zbd: return ENOMEM if zone buffer allocation fails
[fio.git] / zbd.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 2018 Western Digital Corporation or its affiliates.
3 *
4 * This file is released under the GPL.
5 */
6
7#include <errno.h>
8#include <string.h>
9#include <stdlib.h>
10#include <fcntl.h>
11#include <sys/stat.h>
12#include <unistd.h>
13
14#include "os/os.h"
15#include "file.h"
16#include "fio.h"
17#include "lib/pow2.h"
18#include "log.h"
19#include "oslib/asprintf.h"
20#include "smalloc.h"
21#include "verify.h"
22#include "pshared.h"
23#include "zbd.h"
24
25/**
26 * zbd_get_zoned_model - Get a device zoned model
27 * @td: FIO thread data
28 * @f: FIO file for which to get model information
29 */
30int zbd_get_zoned_model(struct thread_data *td, struct fio_file *f,
31 enum zbd_zoned_model *model)
32{
33 int ret;
34
35 if (td->io_ops && td->io_ops->get_zoned_model)
36 ret = td->io_ops->get_zoned_model(td, f, model);
37 else
38 ret = blkzoned_get_zoned_model(td, f, model);
39 if (ret < 0) {
40 td_verror(td, errno, "get zoned model failed");
41 log_err("%s: get zoned model failed (%d).\n",
42 f->file_name, errno);
43 }
44
45 return ret;
46}
47
48/**
49 * zbd_report_zones - Get zone information
50 * @td: FIO thread data.
51 * @f: FIO file for which to get zone information
52 * @offset: offset from which to report zones
53 * @zones: Array of struct zbd_zone
54 * @nr_zones: Size of @zones array
55 *
56 * Get zone information into @zones starting from the zone at offset @offset
57 * for the device specified by @f.
58 *
59 * Returns the number of zones reported upon success and a negative error code
60 * upon failure. If the zone report is empty, always assume an error (device
61 * problem) and return -EIO.
62 */
63int zbd_report_zones(struct thread_data *td, struct fio_file *f,
64 uint64_t offset, struct zbd_zone *zones,
65 unsigned int nr_zones)
66{
67 int ret;
68
69 if (td->io_ops && td->io_ops->report_zones)
70 ret = td->io_ops->report_zones(td, f, offset, zones, nr_zones);
71 else
72 ret = blkzoned_report_zones(td, f, offset, zones, nr_zones);
73 if (ret < 0) {
74 td_verror(td, errno, "report zones failed");
75 log_err("%s: report zones from sector %llu failed (%d).\n",
76 f->file_name, (unsigned long long)offset >> 9, errno);
77 } else if (ret == 0) {
78 td_verror(td, errno, "Empty zone report");
79 log_err("%s: report zones from sector %llu is empty.\n",
80 f->file_name, (unsigned long long)offset >> 9);
81 ret = -EIO;
82 }
83
84 return ret;
85}
86
87/**
88 * zbd_reset_wp - reset the write pointer of a range of zones
89 * @td: FIO thread data.
90 * @f: FIO file for which to reset zones
91 * @offset: Starting offset of the first zone to reset
92 * @length: Length of the range of zones to reset
93 *
94 * Reset the write pointer of all zones in the range @offset...@offset+@length.
95 * Returns 0 upon success and a negative error code upon failure.
96 */
97int zbd_reset_wp(struct thread_data *td, struct fio_file *f,
98 uint64_t offset, uint64_t length)
99{
100 int ret;
101
102 if (td->io_ops && td->io_ops->reset_wp)
103 ret = td->io_ops->reset_wp(td, f, offset, length);
104 else
105 ret = blkzoned_reset_wp(td, f, offset, length);
106 if (ret < 0) {
107 td_verror(td, errno, "resetting wp failed");
108 log_err("%s: resetting wp for %llu sectors at sector %llu failed (%d).\n",
109 f->file_name, (unsigned long long)length >> 9,
110 (unsigned long long)offset >> 9, errno);
111 }
112
113 return ret;
114}
115
116/**
117 * zbd_zone_idx - convert an offset into a zone number
118 * @f: file pointer.
119 * @offset: offset in bytes. If this offset is in the first zone_size bytes
120 * past the disk size then the index of the sentinel is returned.
121 */
122static uint32_t zbd_zone_idx(const struct fio_file *f, uint64_t offset)
123{
124 uint32_t zone_idx;
125
126 if (f->zbd_info->zone_size_log2 > 0)
127 zone_idx = offset >> f->zbd_info->zone_size_log2;
128 else
129 zone_idx = offset / f->zbd_info->zone_size;
130
131 return min(zone_idx, f->zbd_info->nr_zones);
132}
133
134/**
135 * zbd_zone_swr - Test whether a zone requires sequential writes
136 * @z: zone info pointer.
137 */
138static inline bool zbd_zone_swr(struct fio_zone_info *z)
139{
140 return z->type == ZBD_ZONE_TYPE_SWR;
141}
142
143/**
144 * zbd_zone_end - Return zone end location
145 * @z: zone info pointer.
146 */
147static inline uint64_t zbd_zone_end(const struct fio_zone_info *z)
148{
149 return (z+1)->start;
150}
151
152/**
153 * zbd_zone_capacity_end - Return zone capacity limit end location
154 * @z: zone info pointer.
155 */
156static inline uint64_t zbd_zone_capacity_end(const struct fio_zone_info *z)
157{
158 return z->start + z->capacity;
159}
160
161/**
162 * zbd_zone_full - verify whether a minimum number of bytes remain in a zone
163 * @f: file pointer.
164 * @z: zone info pointer.
165 * @required: minimum number of bytes that must remain in a zone.
166 *
167 * The caller must hold z->mutex.
168 */
169static bool zbd_zone_full(const struct fio_file *f, struct fio_zone_info *z,
170 uint64_t required)
171{
172 assert((required & 511) == 0);
173
174 return zbd_zone_swr(z) &&
175 z->wp + required > zbd_zone_capacity_end(z);
176}
177
178static void zone_lock(struct thread_data *td, struct fio_file *f, struct fio_zone_info *z)
179{
180 struct zoned_block_device_info *zbd = f->zbd_info;
181 uint32_t nz = z - zbd->zone_info;
182
183 /* A thread should never lock zones outside its working area. */
184 assert(f->min_zone <= nz && nz < f->max_zone);
185
186 /*
187 * Lock the io_u target zone. The zone will be unlocked if io_u offset
188 * is changed or when io_u completes and zbd_put_io() executed.
189 * To avoid multiple jobs doing asynchronous I/Os from deadlocking each
190 * other waiting for zone locks when building an io_u batch, first
191 * only trylock the zone. If the zone is already locked by another job,
192 * process the currently queued I/Os so that I/O progress is made and
193 * zones unlocked.
194 */
195 if (pthread_mutex_trylock(&z->mutex) != 0) {
196 if (!td_ioengine_flagged(td, FIO_SYNCIO))
197 io_u_quiesce(td);
198 pthread_mutex_lock(&z->mutex);
199 }
200}
201
202static bool is_valid_offset(const struct fio_file *f, uint64_t offset)
203{
204 return (uint64_t)(offset - f->file_offset) < f->io_size;
205}
206
207/* Verify whether direct I/O is used for all host-managed zoned drives. */
208static bool zbd_using_direct_io(void)
209{
210 struct thread_data *td;
211 struct fio_file *f;
212 int i, j;
213
214 for_each_td(td, i) {
215 if (td->o.odirect || !(td->o.td_ddir & TD_DDIR_WRITE))
216 continue;
217 for_each_file(td, f, j) {
218 if (f->zbd_info &&
219 f->zbd_info->model == ZBD_HOST_MANAGED)
220 return false;
221 }
222 }
223
224 return true;
225}
226
227/* Whether or not the I/O range for f includes one or more sequential zones */
228static bool zbd_is_seq_job(struct fio_file *f)
229{
230 uint32_t zone_idx, zone_idx_b, zone_idx_e;
231
232 assert(f->zbd_info);
233 if (f->io_size == 0)
234 return false;
235 zone_idx_b = zbd_zone_idx(f, f->file_offset);
236 zone_idx_e = zbd_zone_idx(f, f->file_offset + f->io_size - 1);
237 for (zone_idx = zone_idx_b; zone_idx <= zone_idx_e; zone_idx++)
238 if (zbd_zone_swr(&f->zbd_info->zone_info[zone_idx]))
239 return true;
240
241 return false;
242}
243
244/*
245 * Verify whether offset and size parameters are aligned with zone boundaries.
246 */
247static bool zbd_verify_sizes(void)
248{
249 const struct fio_zone_info *z;
250 struct thread_data *td;
251 struct fio_file *f;
252 uint64_t new_offset, new_end;
253 uint32_t zone_idx;
254 int i, j;
255
256 for_each_td(td, i) {
257 for_each_file(td, f, j) {
258 if (!f->zbd_info)
259 continue;
260 if (f->file_offset >= f->real_file_size)
261 continue;
262 if (!zbd_is_seq_job(f))
263 continue;
264
265 if (!td->o.zone_size) {
266 td->o.zone_size = f->zbd_info->zone_size;
267 if (!td->o.zone_size) {
268 log_err("%s: invalid 0 zone size\n",
269 f->file_name);
270 return false;
271 }
272 } else if (td->o.zone_size != f->zbd_info->zone_size) {
273 log_err("%s: job parameter zonesize %llu does not match disk zone size %llu.\n",
274 f->file_name, (unsigned long long) td->o.zone_size,
275 (unsigned long long) f->zbd_info->zone_size);
276 return false;
277 }
278
279 if (td->o.zone_skip &&
280 (td->o.zone_skip < td->o.zone_size ||
281 td->o.zone_skip % td->o.zone_size)) {
282 log_err("%s: zoneskip %llu is not a multiple of the device zone size %llu.\n",
283 f->file_name, (unsigned long long) td->o.zone_skip,
284 (unsigned long long) td->o.zone_size);
285 return false;
286 }
287
288 zone_idx = zbd_zone_idx(f, f->file_offset);
289 z = &f->zbd_info->zone_info[zone_idx];
290 if ((f->file_offset != z->start) &&
291 (td->o.td_ddir != TD_DDIR_READ)) {
292 new_offset = zbd_zone_end(z);
293 if (new_offset >= f->file_offset + f->io_size) {
294 log_info("%s: io_size must be at least one zone\n",
295 f->file_name);
296 return false;
297 }
298 log_info("%s: rounded up offset from %llu to %llu\n",
299 f->file_name, (unsigned long long) f->file_offset,
300 (unsigned long long) new_offset);
301 f->io_size -= (new_offset - f->file_offset);
302 f->file_offset = new_offset;
303 }
304 zone_idx = zbd_zone_idx(f, f->file_offset + f->io_size);
305 z = &f->zbd_info->zone_info[zone_idx];
306 new_end = z->start;
307 if ((td->o.td_ddir != TD_DDIR_READ) &&
308 (f->file_offset + f->io_size != new_end)) {
309 if (new_end <= f->file_offset) {
310 log_info("%s: io_size must be at least one zone\n",
311 f->file_name);
312 return false;
313 }
314 log_info("%s: rounded down io_size from %llu to %llu\n",
315 f->file_name, (unsigned long long) f->io_size,
316 (unsigned long long) new_end - f->file_offset);
317 f->io_size = new_end - f->file_offset;
318 }
319
320 f->min_zone = zbd_zone_idx(f, f->file_offset);
321 f->max_zone = zbd_zone_idx(f, f->file_offset + f->io_size);
322 assert(f->min_zone < f->max_zone);
323 }
324 }
325
326 return true;
327}
328
329static bool zbd_verify_bs(void)
330{
331 struct thread_data *td;
332 struct fio_file *f;
333 uint32_t zone_size;
334 int i, j, k;
335
336 for_each_td(td, i) {
337 for_each_file(td, f, j) {
338 if (!f->zbd_info)
339 continue;
340 zone_size = f->zbd_info->zone_size;
341 for (k = 0; k < FIO_ARRAY_SIZE(td->o.bs); k++) {
342 if (td->o.verify != VERIFY_NONE &&
343 zone_size % td->o.bs[k] != 0) {
344 log_info("%s: block size %llu is not a divisor of the zone size %d\n",
345 f->file_name, td->o.bs[k],
346 zone_size);
347 return false;
348 }
349 }
350 }
351 }
352 return true;
353}
354
355static int ilog2(uint64_t i)
356{
357 int log = -1;
358
359 while (i) {
360 i >>= 1;
361 log++;
362 }
363 return log;
364}
365
366/*
367 * Initialize f->zbd_info for devices that are not zoned block devices. This
368 * allows to execute a ZBD workload against a non-ZBD device.
369 */
370static int init_zone_info(struct thread_data *td, struct fio_file *f)
371{
372 uint32_t nr_zones;
373 struct fio_zone_info *p;
374 uint64_t zone_size = td->o.zone_size;
375 uint64_t zone_capacity = td->o.zone_capacity;
376 struct zoned_block_device_info *zbd_info = NULL;
377 int i;
378
379 if (zone_size == 0) {
380 log_err("%s: Specifying the zone size is mandatory for regular block devices with --zonemode=zbd\n\n",
381 f->file_name);
382 return 1;
383 }
384
385 if (zone_size < 512) {
386 log_err("%s: zone size must be at least 512 bytes for --zonemode=zbd\n\n",
387 f->file_name);
388 return 1;
389 }
390
391 if (zone_capacity == 0)
392 zone_capacity = zone_size;
393
394 if (zone_capacity > zone_size) {
395 log_err("%s: job parameter zonecapacity %llu is larger than zone size %llu\n",
396 f->file_name, (unsigned long long) td->o.zone_capacity,
397 (unsigned long long) td->o.zone_size);
398 return 1;
399 }
400
401 nr_zones = (f->real_file_size + zone_size - 1) / zone_size;
402 zbd_info = scalloc(1, sizeof(*zbd_info) +
403 (nr_zones + 1) * sizeof(zbd_info->zone_info[0]));
404 if (!zbd_info)
405 return -ENOMEM;
406
407 mutex_init_pshared(&zbd_info->mutex);
408 zbd_info->refcount = 1;
409 p = &zbd_info->zone_info[0];
410 for (i = 0; i < nr_zones; i++, p++) {
411 mutex_init_pshared_with_type(&p->mutex,
412 PTHREAD_MUTEX_RECURSIVE);
413 p->start = i * zone_size;
414 p->wp = p->start;
415 p->type = ZBD_ZONE_TYPE_SWR;
416 p->cond = ZBD_ZONE_COND_EMPTY;
417 p->capacity = zone_capacity;
418 }
419 /* a sentinel */
420 p->start = nr_zones * zone_size;
421
422 f->zbd_info = zbd_info;
423 f->zbd_info->zone_size = zone_size;
424 f->zbd_info->zone_size_log2 = is_power_of_2(zone_size) ?
425 ilog2(zone_size) : 0;
426 f->zbd_info->nr_zones = nr_zones;
427 return 0;
428}
429
430/*
431 * Maximum number of zones to report in one operation.
432 */
433#define ZBD_REPORT_MAX_ZONES 8192U
434
435/*
436 * Parse the device zone report and store it in f->zbd_info. Must be called
437 * only for devices that are zoned, namely those with a model != ZBD_NONE.
438 */
439static int parse_zone_info(struct thread_data *td, struct fio_file *f)
440{
441 int nr_zones, nrz;
442 struct zbd_zone *zones, *z;
443 struct fio_zone_info *p;
444 uint64_t zone_size, offset;
445 struct zoned_block_device_info *zbd_info = NULL;
446 int i, j, ret = -ENOMEM;
447
448 zones = calloc(ZBD_REPORT_MAX_ZONES, sizeof(struct zbd_zone));
449 if (!zones)
450 goto out;
451
452 nrz = zbd_report_zones(td, f, 0, zones, ZBD_REPORT_MAX_ZONES);
453 if (nrz < 0) {
454 ret = nrz;
455 log_info("fio: report zones (offset 0) failed for %s (%d).\n",
456 f->file_name, -ret);
457 goto out;
458 }
459
460 zone_size = zones[0].len;
461 nr_zones = (f->real_file_size + zone_size - 1) / zone_size;
462
463 if (td->o.zone_size == 0) {
464 td->o.zone_size = zone_size;
465 } else if (td->o.zone_size != zone_size) {
466 log_err("fio: %s job parameter zonesize %llu does not match disk zone size %llu.\n",
467 f->file_name, (unsigned long long) td->o.zone_size,
468 (unsigned long long) zone_size);
469 ret = -EINVAL;
470 goto out;
471 }
472
473 dprint(FD_ZBD, "Device %s has %d zones of size %llu KB\n", f->file_name,
474 nr_zones, (unsigned long long) zone_size / 1024);
475
476 zbd_info = scalloc(1, sizeof(*zbd_info) +
477 (nr_zones + 1) * sizeof(zbd_info->zone_info[0]));
478 if (!zbd_info)
479 goto out;
480 mutex_init_pshared(&zbd_info->mutex);
481 zbd_info->refcount = 1;
482 p = &zbd_info->zone_info[0];
483 for (offset = 0, j = 0; j < nr_zones;) {
484 z = &zones[0];
485 for (i = 0; i < nrz; i++, j++, z++, p++) {
486 mutex_init_pshared_with_type(&p->mutex,
487 PTHREAD_MUTEX_RECURSIVE);
488 p->start = z->start;
489 p->capacity = z->capacity;
490 switch (z->cond) {
491 case ZBD_ZONE_COND_NOT_WP:
492 case ZBD_ZONE_COND_FULL:
493 p->wp = p->start + p->capacity;
494 break;
495 default:
496 assert(z->start <= z->wp);
497 assert(z->wp <= z->start + zone_size);
498 p->wp = z->wp;
499 break;
500 }
501 p->type = z->type;
502 p->cond = z->cond;
503 if (j > 0 && p->start != p[-1].start + zone_size) {
504 log_info("%s: invalid zone data\n",
505 f->file_name);
506 ret = -EINVAL;
507 goto out;
508 }
509 }
510 z--;
511 offset = z->start + z->len;
512 if (j >= nr_zones)
513 break;
514 nrz = zbd_report_zones(td, f, offset,
515 zones, ZBD_REPORT_MAX_ZONES);
516 if (nrz < 0) {
517 ret = nrz;
518 log_info("fio: report zones (offset %llu) failed for %s (%d).\n",
519 (unsigned long long)offset,
520 f->file_name, -ret);
521 goto out;
522 }
523 }
524
525 /* a sentinel */
526 zbd_info->zone_info[nr_zones].start = offset;
527
528 f->zbd_info = zbd_info;
529 f->zbd_info->zone_size = zone_size;
530 f->zbd_info->zone_size_log2 = is_power_of_2(zone_size) ?
531 ilog2(zone_size) : 0;
532 f->zbd_info->nr_zones = nr_zones;
533 zbd_info = NULL;
534 ret = 0;
535
536out:
537 sfree(zbd_info);
538 free(zones);
539 return ret;
540}
541
542/*
543 * Allocate zone information and store it into f->zbd_info if zonemode=zbd.
544 *
545 * Returns 0 upon success and a negative error code upon failure.
546 */
547static int zbd_create_zone_info(struct thread_data *td, struct fio_file *f)
548{
549 enum zbd_zoned_model zbd_model;
550 int ret;
551
552 assert(td->o.zone_mode == ZONE_MODE_ZBD);
553
554 ret = zbd_get_zoned_model(td, f, &zbd_model);
555 if (ret)
556 return ret;
557
558 switch (zbd_model) {
559 case ZBD_IGNORE:
560 return 0;
561 case ZBD_HOST_AWARE:
562 case ZBD_HOST_MANAGED:
563 ret = parse_zone_info(td, f);
564 break;
565 case ZBD_NONE:
566 ret = init_zone_info(td, f);
567 break;
568 default:
569 td_verror(td, EINVAL, "Unsupported zoned model");
570 log_err("Unsupported zoned model\n");
571 return -EINVAL;
572 }
573
574 if (ret == 0) {
575 f->zbd_info->model = zbd_model;
576 f->zbd_info->max_open_zones = td->o.max_open_zones;
577 }
578 return ret;
579}
580
581void zbd_free_zone_info(struct fio_file *f)
582{
583 uint32_t refcount;
584
585 assert(f->zbd_info);
586
587 pthread_mutex_lock(&f->zbd_info->mutex);
588 refcount = --f->zbd_info->refcount;
589 pthread_mutex_unlock(&f->zbd_info->mutex);
590
591 assert((int32_t)refcount >= 0);
592 if (refcount == 0)
593 sfree(f->zbd_info);
594 f->zbd_info = NULL;
595}
596
597/*
598 * Initialize f->zbd_info.
599 *
600 * Returns 0 upon success and a negative error code upon failure.
601 *
602 * Note: this function can only work correctly if it is called before the first
603 * fio fork() call.
604 */
605static int zbd_init_zone_info(struct thread_data *td, struct fio_file *file)
606{
607 struct thread_data *td2;
608 struct fio_file *f2;
609 int i, j, ret;
610
611 for_each_td(td2, i) {
612 for_each_file(td2, f2, j) {
613 if (td2 == td && f2 == file)
614 continue;
615 if (!f2->zbd_info ||
616 strcmp(f2->file_name, file->file_name) != 0)
617 continue;
618 file->zbd_info = f2->zbd_info;
619 file->zbd_info->refcount++;
620 return 0;
621 }
622 }
623
624 ret = zbd_create_zone_info(td, file);
625 if (ret < 0)
626 td_verror(td, -ret, "zbd_create_zone_info() failed");
627 return ret;
628}
629
630static bool zbd_open_zone(struct thread_data *td, const struct fio_file *f,
631 uint32_t zone_idx);
632static int zbd_reset_zone(struct thread_data *td, struct fio_file *f,
633 struct fio_zone_info *z);
634
635int zbd_setup_files(struct thread_data *td)
636{
637 struct fio_file *f;
638 int i;
639
640 for_each_file(td, f, i) {
641 if (zbd_init_zone_info(td, f))
642 return 1;
643 }
644
645 if (!zbd_using_direct_io()) {
646 log_err("Using direct I/O is mandatory for writing to ZBD drives\n\n");
647 return 1;
648 }
649
650 if (!zbd_verify_sizes())
651 return 1;
652
653 if (!zbd_verify_bs())
654 return 1;
655
656 for_each_file(td, f, i) {
657 struct zoned_block_device_info *zbd = f->zbd_info;
658 struct fio_zone_info *z;
659 int zi;
660
661 if (!zbd)
662 continue;
663
664 zbd->max_open_zones = zbd->max_open_zones ?: ZBD_MAX_OPEN_ZONES;
665
666 if (td->o.max_open_zones > 0 &&
667 zbd->max_open_zones != td->o.max_open_zones) {
668 log_err("Different 'max_open_zones' values\n");
669 return 1;
670 }
671 if (zbd->max_open_zones > ZBD_MAX_OPEN_ZONES) {
672 log_err("'max_open_zones' value is limited by %u\n", ZBD_MAX_OPEN_ZONES);
673 return 1;
674 }
675
676 for (zi = f->min_zone; zi < f->max_zone; zi++) {
677 z = &zbd->zone_info[zi];
678 if (z->cond != ZBD_ZONE_COND_IMP_OPEN &&
679 z->cond != ZBD_ZONE_COND_EXP_OPEN)
680 continue;
681 if (zbd_open_zone(td, f, zi))
682 continue;
683 /*
684 * If the number of open zones exceeds specified limits,
685 * reset all extra open zones.
686 */
687 if (zbd_reset_zone(td, f, z) < 0) {
688 log_err("Failed to reest zone %d\n", zi);
689 return 1;
690 }
691 }
692 }
693
694 return 0;
695}
696
697static unsigned int zbd_zone_nr(struct zoned_block_device_info *zbd_info,
698 struct fio_zone_info *zone)
699{
700 return zone - zbd_info->zone_info;
701}
702
703/**
704 * zbd_reset_zone - reset the write pointer of a single zone
705 * @td: FIO thread data.
706 * @f: FIO file associated with the disk for which to reset a write pointer.
707 * @z: Zone to reset.
708 *
709 * Returns 0 upon success and a negative error code upon failure.
710 *
711 * The caller must hold z->mutex.
712 */
713static int zbd_reset_zone(struct thread_data *td, struct fio_file *f,
714 struct fio_zone_info *z)
715{
716 uint64_t offset = z->start;
717 uint64_t length = (z+1)->start - offset;
718 int ret = 0;
719
720 if (z->wp == z->start)
721 return 0;
722
723 assert(is_valid_offset(f, offset + length - 1));
724
725 dprint(FD_ZBD, "%s: resetting wp of zone %u.\n", f->file_name,
726 zbd_zone_nr(f->zbd_info, z));
727 switch (f->zbd_info->model) {
728 case ZBD_HOST_AWARE:
729 case ZBD_HOST_MANAGED:
730 ret = zbd_reset_wp(td, f, offset, length);
731 if (ret < 0)
732 return ret;
733 break;
734 default:
735 break;
736 }
737
738 pthread_mutex_lock(&f->zbd_info->mutex);
739 f->zbd_info->sectors_with_data -= z->wp - z->start;
740 pthread_mutex_unlock(&f->zbd_info->mutex);
741 z->wp = z->start;
742 z->verify_block = 0;
743
744 td->ts.nr_zone_resets++;
745
746 return ret;
747}
748
749/* The caller must hold f->zbd_info->mutex */
750static void zbd_close_zone(struct thread_data *td, const struct fio_file *f,
751 unsigned int zone_idx)
752{
753 uint32_t open_zone_idx = 0;
754
755 for (; open_zone_idx < f->zbd_info->num_open_zones; open_zone_idx++) {
756 if (f->zbd_info->open_zones[open_zone_idx] == zone_idx)
757 break;
758 }
759 if (open_zone_idx == f->zbd_info->num_open_zones) {
760 dprint(FD_ZBD, "%s: zone %d is not open\n",
761 f->file_name, zone_idx);
762 return;
763 }
764
765 dprint(FD_ZBD, "%s: closing zone %d\n", f->file_name, zone_idx);
766 memmove(f->zbd_info->open_zones + open_zone_idx,
767 f->zbd_info->open_zones + open_zone_idx + 1,
768 (ZBD_MAX_OPEN_ZONES - (open_zone_idx + 1)) *
769 sizeof(f->zbd_info->open_zones[0]));
770 f->zbd_info->num_open_zones--;
771 td->num_open_zones--;
772 f->zbd_info->zone_info[zone_idx].open = 0;
773}
774
775/*
776 * Reset a range of zones. Returns 0 upon success and 1 upon failure.
777 * @td: fio thread data.
778 * @f: fio file for which to reset zones
779 * @zb: first zone to reset.
780 * @ze: first zone not to reset.
781 * @all_zones: whether to reset all zones or only those zones for which the
782 * write pointer is not a multiple of td->o.min_bs[DDIR_WRITE].
783 */
784static int zbd_reset_zones(struct thread_data *td, struct fio_file *f,
785 struct fio_zone_info *const zb,
786 struct fio_zone_info *const ze, bool all_zones)
787{
788 struct fio_zone_info *z;
789 const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
790 bool reset_wp;
791 int res = 0;
792
793 assert(min_bs);
794
795 dprint(FD_ZBD, "%s: examining zones %u .. %u\n", f->file_name,
796 zbd_zone_nr(f->zbd_info, zb), zbd_zone_nr(f->zbd_info, ze));
797 for (z = zb; z < ze; z++) {
798 uint32_t nz = z - f->zbd_info->zone_info;
799
800 if (!zbd_zone_swr(z))
801 continue;
802 zone_lock(td, f, z);
803 if (all_zones) {
804 pthread_mutex_lock(&f->zbd_info->mutex);
805 zbd_close_zone(td, f, nz);
806 pthread_mutex_unlock(&f->zbd_info->mutex);
807
808 reset_wp = z->wp != z->start;
809 } else {
810 reset_wp = z->wp % min_bs != 0;
811 }
812 if (reset_wp) {
813 dprint(FD_ZBD, "%s: resetting zone %u\n",
814 f->file_name,
815 zbd_zone_nr(f->zbd_info, z));
816 if (zbd_reset_zone(td, f, z) < 0)
817 res = 1;
818 }
819 pthread_mutex_unlock(&z->mutex);
820 }
821
822 return res;
823}
824
825/*
826 * Reset zbd_info.write_cnt, the counter that counts down towards the next
827 * zone reset.
828 */
829static void _zbd_reset_write_cnt(const struct thread_data *td,
830 const struct fio_file *f)
831{
832 assert(0 <= td->o.zrf.u.f && td->o.zrf.u.f <= 1);
833
834 f->zbd_info->write_cnt = td->o.zrf.u.f ?
835 min(1.0 / td->o.zrf.u.f, 0.0 + UINT_MAX) : UINT_MAX;
836}
837
838static void zbd_reset_write_cnt(const struct thread_data *td,
839 const struct fio_file *f)
840{
841 pthread_mutex_lock(&f->zbd_info->mutex);
842 _zbd_reset_write_cnt(td, f);
843 pthread_mutex_unlock(&f->zbd_info->mutex);
844}
845
846static bool zbd_dec_and_reset_write_cnt(const struct thread_data *td,
847 const struct fio_file *f)
848{
849 uint32_t write_cnt = 0;
850
851 pthread_mutex_lock(&f->zbd_info->mutex);
852 assert(f->zbd_info->write_cnt);
853 if (f->zbd_info->write_cnt)
854 write_cnt = --f->zbd_info->write_cnt;
855 if (write_cnt == 0)
856 _zbd_reset_write_cnt(td, f);
857 pthread_mutex_unlock(&f->zbd_info->mutex);
858
859 return write_cnt == 0;
860}
861
862enum swd_action {
863 CHECK_SWD,
864 SET_SWD,
865};
866
867/* Calculate the number of sectors with data (swd) and perform action 'a' */
868static uint64_t zbd_process_swd(const struct fio_file *f, enum swd_action a)
869{
870 struct fio_zone_info *zb, *ze, *z;
871 uint64_t swd = 0;
872
873 zb = &f->zbd_info->zone_info[f->min_zone];
874 ze = &f->zbd_info->zone_info[f->max_zone];
875 for (z = zb; z < ze; z++) {
876 pthread_mutex_lock(&z->mutex);
877 swd += z->wp - z->start;
878 }
879 pthread_mutex_lock(&f->zbd_info->mutex);
880 switch (a) {
881 case CHECK_SWD:
882 assert(f->zbd_info->sectors_with_data == swd);
883 break;
884 case SET_SWD:
885 f->zbd_info->sectors_with_data = swd;
886 break;
887 }
888 pthread_mutex_unlock(&f->zbd_info->mutex);
889 for (z = zb; z < ze; z++)
890 pthread_mutex_unlock(&z->mutex);
891
892 return swd;
893}
894
895/*
896 * The swd check is useful for debugging but takes too much time to leave
897 * it enabled all the time. Hence it is disabled by default.
898 */
899static const bool enable_check_swd = false;
900
901/* Check whether the value of zbd_info.sectors_with_data is correct. */
902static void zbd_check_swd(const struct fio_file *f)
903{
904 if (!enable_check_swd)
905 return;
906
907 zbd_process_swd(f, CHECK_SWD);
908}
909
910static void zbd_init_swd(struct fio_file *f)
911{
912 uint64_t swd;
913
914 if (!enable_check_swd)
915 return;
916
917 swd = zbd_process_swd(f, SET_SWD);
918 dprint(FD_ZBD, "%s(%s): swd = %" PRIu64 "\n", __func__, f->file_name,
919 swd);
920}
921
922void zbd_file_reset(struct thread_data *td, struct fio_file *f)
923{
924 struct fio_zone_info *zb, *ze;
925
926 if (!f->zbd_info || !td_write(td))
927 return;
928
929 zb = &f->zbd_info->zone_info[f->min_zone];
930 ze = &f->zbd_info->zone_info[f->max_zone];
931 zbd_init_swd(f);
932 /*
933 * If data verification is enabled reset the affected zones before
934 * writing any data to avoid that a zone reset has to be issued while
935 * writing data, which causes data loss.
936 */
937 zbd_reset_zones(td, f, zb, ze, td->o.verify != VERIFY_NONE &&
938 td->runstate != TD_VERIFYING);
939 zbd_reset_write_cnt(td, f);
940}
941
942/* The caller must hold f->zbd_info->mutex. */
943static bool is_zone_open(const struct thread_data *td, const struct fio_file *f,
944 unsigned int zone_idx)
945{
946 struct zoned_block_device_info *zbdi = f->zbd_info;
947 int i;
948
949 assert(td->o.job_max_open_zones == 0 || td->num_open_zones <= td->o.job_max_open_zones);
950 assert(td->o.job_max_open_zones <= zbdi->max_open_zones);
951 assert(zbdi->num_open_zones <= zbdi->max_open_zones);
952
953 for (i = 0; i < zbdi->num_open_zones; i++)
954 if (zbdi->open_zones[i] == zone_idx)
955 return true;
956
957 return false;
958}
959
960/*
961 * Open a ZBD zone if it was not yet open. Returns true if either the zone was
962 * already open or if opening a new zone is allowed. Returns false if the zone
963 * was not yet open and opening a new zone would cause the zone limit to be
964 * exceeded.
965 */
966static bool zbd_open_zone(struct thread_data *td, const struct fio_file *f,
967 uint32_t zone_idx)
968{
969 const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
970 struct fio_zone_info *z = &f->zbd_info->zone_info[zone_idx];
971 bool res = true;
972
973 if (z->cond == ZBD_ZONE_COND_OFFLINE)
974 return false;
975
976 /*
977 * Skip full zones with data verification enabled because resetting a
978 * zone causes data loss and hence causes verification to fail.
979 */
980 if (td->o.verify != VERIFY_NONE && zbd_zone_full(f, z, min_bs))
981 return false;
982
983 pthread_mutex_lock(&f->zbd_info->mutex);
984 if (is_zone_open(td, f, zone_idx)) {
985 /*
986 * If the zone is already open and going to be full by writes
987 * in-flight, handle it as a full zone instead of an open zone.
988 */
989 if (z->wp >= zbd_zone_capacity_end(z))
990 res = false;
991 goto out;
992 }
993 res = false;
994 /* Zero means no limit */
995 if (td->o.job_max_open_zones > 0 &&
996 td->num_open_zones >= td->o.job_max_open_zones)
997 goto out;
998 if (f->zbd_info->num_open_zones >= f->zbd_info->max_open_zones)
999 goto out;
1000 dprint(FD_ZBD, "%s: opening zone %d\n", f->file_name, zone_idx);
1001 f->zbd_info->open_zones[f->zbd_info->num_open_zones++] = zone_idx;
1002 td->num_open_zones++;
1003 z->open = 1;
1004 res = true;
1005
1006out:
1007 pthread_mutex_unlock(&f->zbd_info->mutex);
1008 return res;
1009}
1010
1011/* Anything goes as long as it is not a constant. */
1012static uint32_t pick_random_zone_idx(const struct fio_file *f,
1013 const struct io_u *io_u)
1014{
1015 return io_u->offset * f->zbd_info->num_open_zones / f->real_file_size;
1016}
1017
1018/*
1019 * Modify the offset of an I/O unit that does not refer to an open zone such
1020 * that it refers to an open zone. Close an open zone and open a new zone if
1021 * necessary. This algorithm can only work correctly if all write pointers are
1022 * a multiple of the fio block size. The caller must neither hold z->mutex
1023 * nor f->zbd_info->mutex. Returns with z->mutex held upon success.
1024 */
1025static struct fio_zone_info *zbd_convert_to_open_zone(struct thread_data *td,
1026 struct io_u *io_u)
1027{
1028 const uint32_t min_bs = td->o.min_bs[io_u->ddir];
1029 struct fio_file *f = io_u->file;
1030 struct fio_zone_info *z;
1031 unsigned int open_zone_idx = -1;
1032 uint32_t zone_idx, new_zone_idx;
1033 int i;
1034 bool wait_zone_close;
1035
1036 assert(is_valid_offset(f, io_u->offset));
1037
1038 if (td->o.max_open_zones || td->o.job_max_open_zones) {
1039 /*
1040 * This statement accesses f->zbd_info->open_zones[] on purpose
1041 * without locking.
1042 */
1043 zone_idx = f->zbd_info->open_zones[pick_random_zone_idx(f, io_u)];
1044 } else {
1045 zone_idx = zbd_zone_idx(f, io_u->offset);
1046 }
1047 if (zone_idx < f->min_zone)
1048 zone_idx = f->min_zone;
1049 else if (zone_idx >= f->max_zone)
1050 zone_idx = f->max_zone - 1;
1051 dprint(FD_ZBD, "%s(%s): starting from zone %d (offset %lld, buflen %lld)\n",
1052 __func__, f->file_name, zone_idx, io_u->offset, io_u->buflen);
1053
1054 /*
1055 * Since z->mutex is the outer lock and f->zbd_info->mutex the inner
1056 * lock it can happen that the state of the zone with index zone_idx
1057 * has changed after 'z' has been assigned and before f->zbd_info->mutex
1058 * has been obtained. Hence the loop.
1059 */
1060 for (;;) {
1061 uint32_t tmp_idx;
1062
1063 z = &f->zbd_info->zone_info[zone_idx];
1064
1065 zone_lock(td, f, z);
1066 pthread_mutex_lock(&f->zbd_info->mutex);
1067 if (td->o.max_open_zones == 0 && td->o.job_max_open_zones == 0)
1068 goto examine_zone;
1069 if (f->zbd_info->num_open_zones == 0) {
1070 dprint(FD_ZBD, "%s(%s): no zones are open\n",
1071 __func__, f->file_name);
1072 goto open_other_zone;
1073 }
1074
1075 /*
1076 * List of opened zones is per-device, shared across all threads.
1077 * Start with quasi-random candidate zone.
1078 * Ignore zones which don't belong to thread's offset/size area.
1079 */
1080 open_zone_idx = pick_random_zone_idx(f, io_u);
1081 assert(open_zone_idx < f->zbd_info->num_open_zones);
1082 tmp_idx = open_zone_idx;
1083 for (i = 0; i < f->zbd_info->num_open_zones; i++) {
1084 uint32_t tmpz;
1085
1086 if (tmp_idx >= f->zbd_info->num_open_zones)
1087 tmp_idx = 0;
1088 tmpz = f->zbd_info->open_zones[tmp_idx];
1089 if (f->min_zone <= tmpz && tmpz < f->max_zone) {
1090 open_zone_idx = tmp_idx;
1091 goto found_candidate_zone;
1092 }
1093
1094 tmp_idx++;
1095 }
1096
1097 dprint(FD_ZBD, "%s(%s): no candidate zone\n",
1098 __func__, f->file_name);
1099 pthread_mutex_unlock(&f->zbd_info->mutex);
1100 pthread_mutex_unlock(&z->mutex);
1101 return NULL;
1102
1103found_candidate_zone:
1104 new_zone_idx = f->zbd_info->open_zones[open_zone_idx];
1105 if (new_zone_idx == zone_idx)
1106 break;
1107 zone_idx = new_zone_idx;
1108 pthread_mutex_unlock(&f->zbd_info->mutex);
1109 pthread_mutex_unlock(&z->mutex);
1110 }
1111
1112 /* Both z->mutex and f->zbd_info->mutex are held. */
1113
1114examine_zone:
1115 if (z->wp + min_bs <= zbd_zone_capacity_end(z)) {
1116 pthread_mutex_unlock(&f->zbd_info->mutex);
1117 goto out;
1118 }
1119
1120open_other_zone:
1121 /* Check if number of open zones reaches one of limits. */
1122 wait_zone_close =
1123 f->zbd_info->num_open_zones == f->max_zone - f->min_zone ||
1124 (td->o.max_open_zones &&
1125 f->zbd_info->num_open_zones == td->o.max_open_zones) ||
1126 (td->o.job_max_open_zones &&
1127 td->num_open_zones == td->o.job_max_open_zones);
1128
1129 pthread_mutex_unlock(&f->zbd_info->mutex);
1130
1131 /* Only z->mutex is held. */
1132
1133 /*
1134 * When number of open zones reaches to one of limits, wait for
1135 * zone close before opening a new zone.
1136 */
1137 if (wait_zone_close) {
1138 dprint(FD_ZBD, "%s(%s): quiesce to allow open zones to close\n",
1139 __func__, f->file_name);
1140 io_u_quiesce(td);
1141 }
1142
1143 /* Zone 'z' is full, so try to open a new zone. */
1144 for (i = f->io_size / f->zbd_info->zone_size; i > 0; i--) {
1145 zone_idx++;
1146 pthread_mutex_unlock(&z->mutex);
1147 z++;
1148 if (!is_valid_offset(f, z->start)) {
1149 /* Wrap-around. */
1150 zone_idx = f->min_zone;
1151 z = &f->zbd_info->zone_info[zone_idx];
1152 }
1153 assert(is_valid_offset(f, z->start));
1154 zone_lock(td, f, z);
1155 if (z->open)
1156 continue;
1157 if (zbd_open_zone(td, f, zone_idx))
1158 goto out;
1159 }
1160
1161 /* Only z->mutex is held. */
1162
1163 /* Check whether the write fits in any of the already opened zones. */
1164 pthread_mutex_lock(&f->zbd_info->mutex);
1165 for (i = 0; i < f->zbd_info->num_open_zones; i++) {
1166 zone_idx = f->zbd_info->open_zones[i];
1167 if (zone_idx < f->min_zone || zone_idx >= f->max_zone)
1168 continue;
1169 pthread_mutex_unlock(&f->zbd_info->mutex);
1170 pthread_mutex_unlock(&z->mutex);
1171
1172 z = &f->zbd_info->zone_info[zone_idx];
1173
1174 zone_lock(td, f, z);
1175 if (z->wp + min_bs <= zbd_zone_capacity_end(z))
1176 goto out;
1177 pthread_mutex_lock(&f->zbd_info->mutex);
1178 }
1179 pthread_mutex_unlock(&f->zbd_info->mutex);
1180 pthread_mutex_unlock(&z->mutex);
1181 dprint(FD_ZBD, "%s(%s): did not open another zone\n", __func__,
1182 f->file_name);
1183 return NULL;
1184
1185out:
1186 dprint(FD_ZBD, "%s(%s): returning zone %d\n", __func__, f->file_name,
1187 zone_idx);
1188 io_u->offset = z->start;
1189 return z;
1190}
1191
1192/* The caller must hold z->mutex. */
1193static struct fio_zone_info *zbd_replay_write_order(struct thread_data *td,
1194 struct io_u *io_u,
1195 struct fio_zone_info *z)
1196{
1197 const struct fio_file *f = io_u->file;
1198 const uint32_t min_bs = td->o.min_bs[DDIR_WRITE];
1199
1200 if (!zbd_open_zone(td, f, z - f->zbd_info->zone_info)) {
1201 pthread_mutex_unlock(&z->mutex);
1202 z = zbd_convert_to_open_zone(td, io_u);
1203 assert(z);
1204 }
1205
1206 if (z->verify_block * min_bs >= z->capacity)
1207 log_err("%s: %d * %d >= %llu\n", f->file_name, z->verify_block,
1208 min_bs, (unsigned long long)z->capacity);
1209 io_u->offset = z->start + z->verify_block++ * min_bs;
1210 return z;
1211}
1212
1213/*
1214 * Find another zone for which @io_u fits below the write pointer. Start
1215 * searching in zones @zb + 1 .. @zl and continue searching in zones
1216 * @zf .. @zb - 1.
1217 *
1218 * Either returns NULL or returns a zone pointer and holds the mutex for that
1219 * zone.
1220 */
1221static struct fio_zone_info *
1222zbd_find_zone(struct thread_data *td, struct io_u *io_u,
1223 struct fio_zone_info *zb, struct fio_zone_info *zl)
1224{
1225 const uint32_t min_bs = td->o.min_bs[io_u->ddir];
1226 struct fio_file *f = io_u->file;
1227 struct fio_zone_info *z1, *z2;
1228 const struct fio_zone_info *const zf =
1229 &f->zbd_info->zone_info[f->min_zone];
1230
1231 /*
1232 * Skip to the next non-empty zone in case of sequential I/O and to
1233 * the nearest non-empty zone in case of random I/O.
1234 */
1235 for (z1 = zb + 1, z2 = zb - 1; z1 < zl || z2 >= zf; z1++, z2--) {
1236 if (z1 < zl && z1->cond != ZBD_ZONE_COND_OFFLINE) {
1237 zone_lock(td, f, z1);
1238 if (z1->start + min_bs <= z1->wp)
1239 return z1;
1240 pthread_mutex_unlock(&z1->mutex);
1241 } else if (!td_random(td)) {
1242 break;
1243 }
1244 if (td_random(td) && z2 >= zf &&
1245 z2->cond != ZBD_ZONE_COND_OFFLINE) {
1246 zone_lock(td, f, z2);
1247 if (z2->start + min_bs <= z2->wp)
1248 return z2;
1249 pthread_mutex_unlock(&z2->mutex);
1250 }
1251 }
1252 dprint(FD_ZBD, "%s: adjusting random read offset failed\n",
1253 f->file_name);
1254 return NULL;
1255}
1256
1257/**
1258 * zbd_end_zone_io - update zone status at command completion
1259 * @io_u: I/O unit
1260 * @z: zone info pointer
1261 *
1262 * If the write command made the zone full, close it.
1263 *
1264 * The caller must hold z->mutex.
1265 */
1266static void zbd_end_zone_io(struct thread_data *td, const struct io_u *io_u,
1267 struct fio_zone_info *z)
1268{
1269 const struct fio_file *f = io_u->file;
1270
1271 if (io_u->ddir == DDIR_WRITE &&
1272 io_u->offset + io_u->buflen >= zbd_zone_capacity_end(z)) {
1273 pthread_mutex_lock(&f->zbd_info->mutex);
1274 zbd_close_zone(td, f, z - f->zbd_info->zone_info);
1275 pthread_mutex_unlock(&f->zbd_info->mutex);
1276 }
1277}
1278
1279/**
1280 * zbd_queue_io - update the write pointer of a sequential zone
1281 * @io_u: I/O unit
1282 * @success: Whether or not the I/O unit has been queued successfully
1283 * @q: queueing status (busy, completed or queued).
1284 *
1285 * For write and trim operations, update the write pointer of the I/O unit
1286 * target zone.
1287 */
1288static void zbd_queue_io(struct thread_data *td, struct io_u *io_u, int q,
1289 bool success)
1290{
1291 const struct fio_file *f = io_u->file;
1292 struct zoned_block_device_info *zbd_info = f->zbd_info;
1293 struct fio_zone_info *z;
1294 uint32_t zone_idx;
1295 uint64_t zone_end;
1296
1297 if (!zbd_info)
1298 return;
1299
1300 zone_idx = zbd_zone_idx(f, io_u->offset);
1301 assert(zone_idx < zbd_info->nr_zones);
1302 z = &zbd_info->zone_info[zone_idx];
1303
1304 if (!zbd_zone_swr(z))
1305 return;
1306
1307 if (!success)
1308 goto unlock;
1309
1310 dprint(FD_ZBD,
1311 "%s: queued I/O (%lld, %llu) for zone %u\n",
1312 f->file_name, io_u->offset, io_u->buflen, zone_idx);
1313
1314 switch (io_u->ddir) {
1315 case DDIR_WRITE:
1316 zone_end = min((uint64_t)(io_u->offset + io_u->buflen),
1317 zbd_zone_capacity_end(z));
1318 pthread_mutex_lock(&zbd_info->mutex);
1319 /*
1320 * z->wp > zone_end means that one or more I/O errors
1321 * have occurred.
1322 */
1323 if (z->wp <= zone_end)
1324 zbd_info->sectors_with_data += zone_end - z->wp;
1325 pthread_mutex_unlock(&zbd_info->mutex);
1326 z->wp = zone_end;
1327 break;
1328 case DDIR_TRIM:
1329 assert(z->wp == z->start);
1330 break;
1331 default:
1332 break;
1333 }
1334
1335 if (q == FIO_Q_COMPLETED && !io_u->error)
1336 zbd_end_zone_io(td, io_u, z);
1337
1338unlock:
1339 if (!success || q != FIO_Q_QUEUED) {
1340 /* BUSY or COMPLETED: unlock the zone */
1341 pthread_mutex_unlock(&z->mutex);
1342 io_u->zbd_put_io = NULL;
1343 }
1344}
1345
1346/**
1347 * zbd_put_io - Unlock an I/O unit target zone lock
1348 * @io_u: I/O unit
1349 */
1350static void zbd_put_io(struct thread_data *td, const struct io_u *io_u)
1351{
1352 const struct fio_file *f = io_u->file;
1353 struct zoned_block_device_info *zbd_info = f->zbd_info;
1354 struct fio_zone_info *z;
1355 uint32_t zone_idx;
1356 int ret;
1357
1358 if (!zbd_info)
1359 return;
1360
1361 zone_idx = zbd_zone_idx(f, io_u->offset);
1362 assert(zone_idx < zbd_info->nr_zones);
1363 z = &zbd_info->zone_info[zone_idx];
1364
1365 if (!zbd_zone_swr(z))
1366 return;
1367
1368 dprint(FD_ZBD,
1369 "%s: terminate I/O (%lld, %llu) for zone %u\n",
1370 f->file_name, io_u->offset, io_u->buflen, zone_idx);
1371
1372 zbd_end_zone_io(td, io_u, z);
1373
1374 ret = pthread_mutex_unlock(&z->mutex);
1375 assert(ret == 0);
1376 zbd_check_swd(f);
1377}
1378
1379/*
1380 * Windows and MacOS do not define this.
1381 */
1382#ifndef EREMOTEIO
1383#define EREMOTEIO 121 /* POSIX value */
1384#endif
1385
1386bool zbd_unaligned_write(int error_code)
1387{
1388 switch (error_code) {
1389 case EIO:
1390 case EREMOTEIO:
1391 return true;
1392 }
1393 return false;
1394}
1395
1396/**
1397 * setup_zbd_zone_mode - handle zoneskip as necessary for ZBD drives
1398 * @td: FIO thread data.
1399 * @io_u: FIO I/O unit.
1400 *
1401 * For sequential workloads, change the file offset to skip zoneskip bytes when
1402 * no more IO can be performed in the current zone.
1403 * - For read workloads, zoneskip is applied when the io has reached the end of
1404 * the zone or the zone write position (when td->o.read_beyond_wp is false).
1405 * - For write workloads, zoneskip is applied when the zone is full.
1406 * This applies only to read and write operations.
1407 */
1408void setup_zbd_zone_mode(struct thread_data *td, struct io_u *io_u)
1409{
1410 struct fio_file *f = io_u->file;
1411 enum fio_ddir ddir = io_u->ddir;
1412 struct fio_zone_info *z;
1413 uint32_t zone_idx;
1414
1415 assert(td->o.zone_mode == ZONE_MODE_ZBD);
1416 assert(td->o.zone_size);
1417
1418 zone_idx = zbd_zone_idx(f, f->last_pos[ddir]);
1419 z = &f->zbd_info->zone_info[zone_idx];
1420
1421 /*
1422 * When the zone capacity is smaller than the zone size and the I/O is
1423 * sequential write, skip to zone end if the latest position is at the
1424 * zone capacity limit.
1425 */
1426 if (z->capacity < f->zbd_info->zone_size && !td_random(td) &&
1427 ddir == DDIR_WRITE &&
1428 f->last_pos[ddir] >= zbd_zone_capacity_end(z)) {
1429 dprint(FD_ZBD,
1430 "%s: Jump from zone capacity limit to zone end:"
1431 " (%llu -> %llu) for zone %u (%llu)\n",
1432 f->file_name, (unsigned long long) f->last_pos[ddir],
1433 (unsigned long long) zbd_zone_end(z),
1434 zbd_zone_nr(f->zbd_info, z),
1435 (unsigned long long) z->capacity);
1436 td->io_skip_bytes += zbd_zone_end(z) - f->last_pos[ddir];
1437 f->last_pos[ddir] = zbd_zone_end(z);
1438 }
1439
1440 /*
1441 * zone_skip is valid only for sequential workloads.
1442 */
1443 if (td_random(td) || !td->o.zone_skip)
1444 return;
1445
1446 /*
1447 * It is time to switch to a new zone if:
1448 * - zone_bytes == zone_size bytes have already been accessed
1449 * - The last position reached the end of the current zone.
1450 * - For reads with td->o.read_beyond_wp == false, the last position
1451 * reached the zone write pointer.
1452 */
1453 if (td->zone_bytes >= td->o.zone_size ||
1454 f->last_pos[ddir] >= zbd_zone_end(z) ||
1455 (ddir == DDIR_READ &&
1456 (!td->o.read_beyond_wp) && f->last_pos[ddir] >= z->wp)) {
1457 /*
1458 * Skip zones.
1459 */
1460 td->zone_bytes = 0;
1461 f->file_offset += td->o.zone_size + td->o.zone_skip;
1462
1463 /*
1464 * Wrap from the beginning, if we exceed the file size
1465 */
1466 if (f->file_offset >= f->real_file_size)
1467 f->file_offset = get_start_offset(td, f);
1468
1469 f->last_pos[ddir] = f->file_offset;
1470 td->io_skip_bytes += td->o.zone_skip;
1471 }
1472}
1473
1474/**
1475 * zbd_adjust_ddir - Adjust an I/O direction for zonemode=zbd.
1476 *
1477 * @td: FIO thread data.
1478 * @io_u: FIO I/O unit.
1479 * @ddir: I/O direction before adjustment.
1480 *
1481 * Return adjusted I/O direction.
1482 */
1483enum fio_ddir zbd_adjust_ddir(struct thread_data *td, struct io_u *io_u,
1484 enum fio_ddir ddir)
1485{
1486 /*
1487 * In case read direction is chosen for the first random I/O, fio with
1488 * zonemode=zbd stops because no data can be read from zoned block
1489 * devices with all empty zones. Overwrite the first I/O direction as
1490 * write to make sure data to read exists.
1491 */
1492 if (ddir != DDIR_READ || !td_rw(td))
1493 return ddir;
1494
1495 if (io_u->file->zbd_info->sectors_with_data ||
1496 td->o.read_beyond_wp)
1497 return DDIR_READ;
1498
1499 return DDIR_WRITE;
1500}
1501
1502/**
1503 * zbd_adjust_block - adjust the offset and length as necessary for ZBD drives
1504 * @td: FIO thread data.
1505 * @io_u: FIO I/O unit.
1506 *
1507 * Locking strategy: returns with z->mutex locked if and only if z refers
1508 * to a sequential zone and if io_u_accept is returned. z is the zone that
1509 * corresponds to io_u->offset at the end of this function.
1510 */
1511enum io_u_action zbd_adjust_block(struct thread_data *td, struct io_u *io_u)
1512{
1513 struct fio_file *f = io_u->file;
1514 uint32_t zone_idx_b;
1515 struct fio_zone_info *zb, *zl, *orig_zb;
1516 uint32_t orig_len = io_u->buflen;
1517 uint32_t min_bs = td->o.min_bs[io_u->ddir];
1518 uint64_t new_len;
1519 int64_t range;
1520
1521 if (!f->zbd_info)
1522 return io_u_accept;
1523
1524 assert(min_bs);
1525 assert(is_valid_offset(f, io_u->offset));
1526 assert(io_u->buflen);
1527 zone_idx_b = zbd_zone_idx(f, io_u->offset);
1528 zb = &f->zbd_info->zone_info[zone_idx_b];
1529 orig_zb = zb;
1530
1531 /* Accept the I/O offset for conventional zones. */
1532 if (!zbd_zone_swr(zb))
1533 return io_u_accept;
1534
1535 /*
1536 * Accept the I/O offset for reads if reading beyond the write pointer
1537 * is enabled.
1538 */
1539 if (zb->cond != ZBD_ZONE_COND_OFFLINE &&
1540 io_u->ddir == DDIR_READ && td->o.read_beyond_wp)
1541 return io_u_accept;
1542
1543 zbd_check_swd(f);
1544
1545 zone_lock(td, f, zb);
1546
1547 switch (io_u->ddir) {
1548 case DDIR_READ:
1549 if (td->runstate == TD_VERIFYING && td_write(td)) {
1550 zb = zbd_replay_write_order(td, io_u, zb);
1551 pthread_mutex_unlock(&zb->mutex);
1552 goto accept;
1553 }
1554 /*
1555 * Check that there is enough written data in the zone to do an
1556 * I/O of at least min_bs B. If there isn't, find a new zone for
1557 * the I/O.
1558 */
1559 range = zb->cond != ZBD_ZONE_COND_OFFLINE ?
1560 zb->wp - zb->start : 0;
1561 if (range < min_bs ||
1562 ((!td_random(td)) && (io_u->offset + min_bs > zb->wp))) {
1563 pthread_mutex_unlock(&zb->mutex);
1564 zl = &f->zbd_info->zone_info[f->max_zone];
1565 zb = zbd_find_zone(td, io_u, zb, zl);
1566 if (!zb) {
1567 dprint(FD_ZBD,
1568 "%s: zbd_find_zone(%lld, %llu) failed\n",
1569 f->file_name, io_u->offset,
1570 io_u->buflen);
1571 goto eof;
1572 }
1573 /*
1574 * zbd_find_zone() returned a zone with a range of at
1575 * least min_bs.
1576 */
1577 range = zb->wp - zb->start;
1578 assert(range >= min_bs);
1579
1580 if (!td_random(td))
1581 io_u->offset = zb->start;
1582 }
1583 /*
1584 * Make sure the I/O is within the zone valid data range while
1585 * maximizing the I/O size and preserving randomness.
1586 */
1587 if (range <= io_u->buflen)
1588 io_u->offset = zb->start;
1589 else if (td_random(td))
1590 io_u->offset = zb->start +
1591 ((io_u->offset - orig_zb->start) %
1592 (range - io_u->buflen)) / min_bs * min_bs;
1593 /*
1594 * Make sure the I/O does not cross over the zone wp position.
1595 */
1596 new_len = min((unsigned long long)io_u->buflen,
1597 (unsigned long long)(zb->wp - io_u->offset));
1598 new_len = new_len / min_bs * min_bs;
1599 if (new_len < io_u->buflen) {
1600 io_u->buflen = new_len;
1601 dprint(FD_IO, "Changed length from %u into %llu\n",
1602 orig_len, io_u->buflen);
1603 }
1604 assert(zb->start <= io_u->offset);
1605 assert(io_u->offset + io_u->buflen <= zb->wp);
1606 goto accept;
1607 case DDIR_WRITE:
1608 if (io_u->buflen > f->zbd_info->zone_size)
1609 goto eof;
1610 if (!zbd_open_zone(td, f, zone_idx_b)) {
1611 pthread_mutex_unlock(&zb->mutex);
1612 zb = zbd_convert_to_open_zone(td, io_u);
1613 if (!zb)
1614 goto eof;
1615 zone_idx_b = zb - f->zbd_info->zone_info;
1616 }
1617 /* Check whether the zone reset threshold has been exceeded */
1618 if (td->o.zrf.u.f) {
1619 if (f->zbd_info->sectors_with_data >=
1620 f->io_size * td->o.zrt.u.f &&
1621 zbd_dec_and_reset_write_cnt(td, f)) {
1622 zb->reset_zone = 1;
1623 }
1624 }
1625 /* Reset the zone pointer if necessary */
1626 if (zb->reset_zone || zbd_zone_full(f, zb, min_bs)) {
1627 assert(td->o.verify == VERIFY_NONE);
1628 /*
1629 * Since previous write requests may have been submitted
1630 * asynchronously and since we will submit the zone
1631 * reset synchronously, wait until previously submitted
1632 * write requests have completed before issuing a
1633 * zone reset.
1634 */
1635 io_u_quiesce(td);
1636 zb->reset_zone = 0;
1637 if (zbd_reset_zone(td, f, zb) < 0)
1638 goto eof;
1639
1640 if (zb->capacity < min_bs) {
1641 log_err("zone capacity %llu smaller than minimum block size %d\n",
1642 (unsigned long long)zb->capacity,
1643 min_bs);
1644 goto eof;
1645 }
1646 }
1647 /* Make writes occur at the write pointer */
1648 assert(!zbd_zone_full(f, zb, min_bs));
1649 io_u->offset = zb->wp;
1650 if (!is_valid_offset(f, io_u->offset)) {
1651 dprint(FD_ZBD, "Dropped request with offset %llu\n",
1652 io_u->offset);
1653 goto eof;
1654 }
1655 /*
1656 * Make sure that the buflen is a multiple of the minimal
1657 * block size. Give up if shrinking would make the request too
1658 * small.
1659 */
1660 new_len = min((unsigned long long)io_u->buflen,
1661 zbd_zone_capacity_end(zb) - io_u->offset);
1662 new_len = new_len / min_bs * min_bs;
1663 if (new_len == io_u->buflen)
1664 goto accept;
1665 if (new_len >= min_bs) {
1666 io_u->buflen = new_len;
1667 dprint(FD_IO, "Changed length from %u into %llu\n",
1668 orig_len, io_u->buflen);
1669 goto accept;
1670 }
1671 log_err("Zone remainder %lld smaller than minimum block size %d\n",
1672 (zbd_zone_capacity_end(zb) - io_u->offset),
1673 min_bs);
1674 goto eof;
1675 case DDIR_TRIM:
1676 /* fall-through */
1677 case DDIR_SYNC:
1678 case DDIR_DATASYNC:
1679 case DDIR_SYNC_FILE_RANGE:
1680 case DDIR_WAIT:
1681 case DDIR_LAST:
1682 case DDIR_INVAL:
1683 goto accept;
1684 }
1685
1686 assert(false);
1687
1688accept:
1689 assert(zb);
1690 assert(zb->cond != ZBD_ZONE_COND_OFFLINE);
1691 assert(!io_u->zbd_queue_io);
1692 assert(!io_u->zbd_put_io);
1693 io_u->zbd_queue_io = zbd_queue_io;
1694 io_u->zbd_put_io = zbd_put_io;
1695 return io_u_accept;
1696
1697eof:
1698 if (zb)
1699 pthread_mutex_unlock(&zb->mutex);
1700 return io_u_eof;
1701}
1702
1703/* Return a string with ZBD statistics */
1704char *zbd_write_status(const struct thread_stat *ts)
1705{
1706 char *res;
1707
1708 if (asprintf(&res, "; %llu zone resets", (unsigned long long) ts->nr_zone_resets) < 0)
1709 return NULL;
1710 return res;
1711}