fio: add serialize_overlap option
[fio.git] / steadystate.c
... / ...
CommitLineData
1#include <stdlib.h>
2
3#include "fio.h"
4#include "steadystate.h"
5#include "helper_thread.h"
6
7bool steadystate_enabled = false;
8
9static void steadystate_alloc(struct thread_data *td)
10{
11 td->ss.bw_data = calloc(td->ss.dur, sizeof(uint64_t));
12 td->ss.iops_data = calloc(td->ss.dur, sizeof(uint64_t));
13
14 td->ss.state |= __FIO_SS_DATA;
15}
16
17void steadystate_setup(void)
18{
19 int i, prev_groupid;
20 struct thread_data *td, *prev_td;
21
22 if (!steadystate_enabled)
23 return;
24
25 /*
26 * if group reporting is enabled, identify the last td
27 * for each group and use it for storing steady state
28 * data
29 */
30 prev_groupid = -1;
31 prev_td = NULL;
32 for_each_td(td, i) {
33 if (!td->ss.dur)
34 continue;
35
36 if (!td->o.group_reporting) {
37 steadystate_alloc(td);
38 continue;
39 }
40
41 if (prev_groupid != td->groupid) {
42 if (prev_td != NULL) {
43 steadystate_alloc(prev_td);
44 }
45 prev_groupid = td->groupid;
46 }
47 prev_td = td;
48 }
49
50 if (prev_td != NULL && prev_td->o.group_reporting) {
51 steadystate_alloc(prev_td);
52 }
53}
54
55static bool steadystate_slope(uint64_t iops, uint64_t bw,
56 struct thread_data *td)
57{
58 int i, j;
59 double result;
60 struct steadystate_data *ss = &td->ss;
61 uint64_t new_val;
62
63 ss->bw_data[ss->tail] = bw;
64 ss->iops_data[ss->tail] = iops;
65
66 if (ss->state & __FIO_SS_IOPS)
67 new_val = iops;
68 else
69 new_val = bw;
70
71 if (ss->state & __FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
72 if (!(ss->state & __FIO_SS_BUFFER_FULL)) {
73 /* first time through */
74 for(i = 0, ss->sum_y = 0; i < ss->dur; i++) {
75 if (ss->state & __FIO_SS_IOPS)
76 ss->sum_y += ss->iops_data[i];
77 else
78 ss->sum_y += ss->bw_data[i];
79 j = (ss->head + i) % ss->dur;
80 if (ss->state & __FIO_SS_IOPS)
81 ss->sum_xy += i * ss->iops_data[j];
82 else
83 ss->sum_xy += i * ss->bw_data[j];
84 }
85 ss->state |= __FIO_SS_BUFFER_FULL;
86 } else { /* easy to update the sums */
87 ss->sum_y -= ss->oldest_y;
88 ss->sum_y += new_val;
89 ss->sum_xy = ss->sum_xy - ss->sum_y + ss->dur * new_val;
90 }
91
92 if (ss->state & __FIO_SS_IOPS)
93 ss->oldest_y = ss->iops_data[ss->head];
94 else
95 ss->oldest_y = ss->bw_data[ss->head];
96
97 /*
98 * calculate slope as (sum_xy - sum_x * sum_y / n) / (sum_(x^2)
99 * - (sum_x)^2 / n) This code assumes that all x values are
100 * equally spaced when they are often off by a few milliseconds.
101 * This assumption greatly simplifies the calculations.
102 */
103 ss->slope = (ss->sum_xy - (double) ss->sum_x * ss->sum_y / ss->dur) /
104 (ss->sum_x_sq - (double) ss->sum_x * ss->sum_x / ss->dur);
105 if (ss->state & __FIO_SS_PCT)
106 ss->criterion = 100.0 * ss->slope / (ss->sum_y / ss->dur);
107 else
108 ss->criterion = ss->slope;
109
110 dprint(FD_STEADYSTATE, "sum_y: %llu, sum_xy: %llu, slope: %f, "
111 "criterion: %f, limit: %f\n",
112 (unsigned long long) ss->sum_y,
113 (unsigned long long) ss->sum_xy,
114 ss->slope, ss->criterion, ss->limit);
115
116 result = ss->criterion * (ss->criterion < 0.0 ? -1.0 : 1.0);
117 if (result < ss->limit)
118 return true;
119 }
120
121 ss->tail = (ss->tail + 1) % ss->dur;
122 if (ss->tail <= ss->head)
123 ss->head = (ss->head + 1) % ss->dur;
124
125 return false;
126}
127
128static bool steadystate_deviation(uint64_t iops, uint64_t bw,
129 struct thread_data *td)
130{
131 int i;
132 double diff;
133 double mean;
134
135 struct steadystate_data *ss = &td->ss;
136
137 ss->bw_data[ss->tail] = bw;
138 ss->iops_data[ss->tail] = iops;
139
140 if (ss->state & __FIO_SS_BUFFER_FULL || ss->tail - ss->head == ss->dur - 1) {
141 if (!(ss->state & __FIO_SS_BUFFER_FULL)) {
142 /* first time through */
143 for(i = 0, ss->sum_y = 0; i < ss->dur; i++)
144 if (ss->state & __FIO_SS_IOPS)
145 ss->sum_y += ss->iops_data[i];
146 else
147 ss->sum_y += ss->bw_data[i];
148 ss->state |= __FIO_SS_BUFFER_FULL;
149 } else { /* easy to update the sum */
150 ss->sum_y -= ss->oldest_y;
151 if (ss->state & __FIO_SS_IOPS)
152 ss->sum_y += ss->iops_data[ss->tail];
153 else
154 ss->sum_y += ss->bw_data[ss->tail];
155 }
156
157 if (ss->state & __FIO_SS_IOPS)
158 ss->oldest_y = ss->iops_data[ss->head];
159 else
160 ss->oldest_y = ss->bw_data[ss->head];
161
162 mean = (double) ss->sum_y / ss->dur;
163 ss->deviation = 0.0;
164
165 for (i = 0; i < ss->dur; i++) {
166 if (ss->state & __FIO_SS_IOPS)
167 diff = ss->iops_data[i] - mean;
168 else
169 diff = ss->bw_data[i] - mean;
170 ss->deviation = max(ss->deviation, diff * (diff < 0.0 ? -1.0 : 1.0));
171 }
172
173 if (ss->state & __FIO_SS_PCT)
174 ss->criterion = 100.0 * ss->deviation / mean;
175 else
176 ss->criterion = ss->deviation;
177
178 dprint(FD_STEADYSTATE, "sum_y: %llu, mean: %f, max diff: %f, "
179 "objective: %f, limit: %f\n",
180 (unsigned long long) ss->sum_y, mean,
181 ss->deviation, ss->criterion, ss->limit);
182
183 if (ss->criterion < ss->limit)
184 return true;
185 }
186
187 ss->tail = (ss->tail + 1) % ss->dur;
188 if (ss->tail <= ss->head)
189 ss->head = (ss->head + 1) % ss->dur;
190
191 return false;
192}
193
194void steadystate_check(void)
195{
196 int i, j, ddir, prev_groupid, group_ramp_time_over = 0;
197 unsigned long rate_time;
198 struct thread_data *td, *td2;
199 struct timespec now;
200 uint64_t group_bw = 0, group_iops = 0;
201 uint64_t td_iops, td_bytes;
202 bool ret;
203
204 prev_groupid = -1;
205 for_each_td(td, i) {
206 struct steadystate_data *ss = &td->ss;
207
208 if (!ss->dur || td->runstate <= TD_SETTING_UP ||
209 td->runstate >= TD_EXITED || !ss->state ||
210 ss->state & __FIO_SS_ATTAINED)
211 continue;
212
213 td_iops = 0;
214 td_bytes = 0;
215 if (!td->o.group_reporting ||
216 (td->o.group_reporting && td->groupid != prev_groupid)) {
217 group_bw = 0;
218 group_iops = 0;
219 group_ramp_time_over = 0;
220 }
221 prev_groupid = td->groupid;
222
223 fio_gettime(&now, NULL);
224 if (ss->ramp_time && !(ss->state & __FIO_SS_RAMP_OVER)) {
225 /*
226 * Begin recording data one second after ss->ramp_time
227 * has elapsed
228 */
229 if (utime_since(&td->epoch, &now) >= (ss->ramp_time + 1000000L))
230 ss->state |= __FIO_SS_RAMP_OVER;
231 }
232
233 td_io_u_lock(td);
234 for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++) {
235 td_iops += td->io_blocks[ddir];
236 td_bytes += td->io_bytes[ddir];
237 }
238 td_io_u_unlock(td);
239
240 rate_time = mtime_since(&ss->prev_time, &now);
241 memcpy(&ss->prev_time, &now, sizeof(now));
242
243 /*
244 * Begin monitoring when job starts but don't actually use
245 * data in checking stopping criterion until ss->ramp_time is
246 * over. This ensures that we will have a sane value in
247 * prev_iops/bw the first time through after ss->ramp_time
248 * is done.
249 */
250 if (ss->state & __FIO_SS_RAMP_OVER) {
251 group_bw += 1000 * (td_bytes - ss->prev_bytes) / rate_time;
252 group_iops += 1000 * (td_iops - ss->prev_iops) / rate_time;
253 ++group_ramp_time_over;
254 }
255 ss->prev_iops = td_iops;
256 ss->prev_bytes = td_bytes;
257
258 if (td->o.group_reporting && !(ss->state & __FIO_SS_DATA))
259 continue;
260
261 /*
262 * Don't begin checking criterion until ss->ramp_time is over
263 * for at least one thread in group
264 */
265 if (!group_ramp_time_over)
266 continue;
267
268 dprint(FD_STEADYSTATE, "steadystate_check() thread: %d, "
269 "groupid: %u, rate_msec: %ld, "
270 "iops: %llu, bw: %llu, head: %d, tail: %d\n",
271 i, td->groupid, rate_time,
272 (unsigned long long) group_iops,
273 (unsigned long long) group_bw,
274 ss->head, ss->tail);
275
276 if (ss->state & __FIO_SS_SLOPE)
277 ret = steadystate_slope(group_iops, group_bw, td);
278 else
279 ret = steadystate_deviation(group_iops, group_bw, td);
280
281 if (ret) {
282 if (td->o.group_reporting) {
283 for_each_td(td2, j) {
284 if (td2->groupid == td->groupid) {
285 td2->ss.state |= __FIO_SS_ATTAINED;
286 fio_mark_td_terminate(td2);
287 }
288 }
289 } else {
290 ss->state |= __FIO_SS_ATTAINED;
291 fio_mark_td_terminate(td);
292 }
293 }
294 }
295}
296
297int td_steadystate_init(struct thread_data *td)
298{
299 struct steadystate_data *ss = &td->ss;
300 struct thread_options *o = &td->o;
301 struct thread_data *td2;
302 int j;
303
304 memset(ss, 0, sizeof(*ss));
305
306 if (o->ss_dur) {
307 steadystate_enabled = true;
308 o->ss_dur /= 1000000L;
309
310 /* put all steady state info in one place */
311 ss->dur = o->ss_dur;
312 ss->limit = o->ss_limit.u.f;
313 ss->ramp_time = o->ss_ramp_time;
314
315 ss->state = o->ss_state;
316 if (!td->ss.ramp_time)
317 ss->state |= __FIO_SS_RAMP_OVER;
318
319 ss->sum_x = o->ss_dur * (o->ss_dur - 1) / 2;
320 ss->sum_x_sq = (o->ss_dur - 1) * (o->ss_dur) * (2*o->ss_dur - 1) / 6;
321 }
322
323 /* make sure that ss options are consistent within reporting group */
324 for_each_td(td2, j) {
325 if (td2->groupid == td->groupid) {
326 struct steadystate_data *ss2 = &td2->ss;
327
328 if (ss2->dur != ss->dur ||
329 ss2->limit != ss->limit ||
330 ss2->ramp_time != ss->ramp_time ||
331 ss2->state != ss->state ||
332 ss2->sum_x != ss->sum_x ||
333 ss2->sum_x_sq != ss->sum_x_sq) {
334 td_verror(td, EINVAL, "job rejected: steadystate options must be consistent within reporting groups");
335 return 1;
336 }
337 }
338 }
339
340 return 0;
341}
342
343uint64_t steadystate_bw_mean(struct thread_stat *ts)
344{
345 int i;
346 uint64_t sum;
347
348 for (i = 0, sum = 0; i < ts->ss_dur; i++)
349 sum += ts->ss_bw_data[i];
350
351 return sum / ts->ss_dur;
352}
353
354uint64_t steadystate_iops_mean(struct thread_stat *ts)
355{
356 int i;
357 uint64_t sum;
358
359 for (i = 0, sum = 0; i < ts->ss_dur; i++)
360 sum += ts->ss_iops_data[i];
361
362 return sum / ts->ss_dur;
363}