5358af2c8a8dc7bea5234c329bdf39087679a15f
[fio.git] / fio.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <signal.h>
28 #include <time.h>
29 #include <locale.h>
30 #include <assert.h>
31 #include <sys/stat.h>
32 #include <sys/wait.h>
33 #include <sys/ipc.h>
34 #include <sys/shm.h>
35 #include <sys/mman.h>
36
37 #include "fio.h"
38 #include "os.h"
39
40 static unsigned long page_mask;
41 #define ALIGN(buf)      \
42         (char *) (((unsigned long) (buf) + page_mask) & ~page_mask)
43
44 int groupid = 0;
45 int thread_number = 0;
46 int shm_id = 0;
47 int temp_stall_ts;
48
49 static volatile int startup_sem;
50 static volatile int fio_abort;
51 static int exit_value;
52
53 struct io_log *agg_io_log[2];
54
55 #define TERMINATE_ALL           (-1)
56 #define JOB_START_TIMEOUT       (5 * 1000)
57
58 static inline void td_set_runstate(struct thread_data *td, int runstate)
59 {
60         td->runstate = runstate;
61 }
62
63 static void terminate_threads(int group_id, int forced_kill)
64 {
65         struct thread_data *td;
66         int i;
67
68         for_each_td(td, i) {
69                 if (group_id == TERMINATE_ALL || groupid == td->groupid) {
70                         td->terminate = 1;
71                         td->start_delay = 0;
72                         if (forced_kill)
73                                 td_set_runstate(td, TD_EXITED);
74                 }
75         }
76 }
77
78 static void sig_handler(int sig)
79 {
80         switch (sig) {
81                 case SIGALRM:
82                         update_io_ticks();
83                         disk_util_timer_arm();
84                         print_thread_status();
85                         break;
86                 default:
87                         printf("\nfio: terminating on signal %d\n", sig);
88                         fflush(stdout);
89                         terminate_threads(TERMINATE_ALL, 0);
90                         break;
91         }
92 }
93
94 /*
95  * Check if we are above the minimum rate given.
96  */
97 static int check_min_rate(struct thread_data *td, struct timeval *now)
98 {
99         unsigned long spent;
100         unsigned long rate;
101         int ddir = td->ddir;
102
103         /*
104          * allow a 2 second settle period in the beginning
105          */
106         if (mtime_since(&td->start, now) < 2000)
107                 return 0;
108
109         /*
110          * if rate blocks is set, sample is running
111          */
112         if (td->rate_bytes) {
113                 spent = mtime_since(&td->lastrate, now);
114                 if (spent < td->ratecycle)
115                         return 0;
116
117                 rate = (td->this_io_bytes[ddir] - td->rate_bytes) / spent;
118                 if (rate < td->ratemin) {
119                         fprintf(f_out, "%s: min rate %u not met, got %luKiB/sec\n", td->name, td->ratemin, rate);
120                         return 1;
121                 }
122         }
123
124         td->rate_bytes = td->this_io_bytes[ddir];
125         memcpy(&td->lastrate, now, sizeof(*now));
126         return 0;
127 }
128
129 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
130 {
131         if (!td->timeout)
132                 return 0;
133         if (mtime_since(&td->epoch, t) >= td->timeout * 1000)
134                 return 1;
135
136         return 0;
137 }
138
139 static struct fio_file *get_next_file(struct thread_data *td)
140 {
141         unsigned int old_next_file = td->next_file;
142         struct fio_file *f;
143
144         do {
145                 f = &td->files[td->next_file];
146
147                 td->next_file++;
148                 if (td->next_file >= td->nr_files)
149                         td->next_file = 0;
150
151                 if (f->fd != -1)
152                         break;
153
154                 f = NULL;
155         } while (td->next_file != old_next_file);
156
157         return f;
158 }
159
160 /*
161  * When job exits, we can cancel the in-flight IO if we are using async
162  * io. Attempt to do so.
163  */
164 static void cleanup_pending_aio(struct thread_data *td)
165 {
166         struct timespec ts = { .tv_sec = 0, .tv_nsec = 0};
167         struct list_head *entry, *n;
168         struct io_completion_data icd;
169         struct io_u *io_u;
170         int r;
171
172         /*
173          * get immediately available events, if any
174          */
175         r = td_io_getevents(td, 0, td->cur_depth, &ts);
176         if (r > 0) {
177                 icd.nr = r;
178                 ios_completed(td, &icd);
179         }
180
181         /*
182          * now cancel remaining active events
183          */
184         if (td->io_ops->cancel) {
185                 list_for_each_safe(entry, n, &td->io_u_busylist) {
186                         io_u = list_entry(entry, struct io_u, list);
187
188                         r = td->io_ops->cancel(td, io_u);
189                         if (!r)
190                                 put_io_u(td, io_u);
191                 }
192         }
193
194         if (td->cur_depth) {
195                 r = td_io_getevents(td, td->cur_depth, td->cur_depth, NULL);
196                 if (r > 0) {
197                         icd.nr = r;
198                         ios_completed(td, &icd);
199                 }
200         }
201 }
202
203 /*
204  * Helper to handle the final sync of a file. Works just like the normal
205  * io path, just does everything sync.
206  */
207 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
208 {
209         struct io_u *io_u = __get_io_u(td);
210         struct io_completion_data icd;
211         int ret;
212
213         if (!io_u)
214                 return 1;
215
216         io_u->ddir = DDIR_SYNC;
217         io_u->file = f;
218
219         if (td_io_prep(td, io_u)) {
220                 put_io_u(td, io_u);
221                 return 1;
222         }
223
224         ret = td_io_queue(td, io_u);
225         if (ret < 0) {
226                 td_verror(td, io_u->error);
227                 put_io_u(td, io_u);
228                 return 1;
229         } else if (ret == FIO_Q_QUEUED) {
230                 ret = td_io_getevents(td, 1, td->cur_depth, NULL);
231                 if (ret < 0) {
232                         td_verror(td, ret);
233                         return 1;
234                 }
235
236                 icd.nr = ret;
237                 ios_completed(td, &icd);
238                 if (icd.error) {
239                         td_verror(td, icd.error);
240                         return 1;
241                 }
242         } else if (ret == FIO_Q_COMPLETED) {
243                 if (io_u->error) {
244                         td_verror(td, io_u->error);
245                         return 1;
246                 }
247
248                 init_icd(&icd);
249                 io_completed(td, io_u, &icd);
250                 put_io_u(td, io_u);
251         }
252
253         return 0;
254 }
255
256 /*
257  * The main verify engine. Runs over the writes we previusly submitted,
258  * reads the blocks back in, and checks the crc/md5 of the data.
259  */
260 static void do_verify(struct thread_data *td)
261 {
262         struct fio_file *f;
263         struct io_u *io_u;
264         int ret, i;
265
266         /*
267          * sync io first and invalidate cache, to make sure we really
268          * read from disk.
269          */
270         for_each_file(td, f, i) {
271                 fio_io_sync(td, f);
272                 file_invalidate_cache(td, f);
273         }
274
275         td_set_runstate(td, TD_VERIFYING);
276
277         io_u = NULL;
278         while (!td->terminate) {
279                 io_u = __get_io_u(td);
280                 if (!io_u)
281                         break;
282
283                 if (runtime_exceeded(td, &io_u->start_time))
284                         break;
285
286                 if (get_next_verify(td, io_u))
287                         break;
288
289                 if (td_io_prep(td, io_u))
290                         break;
291
292 requeue:
293                 ret = td_io_queue(td, io_u);
294
295                 switch (ret) {
296                 case FIO_Q_COMPLETED:
297                         if (io_u->error)
298                                 ret = io_u->error;
299                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
300                                 int bytes = io_u->xfer_buflen - io_u->resid;
301
302                                 io_u->xfer_buflen = io_u->resid;
303                                 io_u->xfer_buf += bytes;
304                                 goto requeue;
305                         }
306                         if (do_io_u_verify(td, &io_u)) {
307                                 ret = -EIO;
308                                 break;
309                         }
310                         continue;
311                 case FIO_Q_QUEUED:
312                         break;
313                 default:
314                         assert(ret < 0);
315                         td_verror(td, ret);
316                         break;
317                 }
318
319                 /*
320                  * We get here for a queued request, in the future we
321                  * want to later make this take full advantage of
322                  * keeping IO in flight while verifying others.
323                  */
324                 ret = td_io_getevents(td, 1, 1, NULL);
325                 if (ret < 0)
326                         break;
327
328                 assert(ret == 1);
329                 io_u = td->io_ops->event(td, 0);
330
331                 if (do_io_u_verify(td, &io_u))
332                         break;
333         }
334
335         if (io_u)
336                 put_io_u(td, io_u);
337
338         if (td->cur_depth)
339                 cleanup_pending_aio(td);
340
341         td_set_runstate(td, TD_RUNNING);
342 }
343
344 /*
345  * Not really an io thread, all it does is burn CPU cycles in the specified
346  * manner.
347  */
348 static void do_cpuio(struct thread_data *td)
349 {
350         struct timeval e;
351         int split = 100 / td->cpuload;
352         int i = 0;
353
354         while (!td->terminate) {
355                 fio_gettime(&e, NULL);
356
357                 if (runtime_exceeded(td, &e))
358                         break;
359
360                 if (!(i % split))
361                         __usec_sleep(10000);
362                 else
363                         usec_sleep(td, 10000);
364
365                 i++;
366         }
367 }
368
369 /*
370  * Main IO worker function. It retrieves io_u's to process and queues
371  * and reaps them, checking for rate and errors along the way.
372  */
373 static void do_io(struct thread_data *td)
374 {
375         struct io_completion_data icd;
376         struct timeval s;
377         unsigned long usec;
378         struct fio_file *f;
379         int i, ret = 0;
380
381         td_set_runstate(td, TD_RUNNING);
382
383         while ((td->this_io_bytes[0] + td->this_io_bytes[1]) < td->io_size) {
384                 struct timespec *timeout;
385                 int min_evts = 0;
386                 struct io_u *io_u;
387
388                 if (td->terminate)
389                         break;
390
391                 f = get_next_file(td);
392                 if (!f)
393                         break;
394
395                 io_u = get_io_u(td, f);
396                 if (!io_u)
397                         break;
398
399                 memcpy(&s, &io_u->start_time, sizeof(s));
400 requeue:
401                 ret = td_io_queue(td, io_u);
402
403                 switch (ret) {
404                 case FIO_Q_COMPLETED:
405                         if (io_u->error) {
406                                 ret = io_u->error;
407                                 break;
408                         }
409                         if (io_u->xfer_buflen != io_u->resid && io_u->resid) {
410                                 int bytes = io_u->xfer_buflen - io_u->resid;
411
412                                 io_u->xfer_buflen = io_u->resid;
413                                 io_u->xfer_buf += bytes;
414                                 goto requeue;
415                         }
416                         init_icd(&icd);
417                         io_completed(td, io_u, &icd);
418                         put_io_u(td, io_u);
419                         break;
420                 case FIO_Q_QUEUED:
421                         break;
422                 default:
423                         assert(ret < 0);
424                         put_io_u(td, io_u);
425                         break;
426                 }
427
428                 if (ret < 0)
429                         break;
430
431                 add_slat_sample(td, io_u->ddir, mtime_since(&io_u->start_time, &io_u->issue_time));
432
433                 if (ret == FIO_Q_QUEUED) {
434                         if (td->cur_depth < td->iodepth) {
435                                 struct timespec ts;
436
437                                 ts.tv_sec = 0;
438                                 ts.tv_nsec = 0;
439                                 timeout = &ts;
440                                 min_evts = 0;
441                         } else {
442                                 timeout = NULL;
443                                 min_evts = 1;
444                         }
445
446                         ret = td_io_getevents(td, min_evts, td->cur_depth, timeout);
447                         if (ret < 0) {
448                                 td_verror(td, ret);
449                                 break;
450                         } else if (!ret)
451                                 continue;
452
453                         icd.nr = ret;
454                         ios_completed(td, &icd);
455                         if (icd.error) {
456                                 td_verror(td, icd.error);
457                                 break;
458                         }
459                 }
460
461                 /*
462                  * the rate is batched for now, it should work for batches
463                  * of completions except the very first one which may look
464                  * a little bursty
465                  */
466                 usec = utime_since(&s, &icd.time);
467
468                 rate_throttle(td, usec, icd.bytes_done[td->ddir], td->ddir);
469
470                 if (check_min_rate(td, &icd.time)) {
471                         if (exitall_on_terminate)
472                                 terminate_threads(td->groupid, 0);
473                         td_verror(td, ENODATA);
474                         break;
475                 }
476
477                 if (runtime_exceeded(td, &icd.time))
478                         break;
479
480                 if (td->thinktime) {
481                         unsigned long long b;
482
483                         b = td->io_blocks[0] + td->io_blocks[1];
484                         if (!(b % td->thinktime_blocks)) {
485                                 int left;
486
487                                 if (td->thinktime_spin)
488                                         __usec_sleep(td->thinktime_spin);
489
490                                 left = td->thinktime - td->thinktime_spin;
491                                 if (left)
492                                         usec_sleep(td, left);
493                         }
494                 }
495         }
496
497         if (!td->error) {
498                 if (td->cur_depth)
499                         cleanup_pending_aio(td);
500
501                 if (should_fsync(td) && td->end_fsync) {
502                         td_set_runstate(td, TD_FSYNCING);
503                         for_each_file(td, f, i)
504                                 fio_io_sync(td, f);
505                 }
506         }
507 }
508
509 static void cleanup_io_u(struct thread_data *td)
510 {
511         struct list_head *entry, *n;
512         struct io_u *io_u;
513
514         list_for_each_safe(entry, n, &td->io_u_freelist) {
515                 io_u = list_entry(entry, struct io_u, list);
516
517                 list_del(&io_u->list);
518                 free(io_u);
519         }
520
521         free_io_mem(td);
522 }
523
524 /*
525  * "randomly" fill the buffer contents
526  */
527 static void fill_rand_buf(struct io_u *io_u, int max_bs)
528 {
529         int *ptr = io_u->buf;
530
531         while ((void *) ptr - io_u->buf < max_bs) {
532                 *ptr = rand() * 0x9e370001;
533                 ptr++;
534         }
535 }
536
537 static int init_io_u(struct thread_data *td)
538 {
539         struct io_u *io_u;
540         unsigned int max_bs;
541         int i, max_units;
542         char *p;
543
544         if (td->io_ops->flags & FIO_CPUIO)
545                 return 0;
546
547         if (td->io_ops->flags & FIO_SYNCIO)
548                 max_units = 1;
549         else
550                 max_units = td->iodepth;
551
552         max_bs = max(td->max_bs[DDIR_READ], td->max_bs[DDIR_WRITE]);
553         td->orig_buffer_size = max_bs * max_units;
554
555         if (td->mem_type == MEM_SHMHUGE || td->mem_type == MEM_MMAPHUGE)
556                 td->orig_buffer_size = (td->orig_buffer_size + td->hugepage_size - 1) & ~(td->hugepage_size - 1);
557         else
558                 td->orig_buffer_size += page_mask;
559
560         if (allocate_io_mem(td))
561                 return 1;
562
563         p = ALIGN(td->orig_buffer);
564         for (i = 0; i < max_units; i++) {
565                 io_u = malloc(sizeof(*io_u));
566                 memset(io_u, 0, sizeof(*io_u));
567                 INIT_LIST_HEAD(&io_u->list);
568
569                 io_u->buf = p + max_bs * i;
570                 if (td_write(td) || td_rw(td))
571                         fill_rand_buf(io_u, max_bs);
572
573                 io_u->index = i;
574                 list_add(&io_u->list, &td->io_u_freelist);
575         }
576
577         return 0;
578 }
579
580 static int switch_ioscheduler(struct thread_data *td)
581 {
582         char tmp[256], tmp2[128];
583         FILE *f;
584         int ret;
585
586         if (td->io_ops->flags & FIO_CPUIO)
587                 return 0;
588
589         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
590
591         f = fopen(tmp, "r+");
592         if (!f) {
593                 td_verror(td, errno);
594                 return 1;
595         }
596
597         /*
598          * Set io scheduler.
599          */
600         ret = fwrite(td->ioscheduler, strlen(td->ioscheduler), 1, f);
601         if (ferror(f) || ret != 1) {
602                 td_verror(td, errno);
603                 fclose(f);
604                 return 1;
605         }
606
607         rewind(f);
608
609         /*
610          * Read back and check that the selected scheduler is now the default.
611          */
612         ret = fread(tmp, 1, sizeof(tmp), f);
613         if (ferror(f) || ret < 0) {
614                 td_verror(td, errno);
615                 fclose(f);
616                 return 1;
617         }
618
619         sprintf(tmp2, "[%s]", td->ioscheduler);
620         if (!strstr(tmp, tmp2)) {
621                 log_err("fio: io scheduler %s not found\n", td->ioscheduler);
622                 td_verror(td, EINVAL);
623                 fclose(f);
624                 return 1;
625         }
626
627         fclose(f);
628         return 0;
629 }
630
631 static void clear_io_state(struct thread_data *td)
632 {
633         struct fio_file *f;
634         int i;
635
636         td->stat_io_bytes[0] = td->stat_io_bytes[1] = 0;
637         td->this_io_bytes[0] = td->this_io_bytes[1] = 0;
638         td->zone_bytes = 0;
639
640         for_each_file(td, f, i) {
641                 f->last_pos = 0;
642                 if (td->io_ops->flags & FIO_SYNCIO)
643                         lseek(f->fd, SEEK_SET, 0);
644
645                 if (f->file_map)
646                         memset(f->file_map, 0, f->num_maps * sizeof(long));
647         }
648 }
649
650 /*
651  * Entry point for the thread based jobs. The process based jobs end up
652  * here as well, after a little setup.
653  */
654 static void *thread_main(void *data)
655 {
656         unsigned long long runtime[2];
657         struct thread_data *td = data;
658
659         if (!td->use_thread)
660                 setsid();
661
662         td->pid = getpid();
663
664         INIT_LIST_HEAD(&td->io_u_freelist);
665         INIT_LIST_HEAD(&td->io_u_busylist);
666         INIT_LIST_HEAD(&td->io_hist_list);
667         INIT_LIST_HEAD(&td->io_log_list);
668
669         if (init_io_u(td))
670                 goto err;
671
672         if (fio_setaffinity(td) == -1) {
673                 td_verror(td, errno);
674                 goto err;
675         }
676
677         if (init_iolog(td))
678                 goto err;
679
680         if (td->ioprio) {
681                 if (ioprio_set(IOPRIO_WHO_PROCESS, 0, td->ioprio) == -1) {
682                         td_verror(td, errno);
683                         goto err;
684                 }
685         }
686
687         if (nice(td->nice) == -1) {
688                 td_verror(td, errno);
689                 goto err;
690         }
691
692         if (init_random_state(td))
693                 goto err;
694
695         if (td->ioscheduler && switch_ioscheduler(td))
696                 goto err;
697
698         td_set_runstate(td, TD_INITIALIZED);
699         fio_sem_up(&startup_sem);
700         fio_sem_down(&td->mutex);
701
702         if (!td->create_serialize && setup_files(td))
703                 goto err;
704         if (open_files(td))
705                 goto err;
706
707         /*
708          * Do this late, as some IO engines would like to have the
709          * files setup prior to initializing structures.
710          */
711         if (td_io_init(td))
712                 goto err;
713
714         if (td->exec_prerun) {
715                 if (system(td->exec_prerun) < 0)
716                         goto err;
717         }
718
719         fio_gettime(&td->epoch, NULL);
720         getrusage(RUSAGE_SELF, &td->ru_start);
721
722         runtime[0] = runtime[1] = 0;
723         while (td->loops--) {
724                 fio_gettime(&td->start, NULL);
725                 memcpy(&td->stat_sample_time, &td->start, sizeof(td->start));
726
727                 if (td->ratemin)
728                         memcpy(&td->lastrate, &td->stat_sample_time, sizeof(td->lastrate));
729
730                 clear_io_state(td);
731                 prune_io_piece_log(td);
732
733                 if (td->io_ops->flags & FIO_CPUIO)
734                         do_cpuio(td);
735                 else
736                         do_io(td);
737
738                 runtime[td->ddir] += utime_since_now(&td->start);
739                 if (td_rw(td) && td->io_bytes[td->ddir ^ 1])
740                         runtime[td->ddir ^ 1] = runtime[td->ddir];
741
742                 if (td->error || td->terminate)
743                         break;
744
745                 if (td->verify == VERIFY_NONE)
746                         continue;
747
748                 clear_io_state(td);
749                 fio_gettime(&td->start, NULL);
750
751                 do_verify(td);
752
753                 runtime[DDIR_READ] += utime_since_now(&td->start);
754
755                 if (td->error || td->terminate)
756                         break;
757         }
758
759         update_rusage_stat(td);
760         fio_gettime(&td->end_time, NULL);
761         td->runtime[0] = runtime[0] / 1000;
762         td->runtime[1] = runtime[1] / 1000;
763
764         if (td->bw_log)
765                 finish_log(td, td->bw_log, "bw");
766         if (td->slat_log)
767                 finish_log(td, td->slat_log, "slat");
768         if (td->clat_log)
769                 finish_log(td, td->clat_log, "clat");
770         if (td->write_iolog_file)
771                 write_iolog_close(td);
772         if (td->exec_postrun) {
773                 if (system(td->exec_postrun) < 0)
774                         log_err("fio: postrun %s failed\n", td->exec_postrun);
775         }
776
777         if (exitall_on_terminate)
778                 terminate_threads(td->groupid, 0);
779
780 err:
781         if (td->error)
782                 printf("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
783         close_files(td);
784         close_ioengine(td);
785         cleanup_io_u(td);
786         td_set_runstate(td, TD_EXITED);
787         return (void *) td->error;
788 }
789
790 /*
791  * We cannot pass the td data into a forked process, so attach the td and
792  * pass it to the thread worker.
793  */
794 static int fork_main(int shmid, int offset)
795 {
796         struct thread_data *td;
797         void *data, *ret;
798
799         data = shmat(shmid, NULL, 0);
800         if (data == (void *) -1) {
801                 int __err = errno;
802
803                 perror("shmat");
804                 return __err;
805         }
806
807         td = data + offset * sizeof(struct thread_data);
808         ret = thread_main(td);
809         shmdt(data);
810         return (int) ret;
811 }
812
813 /*
814  * Run over the job map and reap the threads that have exited, if any.
815  */
816 static void reap_threads(int *nr_running, int *t_rate, int *m_rate)
817 {
818         struct thread_data *td;
819         int i, cputhreads, pending, status, ret;
820
821         /*
822          * reap exited threads (TD_EXITED -> TD_REAPED)
823          */
824         pending = cputhreads = 0;
825         for_each_td(td, i) {
826                 /*
827                  * ->io_ops is NULL for a thread that has closed its
828                  * io engine
829                  */
830                 if (td->io_ops && td->io_ops->flags & FIO_CPUIO)
831                         cputhreads++;
832
833                 if (td->runstate < TD_EXITED) {
834                         /*
835                          * check if someone quit or got killed in an unusual way
836                          */
837                         ret = waitpid(td->pid, &status, WNOHANG);
838                         if (ret < 0)
839                                 perror("waitpid");
840                         else if ((ret == td->pid) && WIFSIGNALED(status)) {
841                                 int sig = WTERMSIG(status);
842
843                                 log_err("fio: pid=%d, got signal=%d\n", td->pid, sig);
844                                 td_set_runstate(td, TD_REAPED);
845                                 goto reaped;
846                         }
847                 }
848
849                 if (td->runstate != TD_EXITED) {
850                         if (td->runstate < TD_RUNNING)
851                                 pending++;
852
853                         continue;
854                 }
855
856                 if (td->error)
857                         exit_value++;
858
859                 td_set_runstate(td, TD_REAPED);
860
861                 if (td->use_thread) {
862                         long ret;
863
864                         if (pthread_join(td->thread, (void *) &ret))
865                                 perror("thread_join");
866                 } else {
867                         int status;
868
869                         ret = waitpid(td->pid, &status, 0);
870                         if (ret < 0)
871                                 perror("waitpid");
872                         else if (WIFEXITED(status) && WEXITSTATUS(status)) {
873                                 if (!exit_value)
874                                         exit_value++;
875                         }
876                 }
877
878 reaped:
879                 (*nr_running)--;
880                 (*m_rate) -= td->ratemin;
881                 (*t_rate) -= td->rate;
882         }
883
884         if (*nr_running == cputhreads && !pending)
885                 terminate_threads(TERMINATE_ALL, 0);
886 }
887
888 /*
889  * Main function for kicking off and reaping jobs, as needed.
890  */
891 static void run_threads(void)
892 {
893         struct thread_data *td;
894         unsigned long spent;
895         int i, todo, nr_running, m_rate, t_rate, nr_started;
896
897         if (fio_pin_memory())
898                 return;
899
900         if (!terse_output) {
901                 printf("Starting %d thread%s\n", thread_number, thread_number > 1 ? "s" : "");
902                 fflush(stdout);
903         }
904
905         signal(SIGINT, sig_handler);
906         signal(SIGALRM, sig_handler);
907
908         todo = thread_number;
909         nr_running = 0;
910         nr_started = 0;
911         m_rate = t_rate = 0;
912
913         for_each_td(td, i) {
914                 print_status_init(td->thread_number - 1);
915
916                 if (!td->create_serialize) {
917                         init_disk_util(td);
918                         continue;
919                 }
920
921                 /*
922                  * do file setup here so it happens sequentially,
923                  * we don't want X number of threads getting their
924                  * client data interspersed on disk
925                  */
926                 if (setup_files(td)) {
927                         exit_value++;
928                         if (td->error)
929                                 log_err("fio: pid=%d, err=%d/%s\n", td->pid, td->error, td->verror);
930                         td_set_runstate(td, TD_REAPED);
931                         todo--;
932                 }
933
934                 init_disk_util(td);
935         }
936
937         while (todo) {
938                 struct thread_data *map[MAX_JOBS];
939                 struct timeval this_start;
940                 int this_jobs = 0, left;
941
942                 /*
943                  * create threads (TD_NOT_CREATED -> TD_CREATED)
944                  */
945                 for_each_td(td, i) {
946                         if (td->runstate != TD_NOT_CREATED)
947                                 continue;
948
949                         /*
950                          * never got a chance to start, killed by other
951                          * thread for some reason
952                          */
953                         if (td->terminate) {
954                                 todo--;
955                                 continue;
956                         }
957
958                         if (td->start_delay) {
959                                 spent = mtime_since_genesis();
960
961                                 if (td->start_delay * 1000 > spent)
962                                         continue;
963                         }
964
965                         if (td->stonewall && (nr_started || nr_running))
966                                 break;
967
968                         /*
969                          * Set state to created. Thread will transition
970                          * to TD_INITIALIZED when it's done setting up.
971                          */
972                         td_set_runstate(td, TD_CREATED);
973                         map[this_jobs++] = td;
974                         fio_sem_init(&startup_sem, 1);
975                         nr_started++;
976
977                         if (td->use_thread) {
978                                 if (pthread_create(&td->thread, NULL, thread_main, td)) {
979                                         perror("thread_create");
980                                         nr_started--;
981                                 }
982                         } else {
983                                 if (fork())
984                                         fio_sem_down(&startup_sem);
985                                 else {
986                                         int ret = fork_main(shm_id, i);
987
988                                         exit(ret);
989                                 }
990                         }
991                 }
992
993                 /*
994                  * Wait for the started threads to transition to
995                  * TD_INITIALIZED.
996                  */
997                 fio_gettime(&this_start, NULL);
998                 left = this_jobs;
999                 while (left && !fio_abort) {
1000                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
1001                                 break;
1002
1003                         usleep(100000);
1004
1005                         for (i = 0; i < this_jobs; i++) {
1006                                 td = map[i];
1007                                 if (!td)
1008                                         continue;
1009                                 if (td->runstate == TD_INITIALIZED) {
1010                                         map[i] = NULL;
1011                                         left--;
1012                                 } else if (td->runstate >= TD_EXITED) {
1013                                         map[i] = NULL;
1014                                         left--;
1015                                         todo--;
1016                                         nr_running++; /* work-around... */
1017                                 }
1018                         }
1019                 }
1020
1021                 if (left) {
1022                         log_err("fio: %d jobs failed to start\n", left);
1023                         for (i = 0; i < this_jobs; i++) {
1024                                 td = map[i];
1025                                 if (!td)
1026                                         continue;
1027                                 kill(td->pid, SIGTERM);
1028                         }
1029                         break;
1030                 }
1031
1032                 /*
1033                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
1034                  */
1035                 for_each_td(td, i) {
1036                         if (td->runstate != TD_INITIALIZED)
1037                                 continue;
1038
1039                         td_set_runstate(td, TD_RUNNING);
1040                         nr_running++;
1041                         nr_started--;
1042                         m_rate += td->ratemin;
1043                         t_rate += td->rate;
1044                         todo--;
1045                         fio_sem_up(&td->mutex);
1046                 }
1047
1048                 reap_threads(&nr_running, &t_rate, &m_rate);
1049
1050                 if (todo)
1051                         usleep(100000);
1052         }
1053
1054         while (nr_running) {
1055                 reap_threads(&nr_running, &t_rate, &m_rate);
1056                 usleep(10000);
1057         }
1058
1059         update_io_ticks();
1060         fio_unpin_memory();
1061 }
1062
1063 int main(int argc, char *argv[])
1064 {
1065         long ps;
1066
1067         /*
1068          * We need locale for number printing, if it isn't set then just
1069          * go with the US format.
1070          */
1071         if (!getenv("LC_NUMERIC"))
1072                 setlocale(LC_NUMERIC, "en_US");
1073
1074         if (parse_options(argc, argv))
1075                 return 1;
1076
1077         if (!thread_number) {
1078                 log_err("Nothing to do\n");
1079                 return 1;
1080         }
1081
1082         ps = sysconf(_SC_PAGESIZE);
1083         if (ps < 0) {
1084                 log_err("Failed to get page size\n");
1085                 return 1;
1086         }
1087
1088         page_mask = ps - 1;
1089
1090         if (write_bw_log) {
1091                 setup_log(&agg_io_log[DDIR_READ]);
1092                 setup_log(&agg_io_log[DDIR_WRITE]);
1093         }
1094
1095         disk_util_timer_arm();
1096
1097         run_threads();
1098
1099         if (!fio_abort) {
1100                 show_run_stats();
1101                 if (write_bw_log) {
1102                         __finish_log(agg_io_log[DDIR_READ],"agg-read_bw.log");
1103                         __finish_log(agg_io_log[DDIR_WRITE],"agg-write_bw.log");
1104                 }
1105         }
1106
1107         return exit_value;
1108 }