passthrough requests are created from a bio with one
991                  * exception: when a flush command that is part of a flush sequence
992                  * generated by the state machine in blk-flush.c is cloned onto the
993                  * lower device by dm-multipath we can get here without a bio.
994                  */
995                 if (req->bio)
996                         req->part = req->bio->bi_bdev;
997                 else
998                         req->part = req->q->disk->part0;
999
1000                 part_stat_lock();
1001                 update_io_ticks(req->part, jiffies, false);
1002                 part_stat_unlock();
1003         }
1004 }
1005
1006 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1007 {
1008         if (rq->rq_flags & RQF_STATS)
1009                 blk_stat_add(rq, now);
1010
1011         blk_mq_sched_completed_request(rq, now);
1012         blk_account_io_done(rq, now);
1013 }
1014
1015 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1016 {
1017         if (blk_mq_need_time_stamp(rq))
1018                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1019
1020         if (rq->end_io) {
1021                 rq_qos_done(rq->q, rq);
1022                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1023                         blk_mq_free_request(rq);
1024         } else {
1025                 blk_mq_free_request(rq);
1026         }
1027 }
1028 EXPORT_SYMBOL(__blk_mq_end_request);
1029
1030 void blk_mq_end_request(struct request *rq, blk_status_t error)
1031 {
1032         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1033                 BUG();
1034         __blk_mq_end_request(rq, error);
1035 }
1036 EXPORT_SYMBOL(blk_mq_end_request);
1037
1038 #define TAG_COMP_BATCH          32
1039
1040 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1041                                           int *tag_array, int nr_tags)
1042 {
1043         struct request_queue *q = hctx->queue;
1044
1045         /*
1046          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1047          * update hctx->nr_active in batch
1048          */
1049         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1050                 __blk_mq_sub_active_requests(hctx, nr_tags);
1051
1052         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1053         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1054 }
1055
1056 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1057 {
1058         int tags[TAG_COMP_BATCH], nr_tags = 0;
1059         struct blk_mq_hw_ctx *cur_hctx = NULL;
1060         struct request *rq;
1061         u64 now = 0;
1062
1063         if (iob->need_ts)
1064                 now = ktime_get_ns();
1065
1066         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1067                 prefetch(rq->bio);
1068                 prefetch(rq->rq_next);
1069
1070                 blk_complete_request(rq);
1071                 if (iob->need_ts)
1072                         __blk_mq_end_request_acct(rq, now);
1073
1074                 rq_qos_done(rq->q, rq);
1075
1076                 /*
1077                  * If end_io handler returns NONE, then it still has
1078                  * ownership of the request.
1079                  */
1080                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1081                         continue;
1082
1083                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1084                 if (!req_ref_put_and_test(rq))
1085                         continue;
1086
1087                 blk_crypto_free_request(rq);
1088                 blk_pm_mark_last_busy(rq);
1089
1090                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1091                         if (cur_hctx)
1092                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1093                         nr_tags = 0;
1094                         cur_hctx = rq->mq_hctx;
1095                 }
1096                 tags[nr_tags++] = rq->tag;
1097         }
1098
1099         if (nr_tags)
1100                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1101 }
1102 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1103
1104 static void blk_complete_reqs(struct llist_head *list)
1105 {
1106         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1107         struct request *rq, *next;
1108
1109         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1110                 rq->q->mq_ops->complete(rq);
1111 }
1112
1113 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1114 {
1115         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1116 }
1117
1118 static int blk_softirq_cpu_dead(unsigned int cpu)
1119 {
1120         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1121         return 0;
1122 }
1123
1124 static void __blk_mq_complete_request_remote(void *data)
1125 {
1126         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1127 }
1128
1129 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1130 {
1131         int cpu = raw_smp_processor_id();
1132
1133         if (!IS_ENABLED(CONFIG_SMP) ||
1134             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1135                 return false;
1136         /*
1137          * With force threaded interrupts enabled, raising softirq from an SMP
1138          * function call will always result in waking the ksoftirqd thread.
1139          * This is probably worse than completing the request on a different
1140          * cache domain.
1141          */
1142         if (force_irqthreads())
1143                 return false;
1144
1145         /* same CPU or cache domain?  Complete locally */
1146         if (cpu == rq->mq_ctx->cpu ||
1147             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1148              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1149                 return false;
1150
1151         /* don't try to IPI to an offline CPU */
1152         return cpu_online(rq->mq_ctx->cpu);
1153 }
1154
1155 static void blk_mq_complete_send_ipi(struct request *rq)
1156 {
1157         struct llist_head *list;
1158         unsigned int cpu;
1159
1160         cpu = rq->mq_ctx->cpu;
1161         list = &per_cpu(blk_cpu_done, cpu);
1162         if (llist_add(&rq->ipi_list, list)) {
1163                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1164                 smp_call_function_single_async(cpu, &rq->csd);
1165         }
1166 }
1167
1168 static void blk_mq_raise_softirq(struct request *rq)
1169 {
1170         struct llist_head *list;
1171
1172         preempt_disable();
1173         list = this_cpu_ptr(&blk_cpu_done);
1174         if (llist_add(&rq->ipi_list, list))
1175                 raise_softirq(BLOCK_SOFTIRQ);
1176         preempt_enable();
1177 }
1178
1179 bool blk_mq_complete_request_remote(struct request *rq)
1180 {
1181         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1182
1183         /*
1184          * For request which hctx has only one ctx mapping,
1185          * or a polled request, always complete locally,
1186          * it's pointless to redirect the completion.
1187          */
1188         if ((rq->mq_hctx->nr_ctx == 1 &&
1189              rq->mq_ctx->cpu == raw_smp_processor_id()) ||
1190              rq->cmd_flags & REQ_POLLED)
1191                 return false;
1192
1193         if (blk_mq_complete_need_ipi(rq)) {
1194                 blk_mq_complete_send_ipi(rq);
1195                 return true;
1196         }
1197
1198         if (rq->q->nr_hw_queues == 1) {
1199                 blk_mq_raise_softirq(rq);
1200                 return true;
1201         }
1202         return false;
1203 }
1204 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1205
1206 /**
1207  * blk_mq_complete_request - end I/O on a request
1208  * @rq:         the request being processed
1209  *
1210  * Description:
1211  *      Complete a request by scheduling the ->complete_rq operation.
1212  **/
1213 void blk_mq_complete_request(struct request *rq)
1214 {
1215         if (!blk_mq_complete_request_remote(rq))
1216                 rq->q->mq_ops->complete(rq);
1217 }
1218 EXPORT_SYMBOL(blk_mq_complete_request);
1219
1220 /**
1221  * blk_mq_start_request - Start processing a request
1222  * @rq: Pointer to request to be started
1223  *
1224  * Function used by device drivers to notify the block layer that a request
1225  * is going to be processed now, so blk layer can do proper initializations
1226  * such as starting the timeout timer.
1227  */
1228 void blk_mq_start_request(struct request *rq)
1229 {
1230         struct request_queue *q = rq->q;
1231
1232         trace_block_rq_issue(rq);
1233
1234         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1235                 rq->io_start_time_ns = ktime_get_ns();
1236                 rq->stats_sectors = blk_rq_sectors(rq);
1237                 rq->rq_flags |= RQF_STATS;
1238                 rq_qos_issue(q, rq);
1239         }
1240
1241         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1242
1243         blk_add_timer(rq);
1244         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1245
1246 #ifdef CONFIG_BLK_DEV_INTEGRITY
1247         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1248                 q->integrity.profile->prepare_fn(rq);
1249 #endif
1250         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1251                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1252 }
1253 EXPORT_SYMBOL(blk_mq_start_request);
1254
1255 /*
1256  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1257  * queues. This is important for md arrays to benefit from merging
1258  * requests.
1259  */
1260 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1261 {
1262         if (plug->multiple_queues)
1263                 return BLK_MAX_REQUEST_COUNT * 2;
1264         return BLK_MAX_REQUEST_COUNT;
1265 }
1266
1267 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1268 {
1269         struct request *last = rq_list_peek(&plug->mq_list);
1270
1271         if (!plug->rq_count) {
1272                 trace_block_plug(rq->q);
1273         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1274                    (!blk_queue_nomerges(rq->q) &&
1275                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1276                 blk_mq_flush_plug_list(plug, false);
1277                 last = NULL;
1278                 trace_block_plug(rq->q);
1279         }
1280
1281         if (!plug->multiple_queues && last && last->q != rq->q)
1282                 plug->multiple_queues = true;
1283         if (!plug->has_elevator && (rq->rq_flags & RQF_USE_SCHED))
1284                 plug->has_elevator = true;
1285         rq->rq_next = NULL;
1286         rq_list_add(&plug->mq_list, rq);
1287         plug->rq_count++;
1288 }
1289
1290 /**
1291  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1292  * @rq:         request to insert
1293  * @at_head:    insert request at head or tail of queue
1294  *
1295  * Description:
1296  *    Insert a fully prepared request at the back of the I/O scheduler queue
1297  *    for execution.  Don't wait for completion.
1298  *
1299  * Note:
1300  *    This function will invoke @done directly if the queue is dead.
1301  */
1302 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1303 {
1304         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1305
1306         WARN_ON(irqs_disabled());
1307         WARN_ON(!blk_rq_is_passthrough(rq));
1308
1309         blk_account_io_start(rq);
1310
1311         /*
1312          * As plugging can be enabled for passthrough requests on a zoned
1313          * device, directly accessing the plug instead of using blk_mq_plug()
1314          * should not have any consequences.
1315          */
1316         if (current->plug && !at_head) {
1317                 blk_add_rq_to_plug(current->plug, rq);
1318                 return;
1319         }
1320
1321         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1322         blk_mq_run_hw_queue(hctx, false);
1323 }
1324 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1325
1326 struct blk_rq_wait {
1327         struct completion done;
1328         blk_status_t ret;
1329 };
1330
1331 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1332 {
1333         struct blk_rq_wait *wait = rq->end_io_data;
1334
1335         wait->ret = ret;
1336         complete(&wait->done);
1337         return RQ_END_IO_NONE;
1338 }
1339
1340 bool blk_rq_is_poll(struct request *rq)
1341 {
1342         if (!rq->mq_hctx)
1343                 return false;
1344         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1345                 return false;
1346         return true;
1347 }
1348 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1349
1350 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1351 {
1352         do {
1353                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1354                 cond_resched();
1355         } while (!completion_done(wait));
1356 }
1357
1358 /**
1359  * blk_execute_rq - insert a request into queue for execution
1360  * @rq:         request to insert
1361  * @at_head:    insert request at head or tail of queue
1362  *
1363  * Description:
1364  *    Insert a fully prepared request at the back of the I/O scheduler queue
1365  *    for execution and wait for completion.
1366  * Return: The blk_status_t result provided to blk_mq_end_request().
1367  */
1368 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1369 {
1370         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1371         struct blk_rq_wait wait = {
1372                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1373         };
1374
1375         WARN_ON(irqs_disabled());
1376         WARN_ON(!blk_rq_is_passthrough(rq));
1377
1378         rq->end_io_data = &wait;
1379         rq->end_io = blk_end_sync_rq;
1380
1381         blk_account_io_start(rq);
1382         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1383         blk_mq_run_hw_queue(hctx, false);
1384
1385         if (blk_rq_is_poll(rq)) {
1386                 blk_rq_poll_completion(rq, &wait.done);
1387         } else {
1388                 /*
1389                  * Prevent hang_check timer from firing at us during very long
1390                  * I/O
1391                  */
1392                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1393
1394                 if (hang_check)
1395                         while (!wait_for_completion_io_timeout(&wait.done,
1396                                         hang_check * (HZ/2)))
1397                                 ;
1398                 else
1399                         wait_for_completion_io(&wait.done);
1400         }
1401
1402         return wait.ret;
1403 }
1404 EXPORT_SYMBOL(blk_execute_rq);
1405
1406 static void __blk_mq_requeue_request(struct request *rq)
1407 {
1408         struct request_queue *q = rq->q;
1409
1410         blk_mq_put_driver_tag(rq);
1411
1412         trace_block_rq_requeue(rq);
1413         rq_qos_requeue(q, rq);
1414
1415         if (blk_mq_request_started(rq)) {
1416                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1417                 rq->rq_flags &= ~RQF_TIMED_OUT;
1418         }
1419 }
1420
1421 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1422 {
1423         struct request_queue *q = rq->q;
1424         unsigned long flags;
1425
1426         __blk_mq_requeue_request(rq);
1427
1428         /* this request will be re-inserted to io scheduler queue */
1429         blk_mq_sched_requeue_request(rq);
1430
1431         spin_lock_irqsave(&q->requeue_lock, flags);
1432         list_add_tail(&rq->queuelist, &q->requeue_list);
1433         spin_unlock_irqrestore(&q->requeue_lock, flags);
1434
1435         if (kick_requeue_list)
1436                 blk_mq_kick_requeue_list(q);
1437 }
1438 EXPORT_SYMBOL(blk_mq_requeue_request);
1439
1440 static void blk_mq_requeue_work(struct work_struct *work)
1441 {
1442         struct request_queue *q =
1443                 container_of(work, struct request_queue, requeue_work.work);
1444         LIST_HEAD(rq_list);
1445         LIST_HEAD(flush_list);
1446         struct request *rq;
1447
1448         spin_lock_irq(&q->requeue_lock);
1449         list_splice_init(&q->requeue_list, &rq_list);
1450         list_splice_init(&q->flush_list, &flush_list);
1451         spin_unlock_irq(&q->requeue_lock);
1452
1453         while (!list_empty(&rq_list)) {
1454                 rq = list_entry(rq_list.next, struct request, queuelist);
1455                 /*
1456                  * If RQF_DONTPREP ist set, the request has been started by the
1457                  * driver already and might have driver-specific data allocated
1458                  * already.  Insert it into the hctx dispatch list to avoid
1459                  * block layer merges for the request.
1460                  */
1461                 if (rq->rq_flags & RQF_DONTPREP) {
1462                         list_del_init(&rq->queuelist);
1463                         blk_mq_request_bypass_insert(rq, 0);
1464                 } else {
1465                         list_del_init(&rq->queuelist);
1466                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1467                 }
1468         }
1469
1470         while (!list_empty(&flush_list)) {
1471                 rq = list_entry(flush_list.next, struct request, queuelist);
1472                 list_del_init(&rq->queuelist);
1473                 blk_mq_insert_request(rq, 0);
1474         }
1475
1476         blk_mq_run_hw_queues(q, false);
1477 }
1478
1479 void blk_mq_kick_requeue_list(struct request_queue *q)
1480 {
1481         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1482 }
1483 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1484
1485 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1486                                     unsigned long msecs)
1487 {
1488         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1489                                     msecs_to_jiffies(msecs));
1490 }
1491 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1492
1493 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1494 {
1495         /*
1496          * If we find a request that isn't idle we know the queue is busy
1497          * as it's checked in the iter.
1498          * Return false to stop the iteration.
1499          */
1500         if (blk_mq_request_started(rq)) {
1501                 bool *busy = priv;
1502
1503                 *busy = true;
1504                 return false;
1505         }
1506
1507         return true;
1508 }
1509
1510 bool blk_mq_queue_inflight(struct request_queue *q)
1511 {
1512         bool busy = false;
1513
1514         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1515         return busy;
1516 }
1517 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1518
1519 static void blk_mq_rq_timed_out(struct request *req)
1520 {
1521         req->rq_flags |= RQF_TIMED_OUT;
1522         if (req->q->mq_ops->timeout) {
1523                 enum blk_eh_timer_return ret;
1524
1525                 ret = req->q->mq_ops->timeout(req);
1526                 if (ret == BLK_EH_DONE)
1527                         return;
1528                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1529         }
1530
1531         blk_add_timer(req);
1532 }
1533
1534 struct blk_expired_data {
1535         bool has_timedout_rq;
1536         unsigned long next;
1537         unsigned long timeout_start;
1538 };
1539
1540 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1541 {
1542         unsigned long deadline;
1543
1544         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1545                 return false;
1546         if (rq->rq_flags & RQF_TIMED_OUT)
1547                 return false;
1548
1549         deadline = READ_ONCE(rq->deadline);
1550         if (time_after_eq(expired->timeout_start, deadline))
1551                 return true;
1552
1553         if (expired->next == 0)
1554                 expired->next = deadline;
1555         else if (time_after(expired->next, deadline))
1556                 expired->next = deadline;
1557         return false;
1558 }
1559
1560 void blk_mq_put_rq_ref(struct request *rq)
1561 {
1562         if (is_flush_rq(rq)) {
1563                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1564                         blk_mq_free_request(rq);
1565         } else if (req_ref_put_and_test(rq)) {
1566                 __blk_mq_free_request(rq);
1567         }
1568 }
1569
1570 static bool blk_mq_check_expired(struct request *rq, void *priv)
1571 {
1572         struct blk_expired_data *expired = priv;
1573
1574         /*
1575          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1576          * be reallocated underneath the timeout handler's processing, then
1577          * the expire check is reliable. If the request is not expired, then
1578          * it was completed and reallocated as a new request after returning
1579          * from blk_mq_check_expired().
1580          */
1581         if (blk_mq_req_expired(rq, expired)) {
1582                 expired->has_timedout_rq = true;
1583                 return false;
1584         }
1585         return true;
1586 }
1587
1588 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1589 {
1590         struct blk_expired_data *expired = priv;
1591
1592         if (blk_mq_req_expired(rq, expired))
1593                 blk_mq_rq_timed_out(rq);
1594         return true;
1595 }
1596
1597 static void blk_mq_timeout_work(struct work_struct *work)
1598 {
1599         struct request_queue *q =
1600                 container_of(work, struct request_queue, timeout_work);
1601         struct blk_expired_data expired = {
1602                 .timeout_start = jiffies,
1603         };
1604         struct blk_mq_hw_ctx *hctx;
1605         unsigned long i;
1606
1607         /* A deadlock might occur if a request is stuck requiring a
1608          * timeout at the same time a queue freeze is waiting
1609          * completion, since the timeout code would not be able to
1610          * acquire the queue reference here.
1611          *
1612          * That's why we don't use blk_queue_enter here; instead, we use
1613          * percpu_ref_tryget directly, because we need to be able to
1614          * obtain a reference even in the short window between the queue
1615          * starting to freeze, by dropping the first reference in
1616          * blk_freeze_queue_start, and the moment the last request is
1617          * consumed, marked by the instant q_usage_counter reaches
1618          * zero.
1619          */
1620         if (!percpu_ref_tryget(&q->q_usage_counter))
1621                 return;
1622
1623         /* check if there is any timed-out request */
1624         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1625         if (expired.has_timedout_rq) {
1626                 /*
1627                  * Before walking tags, we must ensure any submit started
1628                  * before the current time has finished. Since the submit
1629                  * uses srcu or rcu, wait for a synchronization point to
1630                  * ensure all running submits have finished
1631                  */
1632                 blk_mq_wait_quiesce_done(q->tag_set);
1633
1634                 expired.next = 0;
1635                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1636         }
1637
1638         if (expired.next != 0) {
1639                 mod_timer(&q->timeout, expired.next);
1640         } else {
1641                 /*
1642                  * Request timeouts are handled as a forward rolling timer. If
1643                  * we end up here it means that no requests are pending and
1644                  * also that no request has been pending for a while. Mark
1645                  * each hctx as idle.
1646                  */
1647                 queue_for_each_hw_ctx(q, hctx, i) {
1648                         /* the hctx may be unmapped, so check it here */
1649                         if (blk_mq_hw_queue_mapped(hctx))
1650                                 blk_mq_tag_idle(hctx);
1651                 }
1652         }
1653         blk_queue_exit(q);
1654 }
1655
1656 struct flush_busy_ctx_data {
1657         struct blk_mq_hw_ctx *hctx;
1658         struct list_head *list;
1659 };
1660
1661 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1662 {
1663         struct flush_busy_ctx_data *flush_data = data;
1664         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1665         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1666         enum hctx_type type = hctx->type;
1667
1668         spin_lock(&ctx->lock);
1669         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1670         sbitmap_clear_bit(sb, bitnr);
1671         spin_unlock(&ctx->lock);
1672         return true;
1673 }
1674
1675 /*
1676  * Process software queues that have been marked busy, splicing them
1677  * to the for-dispatch
1678  */
1679 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1680 {
1681         struct flush_busy_ctx_data data = {
1682                 .hctx = hctx,
1683                 .list = list,
1684         };
1685
1686         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1687 }
1688 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1689
1690 struct dispatch_rq_data {
1691         struct blk_mq_hw_ctx *hctx;
1692         struct request *rq;
1693 };
1694
1695 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1696                 void *data)
1697 {
1698         struct dispatch_rq_data *dispatch_data = data;
1699         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1700         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1701         enum hctx_type type = hctx->type;
1702
1703         spin_lock(&ctx->lock);
1704         if (!list_empty(&ctx->rq_lists[type])) {
1705                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1706                 list_del_init(&dispatch_data->rq->queuelist);
1707                 if (list_empty(&ctx->rq_lists[type]))
1708                         sbitmap_clear_bit(sb, bitnr);
1709         }
1710         spin_unlock(&ctx->lock);
1711
1712         return !dispatch_data->rq;
1713 }
1714
1715 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1716                                         struct blk_mq_ctx *start)
1717 {
1718         unsigned off = start ? start->index_hw[hctx->type] : 0;
1719         struct dispatch_rq_data data = {
1720                 .hctx = hctx,
1721                 .rq   = NULL,
1722         };
1723
1724         __sbitmap_for_each_set(&hctx->ctx_map, off,
1725                                dispatch_rq_from_ctx, &data);
1726
1727         return data.rq;
1728 }
1729
1730 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1731 {
1732         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1733         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1734         int tag;
1735
1736         blk_mq_tag_busy(rq->mq_hctx);
1737
1738         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1739                 bt = &rq->mq_hctx->tags->breserved_tags;
1740                 tag_offset = 0;
1741         } else {
1742                 if (!hctx_may_queue(rq->mq_hctx, bt))
1743                         return false;
1744         }
1745
1746         tag = __sbitmap_queue_get(bt);
1747         if (tag == BLK_MQ_NO_TAG)
1748                 return false;
1749
1750         rq->tag = tag + tag_offset;
1751         return true;
1752 }
1753
1754 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1755 {
1756         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1757                 return false;
1758
1759         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1760                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1761                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1762                 __blk_mq_inc_active_requests(hctx);
1763         }
1764         hctx->tags->rqs[rq->tag] = rq;
1765         return true;
1766 }
1767
1768 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1769                                 int flags, void *key)
1770 {
1771         struct blk_mq_hw_ctx *hctx;
1772
1773         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1774
1775         spin_lock(&hctx->dispatch_wait_lock);
1776         if (!list_empty(&wait->entry)) {
1777                 struct sbitmap_queue *sbq;
1778
1779                 list_del_init(&wait->entry);
1780                 sbq = &hctx->tags->bitmap_tags;
1781                 atomic_dec(&sbq->ws_active);
1782         }
1783         spin_unlock(&hctx->dispatch_wait_lock);
1784
1785         blk_mq_run_hw_queue(hctx, true);
1786         return 1;
1787 }
1788
1789 /*
1790  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1791  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1792  * restart. For both cases, take care to check the condition again after
1793  * marking us as waiting.
1794  */
1795 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1796                                  struct request *rq)
1797 {
1798         struct sbitmap_queue *sbq;
1799         struct wait_queue_head *wq;
1800         wait_queue_entry_t *wait;
1801         bool ret;
1802
1803         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1804             !(blk_mq_is_shared_tags(hctx->flags))) {
1805                 blk_mq_sched_mark_restart_hctx(hctx);
1806
1807                 /*
1808                  * It's possible that a tag was freed in the window between the
1809                  * allocation failure and adding the hardware queue to the wait
1810                  * queue.
1811                  *
1812                  * Don't clear RESTART here, someone else could have set it.
1813                  * At most this will cost an extra queue run.
1814                  */
1815                 return blk_mq_get_driver_tag(rq);
1816         }
1817
1818         wait = &hctx->dispatch_wait;
1819         if (!list_empty_careful(&wait->entry))
1820                 return false;
1821
1822         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1823                 sbq = &hctx->tags->breserved_tags;
1824         else
1825                 sbq = &hctx->tags->bitmap_tags;
1826         wq = &bt_wait_ptr(sbq, hctx)->wait;
1827
1828         spin_lock_irq(&wq->lock);
1829         spin_lock(&hctx->dispatch_wait_lock);
1830         if (!list_empty(&wait->entry)) {
1831                 spin_unlock(&hctx->dispatch_wait_lock);
1832                 spin_unlock_irq(&wq->lock);
1833                 return false;
1834         }
1835
1836         atomic_inc(&sbq->ws_active);
1837         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1838         __add_wait_queue(wq, wait);
1839
1840         /*
1841          * It's possible that a tag was freed in the window between the
1842          * allocation failure and adding the hardware queue to the wait
1843          * queue.
1844          */
1845         ret = blk_mq_get_driver_tag(rq);
1846         if (!ret) {
1847                 spin_unlock(&hctx->dispatch_wait_lock);
1848                 spin_unlock_irq(&wq->lock);
1849                 return false;
1850         }
1851
1852         /*
1853          * We got a tag, remove ourselves from the wait queue to ensure
1854          * someone else gets the wakeup.
1855          */
1856         list_del_init(&wait->entry);
1857         atomic_dec(&sbq->ws_active);
1858         spin_unlock(&hctx->dispatch_wait_lock);
1859         spin_unlock_irq(&wq->lock);
1860
1861         return true;
1862 }
1863
1864 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1865 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1866 /*
1867  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1868  * - EWMA is one simple way to compute running average value
1869  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1870  * - take 4 as factor for avoiding to get too small(0) result, and this
1871  *   factor doesn't matter because EWMA decreases exponentially
1872  */
1873 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1874 {
1875         unsigned int ewma;
1876
1877         ewma = hctx->dispatch_busy;
1878
1879         if (!ewma && !busy)
1880                 return;
1881
1882         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1883         if (busy)
1884                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1885         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1886
1887         hctx->dispatch_busy = ewma;
1888 }
1889
1890 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1891
1892 static void blk_mq_handle_dev_resource(struct request *rq,
1893                                        struct list_head *list)
1894 {
1895         list_add(&rq->queuelist, list);
1896         __blk_mq_requeue_request(rq);
1897 }
1898
1899 static void blk_mq_handle_zone_resource(struct request *rq,
1900                                         struct list_head *zone_list)
1901 {
1902         /*
1903          * If we end up here it is because we cannot dispatch a request to a
1904          * specific zone due to LLD level zone-write locking or other zone
1905          * related resource not being available. In this case, set the request
1906          * aside in zone_list for retrying it later.
1907          */
1908         list_add(&rq->queuelist, zone_list);
1909         __blk_mq_requeue_request(rq);
1910 }
1911
1912 enum prep_dispatch {
1913         PREP_DISPATCH_OK,
1914         PREP_DISPATCH_NO_TAG,
1915         PREP_DISPATCH_NO_BUDGET,
1916 };
1917
1918 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1919                                                   bool need_budget)
1920 {
1921         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1922         int budget_token = -1;
1923
1924         if (need_budget) {
1925                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1926                 if (budget_token < 0) {
1927                         blk_mq_put_driver_tag(rq);
1928                         return PREP_DISPATCH_NO_BUDGET;
1929                 }
1930                 blk_mq_set_rq_budget_token(rq, budget_token);
1931         }
1932
1933         if (!blk_mq_get_driver_tag(rq)) {
1934                 /*
1935                  * The initial allocation attempt failed, so we need to
1936                  * rerun the hardware queue when a tag is freed. The
1937                  * waitqueue takes care of that. If the queue is run
1938                  * before we add this entry back on the dispatch list,
1939                  * we'll re-run it below.
1940                  */
1941                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1942                         /*
1943                          * All budgets not got from this function will be put
1944                          * together during handling partial dispatch
1945                          */
1946                         if (need_budget)
1947                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1948                         return PREP_DISPATCH_NO_TAG;
1949                 }
1950         }
1951
1952         return PREP_DISPATCH_OK;
1953 }
1954
1955 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1956 static void blk_mq_release_budgets(struct request_queue *q,
1957                 struct list_head *list)
1958 {
1959         struct request *rq;
1960
1961         list_for_each_entry(rq, list, queuelist) {
1962                 int budget_token = blk_mq_get_rq_budget_token(rq);
1963
1964                 if (budget_token >= 0)
1965                         blk_mq_put_dispatch_budget(q, budget_token);
1966         }
1967 }
1968
1969 /*
1970  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1971  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1972  * details)
1973  * Attention, we should explicitly call this in unusual cases:
1974  *  1) did not queue everything initially scheduled to queue
1975  *  2) the last attempt to queue a request failed
1976  */
1977 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1978                               bool from_schedule)
1979 {
1980         if (hctx->queue->mq_ops->commit_rqs && queued) {
1981                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1982                 hctx->queue->mq_ops->commit_rqs(hctx);
1983         }
1984 }
1985
1986 /*
1987  * Returns true if we did some work AND can potentially do more.
1988  */
1989 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1990                              unsigned int nr_budgets)
1991 {
1992         enum prep_dispatch prep;
1993         struct request_queue *q = hctx->queue;
1994         struct request *rq;
1995         int queued;
1996         blk_status_t ret = BLK_STS_OK;
1997         LIST_HEAD(zone_list);
1998         bool needs_resource = false;
1999
2000         if (list_empty(list))
2001                 return false;
2002
2003         /*
2004          * Now process all the entries, sending them to the driver.
2005          */
2006         queued = 0;
2007         do {
2008                 struct blk_mq_queue_data bd;
2009
2010                 rq = list_first_entry(list, struct request, queuelist);
2011
2012                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2013                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2014                 if (prep != PREP_DISPATCH_OK)
2015                         break;
2016
2017                 list_del_init(&rq->queuelist);
2018
2019                 bd.rq = rq;
2020                 bd.last = list_empty(list);
2021
2022                 /*
2023                  * once the request is queued to lld, no need to cover the
2024                  * budget any more
2025                  */
2026                 if (nr_budgets)
2027                         nr_budgets--;
2028                 ret = q->mq_ops->queue_rq(hctx, &bd);
2029                 switch (ret) {
2030                 case BLK_STS_OK:
2031                         queued++;
2032                         break;
2033                 case BLK_STS_RESOURCE:
2034                         needs_resource = true;
2035                         fallthrough;
2036                 case BLK_STS_DEV_RESOURCE:
2037                         blk_mq_handle_dev_resource(rq, list);
2038                         goto out;
2039                 case BLK_STS_ZONE_RESOURCE:
2040                         /*
2041                          * Move the request to zone_list and keep going through
2042                          * the dispatch list to find more requests the drive can
2043                          * accept.
2044                          */
2045                         blk_mq_handle_zone_resource(rq, &zone_list);
2046                         needs_resource = true;
2047                         break;
2048                 default:
2049                         blk_mq_end_request(rq, ret);
2050                 }
2051         } while (!list_empty(list));
2052 out:
2053         if (!list_empty(&zone_list))
2054                 list_splice_tail_init(&zone_list, list);
2055
2056         /* If we didn't flush the entire list, we could have told the driver
2057          * there was more coming, but that turned out to be a lie.
2058          */
2059         if (!list_empty(list) || ret != BLK_STS_OK)
2060                 blk_mq_commit_rqs(hctx, queued, false);
2061
2062         /*
2063          * Any items that need requeuing? Stuff them into hctx->dispatch,
2064          * that is where we will continue on next queue run.
2065          */
2066         if (!list_empty(list)) {
2067                 bool needs_restart;
2068                 /* For non-shared tags, the RESTART check will suffice */
2069                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2070                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2071                         blk_mq_is_shared_tags(hctx->flags));
2072
2073                 if (nr_budgets)
2074                         blk_mq_release_budgets(q, list);
2075
2076                 spin_lock(&hctx->lock);
2077                 list_splice_tail_init(list, &hctx->dispatch);
2078                 spin_unlock(&hctx->lock);
2079
2080                 /*
2081                  * Order adding requests to hctx->dispatch and checking
2082                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2083                  * in blk_mq_sched_restart(). Avoid restart code path to
2084                  * miss the new added requests to hctx->dispatch, meantime
2085                  * SCHED_RESTART is observed here.
2086                  */
2087                 smp_mb();
2088
2089                 /*
2090                  * If SCHED_RESTART was set by the caller of this function and
2091                  * it is no longer set that means that it was cleared by another
2092                  * thread and hence that a queue rerun is needed.
2093                  *
2094                  * If 'no_tag' is set, that means that we failed getting
2095                  * a driver tag with an I/O scheduler attached. If our dispatch
2096                  * waitqueue is no longer active, ensure that we run the queue
2097                  * AFTER adding our entries back to the list.
2098                  *
2099                  * If no I/O scheduler has been configured it is possible that
2100                  * the hardware queue got stopped and restarted before requests
2101                  * were pushed back onto the dispatch list. Rerun the queue to
2102                  * avoid starvation. Notes:
2103                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2104                  *   been stopped before rerunning a queue.
2105                  * - Some but not all block drivers stop a queue before
2106                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2107                  *   and dm-rq.
2108                  *
2109                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2110                  * bit is set, run queue after a delay to avoid IO stalls
2111                  * that could otherwise occur if the queue is idle.  We'll do
2112                  * similar if we couldn't get budget or couldn't lock a zone
2113                  * and SCHED_RESTART is set.
2114                  */
2115                 needs_restart = blk_mq_sched_needs_restart(hctx);
2116                 if (prep == PREP_DISPATCH_NO_BUDGET)
2117                         needs_resource = true;
2118                 if (!needs_restart ||
2119                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2120                         blk_mq_run_hw_queue(hctx, true);
2121                 else if (needs_resource)
2122                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2123
2124                 blk_mq_update_dispatch_busy(hctx, true);
2125                 return false;
2126         }
2127
2128         blk_mq_update_dispatch_busy(hctx, false);
2129         return true;
2130 }
2131
2132 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2133 {
2134         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2135
2136         if (cpu >= nr_cpu_ids)
2137                 cpu = cpumask_first(hctx->cpumask);
2138         return cpu;
2139 }
2140
2141 /*
2142  * It'd be great if the workqueue API had a way to pass
2143  * in a mask and had some smarts for more clever placement.
2144  * For now we just round-robin here, switching for every
2145  * BLK_MQ_CPU_WORK_BATCH queued items.
2146  */
2147 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2148 {
2149         bool tried = false;
2150         int next_cpu = hctx->next_cpu;
2151
2152         if (hctx->queue->nr_hw_queues == 1)
2153                 return WORK_CPU_UNBOUND;
2154
2155         if (--hctx->next_cpu_batch <= 0) {
2156 select_cpu:
2157                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2158                                 cpu_online_mask);
2159                 if (next_cpu >= nr_cpu_ids)
2160                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2161                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2162         }
2163
2164         /*
2165          * Do unbound schedule if we can't find a online CPU for this hctx,
2166          * and it should only happen in the path of handling CPU DEAD.
2167          */
2168         if (!cpu_online(next_cpu)) {
2169                 if (!tried) {
2170                         tried = true;
2171                         goto select_cpu;
2172                 }
2173
2174                 /*
2175                  * Make sure to re-select CPU next time once after CPUs
2176                  * in hctx->cpumask become online again.
2177                  */
2178                 hctx->next_cpu = next_cpu;
2179                 hctx->next_cpu_batch = 1;
2180                 return WORK_CPU_UNBOUND;
2181         }
2182
2183         hctx->next_cpu = next_cpu;
2184         return next_cpu;
2185 }
2186
2187 /**
2188  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2189  * @hctx: Pointer to the hardware queue to run.
2190  * @msecs: Milliseconds of delay to wait before running the queue.
2191  *
2192  * Run a hardware queue asynchronously with a delay of @msecs.
2193  */
2194 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2195 {
2196         if (unlikely(blk_mq_hctx_stopped(hctx)))
2197                 return;
2198         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2199                                     msecs_to_jiffies(msecs));
2200 }
2201 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2202
2203 /**
2204  * blk_mq_run_hw_queue - Start to run a hardware queue.
2205  * @hctx: Pointer to the hardware queue to run.
2206  * @async: If we want to run the queue asynchronously.
2207  *
2208  * Check if the request queue is not in a quiesced state and if there are
2209  * pending requests to be sent. If this is true, run the queue to send requests
2210  * to hardware.
2211  */
2212 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2213 {
2214         bool need_run;
2215
2216         /*
2217          * We can't run the queue inline with interrupts disabled.
2218          */
2219         WARN_ON_ONCE(!async && in_interrupt());
2220
2221         /*
2222          * When queue is quiesced, we may be switching io scheduler, or
2223          * updating nr_hw_queues, or other things, and we can't run queue
2224          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2225          *
2226          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2227          * quiesced.
2228          */
2229         __blk_mq_run_dispatch_ops(hctx->queue, false,
2230                 need_run = !blk_queue_quiesced(hctx->queue) &&
2231                 blk_mq_hctx_has_pending(hctx));
2232
2233         if (!need_run)
2234                 return;
2235
2236         if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2237             !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2238                 blk_mq_delay_run_hw_queue(hctx, 0);
2239                 return;
2240         }
2241
2242         blk_mq_run_dispatch_ops(hctx->queue,
2243                                 blk_mq_sched_dispatch_requests(hctx));
2244 }
2245 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2246
2247 /*
2248  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2249  * scheduler.
2250  */
2251 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2252 {
2253         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2254         /*
2255          * If the IO scheduler does not respect hardware queues when
2256          * dispatching, we just don't bother with multiple HW queues and
2257          * dispatch from hctx for the current CPU since running multiple queues
2258          * just causes lock contention inside the scheduler and pointless cache
2259          * bouncing.
2260          */
2261         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2262
2263         if (!blk_mq_hctx_stopped(hctx))
2264                 return hctx;
2265         return NULL;
2266 }
2267
2268 /**
2269  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2270  * @q: Pointer to the request queue to run.
2271  * @async: If we want to run the queue asynchronously.
2272  */
2273 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2274 {
2275         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2276         unsigned long i;
2277
2278         sq_hctx = NULL;
2279         if (blk_queue_sq_sched(q))
2280                 sq_hctx = blk_mq_get_sq_hctx(q);
2281         queue_for_each_hw_ctx(q, hctx, i) {
2282                 if (blk_mq_hctx_stopped(hctx))
2283                         continue;
2284                 /*
2285                  * Dispatch from this hctx either if there's no hctx preferred
2286                  * by IO scheduler or if it has requests that bypass the
2287                  * scheduler.
2288                  */
2289                 if (!sq_hctx || sq_hctx == hctx ||
2290                     !list_empty_careful(&hctx->dispatch))
2291                         blk_mq_run_hw_queue(hctx, async);
2292         }
2293 }
2294 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2295
2296 /**
2297  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2298  * @q: Pointer to the request queue to run.
2299  * @msecs: Milliseconds of delay to wait before running the queues.
2300  */
2301 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2302 {
2303         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2304         unsigned long i;
2305
2306         sq_hctx = NULL;
2307         if (blk_queue_sq_sched(q))
2308                 sq_hctx = blk_mq_get_sq_hctx(q);
2309         queue_for_each_hw_ctx(q, hctx, i) {
2310                 if (blk_mq_hctx_stopped(hctx))
2311                         continue;
2312                 /*
2313                  * If there is already a run_work pending, leave the
2314                  * pending delay untouched. Otherwise, a hctx can stall
2315                  * if another hctx is re-delaying the other's work
2316                  * before the work executes.
2317                  */
2318                 if (delayed_work_pending(&hctx->run_work))
2319                         continue;
2320                 /*
2321                  * Dispatch from this hctx either if there's no hctx preferred
2322                  * by IO scheduler or if it has requests that bypass the
2323                  * scheduler.
2324                  */
2325                 if (!sq_hctx || sq_hctx == hctx ||
2326                     !list_empty_careful(&hctx->dispatch))
2327                         blk_mq_delay_run_hw_queue(hctx, msecs);
2328         }
2329 }
2330 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2331
2332 /*
2333  * This function is often used for pausing .queue_rq() by driver when
2334  * there isn't enough resource or some conditions aren't satisfied, and
2335  * BLK_STS_RESOURCE is usually returned.
2336  *
2337  * We do not guarantee that dispatch can be drained or blocked
2338  * after blk_mq_stop_hw_queue() returns. Please use
2339  * blk_mq_quiesce_queue() for that requirement.
2340  */
2341 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2342 {
2343         cancel_delayed_work(&hctx->run_work);
2344
2345         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2346 }
2347 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2348
2349 /*
2350  * This function is often used for pausing .queue_rq() by driver when
2351  * there isn't enough resource or some conditions aren't satisfied, and
2352  * BLK_STS_RESOURCE is usually returned.
2353  *
2354  * We do not guarantee that dispatch can be drained or blocked
2355  * after blk_mq_stop_hw_queues() returns. Please use
2356  * blk_mq_quiesce_queue() for that requirement.
2357  */
2358 void blk_mq_stop_hw_queues(struct request_queue *q)
2359 {
2360         struct blk_mq_hw_ctx *hctx;
2361         unsigned long i;
2362
2363         queue_for_each_hw_ctx(q, hctx, i)
2364                 blk_mq_stop_hw_queue(hctx);
2365 }
2366 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2367
2368 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2369 {
2370         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2371
2372         blk_mq_run_hw_queue(hctx, false);
2373 }
2374 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2375
2376 void blk_mq_start_hw_queues(struct request_queue *q)
2377 {
2378         struct blk_mq_hw_ctx *hctx;
2379         unsigned long i;
2380
2381         queue_for_each_hw_ctx(q, hctx, i)
2382                 blk_mq_start_hw_queue(hctx);
2383 }
2384 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2385
2386 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2387 {
2388         if (!blk_mq_hctx_stopped(hctx))
2389                 return;
2390
2391         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2392         blk_mq_run_hw_queue(hctx, async);
2393 }
2394 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2395
2396 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2397 {
2398         struct blk_mq_hw_ctx *hctx;
2399         unsigned long i;
2400
2401         queue_for_each_hw_ctx(q, hctx, i)
2402                 blk_mq_start_stopped_hw_queue(hctx, async);
2403 }
2404 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2405
2406 static void blk_mq_run_work_fn(struct work_struct *work)
2407 {
2408         struct blk_mq_hw_ctx *hctx =
2409                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2410
2411         blk_mq_run_dispatch_ops(hctx->queue,
2412                                 blk_mq_sched_dispatch_requests(hctx));
2413 }
2414
2415 /**
2416  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2417  * @rq: Pointer to request to be inserted.
2418  * @flags: BLK_MQ_INSERT_*
2419  *
2420  * Should only be used carefully, when the caller knows we want to
2421  * bypass a potential IO scheduler on the target device.
2422  */
2423 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2424 {
2425         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2426
2427         spin_lock(&hctx->lock);
2428         if (flags & BLK_MQ_INSERT_AT_HEAD)
2429                 list_add(&rq->queuelist, &hctx->dispatch);
2430         else
2431                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2432         spin_unlock(&hctx->lock);
2433 }
2434
2435 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2436                 struct blk_mq_ctx *ctx, struct list_head *list,
2437                 bool run_queue_async)
2438 {
2439         struct request *rq;
2440         enum hctx_type type = hctx->type;
2441
2442         /*
2443          * Try to issue requests directly if the hw queue isn't busy to save an
2444          * extra enqueue & dequeue to the sw queue.
2445          */
2446         if (!hctx->dispatch_busy && !run_queue_async) {
2447                 blk_mq_run_dispatch_ops(hctx->queue,
2448                         blk_mq_try_issue_list_directly(hctx, list));
2449                 if (list_empty(list))
2450                         goto out;
2451         }
2452
2453         /*
2454          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2455          * offline now
2456          */
2457         list_for_each_entry(rq, list, queuelist) {
2458                 BUG_ON(rq->mq_ctx != ctx);
2459                 trace_block_rq_insert(rq);
2460         }
2461
2462         spin_lock(&ctx->lock);
2463         list_splice_tail_init(list, &ctx->rq_lists[type]);
2464         blk_mq_hctx_mark_pending(hctx, ctx);
2465         spin_unlock(&ctx->lock);
2466 out:
2467         blk_mq_run_hw_queue(hctx, run_queue_async);
2468 }
2469
2470 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2471 {
2472         struct request_queue *q = rq->q;
2473         struct blk_mq_ctx *ctx = rq->mq_ctx;
2474         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2475
2476         if (blk_rq_is_passthrough(rq)) {
2477                 /*
2478                  * Passthrough request have to be added to hctx->dispatch
2479                  * directly.  The device may be in a situation where it can't
2480                  * handle FS request, and always returns BLK_STS_RESOURCE for
2481                  * them, which gets them added to hctx->dispatch.
2482                  *
2483                  * If a passthrough request is required to unblock the queues,
2484                  * and it is added to the scheduler queue, there is no chance to
2485                  * dispatch it given we prioritize requests in hctx->dispatch.
2486                  */
2487                 blk_mq_request_bypass_insert(rq, flags);
2488         } else if (req_op(rq) == REQ_OP_FLUSH) {
2489                 /*
2490                  * Firstly normal IO request is inserted to scheduler queue or
2491                  * sw queue, meantime we add flush request to dispatch queue(
2492                  * hctx->dispatch) directly and there is at most one in-flight
2493                  * flush request for each hw queue, so it doesn't matter to add
2494                  * flush request to tail or front of the dispatch queue.
2495                  *
2496                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2497                  * command, and queueing it will fail when there is any
2498                  * in-flight normal IO request(NCQ command). When adding flush
2499                  * rq to the front of hctx->dispatch, it is easier to introduce
2500                  * extra time to flush rq's latency because of S_SCHED_RESTART
2501                  * compared with adding to the tail of dispatch queue, then
2502                  * chance of flush merge is increased, and less flush requests
2503                  * will be issued to controller. It is observed that ~10% time
2504                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2505                  * drive when adding flush rq to the front of hctx->dispatch.
2506                  *
2507                  * Simply queue flush rq to the front of hctx->dispatch so that
2508                  * intensive flush workloads can benefit in case of NCQ HW.
2509                  */
2510                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2511         } else if (q->elevator) {
2512                 LIST_HEAD(list);
2513
2514                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2515
2516                 list_add(&rq->queuelist, &list);
2517                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2518         } else {
2519                 trace_block_rq_insert(rq);
2520
2521                 spin_lock(&ctx->lock);
2522                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2523                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2524                 else
2525                         list_add_tail(&rq->queuelist,
2526                                       &ctx->rq_lists[hctx->type]);
2527                 blk_mq_hctx_mark_pending(hctx, ctx);
2528                 spin_unlock(&ctx->lock);
2529         }
2530 }
2531
2532 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2533                 unsigned int nr_segs)
2534 {
2535         int err;
2536
2537         if (bio->bi_opf & REQ_RAHEAD)
2538                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2539
2540         rq->__sector = bio->bi_iter.bi_sector;
2541         blk_rq_bio_prep(rq, bio, nr_segs);
2542
2543         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2544         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2545         WARN_ON_ONCE(err);
2546
2547         blk_account_io_start(rq);
2548 }
2549
2550 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2551                                             struct request *rq, bool last)
2552 {
2553         struct request_queue *q = rq->q;
2554         struct blk_mq_queue_data bd = {
2555                 .rq = rq,
2556                 .last = last,
2557         };
2558         blk_status_t ret;
2559
2560         /*
2561          * For OK queue, we are done. For error, caller may kill it.
2562          * Any other error (busy), just add it to our list as we
2563          * previously would have done.
2564          */
2565         ret = q->mq_ops->queue_rq(hctx, &bd);
2566         switch (ret) {
2567         case BLK_STS_OK:
2568                 blk_mq_update_dispatch_busy(hctx, false);
2569                 break;
2570         case BLK_STS_RESOURCE:
2571         case BLK_STS_DEV_RESOURCE:
2572                 blk_mq_update_dispatch_busy(hctx, true);
2573                 __blk_mq_requeue_request(rq);
2574                 break;
2575         default:
2576                 blk_mq_update_dispatch_busy(hctx, false);
2577                 break;
2578         }
2579
2580         return ret;
2581 }
2582
2583 static bool blk_mq_get_budget_and_tag(struct request *rq)
2584 {
2585         int budget_token;
2586
2587         budget_token = blk_mq_get_dispatch_budget(rq->q);
2588         if (budget_token < 0)
2589                 return false;
2590         blk_mq_set_rq_budget_token(rq, budget_token);
2591         if (!blk_mq_get_driver_tag(rq)) {
2592                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2593                 return false;
2594         }
2595         return true;
2596 }
2597
2598 /**
2599  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2600  * @hctx: Pointer of the associated hardware queue.
2601  * @rq: Pointer to request to be sent.
2602  *
2603  * If the device has enough resources to accept a new request now, send the
2604  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2605  * we can try send it another time in the future. Requests inserted at this
2606  * queue have higher priority.
2607  */
2608 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2609                 struct request *rq)
2610 {
2611         blk_status_t ret;
2612
2613         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2614                 blk_mq_insert_request(rq, 0);
2615                 return;
2616         }
2617
2618         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2619                 blk_mq_insert_request(rq, 0);
2620                 blk_mq_run_hw_queue(hctx, false);
2621                 return;
2622         }
2623
2624         ret = __blk_mq_issue_directly(hctx, rq, true);
2625         switch (ret) {
2626         case BLK_STS_OK:
2627                 break;
2628         case BLK_STS_RESOURCE:
2629         case BLK_STS_DEV_RESOURCE:
2630                 blk_mq_request_bypass_insert(rq, 0);
2631                 blk_mq_run_hw_queue(hctx, false);
2632                 break;
2633         default:
2634                 blk_mq_end_request(rq, ret);
2635                 break;
2636         }
2637 }
2638
2639 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2640 {
2641         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2642
2643         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2644                 blk_mq_insert_request(rq, 0);
2645                 return BLK_STS_OK;
2646         }
2647
2648         if (!blk_mq_get_budget_and_tag(rq))
2649                 return BLK_STS_RESOURCE;
2650         return __blk_mq_issue_directly(hctx, rq, last);
2651 }
2652
2653 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2654 {
2655         struct blk_mq_hw_ctx *hctx = NULL;
2656         struct request *rq;
2657         int queued = 0;
2658         blk_status_t ret = BLK_STS_OK;
2659
2660         while ((rq = rq_list_pop(&plug->mq_list))) {
2661                 bool last = rq_list_empty(plug->mq_list);
2662
2663                 if (hctx != rq->mq_hctx) {
2664                         if (hctx) {
2665                                 blk_mq_commit_rqs(hctx, queued, false);
2666                                 queued = 0;
2667                         }
2668                         hctx = rq->mq_hctx;
2669                 }
2670
2671                 ret = blk_mq_request_issue_directly(rq, last);
2672                 switch (ret) {
2673                 case BLK_STS_OK:
2674                         queued++;
2675                         break;
2676                 case BLK_STS_RESOURCE:
2677                 case BLK_STS_DEV_RESOURCE:
2678                         blk_mq_request_bypass_insert(rq, 0);
2679                         blk_mq_run_hw_queue(hctx, false);
2680                         goto out;
2681                 default:
2682                         blk_mq_end_request(rq, ret);
2683                         break;
2684                 }
2685         }
2686
2687 out:
2688         if (ret != BLK_STS_OK)
2689                 blk_mq_commit_rqs(hctx, queued, false);
2690 }
2691
2692 static void __blk_mq_flush_plug_list(struct request_queue *q,
2693                                      struct blk_plug *plug)
2694 {
2695         if (blk_queue_quiesced(q))
2696                 return;
2697         q->mq_ops->queue_rqs(&plug->mq_list);
2698 }
2699
2700 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2701 {
2702         struct blk_mq_hw_ctx *this_hctx = NULL;
2703         struct blk_mq_ctx *this_ctx = NULL;
2704         struct request *requeue_list = NULL;
2705         struct request **requeue_lastp = &requeue_list;
2706         unsigned int depth = 0;
2707         bool is_passthrough = false;
2708         LIST_HEAD(list);
2709
2710         do {
2711                 struct request *rq = rq_list_pop(&plug->mq_list);
2712
2713                 if (!this_hctx) {
2714                         this_hctx = rq->mq_hctx;
2715                         this_ctx = rq->mq_ctx;
2716                         is_passthrough = blk_rq_is_passthrough(rq);
2717                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2718                            is_passthrough != blk_rq_is_passthrough(rq)) {
2719                         rq_list_add_tail(&requeue_lastp, rq);
2720                         continue;
2721                 }
2722                 list_add(&rq->queuelist, &list);
2723                 depth++;
2724         } while (!rq_list_empty(plug->mq_list));
2725
2726         plug->mq_list = requeue_list;
2727         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2728
2729         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2730         /* passthrough requests should never be issued to the I/O scheduler */
2731         if (is_passthrough) {
2732                 spin_lock(&this_hctx->lock);
2733                 list_splice_tail_init(&list, &this_hctx->dispatch);
2734                 spin_unlock(&this_hctx->lock);
2735                 blk_mq_run_hw_queue(this_hctx, from_sched);
2736         } else if (this_hctx->queue->elevator) {
2737                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2738                                 &list, 0);
2739                 blk_mq_run_hw_queue(this_hctx, from_sched);
2740         } else {
2741                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2742         }
2743         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2744 }
2745
2746 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2747 {
2748         struct request *rq;
2749
2750         if (rq_list_empty(plug->mq_list))
2751                 return;
2752         plug->rq_count = 0;
2753
2754         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2755                 struct request_queue *q;
2756
2757                 rq = rq_list_peek(&plug->mq_list);
2758                 q = rq->q;
2759
2760                 /*
2761                  * Peek first request and see if we have a ->queue_rqs() hook.
2762                  * If we do, we can dispatch the whole plug list in one go. We
2763                  * already know at this point that all requests belong to the
2764                  * same queue, caller must ensure that's the case.
2765                  *
2766                  * Since we pass off the full list to the driver at this point,
2767                  * we do not increment the active request count for the queue.
2768                  * Bypass shared tags for now because of that.
2769                  */
2770                 if (q->mq_ops->queue_rqs &&
2771                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2772                         blk_mq_run_dispatch_ops(q,
2773                                 __blk_mq_flush_plug_list(q, plug));
2774                         if (rq_list_empty(plug->mq_list))
2775                                 return;
2776                 }
2777
2778                 blk_mq_run_dispatch_ops(q,
2779                                 blk_mq_plug_issue_direct(plug));
2780                 if (rq_list_empty(plug->mq_list))
2781                         return;
2782         }
2783
2784         do {
2785                 blk_mq_dispatch_plug_list(plug, from_schedule);
2786         } while (!rq_list_empty(plug->mq_list));
2787 }
2788
2789 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2790                 struct list_head *list)
2791 {
2792         int queued = 0;
2793         blk_status_t ret = BLK_STS_OK;
2794
2795         while (!list_empty(list)) {
2796                 struct request *rq = list_first_entry(list, struct request,
2797                                 queuelist);
2798
2799                 list_del_init(&rq->queuelist);
2800                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2801                 switch (ret) {
2802                 case BLK_STS_OK:
2803                         queued++;
2804                         break;
2805                 case BLK_STS_RESOURCE:
2806                 case BLK_STS_DEV_RESOURCE:
2807                         blk_mq_request_bypass_insert(rq, 0);
2808                         if (list_empty(list))
2809                                 blk_mq_run_hw_queue(hctx, false);
2810                         goto out;
2811                 default:
2812                         blk_mq_end_request(rq, ret);
2813                         break;
2814                 }
2815         }
2816
2817 out:
2818         if (ret != BLK_STS_OK)
2819                 blk_mq_commit_rqs(hctx, queued, false);
2820 }
2821
2822 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2823                                      struct bio *bio, unsigned int nr_segs)
2824 {
2825         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2826                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2827                         return true;
2828                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2829                         return true;
2830         }
2831         return false;
2832 }
2833
2834 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2835                                                struct blk_plug *plug,
2836                                                struct bio *bio,
2837                                                unsigned int nsegs)
2838 {
2839         struct blk_mq_alloc_data data = {
2840                 .q              = q,
2841                 .nr_tags        = 1,
2842                 .cmd_flags      = bio->bi_opf,
2843         };
2844         struct request *rq;
2845
2846         if (unlikely(bio_queue_enter(bio)))
2847                 return NULL;
2848
2849         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2850                 goto queue_exit;
2851
2852         rq_qos_throttle(q, bio);
2853
2854         if (plug) {
2855                 data.nr_tags = plug->nr_ios;
2856                 plug->nr_ios = 1;
2857                 data.cached_rq = &plug->cached_rq;
2858         }
2859
2860         rq = __blk_mq_alloc_requests(&data);
2861         if (rq)
2862                 return rq;
2863         rq_qos_cleanup(q, bio);
2864         if (bio->bi_opf & REQ_NOWAIT)
2865                 bio_wouldblock_error(bio);
2866 queue_exit:
2867         blk_queue_exit(q);
2868         return NULL;
2869 }
2870
2871 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2872                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2873 {
2874         struct request *rq;
2875         enum hctx_type type, hctx_type;
2876
2877         if (!plug)
2878                 return NULL;
2879         rq = rq_list_peek(&plug->cached_rq);
2880         if (!rq || rq->q != q)
2881                 return NULL;
2882
2883         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2884                 *bio = NULL;
2885                 return NULL;
2886         }
2887
2888         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2889         hctx_type = rq->mq_hctx->type;
2890         if (type != hctx_type &&
2891             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2892                 return NULL;
2893         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2894                 return NULL;
2895
2896         /*
2897          * If any qos ->throttle() end up blocking, we will have flushed the
2898          * plug and hence killed the cached_rq list as well. Pop this entry
2899          * before we throttle.
2900          */
2901         plug->cached_rq = rq_list_next(rq);
2902         rq_qos_throttle(q, *bio);
2903
2904         rq->cmd_flags = (*bio)->bi_opf;
2905         INIT_LIST_HEAD(&rq->queuelist);
2906         return rq;
2907 }
2908
2909 static void bio_set_ioprio(struct bio *bio)
2910 {
2911         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2912         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2913                 bio->bi_ioprio = get_current_ioprio();
2914         blkcg_set_ioprio(bio);
2915 }
2916
2917 /**
2918  * blk_mq_submit_bio - Create and send a request to block device.
2919  * @bio: Bio pointer.
2920  *
2921  * Builds up a request structure from @q and @bio and send to the device. The
2922  * request may not be queued directly to hardware if:
2923  * * This request can be merged with another one
2924  * * We want to place request at plug queue for possible future merging
2925  * * There is an IO scheduler active at this queue
2926  *
2927  * It will not queue the request if there is an error with the bio, or at the
2928  * request creation.
2929  */
2930 void blk_mq_submit_bio(struct bio *bio)
2931 {
2932         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2933         struct blk_plug *plug = blk_mq_plug(bio);
2934         const int is_sync = op_is_sync(bio->bi_opf);
2935         struct blk_mq_hw_ctx *hctx;
2936         struct request *rq;
2937         unsigned int nr_segs = 1;
2938         blk_status_t ret;
2939
2940         bio = blk_queue_bounce(bio, q);
2941         if (bio_may_exceed_limits(bio, &q->limits)) {
2942                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2943                 if (!bio)
2944                         return;
2945         }
2946
2947         if (!bio_integrity_prep(bio))
2948                 return;
2949
2950         bio_set_ioprio(bio);
2951
2952         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2953         if (!rq) {
2954                 if (!bio)
2955                         return;
2956                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2957                 if (unlikely(!rq))
2958                         return;
2959         }
2960
2961         trace_block_getrq(bio);
2962
2963         rq_qos_track(q, rq, bio);
2964
2965         blk_mq_bio_to_request(rq, bio, nr_segs);
2966
2967         ret = blk_crypto_rq_get_keyslot(rq);
2968         if (ret != BLK_STS_OK) {
2969                 bio->bi_status = ret;
2970                 bio_endio(bio);
2971                 blk_mq_free_request(rq);
2972                 return;
2973         }
2974
2975         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2976                 return;
2977
2978         if (plug) {
2979                 blk_add_rq_to_plug(plug, rq);
2980                 return;
2981         }
2982
2983         hctx = rq->mq_hctx;
2984         if ((rq->rq_flags & RQF_USE_SCHED) ||
2985             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2986                 blk_mq_insert_request(rq, 0);
2987                 blk_mq_run_hw_queue(hctx, true);
2988         } else {
2989                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2990         }
2991 }
2992
2993 #ifdef CONFIG_BLK_MQ_STACKING
2994 /**
2995  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2996  * @rq: the request being queued
2997  */
2998 blk_status_t blk_insert_cloned_request(struct request *rq)
2999 {
3000         struct request_queue *q = rq->q;
3001         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
3002         unsigned int max_segments = blk_rq_get_max_segments(rq);
3003         blk_status_t ret;
3004
3005         if (blk_rq_sectors(rq) > max_sectors) {
3006                 /*
3007                  * SCSI device does not have a good way to return if
3008                  * Write Same/Zero is actually supported. If a device rejects
3009                  * a non-read/write command (discard, write same,etc.) the
3010                  * low-level device driver will set the relevant queue limit to
3011                  * 0 to prevent blk-lib from issuing more of the offending
3012                  * operations. Commands queued prior to the queue limit being
3013                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3014                  * errors being propagated to upper layers.
3015                  */
3016                 if (max_sectors == 0)
3017                         return BLK_STS_NOTSUPP;
3018
3019                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3020                         __func__, blk_rq_sectors(rq), max_sectors);
3021                 return BLK_STS_IOERR;
3022         }
3023
3024         /*
3025          * The queue settings related to segment counting may differ from the
3026          * original queue.
3027          */
3028         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3029         if (rq->nr_phys_segments > max_segments) {
3030                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3031                         __func__, rq->nr_phys_segments, max_segments);
3032                 return BLK_STS_IOERR;
3033         }
3034
3035         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3036                 return BLK_STS_IOERR;
3037
3038         ret = blk_crypto_rq_get_keyslot(rq);
3039         if (ret != BLK_STS_OK)
3040                 return ret;
3041
3042         blk_account_io_start(rq);
3043
3044         /*
3045          * Since we have a scheduler attached on the top device,
3046          * bypass a potential scheduler on the bottom device for
3047          * insert.
3048          */
3049         blk_mq_run_dispatch_ops(q,
3050                         ret = blk_mq_request_issue_directly(rq, true));
3051         if (ret)
3052                 blk_account_io_done(rq, ktime_get_ns());
3053         return ret;
3054 }
3055 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3056
3057 /**
3058  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3059  * @rq: the clone request to be cleaned up
3060  *
3061  * Description:
3062  *     Free all bios in @rq for a cloned request.
3063  */
3064 void blk_rq_unprep_clone(struct request *rq)
3065 {
3066         struct bio *bio;
3067
3068         while ((bio = rq->bio) != NULL) {
3069                 rq->bio = bio->bi_next;
3070
3071                 bio_put(bio);
3072         }
3073 }
3074 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3075
3076 /**
3077  * blk_rq_prep_clone - Helper function to setup clone request
3078  * @rq: the request to be setup
3079  * @rq_src: original request to be cloned
3080  * @bs: bio_set that bios for clone are allocated from
3081  * @gfp_mask: memory allocation mask for bio
3082  * @bio_ctr: setup function to be called for each clone bio.
3083  *           Returns %0 for success, non %0 for failure.
3084  * @data: private data to be passed to @bio_ctr
3085  *
3086  * Description:
3087  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3088  *     Also, pages which the original bios are pointing to are not copied
3089  *     and the cloned bios just point same pages.
3090  *     So cloned bios must be completed before original bios, which means
3091  *     the caller must complete @rq before @rq_src.
3092  */
3093 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3094                       struct bio_set *bs, gfp_t gfp_mask,
3095                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3096                       void *data)
3097 {
3098         struct bio *bio, *bio_src;
3099
3100         if (!bs)
3101                 bs = &fs_bio_set;
3102
3103         __rq_for_each_bio(bio_src, rq_src) {
3104                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3105                                       bs);
3106                 if (!bio)
3107                         goto free_and_out;
3108
3109                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3110                         goto free_and_out;
3111
3112                 if (rq->bio) {
3113                         rq->biotail->bi_next = bio;
3114                         rq->biotail = bio;
3115                 } else {
3116                         rq->bio = rq->biotail = bio;
3117                 }
3118                 bio = NULL;
3119         }
3120
3121         /* Copy attributes of the original request to the clone request. */
3122         rq->__sector = blk_rq_pos(rq_src);
3123         rq->__data_len = blk_rq_bytes(rq_src);
3124         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3125                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3126                 rq->special_vec = rq_src->special_vec;
3127         }
3128         rq->nr_phys_segments = rq_src->nr_phys_segments;
3129         rq->ioprio = rq_src->ioprio;
3130
3131         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3132                 goto free_and_out;
3133
3134         return 0;
3135
3136 free_and_out:
3137         if (bio)
3138                 bio_put(bio);
3139         blk_rq_unprep_clone(rq);
3140
3141         return -ENOMEM;
3142 }
3143 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3144 #endif /* CONFIG_BLK_MQ_STACKING */
3145
3146 /*
3147  * Steal bios from a request and add them to a bio list.
3148  * The request must not have been partially completed before.
3149  */
3150 void blk_steal_bios(struct bio_list *list, struct request *rq)
3151 {
3152         if (rq->bio) {
3153                 if (list->tail)
3154                         list->tail->bi_next = rq->bio;
3155                 else
3156                         list->head = rq->bio;
3157                 list->tail = rq->biotail;
3158
3159                 rq->bio = NULL;
3160                 rq->biotail = NULL;
3161         }
3162
3163         rq->__data_len = 0;
3164 }
3165 EXPORT_SYMBOL_GPL(blk_steal_bios);
3166
3167 static size_t order_to_size(unsigned int order)
3168 {
3169         return (size_t)PAGE_SIZE << order;
3170 }
3171
3172 /* called before freeing request pool in @tags */
3173 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3174                                     struct blk_mq_tags *tags)
3175 {
3176         struct page *page;
3177         unsigned long flags;
3178
3179         /*
3180          * There is no need to clear mapping if driver tags is not initialized
3181          * or the mapping belongs to the driver tags.
3182          */
3183         if (!drv_tags || drv_tags == tags)
3184                 return;
3185
3186         list_for_each_entry(page, &tags->page_list, lru) {
3187                 unsigned long start = (unsigned long)page_address(page);
3188                 unsigned long end = start + order_to_size(page->private);
3189                 int i;
3190
3191                 for (i = 0; i < drv_tags->nr_tags; i++) {
3192                         struct request *rq = drv_tags->rqs[i];
3193                         unsigned long rq_addr = (unsigned long)rq;
3194
3195                         if (rq_addr >= start && rq_addr < end) {
3196                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3197                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3198                         }
3199                 }
3200         }
3201
3202         /*
3203          * Wait until all pending iteration is done.
3204          *
3205          * Request reference is cleared and it is guaranteed to be observed
3206          * after the ->lock is released.
3207          */
3208         spin_lock_irqsave(&drv_tags->lock, flags);
3209         spin_unlock_irqrestore(&drv_tags->lock, flags);
3210 }
3211
3212 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3213                      unsigned int hctx_idx)
3214 {
3215         struct blk_mq_tags *drv_tags;
3216         struct page *page;
3217
3218         if (list_empty(&tags->page_list))
3219                 return;
3220
3221         if (blk_mq_is_shared_tags(set->flags))
3222                 drv_tags = set->shared_tags;
3223         else
3224                 drv_tags = set->tags[hctx_idx];
3225
3226         if (tags->static_rqs && set->ops->exit_request) {
3227                 int i;
3228
3229                 for (i = 0; i < tags->nr_tags; i++) {
3230                         struct request *rq = tags->static_rqs[i];
3231
3232                         if (!rq)
3233                                 continue;
3234                         set->ops->exit_request(set, rq, hctx_idx);
3235                         tags->static_rqs[i] = NULL;
3236                 }
3237         }
3238
3239         blk_mq_clear_rq_mapping(drv_tags, tags);
3240
3241         while (!list_empty(&tags->page_list)) {
3242                 page = list_first_entry(&tags->page_list, struct page, lru);
3243                 list_del_init(&page->lru);
3244                 /*
3245                  * Remove kmemleak object previously allocated in
3246                  * blk_mq_alloc_rqs().
3247                  */
3248                 kmemleak_free(page_address(page));
3249                 __free_pages(page, page->private);
3250         }
3251 }
3252
3253 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3254 {
3255         kfree(tags->rqs);
3256         tags->rqs = NULL;
3257         kfree(tags->static_rqs);
3258         tags->static_rqs = NULL;
3259
3260         blk_mq_free_tags(tags);
3261 }
3262
3263 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3264                 unsigned int hctx_idx)
3265 {
3266         int i;
3267
3268         for (i = 0; i < set->nr_maps; i++) {
3269                 unsigned int start = set->map[i].queue_offset;
3270                 unsigned int end = start + set->map[i].nr_queues;
3271
3272                 if (hctx_idx >= start && hctx_idx < end)
3273                         break;
3274         }
3275
3276         if (i >= set->nr_maps)
3277                 i = HCTX_TYPE_DEFAULT;
3278
3279         return i;
3280 }
3281
3282 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3283                 unsigned int hctx_idx)
3284 {
3285         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3286
3287         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3288 }
3289
3290 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3291                                                unsigned int hctx_idx,
3292                                                unsigned int nr_tags,
3293                                                unsigned int reserved_tags)
3294 {
3295         int node = blk_mq_get_hctx_node(set, hctx_idx);
3296         struct blk_mq_tags *tags;
3297
3298         if (node == NUMA_NO_NODE)
3299                 node = set->numa_node;
3300
3301         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3302                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3303         if (!tags)
3304                 return NULL;
3305
3306         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3307                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3308                                  node);
3309         if (!tags->rqs)
3310                 goto err_free_tags;
3311
3312         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3313                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3314                                         node);
3315         if (!tags->static_rqs)
3316                 goto err_free_rqs;
3317
3318         return tags;
3319
3320 err_free_rqs:
3321         kfree(tags->rqs);
3322 err_free_tags:
3323         blk_mq_free_tags(tags);
3324         return NULL;
3325 }
3326
3327 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3328                                unsigned int hctx_idx, int node)
3329 {
3330         int ret;
3331
3332         if (set->ops->init_request) {
3333                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3334                 if (ret)
3335                         return ret;
3336         }
3337
3338         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3339         return 0;
3340 }
3341
3342 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3343                             struct blk_mq_tags *tags,
3344                             unsigned int hctx_idx, unsigned int depth)
3345 {
3346         unsigned int i, j, entries_per_page, max_order = 4;
3347         int node = blk_mq_get_hctx_node(set, hctx_idx);
3348         size_t rq_size, left;
3349
3350         if (node == NUMA_NO_NODE)
3351                 node = set->numa_node;
3352
3353         INIT_LIST_HEAD(&tags->page_list);
3354
3355         /*
3356          * rq_size is the size of the request plus driver payload, rounded
3357          * to the cacheline size
3358          */
3359         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3360                                 cache_line_size());
3361         left = rq_size * depth;
3362
3363         for (i = 0; i < depth; ) {
3364                 int this_order = max_order;
3365                 struct page *page;
3366                 int to_do;
3367                 void *p;
3368
3369                 while (this_order && left < order_to_size(this_order - 1))
3370                         this_order--;
3371
3372                 do {
3373                         page = alloc_pages_node(node,
3374                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3375                                 this_order);
3376                         if (page)
3377                                 break;
3378                         if (!this_order--)
3379                                 break;
3380                         if (order_to_size(this_order) < rq_size)
3381                                 break;
3382                 } while (1);
3383
3384                 if (!page)
3385                         goto fail;
3386
3387                 page->private = this_order;
3388                 list_add_tail(&page->lru, &tags->page_list);
3389
3390                 p = page_address(page);
3391                 /*
3392                  * Allow kmemleak to scan these pages as they contain pointers
3393                  * to additional allocations like via ops->init_request().
3394                  */
3395                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3396                 entries_per_page = order_to_size(this_order) / rq_size;
3397                 to_do = min(entries_per_page, depth - i);
3398                 left -= to_do * rq_size;
3399                 for (j = 0; j < to_do; j++) {
3400                         struct request *rq = p;
3401
3402                         tags->static_rqs[i] = rq;
3403                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3404                                 tags->static_rqs[i] = NULL;
3405                                 goto fail;
3406                         }
3407
3408                         p += rq_size;
3409                         i++;
3410                 }
3411         }
3412         return 0;
3413
3414 fail:
3415         blk_mq_free_rqs(set, tags, hctx_idx);
3416         return -ENOMEM;
3417 }
3418
3419 struct rq_iter_data {
3420         struct blk_mq_hw_ctx *hctx;
3421         bool has_rq;
3422 };
3423
3424 static bool blk_mq_has_request(struct request *rq, void *data)
3425 {
3426         struct rq_iter_data *iter_data = data;
3427
3428         if (rq->mq_hctx != iter_data->hctx)
3429                 return true;
3430         iter_data->has_rq = true;
3431         return false;
3432 }
3433
3434 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3435 {
3436         struct blk_mq_tags *tags = hctx->sched_tags ?
3437                         hctx->sched_tags : hctx->tags;
3438         struct rq_iter_data data = {
3439                 .hctx   = hctx,
3440         };
3441
3442         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3443         return data.has_rq;
3444 }
3445
3446 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3447                 struct blk_mq_hw_ctx *hctx)
3448 {
3449         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3450                 return false;
3451         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3452                 return false;
3453         return true;
3454 }
3455
3456 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3457 {
3458         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3459                         struct blk_mq_hw_ctx, cpuhp_online);
3460
3461         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3462             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3463                 return 0;
3464
3465         /*
3466          * Prevent new request from being allocated on the current hctx.
3467          *
3468          * The smp_mb__after_atomic() Pairs with the implied barrier in
3469          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3470          * seen once we return from the tag allocator.
3471          */
3472         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3473         smp_mb__after_atomic();
3474
3475         /*
3476          * Try to grab a reference to the queue and wait for any outstanding
3477          * requests.  If we could not grab a reference the queue has been
3478          * frozen and there are no requests.
3479          */
3480         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3481                 while (blk_mq_hctx_has_requests(hctx))
3482                         msleep(5);
3483                 percpu_ref_put(&hctx->queue->q_usage_counter);
3484         }
3485
3486         return 0;
3487 }
3488
3489 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3490 {
3491         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3492                         struct blk_mq_hw_ctx, cpuhp_online);
3493
3494         if (cpumask_test_cpu(cpu, hctx->cpumask))
3495                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3496         return 0;
3497 }
3498
3499 /*
3500  * 'cpu' is going away. splice any existing rq_list entries from this
3501  * software queue to the hw queue dispatch list, and ensure that it
3502  * gets run.
3503  */
3504 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3505 {
3506         struct blk_mq_hw_ctx *hctx;
3507         struct blk_mq_ctx *ctx;
3508         LIST_HEAD(tmp);
3509         enum hctx_type type;
3510
3511         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3512         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3513                 return 0;
3514
3515         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3516         type = hctx->type;
3517
3518         spin_lock(&ctx->lock);
3519         if (!list_empty(&ctx->rq_lists[type])) {
3520                 list_splice_init(&ctx->rq_lists[type], &tmp);
3521                 blk_mq_hctx_clear_pending(hctx, ctx);
3522         }
3523         spin_unlock(&ctx->lock);
3524
3525         if (list_empty(&tmp))
3526                 return 0;
3527
3528         spin_lock(&hctx->lock);
3529         list_splice_tail_init(&tmp, &hctx->dispatch);
3530         spin_unlock(&hctx->lock);
3531
3532         blk_mq_run_hw_queue(hctx, true);
3533         return 0;
3534 }
3535
3536 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3537 {
3538         if (!(hctx->flags & BLK_MQ_F_STACKING))
3539                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3540                                                     &hctx->cpuhp_online);
3541         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3542                                             &hctx->cpuhp_dead);
3543 }
3544
3545 /*
3546  * Before freeing hw queue, clearing the flush request reference in
3547  * tags->rqs[] for avoiding potential UAF.
3548  */
3549 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3550                 unsigned int queue_depth, struct request *flush_rq)
3551 {
3552         int i;
3553         unsigned long flags;
3554
3555         /* The hw queue may not be mapped yet */
3556         if (!tags)
3557                 return;
3558
3559         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3560
3561         for (i = 0; i < queue_depth; i++)
3562                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3563
3564         /*
3565          * Wait until all pending iteration is done.
3566          *
3567          * Request reference is cleared and it is guaranteed to be observed
3568          * after the ->lock is released.
3569          */
3570         spin_lock_irqsave(&tags->lock, flags);
3571         spin_unlock_irqrestore(&tags->lock, flags);
3572 }
3573
3574 /* hctx->ctxs will be freed in queue's release handler */
3575 static void blk_mq_exit_hctx(struct request_queue *q,
3576                 struct blk_mq_tag_set *set,
3577                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3578 {
3579         struct request *flush_rq = hctx->fq->flush_rq;
3580
3581         if (blk_mq_hw_queue_mapped(hctx))
3582                 blk_mq_tag_idle(hctx);
3583
3584         if (blk_queue_init_done(q))
3585                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3586                                 set->queue_depth, flush_rq);
3587         if (set->ops->exit_request)
3588                 set->ops->exit_request(set, flush_rq, hctx_idx);
3589
3590         if (set->ops->exit_hctx)
3591                 set->ops->exit_hctx(hctx, hctx_idx);
3592
3593         blk_mq_remove_cpuhp(hctx);
3594
3595         xa_erase(&q->hctx_table, hctx_idx);
3596
3597         spin_lock(&q->unused_hctx_lock);
3598         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3599         spin_unlock(&q->unused_hctx_lock);
3600 }
3601
3602 static void blk_mq_exit_hw_queues(struct request_queue *q,
3603                 struct blk_mq_tag_set *set, int nr_queue)
3604 {
3605         struct blk_mq_hw_ctx *hctx;
3606         unsigned long i;
3607
3608         queue_for_each_hw_ctx(q, hctx, i) {
3609                 if (i == nr_queue)
3610                         break;
3611                 blk_mq_exit_hctx(q, set, hctx, i);
3612         }
3613 }
3614
3615 static int blk_mq_init_hctx(struct request_queue *q,
3616                 struct blk_mq_tag_set *set,
3617                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3618 {
3619         hctx->queue_num = hctx_idx;
3620
3621         if (!(hctx->flags & BLK_MQ_F_STACKING))
3622                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3623                                 &hctx->cpuhp_online);
3624         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3625
3626         hctx->tags = set->tags[hctx_idx];
3627
3628         if (set->ops->init_hctx &&
3629             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3630                 goto unregister_cpu_notifier;
3631
3632         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3633                                 hctx->numa_node))
3634                 goto exit_hctx;
3635
3636         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3637                 goto exit_flush_rq;
3638
3639         return 0;
3640
3641  exit_flush_rq:
3642         if (set->ops->exit_request)
3643                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3644  exit_hctx:
3645         if (set->ops->exit_hctx)
3646                 set->ops->exit_hctx(hctx, hctx_idx);
3647  unregister_cpu_notifier:
3648         blk_mq_remove_cpuhp(hctx);
3649         return -1;
3650 }
3651
3652 static struct blk_mq_hw_ctx *
3653 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3654                 int node)
3655 {
3656         struct blk_mq_hw_ctx *hctx;
3657         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3658
3659         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3660         if (!hctx)
3661                 goto fail_alloc_hctx;
3662
3663         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3664                 goto free_hctx;
3665
3666         atomic_set(&hctx->nr_active, 0);
3667         if (node == NUMA_NO_NODE)
3668                 node = set->numa_node;
3669         hctx->numa_node = node;
3670
3671         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3672         spin_lock_init(&hctx->lock);
3673         INIT_LIST_HEAD(&hctx->dispatch);
3674         hctx->queue = q;
3675         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3676
3677         INIT_LIST_HEAD(&hctx->hctx_list);
3678
3679         /*
3680          * Allocate space for all possible cpus to avoid allocation at
3681          * runtime
3682          */
3683         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3684                         gfp, node);
3685         if (!hctx->ctxs)
3686                 goto free_cpumask;
3687
3688         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3689                                 gfp, node, false, false))
3690                 goto free_ctxs;
3691         hctx->nr_ctx = 0;
3692
3693         spin_lock_init(&hctx->dispatch_wait_lock);
3694         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3695         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3696
3697         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3698         if (!hctx->fq)
3699                 goto free_bitmap;
3700
3701         blk_mq_hctx_kobj_init(hctx);
3702
3703         return hctx;
3704
3705  free_bitmap:
3706         sbitmap_free(&hctx->ctx_map);
3707  free_ctxs:
3708         kfree(hctx->ctxs);
3709  free_cpumask:
3710         free_cpumask_var(hctx->cpumask);
3711  free_hctx:
3712         kfree(hctx);
3713  fail_alloc_hctx:
3714         return NULL;
3715 }
3716
3717 static void blk_mq_init_cpu_queues(struct request_queue *q,
3718                                    unsigned int nr_hw_queues)
3719 {
3720         struct blk_mq_tag_set *set = q->tag_set;
3721         unsigned int i, j;
3722
3723         for_each_possible_cpu(i) {
3724                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3725                 struct blk_mq_hw_ctx *hctx;
3726                 int k;
3727
3728                 __ctx->cpu = i;
3729                 spin_lock_init(&__ctx->lock);
3730                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3731                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3732
3733                 __ctx->queue = q;
3734
3735                 /*
3736                  * Set local node, IFF we have more than one hw queue. If
3737                  * not, we remain on the home node of the device
3738                  */
3739                 for (j = 0; j < set->nr_maps; j++) {
3740                         hctx = blk_mq_map_queue_type(q, j, i);
3741                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3742                                 hctx->numa_node = cpu_to_node(i);
3743                 }
3744         }
3745 }
3746
3747 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3748                                              unsigned int hctx_idx,
3749                                              unsigned int depth)
3750 {
3751         struct blk_mq_tags *tags;
3752         int ret;
3753
3754         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3755         if (!tags)
3756                 return NULL;
3757
3758         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3759         if (ret) {
3760                 blk_mq_free_rq_map(tags);
3761                 return NULL;
3762         }
3763
3764         return tags;
3765 }
3766
3767 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3768                                        int hctx_idx)
3769 {
3770         if (blk_mq_is_shared_tags(set->flags)) {
3771                 set->tags[hctx_idx] = set->shared_tags;
3772
3773                 return true;
3774         }
3775
3776         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3777                                                        set->queue_depth);
3778
3779         return set->tags[hctx_idx];
3780 }
3781
3782 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3783                              struct blk_mq_tags *tags,
3784                              unsigned int hctx_idx)
3785 {
3786         if (tags) {
3787                 blk_mq_free_rqs(set, tags, hctx_idx);
3788                 blk_mq_free_rq_map(tags);
3789         }
3790 }
3791
3792 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3793                                       unsigned int hctx_idx)
3794 {
3795         if (!blk_mq_is_shared_tags(set->flags))
3796                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3797
3798         set->tags[hctx_idx] = NULL;
3799 }
3800
3801 static void blk_mq_map_swqueue(struct request_queue *q)
3802 {
3803         unsigned int j, hctx_idx;
3804         unsigned long i;
3805         struct blk_mq_hw_ctx *hctx;
3806         struct blk_mq_ctx *ctx;
3807         struct blk_mq_tag_set *set = q->tag_set;
3808
3809         queue_for_each_hw_ctx(q, hctx, i) {
3810                 cpumask_clear(hctx->cpumask);
3811                 hctx->nr_ctx = 0;
3812                 hctx->dispatch_from = NULL;
3813         }
3814
3815         /*
3816          * Map software to hardware queues.
3817          *
3818          * If the cpu isn't present, the cpu is mapped to first hctx.
3819          */
3820         for_each_possible_cpu(i) {
3821
3822                 ctx = per_cpu_ptr(q->queue_ctx, i);
3823                 for (j = 0; j < set->nr_maps; j++) {
3824                         if (!set->map[j].nr_queues) {
3825                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3826                                                 HCTX_TYPE_DEFAULT, i);
3827                                 continue;
3828                         }
3829                         hctx_idx = set->map[j].mq_map[i];
3830                         /* unmapped hw queue can be remapped after CPU topo changed */
3831                         if (!set->tags[hctx_idx] &&
3832                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3833                                 /*
3834                                  * If tags initialization fail for some hctx,
3835                                  * that hctx won't be brought online.  In this
3836                                  * case, remap the current ctx to hctx[0] which
3837                                  * is guaranteed to always have tags allocated
3838                                  */
3839                                 set->map[j].mq_map[i] = 0;
3840                         }
3841
3842                         hctx = blk_mq_map_queue_type(q, j, i);
3843                         ctx->hctxs[j] = hctx;
3844                         /*
3845                          * If the CPU is already set in the mask, then we've
3846                          * mapped this one already. This can happen if
3847                          * devices share queues across queue maps.
3848                          */
3849                         if (cpumask_test_cpu(i, hctx->cpumask))
3850                                 continue;
3851
3852                         cpumask_set_cpu(i, hctx->cpumask);
3853                         hctx->type = j;
3854                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3855                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3856
3857                         /*
3858                          * If the nr_ctx type overflows, we have exceeded the
3859                          * amount of sw queues we can support.
3860                          */
3861                         BUG_ON(!hctx->nr_ctx);
3862                 }
3863
3864                 for (; j < HCTX_MAX_TYPES; j++)
3865                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3866                                         HCTX_TYPE_DEFAULT, i);
3867         }
3868
3869         queue_for_each_hw_ctx(q, hctx, i) {
3870                 /*
3871                  * If no software queues are mapped to this hardware queue,
3872                  * disable it and free the request entries.
3873                  */
3874                 if (!hctx->nr_ctx) {
3875                         /* Never unmap queue 0.  We need it as a
3876                          * fallback in case of a new remap fails
3877                          * allocation
3878                          */
3879                         if (i)
3880                                 __blk_mq_free_map_and_rqs(set, i);
3881
3882                         hctx->tags = NULL;
3883                         continue;
3884                 }
3885
3886                 hctx->tags = set->tags[i];
3887                 WARN_ON(!hctx->tags);
3888
3889                 /*
3890                  * Set the map size to the number of mapped software queues.
3891                  * This is more accurate and more efficient than looping
3892                  * over all possibly mapped software queues.
3893                  */
3894                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3895
3896                 /*
3897                  * Initialize batch roundrobin counts
3898                  */
3899                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3900                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3901         }
3902 }
3903
3904 /*
3905  * Caller needs to ensure that we're either frozen/quiesced, or that
3906  * the queue isn't live yet.
3907  */
3908 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3909 {
3910         struct blk_mq_hw_ctx *hctx;
3911         unsigned long i;
3912
3913         queue_for_each_hw_ctx(q, hctx, i) {
3914                 if (shared) {
3915                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3916                 } else {
3917                         blk_mq_tag_idle(hctx);
3918                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3919                 }
3920         }
3921 }
3922
3923 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3924                                          bool shared)
3925 {
3926         struct request_queue *q;
3927
3928         lockdep_assert_held(&set->tag_list_lock);
3929
3930         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3931                 blk_mq_freeze_queue(q);
3932                 queue_set_hctx_shared(q, shared);
3933                 blk_mq_unfreeze_queue(q);
3934         }
3935 }
3936
3937 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3938 {
3939         struct blk_mq_tag_set *set = q->tag_set;
3940
3941         mutex_lock(&set->tag_list_lock);
3942         list_del(&q->tag_set_list);
3943         if (list_is_singular(&set->tag_list)) {
3944                 /* just transitioned to unshared */
3945                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3946                 /* update existing queue */
3947                 blk_mq_update_tag_set_shared(set, false);
3948         }
3949         mutex_unlock(&set->tag_list_lock);
3950         INIT_LIST_HEAD(&q->tag_set_list);
3951 }
3952
3953 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3954                                      struct request_queue *q)
3955 {
3956         mutex_lock(&set->tag_list_lock);
3957
3958         /*
3959          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3960          */
3961         if (!list_empty(&set->tag_list) &&
3962             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3963                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3964                 /* update existing queue */
3965                 blk_mq_update_tag_set_shared(set, true);
3966         }
3967         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3968                 queue_set_hctx_shared(q, true);
3969         list_add_tail(&q->tag_set_list, &set->tag_list);
3970
3971         mutex_unlock(&set->tag_list_lock);
3972 }
3973
3974 /* All allocations will be freed in release handler of q->mq_kobj */
3975 static int blk_mq_alloc_ctxs(struct request_queue *q)
3976 {
3977         struct blk_mq_ctxs *ctxs;
3978         int cpu;
3979
3980         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3981         if (!ctxs)
3982                 return -ENOMEM;
3983
3984         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3985         if (!ctxs->queue_ctx)
3986                 goto fail;
3987
3988         for_each_possible_cpu(cpu) {
3989                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3990                 ctx->ctxs = ctxs;
3991         }
3992
3993         q->mq_kobj = &ctxs->kobj;
3994         q->queue_ctx = ctxs->queue_ctx;
3995
3996         return 0;
3997  fail:
3998         kfree(ctxs);
3999         return -ENOMEM;
4000 }
4001
4002 /*
4003  * It is the actual release handler for mq, but we do it from
4004  * request queue's release handler for avoiding use-after-free
4005  * and headache because q->mq_kobj shouldn't have been introduced,
4006  * but we can't group ctx/kctx kobj without it.
4007  */
4008 void blk_mq_release(struct request_queue *q)
4009 {
4010         struct blk_mq_hw_ctx *hctx, *next;
4011         unsigned long i;
4012
4013         queue_for_each_hw_ctx(q, hctx, i)
4014                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4015
4016         /* all hctx are in .unused_hctx_list now */
4017         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4018                 list_del_init(&hctx->hctx_list);
4019                 kobject_put(&hctx->kobj);
4020         }
4021
4022         xa_destroy(&q->hctx_table);
4023
4024         /*
4025          * release .mq_kobj and sw queue's kobject now because
4026          * both share lifetime with request queue.
4027          */
4028         blk_mq_sysfs_deinit(q);
4029 }
4030
4031 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4032                 void *queuedata)
4033 {
4034         struct request_queue *q;
4035         int ret;
4036
4037         q = blk_alloc_queue(set->numa_node);
4038         if (!q)
4039                 return ERR_PTR(-ENOMEM);
4040         q->queuedata = queuedata;
4041         ret = blk_mq_init_allocated_queue(set, q);
4042         if (ret) {
4043                 blk_put_queue(q);
4044                 return ERR_PTR(ret);
4045         }
4046         return q;
4047 }
4048
4049 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4050 {
4051         return blk_mq_init_queue_data(set, NULL);
4052 }
4053 EXPORT_SYMBOL(blk_mq_init_queue);
4054
4055 /**
4056  * blk_mq_destroy_queue - shutdown a request queue
4057  * @q: request queue to shutdown
4058  *
4059  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4060  * requests will be failed with -ENODEV. The caller is responsible for dropping
4061  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4062  *
4063  * Context: can sleep
4064  */
4065 void blk_mq_destroy_queue(struct request_queue *q)
4066 {
4067         WARN_ON_ONCE(!queue_is_mq(q));
4068         WARN_ON_ONCE(blk_queue_registered(q));
4069
4070         might_sleep();
4071
4072         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4073         blk_queue_start_drain(q);
4074         blk_mq_freeze_queue_wait(q);
4075
4076         blk_sync_queue(q);
4077         blk_mq_cancel_work_sync(q);
4078         blk_mq_exit_queue(q);
4079 }
4080 EXPORT_SYMBOL(blk_mq_destroy_queue);
4081
4082 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4083                 struct lock_class_key *lkclass)
4084 {
4085         struct request_queue *q;
4086         struct gendisk *disk;
4087
4088         q = blk_mq_init_queue_data(set, queuedata);
4089         if (IS_ERR(q))
4090                 return ERR_CAST(q);
4091
4092         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4093         if (!disk) {
4094                 blk_mq_destroy_queue(q);
4095                 blk_put_queue(q);
4096                 return ERR_PTR(-ENOMEM);
4097         }
4098         set_bit(GD_OWNS_QUEUE, &disk->state);
4099         return disk;
4100 }
4101 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4102
4103 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4104                 struct lock_class_key *lkclass)
4105 {
4106         struct gendisk *disk;
4107
4108         if (!blk_get_queue(q))
4109                 return NULL;
4110         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4111         if (!disk)
4112                 blk_put_queue(q);
4113         return disk;
4114 }
4115 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4116
4117 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4118                 struct blk_mq_tag_set *set, struct request_queue *q,
4119                 int hctx_idx, int node)
4120 {
4121         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4122
4123         /* reuse dead hctx first */
4124         spin_lock(&q->unused_hctx_lock);
4125         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4126                 if (tmp->numa_node == node) {
4127                         hctx = tmp;
4128                         break;
4129                 }
4130         }
4131         if (hctx)
4132                 list_del_init(&hctx->hctx_list);
4133         spin_unlock(&q->unused_hctx_lock);
4134
4135         if (!hctx)
4136                 hctx = blk_mq_alloc_hctx(q, set, node);
4137         if (!hctx)
4138                 goto fail;
4139
4140         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4141                 goto free_hctx;
4142
4143         return hctx;
4144
4145  free_hctx:
4146         kobject_put(&hctx->kobj);
4147  fail:
4148         return NULL;
4149 }
4150
4151 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4152                                                 struct request_queue *q)
4153 {
4154         struct blk_mq_hw_ctx *hctx;
4155         unsigned long i, j;
4156
4157         /* protect against switching io scheduler  */
4158         mutex_lock(&q->sysfs_lock);
4159         for (i = 0; i < set->nr_hw_queues; i++) {
4160                 int old_node;
4161                 int node = blk_mq_get_hctx_node(set, i);
4162                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4163
4164                 if (old_hctx) {
4165                         old_node = old_hctx->numa_node;
4166                         blk_mq_exit_hctx(q, set, old_hctx, i);
4167                 }
4168
4169                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4170                         if (!old_hctx)
4171                                 break;
4172                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4173                                         node, old_node);
4174                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4175                         WARN_ON_ONCE(!hctx);
4176                 }
4177         }
4178         /*
4179          * Increasing nr_hw_queues fails. Free the newly allocated
4180          * hctxs and keep the previous q->nr_hw_queues.
4181          */
4182         if (i != set->nr_hw_queues) {
4183                 j = q->nr_hw_queues;
4184         } else {
4185                 j = i;
4186                 q->nr_hw_queues = set->nr_hw_queues;
4187         }
4188
4189         xa_for_each_start(&q->hctx_table, j, hctx, j)
4190                 blk_mq_exit_hctx(q, set, hctx, j);
4191         mutex_unlock(&q->sysfs_lock);
4192 }
4193
4194 static void blk_mq_update_poll_flag(struct request_queue *q)
4195 {
4196         struct blk_mq_tag_set *set = q->tag_set;
4197
4198         if (set->nr_maps > HCTX_TYPE_POLL &&
4199             set->map[HCTX_TYPE_POLL].nr_queues)
4200                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4201         else
4202                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4203 }
4204
4205 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4206                 struct request_queue *q)
4207 {
4208         /* mark the queue as mq asap */
4209         q->mq_ops = set->ops;
4210
4211         if (blk_mq_alloc_ctxs(q))
4212                 goto err_exit;
4213
4214         /* init q->mq_kobj and sw queues' kobjects */
4215         blk_mq_sysfs_init(q);
4216
4217         INIT_LIST_HEAD(&q->unused_hctx_list);
4218         spin_lock_init(&q->unused_hctx_lock);
4219
4220         xa_init(&q->hctx_table);
4221
4222         blk_mq_realloc_hw_ctxs(set, q);
4223         if (!q->nr_hw_queues)
4224                 goto err_hctxs;
4225
4226         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4227         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4228
4229         q->tag_set = set;
4230
4231         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4232         blk_mq_update_poll_flag(q);
4233
4234         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4235         INIT_LIST_HEAD(&q->flush_list);
4236         INIT_LIST_HEAD(&q->requeue_list);
4237         spin_lock_init(&q->requeue_lock);
4238
4239         q->nr_requests = set->queue_depth;
4240
4241         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4242         blk_mq_add_queue_tag_set(set, q);
4243         blk_mq_map_swqueue(q);
4244         return 0;
4245
4246 err_hctxs:
4247         blk_mq_release(q);
4248 err_exit:
4249         q->mq_ops = NULL;
4250         return -ENOMEM;
4251 }
4252 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4253
4254 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4255 void blk_mq_exit_queue(struct request_queue *q)
4256 {
4257         struct blk_mq_tag_set *set = q->tag_set;
4258
4259         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4260         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4261         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4262         blk_mq_del_queue_tag_set(q);
4263 }
4264
4265 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4266 {
4267         int i;
4268
4269         if (blk_mq_is_shared_tags(set->flags)) {
4270                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4271                                                 BLK_MQ_NO_HCTX_IDX,
4272                                                 set->queue_depth);
4273                 if (!set->shared_tags)
4274                         return -ENOMEM;
4275         }
4276
4277         for (i = 0; i < set->nr_hw_queues; i++) {
4278                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4279                         goto out_unwind;
4280                 cond_resched();
4281         }
4282
4283         return 0;
4284
4285 out_unwind:
4286         while (--i >= 0)
4287                 __blk_mq_free_map_and_rqs(set, i);
4288
4289         if (blk_mq_is_shared_tags(set->flags)) {
4290                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4291                                         BLK_MQ_NO_HCTX_IDX);
4292         }
4293
4294         return -ENOMEM;
4295 }
4296
4297 /*
4298  * Allocate the request maps associated with this tag_set. Note that this
4299  * may reduce the depth asked for, if memory is tight. set->queue_depth
4300  * will be updated to reflect the allocated depth.
4301  */
4302 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4303 {
4304         unsigned int depth;
4305         int err;
4306
4307         depth = set->queue_depth;
4308         do {
4309                 err = __blk_mq_alloc_rq_maps(set);
4310                 if (!err)
4311                         break;
4312
4313                 set->queue_depth >>= 1;
4314                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4315                         err = -ENOMEM;
4316                         break;
4317                 }
4318         } while (set->queue_depth);
4319
4320         if (!set->queue_depth || err) {
4321                 pr_err("blk-mq: failed to allocate request map\n");
4322                 return -ENOMEM;
4323         }
4324
4325         if (depth != set->queue_depth)
4326                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4327                                                 depth, set->queue_depth);
4328
4329         return 0;
4330 }
4331
4332 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4333 {
4334         /*
4335          * blk_mq_map_queues() and multiple .map_queues() implementations
4336          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4337          * number of hardware queues.
4338          */
4339         if (set->nr_maps == 1)
4340                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4341
4342         if (set->ops->map_queues && !is_kdump_kernel()) {
4343                 int i;
4344
4345                 /*
4346                  * transport .map_queues is usually done in the following
4347                  * way:
4348                  *
4349                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4350                  *      mask = get_cpu_mask(queue)
4351                  *      for_each_cpu(cpu, mask)
4352                  *              set->map[x].mq_map[cpu] = queue;
4353                  * }
4354                  *
4355                  * When we need to remap, the table has to be cleared for
4356                  * killing stale mapping since one CPU may not be mapped
4357                  * to any hw queue.
4358                  */
4359                 for (i = 0; i < set->nr_maps; i++)
4360                         blk_mq_clear_mq_map(&set->map[i]);
4361
4362                 set->ops->map_queues(set);
4363         } else {
4364                 BUG_ON(set->nr_maps > 1);
4365                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4366         }
4367 }
4368
4369 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4370                                        int new_nr_hw_queues)
4371 {
4372         struct blk_mq_tags **new_tags;
4373
4374         if (set->nr_hw_queues >= new_nr_hw_queues)
4375                 goto done;
4376
4377         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4378                                 GFP_KERNEL, set->numa_node);
4379         if (!new_tags)
4380                 return -ENOMEM;
4381
4382         if (set->tags)
4383                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4384                        sizeof(*set->tags));
4385         kfree(set->tags);
4386         set->tags = new_tags;
4387 done:
4388         set->nr_hw_queues = new_nr_hw_queues;
4389         return 0;
4390 }
4391
4392 /*
4393  * Alloc a tag set to be associated with one or more request queues.
4394  * May fail with EINVAL for various error conditions. May adjust the
4395  * requested depth down, if it's too large. In that case, the set
4396  * value will be stored in set->queue_depth.
4397  */
4398 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4399 {
4400         int i, ret;
4401
4402         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4403
4404         if (!set->nr_hw_queues)
4405                 return -EINVAL;
4406         if (!set->queue_depth)
4407                 return -EINVAL;
4408         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4409                 return -EINVAL;
4410
4411         if (!set->ops->queue_rq)
4412                 return -EINVAL;
4413
4414         if (!set->ops->get_budget ^ !set->ops->put_budget)
4415                 return -EINVAL;
4416
4417         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4418                 pr_info("blk-mq: reduced tag depth to %u\n",
4419                         BLK_MQ_MAX_DEPTH);
4420                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4421         }
4422
4423         if (!set->nr_maps)
4424                 set->nr_maps = 1;
4425         else if (set->nr_maps > HCTX_MAX_TYPES)
4426                 return -EINVAL;
4427
4428         /*
4429          * If a crashdump is active, then we are potentially in a very
4430          * memory constrained environment. Limit us to 1 queue and
4431          * 64 tags to prevent using too much memory.
4432          */
4433         if (is_kdump_kernel()) {
4434                 set->nr_hw_queues = 1;
4435                 set->nr_maps = 1;
4436                 set->queue_depth = min(64U, set->queue_depth);
4437         }
4438         /*
4439          * There is no use for more h/w queues than cpus if we just have
4440          * a single map
4441          */
4442         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4443                 set->nr_hw_queues = nr_cpu_ids;
4444
4445         if (set->flags & BLK_MQ_F_BLOCKING) {
4446                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4447                 if (!set->srcu)
4448                         return -ENOMEM;
4449                 ret = init_srcu_struct(set->srcu);
4450                 if (ret)
4451                         goto out_free_srcu;
4452         }
4453
4454         ret = -ENOMEM;
4455         set->tags = kcalloc_node(set->nr_hw_queues,
4456                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4457                                  set->numa_node);
4458         if (!set->tags)
4459                 goto out_cleanup_srcu;
4460
4461         for (i = 0; i < set->nr_maps; i++) {
4462                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4463                                                   sizeof(set->map[i].mq_map[0]),
4464                                                   GFP_KERNEL, set->numa_node);
4465                 if (!set->map[i].mq_map)
4466                         goto out_free_mq_map;
4467                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4468         }
4469
4470         blk_mq_update_queue_map(set);
4471
4472         ret = blk_mq_alloc_set_map_and_rqs(set);
4473         if (ret)
4474                 goto out_free_mq_map;
4475
4476         mutex_init(&set->tag_list_lock);
4477         INIT_LIST_HEAD(&set->tag_list);
4478
4479         return 0;
4480
4481 out_free_mq_map:
4482         for (i = 0; i < set->nr_maps; i++) {
4483                 kfree(set->map[i].mq_map);
4484                 set->map[i].mq_map = NULL;
4485         }
4486         kfree(set->tags);
4487         set->tags = NULL;
4488 out_cleanup_srcu:
4489         if (set->flags & BLK_MQ_F_BLOCKING)
4490                 cleanup_srcu_struct(set->srcu);
4491 out_free_srcu:
4492         if (set->flags & BLK_MQ_F_BLOCKING)
4493                 kfree(set->srcu);
4494         return ret;
4495 }
4496 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4497
4498 /* allocate and initialize a tagset for a simple single-queue device */
4499 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4500                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4501                 unsigned int set_flags)
4502 {
4503         memset(set, 0, sizeof(*set));
4504         set->ops = ops;
4505         set->nr_hw_queues = 1;
4506         set->nr_maps = 1;
4507         set->queue_depth = queue_depth;
4508         set->numa_node = NUMA_NO_NODE;
4509         set->flags = set_flags;
4510         return blk_mq_alloc_tag_set(set);
4511 }
4512 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4513
4514 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4515 {
4516         int i, j;
4517
4518         for (i = 0; i < set->nr_hw_queues; i++)
4519                 __blk_mq_free_map_and_rqs(set, i);
4520
4521         if (blk_mq_is_shared_tags(set->flags)) {
4522                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4523                                         BLK_MQ_NO_HCTX_IDX);
4524         }
4525
4526         for (j = 0; j < set->nr_maps; j++) {
4527                 kfree(set->map[j].mq_map);
4528                 set->map[j].mq_map = NULL;
4529         }
4530
4531         kfree(set->tags);
4532         set->tags = NULL;
4533         if (set->flags & BLK_MQ_F_BLOCKING) {
4534                 cleanup_srcu_struct(set->srcu);
4535                 kfree(set->srcu);
4536         }
4537 }
4538 EXPORT_SYMBOL(blk_mq_free_tag_set);
4539
4540 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4541 {
4542         struct blk_mq_tag_set *set = q->tag_set;
4543         struct blk_mq_hw_ctx *hctx;
4544         int ret;
4545         unsigned long i;
4546
4547         if (!set)
4548                 return -EINVAL;
4549
4550         if (q->nr_requests == nr)
4551                 return 0;
4552
4553         blk_mq_freeze_queue(q);
4554         blk_mq_quiesce_queue(q);
4555
4556         ret = 0;
4557         queue_for_each_hw_ctx(q, hctx, i) {
4558                 if (!hctx->tags)
4559                         continue;
4560                 /*
4561                  * If we're using an MQ scheduler, just update the scheduler
4562                  * queue depth. This is similar to what the old code would do.
4563                  */
4564                 if (hctx->sched_tags) {
4565                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4566                                                       nr, true);
4567                 } else {
4568                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4569                                                       false);
4570                 }
4571                 if (ret)
4572                         break;
4573                 if (q->elevator && q->elevator->type->ops.depth_updated)
4574                         q->elevator->type->ops.depth_updated(hctx);
4575         }
4576         if (!ret) {
4577                 q->nr_requests = nr;
4578                 if (blk_mq_is_shared_tags(set->flags)) {
4579                         if (q->elevator)
4580                                 blk_mq_tag_update_sched_shared_tags(q);
4581                         else
4582                                 blk_mq_tag_resize_shared_tags(set, nr);
4583                 }
4584         }
4585
4586         blk_mq_unquiesce_queue(q);
4587         blk_mq_unfreeze_queue(q);
4588
4589         return ret;
4590 }
4591
4592 /*
4593  * request_queue and elevator_type pair.
4594  * It is just used by __blk_mq_update_nr_hw_queues to cache
4595  * the elevator_type associated with a request_queue.
4596  */
4597 struct blk_mq_qe_pair {
4598         struct list_head node;
4599         struct request_queue *q;
4600         struct elevator_type *type;
4601 };
4602
4603 /*
4604  * Cache the elevator_type in qe pair list and switch the
4605  * io scheduler to 'none'
4606  */
4607 static bool blk_mq_elv_switch_none(struct list_head *head,
4608                 struct request_queue *q)
4609 {
4610         struct blk_mq_qe_pair *qe;
4611
4612         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4613         if (!qe)
4614                 return false;
4615
4616         /* q->elevator needs protection from ->sysfs_lock */
4617         mutex_lock(&q->sysfs_lock);
4618
4619         /* the check has to be done with holding sysfs_lock */
4620         if (!q->elevator) {
4621                 kfree(qe);
4622                 goto unlock;
4623         }
4624
4625         INIT_LIST_HEAD(&qe->node);
4626         qe->q = q;
4627         qe->type = q->elevator->type;
4628         /* keep a reference to the elevator module as we'll switch back */
4629         __elevator_get(qe->type);
4630         list_add(&qe->node, head);
4631         elevator_disable(q);
4632 unlock:
4633         mutex_unlock(&q->sysfs_lock);
4634
4635         return true;
4636 }
4637
4638 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4639                                                 struct request_queue *q)
4640 {
4641         struct blk_mq_qe_pair *qe;
4642
4643         list_for_each_entry(qe, head, node)
4644                 if (qe->q == q)
4645                         return qe;
4646
4647         return NULL;
4648 }
4649
4650 static void blk_mq_elv_switch_back(struct list_head *head,
4651                                   struct request_queue *q)
4652 {
4653         struct blk_mq_qe_pair *qe;
4654         struct elevator_type *t;
4655
4656         qe = blk_lookup_qe_pair(head, q);
4657         if (!qe)
4658                 return;
4659         t = qe->type;
4660         list_del(&qe->node);
4661         kfree(qe);
4662
4663         mutex_lock(&q->sysfs_lock);
4664         elevator_switch(q, t);
4665         /* drop the reference acquired in blk_mq_elv_switch_none */
4666         elevator_put(t);
4667         mutex_unlock(&q->sysfs_lock);
4668 }
4669
4670 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4671                                                         int nr_hw_queues)
4672 {
4673         struct request_queue *q;
4674         LIST_HEAD(head);
4675         int prev_nr_hw_queues;
4676
4677         lockdep_assert_held(&set->tag_list_lock);
4678
4679         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4680                 nr_hw_queues = nr_cpu_ids;
4681         if (nr_hw_queues < 1)
4682                 return;
4683         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4684                 return;
4685
4686         list_for_each_entry(q, &set->tag_list, tag_set_list)
4687                 blk_mq_freeze_queue(q);
4688         /*
4689          * Switch IO scheduler to 'none', cleaning up the data associated
4690          * with the previous scheduler. We will switch back once we are done
4691          * updating the new sw to hw queue mappings.
4692          */
4693         list_for_each_entry(q, &set->tag_list, tag_set_list)
4694                 if (!blk_mq_elv_switch_none(&head, q))
4695                         goto switch_back;
4696
4697         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4698                 blk_mq_debugfs_unregister_hctxs(q);
4699                 blk_mq_sysfs_unregister_hctxs(q);
4700         }
4701
4702         prev_nr_hw_queues = set->nr_hw_queues;
4703         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4704                 goto reregister;
4705
4706 fallback:
4707         blk_mq_update_queue_map(set);
4708         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4709                 blk_mq_realloc_hw_ctxs(set, q);
4710                 blk_mq_update_poll_flag(q);
4711                 if (q->nr_hw_queues != set->nr_hw_queues) {
4712                         int i = prev_nr_hw_queues;
4713
4714                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4715                                         nr_hw_queues, prev_nr_hw_queues);
4716                         for (; i < set->nr_hw_queues; i++)
4717                                 __blk_mq_free_map_and_rqs(set, i);
4718
4719                         set->nr_hw_queues = prev_nr_hw_queues;
4720                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4721                         goto fallback;
4722                 }
4723                 blk_mq_map_swqueue(q);
4724         }
4725
4726 reregister:
4727         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4728                 blk_mq_sysfs_register_hctxs(q);
4729                 blk_mq_debugfs_register_hctxs(q);
4730         }
4731
4732 switch_back:
4733         list_for_each_entry(q, &set->tag_list, tag_set_list)
4734                 blk_mq_elv_switch_back(&head, q);
4735
4736         list_for_each_entry(q, &set->tag_list, tag_set_list)
4737                 blk_mq_unfreeze_queue(q);
4738 }
4739
4740 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4741 {
4742         mutex_lock(&set->tag_list_lock);
4743         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4744         mutex_unlock(&set->tag_list_lock);
4745 }
4746 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4747
4748 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4749                 unsigned int flags)
4750 {
4751         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4752         long state = get_current_state();
4753         int ret;
4754
4755         do {
4756                 ret = q->mq_ops->poll(hctx, iob);
4757                 if (ret > 0) {
4758                         __set_current_state(TASK_RUNNING);
4759                         return ret;
4760                 }
4761
4762                 if (signal_pending_state(state, current))
4763                         __set_current_state(TASK_RUNNING);
4764                 if (task_is_running(current))
4765                         return 1;
4766
4767                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4768                         break;
4769                 cpu_relax();
4770         } while (!need_resched());
4771
4772         __set_current_state(TASK_RUNNING);
4773         return 0;
4774 }
4775
4776 unsigned int blk_mq_rq_cpu(struct request *rq)
4777 {
4778         return rq->mq_ctx->cpu;
4779 }
4780 EXPORT_SYMBOL(blk_mq_rq_cpu);
4781
4782 void blk_mq_cancel_work_sync(struct request_queue *q)
4783 {
4784         struct blk_mq_hw_ctx *hctx;
4785         unsigned long i;
4786
4787         cancel_delayed_work_sync(&q->requeue_work);
4788
4789         queue_for_each_hw_ctx(q, hctx, i)
4790                 cancel_delayed_work_sync(&hctx->run_work);
4791 }
4792
4793 static int __init blk_mq_init(void)
4794 {
4795         int i;
4796
4797         for_each_possible_cpu(i)
4798                 init_llist_head(&per_cpu(blk_cpu_done, i));
4799         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4800
4801         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4802                                   "block/softirq:dead", NULL,
4803                                   blk_softirq_cpu_dead);
4804         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4805                                 blk_mq_hctx_notify_dead);
4806         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4807                                 blk_mq_hctx_notify_online,
4808                                 blk_mq_hctx_notify_offline);
4809         return 0;
4810 }
4811 subsys_initcall(blk_mq_init);