Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  SMP related functions
4  *
5  *    Copyright IBM Corp. 1999, 2012
6  *    Author(s): Denis Joseph Barrow,
7  *               Martin Schwidefsky <schwidefsky@de.ibm.com>,
8  *
9  *  based on other smp stuff by
10  *    (c) 1995 Alan Cox, CymruNET Ltd  <alan@cymru.net>
11  *    (c) 1998 Ingo Molnar
12  *
13  * The code outside of smp.c uses logical cpu numbers, only smp.c does
14  * the translation of logical to physical cpu ids. All new code that
15  * operates on physical cpu numbers needs to go into smp.c.
16  */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/memblock.h>
23 #include <linux/export.h>
24 #include <linux/init.h>
25 #include <linux/mm.h>
26 #include <linux/err.h>
27 #include <linux/spinlock.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/irqflags.h>
32 #include <linux/irq_work.h>
33 #include <linux/cpu.h>
34 #include <linux/slab.h>
35 #include <linux/sched/hotplug.h>
36 #include <linux/sched/task_stack.h>
37 #include <linux/crash_dump.h>
38 #include <linux/kprobes.h>
39 #include <asm/asm-offsets.h>
40 #include <asm/diag.h>
41 #include <asm/switch_to.h>
42 #include <asm/facility.h>
43 #include <asm/ipl.h>
44 #include <asm/setup.h>
45 #include <asm/irq.h>
46 #include <asm/tlbflush.h>
47 #include <asm/vtimer.h>
48 #include <asm/abs_lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/debug.h>
51 #include <asm/os_info.h>
52 #include <asm/sigp.h>
53 #include <asm/idle.h>
54 #include <asm/nmi.h>
55 #include <asm/stacktrace.h>
56 #include <asm/topology.h>
57 #include <asm/vdso.h>
58 #include <asm/maccess.h>
59 #include "entry.h"
60
61 enum {
62         ec_schedule = 0,
63         ec_call_function_single,
64         ec_stop_cpu,
65         ec_mcck_pending,
66         ec_irq_work,
67 };
68
69 enum {
70         CPU_STATE_STANDBY,
71         CPU_STATE_CONFIGURED,
72 };
73
74 static DEFINE_PER_CPU(struct cpu *, cpu_device);
75
76 struct pcpu {
77         unsigned long ec_mask;          /* bit mask for ec_xxx functions */
78         unsigned long ec_clk;           /* sigp timestamp for ec_xxx */
79         signed char state;              /* physical cpu state */
80         signed char polarization;       /* physical polarization */
81         u16 address;                    /* physical cpu address */
82 };
83
84 static u8 boot_core_type;
85 static struct pcpu pcpu_devices[NR_CPUS];
86
87 unsigned int smp_cpu_mt_shift;
88 EXPORT_SYMBOL(smp_cpu_mt_shift);
89
90 unsigned int smp_cpu_mtid;
91 EXPORT_SYMBOL(smp_cpu_mtid);
92
93 #ifdef CONFIG_CRASH_DUMP
94 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
95 #endif
96
97 static unsigned int smp_max_threads __initdata = -1U;
98 cpumask_t cpu_setup_mask;
99
100 static int __init early_nosmt(char *s)
101 {
102         smp_max_threads = 1;
103         return 0;
104 }
105 early_param("nosmt", early_nosmt);
106
107 static int __init early_smt(char *s)
108 {
109         get_option(&s, &smp_max_threads);
110         return 0;
111 }
112 early_param("smt", early_smt);
113
114 /*
115  * The smp_cpu_state_mutex must be held when changing the state or polarization
116  * member of a pcpu data structure within the pcpu_devices arreay.
117  */
118 DEFINE_MUTEX(smp_cpu_state_mutex);
119
120 /*
121  * Signal processor helper functions.
122  */
123 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
124 {
125         int cc;
126
127         while (1) {
128                 cc = __pcpu_sigp(addr, order, parm, NULL);
129                 if (cc != SIGP_CC_BUSY)
130                         return cc;
131                 cpu_relax();
132         }
133 }
134
135 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
136 {
137         int cc, retry;
138
139         for (retry = 0; ; retry++) {
140                 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
141                 if (cc != SIGP_CC_BUSY)
142                         break;
143                 if (retry >= 3)
144                         udelay(10);
145         }
146         return cc;
147 }
148
149 static inline int pcpu_stopped(struct pcpu *pcpu)
150 {
151         u32 status;
152
153         if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
154                         0, &status) != SIGP_CC_STATUS_STORED)
155                 return 0;
156         return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
157 }
158
159 static inline int pcpu_running(struct pcpu *pcpu)
160 {
161         if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
162                         0, NULL) != SIGP_CC_STATUS_STORED)
163                 return 1;
164         /* Status stored condition code is equivalent to cpu not running. */
165         return 0;
166 }
167
168 /*
169  * Find struct pcpu by cpu address.
170  */
171 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
172 {
173         int cpu;
174
175         for_each_cpu(cpu, mask)
176                 if (pcpu_devices[cpu].address == address)
177                         return pcpu_devices + cpu;
178         return NULL;
179 }
180
181 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
182 {
183         int order;
184
185         if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
186                 return;
187         order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
188         pcpu->ec_clk = get_tod_clock_fast();
189         pcpu_sigp_retry(pcpu, order, 0);
190 }
191
192 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
193 {
194         unsigned long async_stack, nodat_stack, mcck_stack;
195         struct lowcore *lc;
196
197         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
198         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
199         async_stack = stack_alloc();
200         mcck_stack = stack_alloc();
201         if (!lc || !nodat_stack || !async_stack || !mcck_stack)
202                 goto out;
203         memcpy(lc, &S390_lowcore, 512);
204         memset((char *) lc + 512, 0, sizeof(*lc) - 512);
205         lc->async_stack = async_stack + STACK_INIT_OFFSET;
206         lc->nodat_stack = nodat_stack + STACK_INIT_OFFSET;
207         lc->mcck_stack = mcck_stack + STACK_INIT_OFFSET;
208         lc->cpu_nr = cpu;
209         lc->spinlock_lockval = arch_spin_lockval(cpu);
210         lc->spinlock_index = 0;
211         lc->return_lpswe = gen_lpswe(__LC_RETURN_PSW);
212         lc->return_mcck_lpswe = gen_lpswe(__LC_RETURN_MCCK_PSW);
213         lc->preempt_count = PREEMPT_DISABLED;
214         if (nmi_alloc_mcesa(&lc->mcesad))
215                 goto out;
216         if (abs_lowcore_map(cpu, lc, true))
217                 goto out_mcesa;
218         lowcore_ptr[cpu] = lc;
219         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, __pa(lc));
220         return 0;
221
222 out_mcesa:
223         nmi_free_mcesa(&lc->mcesad);
224 out:
225         stack_free(mcck_stack);
226         stack_free(async_stack);
227         free_pages(nodat_stack, THREAD_SIZE_ORDER);
228         free_pages((unsigned long) lc, LC_ORDER);
229         return -ENOMEM;
230 }
231
232 static void pcpu_free_lowcore(struct pcpu *pcpu)
233 {
234         unsigned long async_stack, nodat_stack, mcck_stack;
235         struct lowcore *lc;
236         int cpu;
237
238         cpu = pcpu - pcpu_devices;
239         lc = lowcore_ptr[cpu];
240         nodat_stack = lc->nodat_stack - STACK_INIT_OFFSET;
241         async_stack = lc->async_stack - STACK_INIT_OFFSET;
242         mcck_stack = lc->mcck_stack - STACK_INIT_OFFSET;
243         pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
244         lowcore_ptr[cpu] = NULL;
245         abs_lowcore_unmap(cpu);
246         nmi_free_mcesa(&lc->mcesad);
247         stack_free(async_stack);
248         stack_free(mcck_stack);
249         free_pages(nodat_stack, THREAD_SIZE_ORDER);
250         free_pages((unsigned long) lc, LC_ORDER);
251 }
252
253 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
254 {
255         struct lowcore *lc = lowcore_ptr[cpu];
256
257         cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
258         cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
259         lc->cpu_nr = cpu;
260         lc->restart_flags = RESTART_FLAG_CTLREGS;
261         lc->spinlock_lockval = arch_spin_lockval(cpu);
262         lc->spinlock_index = 0;
263         lc->percpu_offset = __per_cpu_offset[cpu];
264         lc->kernel_asce = S390_lowcore.kernel_asce;
265         lc->user_asce = s390_invalid_asce;
266         lc->machine_flags = S390_lowcore.machine_flags;
267         lc->user_timer = lc->system_timer =
268                 lc->steal_timer = lc->avg_steal_timer = 0;
269         __ctl_store(lc->cregs_save_area, 0, 15);
270         lc->cregs_save_area[1] = lc->kernel_asce;
271         lc->cregs_save_area[7] = lc->user_asce;
272         save_access_regs((unsigned int *) lc->access_regs_save_area);
273         arch_spin_lock_setup(cpu);
274 }
275
276 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
277 {
278         struct lowcore *lc;
279         int cpu;
280
281         cpu = pcpu - pcpu_devices;
282         lc = lowcore_ptr[cpu];
283         lc->kernel_stack = (unsigned long) task_stack_page(tsk)
284                 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
285         lc->current_task = (unsigned long) tsk;
286         lc->lpp = LPP_MAGIC;
287         lc->current_pid = tsk->pid;
288         lc->user_timer = tsk->thread.user_timer;
289         lc->guest_timer = tsk->thread.guest_timer;
290         lc->system_timer = tsk->thread.system_timer;
291         lc->hardirq_timer = tsk->thread.hardirq_timer;
292         lc->softirq_timer = tsk->thread.softirq_timer;
293         lc->steal_timer = 0;
294 }
295
296 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
297 {
298         struct lowcore *lc;
299         int cpu;
300
301         cpu = pcpu - pcpu_devices;
302         lc = lowcore_ptr[cpu];
303         lc->restart_stack = lc->kernel_stack;
304         lc->restart_fn = (unsigned long) func;
305         lc->restart_data = (unsigned long) data;
306         lc->restart_source = -1U;
307         pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
308 }
309
310 typedef void (pcpu_delegate_fn)(void *);
311
312 /*
313  * Call function via PSW restart on pcpu and stop the current cpu.
314  */
315 static void __pcpu_delegate(pcpu_delegate_fn *func, void *data)
316 {
317         func(data);     /* should not return */
318 }
319
320 static void pcpu_delegate(struct pcpu *pcpu,
321                           pcpu_delegate_fn *func,
322                           void *data, unsigned long stack)
323 {
324         struct lowcore *lc, *abs_lc;
325         unsigned int source_cpu;
326
327         lc = lowcore_ptr[pcpu - pcpu_devices];
328         source_cpu = stap();
329
330         if (pcpu->address == source_cpu) {
331                 call_on_stack(2, stack, void, __pcpu_delegate,
332                               pcpu_delegate_fn *, func, void *, data);
333         }
334         /* Stop target cpu (if func returns this stops the current cpu). */
335         pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
336         pcpu_sigp_retry(pcpu, SIGP_CPU_RESET, 0);
337         /* Restart func on the target cpu and stop the current cpu. */
338         if (lc) {
339                 lc->restart_stack = stack;
340                 lc->restart_fn = (unsigned long)func;
341                 lc->restart_data = (unsigned long)data;
342                 lc->restart_source = source_cpu;
343         } else {
344                 abs_lc = get_abs_lowcore();
345                 abs_lc->restart_stack = stack;
346                 abs_lc->restart_fn = (unsigned long)func;
347                 abs_lc->restart_data = (unsigned long)data;
348                 abs_lc->restart_source = source_cpu;
349                 put_abs_lowcore(abs_lc);
350         }
351         __bpon();
352         asm volatile(
353                 "0:     sigp    0,%0,%2 # sigp restart to target cpu\n"
354                 "       brc     2,0b    # busy, try again\n"
355                 "1:     sigp    0,%1,%3 # sigp stop to current cpu\n"
356                 "       brc     2,1b    # busy, try again\n"
357                 : : "d" (pcpu->address), "d" (source_cpu),
358                     "K" (SIGP_RESTART), "K" (SIGP_STOP)
359                 : "0", "1", "cc");
360         for (;;) ;
361 }
362
363 /*
364  * Enable additional logical cpus for multi-threading.
365  */
366 static int pcpu_set_smt(unsigned int mtid)
367 {
368         int cc;
369
370         if (smp_cpu_mtid == mtid)
371                 return 0;
372         cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
373         if (cc == 0) {
374                 smp_cpu_mtid = mtid;
375                 smp_cpu_mt_shift = 0;
376                 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
377                         smp_cpu_mt_shift++;
378                 pcpu_devices[0].address = stap();
379         }
380         return cc;
381 }
382
383 /*
384  * Call function on an online CPU.
385  */
386 void smp_call_online_cpu(void (*func)(void *), void *data)
387 {
388         struct pcpu *pcpu;
389
390         /* Use the current cpu if it is online. */
391         pcpu = pcpu_find_address(cpu_online_mask, stap());
392         if (!pcpu)
393                 /* Use the first online cpu. */
394                 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
395         pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
396 }
397
398 /*
399  * Call function on the ipl CPU.
400  */
401 void smp_call_ipl_cpu(void (*func)(void *), void *data)
402 {
403         struct lowcore *lc = lowcore_ptr[0];
404
405         if (pcpu_devices[0].address == stap())
406                 lc = &S390_lowcore;
407
408         pcpu_delegate(&pcpu_devices[0], func, data,
409                       lc->nodat_stack);
410 }
411
412 int smp_find_processor_id(u16 address)
413 {
414         int cpu;
415
416         for_each_present_cpu(cpu)
417                 if (pcpu_devices[cpu].address == address)
418                         return cpu;
419         return -1;
420 }
421
422 void schedule_mcck_handler(void)
423 {
424         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_mcck_pending);
425 }
426
427 bool notrace arch_vcpu_is_preempted(int cpu)
428 {
429         if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
430                 return false;
431         if (pcpu_running(pcpu_devices + cpu))
432                 return false;
433         return true;
434 }
435 EXPORT_SYMBOL(arch_vcpu_is_preempted);
436
437 void notrace smp_yield_cpu(int cpu)
438 {
439         if (!MACHINE_HAS_DIAG9C)
440                 return;
441         diag_stat_inc_norecursion(DIAG_STAT_X09C);
442         asm volatile("diag %0,0,0x9c"
443                      : : "d" (pcpu_devices[cpu].address));
444 }
445 EXPORT_SYMBOL_GPL(smp_yield_cpu);
446
447 /*
448  * Send cpus emergency shutdown signal. This gives the cpus the
449  * opportunity to complete outstanding interrupts.
450  */
451 void notrace smp_emergency_stop(void)
452 {
453         static arch_spinlock_t lock = __ARCH_SPIN_LOCK_UNLOCKED;
454         static cpumask_t cpumask;
455         u64 end;
456         int cpu;
457
458         arch_spin_lock(&lock);
459         cpumask_copy(&cpumask, cpu_online_mask);
460         cpumask_clear_cpu(smp_processor_id(), &cpumask);
461
462         end = get_tod_clock() + (1000000UL << 12);
463         for_each_cpu(cpu, &cpumask) {
464                 struct pcpu *pcpu = pcpu_devices + cpu;
465                 set_bit(ec_stop_cpu, &pcpu->ec_mask);
466                 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
467                                    0, NULL) == SIGP_CC_BUSY &&
468                        get_tod_clock() < end)
469                         cpu_relax();
470         }
471         while (get_tod_clock() < end) {
472                 for_each_cpu(cpu, &cpumask)
473                         if (pcpu_stopped(pcpu_devices + cpu))
474                                 cpumask_clear_cpu(cpu, &cpumask);
475                 if (cpumask_empty(&cpumask))
476                         break;
477                 cpu_relax();
478         }
479         arch_spin_unlock(&lock);
480 }
481 NOKPROBE_SYMBOL(smp_emergency_stop);
482
483 /*
484  * Stop all cpus but the current one.
485  */
486 void smp_send_stop(void)
487 {
488         int cpu;
489
490         /* Disable all interrupts/machine checks */
491         __load_psw_mask(PSW_KERNEL_BITS);
492         trace_hardirqs_off();
493
494         debug_set_critical();
495
496         if (oops_in_progress)
497                 smp_emergency_stop();
498
499         /* stop all processors */
500         for_each_online_cpu(cpu) {
501                 if (cpu == smp_processor_id())
502                         continue;
503                 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
504                 while (!pcpu_stopped(pcpu_devices + cpu))
505                         cpu_relax();
506         }
507 }
508
509 /*
510  * This is the main routine where commands issued by other
511  * cpus are handled.
512  */
513 static void smp_handle_ext_call(void)
514 {
515         unsigned long bits;
516
517         /* handle bit signal external calls */
518         bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
519         if (test_bit(ec_stop_cpu, &bits))
520                 smp_stop_cpu();
521         if (test_bit(ec_schedule, &bits))
522                 scheduler_ipi();
523         if (test_bit(ec_call_function_single, &bits))
524                 generic_smp_call_function_single_interrupt();
525         if (test_bit(ec_mcck_pending, &bits))
526                 s390_handle_mcck();
527         if (test_bit(ec_irq_work, &bits))
528                 irq_work_run();
529 }
530
531 static void do_ext_call_interrupt(struct ext_code ext_code,
532                                   unsigned int param32, unsigned long param64)
533 {
534         inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
535         smp_handle_ext_call();
536 }
537
538 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
539 {
540         int cpu;
541
542         for_each_cpu(cpu, mask)
543                 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
544 }
545
546 void arch_send_call_function_single_ipi(int cpu)
547 {
548         pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
549 }
550
551 /*
552  * this function sends a 'reschedule' IPI to another CPU.
553  * it goes straight through and wastes no time serializing
554  * anything. Worst case is that we lose a reschedule ...
555  */
556 void arch_smp_send_reschedule(int cpu)
557 {
558         pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
559 }
560
561 #ifdef CONFIG_IRQ_WORK
562 void arch_irq_work_raise(void)
563 {
564         pcpu_ec_call(pcpu_devices + smp_processor_id(), ec_irq_work);
565 }
566 #endif
567
568 /*
569  * parameter area for the set/clear control bit callbacks
570  */
571 struct ec_creg_mask_parms {
572         unsigned long orval;
573         unsigned long andval;
574         int cr;
575 };
576
577 /*
578  * callback for setting/clearing control bits
579  */
580 static void smp_ctl_bit_callback(void *info)
581 {
582         struct ec_creg_mask_parms *pp = info;
583         unsigned long cregs[16];
584
585         __ctl_store(cregs, 0, 15);
586         cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
587         __ctl_load(cregs, 0, 15);
588 }
589
590 static DEFINE_SPINLOCK(ctl_lock);
591
592 void smp_ctl_set_clear_bit(int cr, int bit, bool set)
593 {
594         struct ec_creg_mask_parms parms = { .cr = cr, };
595         struct lowcore *abs_lc;
596         u64 ctlreg;
597
598         if (set) {
599                 parms.orval = 1UL << bit;
600                 parms.andval = -1UL;
601         } else {
602                 parms.orval = 0;
603                 parms.andval = ~(1UL << bit);
604         }
605         spin_lock(&ctl_lock);
606         abs_lc = get_abs_lowcore();
607         ctlreg = abs_lc->cregs_save_area[cr];
608         ctlreg = (ctlreg & parms.andval) | parms.orval;
609         abs_lc->cregs_save_area[cr] = ctlreg;
610         put_abs_lowcore(abs_lc);
611         spin_unlock(&ctl_lock);
612         on_each_cpu(smp_ctl_bit_callback, &parms, 1);
613 }
614 EXPORT_SYMBOL(smp_ctl_set_clear_bit);
615
616 #ifdef CONFIG_CRASH_DUMP
617
618 int smp_store_status(int cpu)
619 {
620         struct lowcore *lc;
621         struct pcpu *pcpu;
622         unsigned long pa;
623
624         pcpu = pcpu_devices + cpu;
625         lc = lowcore_ptr[cpu];
626         pa = __pa(&lc->floating_pt_save_area);
627         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
628                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
629                 return -EIO;
630         if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
631                 return 0;
632         pa = lc->mcesad & MCESA_ORIGIN_MASK;
633         if (MACHINE_HAS_GS)
634                 pa |= lc->mcesad & MCESA_LC_MASK;
635         if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
636                               pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
637                 return -EIO;
638         return 0;
639 }
640
641 /*
642  * Collect CPU state of the previous, crashed system.
643  * There are four cases:
644  * 1) standard zfcp/nvme dump
645  *    condition: OLDMEM_BASE == NULL && is_ipl_type_dump() == true
646  *    The state for all CPUs except the boot CPU needs to be collected
647  *    with sigp stop-and-store-status. The boot CPU state is located in
648  *    the absolute lowcore of the memory stored in the HSA. The zcore code
649  *    will copy the boot CPU state from the HSA.
650  * 2) stand-alone kdump for SCSI/NVMe (zfcp/nvme dump with swapped memory)
651  *    condition: OLDMEM_BASE != NULL && is_ipl_type_dump() == true
652  *    The state for all CPUs except the boot CPU needs to be collected
653  *    with sigp stop-and-store-status. The firmware or the boot-loader
654  *    stored the registers of the boot CPU in the absolute lowcore in the
655  *    memory of the old system.
656  * 3) kdump and the old kernel did not store the CPU state,
657  *    or stand-alone kdump for DASD
658  *    condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
659  *    The state for all CPUs except the boot CPU needs to be collected
660  *    with sigp stop-and-store-status. The kexec code or the boot-loader
661  *    stored the registers of the boot CPU in the memory of the old system.
662  * 4) kdump and the old kernel stored the CPU state
663  *    condition: OLDMEM_BASE != NULL && is_kdump_kernel()
664  *    This case does not exist for s390 anymore, setup_arch explicitly
665  *    deactivates the elfcorehdr= kernel parameter
666  */
667 static bool dump_available(void)
668 {
669         return oldmem_data.start || is_ipl_type_dump();
670 }
671
672 void __init smp_save_dump_ipl_cpu(void)
673 {
674         struct save_area *sa;
675         void *regs;
676
677         if (!dump_available())
678                 return;
679         sa = save_area_alloc(true);
680         regs = memblock_alloc(512, 8);
681         if (!sa || !regs)
682                 panic("could not allocate memory for boot CPU save area\n");
683         copy_oldmem_kernel(regs, __LC_FPREGS_SAVE_AREA, 512);
684         save_area_add_regs(sa, regs);
685         memblock_free(regs, 512);
686         if (MACHINE_HAS_VX)
687                 save_area_add_vxrs(sa, boot_cpu_vector_save_area);
688 }
689
690 void __init smp_save_dump_secondary_cpus(void)
691 {
692         int addr, boot_cpu_addr, max_cpu_addr;
693         struct save_area *sa;
694         void *page;
695
696         if (!dump_available())
697                 return;
698         /* Allocate a page as dumping area for the store status sigps */
699         page = memblock_alloc_low(PAGE_SIZE, PAGE_SIZE);
700         if (!page)
701                 panic("ERROR: Failed to allocate %lx bytes below %lx\n",
702                       PAGE_SIZE, 1UL << 31);
703
704         /* Set multi-threading state to the previous system. */
705         pcpu_set_smt(sclp.mtid_prev);
706         boot_cpu_addr = stap();
707         max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
708         for (addr = 0; addr <= max_cpu_addr; addr++) {
709                 if (addr == boot_cpu_addr)
710                         continue;
711                 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
712                     SIGP_CC_NOT_OPERATIONAL)
713                         continue;
714                 sa = save_area_alloc(false);
715                 if (!sa)
716                         panic("could not allocate memory for save area\n");
717                 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, __pa(page));
718                 save_area_add_regs(sa, page);
719                 if (MACHINE_HAS_VX) {
720                         __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, __pa(page));
721                         save_area_add_vxrs(sa, page);
722                 }
723         }
724         memblock_free(page, PAGE_SIZE);
725         diag_amode31_ops.diag308_reset();
726         pcpu_set_smt(0);
727 }
728 #endif /* CONFIG_CRASH_DUMP */
729
730 void smp_cpu_set_polarization(int cpu, int val)
731 {
732         pcpu_devices[cpu].polarization = val;
733 }
734
735 int smp_cpu_get_polarization(int cpu)
736 {
737         return pcpu_devices[cpu].polarization;
738 }
739
740 int smp_cpu_get_cpu_address(int cpu)
741 {
742         return pcpu_devices[cpu].address;
743 }
744
745 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
746 {
747         static int use_sigp_detection;
748         int address;
749
750         if (use_sigp_detection || sclp_get_core_info(info, early)) {
751                 use_sigp_detection = 1;
752                 for (address = 0;
753                      address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
754                      address += (1U << smp_cpu_mt_shift)) {
755                         if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
756                             SIGP_CC_NOT_OPERATIONAL)
757                                 continue;
758                         info->core[info->configured].core_id =
759                                 address >> smp_cpu_mt_shift;
760                         info->configured++;
761                 }
762                 info->combined = info->configured;
763         }
764 }
765
766 static int smp_add_present_cpu(int cpu);
767
768 static int smp_add_core(struct sclp_core_entry *core, cpumask_t *avail,
769                         bool configured, bool early)
770 {
771         struct pcpu *pcpu;
772         int cpu, nr, i;
773         u16 address;
774
775         nr = 0;
776         if (sclp.has_core_type && core->type != boot_core_type)
777                 return nr;
778         cpu = cpumask_first(avail);
779         address = core->core_id << smp_cpu_mt_shift;
780         for (i = 0; (i <= smp_cpu_mtid) && (cpu < nr_cpu_ids); i++) {
781                 if (pcpu_find_address(cpu_present_mask, address + i))
782                         continue;
783                 pcpu = pcpu_devices + cpu;
784                 pcpu->address = address + i;
785                 if (configured)
786                         pcpu->state = CPU_STATE_CONFIGURED;
787                 else
788                         pcpu->state = CPU_STATE_STANDBY;
789                 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
790                 set_cpu_present(cpu, true);
791                 if (!early && smp_add_present_cpu(cpu) != 0)
792                         set_cpu_present(cpu, false);
793                 else
794                         nr++;
795                 cpumask_clear_cpu(cpu, avail);
796                 cpu = cpumask_next(cpu, avail);
797         }
798         return nr;
799 }
800
801 static int __smp_rescan_cpus(struct sclp_core_info *info, bool early)
802 {
803         struct sclp_core_entry *core;
804         static cpumask_t avail;
805         bool configured;
806         u16 core_id;
807         int nr, i;
808
809         cpus_read_lock();
810         mutex_lock(&smp_cpu_state_mutex);
811         nr = 0;
812         cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
813         /*
814          * Add IPL core first (which got logical CPU number 0) to make sure
815          * that all SMT threads get subsequent logical CPU numbers.
816          */
817         if (early) {
818                 core_id = pcpu_devices[0].address >> smp_cpu_mt_shift;
819                 for (i = 0; i < info->configured; i++) {
820                         core = &info->core[i];
821                         if (core->core_id == core_id) {
822                                 nr += smp_add_core(core, &avail, true, early);
823                                 break;
824                         }
825                 }
826         }
827         for (i = 0; i < info->combined; i++) {
828                 configured = i < info->configured;
829                 nr += smp_add_core(&info->core[i], &avail, configured, early);
830         }
831         mutex_unlock(&smp_cpu_state_mutex);
832         cpus_read_unlock();
833         return nr;
834 }
835
836 void __init smp_detect_cpus(void)
837 {
838         unsigned int cpu, mtid, c_cpus, s_cpus;
839         struct sclp_core_info *info;
840         u16 address;
841
842         /* Get CPU information */
843         info = memblock_alloc(sizeof(*info), 8);
844         if (!info)
845                 panic("%s: Failed to allocate %zu bytes align=0x%x\n",
846                       __func__, sizeof(*info), 8);
847         smp_get_core_info(info, 1);
848         /* Find boot CPU type */
849         if (sclp.has_core_type) {
850                 address = stap();
851                 for (cpu = 0; cpu < info->combined; cpu++)
852                         if (info->core[cpu].core_id == address) {
853                                 /* The boot cpu dictates the cpu type. */
854                                 boot_core_type = info->core[cpu].type;
855                                 break;
856                         }
857                 if (cpu >= info->combined)
858                         panic("Could not find boot CPU type");
859         }
860
861         /* Set multi-threading state for the current system */
862         mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
863         mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
864         pcpu_set_smt(mtid);
865
866         /* Print number of CPUs */
867         c_cpus = s_cpus = 0;
868         for (cpu = 0; cpu < info->combined; cpu++) {
869                 if (sclp.has_core_type &&
870                     info->core[cpu].type != boot_core_type)
871                         continue;
872                 if (cpu < info->configured)
873                         c_cpus += smp_cpu_mtid + 1;
874                 else
875                         s_cpus += smp_cpu_mtid + 1;
876         }
877         pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
878
879         /* Add CPUs present at boot */
880         __smp_rescan_cpus(info, true);
881         memblock_free(info, sizeof(*info));
882 }
883
884 /*
885  *      Activate a secondary processor.
886  */
887 static void smp_start_secondary(void *cpuvoid)
888 {
889         int cpu = raw_smp_processor_id();
890
891         S390_lowcore.last_update_clock = get_tod_clock();
892         S390_lowcore.restart_stack = (unsigned long)restart_stack;
893         S390_lowcore.restart_fn = (unsigned long)do_restart;
894         S390_lowcore.restart_data = 0;
895         S390_lowcore.restart_source = -1U;
896         S390_lowcore.restart_flags = 0;
897         restore_access_regs(S390_lowcore.access_regs_save_area);
898         cpu_init();
899         rcu_cpu_starting(cpu);
900         init_cpu_timer();
901         vtime_init();
902         vdso_getcpu_init();
903         pfault_init();
904         cpumask_set_cpu(cpu, &cpu_setup_mask);
905         update_cpu_masks();
906         notify_cpu_starting(cpu);
907         if (topology_cpu_dedicated(cpu))
908                 set_cpu_flag(CIF_DEDICATED_CPU);
909         else
910                 clear_cpu_flag(CIF_DEDICATED_CPU);
911         set_cpu_online(cpu, true);
912         inc_irq_stat(CPU_RST);
913         local_irq_enable();
914         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
915 }
916
917 /* Upping and downing of CPUs */
918 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
919 {
920         struct pcpu *pcpu = pcpu_devices + cpu;
921         int rc;
922
923         if (pcpu->state != CPU_STATE_CONFIGURED)
924                 return -EIO;
925         if (pcpu_sigp_retry(pcpu, SIGP_INITIAL_CPU_RESET, 0) !=
926             SIGP_CC_ORDER_CODE_ACCEPTED)
927                 return -EIO;
928
929         rc = pcpu_alloc_lowcore(pcpu, cpu);
930         if (rc)
931                 return rc;
932         pcpu_prepare_secondary(pcpu, cpu);
933         pcpu_attach_task(pcpu, tidle);
934         pcpu_start_fn(pcpu, smp_start_secondary, NULL);
935         /* Wait until cpu puts itself in the online & active maps */
936         while (!cpu_online(cpu))
937                 cpu_relax();
938         return 0;
939 }
940
941 static unsigned int setup_possible_cpus __initdata;
942
943 static int __init _setup_possible_cpus(char *s)
944 {
945         get_option(&s, &setup_possible_cpus);
946         return 0;
947 }
948 early_param("possible_cpus", _setup_possible_cpus);
949
950 int __cpu_disable(void)
951 {
952         unsigned long cregs[16];
953         int cpu;
954
955         /* Handle possible pending IPIs */
956         smp_handle_ext_call();
957         cpu = smp_processor_id();
958         set_cpu_online(cpu, false);
959         cpumask_clear_cpu(cpu, &cpu_setup_mask);
960         update_cpu_masks();
961         /* Disable pseudo page faults on this cpu. */
962         pfault_fini();
963         /* Disable interrupt sources via control register. */
964         __ctl_store(cregs, 0, 15);
965         cregs[0]  &= ~0x0000ee70UL;     /* disable all external interrupts */
966         cregs[6]  &= ~0xff000000UL;     /* disable all I/O interrupts */
967         cregs[14] &= ~0x1f000000UL;     /* disable most machine checks */
968         __ctl_load(cregs, 0, 15);
969         clear_cpu_flag(CIF_NOHZ_DELAY);
970         return 0;
971 }
972
973 void __cpu_die(unsigned int cpu)
974 {
975         struct pcpu *pcpu;
976
977         /* Wait until target cpu is down */
978         pcpu = pcpu_devices + cpu;
979         while (!pcpu_stopped(pcpu))
980                 cpu_relax();
981         pcpu_free_lowcore(pcpu);
982         cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
983         cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
984 }
985
986 void __noreturn cpu_die(void)
987 {
988         idle_task_exit();
989         __bpon();
990         pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
991         for (;;) ;
992 }
993
994 void __init smp_fill_possible_mask(void)
995 {
996         unsigned int possible, sclp_max, cpu;
997
998         sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
999         sclp_max = min(smp_max_threads, sclp_max);
1000         sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
1001         possible = setup_possible_cpus ?: nr_cpu_ids;
1002         possible = min(possible, sclp_max);
1003         for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
1004                 set_cpu_possible(cpu, true);
1005 }
1006
1007 void __init smp_prepare_cpus(unsigned int max_cpus)
1008 {
1009         /* request the 0x1201 emergency signal external interrupt */
1010         if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
1011                 panic("Couldn't request external interrupt 0x1201");
1012         /* request the 0x1202 external call external interrupt */
1013         if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
1014                 panic("Couldn't request external interrupt 0x1202");
1015 }
1016
1017 void __init smp_prepare_boot_cpu(void)
1018 {
1019         struct pcpu *pcpu = pcpu_devices;
1020
1021         WARN_ON(!cpu_present(0) || !cpu_online(0));
1022         pcpu->state = CPU_STATE_CONFIGURED;
1023         S390_lowcore.percpu_offset = __per_cpu_offset[0];
1024         smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
1025 }
1026
1027 void __init smp_setup_processor_id(void)
1028 {
1029         pcpu_devices[0].address = stap();
1030         S390_lowcore.cpu_nr = 0;
1031         S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
1032         S390_lowcore.spinlock_index = 0;
1033 }
1034
1035 /*
1036  * the frequency of the profiling timer can be changed
1037  * by writing a multiplier value into /proc/profile.
1038  *
1039  * usually you want to run this on all CPUs ;)
1040  */
1041 int setup_profiling_timer(unsigned int multiplier)
1042 {
1043         return 0;
1044 }
1045
1046 static ssize_t cpu_configure_show(struct device *dev,
1047                                   struct device_attribute *attr, char *buf)
1048 {
1049         ssize_t count;
1050
1051         mutex_lock(&smp_cpu_state_mutex);
1052         count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
1053         mutex_unlock(&smp_cpu_state_mutex);
1054         return count;
1055 }
1056
1057 static ssize_t cpu_configure_store(struct device *dev,
1058                                    struct device_attribute *attr,
1059                                    const char *buf, size_t count)
1060 {
1061         struct pcpu *pcpu;
1062         int cpu, val, rc, i;
1063         char delim;
1064
1065         if (sscanf(buf, "%d %c", &val, &delim) != 1)
1066                 return -EINVAL;
1067         if (val != 0 && val != 1)
1068                 return -EINVAL;
1069         cpus_read_lock();
1070         mutex_lock(&smp_cpu_state_mutex);
1071         rc = -EBUSY;
1072         /* disallow configuration changes of online cpus and cpu 0 */
1073         cpu = dev->id;
1074         cpu = smp_get_base_cpu(cpu);
1075         if (cpu == 0)
1076                 goto out;
1077         for (i = 0; i <= smp_cpu_mtid; i++)
1078                 if (cpu_online(cpu + i))
1079                         goto out;
1080         pcpu = pcpu_devices + cpu;
1081         rc = 0;
1082         switch (val) {
1083         case 0:
1084                 if (pcpu->state != CPU_STATE_CONFIGURED)
1085                         break;
1086                 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1087                 if (rc)
1088                         break;
1089                 for (i = 0; i <= smp_cpu_mtid; i++) {
1090                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1091                                 continue;
1092                         pcpu[i].state = CPU_STATE_STANDBY;
1093                         smp_cpu_set_polarization(cpu + i,
1094                                                  POLARIZATION_UNKNOWN);
1095                 }
1096                 topology_expect_change();
1097                 break;
1098         case 1:
1099                 if (pcpu->state != CPU_STATE_STANDBY)
1100                         break;
1101                 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1102                 if (rc)
1103                         break;
1104                 for (i = 0; i <= smp_cpu_mtid; i++) {
1105                         if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1106                                 continue;
1107                         pcpu[i].state = CPU_STATE_CONFIGURED;
1108                         smp_cpu_set_polarization(cpu + i,
1109                                                  POLARIZATION_UNKNOWN);
1110                 }
1111                 topology_expect_change();
1112                 break;
1113         default:
1114                 break;
1115         }
1116 out:
1117         mutex_unlock(&smp_cpu_state_mutex);
1118         cpus_read_unlock();
1119         return rc ? rc : count;
1120 }
1121 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1122
1123 static ssize_t show_cpu_address(struct device *dev,
1124                                 struct device_attribute *attr, char *buf)
1125 {
1126         return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1127 }
1128 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1129
1130 static struct attribute *cpu_common_attrs[] = {
1131         &dev_attr_configure.attr,
1132         &dev_attr_address.attr,
1133         NULL,
1134 };
1135
1136 static struct attribute_group cpu_common_attr_group = {
1137         .attrs = cpu_common_attrs,
1138 };
1139
1140 static struct attribute *cpu_online_attrs[] = {
1141         &dev_attr_idle_count.attr,
1142         &dev_attr_idle_time_us.attr,
1143         NULL,
1144 };
1145
1146 static struct attribute_group cpu_online_attr_group = {
1147         .attrs = cpu_online_attrs,
1148 };
1149
1150 static int smp_cpu_online(unsigned int cpu)
1151 {
1152         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1153
1154         return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1155 }
1156
1157 static int smp_cpu_pre_down(unsigned int cpu)
1158 {
1159         struct device *s = &per_cpu(cpu_device, cpu)->dev;
1160
1161         sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1162         return 0;
1163 }
1164
1165 static int smp_add_present_cpu(int cpu)
1166 {
1167         struct device *s;
1168         struct cpu *c;
1169         int rc;
1170
1171         c = kzalloc(sizeof(*c), GFP_KERNEL);
1172         if (!c)
1173                 return -ENOMEM;
1174         per_cpu(cpu_device, cpu) = c;
1175         s = &c->dev;
1176         c->hotpluggable = 1;
1177         rc = register_cpu(c, cpu);
1178         if (rc)
1179                 goto out;
1180         rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1181         if (rc)
1182                 goto out_cpu;
1183         rc = topology_cpu_init(c);
1184         if (rc)
1185                 goto out_topology;
1186         return 0;
1187
1188 out_topology:
1189         sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1190 out_cpu:
1191         unregister_cpu(c);
1192 out:
1193         return rc;
1194 }
1195
1196 int __ref smp_rescan_cpus(void)
1197 {
1198         struct sclp_core_info *info;
1199         int nr;
1200
1201         info = kzalloc(sizeof(*info), GFP_KERNEL);
1202         if (!info)
1203                 return -ENOMEM;
1204         smp_get_core_info(info, 0);
1205         nr = __smp_rescan_cpus(info, false);
1206         kfree(info);
1207         if (nr)
1208                 topology_schedule_update();
1209         return 0;
1210 }
1211
1212 static ssize_t __ref rescan_store(struct device *dev,
1213                                   struct device_attribute *attr,
1214                                   const char *buf,
1215                                   size_t count)
1216 {
1217         int rc;
1218
1219         rc = lock_device_hotplug_sysfs();
1220         if (rc)
1221                 return rc;
1222         rc = smp_rescan_cpus();
1223         unlock_device_hotplug();
1224         return rc ? rc : count;
1225 }
1226 static DEVICE_ATTR_WO(rescan);
1227
1228 static int __init s390_smp_init(void)
1229 {
1230         struct device *dev_root;
1231         int cpu, rc = 0;
1232
1233         dev_root = bus_get_dev_root(&cpu_subsys);
1234         if (dev_root) {
1235                 rc = device_create_file(dev_root, &dev_attr_rescan);
1236                 put_device(dev_root);
1237                 if (rc)
1238                         return rc;
1239         }
1240
1241         for_each_present_cpu(cpu) {
1242                 rc = smp_add_present_cpu(cpu);
1243                 if (rc)
1244                         goto out;
1245         }
1246
1247         rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1248                                smp_cpu_online, smp_cpu_pre_down);
1249         rc = rc <= 0 ? rc : 0;
1250 out:
1251         return rc;
1252 }
1253 subsys_initcall(s390_smp_init);
1254
1255 static __always_inline void set_new_lowcore(struct lowcore *lc)
1256 {
1257         union register_pair dst, src;
1258         u32 pfx;
1259
1260         src.even = (unsigned long) &S390_lowcore;
1261         src.odd  = sizeof(S390_lowcore);
1262         dst.even = (unsigned long) lc;
1263         dst.odd  = sizeof(*lc);
1264         pfx = __pa(lc);
1265
1266         asm volatile(
1267                 "       mvcl    %[dst],%[src]\n"
1268                 "       spx     %[pfx]\n"
1269                 : [dst] "+&d" (dst.pair), [src] "+&d" (src.pair)
1270                 : [pfx] "Q" (pfx)
1271                 : "memory", "cc");
1272 }
1273
1274 int __init smp_reinit_ipl_cpu(void)
1275 {
1276         unsigned long async_stack, nodat_stack, mcck_stack;
1277         struct lowcore *lc, *lc_ipl;
1278         unsigned long flags, cr0;
1279         u64 mcesad;
1280
1281         lc_ipl = lowcore_ptr[0];
1282         lc = (struct lowcore *) __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
1283         nodat_stack = __get_free_pages(GFP_KERNEL, THREAD_SIZE_ORDER);
1284         async_stack = stack_alloc();
1285         mcck_stack = stack_alloc();
1286         if (!lc || !nodat_stack || !async_stack || !mcck_stack || nmi_alloc_mcesa(&mcesad))
1287                 panic("Couldn't allocate memory");
1288
1289         local_irq_save(flags);
1290         local_mcck_disable();
1291         set_new_lowcore(lc);
1292         S390_lowcore.nodat_stack = nodat_stack + STACK_INIT_OFFSET;
1293         S390_lowcore.async_stack = async_stack + STACK_INIT_OFFSET;
1294         S390_lowcore.mcck_stack = mcck_stack + STACK_INIT_OFFSET;
1295         __ctl_store(cr0, 0, 0);
1296         __ctl_clear_bit(0, 28); /* disable lowcore protection */
1297         S390_lowcore.mcesad = mcesad;
1298         __ctl_load(cr0, 0, 0);
1299         if (abs_lowcore_map(0, lc, false))
1300                 panic("Couldn't remap absolute lowcore");
1301         lowcore_ptr[0] = lc;
1302         local_mcck_enable();
1303         local_irq_restore(flags);
1304
1305         free_pages(lc_ipl->async_stack - STACK_INIT_OFFSET, THREAD_SIZE_ORDER);
1306         memblock_free_late(__pa(lc_ipl->mcck_stack - STACK_INIT_OFFSET), THREAD_SIZE);
1307         memblock_free_late(__pa(lc_ipl), sizeof(*lc_ipl));
1308
1309         return 0;
1310 }