add FIELD_SIZE macro to calculate the size of the specified field
[fio.git] / verify.c
... / ...
CommitLineData
1/*
2 * IO verification helpers
3 */
4#include <unistd.h>
5#include <fcntl.h>
6#include <string.h>
7#include <assert.h>
8#include <pthread.h>
9#include <libgen.h>
10
11#include "fio.h"
12#include "verify.h"
13#include "trim.h"
14#include "lib/rand.h"
15#include "lib/hweight.h"
16#include "lib/pattern.h"
17
18#include "crc/md5.h"
19#include "crc/crc64.h"
20#include "crc/crc32.h"
21#include "crc/crc32c.h"
22#include "crc/crc16.h"
23#include "crc/crc7.h"
24#include "crc/sha256.h"
25#include "crc/sha512.h"
26#include "crc/sha1.h"
27#include "crc/xxhash.h"
28
29static void populate_hdr(struct thread_data *td, struct io_u *io_u,
30 struct verify_header *hdr, unsigned int header_num,
31 unsigned int header_len);
32static void fill_hdr(struct verify_header *hdr, int verify_type, uint32_t len,
33 uint64_t rand_seed);
34static void __fill_hdr(struct verify_header *hdr, int verify_type, uint32_t len,
35 uint64_t rand_seed);
36
37void fill_buffer_pattern(struct thread_data *td, void *p, unsigned int len)
38{
39 (void)cpy_pattern(td->o.buffer_pattern, td->o.buffer_pattern_bytes, p, len);
40}
41
42void __fill_buffer(struct thread_options *o, unsigned long seed, void *p,
43 unsigned int len)
44{
45 __fill_random_buf_percentage(seed, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes);
46}
47
48unsigned long fill_buffer(struct thread_data *td, void *p, unsigned int len)
49{
50 struct frand_state *fs = &td->verify_state;
51 struct thread_options *o = &td->o;
52
53 return fill_random_buf_percentage(fs, p, o->compress_percentage, len, len, o->buffer_pattern, o->buffer_pattern_bytes);
54}
55
56void fill_verify_pattern(struct thread_data *td, void *p, unsigned int len,
57 struct io_u *io_u, unsigned long seed, int use_seed)
58{
59 struct thread_options *o = &td->o;
60
61 if (!o->verify_pattern_bytes) {
62 dprint(FD_VERIFY, "fill random bytes len=%u\n", len);
63
64 if (use_seed)
65 __fill_buffer(o, seed, p, len);
66 else
67 io_u->rand_seed = fill_buffer(td, p, len);
68 return;
69 }
70
71 if (io_u->buf_filled_len >= len) {
72 dprint(FD_VERIFY, "using already filled verify pattern b=%d len=%u\n",
73 o->verify_pattern_bytes, len);
74 return;
75 }
76
77 (void)cpy_pattern(td->o.verify_pattern, td->o.verify_pattern_bytes, p, len);
78 io_u->buf_filled_len = len;
79}
80
81static unsigned int get_hdr_inc(struct thread_data *td, struct io_u *io_u)
82{
83 unsigned int hdr_inc;
84
85 hdr_inc = io_u->buflen;
86 if (td->o.verify_interval && td->o.verify_interval <= io_u->buflen)
87 hdr_inc = td->o.verify_interval;
88
89 return hdr_inc;
90}
91
92static void fill_pattern_headers(struct thread_data *td, struct io_u *io_u,
93 unsigned long seed, int use_seed)
94{
95 unsigned int hdr_inc, header_num;
96 struct verify_header *hdr;
97 void *p = io_u->buf;
98
99 fill_verify_pattern(td, p, io_u->buflen, io_u, seed, use_seed);
100
101 hdr_inc = get_hdr_inc(td, io_u);
102 header_num = 0;
103 for (; p < io_u->buf + io_u->buflen; p += hdr_inc) {
104 hdr = p;
105 populate_hdr(td, io_u, hdr, header_num, hdr_inc);
106 header_num++;
107 }
108}
109
110static void memswp(void *buf1, void *buf2, unsigned int len)
111{
112 char swap[200];
113
114 assert(len <= sizeof(swap));
115
116 memcpy(&swap, buf1, len);
117 memcpy(buf1, buf2, len);
118 memcpy(buf2, &swap, len);
119}
120
121static void hexdump(void *buffer, int len)
122{
123 unsigned char *p = buffer;
124 int i;
125
126 for (i = 0; i < len; i++)
127 log_err("%02x", p[i]);
128 log_err("\n");
129}
130
131/*
132 * Prepare for separation of verify_header and checksum header
133 */
134static inline unsigned int __hdr_size(int verify_type)
135{
136 unsigned int len = 0;
137
138 switch (verify_type) {
139 case VERIFY_NONE:
140 case VERIFY_NULL:
141 case VERIFY_PATTERN:
142 len = 0;
143 break;
144 case VERIFY_MD5:
145 len = sizeof(struct vhdr_md5);
146 break;
147 case VERIFY_CRC64:
148 len = sizeof(struct vhdr_crc64);
149 break;
150 case VERIFY_CRC32C:
151 case VERIFY_CRC32:
152 case VERIFY_CRC32C_INTEL:
153 len = sizeof(struct vhdr_crc32);
154 break;
155 case VERIFY_CRC16:
156 len = sizeof(struct vhdr_crc16);
157 break;
158 case VERIFY_CRC7:
159 len = sizeof(struct vhdr_crc7);
160 break;
161 case VERIFY_SHA256:
162 len = sizeof(struct vhdr_sha256);
163 break;
164 case VERIFY_SHA512:
165 len = sizeof(struct vhdr_sha512);
166 break;
167 case VERIFY_XXHASH:
168 len = sizeof(struct vhdr_xxhash);
169 break;
170 case VERIFY_META:
171 len = sizeof(struct vhdr_meta);
172 break;
173 case VERIFY_SHA1:
174 len = sizeof(struct vhdr_sha1);
175 break;
176 case VERIFY_PATTERN_NO_HDR:
177 return 0;
178 default:
179 log_err("fio: unknown verify header!\n");
180 assert(0);
181 }
182
183 return len + sizeof(struct verify_header);
184}
185
186static inline unsigned int hdr_size(struct thread_data *td,
187 struct verify_header *hdr)
188{
189 if (td->o.verify == VERIFY_PATTERN_NO_HDR)
190 return 0;
191
192 return __hdr_size(hdr->verify_type);
193}
194
195static void *hdr_priv(struct verify_header *hdr)
196{
197 void *priv = hdr;
198
199 return priv + sizeof(struct verify_header);
200}
201
202/*
203 * Verify container, pass info to verify handlers and allow them to
204 * pass info back in case of error
205 */
206struct vcont {
207 /*
208 * Input
209 */
210 struct io_u *io_u;
211 unsigned int hdr_num;
212 struct thread_data *td;
213
214 /*
215 * Output, only valid in case of error
216 */
217 const char *name;
218 void *good_crc;
219 void *bad_crc;
220 unsigned int crc_len;
221};
222
223#define DUMP_BUF_SZ 255
224static int dump_buf_warned;
225
226static void dump_buf(char *buf, unsigned int len, unsigned long long offset,
227 const char *type, struct fio_file *f)
228{
229 char *ptr, fname[DUMP_BUF_SZ];
230 size_t buf_left = DUMP_BUF_SZ;
231 int ret, fd;
232
233 ptr = strdup(f->file_name);
234
235 memset(fname, 0, sizeof(fname));
236 if (aux_path)
237 sprintf(fname, "%s%s", aux_path, FIO_OS_PATH_SEPARATOR);
238
239 strncpy(fname + strlen(fname), basename(ptr), buf_left - 1);
240
241 buf_left -= strlen(fname);
242 if (buf_left <= 0) {
243 if (!dump_buf_warned) {
244 log_err("fio: verify failure dump buffer too small\n");
245 dump_buf_warned = 1;
246 }
247 free(ptr);
248 return;
249 }
250
251 snprintf(fname + strlen(fname), buf_left, ".%llu.%s", offset, type);
252
253 fd = open(fname, O_CREAT | O_TRUNC | O_WRONLY, 0644);
254 if (fd < 0) {
255 perror("open verify buf file");
256 return;
257 }
258
259 while (len) {
260 ret = write(fd, buf, len);
261 if (!ret)
262 break;
263 else if (ret < 0) {
264 perror("write verify buf file");
265 break;
266 }
267 len -= ret;
268 buf += ret;
269 }
270
271 close(fd);
272 log_err(" %s data dumped as %s\n", type, fname);
273 free(ptr);
274}
275
276/*
277 * Dump the contents of the read block and re-generate the correct data
278 * and dump that too.
279 */
280static void __dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
281{
282 struct thread_data *td = vc->td;
283 struct io_u *io_u = vc->io_u;
284 unsigned long hdr_offset;
285 struct io_u dummy;
286 void *buf;
287
288 if (!td->o.verify_dump)
289 return;
290
291 /*
292 * Dump the contents we just read off disk
293 */
294 hdr_offset = vc->hdr_num * hdr->len;
295
296 dump_buf(io_u->buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
297 "received", vc->io_u->file);
298
299 /*
300 * Allocate a new buf and re-generate the original data
301 */
302 buf = malloc(io_u->buflen);
303 dummy = *io_u;
304 dummy.buf = buf;
305 dummy.rand_seed = hdr->rand_seed;
306 dummy.buf_filled_len = 0;
307 dummy.buflen = io_u->buflen;
308
309 fill_pattern_headers(td, &dummy, hdr->rand_seed, 1);
310
311 dump_buf(buf + hdr_offset, hdr->len, io_u->offset + hdr_offset,
312 "expected", vc->io_u->file);
313 free(buf);
314}
315
316static void dump_verify_buffers(struct verify_header *hdr, struct vcont *vc)
317{
318 struct thread_data *td = vc->td;
319 struct verify_header shdr;
320
321 if (td->o.verify == VERIFY_PATTERN_NO_HDR) {
322 __fill_hdr(&shdr, td->o.verify, vc->io_u->buflen, 0);
323 hdr = &shdr;
324 }
325
326 __dump_verify_buffers(hdr, vc);
327}
328
329static void log_verify_failure(struct verify_header *hdr, struct vcont *vc)
330{
331 unsigned long long offset;
332
333 offset = vc->io_u->offset;
334 offset += vc->hdr_num * hdr->len;
335 log_err("%.8s: verify failed at file %s offset %llu, length %u\n",
336 vc->name, vc->io_u->file->file_name, offset, hdr->len);
337
338 if (vc->good_crc && vc->bad_crc) {
339 log_err(" Expected CRC: ");
340 hexdump(vc->good_crc, vc->crc_len);
341 log_err(" Received CRC: ");
342 hexdump(vc->bad_crc, vc->crc_len);
343 }
344
345 dump_verify_buffers(hdr, vc);
346}
347
348/*
349 * Return data area 'header_num'
350 */
351static inline void *io_u_verify_off(struct verify_header *hdr, struct vcont *vc)
352{
353 return vc->io_u->buf + vc->hdr_num * hdr->len + hdr_size(vc->td, hdr);
354}
355
356static int verify_io_u_pattern(struct verify_header *hdr, struct vcont *vc)
357{
358 struct thread_data *td = vc->td;
359 struct io_u *io_u = vc->io_u;
360 char *buf, *pattern;
361 unsigned int header_size = __hdr_size(td->o.verify);
362 unsigned int len, mod, i, pattern_size;
363 int rc;
364
365 pattern = td->o.verify_pattern;
366 pattern_size = td->o.verify_pattern_bytes;
367 if (pattern_size <= 1)
368 pattern_size = MAX_PATTERN_SIZE;
369 buf = (void *) hdr + header_size;
370 len = get_hdr_inc(td, io_u) - header_size;
371 mod = header_size % pattern_size;
372
373 rc = cmp_pattern(pattern, pattern_size, mod, buf, len);
374 if (!rc)
375 return 0;
376
377 /* Slow path, compare each byte */
378 for (i = 0; i < len; i++) {
379 if (buf[i] != pattern[mod]) {
380 unsigned int bits;
381
382 bits = hweight8(buf[i] ^ pattern[mod]);
383 log_err("fio: got pattern '%02x', wanted '%02x'. Bad bits %d\n",
384 (unsigned char)buf[i],
385 (unsigned char)pattern[mod],
386 bits);
387 log_err("fio: bad pattern block offset %u\n", i);
388 dump_verify_buffers(hdr, vc);
389 return EILSEQ;
390 }
391 mod++;
392 if (mod == td->o.verify_pattern_bytes)
393 mod = 0;
394 }
395
396 /* Unreachable line */
397 assert(0);
398 return EILSEQ;
399}
400
401static int verify_io_u_meta(struct verify_header *hdr, struct vcont *vc)
402{
403 struct thread_data *td = vc->td;
404 struct vhdr_meta *vh = hdr_priv(hdr);
405 struct io_u *io_u = vc->io_u;
406 int ret = EILSEQ;
407
408 dprint(FD_VERIFY, "meta verify io_u %p, len %u\n", io_u, hdr->len);
409
410 if (vh->offset == io_u->offset + vc->hdr_num * td->o.verify_interval)
411 ret = 0;
412
413 if (td->o.verify_pattern_bytes)
414 ret |= verify_io_u_pattern(hdr, vc);
415
416 /*
417 * For read-only workloads, the program cannot be certain of the
418 * last numberio written to a block. Checking of numberio will be
419 * done only for workloads that write data. For verify_only,
420 * numberio will be checked in the last iteration when the correct
421 * state of numberio, that would have been written to each block
422 * in a previous run of fio, has been reached.
423 */
424 if ((td_write(td) || td_rw(td)) && (td_min_bs(td) == td_max_bs(td)) &&
425 !td->o.time_based)
426 if (!td->o.verify_only || td->o.loops == 0)
427 if (vh->numberio != io_u->numberio)
428 ret = EILSEQ;
429
430 if (!ret)
431 return 0;
432
433 vc->name = "meta";
434 log_verify_failure(hdr, vc);
435 return ret;
436}
437
438static int verify_io_u_xxhash(struct verify_header *hdr, struct vcont *vc)
439{
440 void *p = io_u_verify_off(hdr, vc);
441 struct vhdr_xxhash *vh = hdr_priv(hdr);
442 uint32_t hash;
443 void *state;
444
445 dprint(FD_VERIFY, "xxhash verify io_u %p, len %u\n", vc->io_u, hdr->len);
446
447 state = XXH32_init(1);
448 XXH32_update(state, p, hdr->len - hdr_size(vc->td, hdr));
449 hash = XXH32_digest(state);
450
451 if (vh->hash == hash)
452 return 0;
453
454 vc->name = "xxhash";
455 vc->good_crc = &vh->hash;
456 vc->bad_crc = &hash;
457 vc->crc_len = sizeof(hash);
458 log_verify_failure(hdr, vc);
459 return EILSEQ;
460}
461
462static int verify_io_u_sha512(struct verify_header *hdr, struct vcont *vc)
463{
464 void *p = io_u_verify_off(hdr, vc);
465 struct vhdr_sha512 *vh = hdr_priv(hdr);
466 uint8_t sha512[128];
467 struct fio_sha512_ctx sha512_ctx = {
468 .buf = sha512,
469 };
470
471 dprint(FD_VERIFY, "sha512 verify io_u %p, len %u\n", vc->io_u, hdr->len);
472
473 fio_sha512_init(&sha512_ctx);
474 fio_sha512_update(&sha512_ctx, p, hdr->len - hdr_size(vc->td, hdr));
475
476 if (!memcmp(vh->sha512, sha512_ctx.buf, sizeof(sha512)))
477 return 0;
478
479 vc->name = "sha512";
480 vc->good_crc = vh->sha512;
481 vc->bad_crc = sha512_ctx.buf;
482 vc->crc_len = sizeof(vh->sha512);
483 log_verify_failure(hdr, vc);
484 return EILSEQ;
485}
486
487static int verify_io_u_sha256(struct verify_header *hdr, struct vcont *vc)
488{
489 void *p = io_u_verify_off(hdr, vc);
490 struct vhdr_sha256 *vh = hdr_priv(hdr);
491 uint8_t sha256[64];
492 struct fio_sha256_ctx sha256_ctx = {
493 .buf = sha256,
494 };
495
496 dprint(FD_VERIFY, "sha256 verify io_u %p, len %u\n", vc->io_u, hdr->len);
497
498 fio_sha256_init(&sha256_ctx);
499 fio_sha256_update(&sha256_ctx, p, hdr->len - hdr_size(vc->td, hdr));
500 fio_sha256_final(&sha256_ctx);
501
502 if (!memcmp(vh->sha256, sha256_ctx.buf, sizeof(sha256)))
503 return 0;
504
505 vc->name = "sha256";
506 vc->good_crc = vh->sha256;
507 vc->bad_crc = sha256_ctx.buf;
508 vc->crc_len = sizeof(vh->sha256);
509 log_verify_failure(hdr, vc);
510 return EILSEQ;
511}
512
513static int verify_io_u_sha1(struct verify_header *hdr, struct vcont *vc)
514{
515 void *p = io_u_verify_off(hdr, vc);
516 struct vhdr_sha1 *vh = hdr_priv(hdr);
517 uint32_t sha1[5];
518 struct fio_sha1_ctx sha1_ctx = {
519 .H = sha1,
520 };
521
522 dprint(FD_VERIFY, "sha1 verify io_u %p, len %u\n", vc->io_u, hdr->len);
523
524 fio_sha1_init(&sha1_ctx);
525 fio_sha1_update(&sha1_ctx, p, hdr->len - hdr_size(vc->td, hdr));
526 fio_sha1_final(&sha1_ctx);
527
528 if (!memcmp(vh->sha1, sha1_ctx.H, sizeof(sha1)))
529 return 0;
530
531 vc->name = "sha1";
532 vc->good_crc = vh->sha1;
533 vc->bad_crc = sha1_ctx.H;
534 vc->crc_len = sizeof(vh->sha1);
535 log_verify_failure(hdr, vc);
536 return EILSEQ;
537}
538
539static int verify_io_u_crc7(struct verify_header *hdr, struct vcont *vc)
540{
541 void *p = io_u_verify_off(hdr, vc);
542 struct vhdr_crc7 *vh = hdr_priv(hdr);
543 unsigned char c;
544
545 dprint(FD_VERIFY, "crc7 verify io_u %p, len %u\n", vc->io_u, hdr->len);
546
547 c = fio_crc7(p, hdr->len - hdr_size(vc->td, hdr));
548
549 if (c == vh->crc7)
550 return 0;
551
552 vc->name = "crc7";
553 vc->good_crc = &vh->crc7;
554 vc->bad_crc = &c;
555 vc->crc_len = 1;
556 log_verify_failure(hdr, vc);
557 return EILSEQ;
558}
559
560static int verify_io_u_crc16(struct verify_header *hdr, struct vcont *vc)
561{
562 void *p = io_u_verify_off(hdr, vc);
563 struct vhdr_crc16 *vh = hdr_priv(hdr);
564 unsigned short c;
565
566 dprint(FD_VERIFY, "crc16 verify io_u %p, len %u\n", vc->io_u, hdr->len);
567
568 c = fio_crc16(p, hdr->len - hdr_size(vc->td, hdr));
569
570 if (c == vh->crc16)
571 return 0;
572
573 vc->name = "crc16";
574 vc->good_crc = &vh->crc16;
575 vc->bad_crc = &c;
576 vc->crc_len = 2;
577 log_verify_failure(hdr, vc);
578 return EILSEQ;
579}
580
581static int verify_io_u_crc64(struct verify_header *hdr, struct vcont *vc)
582{
583 void *p = io_u_verify_off(hdr, vc);
584 struct vhdr_crc64 *vh = hdr_priv(hdr);
585 unsigned long long c;
586
587 dprint(FD_VERIFY, "crc64 verify io_u %p, len %u\n", vc->io_u, hdr->len);
588
589 c = fio_crc64(p, hdr->len - hdr_size(vc->td, hdr));
590
591 if (c == vh->crc64)
592 return 0;
593
594 vc->name = "crc64";
595 vc->good_crc = &vh->crc64;
596 vc->bad_crc = &c;
597 vc->crc_len = 8;
598 log_verify_failure(hdr, vc);
599 return EILSEQ;
600}
601
602static int verify_io_u_crc32(struct verify_header *hdr, struct vcont *vc)
603{
604 void *p = io_u_verify_off(hdr, vc);
605 struct vhdr_crc32 *vh = hdr_priv(hdr);
606 uint32_t c;
607
608 dprint(FD_VERIFY, "crc32 verify io_u %p, len %u\n", vc->io_u, hdr->len);
609
610 c = fio_crc32(p, hdr->len - hdr_size(vc->td, hdr));
611
612 if (c == vh->crc32)
613 return 0;
614
615 vc->name = "crc32";
616 vc->good_crc = &vh->crc32;
617 vc->bad_crc = &c;
618 vc->crc_len = 4;
619 log_verify_failure(hdr, vc);
620 return EILSEQ;
621}
622
623static int verify_io_u_crc32c(struct verify_header *hdr, struct vcont *vc)
624{
625 void *p = io_u_verify_off(hdr, vc);
626 struct vhdr_crc32 *vh = hdr_priv(hdr);
627 uint32_t c;
628
629 dprint(FD_VERIFY, "crc32c verify io_u %p, len %u\n", vc->io_u, hdr->len);
630
631 c = fio_crc32c(p, hdr->len - hdr_size(vc->td, hdr));
632
633 if (c == vh->crc32)
634 return 0;
635
636 vc->name = "crc32c";
637 vc->good_crc = &vh->crc32;
638 vc->bad_crc = &c;
639 vc->crc_len = 4;
640 log_verify_failure(hdr, vc);
641 return EILSEQ;
642}
643
644static int verify_io_u_md5(struct verify_header *hdr, struct vcont *vc)
645{
646 void *p = io_u_verify_off(hdr, vc);
647 struct vhdr_md5 *vh = hdr_priv(hdr);
648 uint32_t hash[MD5_HASH_WORDS];
649 struct fio_md5_ctx md5_ctx = {
650 .hash = hash,
651 };
652
653 dprint(FD_VERIFY, "md5 verify io_u %p, len %u\n", vc->io_u, hdr->len);
654
655 fio_md5_init(&md5_ctx);
656 fio_md5_update(&md5_ctx, p, hdr->len - hdr_size(vc->td, hdr));
657 fio_md5_final(&md5_ctx);
658
659 if (!memcmp(vh->md5_digest, md5_ctx.hash, sizeof(hash)))
660 return 0;
661
662 vc->name = "md5";
663 vc->good_crc = vh->md5_digest;
664 vc->bad_crc = md5_ctx.hash;
665 vc->crc_len = sizeof(hash);
666 log_verify_failure(hdr, vc);
667 return EILSEQ;
668}
669
670/*
671 * Push IO verification to a separate thread
672 */
673int verify_io_u_async(struct thread_data *td, struct io_u **io_u_ptr)
674{
675 struct io_u *io_u = *io_u_ptr;
676
677 pthread_mutex_lock(&td->io_u_lock);
678
679 if (io_u->file)
680 put_file_log(td, io_u->file);
681
682 if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
683 td->cur_depth--;
684 io_u_clear(io_u, IO_U_F_IN_CUR_DEPTH);
685 }
686 flist_add_tail(&io_u->verify_list, &td->verify_list);
687 *io_u_ptr = NULL;
688 pthread_mutex_unlock(&td->io_u_lock);
689
690 pthread_cond_signal(&td->verify_cond);
691 return 0;
692}
693
694static int verify_trimmed_io_u(struct thread_data *td, struct io_u *io_u)
695{
696 static char zero_buf[1024];
697 unsigned int this_len, len;
698 int ret = 0;
699 void *p;
700
701 if (!td->o.trim_zero)
702 return 0;
703
704 len = io_u->buflen;
705 p = io_u->buf;
706 do {
707 this_len = sizeof(zero_buf);
708 if (this_len > len)
709 this_len = len;
710 if (memcmp(p, zero_buf, this_len)) {
711 ret = EILSEQ;
712 break;
713 }
714 len -= this_len;
715 p += this_len;
716 } while (len);
717
718 if (!ret)
719 return 0;
720
721 log_err("trim: verify failed at file %s offset %llu, length %lu"
722 ", block offset %lu\n",
723 io_u->file->file_name, io_u->offset, io_u->buflen,
724 (unsigned long) (p - io_u->buf));
725 return ret;
726}
727
728static int verify_header(struct io_u *io_u, struct verify_header *hdr,
729 unsigned int hdr_num, unsigned int hdr_len)
730{
731 void *p = hdr;
732 uint32_t crc;
733
734 if (hdr->magic != FIO_HDR_MAGIC) {
735 log_err("verify: bad magic header %x, wanted %x",
736 hdr->magic, FIO_HDR_MAGIC);
737 goto err;
738 }
739 if (hdr->len != hdr_len) {
740 log_err("verify: bad header length %u, wanted %u",
741 hdr->len, hdr_len);
742 goto err;
743 }
744 if (hdr->rand_seed != io_u->rand_seed) {
745 log_err("verify: bad header rand_seed %"PRIu64
746 ", wanted %"PRIu64,
747 hdr->rand_seed, io_u->rand_seed);
748 goto err;
749 }
750
751 crc = fio_crc32c(p, offsetof(struct verify_header, crc32));
752 if (crc != hdr->crc32) {
753 log_err("verify: bad header crc %x, calculated %x",
754 hdr->crc32, crc);
755 goto err;
756 }
757 return 0;
758
759err:
760 log_err(" at file %s offset %llu, length %u\n",
761 io_u->file->file_name,
762 io_u->offset + hdr_num * hdr_len, hdr_len);
763 return EILSEQ;
764}
765
766int verify_io_u(struct thread_data *td, struct io_u **io_u_ptr)
767{
768 struct verify_header *hdr;
769 struct io_u *io_u = *io_u_ptr;
770 unsigned int header_size, hdr_inc, hdr_num = 0;
771 void *p;
772 int ret;
773
774 if (td->o.verify == VERIFY_NULL || io_u->ddir != DDIR_READ)
775 return 0;
776 /*
777 * If the IO engine is faking IO (like null), then just pretend
778 * we verified everything.
779 */
780 if (td->io_ops->flags & FIO_FAKEIO)
781 return 0;
782
783 if (io_u->flags & IO_U_F_TRIMMED) {
784 ret = verify_trimmed_io_u(td, io_u);
785 goto done;
786 }
787
788 hdr_inc = get_hdr_inc(td, io_u);
789
790 ret = 0;
791 for (p = io_u->buf; p < io_u->buf + io_u->buflen;
792 p += hdr_inc, hdr_num++) {
793 struct vcont vc = {
794 .io_u = io_u,
795 .hdr_num = hdr_num,
796 .td = td,
797 };
798 unsigned int verify_type;
799
800 if (ret && td->o.verify_fatal)
801 break;
802
803 header_size = __hdr_size(td->o.verify);
804 if (td->o.verify_offset)
805 memswp(p, p + td->o.verify_offset, header_size);
806 hdr = p;
807
808 /*
809 * Make rand_seed check pass when have verifysort or
810 * verify_backlog.
811 */
812 if (td->o.verifysort || (td->flags & TD_F_VER_BACKLOG))
813 io_u->rand_seed = hdr->rand_seed;
814
815 if (td->o.verify != VERIFY_PATTERN_NO_HDR) {
816 ret = verify_header(io_u, hdr, hdr_num, hdr_inc);
817 if (ret)
818 return ret;
819 }
820
821 if (td->o.verify != VERIFY_NONE)
822 verify_type = td->o.verify;
823 else
824 verify_type = hdr->verify_type;
825
826 switch (verify_type) {
827 case VERIFY_MD5:
828 ret = verify_io_u_md5(hdr, &vc);
829 break;
830 case VERIFY_CRC64:
831 ret = verify_io_u_crc64(hdr, &vc);
832 break;
833 case VERIFY_CRC32C:
834 case VERIFY_CRC32C_INTEL:
835 ret = verify_io_u_crc32c(hdr, &vc);
836 break;
837 case VERIFY_CRC32:
838 ret = verify_io_u_crc32(hdr, &vc);
839 break;
840 case VERIFY_CRC16:
841 ret = verify_io_u_crc16(hdr, &vc);
842 break;
843 case VERIFY_CRC7:
844 ret = verify_io_u_crc7(hdr, &vc);
845 break;
846 case VERIFY_SHA256:
847 ret = verify_io_u_sha256(hdr, &vc);
848 break;
849 case VERIFY_SHA512:
850 ret = verify_io_u_sha512(hdr, &vc);
851 break;
852 case VERIFY_XXHASH:
853 ret = verify_io_u_xxhash(hdr, &vc);
854 break;
855 case VERIFY_META:
856 ret = verify_io_u_meta(hdr, &vc);
857 break;
858 case VERIFY_SHA1:
859 ret = verify_io_u_sha1(hdr, &vc);
860 break;
861 case VERIFY_PATTERN:
862 case VERIFY_PATTERN_NO_HDR:
863 ret = verify_io_u_pattern(hdr, &vc);
864 break;
865 default:
866 log_err("Bad verify type %u\n", hdr->verify_type);
867 ret = EINVAL;
868 }
869
870 if (ret && verify_type != hdr->verify_type)
871 log_err("fio: verify type mismatch (%u media, %u given)\n",
872 hdr->verify_type, verify_type);
873 }
874
875done:
876 if (ret && td->o.verify_fatal)
877 fio_mark_td_terminate(td);
878
879 return ret;
880}
881
882static void fill_meta(struct verify_header *hdr, struct thread_data *td,
883 struct io_u *io_u, unsigned int header_num)
884{
885 struct vhdr_meta *vh = hdr_priv(hdr);
886
887 vh->thread = td->thread_number;
888
889 vh->time_sec = io_u->start_time.tv_sec;
890 vh->time_usec = io_u->start_time.tv_usec;
891
892 vh->numberio = io_u->numberio;
893
894 vh->offset = io_u->offset + header_num * td->o.verify_interval;
895}
896
897static void fill_xxhash(struct verify_header *hdr, void *p, unsigned int len)
898{
899 struct vhdr_xxhash *vh = hdr_priv(hdr);
900 void *state;
901
902 state = XXH32_init(1);
903 XXH32_update(state, p, len);
904 vh->hash = XXH32_digest(state);
905}
906
907static void fill_sha512(struct verify_header *hdr, void *p, unsigned int len)
908{
909 struct vhdr_sha512 *vh = hdr_priv(hdr);
910 struct fio_sha512_ctx sha512_ctx = {
911 .buf = vh->sha512,
912 };
913
914 fio_sha512_init(&sha512_ctx);
915 fio_sha512_update(&sha512_ctx, p, len);
916}
917
918static void fill_sha256(struct verify_header *hdr, void *p, unsigned int len)
919{
920 struct vhdr_sha256 *vh = hdr_priv(hdr);
921 struct fio_sha256_ctx sha256_ctx = {
922 .buf = vh->sha256,
923 };
924
925 fio_sha256_init(&sha256_ctx);
926 fio_sha256_update(&sha256_ctx, p, len);
927 fio_sha256_final(&sha256_ctx);
928}
929
930static void fill_sha1(struct verify_header *hdr, void *p, unsigned int len)
931{
932 struct vhdr_sha1 *vh = hdr_priv(hdr);
933 struct fio_sha1_ctx sha1_ctx = {
934 .H = vh->sha1,
935 };
936
937 fio_sha1_init(&sha1_ctx);
938 fio_sha1_update(&sha1_ctx, p, len);
939 fio_sha1_final(&sha1_ctx);
940}
941
942static void fill_crc7(struct verify_header *hdr, void *p, unsigned int len)
943{
944 struct vhdr_crc7 *vh = hdr_priv(hdr);
945
946 vh->crc7 = fio_crc7(p, len);
947}
948
949static void fill_crc16(struct verify_header *hdr, void *p, unsigned int len)
950{
951 struct vhdr_crc16 *vh = hdr_priv(hdr);
952
953 vh->crc16 = fio_crc16(p, len);
954}
955
956static void fill_crc32(struct verify_header *hdr, void *p, unsigned int len)
957{
958 struct vhdr_crc32 *vh = hdr_priv(hdr);
959
960 vh->crc32 = fio_crc32(p, len);
961}
962
963static void fill_crc32c(struct verify_header *hdr, void *p, unsigned int len)
964{
965 struct vhdr_crc32 *vh = hdr_priv(hdr);
966
967 vh->crc32 = fio_crc32c(p, len);
968}
969
970static void fill_crc64(struct verify_header *hdr, void *p, unsigned int len)
971{
972 struct vhdr_crc64 *vh = hdr_priv(hdr);
973
974 vh->crc64 = fio_crc64(p, len);
975}
976
977static void fill_md5(struct verify_header *hdr, void *p, unsigned int len)
978{
979 struct vhdr_md5 *vh = hdr_priv(hdr);
980 struct fio_md5_ctx md5_ctx = {
981 .hash = (uint32_t *) vh->md5_digest,
982 };
983
984 fio_md5_init(&md5_ctx);
985 fio_md5_update(&md5_ctx, p, len);
986 fio_md5_final(&md5_ctx);
987}
988
989static void __fill_hdr(struct verify_header *hdr, int verify_type,
990 uint32_t len, uint64_t rand_seed)
991{
992 void *p = hdr;
993
994 hdr->magic = FIO_HDR_MAGIC;
995 hdr->verify_type = verify_type;
996 hdr->len = len;
997 hdr->rand_seed = rand_seed;
998 hdr->crc32 = fio_crc32c(p, offsetof(struct verify_header, crc32));
999}
1000
1001
1002static void fill_hdr(struct verify_header *hdr, int verify_type, uint32_t len,
1003 uint64_t rand_seed)
1004{
1005 if (verify_type != VERIFY_PATTERN_NO_HDR)
1006 __fill_hdr(hdr, verify_type, len, rand_seed);
1007}
1008
1009static void populate_hdr(struct thread_data *td, struct io_u *io_u,
1010 struct verify_header *hdr, unsigned int header_num,
1011 unsigned int header_len)
1012{
1013 unsigned int data_len;
1014 void *data, *p;
1015
1016 p = (void *) hdr;
1017
1018 fill_hdr(hdr, td->o.verify, header_len, io_u->rand_seed);
1019
1020 data_len = header_len - hdr_size(td, hdr);
1021
1022 data = p + hdr_size(td, hdr);
1023 switch (td->o.verify) {
1024 case VERIFY_MD5:
1025 dprint(FD_VERIFY, "fill md5 io_u %p, len %u\n",
1026 io_u, hdr->len);
1027 fill_md5(hdr, data, data_len);
1028 break;
1029 case VERIFY_CRC64:
1030 dprint(FD_VERIFY, "fill crc64 io_u %p, len %u\n",
1031 io_u, hdr->len);
1032 fill_crc64(hdr, data, data_len);
1033 break;
1034 case VERIFY_CRC32C:
1035 case VERIFY_CRC32C_INTEL:
1036 dprint(FD_VERIFY, "fill crc32c io_u %p, len %u\n",
1037 io_u, hdr->len);
1038 fill_crc32c(hdr, data, data_len);
1039 break;
1040 case VERIFY_CRC32:
1041 dprint(FD_VERIFY, "fill crc32 io_u %p, len %u\n",
1042 io_u, hdr->len);
1043 fill_crc32(hdr, data, data_len);
1044 break;
1045 case VERIFY_CRC16:
1046 dprint(FD_VERIFY, "fill crc16 io_u %p, len %u\n",
1047 io_u, hdr->len);
1048 fill_crc16(hdr, data, data_len);
1049 break;
1050 case VERIFY_CRC7:
1051 dprint(FD_VERIFY, "fill crc7 io_u %p, len %u\n",
1052 io_u, hdr->len);
1053 fill_crc7(hdr, data, data_len);
1054 break;
1055 case VERIFY_SHA256:
1056 dprint(FD_VERIFY, "fill sha256 io_u %p, len %u\n",
1057 io_u, hdr->len);
1058 fill_sha256(hdr, data, data_len);
1059 break;
1060 case VERIFY_SHA512:
1061 dprint(FD_VERIFY, "fill sha512 io_u %p, len %u\n",
1062 io_u, hdr->len);
1063 fill_sha512(hdr, data, data_len);
1064 break;
1065 case VERIFY_XXHASH:
1066 dprint(FD_VERIFY, "fill xxhash io_u %p, len %u\n",
1067 io_u, hdr->len);
1068 fill_xxhash(hdr, data, data_len);
1069 break;
1070 case VERIFY_META:
1071 dprint(FD_VERIFY, "fill meta io_u %p, len %u\n",
1072 io_u, hdr->len);
1073 fill_meta(hdr, td, io_u, header_num);
1074 break;
1075 case VERIFY_SHA1:
1076 dprint(FD_VERIFY, "fill sha1 io_u %p, len %u\n",
1077 io_u, hdr->len);
1078 fill_sha1(hdr, data, data_len);
1079 break;
1080 case VERIFY_PATTERN:
1081 case VERIFY_PATTERN_NO_HDR:
1082 /* nothing to do here */
1083 break;
1084 default:
1085 log_err("fio: bad verify type: %d\n", td->o.verify);
1086 assert(0);
1087 }
1088
1089 if (td->o.verify_offset && hdr_size(td, hdr))
1090 memswp(p, p + td->o.verify_offset, hdr_size(td, hdr));
1091}
1092
1093/*
1094 * fill body of io_u->buf with random data and add a header with the
1095 * checksum of choice
1096 */
1097void populate_verify_io_u(struct thread_data *td, struct io_u *io_u)
1098{
1099 if (td->o.verify == VERIFY_NULL)
1100 return;
1101
1102 io_u->numberio = td->io_issues[io_u->ddir];
1103
1104 fill_pattern_headers(td, io_u, 0, 0);
1105}
1106
1107int get_next_verify(struct thread_data *td, struct io_u *io_u)
1108{
1109 struct io_piece *ipo = NULL;
1110
1111 /*
1112 * this io_u is from a requeue, we already filled the offsets
1113 */
1114 if (io_u->file)
1115 return 0;
1116
1117 if (!RB_EMPTY_ROOT(&td->io_hist_tree)) {
1118 struct rb_node *n = rb_first(&td->io_hist_tree);
1119
1120 ipo = rb_entry(n, struct io_piece, rb_node);
1121
1122 /*
1123 * Ensure that the associated IO has completed
1124 */
1125 read_barrier();
1126 if (ipo->flags & IP_F_IN_FLIGHT)
1127 goto nothing;
1128
1129 rb_erase(n, &td->io_hist_tree);
1130 assert(ipo->flags & IP_F_ONRB);
1131 ipo->flags &= ~IP_F_ONRB;
1132 } else if (!flist_empty(&td->io_hist_list)) {
1133 ipo = flist_first_entry(&td->io_hist_list, struct io_piece, list);
1134
1135 /*
1136 * Ensure that the associated IO has completed
1137 */
1138 read_barrier();
1139 if (ipo->flags & IP_F_IN_FLIGHT)
1140 goto nothing;
1141
1142 flist_del(&ipo->list);
1143 assert(ipo->flags & IP_F_ONLIST);
1144 ipo->flags &= ~IP_F_ONLIST;
1145 }
1146
1147 if (ipo) {
1148 td->io_hist_len--;
1149
1150 io_u->offset = ipo->offset;
1151 io_u->buflen = ipo->len;
1152 io_u->numberio = ipo->numberio;
1153 io_u->file = ipo->file;
1154 io_u_set(io_u, IO_U_F_VER_LIST);
1155
1156 if (ipo->flags & IP_F_TRIMMED)
1157 io_u_set(io_u, IO_U_F_TRIMMED);
1158
1159 if (!fio_file_open(io_u->file)) {
1160 int r = td_io_open_file(td, io_u->file);
1161
1162 if (r) {
1163 dprint(FD_VERIFY, "failed file %s open\n",
1164 io_u->file->file_name);
1165 return 1;
1166 }
1167 }
1168
1169 get_file(ipo->file);
1170 assert(fio_file_open(io_u->file));
1171 io_u->ddir = DDIR_READ;
1172 io_u->xfer_buf = io_u->buf;
1173 io_u->xfer_buflen = io_u->buflen;
1174
1175 remove_trim_entry(td, ipo);
1176 free(ipo);
1177 dprint(FD_VERIFY, "get_next_verify: ret io_u %p\n", io_u);
1178
1179 if (!td->o.verify_pattern_bytes) {
1180 io_u->rand_seed = __rand(&td->verify_state);
1181 if (sizeof(int) != sizeof(long *))
1182 io_u->rand_seed *= __rand(&td->verify_state);
1183 }
1184 return 0;
1185 }
1186
1187nothing:
1188 dprint(FD_VERIFY, "get_next_verify: empty\n");
1189 return 1;
1190}
1191
1192void fio_verify_init(struct thread_data *td)
1193{
1194 if (td->o.verify == VERIFY_CRC32C_INTEL ||
1195 td->o.verify == VERIFY_CRC32C) {
1196 crc32c_intel_probe();
1197 }
1198}
1199
1200static void *verify_async_thread(void *data)
1201{
1202 struct thread_data *td = data;
1203 struct io_u *io_u;
1204 int ret = 0;
1205
1206 if (fio_option_is_set(&td->o, verify_cpumask) &&
1207 fio_setaffinity(td->pid, td->o.verify_cpumask)) {
1208 log_err("fio: failed setting verify thread affinity\n");
1209 goto done;
1210 }
1211
1212 do {
1213 FLIST_HEAD(list);
1214
1215 read_barrier();
1216 if (td->verify_thread_exit)
1217 break;
1218
1219 pthread_mutex_lock(&td->io_u_lock);
1220
1221 while (flist_empty(&td->verify_list) &&
1222 !td->verify_thread_exit) {
1223 ret = pthread_cond_wait(&td->verify_cond,
1224 &td->io_u_lock);
1225 if (ret) {
1226 pthread_mutex_unlock(&td->io_u_lock);
1227 break;
1228 }
1229 }
1230
1231 flist_splice_init(&td->verify_list, &list);
1232 pthread_mutex_unlock(&td->io_u_lock);
1233
1234 if (flist_empty(&list))
1235 continue;
1236
1237 while (!flist_empty(&list)) {
1238 io_u = flist_first_entry(&list, struct io_u, verify_list);
1239 flist_del_init(&io_u->verify_list);
1240
1241 io_u_set(io_u, IO_U_F_NO_FILE_PUT);
1242 ret = verify_io_u(td, &io_u);
1243
1244 put_io_u(td, io_u);
1245 if (!ret)
1246 continue;
1247 if (td_non_fatal_error(td, ERROR_TYPE_VERIFY_BIT, ret)) {
1248 update_error_count(td, ret);
1249 td_clear_error(td);
1250 ret = 0;
1251 }
1252 }
1253 } while (!ret);
1254
1255 if (ret) {
1256 td_verror(td, ret, "async_verify");
1257 if (td->o.verify_fatal)
1258 fio_mark_td_terminate(td);
1259 }
1260
1261done:
1262 pthread_mutex_lock(&td->io_u_lock);
1263 td->nr_verify_threads--;
1264 pthread_mutex_unlock(&td->io_u_lock);
1265
1266 pthread_cond_signal(&td->free_cond);
1267 return NULL;
1268}
1269
1270int verify_async_init(struct thread_data *td)
1271{
1272 int i, ret;
1273 pthread_attr_t attr;
1274
1275 pthread_attr_init(&attr);
1276 pthread_attr_setstacksize(&attr, PTHREAD_STACK_MIN);
1277
1278 td->verify_thread_exit = 0;
1279
1280 td->verify_threads = malloc(sizeof(pthread_t) * td->o.verify_async);
1281 for (i = 0; i < td->o.verify_async; i++) {
1282 ret = pthread_create(&td->verify_threads[i], &attr,
1283 verify_async_thread, td);
1284 if (ret) {
1285 log_err("fio: async verify creation failed: %s\n",
1286 strerror(ret));
1287 break;
1288 }
1289 ret = pthread_detach(td->verify_threads[i]);
1290 if (ret) {
1291 log_err("fio: async verify thread detach failed: %s\n",
1292 strerror(ret));
1293 break;
1294 }
1295 td->nr_verify_threads++;
1296 }
1297
1298 pthread_attr_destroy(&attr);
1299
1300 if (i != td->o.verify_async) {
1301 log_err("fio: only %d verify threads started, exiting\n", i);
1302 td->verify_thread_exit = 1;
1303 write_barrier();
1304 pthread_cond_broadcast(&td->verify_cond);
1305 return 1;
1306 }
1307
1308 return 0;
1309}
1310
1311void verify_async_exit(struct thread_data *td)
1312{
1313 td->verify_thread_exit = 1;
1314 write_barrier();
1315 pthread_cond_broadcast(&td->verify_cond);
1316
1317 pthread_mutex_lock(&td->io_u_lock);
1318
1319 while (td->nr_verify_threads)
1320 pthread_cond_wait(&td->free_cond, &td->io_u_lock);
1321
1322 pthread_mutex_unlock(&td->io_u_lock);
1323 free(td->verify_threads);
1324 td->verify_threads = NULL;
1325}
1326
1327struct all_io_list *get_all_io_list(int save_mask, size_t *sz)
1328{
1329 struct all_io_list *rep;
1330 struct thread_data *td;
1331 size_t depth;
1332 void *next;
1333 int i, nr;
1334
1335 compiletime_assert(sizeof(struct all_io_list) == 8, "all_io_list");
1336
1337 /*
1338 * Calculate reply space needed. We need one 'io_state' per thread,
1339 * and the size will vary depending on depth.
1340 */
1341 depth = 0;
1342 nr = 0;
1343 for_each_td(td, i) {
1344 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
1345 continue;
1346 td->stop_io = 1;
1347 td->flags |= TD_F_VSTATE_SAVED;
1348 depth += td->o.iodepth;
1349 nr++;
1350 }
1351
1352 if (!nr)
1353 return NULL;
1354
1355 *sz = sizeof(*rep);
1356 *sz += nr * sizeof(struct thread_io_list);
1357 *sz += depth * sizeof(uint64_t);
1358 rep = malloc(*sz);
1359
1360 rep->threads = cpu_to_le64((uint64_t) nr);
1361
1362 next = &rep->state[0];
1363 for_each_td(td, i) {
1364 struct thread_io_list *s = next;
1365 unsigned int comps;
1366
1367 if (save_mask != IO_LIST_ALL && (i + 1) != save_mask)
1368 continue;
1369
1370 if (td->last_write_comp) {
1371 int j, k;
1372
1373 if (td->io_blocks[DDIR_WRITE] < td->o.iodepth)
1374 comps = td->io_blocks[DDIR_WRITE];
1375 else
1376 comps = td->o.iodepth;
1377
1378 k = td->last_write_idx - 1;
1379 for (j = 0; j < comps; j++) {
1380 if (k == -1)
1381 k = td->o.iodepth - 1;
1382 s->offsets[j] = cpu_to_le64(td->last_write_comp[k]);
1383 k--;
1384 }
1385 } else
1386 comps = 0;
1387
1388 s->no_comps = cpu_to_le64((uint64_t) comps);
1389 s->depth = cpu_to_le64((uint64_t) td->o.iodepth);
1390 s->numberio = cpu_to_le64((uint64_t) td->io_issues[DDIR_WRITE]);
1391 s->index = cpu_to_le64((uint64_t) i);
1392 if (td->random_state.use64) {
1393 s->rand.state64.s[0] = cpu_to_le64(td->random_state.state64.s1);
1394 s->rand.state64.s[1] = cpu_to_le64(td->random_state.state64.s2);
1395 s->rand.state64.s[2] = cpu_to_le64(td->random_state.state64.s3);
1396 s->rand.state64.s[3] = cpu_to_le64(td->random_state.state64.s4);
1397 s->rand.state64.s[4] = cpu_to_le64(td->random_state.state64.s5);
1398 s->rand.state64.s[5] = 0;
1399 s->rand.use64 = cpu_to_le64((uint64_t)1);
1400 } else {
1401 s->rand.state32.s[0] = cpu_to_le32(td->random_state.state32.s1);
1402 s->rand.state32.s[1] = cpu_to_le32(td->random_state.state32.s2);
1403 s->rand.state32.s[2] = cpu_to_le32(td->random_state.state32.s3);
1404 s->rand.state32.s[3] = 0;
1405 s->rand.use64 = 0;
1406 }
1407 s->name[sizeof(s->name) - 1] = '\0';
1408 strncpy((char *) s->name, td->o.name, sizeof(s->name) - 1);
1409 next = io_list_next(s);
1410 }
1411
1412 return rep;
1413}
1414
1415static int open_state_file(const char *name, const char *prefix, int num,
1416 int for_write)
1417{
1418 char out[64];
1419 int flags;
1420 int fd;
1421
1422 if (for_write)
1423 flags = O_CREAT | O_TRUNC | O_WRONLY | O_SYNC;
1424 else
1425 flags = O_RDONLY;
1426
1427 verify_state_gen_name(out, sizeof(out), name, prefix, num);
1428
1429 fd = open(out, flags, 0644);
1430 if (fd == -1) {
1431 perror("fio: open state file");
1432 return -1;
1433 }
1434
1435 return fd;
1436}
1437
1438static int write_thread_list_state(struct thread_io_list *s,
1439 const char *prefix)
1440{
1441 struct verify_state_hdr hdr;
1442 uint64_t crc;
1443 ssize_t ret;
1444 int fd;
1445
1446 fd = open_state_file((const char *) s->name, prefix, s->index, 1);
1447 if (fd == -1)
1448 return 1;
1449
1450 crc = fio_crc32c((void *)s, thread_io_list_sz(s));
1451
1452 hdr.version = cpu_to_le64((uint64_t) VSTATE_HDR_VERSION);
1453 hdr.size = cpu_to_le64((uint64_t) thread_io_list_sz(s));
1454 hdr.crc = cpu_to_le64(crc);
1455 ret = write(fd, &hdr, sizeof(hdr));
1456 if (ret != sizeof(hdr))
1457 goto write_fail;
1458
1459 ret = write(fd, s, thread_io_list_sz(s));
1460 if (ret != thread_io_list_sz(s)) {
1461write_fail:
1462 if (ret < 0)
1463 perror("fio: write state file");
1464 log_err("fio: failed to write state file\n");
1465 ret = 1;
1466 } else
1467 ret = 0;
1468
1469 close(fd);
1470 return ret;
1471}
1472
1473void __verify_save_state(struct all_io_list *state, const char *prefix)
1474{
1475 struct thread_io_list *s = &state->state[0];
1476 unsigned int i;
1477
1478 for (i = 0; i < le64_to_cpu(state->threads); i++) {
1479 write_thread_list_state(s, prefix);
1480 s = io_list_next(s);
1481 }
1482}
1483
1484void verify_save_state(int mask)
1485{
1486 struct all_io_list *state;
1487 size_t sz;
1488
1489 state = get_all_io_list(mask, &sz);
1490 if (state) {
1491 char prefix[PATH_MAX];
1492
1493 if (aux_path)
1494 sprintf(prefix, "%s%slocal", aux_path, FIO_OS_PATH_SEPARATOR);
1495 else
1496 strcpy(prefix, "local");
1497
1498 __verify_save_state(state, prefix);
1499 free(state);
1500 }
1501}
1502
1503void verify_free_state(struct thread_data *td)
1504{
1505 if (td->vstate)
1506 free(td->vstate);
1507}
1508
1509static struct thread_io_list *convert_v1_list(struct thread_io_list_v1 *s)
1510{
1511 struct thread_io_list *til;
1512 int i;
1513
1514 til = malloc(__thread_io_list_sz(s->no_comps));
1515 til->no_comps = s->no_comps;
1516 til->depth = s->depth;
1517 til->numberio = s->numberio;
1518 til->index = s->index;
1519 memcpy(til->name, s->name, sizeof(til->name));
1520
1521 til->rand.use64 = 0;
1522 for (i = 0; i < 4; i++)
1523 til->rand.state32.s[i] = s->rand.s[i];
1524
1525 for (i = 0; i < s->no_comps; i++)
1526 til->offsets[i] = s->offsets[i];
1527
1528 return til;
1529}
1530
1531void verify_convert_assign_state(struct thread_data *td, void *p, int version)
1532{
1533 struct thread_io_list *til;
1534 int i;
1535
1536 if (version == 1) {
1537 struct thread_io_list_v1 *s = p;
1538
1539 s->no_comps = le64_to_cpu(s->no_comps);
1540 s->depth = le64_to_cpu(s->depth);
1541 s->numberio = le64_to_cpu(s->numberio);
1542 for (i = 0; i < 4; i++)
1543 s->rand.s[i] = le32_to_cpu(s->rand.s[i]);
1544 for (i = 0; i < s->no_comps; i++)
1545 s->offsets[i] = le64_to_cpu(s->offsets[i]);
1546
1547 til = convert_v1_list(s);
1548 free(s);
1549 } else {
1550 struct thread_io_list *s = p;
1551
1552 s->no_comps = le64_to_cpu(s->no_comps);
1553 s->depth = le64_to_cpu(s->depth);
1554 s->numberio = le64_to_cpu(s->numberio);
1555 s->rand.use64 = le64_to_cpu(s->rand.use64);
1556
1557 if (s->rand.use64) {
1558 for (i = 0; i < 6; i++)
1559 s->rand.state64.s[i] = le64_to_cpu(s->rand.state64.s[i]);
1560 } else {
1561 for (i = 0; i < 4; i++)
1562 s->rand.state32.s[i] = le32_to_cpu(s->rand.state32.s[i]);
1563 }
1564 for (i = 0; i < s->no_comps; i++)
1565 s->offsets[i] = le64_to_cpu(s->offsets[i]);
1566
1567 til = p;
1568 }
1569
1570 td->vstate = til;
1571}
1572
1573int verify_state_hdr(struct verify_state_hdr *hdr, struct thread_io_list *s,
1574 int *version)
1575{
1576 uint64_t crc;
1577
1578 hdr->version = le64_to_cpu(hdr->version);
1579 hdr->size = le64_to_cpu(hdr->size);
1580 hdr->crc = le64_to_cpu(hdr->crc);
1581
1582 if (hdr->version != VSTATE_HDR_VERSION ||
1583 hdr->version != VSTATE_HDR_VERSION_V1)
1584 return 1;
1585
1586 crc = fio_crc32c((void *)s, hdr->size);
1587 if (crc != hdr->crc)
1588 return 1;
1589
1590 *version = hdr->version;
1591 return 0;
1592}
1593
1594int verify_load_state(struct thread_data *td, const char *prefix)
1595{
1596 struct verify_state_hdr hdr;
1597 void *s = NULL;
1598 uint64_t crc;
1599 ssize_t ret;
1600 int fd;
1601
1602 if (!td->o.verify_state)
1603 return 0;
1604
1605 fd = open_state_file(td->o.name, prefix, td->thread_number - 1, 0);
1606 if (fd == -1)
1607 return 1;
1608
1609 ret = read(fd, &hdr, sizeof(hdr));
1610 if (ret != sizeof(hdr)) {
1611 if (ret < 0)
1612 td_verror(td, errno, "read verify state hdr");
1613 log_err("fio: failed reading verify state header\n");
1614 goto err;
1615 }
1616
1617 hdr.version = le64_to_cpu(hdr.version);
1618 hdr.size = le64_to_cpu(hdr.size);
1619 hdr.crc = le64_to_cpu(hdr.crc);
1620
1621 if (hdr.version != VSTATE_HDR_VERSION &&
1622 hdr.version != VSTATE_HDR_VERSION_V1) {
1623 log_err("fio: bad version in verify state header\n");
1624 goto err;
1625 }
1626
1627 s = malloc(hdr.size);
1628 ret = read(fd, s, hdr.size);
1629 if (ret != hdr.size) {
1630 if (ret < 0)
1631 td_verror(td, errno, "read verify state");
1632 log_err("fio: failed reading verity state\n");
1633 goto err;
1634 }
1635
1636 crc = fio_crc32c(s, hdr.size);
1637 if (crc != hdr.crc) {
1638 log_err("fio: verify state is corrupt\n");
1639 goto err;
1640 }
1641
1642 close(fd);
1643
1644 verify_convert_assign_state(td, s, hdr.version);
1645 return 0;
1646err:
1647 if (s)
1648 free(s);
1649 close(fd);
1650 return 1;
1651}
1652
1653/*
1654 * Use the loaded verify state to know when to stop doing verification
1655 */
1656int verify_state_should_stop(struct thread_data *td, struct io_u *io_u)
1657{
1658 struct thread_io_list *s = td->vstate;
1659 int i;
1660
1661 if (!s)
1662 return 0;
1663
1664 /*
1665 * If we're not into the window of issues - depth yet, continue. If
1666 * issue is shorter than depth, do check.
1667 */
1668 if ((td->io_blocks[DDIR_READ] < s->depth ||
1669 s->numberio - td->io_blocks[DDIR_READ] > s->depth) &&
1670 s->numberio > s->depth)
1671 return 0;
1672
1673 /*
1674 * We're in the window of having to check if this io was
1675 * completed or not. If the IO was seen as completed, then
1676 * lets verify it.
1677 */
1678 for (i = 0; i < s->no_comps; i++)
1679 if (io_u->offset == s->offsets[i])
1680 return 0;
1681
1682 /*
1683 * Not found, we have to stop
1684 */
1685 return 1;
1686}