block: introduce block_io_start/block_io_done tracepoints
[linux-block.git] / block / blk-mq.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Block multiqueue core code
4  *
5  * Copyright (C) 2013-2014 Jens Axboe
6  * Copyright (C) 2013-2014 Christoph Hellwig
7  */
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/backing-dev.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/blk-integrity.h>
14 #include <linux/kmemleak.h>
15 #include <linux/mm.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/workqueue.h>
19 #include <linux/smp.h>
20 #include <linux/interrupt.h>
21 #include <linux/llist.h>
22 #include <linux/cpu.h>
23 #include <linux/cache.h>
24 #include <linux/sched/sysctl.h>
25 #include <linux/sched/topology.h>
26 #include <linux/sched/signal.h>
27 #include <linux/delay.h>
28 #include <linux/crash_dump.h>
29 #include <linux/prefetch.h>
30 #include <linux/blk-crypto.h>
31 #include <linux/part_stat.h>
32
33 #include <trace/events/block.h>
34
35 #include <linux/t10-pi.h>
36 #include "blk.h"
37 #include "blk-mq.h"
38 #include "blk-mq-debugfs.h"
39 #include "blk-pm.h"
40 #include "blk-stat.h"
41 #include "blk-mq-sched.h"
42 #include "blk-rq-qos.h"
43 #include "blk-ioprio.h"
44
45 static DEFINE_PER_CPU(struct llist_head, blk_cpu_done);
46
47 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags);
48 static void blk_mq_request_bypass_insert(struct request *rq,
49                 blk_insert_t flags);
50 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
51                 struct list_head *list);
52
53 static inline struct blk_mq_hw_ctx *blk_qc_to_hctx(struct request_queue *q,
54                 blk_qc_t qc)
55 {
56         return xa_load(&q->hctx_table, qc);
57 }
58
59 static inline blk_qc_t blk_rq_to_qc(struct request *rq)
60 {
61         return rq->mq_hctx->queue_num;
62 }
63
64 /*
65  * Check if any of the ctx, dispatch list or elevator
66  * have pending work in this hardware queue.
67  */
68 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
69 {
70         return !list_empty_careful(&hctx->dispatch) ||
71                 sbitmap_any_bit_set(&hctx->ctx_map) ||
72                         blk_mq_sched_has_work(hctx);
73 }
74
75 /*
76  * Mark this ctx as having pending work in this hardware queue
77  */
78 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
79                                      struct blk_mq_ctx *ctx)
80 {
81         const int bit = ctx->index_hw[hctx->type];
82
83         if (!sbitmap_test_bit(&hctx->ctx_map, bit))
84                 sbitmap_set_bit(&hctx->ctx_map, bit);
85 }
86
87 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
88                                       struct blk_mq_ctx *ctx)
89 {
90         const int bit = ctx->index_hw[hctx->type];
91
92         sbitmap_clear_bit(&hctx->ctx_map, bit);
93 }
94
95 struct mq_inflight {
96         struct block_device *part;
97         unsigned int inflight[2];
98 };
99
100 static bool blk_mq_check_inflight(struct request *rq, void *priv)
101 {
102         struct mq_inflight *mi = priv;
103
104         if (rq->part && blk_do_io_stat(rq) &&
105             (!mi->part->bd_partno || rq->part == mi->part) &&
106             blk_mq_rq_state(rq) == MQ_RQ_IN_FLIGHT)
107                 mi->inflight[rq_data_dir(rq)]++;
108
109         return true;
110 }
111
112 unsigned int blk_mq_in_flight(struct request_queue *q,
113                 struct block_device *part)
114 {
115         struct mq_inflight mi = { .part = part };
116
117         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
118
119         return mi.inflight[0] + mi.inflight[1];
120 }
121
122 void blk_mq_in_flight_rw(struct request_queue *q, struct block_device *part,
123                 unsigned int inflight[2])
124 {
125         struct mq_inflight mi = { .part = part };
126
127         blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
128         inflight[0] = mi.inflight[0];
129         inflight[1] = mi.inflight[1];
130 }
131
132 void blk_freeze_queue_start(struct request_queue *q)
133 {
134         mutex_lock(&q->mq_freeze_lock);
135         if (++q->mq_freeze_depth == 1) {
136                 percpu_ref_kill(&q->q_usage_counter);
137                 mutex_unlock(&q->mq_freeze_lock);
138                 if (queue_is_mq(q))
139                         blk_mq_run_hw_queues(q, false);
140         } else {
141                 mutex_unlock(&q->mq_freeze_lock);
142         }
143 }
144 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
145
146 void blk_mq_freeze_queue_wait(struct request_queue *q)
147 {
148         wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
149 }
150 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
151
152 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
153                                      unsigned long timeout)
154 {
155         return wait_event_timeout(q->mq_freeze_wq,
156                                         percpu_ref_is_zero(&q->q_usage_counter),
157                                         timeout);
158 }
159 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
160
161 /*
162  * Guarantee no request is in use, so we can change any data structure of
163  * the queue afterward.
164  */
165 void blk_freeze_queue(struct request_queue *q)
166 {
167         /*
168          * In the !blk_mq case we are only calling this to kill the
169          * q_usage_counter, otherwise this increases the freeze depth
170          * and waits for it to return to zero.  For this reason there is
171          * no blk_unfreeze_queue(), and blk_freeze_queue() is not
172          * exported to drivers as the only user for unfreeze is blk_mq.
173          */
174         blk_freeze_queue_start(q);
175         blk_mq_freeze_queue_wait(q);
176 }
177
178 void blk_mq_freeze_queue(struct request_queue *q)
179 {
180         /*
181          * ...just an alias to keep freeze and unfreeze actions balanced
182          * in the blk_mq_* namespace
183          */
184         blk_freeze_queue(q);
185 }
186 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
187
188 void __blk_mq_unfreeze_queue(struct request_queue *q, bool force_atomic)
189 {
190         mutex_lock(&q->mq_freeze_lock);
191         if (force_atomic)
192                 q->q_usage_counter.data->force_atomic = true;
193         q->mq_freeze_depth--;
194         WARN_ON_ONCE(q->mq_freeze_depth < 0);
195         if (!q->mq_freeze_depth) {
196                 percpu_ref_resurrect(&q->q_usage_counter);
197                 wake_up_all(&q->mq_freeze_wq);
198         }
199         mutex_unlock(&q->mq_freeze_lock);
200 }
201
202 void blk_mq_unfreeze_queue(struct request_queue *q)
203 {
204         __blk_mq_unfreeze_queue(q, false);
205 }
206 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
207
208 /*
209  * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
210  * mpt3sas driver such that this function can be removed.
211  */
212 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
213 {
214         unsigned long flags;
215
216         spin_lock_irqsave(&q->queue_lock, flags);
217         if (!q->quiesce_depth++)
218                 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219         spin_unlock_irqrestore(&q->queue_lock, flags);
220 }
221 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222
223 /**
224  * blk_mq_wait_quiesce_done() - wait until in-progress quiesce is done
225  * @set: tag_set to wait on
226  *
227  * Note: it is driver's responsibility for making sure that quiesce has
228  * been started on or more of the request_queues of the tag_set.  This
229  * function only waits for the quiesce on those request_queues that had
230  * the quiesce flag set using blk_mq_quiesce_queue_nowait.
231  */
232 void blk_mq_wait_quiesce_done(struct blk_mq_tag_set *set)
233 {
234         if (set->flags & BLK_MQ_F_BLOCKING)
235                 synchronize_srcu(set->srcu);
236         else
237                 synchronize_rcu();
238 }
239 EXPORT_SYMBOL_GPL(blk_mq_wait_quiesce_done);
240
241 /**
242  * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
243  * @q: request queue.
244  *
245  * Note: this function does not prevent that the struct request end_io()
246  * callback function is invoked. Once this function is returned, we make
247  * sure no dispatch can happen until the queue is unquiesced via
248  * blk_mq_unquiesce_queue().
249  */
250 void blk_mq_quiesce_queue(struct request_queue *q)
251 {
252         blk_mq_quiesce_queue_nowait(q);
253         /* nothing to wait for non-mq queues */
254         if (queue_is_mq(q))
255                 blk_mq_wait_quiesce_done(q->tag_set);
256 }
257 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
258
259 /*
260  * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
261  * @q: request queue.
262  *
263  * This function recovers queue into the state before quiescing
264  * which is done by blk_mq_quiesce_queue.
265  */
266 void blk_mq_unquiesce_queue(struct request_queue *q)
267 {
268         unsigned long flags;
269         bool run_queue = false;
270
271         spin_lock_irqsave(&q->queue_lock, flags);
272         if (WARN_ON_ONCE(q->quiesce_depth <= 0)) {
273                 ;
274         } else if (!--q->quiesce_depth) {
275                 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
276                 run_queue = true;
277         }
278         spin_unlock_irqrestore(&q->queue_lock, flags);
279
280         /* dispatch requests which are inserted during quiescing */
281         if (run_queue)
282                 blk_mq_run_hw_queues(q, true);
283 }
284 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
285
286 void blk_mq_quiesce_tagset(struct blk_mq_tag_set *set)
287 {
288         struct request_queue *q;
289
290         mutex_lock(&set->tag_list_lock);
291         list_for_each_entry(q, &set->tag_list, tag_set_list) {
292                 if (!blk_queue_skip_tagset_quiesce(q))
293                         blk_mq_quiesce_queue_nowait(q);
294         }
295         blk_mq_wait_quiesce_done(set);
296         mutex_unlock(&set->tag_list_lock);
297 }
298 EXPORT_SYMBOL_GPL(blk_mq_quiesce_tagset);
299
300 void blk_mq_unquiesce_tagset(struct blk_mq_tag_set *set)
301 {
302         struct request_queue *q;
303
304         mutex_lock(&set->tag_list_lock);
305         list_for_each_entry(q, &set->tag_list, tag_set_list) {
306                 if (!blk_queue_skip_tagset_quiesce(q))
307                         blk_mq_unquiesce_queue(q);
308         }
309         mutex_unlock(&set->tag_list_lock);
310 }
311 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_tagset);
312
313 void blk_mq_wake_waiters(struct request_queue *q)
314 {
315         struct blk_mq_hw_ctx *hctx;
316         unsigned long i;
317
318         queue_for_each_hw_ctx(q, hctx, i)
319                 if (blk_mq_hw_queue_mapped(hctx))
320                         blk_mq_tag_wakeup_all(hctx->tags, true);
321 }
322
323 void blk_rq_init(struct request_queue *q, struct request *rq)
324 {
325         memset(rq, 0, sizeof(*rq));
326
327         INIT_LIST_HEAD(&rq->queuelist);
328         rq->q = q;
329         rq->__sector = (sector_t) -1;
330         INIT_HLIST_NODE(&rq->hash);
331         RB_CLEAR_NODE(&rq->rb_node);
332         rq->tag = BLK_MQ_NO_TAG;
333         rq->internal_tag = BLK_MQ_NO_TAG;
334         rq->start_time_ns = ktime_get_ns();
335         rq->part = NULL;
336         blk_crypto_rq_set_defaults(rq);
337 }
338 EXPORT_SYMBOL(blk_rq_init);
339
340 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
341                 struct blk_mq_tags *tags, unsigned int tag, u64 alloc_time_ns)
342 {
343         struct blk_mq_ctx *ctx = data->ctx;
344         struct blk_mq_hw_ctx *hctx = data->hctx;
345         struct request_queue *q = data->q;
346         struct request *rq = tags->static_rqs[tag];
347
348         rq->q = q;
349         rq->mq_ctx = ctx;
350         rq->mq_hctx = hctx;
351         rq->cmd_flags = data->cmd_flags;
352
353         if (data->flags & BLK_MQ_REQ_PM)
354                 data->rq_flags |= RQF_PM;
355         if (blk_queue_io_stat(q))
356                 data->rq_flags |= RQF_IO_STAT;
357         rq->rq_flags = data->rq_flags;
358
359         if (data->rq_flags & RQF_SCHED_TAGS) {
360                 rq->tag = BLK_MQ_NO_TAG;
361                 rq->internal_tag = tag;
362         } else {
363                 rq->tag = tag;
364                 rq->internal_tag = BLK_MQ_NO_TAG;
365         }
366         rq->timeout = 0;
367
368         if (blk_mq_need_time_stamp(rq))
369                 rq->start_time_ns = ktime_get_ns();
370         else
371                 rq->start_time_ns = 0;
372         rq->part = NULL;
373 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
374         rq->alloc_time_ns = alloc_time_ns;
375 #endif
376         rq->io_start_time_ns = 0;
377         rq->stats_sectors = 0;
378         rq->nr_phys_segments = 0;
379 #if defined(CONFIG_BLK_DEV_INTEGRITY)
380         rq->nr_integrity_segments = 0;
381 #endif
382         rq->end_io = NULL;
383         rq->end_io_data = NULL;
384
385         blk_crypto_rq_set_defaults(rq);
386         INIT_LIST_HEAD(&rq->queuelist);
387         /* tag was already set */
388         WRITE_ONCE(rq->deadline, 0);
389         req_ref_set(rq, 1);
390
391         if (rq->rq_flags & RQF_USE_SCHED) {
392                 struct elevator_queue *e = data->q->elevator;
393
394                 INIT_HLIST_NODE(&rq->hash);
395                 RB_CLEAR_NODE(&rq->rb_node);
396
397                 if (e->type->ops.prepare_request)
398                         e->type->ops.prepare_request(rq);
399         }
400
401         return rq;
402 }
403
404 static inline struct request *
405 __blk_mq_alloc_requests_batch(struct blk_mq_alloc_data *data,
406                 u64 alloc_time_ns)
407 {
408         unsigned int tag, tag_offset;
409         struct blk_mq_tags *tags;
410         struct request *rq;
411         unsigned long tag_mask;
412         int i, nr = 0;
413
414         tag_mask = blk_mq_get_tags(data, data->nr_tags, &tag_offset);
415         if (unlikely(!tag_mask))
416                 return NULL;
417
418         tags = blk_mq_tags_from_data(data);
419         for (i = 0; tag_mask; i++) {
420                 if (!(tag_mask & (1UL << i)))
421                         continue;
422                 tag = tag_offset + i;
423                 prefetch(tags->static_rqs[tag]);
424                 tag_mask &= ~(1UL << i);
425                 rq = blk_mq_rq_ctx_init(data, tags, tag, alloc_time_ns);
426                 rq_list_add(data->cached_rq, rq);
427                 nr++;
428         }
429         /* caller already holds a reference, add for remainder */
430         percpu_ref_get_many(&data->q->q_usage_counter, nr - 1);
431         data->nr_tags -= nr;
432
433         return rq_list_pop(data->cached_rq);
434 }
435
436 static struct request *__blk_mq_alloc_requests(struct blk_mq_alloc_data *data)
437 {
438         struct request_queue *q = data->q;
439         u64 alloc_time_ns = 0;
440         struct request *rq;
441         unsigned int tag;
442
443         /* alloc_time includes depth and tag waits */
444         if (blk_queue_rq_alloc_time(q))
445                 alloc_time_ns = ktime_get_ns();
446
447         if (data->cmd_flags & REQ_NOWAIT)
448                 data->flags |= BLK_MQ_REQ_NOWAIT;
449
450         if (q->elevator) {
451                 /*
452                  * All requests use scheduler tags when an I/O scheduler is
453                  * enabled for the queue.
454                  */
455                 data->rq_flags |= RQF_SCHED_TAGS;
456
457                 /*
458                  * Flush/passthrough requests are special and go directly to the
459                  * dispatch list.
460                  */
461                 if ((data->cmd_flags & REQ_OP_MASK) != REQ_OP_FLUSH &&
462                     !blk_op_is_passthrough(data->cmd_flags)) {
463                         struct elevator_mq_ops *ops = &q->elevator->type->ops;
464
465                         WARN_ON_ONCE(data->flags & BLK_MQ_REQ_RESERVED);
466
467                         data->rq_flags |= RQF_USE_SCHED;
468                         if (ops->limit_depth)
469                                 ops->limit_depth(data->cmd_flags, data);
470                 }
471         }
472
473 retry:
474         data->ctx = blk_mq_get_ctx(q);
475         data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
476         if (!(data->rq_flags & RQF_SCHED_TAGS))
477                 blk_mq_tag_busy(data->hctx);
478
479         if (data->flags & BLK_MQ_REQ_RESERVED)
480                 data->rq_flags |= RQF_RESV;
481
482         /*
483          * Try batched alloc if we want more than 1 tag.
484          */
485         if (data->nr_tags > 1) {
486                 rq = __blk_mq_alloc_requests_batch(data, alloc_time_ns);
487                 if (rq)
488                         return rq;
489                 data->nr_tags = 1;
490         }
491
492         /*
493          * Waiting allocations only fail because of an inactive hctx.  In that
494          * case just retry the hctx assignment and tag allocation as CPU hotplug
495          * should have migrated us to an online CPU by now.
496          */
497         tag = blk_mq_get_tag(data);
498         if (tag == BLK_MQ_NO_TAG) {
499                 if (data->flags & BLK_MQ_REQ_NOWAIT)
500                         return NULL;
501                 /*
502                  * Give up the CPU and sleep for a random short time to
503                  * ensure that thread using a realtime scheduling class
504                  * are migrated off the CPU, and thus off the hctx that
505                  * is going away.
506                  */
507                 msleep(3);
508                 goto retry;
509         }
510
511         return blk_mq_rq_ctx_init(data, blk_mq_tags_from_data(data), tag,
512                                         alloc_time_ns);
513 }
514
515 static struct request *blk_mq_rq_cache_fill(struct request_queue *q,
516                                             struct blk_plug *plug,
517                                             blk_opf_t opf,
518                                             blk_mq_req_flags_t flags)
519 {
520         struct blk_mq_alloc_data data = {
521                 .q              = q,
522                 .flags          = flags,
523                 .cmd_flags      = opf,
524                 .nr_tags        = plug->nr_ios,
525                 .cached_rq      = &plug->cached_rq,
526         };
527         struct request *rq;
528
529         if (blk_queue_enter(q, flags))
530                 return NULL;
531
532         plug->nr_ios = 1;
533
534         rq = __blk_mq_alloc_requests(&data);
535         if (unlikely(!rq))
536                 blk_queue_exit(q);
537         return rq;
538 }
539
540 static struct request *blk_mq_alloc_cached_request(struct request_queue *q,
541                                                    blk_opf_t opf,
542                                                    blk_mq_req_flags_t flags)
543 {
544         struct blk_plug *plug = current->plug;
545         struct request *rq;
546
547         if (!plug)
548                 return NULL;
549
550         if (rq_list_empty(plug->cached_rq)) {
551                 if (plug->nr_ios == 1)
552                         return NULL;
553                 rq = blk_mq_rq_cache_fill(q, plug, opf, flags);
554                 if (!rq)
555                         return NULL;
556         } else {
557                 rq = rq_list_peek(&plug->cached_rq);
558                 if (!rq || rq->q != q)
559                         return NULL;
560
561                 if (blk_mq_get_hctx_type(opf) != rq->mq_hctx->type)
562                         return NULL;
563                 if (op_is_flush(rq->cmd_flags) != op_is_flush(opf))
564                         return NULL;
565
566                 plug->cached_rq = rq_list_next(rq);
567         }
568
569         rq->cmd_flags = opf;
570         INIT_LIST_HEAD(&rq->queuelist);
571         return rq;
572 }
573
574 struct request *blk_mq_alloc_request(struct request_queue *q, blk_opf_t opf,
575                 blk_mq_req_flags_t flags)
576 {
577         struct request *rq;
578
579         rq = blk_mq_alloc_cached_request(q, opf, flags);
580         if (!rq) {
581                 struct blk_mq_alloc_data data = {
582                         .q              = q,
583                         .flags          = flags,
584                         .cmd_flags      = opf,
585                         .nr_tags        = 1,
586                 };
587                 int ret;
588
589                 ret = blk_queue_enter(q, flags);
590                 if (ret)
591                         return ERR_PTR(ret);
592
593                 rq = __blk_mq_alloc_requests(&data);
594                 if (!rq)
595                         goto out_queue_exit;
596         }
597         rq->__data_len = 0;
598         rq->__sector = (sector_t) -1;
599         rq->bio = rq->biotail = NULL;
600         return rq;
601 out_queue_exit:
602         blk_queue_exit(q);
603         return ERR_PTR(-EWOULDBLOCK);
604 }
605 EXPORT_SYMBOL(blk_mq_alloc_request);
606
607 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
608         blk_opf_t opf, blk_mq_req_flags_t flags, unsigned int hctx_idx)
609 {
610         struct blk_mq_alloc_data data = {
611                 .q              = q,
612                 .flags          = flags,
613                 .cmd_flags      = opf,
614                 .nr_tags        = 1,
615         };
616         u64 alloc_time_ns = 0;
617         struct request *rq;
618         unsigned int cpu;
619         unsigned int tag;
620         int ret;
621
622         /* alloc_time includes depth and tag waits */
623         if (blk_queue_rq_alloc_time(q))
624                 alloc_time_ns = ktime_get_ns();
625
626         /*
627          * If the tag allocator sleeps we could get an allocation for a
628          * different hardware context.  No need to complicate the low level
629          * allocator for this for the rare use case of a command tied to
630          * a specific queue.
631          */
632         if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)) ||
633             WARN_ON_ONCE(!(flags & BLK_MQ_REQ_RESERVED)))
634                 return ERR_PTR(-EINVAL);
635
636         if (hctx_idx >= q->nr_hw_queues)
637                 return ERR_PTR(-EIO);
638
639         ret = blk_queue_enter(q, flags);
640         if (ret)
641                 return ERR_PTR(ret);
642
643         /*
644          * Check if the hardware context is actually mapped to anything.
645          * If not tell the caller that it should skip this queue.
646          */
647         ret = -EXDEV;
648         data.hctx = xa_load(&q->hctx_table, hctx_idx);
649         if (!blk_mq_hw_queue_mapped(data.hctx))
650                 goto out_queue_exit;
651         cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
652         if (cpu >= nr_cpu_ids)
653                 goto out_queue_exit;
654         data.ctx = __blk_mq_get_ctx(q, cpu);
655
656         if (q->elevator)
657                 data.rq_flags |= RQF_SCHED_TAGS;
658         else
659                 blk_mq_tag_busy(data.hctx);
660
661         if (flags & BLK_MQ_REQ_RESERVED)
662                 data.rq_flags |= RQF_RESV;
663
664         ret = -EWOULDBLOCK;
665         tag = blk_mq_get_tag(&data);
666         if (tag == BLK_MQ_NO_TAG)
667                 goto out_queue_exit;
668         rq = blk_mq_rq_ctx_init(&data, blk_mq_tags_from_data(&data), tag,
669                                         alloc_time_ns);
670         rq->__data_len = 0;
671         rq->__sector = (sector_t) -1;
672         rq->bio = rq->biotail = NULL;
673         return rq;
674
675 out_queue_exit:
676         blk_queue_exit(q);
677         return ERR_PTR(ret);
678 }
679 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
680
681 static void __blk_mq_free_request(struct request *rq)
682 {
683         struct request_queue *q = rq->q;
684         struct blk_mq_ctx *ctx = rq->mq_ctx;
685         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
686         const int sched_tag = rq->internal_tag;
687
688         blk_crypto_free_request(rq);
689         blk_pm_mark_last_busy(rq);
690         rq->mq_hctx = NULL;
691         if (rq->tag != BLK_MQ_NO_TAG)
692                 blk_mq_put_tag(hctx->tags, ctx, rq->tag);
693         if (sched_tag != BLK_MQ_NO_TAG)
694                 blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
695         blk_mq_sched_restart(hctx);
696         blk_queue_exit(q);
697 }
698
699 void blk_mq_free_request(struct request *rq)
700 {
701         struct request_queue *q = rq->q;
702         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
703
704         if ((rq->rq_flags & RQF_USE_SCHED) &&
705             q->elevator->type->ops.finish_request)
706                 q->elevator->type->ops.finish_request(rq);
707
708         if (rq->rq_flags & RQF_MQ_INFLIGHT)
709                 __blk_mq_dec_active_requests(hctx);
710
711         if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
712                 laptop_io_completion(q->disk->bdi);
713
714         rq_qos_done(q, rq);
715
716         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
717         if (req_ref_put_and_test(rq))
718                 __blk_mq_free_request(rq);
719 }
720 EXPORT_SYMBOL_GPL(blk_mq_free_request);
721
722 void blk_mq_free_plug_rqs(struct blk_plug *plug)
723 {
724         struct request *rq;
725
726         while ((rq = rq_list_pop(&plug->cached_rq)) != NULL)
727                 blk_mq_free_request(rq);
728 }
729
730 void blk_dump_rq_flags(struct request *rq, char *msg)
731 {
732         printk(KERN_INFO "%s: dev %s: flags=%llx\n", msg,
733                 rq->q->disk ? rq->q->disk->disk_name : "?",
734                 (__force unsigned long long) rq->cmd_flags);
735
736         printk(KERN_INFO "  sector %llu, nr/cnr %u/%u\n",
737                (unsigned long long)blk_rq_pos(rq),
738                blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
739         printk(KERN_INFO "  bio %p, biotail %p, len %u\n",
740                rq->bio, rq->biotail, blk_rq_bytes(rq));
741 }
742 EXPORT_SYMBOL(blk_dump_rq_flags);
743
744 static void req_bio_endio(struct request *rq, struct bio *bio,
745                           unsigned int nbytes, blk_status_t error)
746 {
747         if (unlikely(error)) {
748                 bio->bi_status = error;
749         } else if (req_op(rq) == REQ_OP_ZONE_APPEND) {
750                 /*
751                  * Partial zone append completions cannot be supported as the
752                  * BIO fragments may end up not being written sequentially.
753                  */
754                 if (bio->bi_iter.bi_size != nbytes)
755                         bio->bi_status = BLK_STS_IOERR;
756                 else
757                         bio->bi_iter.bi_sector = rq->__sector;
758         }
759
760         bio_advance(bio, nbytes);
761
762         if (unlikely(rq->rq_flags & RQF_QUIET))
763                 bio_set_flag(bio, BIO_QUIET);
764         /* don't actually finish bio if it's part of flush sequence */
765         if (bio->bi_iter.bi_size == 0 && !(rq->rq_flags & RQF_FLUSH_SEQ))
766                 bio_endio(bio);
767 }
768
769 static void blk_account_io_completion(struct request *req, unsigned int bytes)
770 {
771         if (req->part && blk_do_io_stat(req)) {
772                 const int sgrp = op_stat_group(req_op(req));
773
774                 part_stat_lock();
775                 part_stat_add(req->part, sectors[sgrp], bytes >> 9);
776                 part_stat_unlock();
777         }
778 }
779
780 static void blk_print_req_error(struct request *req, blk_status_t status)
781 {
782         printk_ratelimited(KERN_ERR
783                 "%s error, dev %s, sector %llu op 0x%x:(%s) flags 0x%x "
784                 "phys_seg %u prio class %u\n",
785                 blk_status_to_str(status),
786                 req->q->disk ? req->q->disk->disk_name : "?",
787                 blk_rq_pos(req), (__force u32)req_op(req),
788                 blk_op_str(req_op(req)),
789                 (__force u32)(req->cmd_flags & ~REQ_OP_MASK),
790                 req->nr_phys_segments,
791                 IOPRIO_PRIO_CLASS(req->ioprio));
792 }
793
794 /*
795  * Fully end IO on a request. Does not support partial completions, or
796  * errors.
797  */
798 static void blk_complete_request(struct request *req)
799 {
800         const bool is_flush = (req->rq_flags & RQF_FLUSH_SEQ) != 0;
801         int total_bytes = blk_rq_bytes(req);
802         struct bio *bio = req->bio;
803
804         trace_block_rq_complete(req, BLK_STS_OK, total_bytes);
805
806         if (!bio)
807                 return;
808
809 #ifdef CONFIG_BLK_DEV_INTEGRITY
810         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ)
811                 req->q->integrity.profile->complete_fn(req, total_bytes);
812 #endif
813
814         /*
815          * Upper layers may call blk_crypto_evict_key() anytime after the last
816          * bio_endio().  Therefore, the keyslot must be released before that.
817          */
818         blk_crypto_rq_put_keyslot(req);
819
820         blk_account_io_completion(req, total_bytes);
821
822         do {
823                 struct bio *next = bio->bi_next;
824
825                 /* Completion has already been traced */
826                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
827
828                 if (req_op(req) == REQ_OP_ZONE_APPEND)
829                         bio->bi_iter.bi_sector = req->__sector;
830
831                 if (!is_flush)
832                         bio_endio(bio);
833                 bio = next;
834         } while (bio);
835
836         /*
837          * Reset counters so that the request stacking driver
838          * can find how many bytes remain in the request
839          * later.
840          */
841         if (!req->end_io) {
842                 req->bio = NULL;
843                 req->__data_len = 0;
844         }
845 }
846
847 /**
848  * blk_update_request - Complete multiple bytes without completing the request
849  * @req:      the request being processed
850  * @error:    block status code
851  * @nr_bytes: number of bytes to complete for @req
852  *
853  * Description:
854  *     Ends I/O on a number of bytes attached to @req, but doesn't complete
855  *     the request structure even if @req doesn't have leftover.
856  *     If @req has leftover, sets it up for the next range of segments.
857  *
858  *     Passing the result of blk_rq_bytes() as @nr_bytes guarantees
859  *     %false return from this function.
860  *
861  * Note:
862  *      The RQF_SPECIAL_PAYLOAD flag is ignored on purpose in this function
863  *      except in the consistency check at the end of this function.
864  *
865  * Return:
866  *     %false - this request doesn't have any more data
867  *     %true  - this request has more data
868  **/
869 bool blk_update_request(struct request *req, blk_status_t error,
870                 unsigned int nr_bytes)
871 {
872         int total_bytes;
873
874         trace_block_rq_complete(req, error, nr_bytes);
875
876         if (!req->bio)
877                 return false;
878
879 #ifdef CONFIG_BLK_DEV_INTEGRITY
880         if (blk_integrity_rq(req) && req_op(req) == REQ_OP_READ &&
881             error == BLK_STS_OK)
882                 req->q->integrity.profile->complete_fn(req, nr_bytes);
883 #endif
884
885         /*
886          * Upper layers may call blk_crypto_evict_key() anytime after the last
887          * bio_endio().  Therefore, the keyslot must be released before that.
888          */
889         if (blk_crypto_rq_has_keyslot(req) && nr_bytes >= blk_rq_bytes(req))
890                 __blk_crypto_rq_put_keyslot(req);
891
892         if (unlikely(error && !blk_rq_is_passthrough(req) &&
893                      !(req->rq_flags & RQF_QUIET)) &&
894                      !test_bit(GD_DEAD, &req->q->disk->state)) {
895                 blk_print_req_error(req, error);
896                 trace_block_rq_error(req, error, nr_bytes);
897         }
898
899         blk_account_io_completion(req, nr_bytes);
900
901         total_bytes = 0;
902         while (req->bio) {
903                 struct bio *bio = req->bio;
904                 unsigned bio_bytes = min(bio->bi_iter.bi_size, nr_bytes);
905
906                 if (bio_bytes == bio->bi_iter.bi_size)
907                         req->bio = bio->bi_next;
908
909                 /* Completion has already been traced */
910                 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
911                 req_bio_endio(req, bio, bio_bytes, error);
912
913                 total_bytes += bio_bytes;
914                 nr_bytes -= bio_bytes;
915
916                 if (!nr_bytes)
917                         break;
918         }
919
920         /*
921          * completely done
922          */
923         if (!req->bio) {
924                 /*
925                  * Reset counters so that the request stacking driver
926                  * can find how many bytes remain in the request
927                  * later.
928                  */
929                 req->__data_len = 0;
930                 return false;
931         }
932
933         req->__data_len -= total_bytes;
934
935         /* update sector only for requests with clear definition of sector */
936         if (!blk_rq_is_passthrough(req))
937                 req->__sector += total_bytes >> 9;
938
939         /* mixed attributes always follow the first bio */
940         if (req->rq_flags & RQF_MIXED_MERGE) {
941                 req->cmd_flags &= ~REQ_FAILFAST_MASK;
942                 req->cmd_flags |= req->bio->bi_opf & REQ_FAILFAST_MASK;
943         }
944
945         if (!(req->rq_flags & RQF_SPECIAL_PAYLOAD)) {
946                 /*
947                  * If total number of sectors is less than the first segment
948                  * size, something has gone terribly wrong.
949                  */
950                 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
951                         blk_dump_rq_flags(req, "request botched");
952                         req->__data_len = blk_rq_cur_bytes(req);
953                 }
954
955                 /* recalculate the number of segments */
956                 req->nr_phys_segments = blk_recalc_rq_segments(req);
957         }
958
959         return true;
960 }
961 EXPORT_SYMBOL_GPL(blk_update_request);
962
963 static inline void blk_account_io_done(struct request *req, u64 now)
964 {
965         trace_block_io_done(req);
966
967         /*
968          * Account IO completion.  flush_rq isn't accounted as a
969          * normal IO on queueing nor completion.  Accounting the
970          * containing request is enough.
971          */
972         if (blk_do_io_stat(req) && req->part &&
973             !(req->rq_flags & RQF_FLUSH_SEQ)) {
974                 const int sgrp = op_stat_group(req_op(req));
975
976                 part_stat_lock();
977                 update_io_ticks(req->part, jiffies, true);
978                 part_stat_inc(req->part, ios[sgrp]);
979                 part_stat_add(req->part, nsecs[sgrp], now - req->start_time_ns);
980                 part_stat_unlock();
981         }
982 }
983
984 static inline void blk_account_io_start(struct request *req)
985 {
986         trace_block_io_start(req);
987
988         if (blk_do_io_stat(req)) {
989                 /*
990                  * All non-passthrough requests are created from a bio with one
991                  * exception: when a flush command that is part of a flush sequence
992                  * generated by the state machine in blk-flush.c is cloned onto the
993                  * lower device by dm-multipath we can get here without a bio.
994                  */
995                 if (req->bio)
996                         req->part = req->bio->bi_bdev;
997                 else
998                         req->part = req->q->disk->part0;
999
1000                 part_stat_lock();
1001                 update_io_ticks(req->part, jiffies, false);
1002                 part_stat_unlock();
1003         }
1004 }
1005
1006 static inline void __blk_mq_end_request_acct(struct request *rq, u64 now)
1007 {
1008         if (rq->rq_flags & RQF_STATS)
1009                 blk_stat_add(rq, now);
1010
1011         blk_mq_sched_completed_request(rq, now);
1012         blk_account_io_done(rq, now);
1013 }
1014
1015 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
1016 {
1017         if (blk_mq_need_time_stamp(rq))
1018                 __blk_mq_end_request_acct(rq, ktime_get_ns());
1019
1020         if (rq->end_io) {
1021                 rq_qos_done(rq->q, rq);
1022                 if (rq->end_io(rq, error) == RQ_END_IO_FREE)
1023                         blk_mq_free_request(rq);
1024         } else {
1025                 blk_mq_free_request(rq);
1026         }
1027 }
1028 EXPORT_SYMBOL(__blk_mq_end_request);
1029
1030 void blk_mq_end_request(struct request *rq, blk_status_t error)
1031 {
1032         if (blk_update_request(rq, error, blk_rq_bytes(rq)))
1033                 BUG();
1034         __blk_mq_end_request(rq, error);
1035 }
1036 EXPORT_SYMBOL(blk_mq_end_request);
1037
1038 #define TAG_COMP_BATCH          32
1039
1040 static inline void blk_mq_flush_tag_batch(struct blk_mq_hw_ctx *hctx,
1041                                           int *tag_array, int nr_tags)
1042 {
1043         struct request_queue *q = hctx->queue;
1044
1045         /*
1046          * All requests should have been marked as RQF_MQ_INFLIGHT, so
1047          * update hctx->nr_active in batch
1048          */
1049         if (hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
1050                 __blk_mq_sub_active_requests(hctx, nr_tags);
1051
1052         blk_mq_put_tags(hctx->tags, tag_array, nr_tags);
1053         percpu_ref_put_many(&q->q_usage_counter, nr_tags);
1054 }
1055
1056 void blk_mq_end_request_batch(struct io_comp_batch *iob)
1057 {
1058         int tags[TAG_COMP_BATCH], nr_tags = 0;
1059         struct blk_mq_hw_ctx *cur_hctx = NULL;
1060         struct request *rq;
1061         u64 now = 0;
1062
1063         if (iob->need_ts)
1064                 now = ktime_get_ns();
1065
1066         while ((rq = rq_list_pop(&iob->req_list)) != NULL) {
1067                 prefetch(rq->bio);
1068                 prefetch(rq->rq_next);
1069
1070                 blk_complete_request(rq);
1071                 if (iob->need_ts)
1072                         __blk_mq_end_request_acct(rq, now);
1073
1074                 rq_qos_done(rq->q, rq);
1075
1076                 /*
1077                  * If end_io handler returns NONE, then it still has
1078                  * ownership of the request.
1079                  */
1080                 if (rq->end_io && rq->end_io(rq, 0) == RQ_END_IO_NONE)
1081                         continue;
1082
1083                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1084                 if (!req_ref_put_and_test(rq))
1085                         continue;
1086
1087                 blk_crypto_free_request(rq);
1088                 blk_pm_mark_last_busy(rq);
1089
1090                 if (nr_tags == TAG_COMP_BATCH || cur_hctx != rq->mq_hctx) {
1091                         if (cur_hctx)
1092                                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1093                         nr_tags = 0;
1094                         cur_hctx = rq->mq_hctx;
1095                 }
1096                 tags[nr_tags++] = rq->tag;
1097         }
1098
1099         if (nr_tags)
1100                 blk_mq_flush_tag_batch(cur_hctx, tags, nr_tags);
1101 }
1102 EXPORT_SYMBOL_GPL(blk_mq_end_request_batch);
1103
1104 static void blk_complete_reqs(struct llist_head *list)
1105 {
1106         struct llist_node *entry = llist_reverse_order(llist_del_all(list));
1107         struct request *rq, *next;
1108
1109         llist_for_each_entry_safe(rq, next, entry, ipi_list)
1110                 rq->q->mq_ops->complete(rq);
1111 }
1112
1113 static __latent_entropy void blk_done_softirq(struct softirq_action *h)
1114 {
1115         blk_complete_reqs(this_cpu_ptr(&blk_cpu_done));
1116 }
1117
1118 static int blk_softirq_cpu_dead(unsigned int cpu)
1119 {
1120         blk_complete_reqs(&per_cpu(blk_cpu_done, cpu));
1121         return 0;
1122 }
1123
1124 static void __blk_mq_complete_request_remote(void *data)
1125 {
1126         __raise_softirq_irqoff(BLOCK_SOFTIRQ);
1127 }
1128
1129 static inline bool blk_mq_complete_need_ipi(struct request *rq)
1130 {
1131         int cpu = raw_smp_processor_id();
1132
1133         if (!IS_ENABLED(CONFIG_SMP) ||
1134             !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
1135                 return false;
1136         /*
1137          * With force threaded interrupts enabled, raising softirq from an SMP
1138          * function call will always result in waking the ksoftirqd thread.
1139          * This is probably worse than completing the request on a different
1140          * cache domain.
1141          */
1142         if (force_irqthreads())
1143                 return false;
1144
1145         /* same CPU or cache domain?  Complete locally */
1146         if (cpu == rq->mq_ctx->cpu ||
1147             (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
1148              cpus_share_cache(cpu, rq->mq_ctx->cpu)))
1149                 return false;
1150
1151         /* don't try to IPI to an offline CPU */
1152         return cpu_online(rq->mq_ctx->cpu);
1153 }
1154
1155 static void blk_mq_complete_send_ipi(struct request *rq)
1156 {
1157         struct llist_head *list;
1158         unsigned int cpu;
1159
1160         cpu = rq->mq_ctx->cpu;
1161         list = &per_cpu(blk_cpu_done, cpu);
1162         if (llist_add(&rq->ipi_list, list)) {
1163                 INIT_CSD(&rq->csd, __blk_mq_complete_request_remote, rq);
1164                 smp_call_function_single_async(cpu, &rq->csd);
1165         }
1166 }
1167
1168 static void blk_mq_raise_softirq(struct request *rq)
1169 {
1170         struct llist_head *list;
1171
1172         preempt_disable();
1173         list = this_cpu_ptr(&blk_cpu_done);
1174         if (llist_add(&rq->ipi_list, list))
1175                 raise_softirq(BLOCK_SOFTIRQ);
1176         preempt_enable();
1177 }
1178
1179 bool blk_mq_complete_request_remote(struct request *rq)
1180 {
1181         WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
1182
1183         /*
1184          * For request which hctx has only one ctx mapping,
1185          * or a polled request, always complete locally,
1186          * it's pointless to redirect the completion.
1187          */
1188         if (rq->mq_hctx->nr_ctx == 1 ||
1189                 rq->cmd_flags & REQ_POLLED)
1190                 return false;
1191
1192         if (blk_mq_complete_need_ipi(rq)) {
1193                 blk_mq_complete_send_ipi(rq);
1194                 return true;
1195         }
1196
1197         if (rq->q->nr_hw_queues == 1) {
1198                 blk_mq_raise_softirq(rq);
1199                 return true;
1200         }
1201         return false;
1202 }
1203 EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
1204
1205 /**
1206  * blk_mq_complete_request - end I/O on a request
1207  * @rq:         the request being processed
1208  *
1209  * Description:
1210  *      Complete a request by scheduling the ->complete_rq operation.
1211  **/
1212 void blk_mq_complete_request(struct request *rq)
1213 {
1214         if (!blk_mq_complete_request_remote(rq))
1215                 rq->q->mq_ops->complete(rq);
1216 }
1217 EXPORT_SYMBOL(blk_mq_complete_request);
1218
1219 /**
1220  * blk_mq_start_request - Start processing a request
1221  * @rq: Pointer to request to be started
1222  *
1223  * Function used by device drivers to notify the block layer that a request
1224  * is going to be processed now, so blk layer can do proper initializations
1225  * such as starting the timeout timer.
1226  */
1227 void blk_mq_start_request(struct request *rq)
1228 {
1229         struct request_queue *q = rq->q;
1230
1231         trace_block_rq_issue(rq);
1232
1233         if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
1234                 rq->io_start_time_ns = ktime_get_ns();
1235                 rq->stats_sectors = blk_rq_sectors(rq);
1236                 rq->rq_flags |= RQF_STATS;
1237                 rq_qos_issue(q, rq);
1238         }
1239
1240         WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
1241
1242         blk_add_timer(rq);
1243         WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
1244
1245 #ifdef CONFIG_BLK_DEV_INTEGRITY
1246         if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
1247                 q->integrity.profile->prepare_fn(rq);
1248 #endif
1249         if (rq->bio && rq->bio->bi_opf & REQ_POLLED)
1250                 WRITE_ONCE(rq->bio->bi_cookie, blk_rq_to_qc(rq));
1251 }
1252 EXPORT_SYMBOL(blk_mq_start_request);
1253
1254 /*
1255  * Allow 2x BLK_MAX_REQUEST_COUNT requests on plug queue for multiple
1256  * queues. This is important for md arrays to benefit from merging
1257  * requests.
1258  */
1259 static inline unsigned short blk_plug_max_rq_count(struct blk_plug *plug)
1260 {
1261         if (plug->multiple_queues)
1262                 return BLK_MAX_REQUEST_COUNT * 2;
1263         return BLK_MAX_REQUEST_COUNT;
1264 }
1265
1266 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1267 {
1268         struct request *last = rq_list_peek(&plug->mq_list);
1269
1270         if (!plug->rq_count) {
1271                 trace_block_plug(rq->q);
1272         } else if (plug->rq_count >= blk_plug_max_rq_count(plug) ||
1273                    (!blk_queue_nomerges(rq->q) &&
1274                     blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1275                 blk_mq_flush_plug_list(plug, false);
1276                 last = NULL;
1277                 trace_block_plug(rq->q);
1278         }
1279
1280         if (!plug->multiple_queues && last && last->q != rq->q)
1281                 plug->multiple_queues = true;
1282         if (!plug->has_elevator && (rq->rq_flags & RQF_USE_SCHED))
1283                 plug->has_elevator = true;
1284         rq->rq_next = NULL;
1285         rq_list_add(&plug->mq_list, rq);
1286         plug->rq_count++;
1287 }
1288
1289 /**
1290  * blk_execute_rq_nowait - insert a request to I/O scheduler for execution
1291  * @rq:         request to insert
1292  * @at_head:    insert request at head or tail of queue
1293  *
1294  * Description:
1295  *    Insert a fully prepared request at the back of the I/O scheduler queue
1296  *    for execution.  Don't wait for completion.
1297  *
1298  * Note:
1299  *    This function will invoke @done directly if the queue is dead.
1300  */
1301 void blk_execute_rq_nowait(struct request *rq, bool at_head)
1302 {
1303         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1304
1305         WARN_ON(irqs_disabled());
1306         WARN_ON(!blk_rq_is_passthrough(rq));
1307
1308         blk_account_io_start(rq);
1309
1310         /*
1311          * As plugging can be enabled for passthrough requests on a zoned
1312          * device, directly accessing the plug instead of using blk_mq_plug()
1313          * should not have any consequences.
1314          */
1315         if (current->plug && !at_head) {
1316                 blk_add_rq_to_plug(current->plug, rq);
1317                 return;
1318         }
1319
1320         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1321         blk_mq_run_hw_queue(hctx, false);
1322 }
1323 EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
1324
1325 struct blk_rq_wait {
1326         struct completion done;
1327         blk_status_t ret;
1328 };
1329
1330 static enum rq_end_io_ret blk_end_sync_rq(struct request *rq, blk_status_t ret)
1331 {
1332         struct blk_rq_wait *wait = rq->end_io_data;
1333
1334         wait->ret = ret;
1335         complete(&wait->done);
1336         return RQ_END_IO_NONE;
1337 }
1338
1339 bool blk_rq_is_poll(struct request *rq)
1340 {
1341         if (!rq->mq_hctx)
1342                 return false;
1343         if (rq->mq_hctx->type != HCTX_TYPE_POLL)
1344                 return false;
1345         return true;
1346 }
1347 EXPORT_SYMBOL_GPL(blk_rq_is_poll);
1348
1349 static void blk_rq_poll_completion(struct request *rq, struct completion *wait)
1350 {
1351         do {
1352                 blk_mq_poll(rq->q, blk_rq_to_qc(rq), NULL, 0);
1353                 cond_resched();
1354         } while (!completion_done(wait));
1355 }
1356
1357 /**
1358  * blk_execute_rq - insert a request into queue for execution
1359  * @rq:         request to insert
1360  * @at_head:    insert request at head or tail of queue
1361  *
1362  * Description:
1363  *    Insert a fully prepared request at the back of the I/O scheduler queue
1364  *    for execution and wait for completion.
1365  * Return: The blk_status_t result provided to blk_mq_end_request().
1366  */
1367 blk_status_t blk_execute_rq(struct request *rq, bool at_head)
1368 {
1369         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1370         struct blk_rq_wait wait = {
1371                 .done = COMPLETION_INITIALIZER_ONSTACK(wait.done),
1372         };
1373
1374         WARN_ON(irqs_disabled());
1375         WARN_ON(!blk_rq_is_passthrough(rq));
1376
1377         rq->end_io_data = &wait;
1378         rq->end_io = blk_end_sync_rq;
1379
1380         blk_account_io_start(rq);
1381         blk_mq_insert_request(rq, at_head ? BLK_MQ_INSERT_AT_HEAD : 0);
1382         blk_mq_run_hw_queue(hctx, false);
1383
1384         if (blk_rq_is_poll(rq)) {
1385                 blk_rq_poll_completion(rq, &wait.done);
1386         } else {
1387                 /*
1388                  * Prevent hang_check timer from firing at us during very long
1389                  * I/O
1390                  */
1391                 unsigned long hang_check = sysctl_hung_task_timeout_secs;
1392
1393                 if (hang_check)
1394                         while (!wait_for_completion_io_timeout(&wait.done,
1395                                         hang_check * (HZ/2)))
1396                                 ;
1397                 else
1398                         wait_for_completion_io(&wait.done);
1399         }
1400
1401         return wait.ret;
1402 }
1403 EXPORT_SYMBOL(blk_execute_rq);
1404
1405 static void __blk_mq_requeue_request(struct request *rq)
1406 {
1407         struct request_queue *q = rq->q;
1408
1409         blk_mq_put_driver_tag(rq);
1410
1411         trace_block_rq_requeue(rq);
1412         rq_qos_requeue(q, rq);
1413
1414         if (blk_mq_request_started(rq)) {
1415                 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
1416                 rq->rq_flags &= ~RQF_TIMED_OUT;
1417         }
1418 }
1419
1420 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
1421 {
1422         struct request_queue *q = rq->q;
1423         unsigned long flags;
1424
1425         __blk_mq_requeue_request(rq);
1426
1427         /* this request will be re-inserted to io scheduler queue */
1428         blk_mq_sched_requeue_request(rq);
1429
1430         spin_lock_irqsave(&q->requeue_lock, flags);
1431         list_add_tail(&rq->queuelist, &q->requeue_list);
1432         spin_unlock_irqrestore(&q->requeue_lock, flags);
1433
1434         if (kick_requeue_list)
1435                 blk_mq_kick_requeue_list(q);
1436 }
1437 EXPORT_SYMBOL(blk_mq_requeue_request);
1438
1439 static void blk_mq_requeue_work(struct work_struct *work)
1440 {
1441         struct request_queue *q =
1442                 container_of(work, struct request_queue, requeue_work.work);
1443         LIST_HEAD(rq_list);
1444         LIST_HEAD(flush_list);
1445         struct request *rq;
1446
1447         spin_lock_irq(&q->requeue_lock);
1448         list_splice_init(&q->requeue_list, &rq_list);
1449         list_splice_init(&q->flush_list, &flush_list);
1450         spin_unlock_irq(&q->requeue_lock);
1451
1452         while (!list_empty(&rq_list)) {
1453                 rq = list_entry(rq_list.next, struct request, queuelist);
1454                 /*
1455                  * If RQF_DONTPREP ist set, the request has been started by the
1456                  * driver already and might have driver-specific data allocated
1457                  * already.  Insert it into the hctx dispatch list to avoid
1458                  * block layer merges for the request.
1459                  */
1460                 if (rq->rq_flags & RQF_DONTPREP) {
1461                         list_del_init(&rq->queuelist);
1462                         blk_mq_request_bypass_insert(rq, 0);
1463                 } else {
1464                         list_del_init(&rq->queuelist);
1465                         blk_mq_insert_request(rq, BLK_MQ_INSERT_AT_HEAD);
1466                 }
1467         }
1468
1469         while (!list_empty(&flush_list)) {
1470                 rq = list_entry(flush_list.next, struct request, queuelist);
1471                 list_del_init(&rq->queuelist);
1472                 blk_mq_insert_request(rq, 0);
1473         }
1474
1475         blk_mq_run_hw_queues(q, false);
1476 }
1477
1478 void blk_mq_kick_requeue_list(struct request_queue *q)
1479 {
1480         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
1481 }
1482 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
1483
1484 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
1485                                     unsigned long msecs)
1486 {
1487         kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
1488                                     msecs_to_jiffies(msecs));
1489 }
1490 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
1491
1492 static bool blk_mq_rq_inflight(struct request *rq, void *priv)
1493 {
1494         /*
1495          * If we find a request that isn't idle we know the queue is busy
1496          * as it's checked in the iter.
1497          * Return false to stop the iteration.
1498          */
1499         if (blk_mq_request_started(rq)) {
1500                 bool *busy = priv;
1501
1502                 *busy = true;
1503                 return false;
1504         }
1505
1506         return true;
1507 }
1508
1509 bool blk_mq_queue_inflight(struct request_queue *q)
1510 {
1511         bool busy = false;
1512
1513         blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
1514         return busy;
1515 }
1516 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
1517
1518 static void blk_mq_rq_timed_out(struct request *req)
1519 {
1520         req->rq_flags |= RQF_TIMED_OUT;
1521         if (req->q->mq_ops->timeout) {
1522                 enum blk_eh_timer_return ret;
1523
1524                 ret = req->q->mq_ops->timeout(req);
1525                 if (ret == BLK_EH_DONE)
1526                         return;
1527                 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
1528         }
1529
1530         blk_add_timer(req);
1531 }
1532
1533 struct blk_expired_data {
1534         bool has_timedout_rq;
1535         unsigned long next;
1536         unsigned long timeout_start;
1537 };
1538
1539 static bool blk_mq_req_expired(struct request *rq, struct blk_expired_data *expired)
1540 {
1541         unsigned long deadline;
1542
1543         if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
1544                 return false;
1545         if (rq->rq_flags & RQF_TIMED_OUT)
1546                 return false;
1547
1548         deadline = READ_ONCE(rq->deadline);
1549         if (time_after_eq(expired->timeout_start, deadline))
1550                 return true;
1551
1552         if (expired->next == 0)
1553                 expired->next = deadline;
1554         else if (time_after(expired->next, deadline))
1555                 expired->next = deadline;
1556         return false;
1557 }
1558
1559 void blk_mq_put_rq_ref(struct request *rq)
1560 {
1561         if (is_flush_rq(rq)) {
1562                 if (rq->end_io(rq, 0) == RQ_END_IO_FREE)
1563                         blk_mq_free_request(rq);
1564         } else if (req_ref_put_and_test(rq)) {
1565                 __blk_mq_free_request(rq);
1566         }
1567 }
1568
1569 static bool blk_mq_check_expired(struct request *rq, void *priv)
1570 {
1571         struct blk_expired_data *expired = priv;
1572
1573         /*
1574          * blk_mq_queue_tag_busy_iter() has locked the request, so it cannot
1575          * be reallocated underneath the timeout handler's processing, then
1576          * the expire check is reliable. If the request is not expired, then
1577          * it was completed and reallocated as a new request after returning
1578          * from blk_mq_check_expired().
1579          */
1580         if (blk_mq_req_expired(rq, expired)) {
1581                 expired->has_timedout_rq = true;
1582                 return false;
1583         }
1584         return true;
1585 }
1586
1587 static bool blk_mq_handle_expired(struct request *rq, void *priv)
1588 {
1589         struct blk_expired_data *expired = priv;
1590
1591         if (blk_mq_req_expired(rq, expired))
1592                 blk_mq_rq_timed_out(rq);
1593         return true;
1594 }
1595
1596 static void blk_mq_timeout_work(struct work_struct *work)
1597 {
1598         struct request_queue *q =
1599                 container_of(work, struct request_queue, timeout_work);
1600         struct blk_expired_data expired = {
1601                 .timeout_start = jiffies,
1602         };
1603         struct blk_mq_hw_ctx *hctx;
1604         unsigned long i;
1605
1606         /* A deadlock might occur if a request is stuck requiring a
1607          * timeout at the same time a queue freeze is waiting
1608          * completion, since the timeout code would not be able to
1609          * acquire the queue reference here.
1610          *
1611          * That's why we don't use blk_queue_enter here; instead, we use
1612          * percpu_ref_tryget directly, because we need to be able to
1613          * obtain a reference even in the short window between the queue
1614          * starting to freeze, by dropping the first reference in
1615          * blk_freeze_queue_start, and the moment the last request is
1616          * consumed, marked by the instant q_usage_counter reaches
1617          * zero.
1618          */
1619         if (!percpu_ref_tryget(&q->q_usage_counter))
1620                 return;
1621
1622         /* check if there is any timed-out request */
1623         blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &expired);
1624         if (expired.has_timedout_rq) {
1625                 /*
1626                  * Before walking tags, we must ensure any submit started
1627                  * before the current time has finished. Since the submit
1628                  * uses srcu or rcu, wait for a synchronization point to
1629                  * ensure all running submits have finished
1630                  */
1631                 blk_mq_wait_quiesce_done(q->tag_set);
1632
1633                 expired.next = 0;
1634                 blk_mq_queue_tag_busy_iter(q, blk_mq_handle_expired, &expired);
1635         }
1636
1637         if (expired.next != 0) {
1638                 mod_timer(&q->timeout, expired.next);
1639         } else {
1640                 /*
1641                  * Request timeouts are handled as a forward rolling timer. If
1642                  * we end up here it means that no requests are pending and
1643                  * also that no request has been pending for a while. Mark
1644                  * each hctx as idle.
1645                  */
1646                 queue_for_each_hw_ctx(q, hctx, i) {
1647                         /* the hctx may be unmapped, so check it here */
1648                         if (blk_mq_hw_queue_mapped(hctx))
1649                                 blk_mq_tag_idle(hctx);
1650                 }
1651         }
1652         blk_queue_exit(q);
1653 }
1654
1655 struct flush_busy_ctx_data {
1656         struct blk_mq_hw_ctx *hctx;
1657         struct list_head *list;
1658 };
1659
1660 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1661 {
1662         struct flush_busy_ctx_data *flush_data = data;
1663         struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1664         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1665         enum hctx_type type = hctx->type;
1666
1667         spin_lock(&ctx->lock);
1668         list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1669         sbitmap_clear_bit(sb, bitnr);
1670         spin_unlock(&ctx->lock);
1671         return true;
1672 }
1673
1674 /*
1675  * Process software queues that have been marked busy, splicing them
1676  * to the for-dispatch
1677  */
1678 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
1679 {
1680         struct flush_busy_ctx_data data = {
1681                 .hctx = hctx,
1682                 .list = list,
1683         };
1684
1685         sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1686 }
1687 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1688
1689 struct dispatch_rq_data {
1690         struct blk_mq_hw_ctx *hctx;
1691         struct request *rq;
1692 };
1693
1694 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1695                 void *data)
1696 {
1697         struct dispatch_rq_data *dispatch_data = data;
1698         struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1699         struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1700         enum hctx_type type = hctx->type;
1701
1702         spin_lock(&ctx->lock);
1703         if (!list_empty(&ctx->rq_lists[type])) {
1704                 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1705                 list_del_init(&dispatch_data->rq->queuelist);
1706                 if (list_empty(&ctx->rq_lists[type]))
1707                         sbitmap_clear_bit(sb, bitnr);
1708         }
1709         spin_unlock(&ctx->lock);
1710
1711         return !dispatch_data->rq;
1712 }
1713
1714 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1715                                         struct blk_mq_ctx *start)
1716 {
1717         unsigned off = start ? start->index_hw[hctx->type] : 0;
1718         struct dispatch_rq_data data = {
1719                 .hctx = hctx,
1720                 .rq   = NULL,
1721         };
1722
1723         __sbitmap_for_each_set(&hctx->ctx_map, off,
1724                                dispatch_rq_from_ctx, &data);
1725
1726         return data.rq;
1727 }
1728
1729 static bool __blk_mq_alloc_driver_tag(struct request *rq)
1730 {
1731         struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1732         unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1733         int tag;
1734
1735         blk_mq_tag_busy(rq->mq_hctx);
1736
1737         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1738                 bt = &rq->mq_hctx->tags->breserved_tags;
1739                 tag_offset = 0;
1740         } else {
1741                 if (!hctx_may_queue(rq->mq_hctx, bt))
1742                         return false;
1743         }
1744
1745         tag = __sbitmap_queue_get(bt);
1746         if (tag == BLK_MQ_NO_TAG)
1747                 return false;
1748
1749         rq->tag = tag + tag_offset;
1750         return true;
1751 }
1752
1753 bool __blk_mq_get_driver_tag(struct blk_mq_hw_ctx *hctx, struct request *rq)
1754 {
1755         if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_alloc_driver_tag(rq))
1756                 return false;
1757
1758         if ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1759                         !(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1760                 rq->rq_flags |= RQF_MQ_INFLIGHT;
1761                 __blk_mq_inc_active_requests(hctx);
1762         }
1763         hctx->tags->rqs[rq->tag] = rq;
1764         return true;
1765 }
1766
1767 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1768                                 int flags, void *key)
1769 {
1770         struct blk_mq_hw_ctx *hctx;
1771
1772         hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1773
1774         spin_lock(&hctx->dispatch_wait_lock);
1775         if (!list_empty(&wait->entry)) {
1776                 struct sbitmap_queue *sbq;
1777
1778                 list_del_init(&wait->entry);
1779                 sbq = &hctx->tags->bitmap_tags;
1780                 atomic_dec(&sbq->ws_active);
1781         }
1782         spin_unlock(&hctx->dispatch_wait_lock);
1783
1784         blk_mq_run_hw_queue(hctx, true);
1785         return 1;
1786 }
1787
1788 /*
1789  * Mark us waiting for a tag. For shared tags, this involves hooking us into
1790  * the tag wakeups. For non-shared tags, we can simply mark us needing a
1791  * restart. For both cases, take care to check the condition again after
1792  * marking us as waiting.
1793  */
1794 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1795                                  struct request *rq)
1796 {
1797         struct sbitmap_queue *sbq;
1798         struct wait_queue_head *wq;
1799         wait_queue_entry_t *wait;
1800         bool ret;
1801
1802         if (!(hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) &&
1803             !(blk_mq_is_shared_tags(hctx->flags))) {
1804                 blk_mq_sched_mark_restart_hctx(hctx);
1805
1806                 /*
1807                  * It's possible that a tag was freed in the window between the
1808                  * allocation failure and adding the hardware queue to the wait
1809                  * queue.
1810                  *
1811                  * Don't clear RESTART here, someone else could have set it.
1812                  * At most this will cost an extra queue run.
1813                  */
1814                 return blk_mq_get_driver_tag(rq);
1815         }
1816
1817         wait = &hctx->dispatch_wait;
1818         if (!list_empty_careful(&wait->entry))
1819                 return false;
1820
1821         if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag))
1822                 sbq = &hctx->tags->breserved_tags;
1823         else
1824                 sbq = &hctx->tags->bitmap_tags;
1825         wq = &bt_wait_ptr(sbq, hctx)->wait;
1826
1827         spin_lock_irq(&wq->lock);
1828         spin_lock(&hctx->dispatch_wait_lock);
1829         if (!list_empty(&wait->entry)) {
1830                 spin_unlock(&hctx->dispatch_wait_lock);
1831                 spin_unlock_irq(&wq->lock);
1832                 return false;
1833         }
1834
1835         atomic_inc(&sbq->ws_active);
1836         wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1837         __add_wait_queue(wq, wait);
1838
1839         /*
1840          * It's possible that a tag was freed in the window between the
1841          * allocation failure and adding the hardware queue to the wait
1842          * queue.
1843          */
1844         ret = blk_mq_get_driver_tag(rq);
1845         if (!ret) {
1846                 spin_unlock(&hctx->dispatch_wait_lock);
1847                 spin_unlock_irq(&wq->lock);
1848                 return false;
1849         }
1850
1851         /*
1852          * We got a tag, remove ourselves from the wait queue to ensure
1853          * someone else gets the wakeup.
1854          */
1855         list_del_init(&wait->entry);
1856         atomic_dec(&sbq->ws_active);
1857         spin_unlock(&hctx->dispatch_wait_lock);
1858         spin_unlock_irq(&wq->lock);
1859
1860         return true;
1861 }
1862
1863 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1864 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1865 /*
1866  * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1867  * - EWMA is one simple way to compute running average value
1868  * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1869  * - take 4 as factor for avoiding to get too small(0) result, and this
1870  *   factor doesn't matter because EWMA decreases exponentially
1871  */
1872 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1873 {
1874         unsigned int ewma;
1875
1876         ewma = hctx->dispatch_busy;
1877
1878         if (!ewma && !busy)
1879                 return;
1880
1881         ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1882         if (busy)
1883                 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1884         ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1885
1886         hctx->dispatch_busy = ewma;
1887 }
1888
1889 #define BLK_MQ_RESOURCE_DELAY   3               /* ms units */
1890
1891 static void blk_mq_handle_dev_resource(struct request *rq,
1892                                        struct list_head *list)
1893 {
1894         list_add(&rq->queuelist, list);
1895         __blk_mq_requeue_request(rq);
1896 }
1897
1898 static void blk_mq_handle_zone_resource(struct request *rq,
1899                                         struct list_head *zone_list)
1900 {
1901         /*
1902          * If we end up here it is because we cannot dispatch a request to a
1903          * specific zone due to LLD level zone-write locking or other zone
1904          * related resource not being available. In this case, set the request
1905          * aside in zone_list for retrying it later.
1906          */
1907         list_add(&rq->queuelist, zone_list);
1908         __blk_mq_requeue_request(rq);
1909 }
1910
1911 enum prep_dispatch {
1912         PREP_DISPATCH_OK,
1913         PREP_DISPATCH_NO_TAG,
1914         PREP_DISPATCH_NO_BUDGET,
1915 };
1916
1917 static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1918                                                   bool need_budget)
1919 {
1920         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1921         int budget_token = -1;
1922
1923         if (need_budget) {
1924                 budget_token = blk_mq_get_dispatch_budget(rq->q);
1925                 if (budget_token < 0) {
1926                         blk_mq_put_driver_tag(rq);
1927                         return PREP_DISPATCH_NO_BUDGET;
1928                 }
1929                 blk_mq_set_rq_budget_token(rq, budget_token);
1930         }
1931
1932         if (!blk_mq_get_driver_tag(rq)) {
1933                 /*
1934                  * The initial allocation attempt failed, so we need to
1935                  * rerun the hardware queue when a tag is freed. The
1936                  * waitqueue takes care of that. If the queue is run
1937                  * before we add this entry back on the dispatch list,
1938                  * we'll re-run it below.
1939                  */
1940                 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1941                         /*
1942                          * All budgets not got from this function will be put
1943                          * together during handling partial dispatch
1944                          */
1945                         if (need_budget)
1946                                 blk_mq_put_dispatch_budget(rq->q, budget_token);
1947                         return PREP_DISPATCH_NO_TAG;
1948                 }
1949         }
1950
1951         return PREP_DISPATCH_OK;
1952 }
1953
1954 /* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1955 static void blk_mq_release_budgets(struct request_queue *q,
1956                 struct list_head *list)
1957 {
1958         struct request *rq;
1959
1960         list_for_each_entry(rq, list, queuelist) {
1961                 int budget_token = blk_mq_get_rq_budget_token(rq);
1962
1963                 if (budget_token >= 0)
1964                         blk_mq_put_dispatch_budget(q, budget_token);
1965         }
1966 }
1967
1968 /*
1969  * blk_mq_commit_rqs will notify driver using bd->last that there is no
1970  * more requests. (See comment in struct blk_mq_ops for commit_rqs for
1971  * details)
1972  * Attention, we should explicitly call this in unusual cases:
1973  *  1) did not queue everything initially scheduled to queue
1974  *  2) the last attempt to queue a request failed
1975  */
1976 static void blk_mq_commit_rqs(struct blk_mq_hw_ctx *hctx, int queued,
1977                               bool from_schedule)
1978 {
1979         if (hctx->queue->mq_ops->commit_rqs && queued) {
1980                 trace_block_unplug(hctx->queue, queued, !from_schedule);
1981                 hctx->queue->mq_ops->commit_rqs(hctx);
1982         }
1983 }
1984
1985 /*
1986  * Returns true if we did some work AND can potentially do more.
1987  */
1988 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1989                              unsigned int nr_budgets)
1990 {
1991         enum prep_dispatch prep;
1992         struct request_queue *q = hctx->queue;
1993         struct request *rq;
1994         int queued;
1995         blk_status_t ret = BLK_STS_OK;
1996         LIST_HEAD(zone_list);
1997         bool needs_resource = false;
1998
1999         if (list_empty(list))
2000                 return false;
2001
2002         /*
2003          * Now process all the entries, sending them to the driver.
2004          */
2005         queued = 0;
2006         do {
2007                 struct blk_mq_queue_data bd;
2008
2009                 rq = list_first_entry(list, struct request, queuelist);
2010
2011                 WARN_ON_ONCE(hctx != rq->mq_hctx);
2012                 prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
2013                 if (prep != PREP_DISPATCH_OK)
2014                         break;
2015
2016                 list_del_init(&rq->queuelist);
2017
2018                 bd.rq = rq;
2019                 bd.last = list_empty(list);
2020
2021                 /*
2022                  * once the request is queued to lld, no need to cover the
2023                  * budget any more
2024                  */
2025                 if (nr_budgets)
2026                         nr_budgets--;
2027                 ret = q->mq_ops->queue_rq(hctx, &bd);
2028                 switch (ret) {
2029                 case BLK_STS_OK:
2030                         queued++;
2031                         break;
2032                 case BLK_STS_RESOURCE:
2033                         needs_resource = true;
2034                         fallthrough;
2035                 case BLK_STS_DEV_RESOURCE:
2036                         blk_mq_handle_dev_resource(rq, list);
2037                         goto out;
2038                 case BLK_STS_ZONE_RESOURCE:
2039                         /*
2040                          * Move the request to zone_list and keep going through
2041                          * the dispatch list to find more requests the drive can
2042                          * accept.
2043                          */
2044                         blk_mq_handle_zone_resource(rq, &zone_list);
2045                         needs_resource = true;
2046                         break;
2047                 default:
2048                         blk_mq_end_request(rq, ret);
2049                 }
2050         } while (!list_empty(list));
2051 out:
2052         if (!list_empty(&zone_list))
2053                 list_splice_tail_init(&zone_list, list);
2054
2055         /* If we didn't flush the entire list, we could have told the driver
2056          * there was more coming, but that turned out to be a lie.
2057          */
2058         if (!list_empty(list) || ret != BLK_STS_OK)
2059                 blk_mq_commit_rqs(hctx, queued, false);
2060
2061         /*
2062          * Any items that need requeuing? Stuff them into hctx->dispatch,
2063          * that is where we will continue on next queue run.
2064          */
2065         if (!list_empty(list)) {
2066                 bool needs_restart;
2067                 /* For non-shared tags, the RESTART check will suffice */
2068                 bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
2069                         ((hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED) ||
2070                         blk_mq_is_shared_tags(hctx->flags));
2071
2072                 if (nr_budgets)
2073                         blk_mq_release_budgets(q, list);
2074
2075                 spin_lock(&hctx->lock);
2076                 list_splice_tail_init(list, &hctx->dispatch);
2077                 spin_unlock(&hctx->lock);
2078
2079                 /*
2080                  * Order adding requests to hctx->dispatch and checking
2081                  * SCHED_RESTART flag. The pair of this smp_mb() is the one
2082                  * in blk_mq_sched_restart(). Avoid restart code path to
2083                  * miss the new added requests to hctx->dispatch, meantime
2084                  * SCHED_RESTART is observed here.
2085                  */
2086                 smp_mb();
2087
2088                 /*
2089                  * If SCHED_RESTART was set by the caller of this function and
2090                  * it is no longer set that means that it was cleared by another
2091                  * thread and hence that a queue rerun is needed.
2092                  *
2093                  * If 'no_tag' is set, that means that we failed getting
2094                  * a driver tag with an I/O scheduler attached. If our dispatch
2095                  * waitqueue is no longer active, ensure that we run the queue
2096                  * AFTER adding our entries back to the list.
2097                  *
2098                  * If no I/O scheduler has been configured it is possible that
2099                  * the hardware queue got stopped and restarted before requests
2100                  * were pushed back onto the dispatch list. Rerun the queue to
2101                  * avoid starvation. Notes:
2102                  * - blk_mq_run_hw_queue() checks whether or not a queue has
2103                  *   been stopped before rerunning a queue.
2104                  * - Some but not all block drivers stop a queue before
2105                  *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
2106                  *   and dm-rq.
2107                  *
2108                  * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
2109                  * bit is set, run queue after a delay to avoid IO stalls
2110                  * that could otherwise occur if the queue is idle.  We'll do
2111                  * similar if we couldn't get budget or couldn't lock a zone
2112                  * and SCHED_RESTART is set.
2113                  */
2114                 needs_restart = blk_mq_sched_needs_restart(hctx);
2115                 if (prep == PREP_DISPATCH_NO_BUDGET)
2116                         needs_resource = true;
2117                 if (!needs_restart ||
2118                     (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
2119                         blk_mq_run_hw_queue(hctx, true);
2120                 else if (needs_resource)
2121                         blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
2122
2123                 blk_mq_update_dispatch_busy(hctx, true);
2124                 return false;
2125         }
2126
2127         blk_mq_update_dispatch_busy(hctx, false);
2128         return true;
2129 }
2130
2131 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
2132 {
2133         int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
2134
2135         if (cpu >= nr_cpu_ids)
2136                 cpu = cpumask_first(hctx->cpumask);
2137         return cpu;
2138 }
2139
2140 /*
2141  * It'd be great if the workqueue API had a way to pass
2142  * in a mask and had some smarts for more clever placement.
2143  * For now we just round-robin here, switching for every
2144  * BLK_MQ_CPU_WORK_BATCH queued items.
2145  */
2146 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
2147 {
2148         bool tried = false;
2149         int next_cpu = hctx->next_cpu;
2150
2151         if (hctx->queue->nr_hw_queues == 1)
2152                 return WORK_CPU_UNBOUND;
2153
2154         if (--hctx->next_cpu_batch <= 0) {
2155 select_cpu:
2156                 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
2157                                 cpu_online_mask);
2158                 if (next_cpu >= nr_cpu_ids)
2159                         next_cpu = blk_mq_first_mapped_cpu(hctx);
2160                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2161         }
2162
2163         /*
2164          * Do unbound schedule if we can't find a online CPU for this hctx,
2165          * and it should only happen in the path of handling CPU DEAD.
2166          */
2167         if (!cpu_online(next_cpu)) {
2168                 if (!tried) {
2169                         tried = true;
2170                         goto select_cpu;
2171                 }
2172
2173                 /*
2174                  * Make sure to re-select CPU next time once after CPUs
2175                  * in hctx->cpumask become online again.
2176                  */
2177                 hctx->next_cpu = next_cpu;
2178                 hctx->next_cpu_batch = 1;
2179                 return WORK_CPU_UNBOUND;
2180         }
2181
2182         hctx->next_cpu = next_cpu;
2183         return next_cpu;
2184 }
2185
2186 /**
2187  * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
2188  * @hctx: Pointer to the hardware queue to run.
2189  * @msecs: Milliseconds of delay to wait before running the queue.
2190  *
2191  * Run a hardware queue asynchronously with a delay of @msecs.
2192  */
2193 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
2194 {
2195         if (unlikely(blk_mq_hctx_stopped(hctx)))
2196                 return;
2197         kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
2198                                     msecs_to_jiffies(msecs));
2199 }
2200 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
2201
2202 /**
2203  * blk_mq_run_hw_queue - Start to run a hardware queue.
2204  * @hctx: Pointer to the hardware queue to run.
2205  * @async: If we want to run the queue asynchronously.
2206  *
2207  * Check if the request queue is not in a quiesced state and if there are
2208  * pending requests to be sent. If this is true, run the queue to send requests
2209  * to hardware.
2210  */
2211 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2212 {
2213         bool need_run;
2214
2215         /*
2216          * We can't run the queue inline with interrupts disabled.
2217          */
2218         WARN_ON_ONCE(!async && in_interrupt());
2219
2220         /*
2221          * When queue is quiesced, we may be switching io scheduler, or
2222          * updating nr_hw_queues, or other things, and we can't run queue
2223          * any more, even __blk_mq_hctx_has_pending() can't be called safely.
2224          *
2225          * And queue will be rerun in blk_mq_unquiesce_queue() if it is
2226          * quiesced.
2227          */
2228         __blk_mq_run_dispatch_ops(hctx->queue, false,
2229                 need_run = !blk_queue_quiesced(hctx->queue) &&
2230                 blk_mq_hctx_has_pending(hctx));
2231
2232         if (!need_run)
2233                 return;
2234
2235         if (async || (hctx->flags & BLK_MQ_F_BLOCKING) ||
2236             !cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask)) {
2237                 blk_mq_delay_run_hw_queue(hctx, 0);
2238                 return;
2239         }
2240
2241         blk_mq_run_dispatch_ops(hctx->queue,
2242                                 blk_mq_sched_dispatch_requests(hctx));
2243 }
2244 EXPORT_SYMBOL(blk_mq_run_hw_queue);
2245
2246 /*
2247  * Return prefered queue to dispatch from (if any) for non-mq aware IO
2248  * scheduler.
2249  */
2250 static struct blk_mq_hw_ctx *blk_mq_get_sq_hctx(struct request_queue *q)
2251 {
2252         struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
2253         /*
2254          * If the IO scheduler does not respect hardware queues when
2255          * dispatching, we just don't bother with multiple HW queues and
2256          * dispatch from hctx for the current CPU since running multiple queues
2257          * just causes lock contention inside the scheduler and pointless cache
2258          * bouncing.
2259          */
2260         struct blk_mq_hw_ctx *hctx = ctx->hctxs[HCTX_TYPE_DEFAULT];
2261
2262         if (!blk_mq_hctx_stopped(hctx))
2263                 return hctx;
2264         return NULL;
2265 }
2266
2267 /**
2268  * blk_mq_run_hw_queues - Run all hardware queues in a request queue.
2269  * @q: Pointer to the request queue to run.
2270  * @async: If we want to run the queue asynchronously.
2271  */
2272 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
2273 {
2274         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2275         unsigned long i;
2276
2277         sq_hctx = NULL;
2278         if (blk_queue_sq_sched(q))
2279                 sq_hctx = blk_mq_get_sq_hctx(q);
2280         queue_for_each_hw_ctx(q, hctx, i) {
2281                 if (blk_mq_hctx_stopped(hctx))
2282                         continue;
2283                 /*
2284                  * Dispatch from this hctx either if there's no hctx preferred
2285                  * by IO scheduler or if it has requests that bypass the
2286                  * scheduler.
2287                  */
2288                 if (!sq_hctx || sq_hctx == hctx ||
2289                     !list_empty_careful(&hctx->dispatch))
2290                         blk_mq_run_hw_queue(hctx, async);
2291         }
2292 }
2293 EXPORT_SYMBOL(blk_mq_run_hw_queues);
2294
2295 /**
2296  * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
2297  * @q: Pointer to the request queue to run.
2298  * @msecs: Milliseconds of delay to wait before running the queues.
2299  */
2300 void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
2301 {
2302         struct blk_mq_hw_ctx *hctx, *sq_hctx;
2303         unsigned long i;
2304
2305         sq_hctx = NULL;
2306         if (blk_queue_sq_sched(q))
2307                 sq_hctx = blk_mq_get_sq_hctx(q);
2308         queue_for_each_hw_ctx(q, hctx, i) {
2309                 if (blk_mq_hctx_stopped(hctx))
2310                         continue;
2311                 /*
2312                  * If there is already a run_work pending, leave the
2313                  * pending delay untouched. Otherwise, a hctx can stall
2314                  * if another hctx is re-delaying the other's work
2315                  * before the work executes.
2316                  */
2317                 if (delayed_work_pending(&hctx->run_work))
2318                         continue;
2319                 /*
2320                  * Dispatch from this hctx either if there's no hctx preferred
2321                  * by IO scheduler or if it has requests that bypass the
2322                  * scheduler.
2323                  */
2324                 if (!sq_hctx || sq_hctx == hctx ||
2325                     !list_empty_careful(&hctx->dispatch))
2326                         blk_mq_delay_run_hw_queue(hctx, msecs);
2327         }
2328 }
2329 EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
2330
2331 /*
2332  * This function is often used for pausing .queue_rq() by driver when
2333  * there isn't enough resource or some conditions aren't satisfied, and
2334  * BLK_STS_RESOURCE is usually returned.
2335  *
2336  * We do not guarantee that dispatch can be drained or blocked
2337  * after blk_mq_stop_hw_queue() returns. Please use
2338  * blk_mq_quiesce_queue() for that requirement.
2339  */
2340 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
2341 {
2342         cancel_delayed_work(&hctx->run_work);
2343
2344         set_bit(BLK_MQ_S_STOPPED, &hctx->state);
2345 }
2346 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
2347
2348 /*
2349  * This function is often used for pausing .queue_rq() by driver when
2350  * there isn't enough resource or some conditions aren't satisfied, and
2351  * BLK_STS_RESOURCE is usually returned.
2352  *
2353  * We do not guarantee that dispatch can be drained or blocked
2354  * after blk_mq_stop_hw_queues() returns. Please use
2355  * blk_mq_quiesce_queue() for that requirement.
2356  */
2357 void blk_mq_stop_hw_queues(struct request_queue *q)
2358 {
2359         struct blk_mq_hw_ctx *hctx;
2360         unsigned long i;
2361
2362         queue_for_each_hw_ctx(q, hctx, i)
2363                 blk_mq_stop_hw_queue(hctx);
2364 }
2365 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
2366
2367 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
2368 {
2369         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2370
2371         blk_mq_run_hw_queue(hctx, false);
2372 }
2373 EXPORT_SYMBOL(blk_mq_start_hw_queue);
2374
2375 void blk_mq_start_hw_queues(struct request_queue *q)
2376 {
2377         struct blk_mq_hw_ctx *hctx;
2378         unsigned long i;
2379
2380         queue_for_each_hw_ctx(q, hctx, i)
2381                 blk_mq_start_hw_queue(hctx);
2382 }
2383 EXPORT_SYMBOL(blk_mq_start_hw_queues);
2384
2385 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
2386 {
2387         if (!blk_mq_hctx_stopped(hctx))
2388                 return;
2389
2390         clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
2391         blk_mq_run_hw_queue(hctx, async);
2392 }
2393 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
2394
2395 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
2396 {
2397         struct blk_mq_hw_ctx *hctx;
2398         unsigned long i;
2399
2400         queue_for_each_hw_ctx(q, hctx, i)
2401                 blk_mq_start_stopped_hw_queue(hctx, async);
2402 }
2403 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
2404
2405 static void blk_mq_run_work_fn(struct work_struct *work)
2406 {
2407         struct blk_mq_hw_ctx *hctx =
2408                 container_of(work, struct blk_mq_hw_ctx, run_work.work);
2409
2410         blk_mq_run_dispatch_ops(hctx->queue,
2411                                 blk_mq_sched_dispatch_requests(hctx));
2412 }
2413
2414 /**
2415  * blk_mq_request_bypass_insert - Insert a request at dispatch list.
2416  * @rq: Pointer to request to be inserted.
2417  * @flags: BLK_MQ_INSERT_*
2418  *
2419  * Should only be used carefully, when the caller knows we want to
2420  * bypass a potential IO scheduler on the target device.
2421  */
2422 static void blk_mq_request_bypass_insert(struct request *rq, blk_insert_t flags)
2423 {
2424         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2425
2426         spin_lock(&hctx->lock);
2427         if (flags & BLK_MQ_INSERT_AT_HEAD)
2428                 list_add(&rq->queuelist, &hctx->dispatch);
2429         else
2430                 list_add_tail(&rq->queuelist, &hctx->dispatch);
2431         spin_unlock(&hctx->lock);
2432 }
2433
2434 static void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx,
2435                 struct blk_mq_ctx *ctx, struct list_head *list,
2436                 bool run_queue_async)
2437 {
2438         struct request *rq;
2439         enum hctx_type type = hctx->type;
2440
2441         /*
2442          * Try to issue requests directly if the hw queue isn't busy to save an
2443          * extra enqueue & dequeue to the sw queue.
2444          */
2445         if (!hctx->dispatch_busy && !run_queue_async) {
2446                 blk_mq_run_dispatch_ops(hctx->queue,
2447                         blk_mq_try_issue_list_directly(hctx, list));
2448                 if (list_empty(list))
2449                         goto out;
2450         }
2451
2452         /*
2453          * preemption doesn't flush plug list, so it's possible ctx->cpu is
2454          * offline now
2455          */
2456         list_for_each_entry(rq, list, queuelist) {
2457                 BUG_ON(rq->mq_ctx != ctx);
2458                 trace_block_rq_insert(rq);
2459         }
2460
2461         spin_lock(&ctx->lock);
2462         list_splice_tail_init(list, &ctx->rq_lists[type]);
2463         blk_mq_hctx_mark_pending(hctx, ctx);
2464         spin_unlock(&ctx->lock);
2465 out:
2466         blk_mq_run_hw_queue(hctx, run_queue_async);
2467 }
2468
2469 static void blk_mq_insert_request(struct request *rq, blk_insert_t flags)
2470 {
2471         struct request_queue *q = rq->q;
2472         struct blk_mq_ctx *ctx = rq->mq_ctx;
2473         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2474
2475         if (blk_rq_is_passthrough(rq)) {
2476                 /*
2477                  * Passthrough request have to be added to hctx->dispatch
2478                  * directly.  The device may be in a situation where it can't
2479                  * handle FS request, and always returns BLK_STS_RESOURCE for
2480                  * them, which gets them added to hctx->dispatch.
2481                  *
2482                  * If a passthrough request is required to unblock the queues,
2483                  * and it is added to the scheduler queue, there is no chance to
2484                  * dispatch it given we prioritize requests in hctx->dispatch.
2485                  */
2486                 blk_mq_request_bypass_insert(rq, flags);
2487         } else if (req_op(rq) == REQ_OP_FLUSH) {
2488                 /*
2489                  * Firstly normal IO request is inserted to scheduler queue or
2490                  * sw queue, meantime we add flush request to dispatch queue(
2491                  * hctx->dispatch) directly and there is at most one in-flight
2492                  * flush request for each hw queue, so it doesn't matter to add
2493                  * flush request to tail or front of the dispatch queue.
2494                  *
2495                  * Secondly in case of NCQ, flush request belongs to non-NCQ
2496                  * command, and queueing it will fail when there is any
2497                  * in-flight normal IO request(NCQ command). When adding flush
2498                  * rq to the front of hctx->dispatch, it is easier to introduce
2499                  * extra time to flush rq's latency because of S_SCHED_RESTART
2500                  * compared with adding to the tail of dispatch queue, then
2501                  * chance of flush merge is increased, and less flush requests
2502                  * will be issued to controller. It is observed that ~10% time
2503                  * is saved in blktests block/004 on disk attached to AHCI/NCQ
2504                  * drive when adding flush rq to the front of hctx->dispatch.
2505                  *
2506                  * Simply queue flush rq to the front of hctx->dispatch so that
2507                  * intensive flush workloads can benefit in case of NCQ HW.
2508                  */
2509                 blk_mq_request_bypass_insert(rq, BLK_MQ_INSERT_AT_HEAD);
2510         } else if (q->elevator) {
2511                 LIST_HEAD(list);
2512
2513                 WARN_ON_ONCE(rq->tag != BLK_MQ_NO_TAG);
2514
2515                 list_add(&rq->queuelist, &list);
2516                 q->elevator->type->ops.insert_requests(hctx, &list, flags);
2517         } else {
2518                 trace_block_rq_insert(rq);
2519
2520                 spin_lock(&ctx->lock);
2521                 if (flags & BLK_MQ_INSERT_AT_HEAD)
2522                         list_add(&rq->queuelist, &ctx->rq_lists[hctx->type]);
2523                 else
2524                         list_add_tail(&rq->queuelist,
2525                                       &ctx->rq_lists[hctx->type]);
2526                 blk_mq_hctx_mark_pending(hctx, ctx);
2527                 spin_unlock(&ctx->lock);
2528         }
2529 }
2530
2531 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
2532                 unsigned int nr_segs)
2533 {
2534         int err;
2535
2536         if (bio->bi_opf & REQ_RAHEAD)
2537                 rq->cmd_flags |= REQ_FAILFAST_MASK;
2538
2539         rq->__sector = bio->bi_iter.bi_sector;
2540         blk_rq_bio_prep(rq, bio, nr_segs);
2541
2542         /* This can't fail, since GFP_NOIO includes __GFP_DIRECT_RECLAIM. */
2543         err = blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
2544         WARN_ON_ONCE(err);
2545
2546         blk_account_io_start(rq);
2547 }
2548
2549 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
2550                                             struct request *rq, bool last)
2551 {
2552         struct request_queue *q = rq->q;
2553         struct blk_mq_queue_data bd = {
2554                 .rq = rq,
2555                 .last = last,
2556         };
2557         blk_status_t ret;
2558
2559         /*
2560          * For OK queue, we are done. For error, caller may kill it.
2561          * Any other error (busy), just add it to our list as we
2562          * previously would have done.
2563          */
2564         ret = q->mq_ops->queue_rq(hctx, &bd);
2565         switch (ret) {
2566         case BLK_STS_OK:
2567                 blk_mq_update_dispatch_busy(hctx, false);
2568                 break;
2569         case BLK_STS_RESOURCE:
2570         case BLK_STS_DEV_RESOURCE:
2571                 blk_mq_update_dispatch_busy(hctx, true);
2572                 __blk_mq_requeue_request(rq);
2573                 break;
2574         default:
2575                 blk_mq_update_dispatch_busy(hctx, false);
2576                 break;
2577         }
2578
2579         return ret;
2580 }
2581
2582 static bool blk_mq_get_budget_and_tag(struct request *rq)
2583 {
2584         int budget_token;
2585
2586         budget_token = blk_mq_get_dispatch_budget(rq->q);
2587         if (budget_token < 0)
2588                 return false;
2589         blk_mq_set_rq_budget_token(rq, budget_token);
2590         if (!blk_mq_get_driver_tag(rq)) {
2591                 blk_mq_put_dispatch_budget(rq->q, budget_token);
2592                 return false;
2593         }
2594         return true;
2595 }
2596
2597 /**
2598  * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2599  * @hctx: Pointer of the associated hardware queue.
2600  * @rq: Pointer to request to be sent.
2601  *
2602  * If the device has enough resources to accept a new request now, send the
2603  * request directly to device driver. Else, insert at hctx->dispatch queue, so
2604  * we can try send it another time in the future. Requests inserted at this
2605  * queue have higher priority.
2606  */
2607 static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2608                 struct request *rq)
2609 {
2610         blk_status_t ret;
2611
2612         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2613                 blk_mq_insert_request(rq, 0);
2614                 return;
2615         }
2616
2617         if ((rq->rq_flags & RQF_USE_SCHED) || !blk_mq_get_budget_and_tag(rq)) {
2618                 blk_mq_insert_request(rq, 0);
2619                 blk_mq_run_hw_queue(hctx, false);
2620                 return;
2621         }
2622
2623         ret = __blk_mq_issue_directly(hctx, rq, true);
2624         switch (ret) {
2625         case BLK_STS_OK:
2626                 break;
2627         case BLK_STS_RESOURCE:
2628         case BLK_STS_DEV_RESOURCE:
2629                 blk_mq_request_bypass_insert(rq, 0);
2630                 blk_mq_run_hw_queue(hctx, false);
2631                 break;
2632         default:
2633                 blk_mq_end_request(rq, ret);
2634                 break;
2635         }
2636 }
2637
2638 static blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
2639 {
2640         struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2641
2642         if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(rq->q)) {
2643                 blk_mq_insert_request(rq, 0);
2644                 return BLK_STS_OK;
2645         }
2646
2647         if (!blk_mq_get_budget_and_tag(rq))
2648                 return BLK_STS_RESOURCE;
2649         return __blk_mq_issue_directly(hctx, rq, last);
2650 }
2651
2652 static void blk_mq_plug_issue_direct(struct blk_plug *plug)
2653 {
2654         struct blk_mq_hw_ctx *hctx = NULL;
2655         struct request *rq;
2656         int queued = 0;
2657         blk_status_t ret = BLK_STS_OK;
2658
2659         while ((rq = rq_list_pop(&plug->mq_list))) {
2660                 bool last = rq_list_empty(plug->mq_list);
2661
2662                 if (hctx != rq->mq_hctx) {
2663                         if (hctx) {
2664                                 blk_mq_commit_rqs(hctx, queued, false);
2665                                 queued = 0;
2666                         }
2667                         hctx = rq->mq_hctx;
2668                 }
2669
2670                 ret = blk_mq_request_issue_directly(rq, last);
2671                 switch (ret) {
2672                 case BLK_STS_OK:
2673                         queued++;
2674                         break;
2675                 case BLK_STS_RESOURCE:
2676                 case BLK_STS_DEV_RESOURCE:
2677                         blk_mq_request_bypass_insert(rq, 0);
2678                         blk_mq_run_hw_queue(hctx, false);
2679                         goto out;
2680                 default:
2681                         blk_mq_end_request(rq, ret);
2682                         break;
2683                 }
2684         }
2685
2686 out:
2687         if (ret != BLK_STS_OK)
2688                 blk_mq_commit_rqs(hctx, queued, false);
2689 }
2690
2691 static void __blk_mq_flush_plug_list(struct request_queue *q,
2692                                      struct blk_plug *plug)
2693 {
2694         if (blk_queue_quiesced(q))
2695                 return;
2696         q->mq_ops->queue_rqs(&plug->mq_list);
2697 }
2698
2699 static void blk_mq_dispatch_plug_list(struct blk_plug *plug, bool from_sched)
2700 {
2701         struct blk_mq_hw_ctx *this_hctx = NULL;
2702         struct blk_mq_ctx *this_ctx = NULL;
2703         struct request *requeue_list = NULL;
2704         struct request **requeue_lastp = &requeue_list;
2705         unsigned int depth = 0;
2706         bool is_passthrough = false;
2707         LIST_HEAD(list);
2708
2709         do {
2710                 struct request *rq = rq_list_pop(&plug->mq_list);
2711
2712                 if (!this_hctx) {
2713                         this_hctx = rq->mq_hctx;
2714                         this_ctx = rq->mq_ctx;
2715                         is_passthrough = blk_rq_is_passthrough(rq);
2716                 } else if (this_hctx != rq->mq_hctx || this_ctx != rq->mq_ctx ||
2717                            is_passthrough != blk_rq_is_passthrough(rq)) {
2718                         rq_list_add_tail(&requeue_lastp, rq);
2719                         continue;
2720                 }
2721                 list_add(&rq->queuelist, &list);
2722                 depth++;
2723         } while (!rq_list_empty(plug->mq_list));
2724
2725         plug->mq_list = requeue_list;
2726         trace_block_unplug(this_hctx->queue, depth, !from_sched);
2727
2728         percpu_ref_get(&this_hctx->queue->q_usage_counter);
2729         /* passthrough requests should never be issued to the I/O scheduler */
2730         if (this_hctx->queue->elevator && !is_passthrough) {
2731                 this_hctx->queue->elevator->type->ops.insert_requests(this_hctx,
2732                                 &list, 0);
2733                 blk_mq_run_hw_queue(this_hctx, from_sched);
2734         } else {
2735                 blk_mq_insert_requests(this_hctx, this_ctx, &list, from_sched);
2736         }
2737         percpu_ref_put(&this_hctx->queue->q_usage_counter);
2738 }
2739
2740 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2741 {
2742         struct request *rq;
2743
2744         if (rq_list_empty(plug->mq_list))
2745                 return;
2746         plug->rq_count = 0;
2747
2748         if (!plug->multiple_queues && !plug->has_elevator && !from_schedule) {
2749                 struct request_queue *q;
2750
2751                 rq = rq_list_peek(&plug->mq_list);
2752                 q = rq->q;
2753
2754                 /*
2755                  * Peek first request and see if we have a ->queue_rqs() hook.
2756                  * If we do, we can dispatch the whole plug list in one go. We
2757                  * already know at this point that all requests belong to the
2758                  * same queue, caller must ensure that's the case.
2759                  *
2760                  * Since we pass off the full list to the driver at this point,
2761                  * we do not increment the active request count for the queue.
2762                  * Bypass shared tags for now because of that.
2763                  */
2764                 if (q->mq_ops->queue_rqs &&
2765                     !(rq->mq_hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
2766                         blk_mq_run_dispatch_ops(q,
2767                                 __blk_mq_flush_plug_list(q, plug));
2768                         if (rq_list_empty(plug->mq_list))
2769                                 return;
2770                 }
2771
2772                 blk_mq_run_dispatch_ops(q,
2773                                 blk_mq_plug_issue_direct(plug));
2774                 if (rq_list_empty(plug->mq_list))
2775                         return;
2776         }
2777
2778         do {
2779                 blk_mq_dispatch_plug_list(plug, from_schedule);
2780         } while (!rq_list_empty(plug->mq_list));
2781 }
2782
2783 static void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2784                 struct list_head *list)
2785 {
2786         int queued = 0;
2787         blk_status_t ret = BLK_STS_OK;
2788
2789         while (!list_empty(list)) {
2790                 struct request *rq = list_first_entry(list, struct request,
2791                                 queuelist);
2792
2793                 list_del_init(&rq->queuelist);
2794                 ret = blk_mq_request_issue_directly(rq, list_empty(list));
2795                 switch (ret) {
2796                 case BLK_STS_OK:
2797                         queued++;
2798                         break;
2799                 case BLK_STS_RESOURCE:
2800                 case BLK_STS_DEV_RESOURCE:
2801                         blk_mq_request_bypass_insert(rq, 0);
2802                         if (list_empty(list))
2803                                 blk_mq_run_hw_queue(hctx, false);
2804                         goto out;
2805                 default:
2806                         blk_mq_end_request(rq, ret);
2807                         break;
2808                 }
2809         }
2810
2811 out:
2812         if (ret != BLK_STS_OK)
2813                 blk_mq_commit_rqs(hctx, queued, false);
2814 }
2815
2816 static bool blk_mq_attempt_bio_merge(struct request_queue *q,
2817                                      struct bio *bio, unsigned int nr_segs)
2818 {
2819         if (!blk_queue_nomerges(q) && bio_mergeable(bio)) {
2820                 if (blk_attempt_plug_merge(q, bio, nr_segs))
2821                         return true;
2822                 if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2823                         return true;
2824         }
2825         return false;
2826 }
2827
2828 static struct request *blk_mq_get_new_requests(struct request_queue *q,
2829                                                struct blk_plug *plug,
2830                                                struct bio *bio,
2831                                                unsigned int nsegs)
2832 {
2833         struct blk_mq_alloc_data data = {
2834                 .q              = q,
2835                 .nr_tags        = 1,
2836                 .cmd_flags      = bio->bi_opf,
2837         };
2838         struct request *rq;
2839
2840         if (unlikely(bio_queue_enter(bio)))
2841                 return NULL;
2842
2843         if (blk_mq_attempt_bio_merge(q, bio, nsegs))
2844                 goto queue_exit;
2845
2846         rq_qos_throttle(q, bio);
2847
2848         if (plug) {
2849                 data.nr_tags = plug->nr_ios;
2850                 plug->nr_ios = 1;
2851                 data.cached_rq = &plug->cached_rq;
2852         }
2853
2854         rq = __blk_mq_alloc_requests(&data);
2855         if (rq)
2856                 return rq;
2857         rq_qos_cleanup(q, bio);
2858         if (bio->bi_opf & REQ_NOWAIT)
2859                 bio_wouldblock_error(bio);
2860 queue_exit:
2861         blk_queue_exit(q);
2862         return NULL;
2863 }
2864
2865 static inline struct request *blk_mq_get_cached_request(struct request_queue *q,
2866                 struct blk_plug *plug, struct bio **bio, unsigned int nsegs)
2867 {
2868         struct request *rq;
2869         enum hctx_type type, hctx_type;
2870
2871         if (!plug)
2872                 return NULL;
2873         rq = rq_list_peek(&plug->cached_rq);
2874         if (!rq || rq->q != q)
2875                 return NULL;
2876
2877         if (blk_mq_attempt_bio_merge(q, *bio, nsegs)) {
2878                 *bio = NULL;
2879                 return NULL;
2880         }
2881
2882         type = blk_mq_get_hctx_type((*bio)->bi_opf);
2883         hctx_type = rq->mq_hctx->type;
2884         if (type != hctx_type &&
2885             !(type == HCTX_TYPE_READ && hctx_type == HCTX_TYPE_DEFAULT))
2886                 return NULL;
2887         if (op_is_flush(rq->cmd_flags) != op_is_flush((*bio)->bi_opf))
2888                 return NULL;
2889
2890         /*
2891          * If any qos ->throttle() end up blocking, we will have flushed the
2892          * plug and hence killed the cached_rq list as well. Pop this entry
2893          * before we throttle.
2894          */
2895         plug->cached_rq = rq_list_next(rq);
2896         rq_qos_throttle(q, *bio);
2897
2898         rq->cmd_flags = (*bio)->bi_opf;
2899         INIT_LIST_HEAD(&rq->queuelist);
2900         return rq;
2901 }
2902
2903 static void bio_set_ioprio(struct bio *bio)
2904 {
2905         /* Nobody set ioprio so far? Initialize it based on task's nice value */
2906         if (IOPRIO_PRIO_CLASS(bio->bi_ioprio) == IOPRIO_CLASS_NONE)
2907                 bio->bi_ioprio = get_current_ioprio();
2908         blkcg_set_ioprio(bio);
2909 }
2910
2911 /**
2912  * blk_mq_submit_bio - Create and send a request to block device.
2913  * @bio: Bio pointer.
2914  *
2915  * Builds up a request structure from @q and @bio and send to the device. The
2916  * request may not be queued directly to hardware if:
2917  * * This request can be merged with another one
2918  * * We want to place request at plug queue for possible future merging
2919  * * There is an IO scheduler active at this queue
2920  *
2921  * It will not queue the request if there is an error with the bio, or at the
2922  * request creation.
2923  */
2924 void blk_mq_submit_bio(struct bio *bio)
2925 {
2926         struct request_queue *q = bdev_get_queue(bio->bi_bdev);
2927         struct blk_plug *plug = blk_mq_plug(bio);
2928         const int is_sync = op_is_sync(bio->bi_opf);
2929         struct blk_mq_hw_ctx *hctx;
2930         struct request *rq;
2931         unsigned int nr_segs = 1;
2932         blk_status_t ret;
2933
2934         bio = blk_queue_bounce(bio, q);
2935         if (bio_may_exceed_limits(bio, &q->limits)) {
2936                 bio = __bio_split_to_limits(bio, &q->limits, &nr_segs);
2937                 if (!bio)
2938                         return;
2939         }
2940
2941         if (!bio_integrity_prep(bio))
2942                 return;
2943
2944         bio_set_ioprio(bio);
2945
2946         rq = blk_mq_get_cached_request(q, plug, &bio, nr_segs);
2947         if (!rq) {
2948                 if (!bio)
2949                         return;
2950                 rq = blk_mq_get_new_requests(q, plug, bio, nr_segs);
2951                 if (unlikely(!rq))
2952                         return;
2953         }
2954
2955         trace_block_getrq(bio);
2956
2957         rq_qos_track(q, rq, bio);
2958
2959         blk_mq_bio_to_request(rq, bio, nr_segs);
2960
2961         ret = blk_crypto_rq_get_keyslot(rq);
2962         if (ret != BLK_STS_OK) {
2963                 bio->bi_status = ret;
2964                 bio_endio(bio);
2965                 blk_mq_free_request(rq);
2966                 return;
2967         }
2968
2969         if (op_is_flush(bio->bi_opf) && blk_insert_flush(rq))
2970                 return;
2971
2972         if (plug) {
2973                 blk_add_rq_to_plug(plug, rq);
2974                 return;
2975         }
2976
2977         hctx = rq->mq_hctx;
2978         if ((rq->rq_flags & RQF_USE_SCHED) ||
2979             (hctx->dispatch_busy && (q->nr_hw_queues == 1 || !is_sync))) {
2980                 blk_mq_insert_request(rq, 0);
2981                 blk_mq_run_hw_queue(hctx, true);
2982         } else {
2983                 blk_mq_run_dispatch_ops(q, blk_mq_try_issue_directly(hctx, rq));
2984         }
2985 }
2986
2987 #ifdef CONFIG_BLK_MQ_STACKING
2988 /**
2989  * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2990  * @rq: the request being queued
2991  */
2992 blk_status_t blk_insert_cloned_request(struct request *rq)
2993 {
2994         struct request_queue *q = rq->q;
2995         unsigned int max_sectors = blk_queue_get_max_sectors(q, req_op(rq));
2996         unsigned int max_segments = blk_rq_get_max_segments(rq);
2997         blk_status_t ret;
2998
2999         if (blk_rq_sectors(rq) > max_sectors) {
3000                 /*
3001                  * SCSI device does not have a good way to return if
3002                  * Write Same/Zero is actually supported. If a device rejects
3003                  * a non-read/write command (discard, write same,etc.) the
3004                  * low-level device driver will set the relevant queue limit to
3005                  * 0 to prevent blk-lib from issuing more of the offending
3006                  * operations. Commands queued prior to the queue limit being
3007                  * reset need to be completed with BLK_STS_NOTSUPP to avoid I/O
3008                  * errors being propagated to upper layers.
3009                  */
3010                 if (max_sectors == 0)
3011                         return BLK_STS_NOTSUPP;
3012
3013                 printk(KERN_ERR "%s: over max size limit. (%u > %u)\n",
3014                         __func__, blk_rq_sectors(rq), max_sectors);
3015                 return BLK_STS_IOERR;
3016         }
3017
3018         /*
3019          * The queue settings related to segment counting may differ from the
3020          * original queue.
3021          */
3022         rq->nr_phys_segments = blk_recalc_rq_segments(rq);
3023         if (rq->nr_phys_segments > max_segments) {
3024                 printk(KERN_ERR "%s: over max segments limit. (%u > %u)\n",
3025                         __func__, rq->nr_phys_segments, max_segments);
3026                 return BLK_STS_IOERR;
3027         }
3028
3029         if (q->disk && should_fail_request(q->disk->part0, blk_rq_bytes(rq)))
3030                 return BLK_STS_IOERR;
3031
3032         ret = blk_crypto_rq_get_keyslot(rq);
3033         if (ret != BLK_STS_OK)
3034                 return ret;
3035
3036         blk_account_io_start(rq);
3037
3038         /*
3039          * Since we have a scheduler attached on the top device,
3040          * bypass a potential scheduler on the bottom device for
3041          * insert.
3042          */
3043         blk_mq_run_dispatch_ops(q,
3044                         ret = blk_mq_request_issue_directly(rq, true));
3045         if (ret)
3046                 blk_account_io_done(rq, ktime_get_ns());
3047         return ret;
3048 }
3049 EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
3050
3051 /**
3052  * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3053  * @rq: the clone request to be cleaned up
3054  *
3055  * Description:
3056  *     Free all bios in @rq for a cloned request.
3057  */
3058 void blk_rq_unprep_clone(struct request *rq)
3059 {
3060         struct bio *bio;
3061
3062         while ((bio = rq->bio) != NULL) {
3063                 rq->bio = bio->bi_next;
3064
3065                 bio_put(bio);
3066         }
3067 }
3068 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
3069
3070 /**
3071  * blk_rq_prep_clone - Helper function to setup clone request
3072  * @rq: the request to be setup
3073  * @rq_src: original request to be cloned
3074  * @bs: bio_set that bios for clone are allocated from
3075  * @gfp_mask: memory allocation mask for bio
3076  * @bio_ctr: setup function to be called for each clone bio.
3077  *           Returns %0 for success, non %0 for failure.
3078  * @data: private data to be passed to @bio_ctr
3079  *
3080  * Description:
3081  *     Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3082  *     Also, pages which the original bios are pointing to are not copied
3083  *     and the cloned bios just point same pages.
3084  *     So cloned bios must be completed before original bios, which means
3085  *     the caller must complete @rq before @rq_src.
3086  */
3087 int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
3088                       struct bio_set *bs, gfp_t gfp_mask,
3089                       int (*bio_ctr)(struct bio *, struct bio *, void *),
3090                       void *data)
3091 {
3092         struct bio *bio, *bio_src;
3093
3094         if (!bs)
3095                 bs = &fs_bio_set;
3096
3097         __rq_for_each_bio(bio_src, rq_src) {
3098                 bio = bio_alloc_clone(rq->q->disk->part0, bio_src, gfp_mask,
3099                                       bs);
3100                 if (!bio)
3101                         goto free_and_out;
3102
3103                 if (bio_ctr && bio_ctr(bio, bio_src, data))
3104                         goto free_and_out;
3105
3106                 if (rq->bio) {
3107                         rq->biotail->bi_next = bio;
3108                         rq->biotail = bio;
3109                 } else {
3110                         rq->bio = rq->biotail = bio;
3111                 }
3112                 bio = NULL;
3113         }
3114
3115         /* Copy attributes of the original request to the clone request. */
3116         rq->__sector = blk_rq_pos(rq_src);
3117         rq->__data_len = blk_rq_bytes(rq_src);
3118         if (rq_src->rq_flags & RQF_SPECIAL_PAYLOAD) {
3119                 rq->rq_flags |= RQF_SPECIAL_PAYLOAD;
3120                 rq->special_vec = rq_src->special_vec;
3121         }
3122         rq->nr_phys_segments = rq_src->nr_phys_segments;
3123         rq->ioprio = rq_src->ioprio;
3124
3125         if (rq->bio && blk_crypto_rq_bio_prep(rq, rq->bio, gfp_mask) < 0)
3126                 goto free_and_out;
3127
3128         return 0;
3129
3130 free_and_out:
3131         if (bio)
3132                 bio_put(bio);
3133         blk_rq_unprep_clone(rq);
3134
3135         return -ENOMEM;
3136 }
3137 EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
3138 #endif /* CONFIG_BLK_MQ_STACKING */
3139
3140 /*
3141  * Steal bios from a request and add them to a bio list.
3142  * The request must not have been partially completed before.
3143  */
3144 void blk_steal_bios(struct bio_list *list, struct request *rq)
3145 {
3146         if (rq->bio) {
3147                 if (list->tail)
3148                         list->tail->bi_next = rq->bio;
3149                 else
3150                         list->head = rq->bio;
3151                 list->tail = rq->biotail;
3152
3153                 rq->bio = NULL;
3154                 rq->biotail = NULL;
3155         }
3156
3157         rq->__data_len = 0;
3158 }
3159 EXPORT_SYMBOL_GPL(blk_steal_bios);
3160
3161 static size_t order_to_size(unsigned int order)
3162 {
3163         return (size_t)PAGE_SIZE << order;
3164 }
3165
3166 /* called before freeing request pool in @tags */
3167 static void blk_mq_clear_rq_mapping(struct blk_mq_tags *drv_tags,
3168                                     struct blk_mq_tags *tags)
3169 {
3170         struct page *page;
3171         unsigned long flags;
3172
3173         /*
3174          * There is no need to clear mapping if driver tags is not initialized
3175          * or the mapping belongs to the driver tags.
3176          */
3177         if (!drv_tags || drv_tags == tags)
3178                 return;
3179
3180         list_for_each_entry(page, &tags->page_list, lru) {
3181                 unsigned long start = (unsigned long)page_address(page);
3182                 unsigned long end = start + order_to_size(page->private);
3183                 int i;
3184
3185                 for (i = 0; i < drv_tags->nr_tags; i++) {
3186                         struct request *rq = drv_tags->rqs[i];
3187                         unsigned long rq_addr = (unsigned long)rq;
3188
3189                         if (rq_addr >= start && rq_addr < end) {
3190                                 WARN_ON_ONCE(req_ref_read(rq) != 0);
3191                                 cmpxchg(&drv_tags->rqs[i], rq, NULL);
3192                         }
3193                 }
3194         }
3195
3196         /*
3197          * Wait until all pending iteration is done.
3198          *
3199          * Request reference is cleared and it is guaranteed to be observed
3200          * after the ->lock is released.
3201          */
3202         spin_lock_irqsave(&drv_tags->lock, flags);
3203         spin_unlock_irqrestore(&drv_tags->lock, flags);
3204 }
3205
3206 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
3207                      unsigned int hctx_idx)
3208 {
3209         struct blk_mq_tags *drv_tags;
3210         struct page *page;
3211
3212         if (list_empty(&tags->page_list))
3213                 return;
3214
3215         if (blk_mq_is_shared_tags(set->flags))
3216                 drv_tags = set->shared_tags;
3217         else
3218                 drv_tags = set->tags[hctx_idx];
3219
3220         if (tags->static_rqs && set->ops->exit_request) {
3221                 int i;
3222
3223                 for (i = 0; i < tags->nr_tags; i++) {
3224                         struct request *rq = tags->static_rqs[i];
3225
3226                         if (!rq)
3227                                 continue;
3228                         set->ops->exit_request(set, rq, hctx_idx);
3229                         tags->static_rqs[i] = NULL;
3230                 }
3231         }
3232
3233         blk_mq_clear_rq_mapping(drv_tags, tags);
3234
3235         while (!list_empty(&tags->page_list)) {
3236                 page = list_first_entry(&tags->page_list, struct page, lru);
3237                 list_del_init(&page->lru);
3238                 /*
3239                  * Remove kmemleak object previously allocated in
3240                  * blk_mq_alloc_rqs().
3241                  */
3242                 kmemleak_free(page_address(page));
3243                 __free_pages(page, page->private);
3244         }
3245 }
3246
3247 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
3248 {
3249         kfree(tags->rqs);
3250         tags->rqs = NULL;
3251         kfree(tags->static_rqs);
3252         tags->static_rqs = NULL;
3253
3254         blk_mq_free_tags(tags);
3255 }
3256
3257 static enum hctx_type hctx_idx_to_type(struct blk_mq_tag_set *set,
3258                 unsigned int hctx_idx)
3259 {
3260         int i;
3261
3262         for (i = 0; i < set->nr_maps; i++) {
3263                 unsigned int start = set->map[i].queue_offset;
3264                 unsigned int end = start + set->map[i].nr_queues;
3265
3266                 if (hctx_idx >= start && hctx_idx < end)
3267                         break;
3268         }
3269
3270         if (i >= set->nr_maps)
3271                 i = HCTX_TYPE_DEFAULT;
3272
3273         return i;
3274 }
3275
3276 static int blk_mq_get_hctx_node(struct blk_mq_tag_set *set,
3277                 unsigned int hctx_idx)
3278 {
3279         enum hctx_type type = hctx_idx_to_type(set, hctx_idx);
3280
3281         return blk_mq_hw_queue_to_node(&set->map[type], hctx_idx);
3282 }
3283
3284 static struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
3285                                                unsigned int hctx_idx,
3286                                                unsigned int nr_tags,
3287                                                unsigned int reserved_tags)
3288 {
3289         int node = blk_mq_get_hctx_node(set, hctx_idx);
3290         struct blk_mq_tags *tags;
3291
3292         if (node == NUMA_NO_NODE)
3293                 node = set->numa_node;
3294
3295         tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
3296                                 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
3297         if (!tags)
3298                 return NULL;
3299
3300         tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3301                                  GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3302                                  node);
3303         if (!tags->rqs)
3304                 goto err_free_tags;
3305
3306         tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
3307                                         GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
3308                                         node);
3309         if (!tags->static_rqs)
3310                 goto err_free_rqs;
3311
3312         return tags;
3313
3314 err_free_rqs:
3315         kfree(tags->rqs);
3316 err_free_tags:
3317         blk_mq_free_tags(tags);
3318         return NULL;
3319 }
3320
3321 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
3322                                unsigned int hctx_idx, int node)
3323 {
3324         int ret;
3325
3326         if (set->ops->init_request) {
3327                 ret = set->ops->init_request(set, rq, hctx_idx, node);
3328                 if (ret)
3329                         return ret;
3330         }
3331
3332         WRITE_ONCE(rq->state, MQ_RQ_IDLE);
3333         return 0;
3334 }
3335
3336 static int blk_mq_alloc_rqs(struct blk_mq_tag_set *set,
3337                             struct blk_mq_tags *tags,
3338                             unsigned int hctx_idx, unsigned int depth)
3339 {
3340         unsigned int i, j, entries_per_page, max_order = 4;
3341         int node = blk_mq_get_hctx_node(set, hctx_idx);
3342         size_t rq_size, left;
3343
3344         if (node == NUMA_NO_NODE)
3345                 node = set->numa_node;
3346
3347         INIT_LIST_HEAD(&tags->page_list);
3348
3349         /*
3350          * rq_size is the size of the request plus driver payload, rounded
3351          * to the cacheline size
3352          */
3353         rq_size = round_up(sizeof(struct request) + set->cmd_size,
3354                                 cache_line_size());
3355         left = rq_size * depth;
3356
3357         for (i = 0; i < depth; ) {
3358                 int this_order = max_order;
3359                 struct page *page;
3360                 int to_do;
3361                 void *p;
3362
3363                 while (this_order && left < order_to_size(this_order - 1))
3364                         this_order--;
3365
3366                 do {
3367                         page = alloc_pages_node(node,
3368                                 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
3369                                 this_order);
3370                         if (page)
3371                                 break;
3372                         if (!this_order--)
3373                                 break;
3374                         if (order_to_size(this_order) < rq_size)
3375                                 break;
3376                 } while (1);
3377
3378                 if (!page)
3379                         goto fail;
3380
3381                 page->private = this_order;
3382                 list_add_tail(&page->lru, &tags->page_list);
3383
3384                 p = page_address(page);
3385                 /*
3386                  * Allow kmemleak to scan these pages as they contain pointers
3387                  * to additional allocations like via ops->init_request().
3388                  */
3389                 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
3390                 entries_per_page = order_to_size(this_order) / rq_size;
3391                 to_do = min(entries_per_page, depth - i);
3392                 left -= to_do * rq_size;
3393                 for (j = 0; j < to_do; j++) {
3394                         struct request *rq = p;
3395
3396                         tags->static_rqs[i] = rq;
3397                         if (blk_mq_init_request(set, rq, hctx_idx, node)) {
3398                                 tags->static_rqs[i] = NULL;
3399                                 goto fail;
3400                         }
3401
3402                         p += rq_size;
3403                         i++;
3404                 }
3405         }
3406         return 0;
3407
3408 fail:
3409         blk_mq_free_rqs(set, tags, hctx_idx);
3410         return -ENOMEM;
3411 }
3412
3413 struct rq_iter_data {
3414         struct blk_mq_hw_ctx *hctx;
3415         bool has_rq;
3416 };
3417
3418 static bool blk_mq_has_request(struct request *rq, void *data)
3419 {
3420         struct rq_iter_data *iter_data = data;
3421
3422         if (rq->mq_hctx != iter_data->hctx)
3423                 return true;
3424         iter_data->has_rq = true;
3425         return false;
3426 }
3427
3428 static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
3429 {
3430         struct blk_mq_tags *tags = hctx->sched_tags ?
3431                         hctx->sched_tags : hctx->tags;
3432         struct rq_iter_data data = {
3433                 .hctx   = hctx,
3434         };
3435
3436         blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
3437         return data.has_rq;
3438 }
3439
3440 static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
3441                 struct blk_mq_hw_ctx *hctx)
3442 {
3443         if (cpumask_first_and(hctx->cpumask, cpu_online_mask) != cpu)
3444                 return false;
3445         if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
3446                 return false;
3447         return true;
3448 }
3449
3450 static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
3451 {
3452         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3453                         struct blk_mq_hw_ctx, cpuhp_online);
3454
3455         if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
3456             !blk_mq_last_cpu_in_hctx(cpu, hctx))
3457                 return 0;
3458
3459         /*
3460          * Prevent new request from being allocated on the current hctx.
3461          *
3462          * The smp_mb__after_atomic() Pairs with the implied barrier in
3463          * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
3464          * seen once we return from the tag allocator.
3465          */
3466         set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3467         smp_mb__after_atomic();
3468
3469         /*
3470          * Try to grab a reference to the queue and wait for any outstanding
3471          * requests.  If we could not grab a reference the queue has been
3472          * frozen and there are no requests.
3473          */
3474         if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
3475                 while (blk_mq_hctx_has_requests(hctx))
3476                         msleep(5);
3477                 percpu_ref_put(&hctx->queue->q_usage_counter);
3478         }
3479
3480         return 0;
3481 }
3482
3483 static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
3484 {
3485         struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
3486                         struct blk_mq_hw_ctx, cpuhp_online);
3487
3488         if (cpumask_test_cpu(cpu, hctx->cpumask))
3489                 clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
3490         return 0;
3491 }
3492
3493 /*
3494  * 'cpu' is going away. splice any existing rq_list entries from this
3495  * software queue to the hw queue dispatch list, and ensure that it
3496  * gets run.
3497  */
3498 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
3499 {
3500         struct blk_mq_hw_ctx *hctx;
3501         struct blk_mq_ctx *ctx;
3502         LIST_HEAD(tmp);
3503         enum hctx_type type;
3504
3505         hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
3506         if (!cpumask_test_cpu(cpu, hctx->cpumask))
3507                 return 0;
3508
3509         ctx = __blk_mq_get_ctx(hctx->queue, cpu);
3510         type = hctx->type;
3511
3512         spin_lock(&ctx->lock);
3513         if (!list_empty(&ctx->rq_lists[type])) {
3514                 list_splice_init(&ctx->rq_lists[type], &tmp);
3515                 blk_mq_hctx_clear_pending(hctx, ctx);
3516         }
3517         spin_unlock(&ctx->lock);
3518
3519         if (list_empty(&tmp))
3520                 return 0;
3521
3522         spin_lock(&hctx->lock);
3523         list_splice_tail_init(&tmp, &hctx->dispatch);
3524         spin_unlock(&hctx->lock);
3525
3526         blk_mq_run_hw_queue(hctx, true);
3527         return 0;
3528 }
3529
3530 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
3531 {
3532         if (!(hctx->flags & BLK_MQ_F_STACKING))
3533                 cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3534                                                     &hctx->cpuhp_online);
3535         cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
3536                                             &hctx->cpuhp_dead);
3537 }
3538
3539 /*
3540  * Before freeing hw queue, clearing the flush request reference in
3541  * tags->rqs[] for avoiding potential UAF.
3542  */
3543 static void blk_mq_clear_flush_rq_mapping(struct blk_mq_tags *tags,
3544                 unsigned int queue_depth, struct request *flush_rq)
3545 {
3546         int i;
3547         unsigned long flags;
3548
3549         /* The hw queue may not be mapped yet */
3550         if (!tags)
3551                 return;
3552
3553         WARN_ON_ONCE(req_ref_read(flush_rq) != 0);
3554
3555         for (i = 0; i < queue_depth; i++)
3556                 cmpxchg(&tags->rqs[i], flush_rq, NULL);
3557
3558         /*
3559          * Wait until all pending iteration is done.
3560          *
3561          * Request reference is cleared and it is guaranteed to be observed
3562          * after the ->lock is released.
3563          */
3564         spin_lock_irqsave(&tags->lock, flags);
3565         spin_unlock_irqrestore(&tags->lock, flags);
3566 }
3567
3568 /* hctx->ctxs will be freed in queue's release handler */
3569 static void blk_mq_exit_hctx(struct request_queue *q,
3570                 struct blk_mq_tag_set *set,
3571                 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
3572 {
3573         struct request *flush_rq = hctx->fq->flush_rq;
3574
3575         if (blk_mq_hw_queue_mapped(hctx))
3576                 blk_mq_tag_idle(hctx);
3577
3578         if (blk_queue_init_done(q))
3579                 blk_mq_clear_flush_rq_mapping(set->tags[hctx_idx],
3580                                 set->queue_depth, flush_rq);
3581         if (set->ops->exit_request)
3582                 set->ops->exit_request(set, flush_rq, hctx_idx);
3583
3584         if (set->ops->exit_hctx)
3585                 set->ops->exit_hctx(hctx, hctx_idx);
3586
3587         blk_mq_remove_cpuhp(hctx);
3588
3589         xa_erase(&q->hctx_table, hctx_idx);
3590
3591         spin_lock(&q->unused_hctx_lock);
3592         list_add(&hctx->hctx_list, &q->unused_hctx_list);
3593         spin_unlock(&q->unused_hctx_lock);
3594 }
3595
3596 static void blk_mq_exit_hw_queues(struct request_queue *q,
3597                 struct blk_mq_tag_set *set, int nr_queue)
3598 {
3599         struct blk_mq_hw_ctx *hctx;
3600         unsigned long i;
3601
3602         queue_for_each_hw_ctx(q, hctx, i) {
3603                 if (i == nr_queue)
3604                         break;
3605                 blk_mq_exit_hctx(q, set, hctx, i);
3606         }
3607 }
3608
3609 static int blk_mq_init_hctx(struct request_queue *q,
3610                 struct blk_mq_tag_set *set,
3611                 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
3612 {
3613         hctx->queue_num = hctx_idx;
3614
3615         if (!(hctx->flags & BLK_MQ_F_STACKING))
3616                 cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
3617                                 &hctx->cpuhp_online);
3618         cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
3619
3620         hctx->tags = set->tags[hctx_idx];
3621
3622         if (set->ops->init_hctx &&
3623             set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
3624                 goto unregister_cpu_notifier;
3625
3626         if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
3627                                 hctx->numa_node))
3628                 goto exit_hctx;
3629
3630         if (xa_insert(&q->hctx_table, hctx_idx, hctx, GFP_KERNEL))
3631                 goto exit_flush_rq;
3632
3633         return 0;
3634
3635  exit_flush_rq:
3636         if (set->ops->exit_request)
3637                 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
3638  exit_hctx:
3639         if (set->ops->exit_hctx)
3640                 set->ops->exit_hctx(hctx, hctx_idx);
3641  unregister_cpu_notifier:
3642         blk_mq_remove_cpuhp(hctx);
3643         return -1;
3644 }
3645
3646 static struct blk_mq_hw_ctx *
3647 blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
3648                 int node)
3649 {
3650         struct blk_mq_hw_ctx *hctx;
3651         gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
3652
3653         hctx = kzalloc_node(sizeof(struct blk_mq_hw_ctx), gfp, node);
3654         if (!hctx)
3655                 goto fail_alloc_hctx;
3656
3657         if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
3658                 goto free_hctx;
3659
3660         atomic_set(&hctx->nr_active, 0);
3661         if (node == NUMA_NO_NODE)
3662                 node = set->numa_node;
3663         hctx->numa_node = node;
3664
3665         INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
3666         spin_lock_init(&hctx->lock);
3667         INIT_LIST_HEAD(&hctx->dispatch);
3668         hctx->queue = q;
3669         hctx->flags = set->flags & ~BLK_MQ_F_TAG_QUEUE_SHARED;
3670
3671         INIT_LIST_HEAD(&hctx->hctx_list);
3672
3673         /*
3674          * Allocate space for all possible cpus to avoid allocation at
3675          * runtime
3676          */
3677         hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
3678                         gfp, node);
3679         if (!hctx->ctxs)
3680                 goto free_cpumask;
3681
3682         if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
3683                                 gfp, node, false, false))
3684                 goto free_ctxs;
3685         hctx->nr_ctx = 0;
3686
3687         spin_lock_init(&hctx->dispatch_wait_lock);
3688         init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
3689         INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
3690
3691         hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
3692         if (!hctx->fq)
3693                 goto free_bitmap;
3694
3695         blk_mq_hctx_kobj_init(hctx);
3696
3697         return hctx;
3698
3699  free_bitmap:
3700         sbitmap_free(&hctx->ctx_map);
3701  free_ctxs:
3702         kfree(hctx->ctxs);
3703  free_cpumask:
3704         free_cpumask_var(hctx->cpumask);
3705  free_hctx:
3706         kfree(hctx);
3707  fail_alloc_hctx:
3708         return NULL;
3709 }
3710
3711 static void blk_mq_init_cpu_queues(struct request_queue *q,
3712                                    unsigned int nr_hw_queues)
3713 {
3714         struct blk_mq_tag_set *set = q->tag_set;
3715         unsigned int i, j;
3716
3717         for_each_possible_cpu(i) {
3718                 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
3719                 struct blk_mq_hw_ctx *hctx;
3720                 int k;
3721
3722                 __ctx->cpu = i;
3723                 spin_lock_init(&__ctx->lock);
3724                 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
3725                         INIT_LIST_HEAD(&__ctx->rq_lists[k]);
3726
3727                 __ctx->queue = q;
3728
3729                 /*
3730                  * Set local node, IFF we have more than one hw queue. If
3731                  * not, we remain on the home node of the device
3732                  */
3733                 for (j = 0; j < set->nr_maps; j++) {
3734                         hctx = blk_mq_map_queue_type(q, j, i);
3735                         if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
3736                                 hctx->numa_node = cpu_to_node(i);
3737                 }
3738         }
3739 }
3740
3741 struct blk_mq_tags *blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3742                                              unsigned int hctx_idx,
3743                                              unsigned int depth)
3744 {
3745         struct blk_mq_tags *tags;
3746         int ret;
3747
3748         tags = blk_mq_alloc_rq_map(set, hctx_idx, depth, set->reserved_tags);
3749         if (!tags)
3750                 return NULL;
3751
3752         ret = blk_mq_alloc_rqs(set, tags, hctx_idx, depth);
3753         if (ret) {
3754                 blk_mq_free_rq_map(tags);
3755                 return NULL;
3756         }
3757
3758         return tags;
3759 }
3760
3761 static bool __blk_mq_alloc_map_and_rqs(struct blk_mq_tag_set *set,
3762                                        int hctx_idx)
3763 {
3764         if (blk_mq_is_shared_tags(set->flags)) {
3765                 set->tags[hctx_idx] = set->shared_tags;
3766
3767                 return true;
3768         }
3769
3770         set->tags[hctx_idx] = blk_mq_alloc_map_and_rqs(set, hctx_idx,
3771                                                        set->queue_depth);
3772
3773         return set->tags[hctx_idx];
3774 }
3775
3776 void blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3777                              struct blk_mq_tags *tags,
3778                              unsigned int hctx_idx)
3779 {
3780         if (tags) {
3781                 blk_mq_free_rqs(set, tags, hctx_idx);
3782                 blk_mq_free_rq_map(tags);
3783         }
3784 }
3785
3786 static void __blk_mq_free_map_and_rqs(struct blk_mq_tag_set *set,
3787                                       unsigned int hctx_idx)
3788 {
3789         if (!blk_mq_is_shared_tags(set->flags))
3790                 blk_mq_free_map_and_rqs(set, set->tags[hctx_idx], hctx_idx);
3791
3792         set->tags[hctx_idx] = NULL;
3793 }
3794
3795 static void blk_mq_map_swqueue(struct request_queue *q)
3796 {
3797         unsigned int j, hctx_idx;
3798         unsigned long i;
3799         struct blk_mq_hw_ctx *hctx;
3800         struct blk_mq_ctx *ctx;
3801         struct blk_mq_tag_set *set = q->tag_set;
3802
3803         queue_for_each_hw_ctx(q, hctx, i) {
3804                 cpumask_clear(hctx->cpumask);
3805                 hctx->nr_ctx = 0;
3806                 hctx->dispatch_from = NULL;
3807         }
3808
3809         /*
3810          * Map software to hardware queues.
3811          *
3812          * If the cpu isn't present, the cpu is mapped to first hctx.
3813          */
3814         for_each_possible_cpu(i) {
3815
3816                 ctx = per_cpu_ptr(q->queue_ctx, i);
3817                 for (j = 0; j < set->nr_maps; j++) {
3818                         if (!set->map[j].nr_queues) {
3819                                 ctx->hctxs[j] = blk_mq_map_queue_type(q,
3820                                                 HCTX_TYPE_DEFAULT, i);
3821                                 continue;
3822                         }
3823                         hctx_idx = set->map[j].mq_map[i];
3824                         /* unmapped hw queue can be remapped after CPU topo changed */
3825                         if (!set->tags[hctx_idx] &&
3826                             !__blk_mq_alloc_map_and_rqs(set, hctx_idx)) {
3827                                 /*
3828                                  * If tags initialization fail for some hctx,
3829                                  * that hctx won't be brought online.  In this
3830                                  * case, remap the current ctx to hctx[0] which
3831                                  * is guaranteed to always have tags allocated
3832                                  */
3833                                 set->map[j].mq_map[i] = 0;
3834                         }
3835
3836                         hctx = blk_mq_map_queue_type(q, j, i);
3837                         ctx->hctxs[j] = hctx;
3838                         /*
3839                          * If the CPU is already set in the mask, then we've
3840                          * mapped this one already. This can happen if
3841                          * devices share queues across queue maps.
3842                          */
3843                         if (cpumask_test_cpu(i, hctx->cpumask))
3844                                 continue;
3845
3846                         cpumask_set_cpu(i, hctx->cpumask);
3847                         hctx->type = j;
3848                         ctx->index_hw[hctx->type] = hctx->nr_ctx;
3849                         hctx->ctxs[hctx->nr_ctx++] = ctx;
3850
3851                         /*
3852                          * If the nr_ctx type overflows, we have exceeded the
3853                          * amount of sw queues we can support.
3854                          */
3855                         BUG_ON(!hctx->nr_ctx);
3856                 }
3857
3858                 for (; j < HCTX_MAX_TYPES; j++)
3859                         ctx->hctxs[j] = blk_mq_map_queue_type(q,
3860                                         HCTX_TYPE_DEFAULT, i);
3861         }
3862
3863         queue_for_each_hw_ctx(q, hctx, i) {
3864                 /*
3865                  * If no software queues are mapped to this hardware queue,
3866                  * disable it and free the request entries.
3867                  */
3868                 if (!hctx->nr_ctx) {
3869                         /* Never unmap queue 0.  We need it as a
3870                          * fallback in case of a new remap fails
3871                          * allocation
3872                          */
3873                         if (i)
3874                                 __blk_mq_free_map_and_rqs(set, i);
3875
3876                         hctx->tags = NULL;
3877                         continue;
3878                 }
3879
3880                 hctx->tags = set->tags[i];
3881                 WARN_ON(!hctx->tags);
3882
3883                 /*
3884                  * Set the map size to the number of mapped software queues.
3885                  * This is more accurate and more efficient than looping
3886                  * over all possibly mapped software queues.
3887                  */
3888                 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
3889
3890                 /*
3891                  * Initialize batch roundrobin counts
3892                  */
3893                 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
3894                 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
3895         }
3896 }
3897
3898 /*
3899  * Caller needs to ensure that we're either frozen/quiesced, or that
3900  * the queue isn't live yet.
3901  */
3902 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
3903 {
3904         struct blk_mq_hw_ctx *hctx;
3905         unsigned long i;
3906
3907         queue_for_each_hw_ctx(q, hctx, i) {
3908                 if (shared) {
3909                         hctx->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3910                 } else {
3911                         blk_mq_tag_idle(hctx);
3912                         hctx->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3913                 }
3914         }
3915 }
3916
3917 static void blk_mq_update_tag_set_shared(struct blk_mq_tag_set *set,
3918                                          bool shared)
3919 {
3920         struct request_queue *q;
3921
3922         lockdep_assert_held(&set->tag_list_lock);
3923
3924         list_for_each_entry(q, &set->tag_list, tag_set_list) {
3925                 blk_mq_freeze_queue(q);
3926                 queue_set_hctx_shared(q, shared);
3927                 blk_mq_unfreeze_queue(q);
3928         }
3929 }
3930
3931 static void blk_mq_del_queue_tag_set(struct request_queue *q)
3932 {
3933         struct blk_mq_tag_set *set = q->tag_set;
3934
3935         mutex_lock(&set->tag_list_lock);
3936         list_del(&q->tag_set_list);
3937         if (list_is_singular(&set->tag_list)) {
3938                 /* just transitioned to unshared */
3939                 set->flags &= ~BLK_MQ_F_TAG_QUEUE_SHARED;
3940                 /* update existing queue */
3941                 blk_mq_update_tag_set_shared(set, false);
3942         }
3943         mutex_unlock(&set->tag_list_lock);
3944         INIT_LIST_HEAD(&q->tag_set_list);
3945 }
3946
3947 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
3948                                      struct request_queue *q)
3949 {
3950         mutex_lock(&set->tag_list_lock);
3951
3952         /*
3953          * Check to see if we're transitioning to shared (from 1 to 2 queues).
3954          */
3955         if (!list_empty(&set->tag_list) &&
3956             !(set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)) {
3957                 set->flags |= BLK_MQ_F_TAG_QUEUE_SHARED;
3958                 /* update existing queue */
3959                 blk_mq_update_tag_set_shared(set, true);
3960         }
3961         if (set->flags & BLK_MQ_F_TAG_QUEUE_SHARED)
3962                 queue_set_hctx_shared(q, true);
3963         list_add_tail(&q->tag_set_list, &set->tag_list);
3964
3965         mutex_unlock(&set->tag_list_lock);
3966 }
3967
3968 /* All allocations will be freed in release handler of q->mq_kobj */
3969 static int blk_mq_alloc_ctxs(struct request_queue *q)
3970 {
3971         struct blk_mq_ctxs *ctxs;
3972         int cpu;
3973
3974         ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
3975         if (!ctxs)
3976                 return -ENOMEM;
3977
3978         ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
3979         if (!ctxs->queue_ctx)
3980                 goto fail;
3981
3982         for_each_possible_cpu(cpu) {
3983                 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
3984                 ctx->ctxs = ctxs;
3985         }
3986
3987         q->mq_kobj = &ctxs->kobj;
3988         q->queue_ctx = ctxs->queue_ctx;
3989
3990         return 0;
3991  fail:
3992         kfree(ctxs);
3993         return -ENOMEM;
3994 }
3995
3996 /*
3997  * It is the actual release handler for mq, but we do it from
3998  * request queue's release handler for avoiding use-after-free
3999  * and headache because q->mq_kobj shouldn't have been introduced,
4000  * but we can't group ctx/kctx kobj without it.
4001  */
4002 void blk_mq_release(struct request_queue *q)
4003 {
4004         struct blk_mq_hw_ctx *hctx, *next;
4005         unsigned long i;
4006
4007         queue_for_each_hw_ctx(q, hctx, i)
4008                 WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
4009
4010         /* all hctx are in .unused_hctx_list now */
4011         list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
4012                 list_del_init(&hctx->hctx_list);
4013                 kobject_put(&hctx->kobj);
4014         }
4015
4016         xa_destroy(&q->hctx_table);
4017
4018         /*
4019          * release .mq_kobj and sw queue's kobject now because
4020          * both share lifetime with request queue.
4021          */
4022         blk_mq_sysfs_deinit(q);
4023 }
4024
4025 static struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
4026                 void *queuedata)
4027 {
4028         struct request_queue *q;
4029         int ret;
4030
4031         q = blk_alloc_queue(set->numa_node);
4032         if (!q)
4033                 return ERR_PTR(-ENOMEM);
4034         q->queuedata = queuedata;
4035         ret = blk_mq_init_allocated_queue(set, q);
4036         if (ret) {
4037                 blk_put_queue(q);
4038                 return ERR_PTR(ret);
4039         }
4040         return q;
4041 }
4042
4043 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
4044 {
4045         return blk_mq_init_queue_data(set, NULL);
4046 }
4047 EXPORT_SYMBOL(blk_mq_init_queue);
4048
4049 /**
4050  * blk_mq_destroy_queue - shutdown a request queue
4051  * @q: request queue to shutdown
4052  *
4053  * This shuts down a request queue allocated by blk_mq_init_queue(). All future
4054  * requests will be failed with -ENODEV. The caller is responsible for dropping
4055  * the reference from blk_mq_init_queue() by calling blk_put_queue().
4056  *
4057  * Context: can sleep
4058  */
4059 void blk_mq_destroy_queue(struct request_queue *q)
4060 {
4061         WARN_ON_ONCE(!queue_is_mq(q));
4062         WARN_ON_ONCE(blk_queue_registered(q));
4063
4064         might_sleep();
4065
4066         blk_queue_flag_set(QUEUE_FLAG_DYING, q);
4067         blk_queue_start_drain(q);
4068         blk_mq_freeze_queue_wait(q);
4069
4070         blk_sync_queue(q);
4071         blk_mq_cancel_work_sync(q);
4072         blk_mq_exit_queue(q);
4073 }
4074 EXPORT_SYMBOL(blk_mq_destroy_queue);
4075
4076 struct gendisk *__blk_mq_alloc_disk(struct blk_mq_tag_set *set, void *queuedata,
4077                 struct lock_class_key *lkclass)
4078 {
4079         struct request_queue *q;
4080         struct gendisk *disk;
4081
4082         q = blk_mq_init_queue_data(set, queuedata);
4083         if (IS_ERR(q))
4084                 return ERR_CAST(q);
4085
4086         disk = __alloc_disk_node(q, set->numa_node, lkclass);
4087         if (!disk) {
4088                 blk_mq_destroy_queue(q);
4089                 blk_put_queue(q);
4090                 return ERR_PTR(-ENOMEM);
4091         }
4092         set_bit(GD_OWNS_QUEUE, &disk->state);
4093         return disk;
4094 }
4095 EXPORT_SYMBOL(__blk_mq_alloc_disk);
4096
4097 struct gendisk *blk_mq_alloc_disk_for_queue(struct request_queue *q,
4098                 struct lock_class_key *lkclass)
4099 {
4100         struct gendisk *disk;
4101
4102         if (!blk_get_queue(q))
4103                 return NULL;
4104         disk = __alloc_disk_node(q, NUMA_NO_NODE, lkclass);
4105         if (!disk)
4106                 blk_put_queue(q);
4107         return disk;
4108 }
4109 EXPORT_SYMBOL(blk_mq_alloc_disk_for_queue);
4110
4111 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
4112                 struct blk_mq_tag_set *set, struct request_queue *q,
4113                 int hctx_idx, int node)
4114 {
4115         struct blk_mq_hw_ctx *hctx = NULL, *tmp;
4116
4117         /* reuse dead hctx first */
4118         spin_lock(&q->unused_hctx_lock);
4119         list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
4120                 if (tmp->numa_node == node) {
4121                         hctx = tmp;
4122                         break;
4123                 }
4124         }
4125         if (hctx)
4126                 list_del_init(&hctx->hctx_list);
4127         spin_unlock(&q->unused_hctx_lock);
4128
4129         if (!hctx)
4130                 hctx = blk_mq_alloc_hctx(q, set, node);
4131         if (!hctx)
4132                 goto fail;
4133
4134         if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
4135                 goto free_hctx;
4136
4137         return hctx;
4138
4139  free_hctx:
4140         kobject_put(&hctx->kobj);
4141  fail:
4142         return NULL;
4143 }
4144
4145 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
4146                                                 struct request_queue *q)
4147 {
4148         struct blk_mq_hw_ctx *hctx;
4149         unsigned long i, j;
4150
4151         /* protect against switching io scheduler  */
4152         mutex_lock(&q->sysfs_lock);
4153         for (i = 0; i < set->nr_hw_queues; i++) {
4154                 int old_node;
4155                 int node = blk_mq_get_hctx_node(set, i);
4156                 struct blk_mq_hw_ctx *old_hctx = xa_load(&q->hctx_table, i);
4157
4158                 if (old_hctx) {
4159                         old_node = old_hctx->numa_node;
4160                         blk_mq_exit_hctx(q, set, old_hctx, i);
4161                 }
4162
4163                 if (!blk_mq_alloc_and_init_hctx(set, q, i, node)) {
4164                         if (!old_hctx)
4165                                 break;
4166                         pr_warn("Allocate new hctx on node %d fails, fallback to previous one on node %d\n",
4167                                         node, old_node);
4168                         hctx = blk_mq_alloc_and_init_hctx(set, q, i, old_node);
4169                         WARN_ON_ONCE(!hctx);
4170                 }
4171         }
4172         /*
4173          * Increasing nr_hw_queues fails. Free the newly allocated
4174          * hctxs and keep the previous q->nr_hw_queues.
4175          */
4176         if (i != set->nr_hw_queues) {
4177                 j = q->nr_hw_queues;
4178         } else {
4179                 j = i;
4180                 q->nr_hw_queues = set->nr_hw_queues;
4181         }
4182
4183         xa_for_each_start(&q->hctx_table, j, hctx, j)
4184                 blk_mq_exit_hctx(q, set, hctx, j);
4185         mutex_unlock(&q->sysfs_lock);
4186 }
4187
4188 static void blk_mq_update_poll_flag(struct request_queue *q)
4189 {
4190         struct blk_mq_tag_set *set = q->tag_set;
4191
4192         if (set->nr_maps > HCTX_TYPE_POLL &&
4193             set->map[HCTX_TYPE_POLL].nr_queues)
4194                 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
4195         else
4196                 blk_queue_flag_clear(QUEUE_FLAG_POLL, q);
4197 }
4198
4199 int blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
4200                 struct request_queue *q)
4201 {
4202         /* mark the queue as mq asap */
4203         q->mq_ops = set->ops;
4204
4205         if (blk_mq_alloc_ctxs(q))
4206                 goto err_exit;
4207
4208         /* init q->mq_kobj and sw queues' kobjects */
4209         blk_mq_sysfs_init(q);
4210
4211         INIT_LIST_HEAD(&q->unused_hctx_list);
4212         spin_lock_init(&q->unused_hctx_lock);
4213
4214         xa_init(&q->hctx_table);
4215
4216         blk_mq_realloc_hw_ctxs(set, q);
4217         if (!q->nr_hw_queues)
4218                 goto err_hctxs;
4219
4220         INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
4221         blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
4222
4223         q->tag_set = set;
4224
4225         q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
4226         blk_mq_update_poll_flag(q);
4227
4228         INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
4229         INIT_LIST_HEAD(&q->flush_list);
4230         INIT_LIST_HEAD(&q->requeue_list);
4231         spin_lock_init(&q->requeue_lock);
4232
4233         q->nr_requests = set->queue_depth;
4234
4235         blk_mq_init_cpu_queues(q, set->nr_hw_queues);
4236         blk_mq_add_queue_tag_set(set, q);
4237         blk_mq_map_swqueue(q);
4238         return 0;
4239
4240 err_hctxs:
4241         blk_mq_release(q);
4242 err_exit:
4243         q->mq_ops = NULL;
4244         return -ENOMEM;
4245 }
4246 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
4247
4248 /* tags can _not_ be used after returning from blk_mq_exit_queue */
4249 void blk_mq_exit_queue(struct request_queue *q)
4250 {
4251         struct blk_mq_tag_set *set = q->tag_set;
4252
4253         /* Checks hctx->flags & BLK_MQ_F_TAG_QUEUE_SHARED. */
4254         blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
4255         /* May clear BLK_MQ_F_TAG_QUEUE_SHARED in hctx->flags. */
4256         blk_mq_del_queue_tag_set(q);
4257 }
4258
4259 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
4260 {
4261         int i;
4262
4263         if (blk_mq_is_shared_tags(set->flags)) {
4264                 set->shared_tags = blk_mq_alloc_map_and_rqs(set,
4265                                                 BLK_MQ_NO_HCTX_IDX,
4266                                                 set->queue_depth);
4267                 if (!set->shared_tags)
4268                         return -ENOMEM;
4269         }
4270
4271         for (i = 0; i < set->nr_hw_queues; i++) {
4272                 if (!__blk_mq_alloc_map_and_rqs(set, i))
4273                         goto out_unwind;
4274                 cond_resched();
4275         }
4276
4277         return 0;
4278
4279 out_unwind:
4280         while (--i >= 0)
4281                 __blk_mq_free_map_and_rqs(set, i);
4282
4283         if (blk_mq_is_shared_tags(set->flags)) {
4284                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4285                                         BLK_MQ_NO_HCTX_IDX);
4286         }
4287
4288         return -ENOMEM;
4289 }
4290
4291 /*
4292  * Allocate the request maps associated with this tag_set. Note that this
4293  * may reduce the depth asked for, if memory is tight. set->queue_depth
4294  * will be updated to reflect the allocated depth.
4295  */
4296 static int blk_mq_alloc_set_map_and_rqs(struct blk_mq_tag_set *set)
4297 {
4298         unsigned int depth;
4299         int err;
4300
4301         depth = set->queue_depth;
4302         do {
4303                 err = __blk_mq_alloc_rq_maps(set);
4304                 if (!err)
4305                         break;
4306
4307                 set->queue_depth >>= 1;
4308                 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
4309                         err = -ENOMEM;
4310                         break;
4311                 }
4312         } while (set->queue_depth);
4313
4314         if (!set->queue_depth || err) {
4315                 pr_err("blk-mq: failed to allocate request map\n");
4316                 return -ENOMEM;
4317         }
4318
4319         if (depth != set->queue_depth)
4320                 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
4321                                                 depth, set->queue_depth);
4322
4323         return 0;
4324 }
4325
4326 static void blk_mq_update_queue_map(struct blk_mq_tag_set *set)
4327 {
4328         /*
4329          * blk_mq_map_queues() and multiple .map_queues() implementations
4330          * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
4331          * number of hardware queues.
4332          */
4333         if (set->nr_maps == 1)
4334                 set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
4335
4336         if (set->ops->map_queues && !is_kdump_kernel()) {
4337                 int i;
4338
4339                 /*
4340                  * transport .map_queues is usually done in the following
4341                  * way:
4342                  *
4343                  * for (queue = 0; queue < set->nr_hw_queues; queue++) {
4344                  *      mask = get_cpu_mask(queue)
4345                  *      for_each_cpu(cpu, mask)
4346                  *              set->map[x].mq_map[cpu] = queue;
4347                  * }
4348                  *
4349                  * When we need to remap, the table has to be cleared for
4350                  * killing stale mapping since one CPU may not be mapped
4351                  * to any hw queue.
4352                  */
4353                 for (i = 0; i < set->nr_maps; i++)
4354                         blk_mq_clear_mq_map(&set->map[i]);
4355
4356                 set->ops->map_queues(set);
4357         } else {
4358                 BUG_ON(set->nr_maps > 1);
4359                 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4360         }
4361 }
4362
4363 static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
4364                                        int new_nr_hw_queues)
4365 {
4366         struct blk_mq_tags **new_tags;
4367
4368         if (set->nr_hw_queues >= new_nr_hw_queues)
4369                 goto done;
4370
4371         new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
4372                                 GFP_KERNEL, set->numa_node);
4373         if (!new_tags)
4374                 return -ENOMEM;
4375
4376         if (set->tags)
4377                 memcpy(new_tags, set->tags, set->nr_hw_queues *
4378                        sizeof(*set->tags));
4379         kfree(set->tags);
4380         set->tags = new_tags;
4381 done:
4382         set->nr_hw_queues = new_nr_hw_queues;
4383         return 0;
4384 }
4385
4386 /*
4387  * Alloc a tag set to be associated with one or more request queues.
4388  * May fail with EINVAL for various error conditions. May adjust the
4389  * requested depth down, if it's too large. In that case, the set
4390  * value will be stored in set->queue_depth.
4391  */
4392 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
4393 {
4394         int i, ret;
4395
4396         BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
4397
4398         if (!set->nr_hw_queues)
4399                 return -EINVAL;
4400         if (!set->queue_depth)
4401                 return -EINVAL;
4402         if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
4403                 return -EINVAL;
4404
4405         if (!set->ops->queue_rq)
4406                 return -EINVAL;
4407
4408         if (!set->ops->get_budget ^ !set->ops->put_budget)
4409                 return -EINVAL;
4410
4411         if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
4412                 pr_info("blk-mq: reduced tag depth to %u\n",
4413                         BLK_MQ_MAX_DEPTH);
4414                 set->queue_depth = BLK_MQ_MAX_DEPTH;
4415         }
4416
4417         if (!set->nr_maps)
4418                 set->nr_maps = 1;
4419         else if (set->nr_maps > HCTX_MAX_TYPES)
4420                 return -EINVAL;
4421
4422         /*
4423          * If a crashdump is active, then we are potentially in a very
4424          * memory constrained environment. Limit us to 1 queue and
4425          * 64 tags to prevent using too much memory.
4426          */
4427         if (is_kdump_kernel()) {
4428                 set->nr_hw_queues = 1;
4429                 set->nr_maps = 1;
4430                 set->queue_depth = min(64U, set->queue_depth);
4431         }
4432         /*
4433          * There is no use for more h/w queues than cpus if we just have
4434          * a single map
4435          */
4436         if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
4437                 set->nr_hw_queues = nr_cpu_ids;
4438
4439         if (set->flags & BLK_MQ_F_BLOCKING) {
4440                 set->srcu = kmalloc(sizeof(*set->srcu), GFP_KERNEL);
4441                 if (!set->srcu)
4442                         return -ENOMEM;
4443                 ret = init_srcu_struct(set->srcu);
4444                 if (ret)
4445                         goto out_free_srcu;
4446         }
4447
4448         ret = -ENOMEM;
4449         set->tags = kcalloc_node(set->nr_hw_queues,
4450                                  sizeof(struct blk_mq_tags *), GFP_KERNEL,
4451                                  set->numa_node);
4452         if (!set->tags)
4453                 goto out_cleanup_srcu;
4454
4455         for (i = 0; i < set->nr_maps; i++) {
4456                 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
4457                                                   sizeof(set->map[i].mq_map[0]),
4458                                                   GFP_KERNEL, set->numa_node);
4459                 if (!set->map[i].mq_map)
4460                         goto out_free_mq_map;
4461                 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
4462         }
4463
4464         blk_mq_update_queue_map(set);
4465
4466         ret = blk_mq_alloc_set_map_and_rqs(set);
4467         if (ret)
4468                 goto out_free_mq_map;
4469
4470         mutex_init(&set->tag_list_lock);
4471         INIT_LIST_HEAD(&set->tag_list);
4472
4473         return 0;
4474
4475 out_free_mq_map:
4476         for (i = 0; i < set->nr_maps; i++) {
4477                 kfree(set->map[i].mq_map);
4478                 set->map[i].mq_map = NULL;
4479         }
4480         kfree(set->tags);
4481         set->tags = NULL;
4482 out_cleanup_srcu:
4483         if (set->flags & BLK_MQ_F_BLOCKING)
4484                 cleanup_srcu_struct(set->srcu);
4485 out_free_srcu:
4486         if (set->flags & BLK_MQ_F_BLOCKING)
4487                 kfree(set->srcu);
4488         return ret;
4489 }
4490 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
4491
4492 /* allocate and initialize a tagset for a simple single-queue device */
4493 int blk_mq_alloc_sq_tag_set(struct blk_mq_tag_set *set,
4494                 const struct blk_mq_ops *ops, unsigned int queue_depth,
4495                 unsigned int set_flags)
4496 {
4497         memset(set, 0, sizeof(*set));
4498         set->ops = ops;
4499         set->nr_hw_queues = 1;
4500         set->nr_maps = 1;
4501         set->queue_depth = queue_depth;
4502         set->numa_node = NUMA_NO_NODE;
4503         set->flags = set_flags;
4504         return blk_mq_alloc_tag_set(set);
4505 }
4506 EXPORT_SYMBOL_GPL(blk_mq_alloc_sq_tag_set);
4507
4508 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
4509 {
4510         int i, j;
4511
4512         for (i = 0; i < set->nr_hw_queues; i++)
4513                 __blk_mq_free_map_and_rqs(set, i);
4514
4515         if (blk_mq_is_shared_tags(set->flags)) {
4516                 blk_mq_free_map_and_rqs(set, set->shared_tags,
4517                                         BLK_MQ_NO_HCTX_IDX);
4518         }
4519
4520         for (j = 0; j < set->nr_maps; j++) {
4521                 kfree(set->map[j].mq_map);
4522                 set->map[j].mq_map = NULL;
4523         }
4524
4525         kfree(set->tags);
4526         set->tags = NULL;
4527         if (set->flags & BLK_MQ_F_BLOCKING) {
4528                 cleanup_srcu_struct(set->srcu);
4529                 kfree(set->srcu);
4530         }
4531 }
4532 EXPORT_SYMBOL(blk_mq_free_tag_set);
4533
4534 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
4535 {
4536         struct blk_mq_tag_set *set = q->tag_set;
4537         struct blk_mq_hw_ctx *hctx;
4538         int ret;
4539         unsigned long i;
4540
4541         if (!set)
4542                 return -EINVAL;
4543
4544         if (q->nr_requests == nr)
4545                 return 0;
4546
4547         blk_mq_freeze_queue(q);
4548         blk_mq_quiesce_queue(q);
4549
4550         ret = 0;
4551         queue_for_each_hw_ctx(q, hctx, i) {
4552                 if (!hctx->tags)
4553                         continue;
4554                 /*
4555                  * If we're using an MQ scheduler, just update the scheduler
4556                  * queue depth. This is similar to what the old code would do.
4557                  */
4558                 if (hctx->sched_tags) {
4559                         ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
4560                                                       nr, true);
4561                 } else {
4562                         ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
4563                                                       false);
4564                 }
4565                 if (ret)
4566                         break;
4567                 if (q->elevator && q->elevator->type->ops.depth_updated)
4568                         q->elevator->type->ops.depth_updated(hctx);
4569         }
4570         if (!ret) {
4571                 q->nr_requests = nr;
4572                 if (blk_mq_is_shared_tags(set->flags)) {
4573                         if (q->elevator)
4574                                 blk_mq_tag_update_sched_shared_tags(q);
4575                         else
4576                                 blk_mq_tag_resize_shared_tags(set, nr);
4577                 }
4578         }
4579
4580         blk_mq_unquiesce_queue(q);
4581         blk_mq_unfreeze_queue(q);
4582
4583         return ret;
4584 }
4585
4586 /*
4587  * request_queue and elevator_type pair.
4588  * It is just used by __blk_mq_update_nr_hw_queues to cache
4589  * the elevator_type associated with a request_queue.
4590  */
4591 struct blk_mq_qe_pair {
4592         struct list_head node;
4593         struct request_queue *q;
4594         struct elevator_type *type;
4595 };
4596
4597 /*
4598  * Cache the elevator_type in qe pair list and switch the
4599  * io scheduler to 'none'
4600  */
4601 static bool blk_mq_elv_switch_none(struct list_head *head,
4602                 struct request_queue *q)
4603 {
4604         struct blk_mq_qe_pair *qe;
4605
4606         if (!q->elevator)
4607                 return true;
4608
4609         qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
4610         if (!qe)
4611                 return false;
4612
4613         /* q->elevator needs protection from ->sysfs_lock */
4614         mutex_lock(&q->sysfs_lock);
4615
4616         INIT_LIST_HEAD(&qe->node);
4617         qe->q = q;
4618         qe->type = q->elevator->type;
4619         /* keep a reference to the elevator module as we'll switch back */
4620         __elevator_get(qe->type);
4621         list_add(&qe->node, head);
4622         elevator_disable(q);
4623         mutex_unlock(&q->sysfs_lock);
4624
4625         return true;
4626 }
4627
4628 static struct blk_mq_qe_pair *blk_lookup_qe_pair(struct list_head *head,
4629                                                 struct request_queue *q)
4630 {
4631         struct blk_mq_qe_pair *qe;
4632
4633         list_for_each_entry(qe, head, node)
4634                 if (qe->q == q)
4635                         return qe;
4636
4637         return NULL;
4638 }
4639
4640 static void blk_mq_elv_switch_back(struct list_head *head,
4641                                   struct request_queue *q)
4642 {
4643         struct blk_mq_qe_pair *qe;
4644         struct elevator_type *t;
4645
4646         qe = blk_lookup_qe_pair(head, q);
4647         if (!qe)
4648                 return;
4649         t = qe->type;
4650         list_del(&qe->node);
4651         kfree(qe);
4652
4653         mutex_lock(&q->sysfs_lock);
4654         elevator_switch(q, t);
4655         /* drop the reference acquired in blk_mq_elv_switch_none */
4656         elevator_put(t);
4657         mutex_unlock(&q->sysfs_lock);
4658 }
4659
4660 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
4661                                                         int nr_hw_queues)
4662 {
4663         struct request_queue *q;
4664         LIST_HEAD(head);
4665         int prev_nr_hw_queues;
4666
4667         lockdep_assert_held(&set->tag_list_lock);
4668
4669         if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
4670                 nr_hw_queues = nr_cpu_ids;
4671         if (nr_hw_queues < 1)
4672                 return;
4673         if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
4674                 return;
4675
4676         list_for_each_entry(q, &set->tag_list, tag_set_list)
4677                 blk_mq_freeze_queue(q);
4678         /*
4679          * Switch IO scheduler to 'none', cleaning up the data associated
4680          * with the previous scheduler. We will switch back once we are done
4681          * updating the new sw to hw queue mappings.
4682          */
4683         list_for_each_entry(q, &set->tag_list, tag_set_list)
4684                 if (!blk_mq_elv_switch_none(&head, q))
4685                         goto switch_back;
4686
4687         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4688                 blk_mq_debugfs_unregister_hctxs(q);
4689                 blk_mq_sysfs_unregister_hctxs(q);
4690         }
4691
4692         prev_nr_hw_queues = set->nr_hw_queues;
4693         if (blk_mq_realloc_tag_set_tags(set, nr_hw_queues) < 0)
4694                 goto reregister;
4695
4696 fallback:
4697         blk_mq_update_queue_map(set);
4698         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4699                 blk_mq_realloc_hw_ctxs(set, q);
4700                 blk_mq_update_poll_flag(q);
4701                 if (q->nr_hw_queues != set->nr_hw_queues) {
4702                         int i = prev_nr_hw_queues;
4703
4704                         pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
4705                                         nr_hw_queues, prev_nr_hw_queues);
4706                         for (; i < set->nr_hw_queues; i++)
4707                                 __blk_mq_free_map_and_rqs(set, i);
4708
4709                         set->nr_hw_queues = prev_nr_hw_queues;
4710                         blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
4711                         goto fallback;
4712                 }
4713                 blk_mq_map_swqueue(q);
4714         }
4715
4716 reregister:
4717         list_for_each_entry(q, &set->tag_list, tag_set_list) {
4718                 blk_mq_sysfs_register_hctxs(q);
4719                 blk_mq_debugfs_register_hctxs(q);
4720         }
4721
4722 switch_back:
4723         list_for_each_entry(q, &set->tag_list, tag_set_list)
4724                 blk_mq_elv_switch_back(&head, q);
4725
4726         list_for_each_entry(q, &set->tag_list, tag_set_list)
4727                 blk_mq_unfreeze_queue(q);
4728 }
4729
4730 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
4731 {
4732         mutex_lock(&set->tag_list_lock);
4733         __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
4734         mutex_unlock(&set->tag_list_lock);
4735 }
4736 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
4737
4738 int blk_mq_poll(struct request_queue *q, blk_qc_t cookie, struct io_comp_batch *iob,
4739                 unsigned int flags)
4740 {
4741         struct blk_mq_hw_ctx *hctx = blk_qc_to_hctx(q, cookie);
4742         long state = get_current_state();
4743         int ret;
4744
4745         do {
4746                 ret = q->mq_ops->poll(hctx, iob);
4747                 if (ret > 0) {
4748                         __set_current_state(TASK_RUNNING);
4749                         return ret;
4750                 }
4751
4752                 if (signal_pending_state(state, current))
4753                         __set_current_state(TASK_RUNNING);
4754                 if (task_is_running(current))
4755                         return 1;
4756
4757                 if (ret < 0 || (flags & BLK_POLL_ONESHOT))
4758                         break;
4759                 cpu_relax();
4760         } while (!need_resched());
4761
4762         __set_current_state(TASK_RUNNING);
4763         return 0;
4764 }
4765
4766 unsigned int blk_mq_rq_cpu(struct request *rq)
4767 {
4768         return rq->mq_ctx->cpu;
4769 }
4770 EXPORT_SYMBOL(blk_mq_rq_cpu);
4771
4772 void blk_mq_cancel_work_sync(struct request_queue *q)
4773 {
4774         struct blk_mq_hw_ctx *hctx;
4775         unsigned long i;
4776
4777         cancel_delayed_work_sync(&q->requeue_work);
4778
4779         queue_for_each_hw_ctx(q, hctx, i)
4780                 cancel_delayed_work_sync(&hctx->run_work);
4781 }
4782
4783 static int __init blk_mq_init(void)
4784 {
4785         int i;
4786
4787         for_each_possible_cpu(i)
4788                 init_llist_head(&per_cpu(blk_cpu_done, i));
4789         open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
4790
4791         cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
4792                                   "block/softirq:dead", NULL,
4793                                   blk_softirq_cpu_dead);
4794         cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
4795                                 blk_mq_hctx_notify_dead);
4796         cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
4797                                 blk_mq_hctx_notify_online,
4798                                 blk_mq_hctx_notify_offline);
4799         return 0;
4800 }
4801 subsys_initcall(blk_mq_init);