f82b83f75ee4d7aa09e99079d2a427c531506a2f
[fio.git] / backend.c
1 /*
2  * fio - the flexible io tester
3  *
4  * Copyright (C) 2005 Jens Axboe <axboe@suse.de>
5  * Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
6  *
7  * The license below covers all files distributed with fio unless otherwise
8  * noted in the file itself.
9  *
10  *  This program is free software; you can redistribute it and/or modify
11  *  it under the terms of the GNU General Public License version 2 as
12  *  published by the Free Software Foundation.
13  *
14  *  This program is distributed in the hope that it will be useful,
15  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
16  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  *  GNU General Public License for more details.
18  *
19  *  You should have received a copy of the GNU General Public License
20  *  along with this program; if not, write to the Free Software
21  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
22  *
23  */
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <string.h>
27 #include <limits.h>
28 #include <signal.h>
29 #include <time.h>
30 #include <locale.h>
31 #include <assert.h>
32 #include <time.h>
33 #include <inttypes.h>
34 #include <sys/stat.h>
35 #include <sys/wait.h>
36 #include <sys/ipc.h>
37 #include <sys/mman.h>
38
39 #include "fio.h"
40 #ifndef FIO_NO_HAVE_SHM_H
41 #include <sys/shm.h>
42 #endif
43 #include "hash.h"
44 #include "smalloc.h"
45 #include "verify.h"
46 #include "trim.h"
47 #include "diskutil.h"
48 #include "cgroup.h"
49 #include "profile.h"
50 #include "lib/rand.h"
51 #include "memalign.h"
52 #include "server.h"
53 #include "lib/getrusage.h"
54 #include "idletime.h"
55 #include "err.h"
56 #include "lib/tp.h"
57
58 static pthread_t helper_thread;
59 static pthread_mutex_t helper_lock;
60 pthread_cond_t helper_cond;
61 int helper_do_stat = 0;
62
63 static struct fio_mutex *startup_mutex;
64 static struct flist_head *cgroup_list;
65 static char *cgroup_mnt;
66 static int exit_value;
67 static volatile int fio_abort;
68 static unsigned int nr_process = 0;
69 static unsigned int nr_thread = 0;
70
71 struct io_log *agg_io_log[DDIR_RWDIR_CNT];
72
73 int groupid = 0;
74 unsigned int thread_number = 0;
75 unsigned int stat_number = 0;
76 int shm_id = 0;
77 int temp_stall_ts;
78 unsigned long done_secs = 0;
79 volatile int helper_exit = 0;
80
81 #define PAGE_ALIGN(buf) \
82         (char *) (((uintptr_t) (buf) + page_mask) & ~page_mask)
83
84 #define JOB_START_TIMEOUT       (5 * 1000)
85
86 static void sig_int(int sig)
87 {
88         if (threads) {
89                 if (is_backend)
90                         fio_server_got_signal(sig);
91                 else {
92                         log_info("\nfio: terminating on signal %d\n", sig);
93                         log_info_flush();
94                         exit_value = 128;
95                 }
96
97                 fio_terminate_threads(TERMINATE_ALL);
98         }
99 }
100
101 static void sig_show_status(int sig)
102 {
103         show_running_run_stats();
104 }
105
106 static void set_sig_handlers(void)
107 {
108         struct sigaction act;
109
110         memset(&act, 0, sizeof(act));
111         act.sa_handler = sig_int;
112         act.sa_flags = SA_RESTART;
113         sigaction(SIGINT, &act, NULL);
114
115         memset(&act, 0, sizeof(act));
116         act.sa_handler = sig_int;
117         act.sa_flags = SA_RESTART;
118         sigaction(SIGTERM, &act, NULL);
119
120 /* Windows uses SIGBREAK as a quit signal from other applications */
121 #ifdef WIN32
122         memset(&act, 0, sizeof(act));
123         act.sa_handler = sig_int;
124         act.sa_flags = SA_RESTART;
125         sigaction(SIGBREAK, &act, NULL);
126 #endif
127
128         memset(&act, 0, sizeof(act));
129         act.sa_handler = sig_show_status;
130         act.sa_flags = SA_RESTART;
131         sigaction(SIGUSR1, &act, NULL);
132
133         if (is_backend) {
134                 memset(&act, 0, sizeof(act));
135                 act.sa_handler = sig_int;
136                 act.sa_flags = SA_RESTART;
137                 sigaction(SIGPIPE, &act, NULL);
138         }
139 }
140
141 /*
142  * Check if we are above the minimum rate given.
143  */
144 static int __check_min_rate(struct thread_data *td, struct timeval *now,
145                             enum fio_ddir ddir)
146 {
147         unsigned long long bytes = 0;
148         unsigned long iops = 0;
149         unsigned long spent;
150         unsigned long rate;
151         unsigned int ratemin = 0;
152         unsigned int rate_iops = 0;
153         unsigned int rate_iops_min = 0;
154
155         assert(ddir_rw(ddir));
156
157         if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
158                 return 0;
159
160         /*
161          * allow a 2 second settle period in the beginning
162          */
163         if (mtime_since(&td->start, now) < 2000)
164                 return 0;
165
166         iops += td->this_io_blocks[ddir];
167         bytes += td->this_io_bytes[ddir];
168         ratemin += td->o.ratemin[ddir];
169         rate_iops += td->o.rate_iops[ddir];
170         rate_iops_min += td->o.rate_iops_min[ddir];
171
172         /*
173          * if rate blocks is set, sample is running
174          */
175         if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
176                 spent = mtime_since(&td->lastrate[ddir], now);
177                 if (spent < td->o.ratecycle)
178                         return 0;
179
180                 if (td->o.rate[ddir]) {
181                         /*
182                          * check bandwidth specified rate
183                          */
184                         if (bytes < td->rate_bytes[ddir]) {
185                                 log_err("%s: min rate %u not met\n", td->o.name,
186                                                                 ratemin);
187                                 return 1;
188                         } else {
189                                 if (spent)
190                                         rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
191                                 else
192                                         rate = 0;
193
194                                 if (rate < ratemin ||
195                                     bytes < td->rate_bytes[ddir]) {
196                                         log_err("%s: min rate %u not met, got"
197                                                 " %luKB/sec\n", td->o.name,
198                                                         ratemin, rate);
199                                         return 1;
200                                 }
201                         }
202                 } else {
203                         /*
204                          * checks iops specified rate
205                          */
206                         if (iops < rate_iops) {
207                                 log_err("%s: min iops rate %u not met\n",
208                                                 td->o.name, rate_iops);
209                                 return 1;
210                         } else {
211                                 if (spent)
212                                         rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
213                                 else
214                                         rate = 0;
215
216                                 if (rate < rate_iops_min ||
217                                     iops < td->rate_blocks[ddir]) {
218                                         log_err("%s: min iops rate %u not met,"
219                                                 " got %lu\n", td->o.name,
220                                                         rate_iops_min, rate);
221                                 }
222                         }
223                 }
224         }
225
226         td->rate_bytes[ddir] = bytes;
227         td->rate_blocks[ddir] = iops;
228         memcpy(&td->lastrate[ddir], now, sizeof(*now));
229         return 0;
230 }
231
232 static int check_min_rate(struct thread_data *td, struct timeval *now)
233 {
234         int ret = 0;
235
236         if (td->bytes_done[DDIR_READ])
237                 ret |= __check_min_rate(td, now, DDIR_READ);
238         if (td->bytes_done[DDIR_WRITE])
239                 ret |= __check_min_rate(td, now, DDIR_WRITE);
240         if (td->bytes_done[DDIR_TRIM])
241                 ret |= __check_min_rate(td, now, DDIR_TRIM);
242
243         return ret;
244 }
245
246 /*
247  * When job exits, we can cancel the in-flight IO if we are using async
248  * io. Attempt to do so.
249  */
250 static void cleanup_pending_aio(struct thread_data *td)
251 {
252         int r;
253
254         /*
255          * get immediately available events, if any
256          */
257         r = io_u_queued_complete(td, 0);
258         if (r < 0)
259                 return;
260
261         /*
262          * now cancel remaining active events
263          */
264         if (td->io_ops->cancel) {
265                 struct io_u *io_u;
266                 int i;
267
268                 io_u_qiter(&td->io_u_all, io_u, i) {
269                         if (io_u->flags & IO_U_F_FLIGHT) {
270                                 r = td->io_ops->cancel(td, io_u);
271                                 if (!r)
272                                         put_io_u(td, io_u);
273                         }
274                 }
275         }
276
277         if (td->cur_depth)
278                 r = io_u_queued_complete(td, td->cur_depth);
279 }
280
281 /*
282  * Helper to handle the final sync of a file. Works just like the normal
283  * io path, just does everything sync.
284  */
285 static int fio_io_sync(struct thread_data *td, struct fio_file *f)
286 {
287         struct io_u *io_u = __get_io_u(td);
288         int ret;
289
290         if (!io_u)
291                 return 1;
292
293         io_u->ddir = DDIR_SYNC;
294         io_u->file = f;
295
296         if (td_io_prep(td, io_u)) {
297                 put_io_u(td, io_u);
298                 return 1;
299         }
300
301 requeue:
302         ret = td_io_queue(td, io_u);
303         if (ret < 0) {
304                 td_verror(td, io_u->error, "td_io_queue");
305                 put_io_u(td, io_u);
306                 return 1;
307         } else if (ret == FIO_Q_QUEUED) {
308                 if (io_u_queued_complete(td, 1) < 0)
309                         return 1;
310         } else if (ret == FIO_Q_COMPLETED) {
311                 if (io_u->error) {
312                         td_verror(td, io_u->error, "td_io_queue");
313                         return 1;
314                 }
315
316                 if (io_u_sync_complete(td, io_u) < 0)
317                         return 1;
318         } else if (ret == FIO_Q_BUSY) {
319                 if (td_io_commit(td))
320                         return 1;
321                 goto requeue;
322         }
323
324         return 0;
325 }
326
327 static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
328 {
329         int ret;
330
331         if (fio_file_open(f))
332                 return fio_io_sync(td, f);
333
334         if (td_io_open_file(td, f))
335                 return 1;
336
337         ret = fio_io_sync(td, f);
338         td_io_close_file(td, f);
339         return ret;
340 }
341
342 static inline void __update_tv_cache(struct thread_data *td)
343 {
344         fio_gettime(&td->tv_cache, NULL);
345 }
346
347 static inline void update_tv_cache(struct thread_data *td)
348 {
349         if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
350                 __update_tv_cache(td);
351 }
352
353 static inline int runtime_exceeded(struct thread_data *td, struct timeval *t)
354 {
355         if (in_ramp_time(td))
356                 return 0;
357         if (!td->o.timeout)
358                 return 0;
359         if (utime_since(&td->epoch, t) >= td->o.timeout)
360                 return 1;
361
362         return 0;
363 }
364
365 static int break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
366                                int *retptr)
367 {
368         int ret = *retptr;
369
370         if (ret < 0 || td->error) {
371                 int err = td->error;
372                 enum error_type_bit eb;
373
374                 if (ret < 0)
375                         err = -ret;
376
377                 eb = td_error_type(ddir, err);
378                 if (!(td->o.continue_on_error & (1 << eb)))
379                         return 1;
380
381                 if (td_non_fatal_error(td, eb, err)) {
382                         /*
383                          * Continue with the I/Os in case of
384                          * a non fatal error.
385                          */
386                         update_error_count(td, err);
387                         td_clear_error(td);
388                         *retptr = 0;
389                         return 0;
390                 } else if (td->o.fill_device && err == ENOSPC) {
391                         /*
392                          * We expect to hit this error if
393                          * fill_device option is set.
394                          */
395                         td_clear_error(td);
396                         fio_mark_td_terminate(td);
397                         return 1;
398                 } else {
399                         /*
400                          * Stop the I/O in case of a fatal
401                          * error.
402                          */
403                         update_error_count(td, err);
404                         return 1;
405                 }
406         }
407
408         return 0;
409 }
410
411 static void check_update_rusage(struct thread_data *td)
412 {
413         if (td->update_rusage) {
414                 td->update_rusage = 0;
415                 update_rusage_stat(td);
416                 fio_mutex_up(td->rusage_sem);
417         }
418 }
419
420 static int wait_for_completions(struct thread_data *td, struct timeval *time)
421 {
422         const int full = queue_full(td);
423         int min_evts = 0;
424         int ret;
425
426         /*
427          * if the queue is full, we MUST reap at least 1 event
428          */
429         min_evts = min(td->o.iodepth_batch_complete, td->cur_depth);
430         if (full && !min_evts)
431                 min_evts = 1;
432
433         if (time && (__should_check_rate(td, DDIR_READ) ||
434             __should_check_rate(td, DDIR_WRITE) ||
435             __should_check_rate(td, DDIR_TRIM)))
436                 fio_gettime(time, NULL);
437
438         do {
439                 ret = io_u_queued_complete(td, min_evts);
440                 if (ret < 0)
441                         break;
442         } while (full && (td->cur_depth > td->o.iodepth_low));
443
444         return ret;
445 }
446
447 int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
448                    enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
449                    struct timeval *comp_time)
450 {
451         int ret2;
452
453         switch (*ret) {
454         case FIO_Q_COMPLETED:
455                 if (io_u->error) {
456                         *ret = -io_u->error;
457                         clear_io_u(td, io_u);
458                 } else if (io_u->resid) {
459                         int bytes = io_u->xfer_buflen - io_u->resid;
460                         struct fio_file *f = io_u->file;
461
462                         if (bytes_issued)
463                                 *bytes_issued += bytes;
464
465                         if (!from_verify)
466                                 trim_io_piece(td, io_u);
467
468                         /*
469                          * zero read, fail
470                          */
471                         if (!bytes) {
472                                 if (!from_verify)
473                                         unlog_io_piece(td, io_u);
474                                 td_verror(td, EIO, "full resid");
475                                 put_io_u(td, io_u);
476                                 break;
477                         }
478
479                         io_u->xfer_buflen = io_u->resid;
480                         io_u->xfer_buf += bytes;
481                         io_u->offset += bytes;
482
483                         if (ddir_rw(io_u->ddir))
484                                 td->ts.short_io_u[io_u->ddir]++;
485
486                         f = io_u->file;
487                         if (io_u->offset == f->real_file_size)
488                                 goto sync_done;
489
490                         requeue_io_u(td, &io_u);
491                 } else {
492 sync_done:
493                         if (comp_time && (__should_check_rate(td, DDIR_READ) ||
494                             __should_check_rate(td, DDIR_WRITE) ||
495                             __should_check_rate(td, DDIR_TRIM)))
496                                 fio_gettime(comp_time, NULL);
497
498                         *ret = io_u_sync_complete(td, io_u);
499                         if (*ret < 0)
500                                 break;
501                 }
502                 return 0;
503         case FIO_Q_QUEUED:
504                 /*
505                  * if the engine doesn't have a commit hook,
506                  * the io_u is really queued. if it does have such
507                  * a hook, it has to call io_u_queued() itself.
508                  */
509                 if (td->io_ops->commit == NULL)
510                         io_u_queued(td, io_u);
511                 if (bytes_issued)
512                         *bytes_issued += io_u->xfer_buflen;
513                 break;
514         case FIO_Q_BUSY:
515                 if (!from_verify)
516                         unlog_io_piece(td, io_u);
517                 requeue_io_u(td, &io_u);
518                 ret2 = td_io_commit(td);
519                 if (ret2 < 0)
520                         *ret = ret2;
521                 break;
522         default:
523                 assert(ret < 0);
524                 td_verror(td, -(*ret), "td_io_queue");
525                 break;
526         }
527
528         if (break_on_this_error(td, ddir, ret))
529                 return 1;
530
531         return 0;
532 }
533
534 /*
535  * The main verify engine. Runs over the writes we previously submitted,
536  * reads the blocks back in, and checks the crc/md5 of the data.
537  */
538 static void do_verify(struct thread_data *td, uint64_t verify_bytes)
539 {
540         struct fio_file *f;
541         struct io_u *io_u;
542         int ret, min_events;
543         unsigned int i;
544
545         dprint(FD_VERIFY, "starting loop\n");
546
547         /*
548          * sync io first and invalidate cache, to make sure we really
549          * read from disk.
550          */
551         for_each_file(td, f, i) {
552                 if (!fio_file_open(f))
553                         continue;
554                 if (fio_io_sync(td, f))
555                         break;
556                 if (file_invalidate_cache(td, f))
557                         break;
558         }
559
560         check_update_rusage(td);
561
562         if (td->error)
563                 return;
564
565         td_set_runstate(td, TD_VERIFYING);
566
567         io_u = NULL;
568         while (!td->terminate) {
569                 enum fio_ddir ddir;
570                 int full;
571
572                 update_tv_cache(td);
573                 check_update_rusage(td);
574
575                 if (runtime_exceeded(td, &td->tv_cache)) {
576                         __update_tv_cache(td);
577                         if (runtime_exceeded(td, &td->tv_cache)) {
578                                 fio_mark_td_terminate(td);
579                                 break;
580                         }
581                 }
582
583                 if (flow_threshold_exceeded(td))
584                         continue;
585
586                 if (!td->o.experimental_verify) {
587                         io_u = __get_io_u(td);
588                         if (!io_u)
589                                 break;
590
591                         if (get_next_verify(td, io_u)) {
592                                 put_io_u(td, io_u);
593                                 break;
594                         }
595
596                         if (td_io_prep(td, io_u)) {
597                                 put_io_u(td, io_u);
598                                 break;
599                         }
600                 } else {
601                         if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
602                                 break;
603
604                         while ((io_u = get_io_u(td)) != NULL) {
605                                 if (IS_ERR(io_u)) {
606                                         io_u = NULL;
607                                         ret = FIO_Q_BUSY;
608                                         goto reap;
609                                 }
610
611                                 /*
612                                  * We are only interested in the places where
613                                  * we wrote or trimmed IOs. Turn those into
614                                  * reads for verification purposes.
615                                  */
616                                 if (io_u->ddir == DDIR_READ) {
617                                         /*
618                                          * Pretend we issued it for rwmix
619                                          * accounting
620                                          */
621                                         td->io_issues[DDIR_READ]++;
622                                         put_io_u(td, io_u);
623                                         continue;
624                                 } else if (io_u->ddir == DDIR_TRIM) {
625                                         io_u->ddir = DDIR_READ;
626                                         io_u->flags |= IO_U_F_TRIMMED;
627                                         break;
628                                 } else if (io_u->ddir == DDIR_WRITE) {
629                                         io_u->ddir = DDIR_READ;
630                                         break;
631                                 } else {
632                                         put_io_u(td, io_u);
633                                         continue;
634                                 }
635                         }
636
637                         if (!io_u)
638                                 break;
639                 }
640
641                 if (verify_state_should_stop(td, io_u)) {
642                         put_io_u(td, io_u);
643                         break;
644                 }
645
646                 if (td->o.verify_async)
647                         io_u->end_io = verify_io_u_async;
648                 else
649                         io_u->end_io = verify_io_u;
650
651                 ddir = io_u->ddir;
652                 if (!td->o.disable_slat)
653                         fio_gettime(&io_u->start_time, NULL);
654
655                 ret = td_io_queue(td, io_u);
656
657                 if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
658                         break;
659
660                 /*
661                  * if we can queue more, do so. but check if there are
662                  * completed io_u's first. Note that we can get BUSY even
663                  * without IO queued, if the system is resource starved.
664                  */
665 reap:
666                 full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
667                 if (full || !td->o.iodepth_batch_complete)
668                         ret = wait_for_completions(td, NULL);
669
670                 if (ret < 0)
671                         break;
672         }
673
674         check_update_rusage(td);
675
676         if (!td->error) {
677                 min_events = td->cur_depth;
678
679                 if (min_events)
680                         ret = io_u_queued_complete(td, min_events);
681         } else
682                 cleanup_pending_aio(td);
683
684         td_set_runstate(td, TD_RUNNING);
685
686         dprint(FD_VERIFY, "exiting loop\n");
687 }
688
689 static unsigned int exceeds_number_ios(struct thread_data *td)
690 {
691         unsigned long long number_ios;
692
693         if (!td->o.number_ios)
694                 return 0;
695
696         number_ios = ddir_rw_sum(td->io_blocks);
697         number_ios += td->io_u_queued + td->io_u_in_flight;
698
699         return number_ios >= (td->o.number_ios * td->loops);
700 }
701
702 static int io_issue_bytes_exceeded(struct thread_data *td)
703 {
704         unsigned long long bytes, limit;
705
706         if (td_rw(td))
707                 bytes = td->io_issue_bytes[DDIR_READ] + td->io_issue_bytes[DDIR_WRITE];
708         else if (td_write(td))
709                 bytes = td->io_issue_bytes[DDIR_WRITE];
710         else if (td_read(td))
711                 bytes = td->io_issue_bytes[DDIR_READ];
712         else
713                 bytes = td->io_issue_bytes[DDIR_TRIM];
714
715         if (td->o.io_limit)
716                 limit = td->o.io_limit;
717         else
718                 limit = td->o.size;
719
720         limit *= td->loops;
721         return bytes >= limit || exceeds_number_ios(td);
722 }
723
724 static int io_complete_bytes_exceeded(struct thread_data *td)
725 {
726         unsigned long long bytes, limit;
727
728         if (td_rw(td))
729                 bytes = td->this_io_bytes[DDIR_READ] + td->this_io_bytes[DDIR_WRITE];
730         else if (td_write(td))
731                 bytes = td->this_io_bytes[DDIR_WRITE];
732         else if (td_read(td))
733                 bytes = td->this_io_bytes[DDIR_READ];
734         else
735                 bytes = td->this_io_bytes[DDIR_TRIM];
736
737         if (td->o.io_limit)
738                 limit = td->o.io_limit;
739         else
740                 limit = td->o.size;
741
742         limit *= td->loops;
743         return bytes >= limit || exceeds_number_ios(td);
744 }
745
746 /*
747  * Main IO worker function. It retrieves io_u's to process and queues
748  * and reaps them, checking for rate and errors along the way.
749  *
750  * Returns number of bytes written and trimmed.
751  */
752 static uint64_t do_io(struct thread_data *td)
753 {
754         unsigned int i;
755         int ret = 0;
756         uint64_t total_bytes, bytes_issued = 0;
757
758         if (in_ramp_time(td))
759                 td_set_runstate(td, TD_RAMP);
760         else
761                 td_set_runstate(td, TD_RUNNING);
762
763         lat_target_init(td);
764
765         total_bytes = td->o.size;
766         /*
767         * Allow random overwrite workloads to write up to io_limit
768         * before starting verification phase as 'size' doesn't apply.
769         */
770         if (td_write(td) && td_random(td) && td->o.norandommap)
771                 total_bytes = max(total_bytes, (uint64_t) td->o.io_limit);
772         /*
773          * If verify_backlog is enabled, we'll run the verify in this
774          * handler as well. For that case, we may need up to twice the
775          * amount of bytes.
776          */
777         if (td->o.verify != VERIFY_NONE &&
778            (td_write(td) && td->o.verify_backlog))
779                 total_bytes += td->o.size;
780
781         /* In trimwrite mode, each byte is trimmed and then written, so
782          * allow total_bytes to be twice as big */
783         if (td_trimwrite(td))
784                 total_bytes += td->total_io_size;
785
786         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
787                 (!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
788                 td->o.time_based) {
789                 struct timeval comp_time;
790                 struct io_u *io_u;
791                 int full;
792                 enum fio_ddir ddir;
793
794                 check_update_rusage(td);
795
796                 if (td->terminate || td->done)
797                         break;
798
799                 update_tv_cache(td);
800
801                 if (runtime_exceeded(td, &td->tv_cache)) {
802                         __update_tv_cache(td);
803                         if (runtime_exceeded(td, &td->tv_cache)) {
804                                 fio_mark_td_terminate(td);
805                                 break;
806                         }
807                 }
808
809                 if (flow_threshold_exceeded(td))
810                         continue;
811
812                 if (bytes_issued >= total_bytes)
813                         break;
814
815                 io_u = get_io_u(td);
816                 if (IS_ERR_OR_NULL(io_u)) {
817                         int err = PTR_ERR(io_u);
818
819                         io_u = NULL;
820                         if (err == -EBUSY) {
821                                 ret = FIO_Q_BUSY;
822                                 goto reap;
823                         }
824                         if (td->o.latency_target)
825                                 goto reap;
826                         break;
827                 }
828
829                 ddir = io_u->ddir;
830
831                 /*
832                  * Add verification end_io handler if:
833                  *      - Asked to verify (!td_rw(td))
834                  *      - Or the io_u is from our verify list (mixed write/ver)
835                  */
836                 if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
837                     ((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
838
839                         if (!td->o.verify_pattern_bytes) {
840                                 io_u->rand_seed = __rand(&td->verify_state);
841                                 if (sizeof(int) != sizeof(long *))
842                                         io_u->rand_seed *= __rand(&td->verify_state);
843                         }
844
845                         if (verify_state_should_stop(td, io_u)) {
846                                 put_io_u(td, io_u);
847                                 break;
848                         }
849
850                         if (td->o.verify_async)
851                                 io_u->end_io = verify_io_u_async;
852                         else
853                                 io_u->end_io = verify_io_u;
854                         td_set_runstate(td, TD_VERIFYING);
855                 } else if (in_ramp_time(td))
856                         td_set_runstate(td, TD_RAMP);
857                 else
858                         td_set_runstate(td, TD_RUNNING);
859
860                 /*
861                  * Always log IO before it's issued, so we know the specific
862                  * order of it. The logged unit will track when the IO has
863                  * completed.
864                  */
865                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
866                     td->o.do_verify &&
867                     td->o.verify != VERIFY_NONE &&
868                     !td->o.experimental_verify)
869                         log_io_piece(td, io_u);
870
871                 ret = td_io_queue(td, io_u);
872
873                 if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 1, &comp_time))
874                         break;
875
876                 /*
877                  * See if we need to complete some commands. Note that we
878                  * can get BUSY even without IO queued, if the system is
879                  * resource starved.
880                  */
881 reap:
882                 full = queue_full(td) ||
883                         (ret == FIO_Q_BUSY && td->cur_depth);
884                 if (full || !td->o.iodepth_batch_complete)
885                         ret = wait_for_completions(td, &comp_time);
886                 if (ret < 0)
887                         break;
888                 if (!ddir_rw_sum(td->bytes_done) &&
889                     !(td->io_ops->flags & FIO_NOIO))
890                         continue;
891
892                 if (!in_ramp_time(td) && should_check_rate(td)) {
893                         if (check_min_rate(td, &comp_time)) {
894                                 if (exitall_on_terminate)
895                                         fio_terminate_threads(td->groupid);
896                                 td_verror(td, EIO, "check_min_rate");
897                                 break;
898                         }
899                 }
900                 if (!in_ramp_time(td) && td->o.latency_target)
901                         lat_target_check(td);
902
903                 if (td->o.thinktime) {
904                         unsigned long long b;
905
906                         b = ddir_rw_sum(td->io_blocks);
907                         if (!(b % td->o.thinktime_blocks)) {
908                                 int left;
909
910                                 io_u_quiesce(td);
911
912                                 if (td->o.thinktime_spin)
913                                         usec_spin(td->o.thinktime_spin);
914
915                                 left = td->o.thinktime - td->o.thinktime_spin;
916                                 if (left)
917                                         usec_sleep(td, left);
918                         }
919                 }
920         }
921
922         check_update_rusage(td);
923
924         if (td->trim_entries)
925                 log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
926
927         if (td->o.fill_device && td->error == ENOSPC) {
928                 td->error = 0;
929                 fio_mark_td_terminate(td);
930         }
931         if (!td->error) {
932                 struct fio_file *f;
933
934                 i = td->cur_depth;
935                 if (i) {
936                         ret = io_u_queued_complete(td, i);
937                         if (td->o.fill_device && td->error == ENOSPC)
938                                 td->error = 0;
939                 }
940
941                 if (should_fsync(td) && td->o.end_fsync) {
942                         td_set_runstate(td, TD_FSYNCING);
943
944                         for_each_file(td, f, i) {
945                                 if (!fio_file_fsync(td, f))
946                                         continue;
947
948                                 log_err("fio: end_fsync failed for file %s\n",
949                                                                 f->file_name);
950                         }
951                 }
952         } else
953                 cleanup_pending_aio(td);
954
955         /*
956          * stop job if we failed doing any IO
957          */
958         if (!ddir_rw_sum(td->this_io_bytes))
959                 td->done = 1;
960
961         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
962 }
963
964 static void cleanup_io_u(struct thread_data *td)
965 {
966         struct io_u *io_u;
967
968         while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
969
970                 if (td->io_ops->io_u_free)
971                         td->io_ops->io_u_free(td, io_u);
972
973                 fio_memfree(io_u, sizeof(*io_u));
974         }
975
976         free_io_mem(td);
977
978         io_u_rexit(&td->io_u_requeues);
979         io_u_qexit(&td->io_u_freelist);
980         io_u_qexit(&td->io_u_all);
981
982         if (td->last_write_comp)
983                 sfree(td->last_write_comp);
984 }
985
986 static int init_io_u(struct thread_data *td)
987 {
988         struct io_u *io_u;
989         unsigned int max_bs, min_write;
990         int cl_align, i, max_units;
991         int data_xfer = 1, err;
992         char *p;
993
994         max_units = td->o.iodepth;
995         max_bs = td_max_bs(td);
996         min_write = td->o.min_bs[DDIR_WRITE];
997         td->orig_buffer_size = (unsigned long long) max_bs
998                                         * (unsigned long long) max_units;
999
1000         if ((td->io_ops->flags & FIO_NOIO) || !(td_read(td) || td_write(td)))
1001                 data_xfer = 0;
1002
1003         err = 0;
1004         err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
1005         err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
1006         err += io_u_qinit(&td->io_u_all, td->o.iodepth);
1007
1008         if (err) {
1009                 log_err("fio: failed setting up IO queues\n");
1010                 return 1;
1011         }
1012
1013         /*
1014          * if we may later need to do address alignment, then add any
1015          * possible adjustment here so that we don't cause a buffer
1016          * overflow later. this adjustment may be too much if we get
1017          * lucky and the allocator gives us an aligned address.
1018          */
1019         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1020             (td->io_ops->flags & FIO_RAWIO))
1021                 td->orig_buffer_size += page_mask + td->o.mem_align;
1022
1023         if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
1024                 unsigned long bs;
1025
1026                 bs = td->orig_buffer_size + td->o.hugepage_size - 1;
1027                 td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
1028         }
1029
1030         if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
1031                 log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
1032                 return 1;
1033         }
1034
1035         if (data_xfer && allocate_io_mem(td))
1036                 return 1;
1037
1038         if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
1039             (td->io_ops->flags & FIO_RAWIO))
1040                 p = PAGE_ALIGN(td->orig_buffer) + td->o.mem_align;
1041         else
1042                 p = td->orig_buffer;
1043
1044         cl_align = os_cache_line_size();
1045
1046         for (i = 0; i < max_units; i++) {
1047                 void *ptr;
1048
1049                 if (td->terminate)
1050                         return 1;
1051
1052                 ptr = fio_memalign(cl_align, sizeof(*io_u));
1053                 if (!ptr) {
1054                         log_err("fio: unable to allocate aligned memory\n");
1055                         break;
1056                 }
1057
1058                 io_u = ptr;
1059                 memset(io_u, 0, sizeof(*io_u));
1060                 INIT_FLIST_HEAD(&io_u->verify_list);
1061                 dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
1062
1063                 if (data_xfer) {
1064                         io_u->buf = p;
1065                         dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
1066
1067                         if (td_write(td))
1068                                 io_u_fill_buffer(td, io_u, min_write, max_bs);
1069                         if (td_write(td) && td->o.verify_pattern_bytes) {
1070                                 /*
1071                                  * Fill the buffer with the pattern if we are
1072                                  * going to be doing writes.
1073                                  */
1074                                 fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
1075                         }
1076                 }
1077
1078                 io_u->index = i;
1079                 io_u->flags = IO_U_F_FREE;
1080                 io_u_qpush(&td->io_u_freelist, io_u);
1081
1082                 /*
1083                  * io_u never leaves this stack, used for iteration of all
1084                  * io_u buffers.
1085                  */
1086                 io_u_qpush(&td->io_u_all, io_u);
1087
1088                 if (td->io_ops->io_u_init) {
1089                         int ret = td->io_ops->io_u_init(td, io_u);
1090
1091                         if (ret) {
1092                                 log_err("fio: failed to init engine data: %d\n", ret);
1093                                 return 1;
1094                         }
1095                 }
1096
1097                 p += max_bs;
1098         }
1099
1100         if (td->o.verify != VERIFY_NONE) {
1101                 td->last_write_comp = scalloc(max_units, sizeof(uint64_t));
1102                 if (!td->last_write_comp) {
1103                         log_err("fio: failed to alloc write comp data\n");
1104                         return 1;
1105                 }
1106         }
1107
1108         return 0;
1109 }
1110
1111 static int switch_ioscheduler(struct thread_data *td)
1112 {
1113         char tmp[256], tmp2[128];
1114         FILE *f;
1115         int ret;
1116
1117         if (td->io_ops->flags & FIO_DISKLESSIO)
1118                 return 0;
1119
1120         sprintf(tmp, "%s/queue/scheduler", td->sysfs_root);
1121
1122         f = fopen(tmp, "r+");
1123         if (!f) {
1124                 if (errno == ENOENT) {
1125                         log_err("fio: os or kernel doesn't support IO scheduler"
1126                                 " switching\n");
1127                         return 0;
1128                 }
1129                 td_verror(td, errno, "fopen iosched");
1130                 return 1;
1131         }
1132
1133         /*
1134          * Set io scheduler.
1135          */
1136         ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
1137         if (ferror(f) || ret != 1) {
1138                 td_verror(td, errno, "fwrite");
1139                 fclose(f);
1140                 return 1;
1141         }
1142
1143         rewind(f);
1144
1145         /*
1146          * Read back and check that the selected scheduler is now the default.
1147          */
1148         ret = fread(tmp, sizeof(tmp), 1, f);
1149         if (ferror(f) || ret < 0) {
1150                 td_verror(td, errno, "fread");
1151                 fclose(f);
1152                 return 1;
1153         }
1154         tmp[sizeof(tmp) - 1] = '\0';
1155
1156
1157         sprintf(tmp2, "[%s]", td->o.ioscheduler);
1158         if (!strstr(tmp, tmp2)) {
1159                 log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
1160                 td_verror(td, EINVAL, "iosched_switch");
1161                 fclose(f);
1162                 return 1;
1163         }
1164
1165         fclose(f);
1166         return 0;
1167 }
1168
1169 static int keep_running(struct thread_data *td)
1170 {
1171         unsigned long long limit;
1172
1173         if (td->done)
1174                 return 0;
1175         if (td->o.time_based)
1176                 return 1;
1177         if (td->o.loops) {
1178                 td->o.loops--;
1179                 return 1;
1180         }
1181         if (exceeds_number_ios(td))
1182                 return 0;
1183
1184         if (td->o.io_limit)
1185                 limit = td->o.io_limit;
1186         else
1187                 limit = td->o.size;
1188
1189         if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
1190                 uint64_t diff;
1191
1192                 /*
1193                  * If the difference is less than the minimum IO size, we
1194                  * are done.
1195                  */
1196                 diff = limit - ddir_rw_sum(td->io_bytes);
1197                 if (diff < td_max_bs(td))
1198                         return 0;
1199
1200                 if (fio_files_done(td))
1201                         return 0;
1202
1203                 return 1;
1204         }
1205
1206         return 0;
1207 }
1208
1209 static int exec_string(struct thread_options *o, const char *string, const char *mode)
1210 {
1211         int ret, newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
1212         char *str;
1213
1214         str = malloc(newlen);
1215         sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
1216
1217         log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
1218         ret = system(str);
1219         if (ret == -1)
1220                 log_err("fio: exec of cmd <%s> failed\n", str);
1221
1222         free(str);
1223         return ret;
1224 }
1225
1226 /*
1227  * Dry run to compute correct state of numberio for verification.
1228  */
1229 static uint64_t do_dry_run(struct thread_data *td)
1230 {
1231         td_set_runstate(td, TD_RUNNING);
1232
1233         while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
1234                 (!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
1235                 struct io_u *io_u;
1236                 int ret;
1237
1238                 if (td->terminate || td->done)
1239                         break;
1240
1241                 io_u = get_io_u(td);
1242                 if (!io_u)
1243                         break;
1244
1245                 io_u->flags |= IO_U_F_FLIGHT;
1246                 io_u->error = 0;
1247                 io_u->resid = 0;
1248                 if (ddir_rw(acct_ddir(io_u)))
1249                         td->io_issues[acct_ddir(io_u)]++;
1250                 if (ddir_rw(io_u->ddir)) {
1251                         io_u_mark_depth(td, 1);
1252                         td->ts.total_io_u[io_u->ddir]++;
1253                 }
1254
1255                 if (td_write(td) && io_u->ddir == DDIR_WRITE &&
1256                     td->o.do_verify &&
1257                     td->o.verify != VERIFY_NONE &&
1258                     !td->o.experimental_verify)
1259                         log_io_piece(td, io_u);
1260
1261                 ret = io_u_sync_complete(td, io_u);
1262                 (void) ret;
1263         }
1264
1265         return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
1266 }
1267
1268 /*
1269  * Entry point for the thread based jobs. The process based jobs end up
1270  * here as well, after a little setup.
1271  */
1272 static void *thread_main(void *data)
1273 {
1274         unsigned long long elapsed;
1275         struct thread_data *td = data;
1276         struct thread_options *o = &td->o;
1277         pthread_condattr_t attr;
1278         int clear_state;
1279         int ret;
1280
1281         if (!o->use_thread) {
1282                 setsid();
1283                 td->pid = getpid();
1284         } else
1285                 td->pid = gettid();
1286
1287         fio_local_clock_init(o->use_thread);
1288
1289         dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
1290
1291         if (is_backend)
1292                 fio_server_send_start(td);
1293
1294         INIT_FLIST_HEAD(&td->io_log_list);
1295         INIT_FLIST_HEAD(&td->io_hist_list);
1296         INIT_FLIST_HEAD(&td->verify_list);
1297         INIT_FLIST_HEAD(&td->trim_list);
1298         INIT_FLIST_HEAD(&td->next_rand_list);
1299         pthread_mutex_init(&td->io_u_lock, NULL);
1300         td->io_hist_tree = RB_ROOT;
1301
1302         pthread_condattr_init(&attr);
1303         pthread_cond_init(&td->verify_cond, &attr);
1304         pthread_cond_init(&td->free_cond, &attr);
1305
1306         td_set_runstate(td, TD_INITIALIZED);
1307         dprint(FD_MUTEX, "up startup_mutex\n");
1308         fio_mutex_up(startup_mutex);
1309         dprint(FD_MUTEX, "wait on td->mutex\n");
1310         fio_mutex_down(td->mutex);
1311         dprint(FD_MUTEX, "done waiting on td->mutex\n");
1312
1313         /*
1314          * A new gid requires privilege, so we need to do this before setting
1315          * the uid.
1316          */
1317         if (o->gid != -1U && setgid(o->gid)) {
1318                 td_verror(td, errno, "setgid");
1319                 goto err;
1320         }
1321         if (o->uid != -1U && setuid(o->uid)) {
1322                 td_verror(td, errno, "setuid");
1323                 goto err;
1324         }
1325
1326         /*
1327          * If we have a gettimeofday() thread, make sure we exclude that
1328          * thread from this job
1329          */
1330         if (o->gtod_cpu)
1331                 fio_cpu_clear(&o->cpumask, o->gtod_cpu);
1332
1333         /*
1334          * Set affinity first, in case it has an impact on the memory
1335          * allocations.
1336          */
1337         if (fio_option_is_set(o, cpumask)) {
1338                 if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
1339                         ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
1340                         if (!ret) {
1341                                 log_err("fio: no CPUs set\n");
1342                                 log_err("fio: Try increasing number of available CPUs\n");
1343                                 td_verror(td, EINVAL, "cpus_split");
1344                                 goto err;
1345                         }
1346                 }
1347                 ret = fio_setaffinity(td->pid, o->cpumask);
1348                 if (ret == -1) {
1349                         td_verror(td, errno, "cpu_set_affinity");
1350                         goto err;
1351                 }
1352         }
1353
1354 #ifdef CONFIG_LIBNUMA
1355         /* numa node setup */
1356         if (fio_option_is_set(o, numa_cpunodes) ||
1357             fio_option_is_set(o, numa_memnodes)) {
1358                 struct bitmask *mask;
1359
1360                 if (numa_available() < 0) {
1361                         td_verror(td, errno, "Does not support NUMA API\n");
1362                         goto err;
1363                 }
1364
1365                 if (fio_option_is_set(o, numa_cpunodes)) {
1366                         mask = numa_parse_nodestring(o->numa_cpunodes);
1367                         ret = numa_run_on_node_mask(mask);
1368                         numa_free_nodemask(mask);
1369                         if (ret == -1) {
1370                                 td_verror(td, errno, \
1371                                         "numa_run_on_node_mask failed\n");
1372                                 goto err;
1373                         }
1374                 }
1375
1376                 if (fio_option_is_set(o, numa_memnodes)) {
1377                         mask = NULL;
1378                         if (o->numa_memnodes)
1379                                 mask = numa_parse_nodestring(o->numa_memnodes);
1380
1381                         switch (o->numa_mem_mode) {
1382                         case MPOL_INTERLEAVE:
1383                                 numa_set_interleave_mask(mask);
1384                                 break;
1385                         case MPOL_BIND:
1386                                 numa_set_membind(mask);
1387                                 break;
1388                         case MPOL_LOCAL:
1389                                 numa_set_localalloc();
1390                                 break;
1391                         case MPOL_PREFERRED:
1392                                 numa_set_preferred(o->numa_mem_prefer_node);
1393                                 break;
1394                         case MPOL_DEFAULT:
1395                         default:
1396                                 break;
1397                         }
1398
1399                         if (mask)
1400                                 numa_free_nodemask(mask);
1401
1402                 }
1403         }
1404 #endif
1405
1406         if (fio_pin_memory(td))
1407                 goto err;
1408
1409         /*
1410          * May alter parameters that init_io_u() will use, so we need to
1411          * do this first.
1412          */
1413         if (init_iolog(td))
1414                 goto err;
1415
1416         if (init_io_u(td))
1417                 goto err;
1418
1419         if (o->verify_async && verify_async_init(td))
1420                 goto err;
1421
1422         if (fio_option_is_set(o, ioprio) ||
1423             fio_option_is_set(o, ioprio_class)) {
1424                 ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
1425                 if (ret == -1) {
1426                         td_verror(td, errno, "ioprio_set");
1427                         goto err;
1428                 }
1429         }
1430
1431         if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
1432                 goto err;
1433
1434         errno = 0;
1435         if (nice(o->nice) == -1 && errno != 0) {
1436                 td_verror(td, errno, "nice");
1437                 goto err;
1438         }
1439
1440         if (o->ioscheduler && switch_ioscheduler(td))
1441                 goto err;
1442
1443         if (!o->create_serialize && setup_files(td))
1444                 goto err;
1445
1446         if (td_io_init(td))
1447                 goto err;
1448
1449         if (init_random_map(td))
1450                 goto err;
1451
1452         if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
1453                 goto err;
1454
1455         if (o->pre_read) {
1456                 if (pre_read_files(td) < 0)
1457                         goto err;
1458         }
1459
1460         if (td->flags & TD_F_COMPRESS_LOG)
1461                 tp_init(&td->tp_data);
1462
1463         fio_verify_init(td);
1464
1465         fio_gettime(&td->epoch, NULL);
1466         fio_getrusage(&td->ru_start);
1467         clear_state = 0;
1468         while (keep_running(td)) {
1469                 uint64_t verify_bytes;
1470
1471                 fio_gettime(&td->start, NULL);
1472                 memcpy(&td->bw_sample_time, &td->start, sizeof(td->start));
1473                 memcpy(&td->iops_sample_time, &td->start, sizeof(td->start));
1474                 memcpy(&td->tv_cache, &td->start, sizeof(td->start));
1475
1476                 if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
1477                                 o->ratemin[DDIR_TRIM]) {
1478                         memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
1479                                                 sizeof(td->bw_sample_time));
1480                         memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
1481                                                 sizeof(td->bw_sample_time));
1482                         memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
1483                                                 sizeof(td->bw_sample_time));
1484                 }
1485
1486                 if (clear_state)
1487                         clear_io_state(td);
1488
1489                 prune_io_piece_log(td);
1490
1491                 if (td->o.verify_only && (td_write(td) || td_rw(td)))
1492                         verify_bytes = do_dry_run(td);
1493                 else
1494                         verify_bytes = do_io(td);
1495
1496                 clear_state = 1;
1497
1498                 /*
1499                  * Make sure we've successfully updated the rusage stats
1500                  * before waiting on the stat mutex. Otherwise we could have
1501                  * the stat thread holding stat mutex and waiting for
1502                  * the rusage_sem, which would never get upped because
1503                  * this thread is waiting for the stat mutex.
1504                  */
1505                 check_update_rusage(td);
1506
1507                 fio_mutex_down(stat_mutex);
1508                 if (td_read(td) && td->io_bytes[DDIR_READ]) {
1509                         elapsed = mtime_since_now(&td->start);
1510                         td->ts.runtime[DDIR_READ] += elapsed;
1511                 }
1512                 if (td_write(td) && td->io_bytes[DDIR_WRITE]) {
1513                         elapsed = mtime_since_now(&td->start);
1514                         td->ts.runtime[DDIR_WRITE] += elapsed;
1515                 }
1516                 if (td_trim(td) && td->io_bytes[DDIR_TRIM]) {
1517                         elapsed = mtime_since_now(&td->start);
1518                         td->ts.runtime[DDIR_TRIM] += elapsed;
1519                 }
1520                 fio_gettime(&td->start, NULL);
1521                 fio_mutex_up(stat_mutex);
1522
1523                 if (td->error || td->terminate)
1524                         break;
1525
1526                 if (!o->do_verify ||
1527                     o->verify == VERIFY_NONE ||
1528                     (td->io_ops->flags & FIO_UNIDIR))
1529                         continue;
1530
1531                 clear_io_state(td);
1532
1533                 fio_gettime(&td->start, NULL);
1534
1535                 do_verify(td, verify_bytes);
1536
1537                 /*
1538                  * See comment further up for why this is done here.
1539                  */
1540                 check_update_rusage(td);
1541
1542                 fio_mutex_down(stat_mutex);
1543                 td->ts.runtime[DDIR_READ] += mtime_since_now(&td->start);
1544                 fio_gettime(&td->start, NULL);
1545                 fio_mutex_up(stat_mutex);
1546
1547                 if (td->error || td->terminate)
1548                         break;
1549         }
1550
1551         update_rusage_stat(td);
1552         td->ts.total_run_time = mtime_since_now(&td->epoch);
1553         td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
1554         td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
1555         td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
1556
1557         if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
1558             (td->o.verify != VERIFY_NONE && td_write(td))) {
1559                 struct all_io_list *state;
1560                 size_t sz;
1561
1562                 state = get_all_io_list(td->thread_number, &sz);
1563                 if (state) {
1564                         __verify_save_state(state, "local");
1565                         free(state);
1566                 }
1567         }
1568
1569         fio_unpin_memory(td);
1570
1571         fio_writeout_logs(td);
1572
1573         if (td->flags & TD_F_COMPRESS_LOG)
1574                 tp_exit(&td->tp_data);
1575
1576         if (o->exec_postrun)
1577                 exec_string(o, o->exec_postrun, (const char *)"postrun");
1578
1579         if (exitall_on_terminate)
1580                 fio_terminate_threads(td->groupid);
1581
1582 err:
1583         if (td->error)
1584                 log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
1585                                                         td->verror);
1586
1587         if (o->verify_async)
1588                 verify_async_exit(td);
1589
1590         close_and_free_files(td);
1591         cleanup_io_u(td);
1592         close_ioengine(td);
1593         cgroup_shutdown(td, &cgroup_mnt);
1594         verify_free_state(td);
1595
1596         if (fio_option_is_set(o, cpumask)) {
1597                 ret = fio_cpuset_exit(&o->cpumask);
1598                 if (ret)
1599                         td_verror(td, ret, "fio_cpuset_exit");
1600         }
1601
1602         /*
1603          * do this very late, it will log file closing as well
1604          */
1605         if (o->write_iolog_file)
1606                 write_iolog_close(td);
1607
1608         fio_mutex_remove(td->mutex);
1609         td->mutex = NULL;
1610
1611         td_set_runstate(td, TD_EXITED);
1612
1613         /*
1614          * Do this last after setting our runstate to exited, so we
1615          * know that the stat thread is signaled.
1616          */
1617         check_update_rusage(td);
1618
1619         return (void *) (uintptr_t) td->error;
1620 }
1621
1622
1623 /*
1624  * We cannot pass the td data into a forked process, so attach the td and
1625  * pass it to the thread worker.
1626  */
1627 static int fork_main(int shmid, int offset)
1628 {
1629         struct thread_data *td;
1630         void *data, *ret;
1631
1632 #if !defined(__hpux) && !defined(CONFIG_NO_SHM)
1633         data = shmat(shmid, NULL, 0);
1634         if (data == (void *) -1) {
1635                 int __err = errno;
1636
1637                 perror("shmat");
1638                 return __err;
1639         }
1640 #else
1641         /*
1642          * HP-UX inherits shm mappings?
1643          */
1644         data = threads;
1645 #endif
1646
1647         td = data + offset * sizeof(struct thread_data);
1648         ret = thread_main(td);
1649         shmdt(data);
1650         return (int) (uintptr_t) ret;
1651 }
1652
1653 static void dump_td_info(struct thread_data *td)
1654 {
1655         log_err("fio: job '%s' hasn't exited in %lu seconds, it appears to "
1656                 "be stuck. Doing forceful exit of this job.\n", td->o.name,
1657                         (unsigned long) time_since_now(&td->terminate_time));
1658 }
1659
1660 /*
1661  * Run over the job map and reap the threads that have exited, if any.
1662  */
1663 static void reap_threads(unsigned int *nr_running, unsigned int *t_rate,
1664                          unsigned int *m_rate)
1665 {
1666         struct thread_data *td;
1667         unsigned int cputhreads, realthreads, pending;
1668         int i, status, ret;
1669
1670         /*
1671          * reap exited threads (TD_EXITED -> TD_REAPED)
1672          */
1673         realthreads = pending = cputhreads = 0;
1674         for_each_td(td, i) {
1675                 int flags = 0;
1676
1677                 /*
1678                  * ->io_ops is NULL for a thread that has closed its
1679                  * io engine
1680                  */
1681                 if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
1682                         cputhreads++;
1683                 else
1684                         realthreads++;
1685
1686                 if (!td->pid) {
1687                         pending++;
1688                         continue;
1689                 }
1690                 if (td->runstate == TD_REAPED)
1691                         continue;
1692                 if (td->o.use_thread) {
1693                         if (td->runstate == TD_EXITED) {
1694                                 td_set_runstate(td, TD_REAPED);
1695                                 goto reaped;
1696                         }
1697                         continue;
1698                 }
1699
1700                 flags = WNOHANG;
1701                 if (td->runstate == TD_EXITED)
1702                         flags = 0;
1703
1704                 /*
1705                  * check if someone quit or got killed in an unusual way
1706                  */
1707                 ret = waitpid(td->pid, &status, flags);
1708                 if (ret < 0) {
1709                         if (errno == ECHILD) {
1710                                 log_err("fio: pid=%d disappeared %d\n",
1711                                                 (int) td->pid, td->runstate);
1712                                 td->sig = ECHILD;
1713                                 td_set_runstate(td, TD_REAPED);
1714                                 goto reaped;
1715                         }
1716                         perror("waitpid");
1717                 } else if (ret == td->pid) {
1718                         if (WIFSIGNALED(status)) {
1719                                 int sig = WTERMSIG(status);
1720
1721                                 if (sig != SIGTERM && sig != SIGUSR2)
1722                                         log_err("fio: pid=%d, got signal=%d\n",
1723                                                         (int) td->pid, sig);
1724                                 td->sig = sig;
1725                                 td_set_runstate(td, TD_REAPED);
1726                                 goto reaped;
1727                         }
1728                         if (WIFEXITED(status)) {
1729                                 if (WEXITSTATUS(status) && !td->error)
1730                                         td->error = WEXITSTATUS(status);
1731
1732                                 td_set_runstate(td, TD_REAPED);
1733                                 goto reaped;
1734                         }
1735                 }
1736
1737                 /*
1738                  * If the job is stuck, do a forceful timeout of it and
1739                  * move on.
1740                  */
1741                 if (td->terminate &&
1742                     time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
1743                         dump_td_info(td);
1744                         td_set_runstate(td, TD_REAPED);
1745                         goto reaped;
1746                 }
1747
1748                 /*
1749                  * thread is not dead, continue
1750                  */
1751                 pending++;
1752                 continue;
1753 reaped:
1754                 (*nr_running)--;
1755                 (*m_rate) -= ddir_rw_sum(td->o.ratemin);
1756                 (*t_rate) -= ddir_rw_sum(td->o.rate);
1757                 if (!td->pid)
1758                         pending--;
1759
1760                 if (td->error)
1761                         exit_value++;
1762
1763                 done_secs += mtime_since_now(&td->epoch) / 1000;
1764                 profile_td_exit(td);
1765         }
1766
1767         if (*nr_running == cputhreads && !pending && realthreads)
1768                 fio_terminate_threads(TERMINATE_ALL);
1769 }
1770
1771 static int __check_trigger_file(void)
1772 {
1773         struct stat sb;
1774
1775         if (!trigger_file)
1776                 return 0;
1777
1778         if (stat(trigger_file, &sb))
1779                 return 0;
1780
1781         if (unlink(trigger_file) < 0)
1782                 log_err("fio: failed to unlink %s: %s\n", trigger_file,
1783                                                         strerror(errno));
1784
1785         return 1;
1786 }
1787
1788 static int trigger_timedout(void)
1789 {
1790         if (trigger_timeout)
1791                 return time_since_genesis() >= trigger_timeout;
1792
1793         return 0;
1794 }
1795
1796 void exec_trigger(const char *cmd)
1797 {
1798         int ret;
1799
1800         if (!cmd)
1801                 return;
1802
1803         ret = system(cmd);
1804         if (ret == -1)
1805                 log_err("fio: failed executing %s trigger\n", cmd);
1806 }
1807
1808 void check_trigger_file(void)
1809 {
1810         if (__check_trigger_file() || trigger_timedout()) {
1811                 if (nr_clients)
1812                         fio_clients_send_trigger(trigger_remote_cmd);
1813                 else {
1814                         verify_save_state();
1815                         fio_terminate_threads(TERMINATE_ALL);
1816                         exec_trigger(trigger_cmd);
1817                 }
1818         }
1819 }
1820
1821 static int fio_verify_load_state(struct thread_data *td)
1822 {
1823         int ret;
1824
1825         if (!td->o.verify_state)
1826                 return 0;
1827
1828         if (is_backend) {
1829                 void *data;
1830
1831                 ret = fio_server_get_verify_state(td->o.name,
1832                                         td->thread_number - 1, &data);
1833                 if (!ret)
1834                         verify_convert_assign_state(td, data);
1835         } else
1836                 ret = verify_load_state(td, "local");
1837
1838         return ret;
1839 }
1840
1841 static void do_usleep(unsigned int usecs)
1842 {
1843         check_for_running_stats();
1844         check_trigger_file();
1845         usleep(usecs);
1846 }
1847
1848 /*
1849  * Main function for kicking off and reaping jobs, as needed.
1850  */
1851 static void run_threads(void)
1852 {
1853         struct thread_data *td;
1854         unsigned int i, todo, nr_running, m_rate, t_rate, nr_started;
1855         uint64_t spent;
1856
1857         if (fio_gtod_offload && fio_start_gtod_thread())
1858                 return;
1859
1860         fio_idle_prof_init();
1861
1862         set_sig_handlers();
1863
1864         nr_thread = nr_process = 0;
1865         for_each_td(td, i) {
1866                 if (td->o.use_thread)
1867                         nr_thread++;
1868                 else
1869                         nr_process++;
1870         }
1871
1872         if (output_format == FIO_OUTPUT_NORMAL) {
1873                 log_info("Starting ");
1874                 if (nr_thread)
1875                         log_info("%d thread%s", nr_thread,
1876                                                 nr_thread > 1 ? "s" : "");
1877                 if (nr_process) {
1878                         if (nr_thread)
1879                                 log_info(" and ");
1880                         log_info("%d process%s", nr_process,
1881                                                 nr_process > 1 ? "es" : "");
1882                 }
1883                 log_info("\n");
1884                 log_info_flush();
1885         }
1886
1887         todo = thread_number;
1888         nr_running = 0;
1889         nr_started = 0;
1890         m_rate = t_rate = 0;
1891
1892         for_each_td(td, i) {
1893                 print_status_init(td->thread_number - 1);
1894
1895                 if (!td->o.create_serialize)
1896                         continue;
1897
1898                 if (fio_verify_load_state(td))
1899                         goto reap;
1900
1901                 /*
1902                  * do file setup here so it happens sequentially,
1903                  * we don't want X number of threads getting their
1904                  * client data interspersed on disk
1905                  */
1906                 if (setup_files(td)) {
1907 reap:
1908                         exit_value++;
1909                         if (td->error)
1910                                 log_err("fio: pid=%d, err=%d/%s\n",
1911                                         (int) td->pid, td->error, td->verror);
1912                         td_set_runstate(td, TD_REAPED);
1913                         todo--;
1914                 } else {
1915                         struct fio_file *f;
1916                         unsigned int j;
1917
1918                         /*
1919                          * for sharing to work, each job must always open
1920                          * its own files. so close them, if we opened them
1921                          * for creation
1922                          */
1923                         for_each_file(td, f, j) {
1924                                 if (fio_file_open(f))
1925                                         td_io_close_file(td, f);
1926                         }
1927                 }
1928         }
1929
1930         /* start idle threads before io threads start to run */
1931         fio_idle_prof_start();
1932
1933         set_genesis_time();
1934
1935         while (todo) {
1936                 struct thread_data *map[REAL_MAX_JOBS];
1937                 struct timeval this_start;
1938                 int this_jobs = 0, left;
1939
1940                 /*
1941                  * create threads (TD_NOT_CREATED -> TD_CREATED)
1942                  */
1943                 for_each_td(td, i) {
1944                         if (td->runstate != TD_NOT_CREATED)
1945                                 continue;
1946
1947                         /*
1948                          * never got a chance to start, killed by other
1949                          * thread for some reason
1950                          */
1951                         if (td->terminate) {
1952                                 todo--;
1953                                 continue;
1954                         }
1955
1956                         if (td->o.start_delay) {
1957                                 spent = utime_since_genesis();
1958
1959                                 if (td->o.start_delay > spent)
1960                                         continue;
1961                         }
1962
1963                         if (td->o.stonewall && (nr_started || nr_running)) {
1964                                 dprint(FD_PROCESS, "%s: stonewall wait\n",
1965                                                         td->o.name);
1966                                 break;
1967                         }
1968
1969                         init_disk_util(td);
1970
1971                         td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
1972                         td->update_rusage = 0;
1973
1974                         /*
1975                          * Set state to created. Thread will transition
1976                          * to TD_INITIALIZED when it's done setting up.
1977                          */
1978                         td_set_runstate(td, TD_CREATED);
1979                         map[this_jobs++] = td;
1980                         nr_started++;
1981
1982                         if (td->o.use_thread) {
1983                                 int ret;
1984
1985                                 dprint(FD_PROCESS, "will pthread_create\n");
1986                                 ret = pthread_create(&td->thread, NULL,
1987                                                         thread_main, td);
1988                                 if (ret) {
1989                                         log_err("pthread_create: %s\n",
1990                                                         strerror(ret));
1991                                         nr_started--;
1992                                         break;
1993                                 }
1994                                 ret = pthread_detach(td->thread);
1995                                 if (ret)
1996                                         log_err("pthread_detach: %s",
1997                                                         strerror(ret));
1998                         } else {
1999                                 pid_t pid;
2000                                 dprint(FD_PROCESS, "will fork\n");
2001                                 pid = fork();
2002                                 if (!pid) {
2003                                         int ret = fork_main(shm_id, i);
2004
2005                                         _exit(ret);
2006                                 } else if (i == fio_debug_jobno)
2007                                         *fio_debug_jobp = pid;
2008                         }
2009                         dprint(FD_MUTEX, "wait on startup_mutex\n");
2010                         if (fio_mutex_down_timeout(startup_mutex, 10)) {
2011                                 log_err("fio: job startup hung? exiting.\n");
2012                                 fio_terminate_threads(TERMINATE_ALL);
2013                                 fio_abort = 1;
2014                                 nr_started--;
2015                                 break;
2016                         }
2017                         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2018                 }
2019
2020                 /*
2021                  * Wait for the started threads to transition to
2022                  * TD_INITIALIZED.
2023                  */
2024                 fio_gettime(&this_start, NULL);
2025                 left = this_jobs;
2026                 while (left && !fio_abort) {
2027                         if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
2028                                 break;
2029
2030                         do_usleep(100000);
2031
2032                         for (i = 0; i < this_jobs; i++) {
2033                                 td = map[i];
2034                                 if (!td)
2035                                         continue;
2036                                 if (td->runstate == TD_INITIALIZED) {
2037                                         map[i] = NULL;
2038                                         left--;
2039                                 } else if (td->runstate >= TD_EXITED) {
2040                                         map[i] = NULL;
2041                                         left--;
2042                                         todo--;
2043                                         nr_running++; /* work-around... */
2044                                 }
2045                         }
2046                 }
2047
2048                 if (left) {
2049                         log_err("fio: %d job%s failed to start\n", left,
2050                                         left > 1 ? "s" : "");
2051                         for (i = 0; i < this_jobs; i++) {
2052                                 td = map[i];
2053                                 if (!td)
2054                                         continue;
2055                                 kill(td->pid, SIGTERM);
2056                         }
2057                         break;
2058                 }
2059
2060                 /*
2061                  * start created threads (TD_INITIALIZED -> TD_RUNNING).
2062                  */
2063                 for_each_td(td, i) {
2064                         if (td->runstate != TD_INITIALIZED)
2065                                 continue;
2066
2067                         if (in_ramp_time(td))
2068                                 td_set_runstate(td, TD_RAMP);
2069                         else
2070                                 td_set_runstate(td, TD_RUNNING);
2071                         nr_running++;
2072                         nr_started--;
2073                         m_rate += ddir_rw_sum(td->o.ratemin);
2074                         t_rate += ddir_rw_sum(td->o.rate);
2075                         todo--;
2076                         fio_mutex_up(td->mutex);
2077                 }
2078
2079                 reap_threads(&nr_running, &t_rate, &m_rate);
2080
2081                 if (todo)
2082                         do_usleep(100000);
2083         }
2084
2085         while (nr_running) {
2086                 reap_threads(&nr_running, &t_rate, &m_rate);
2087                 do_usleep(10000);
2088         }
2089
2090         fio_idle_prof_stop();
2091
2092         update_io_ticks();
2093 }
2094
2095 static void wait_for_helper_thread_exit(void)
2096 {
2097         void *ret;
2098
2099         helper_exit = 1;
2100         pthread_cond_signal(&helper_cond);
2101         pthread_join(helper_thread, &ret);
2102 }
2103
2104 static void free_disk_util(void)
2105 {
2106         disk_util_prune_entries();
2107
2108         pthread_cond_destroy(&helper_cond);
2109 }
2110
2111 static void *helper_thread_main(void *data)
2112 {
2113         int ret = 0;
2114
2115         fio_mutex_up(startup_mutex);
2116
2117         while (!ret) {
2118                 uint64_t sec = DISK_UTIL_MSEC / 1000;
2119                 uint64_t nsec = (DISK_UTIL_MSEC % 1000) * 1000000;
2120                 struct timespec ts;
2121                 struct timeval tv;
2122
2123                 gettimeofday(&tv, NULL);
2124                 ts.tv_sec = tv.tv_sec + sec;
2125                 ts.tv_nsec = (tv.tv_usec * 1000) + nsec;
2126
2127                 if (ts.tv_nsec >= 1000000000ULL) {
2128                         ts.tv_nsec -= 1000000000ULL;
2129                         ts.tv_sec++;
2130                 }
2131
2132                 pthread_cond_timedwait(&helper_cond, &helper_lock, &ts);
2133
2134                 ret = update_io_ticks();
2135
2136                 if (helper_do_stat) {
2137                         helper_do_stat = 0;
2138                         __show_running_run_stats();
2139                 }
2140
2141                 if (!is_backend)
2142                         print_thread_status();
2143         }
2144
2145         return NULL;
2146 }
2147
2148 static int create_helper_thread(void)
2149 {
2150         int ret;
2151
2152         setup_disk_util();
2153
2154         pthread_cond_init(&helper_cond, NULL);
2155         pthread_mutex_init(&helper_lock, NULL);
2156
2157         ret = pthread_create(&helper_thread, NULL, helper_thread_main, NULL);
2158         if (ret) {
2159                 log_err("Can't create helper thread: %s\n", strerror(ret));
2160                 return 1;
2161         }
2162
2163         dprint(FD_MUTEX, "wait on startup_mutex\n");
2164         fio_mutex_down(startup_mutex);
2165         dprint(FD_MUTEX, "done waiting on startup_mutex\n");
2166         return 0;
2167 }
2168
2169 int fio_backend(void)
2170 {
2171         struct thread_data *td;
2172         int i;
2173
2174         if (exec_profile) {
2175                 if (load_profile(exec_profile))
2176                         return 1;
2177                 free(exec_profile);
2178                 exec_profile = NULL;
2179         }
2180         if (!thread_number)
2181                 return 0;
2182
2183         if (write_bw_log) {
2184                 struct log_params p = {
2185                         .log_type = IO_LOG_TYPE_BW,
2186                 };
2187
2188                 setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
2189                 setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
2190                 setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
2191         }
2192
2193         startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
2194         if (startup_mutex == NULL)
2195                 return 1;
2196
2197         set_genesis_time();
2198         stat_init();
2199         create_helper_thread();
2200
2201         cgroup_list = smalloc(sizeof(*cgroup_list));
2202         INIT_FLIST_HEAD(cgroup_list);
2203
2204         run_threads();
2205
2206         wait_for_helper_thread_exit();
2207
2208         if (!fio_abort) {
2209                 __show_run_stats();
2210                 if (write_bw_log) {
2211                         for (i = 0; i < DDIR_RWDIR_CNT; i++) {
2212                                 struct io_log *log = agg_io_log[i];
2213
2214                                 flush_log(log);
2215                                 free_log(log);
2216                         }
2217                 }
2218         }
2219
2220         for_each_td(td, i) {
2221                 fio_options_free(td);
2222                 if (td->rusage_sem) {
2223                         fio_mutex_remove(td->rusage_sem);
2224                         td->rusage_sem = NULL;
2225                 }
2226         }
2227
2228         free_disk_util();
2229         cgroup_kill(cgroup_list);
2230         sfree(cgroup_list);
2231         sfree(cgroup_mnt);
2232
2233         fio_mutex_remove(startup_mutex);
2234         stat_exit();
2235         return exit_value;
2236 }